AU2008243253A1 - Insect trap - Google Patents

Insect trap Download PDF

Info

Publication number
AU2008243253A1
AU2008243253A1 AU2008243253A AU2008243253A AU2008243253A1 AU 2008243253 A1 AU2008243253 A1 AU 2008243253A1 AU 2008243253 A AU2008243253 A AU 2008243253A AU 2008243253 A AU2008243253 A AU 2008243253A AU 2008243253 A1 AU2008243253 A1 AU 2008243253A1
Authority
AU
Australia
Prior art keywords
insect trap
air
insects
housing
catchment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2008243253A
Other versions
AU2008243253B2 (en
Inventor
Andrew Coventry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bantix Worldwide Pty Ltd
Original Assignee
Bantix Worldwide Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007906926A external-priority patent/AU2007906926A0/en
Application filed by Bantix Worldwide Pty Ltd filed Critical Bantix Worldwide Pty Ltd
Priority to AU2008243253A priority Critical patent/AU2008243253B2/en
Publication of AU2008243253A1 publication Critical patent/AU2008243253A1/en
Application granted granted Critical
Publication of AU2008243253B2 publication Critical patent/AU2008243253B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • A01M1/023Attracting insects by the simulation of a living being, i.e. emission of carbon dioxide, heat, sound waves or vibrations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/08Attracting and catching insects by using combined illumination or colours and suction effects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/14Catching by adhesive surfaces
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M2200/00Kind of animal
    • A01M2200/01Insects
    • A01M2200/012Flying insects

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)

Description

P/00/011 Regulation 3.2 AUSTRALIA Patents Act 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title: "INSECT TRAP" The following statement is a full description of this invention, including the best method of performing it known to us: 1 INSECT TRAP This invention relates to an insect trap suitable for trapping a variety of biting or flying insects such as flies, mosquitoes, midges, sand flies, blowflies, 5 wasps, hornets and the like. The insect trap of the invention, however, is particularly adapted to trapping mosquitoes. Reference may be made to US Patent 6,199,316, which describes an insect trap that was particularly directed to the feature of providing a slow release of a compressed gas such as carbon dioxide. This insect trap 10 incorporated a pressure vessel for connection to a supply of the compressed gas and a restrictor tube to provide the slow release of gas into the trap. The insect trap also included a housing defining an insect collection chamber having one or more access apertures to allow an insect to enter the chamber as well as a transparent or translucent prism to which light emitting devices such as an 15 ultraviolet light and a broad spectrum light may be operatively coupled. The broad spectrum light may emit a wide range of different wavelengths. Also light emitting diodes (LEDs) were mounted to each end of the prism, which provided light of the colours red, green and blue as well as white light. Control of the LEDs was provided by a main printed circuit board within the interior of the insect 20 trap. The insect trap also included the use of attractant solutions typically containing lactic acid and octenol located in a solution tray and there was a fan that continuously propelled circulating gas comprising air together with carbon dioxide in conjunction with scent from the attractant solution throughout the housing. Such circulating gas was able to waft to the atmosphere through the 25 access apertures that facilitated the entry of insects into the housing. The scent from the attractant vapours attracted the insects as well as the light being emitted at different wavelengths. There was also a downdraught of circulating air which caused the insects to be driven into the liquid in the solution tray to facilitate entrapment. The above described insect trap was found to be effective 30 in most cases, although it was found in practice that in most cases, the downdraught also escaped through the access apertures and this lead to insects flying away from the trap. It was also found that the use of a fluorescent UV light 2 trap. It was also found that the use of a fluorescent UV light could only operate at a single frequency and also had to be frequently replaced. The insect trap was also ineffective in windy conditions because such conditions did not facilitate the entry of insects into the trap. 5 It is therefore an object of the invention to provide an insect trap that may alleviate the above-mentioned disadvantages of the prior art. The insect trap of the invention in one aspect includes a housing which has one or more access apertures to permit entry of insects into a hollow interior of the housing and a catchment tank located below said one or more access 10 apertures for trapping of insects characterised in that there is provided an air diffuser above said one or more access apertures and an air blower or fan located adjacent the air diffuser for generating circulating air within the housing wherein said circulating air is confined mainly to the hollow interior of the housing and thus does not escape through the access apertures. In this aspect of the invention the air diffuser may incorporate a plurality of vanes which extend upwardly from a support plate wherein there is provided a pair of end vanes at each end of the fan or air blower as well as plurality of intermediate vanes preferably of curved shape in plan view. 20 There also may be provided an array of air apertures located in an air screen or lattice adjacent the plurality of intermediate vanes. Such lattice may have a multiplicity of open ended air apertures that are wider in transverse dimension or wider at a top end compared to a bottom end so as to facilitate the production of a venturi effect to provide a suction force adjacent the one or more 25 access apertures to push the insects towards the catchment tank. The housing may also have a top cover having one or more vent holes to allow circulating air to escape. This facilitates the effect of substantially no air escaping through the access apertures. 30 In another embodiment of the invention the catchment tank is releasable from the housing and can also incorporate a support frame for capturing a bag for a dry trapping or capture of insects. The catchment tank may also have in 3 may also have in some cases a solution of water, which may also contain attractant vapours and carbon dioxide for a wet capture of insects. The catchment tank may also incorporate a layer of sticky paper or material also for dry capture of insects. 5 In another embodiment of the invention there may be provided an air heater suitably comprising a lattice work or screen of conductors which may be heated by electrical resistance heating which may be of contrasting colours such as black and white to further enhance capture of insects. The conductors may be housed in a transparent covering or lens made from plastics material. The air heater screen may also have attached thereto a plurality of LEDs which may emit light of differing wavelengths. Preferably such emission is carried out in pulses and this may be controlled by an appropriate printed circuit board. Such LEDs can be controlled as may be required at varying 15 wavelengths. The housing therefore may comprise a top compartment containing the air diffuser as described above and the air heater and LEDs supported on a chassis component located below the air diffuser. There also may be side passages for provision of a continuous flow of circulating air. The catchment 20 tank may be located below the chassis component. The housing may also have a pair of side casings which are hollow having one or more access openings. One side casing may contain attractant solution and the other side compartment may contain a catalytic converter assembly for conversion of propane or other suitable alkane to carbon dioxide. Reference may be made to a preferred embodiment of the invention shown in the accompanying drawings wherein: FIG 1 is a front view of an insect trap of the present invention; FIG 2 is an exploded perspective view of the insect trap shown in FIG 1; FIG 3 is a similar view to FIG 2 showing components of an upper part of the insect trap in greater detail; 4 FIG 4 is a perspective view showing an assembly of the components shown in FIG 3; FIG 5 shows an exploded view of the components of the catalytic converter assembly; 5 FIG 6 is a perspective view of an assembly of the components shown in FIG 5; FIG 7 is an upper perspective view showing the air diffuser; FIG 8 is a front sectional view through line A - A of FIG showing the continuous flow of air throughout the housing; 10 FIG 9 is a perspective cut away view of the insect trap with the catchment tank removed; FIG 10 is a perspective view of the insect trap of FIG 1 showing partial removal of the catchment tank; FIG 11 shows a perspective view of the catchment tank supporting a layer 15 of sticky material; and FIG 12 is a detailed view of the side compartment of the housing having a container of attractant liquid. PREFERRED EMBODIMENTS OF THE INVENTION 20 FIG 1 shows insect trap 10 having top cover 11, raised boss 15 having attachment sockets 13 in each corner, air vents 12, top access aperture 13A for passing water into catchment tank 20, side compartment 21 for containing an attractant lure container shown hereinafter in FIG 12, side compartment 22 for containing a catalytic converter described hereinafter in FIGS 5 - 6 and body or 25 housing 14 which supports top cover 11. There is also shown access apertures 19 located between ribs 18B of grille 18 to permit entry of insects into interior 19B of housing 14. FIG 2 shows wall mount 17 having depending flange 18 for mounting to a supporting hook or abutment on a wall or pole (not shown) as well as spaced 30 ribs 19A and passages 23 between ribs 19. There is also shown casing 24 constituting side compartment 21, casing 25 constituting side compartment 22, catchment tank 20 having interior 16 which is separate from body 14, air diffuser 5 from body 14, air diffuser 30 having vanes 26, 27, 28, 29, 31, 32, 33, 34 and 35 mounted on support plate 8 better illustrated hereinafter in FIG 7, air screen or baffle 35A, water tube 36 which communicates with top access aperture 13A and catchment tank 20, fan 37, air heater 38, main printed circuit board 39, 5 lens/light prism 40 and chassis component 41 for supporting heater 38, fan 37, prism 40 and circuit board 39. Body 14 also has base 42. There is also shown catalytic converter 43 which has hollow support bracket 45 and other components described in detail in FIGS 5 - 6. In FIG 3 there is shown main printed circuit board 39 having attachment 10 screws 49 for attachment to chassis component 41 and screws 50 which engage with sockets 13 of top cover 11. Heater 38 is shown as having vertical conductors 51 and horizontal conductors 52 mounted in a plastics casing or lens 53. loniser 54 and printed circuit board 55 are also shown for LEDs 56, as well as UV light. There is also shown clips 57 for prism 40 as well as printed circuit 15 board 58 for coloured LEDs 58A. In FIG 4, there is shown the underside of top cover 11 showing arcuate wind deflectors 61 and 62 at each end of the top cover 11 as well as rectangular baffles 63 to reduce the turbulent flow of air within the interior 19B. Each baffle 63 has a reinforcing web 64. There is also provided spaces 64A to allow 20 attractant vapours and carbon dioxide to vent to atmosphere. There is also shown fasteners 60 attaching air heater 38 to chassis component 41. LEDs 56A, 56B, 56C and 56D are also shown. FIG 5 shows the catalytic converter assembly 43 having hollow support bracket 45, piezo starter head unit 46, spark end 47 and wafer or biscuit 44 25 which has a ceramic 49 supporting suitable catalysts which may be dehydrogenation catalysts such as Group VIII metals inclusive of platinum, palladium or silver, which produce propane that then reacts with oxygen during combustion to produce carbon dioxide. The ceramic 49 is supported in a plastics casing 65 that incorporates a conductive carbon content to avoid use of 30 an earth wire. In FIG 6 there is also shown the assembled catalytic converter 43 and wafer or biscuit 44 located in base aperture 66 shown in FIG 5. There is also 6 provided a gas inlet 67 having connected thereto a gas tube 68. The function, therefore, of catalytic converter 43 is to convert propane which is supplied through gas tube 68 to wafer 44 through the action of catalysts as described above to produce carbon dioxide caused by the combustion of propane by the 5 spark in the piezo electric starter 46. In FIG 7, there is shown the arrangement of vanes 26, 27, 28, 29, 31, 32, 33, 34 and 35 of air diffuser 30 as well as mounting bracket 70 for fan 37. FIG 8 shows the circulation of air within insect trap 10 and this is a continuous flow of air as shown by the arrows in bold. A high pressure jet of air 10 is generated by fan 37 and the pressure and the velocity of this air stream is increased by vanes 26 - 35 of air diffuser 30 so that the jet stream is kept totally within hollow interior 19B of chassis 14 so that no air is caused to be expelled through grille 18. Thus, in other words, there is no pressure differential inside and outside of grille 18 as the pressure is maintained essentially at atmospheric 15 pressure. If air was caused to be expelled through grille 18 this would only result in the insects flying away from grille 18. The velocity and pressure of the air as it enters the bottom compartment 28 of chassis 14 is increased by the air travelling through air baffle 35A which increases the velocity and pressure of the air by the establishment of a venturi effect. In this regard, air baffle 35A is provided with 20 passages 71 which exacerbate this venturi effect having a wider top end 71A and a narrower bottom end 71 B. As shown in FIG 8 air after leaving air diffuser compartment or top plenum chamber 30A and after travelling through air baffle or screen 35A reaches bottom compartment 28 above catchment tank 20 and this causes insects after entering hollow interior 19 of trap 10 to fall into 25 catchment tank 20. The air then leaves bottom compartment 28 and travels to air diffuser 30 through side passage 72. Air also travels through side passage 72A after leaving air baffle 35A. FIG 9 shows a view of chassis 14 of insect trap 10 with catchment tank 20 30 removed for clarity. It shows bottom compartment 28 for supporting catchment tank 20 as well as drainage recess 20A. FIG 10 shows the catchment tank 20 partially removed from bottom 7 compartment 28 for clarity. The catchment tank 20 has handle 73 as well as a support frame 74 for supporting a mesh bag 75 only shown partly for convenience, so that insects may be caught in mesh bag 75 without it being necessary for catchment tank 20 to contain water. 5 Another option is shown in FIG 11, wherein catchment tank 20 is lined with sticky paper 76 so that insects may be caught on an adhesive patch 77, again only shown partly for convenience. Again in this embodiment, catchment tank 20 does not require to be filled with water. Catchment tank 77 may also be provided with a key operated lock 78. Catchment tank 20 has opposed side 10 walls 79 and 80, rear wall 81 and front wall 82 all of which may be lined with sticky paper 76. FIG 12 shows a container 83 containing a lure formulation. Container 83 has cap 84 and is supported by clip 85 in compartment 21. It will be appreciated that the lure formulation may contain chemicals inclusive of known insect 15 attractants such as lactic acid and octenol. Lactic acid as explained in US Patent 6,199,316 is present in human sweat and is considered to be an attractant, especially for mosquitoes. Octenol is believed to be an attractant for both mosquitoes and flies. The scent or odour of lactic acid, octenol and carbon dioxide is able to waft through grille 18 into the atmosphere and thus, attract the 20 flying insects. However, the concentration of the attractant and the carbon dioxide is greatest within compartment 28. Thus, insects will be attracted to enter compartment 28 by the attraction of carbon dioxide from compartment 22 and carbon dioxide may also be released into the atmosphere surrounding trap 10 through slots 86 shown in FIG 1. Attractants in vapour form may also be 25 released into the atmosphere from compartment 21 through slots 87, shown in FIG 12. As the insects enter compartment 28 they will then be caught by the down draft of air shown in FIG 8, which is kept totally within compartment 28 as explained above. Thus, they will not be distracted by air flowing from grille 18 as 30 is the case of the trap shown in US Patent 6,199,316. They will then be attracted by air heater 38 comprising conductors 51 and 52 encased in housing or lens 53 made from clear or transparent plastics material. This creates a 8 creates a visible target of black and white stripes, which will assist in attracting the insects. The two outer LEDs 56A and 56D operate on a frequency of between 360-390 nanometre (nm) and the two inner LEDs 56B and 56C operate on a frequency of 320-360nm. The time of operation for the LEDs can range 5 from 20,000 hours to 100,000 hours. The LEDs are frequently pulsed and are considered to be a substantial improvement over the fluorescent light system shown in US Patent 6,199,316, which after three months may be burnt out. The fluorescent lights can only operate at 100% efficiency in the first month. The printed circuit boards used for creating the current in conductors 51 and 52 by 10 resistance heating may be 12 volt AC or DC and can be based on the PCBs shown in US Patent 6,199,316. Thus, such a PCB can be used for operation of colour prism 40 and coloured LEDs 58, which are described in US Patent 6,199,316, which is entirely incorporated herein by reference. Coloured LEDs 58 may also be pulsed if required. It will also be appreciated that the fluorescent light system shown in US Patent 6,199,316 can only be operated on a single frequency which is usually around 330nm. It will also be appreciated that carbon dioxide can be released from 20 compartment 21 using a simple gas release system having a timer or clock control. This can also be controlled by a PCB if desired. Another feature of the invention is the ability of the PCB to produce a sound which mimics the sound of a feeding frenzy of mosquitoes or other biting insects. This feature also attracts mosquitoes through the grille 18. 25 It will also be appreciated that a catalytic converter assembly 43 may be dispensed with and insect trap directly connected to a cylinder of compressed carbon dioxide. The air trap 10 may also be operated through mains, solar or battery power. 30 It is also pointed out that insect trap 10 is specifically designed to attract female mosquitoes which bite and spread disease. By targeting the females when they are seeking a blood meal they are being eliminated before they cause 9 before they cause infection. It is also emphasised with the production of air heater 38 that the air trap of the invention simulates the natural behaviour and environment of mosquitoes. The attraction of heater 38 to the mosquitoes is also facilitated by LEDs 5 randomly pulsing selected colours of light and the pattern of light action causes illusion of movement. The heating effect also simulates human body heat.

Claims (24)

1. An insect trap including a housing which has one or more access 5 apertures to permit entry of insects into a hollow interior of the housing and a catchment tank located below said one or more access apertures for trapping of insects characterised in that there is provided an air diffuser above said one or more access apertures and an air blower or fan located adjacent the air diffuser for generating circulating air within 10 the housing wherein said circulating air is confined mainly to the housing interior and does not escape through the access apertures.
2. An insect trap as claimed in claim 1, wherein the air diffuser incorporates 15 a plurality of vanes which extend upwardly from a support plate wherein there is provided a pair of end vanes at each end of the fan or blower as well as plurality of intermediate vanes.
3. An insect trap as claimed in claim 2, wherein the intermediate vanes are 20 of curved shape in plan view.
4. An insect trap as claimed in any one of claims 1, 2 or 3, wherein there is provided an array of air apertures located in an air screen or lattice adjacent the plurality of intermediate vanes. 25
5. An insect trap as claimed in claim 4, wherein the air screen or lattice has a multiplicity of open ended air apertures that are wider in transverse dimension or wider at a top end compared to a bottom end so as to facilitate the production of a venturi effect to provide a suction force 30 adjacent the one or more access apertures to push the insects towards the catchment tank. 11
6. An insect trap as claimed in any one of the preceding claims wherein the housing also has a top cover having one or more vent holes to allow circulating air to escape. 5
7. An insect trap as claimed in any one of the preceding claims wherein the catchment tank is releasable from the housing.
8. An insect trap as claimed in claim 7, wherein the catchment tank also incorporates a support frame for capturing a bag for a dry trapping or 10 capture of insects.
9. An insect trap as claimed in claim 7, wherein the catchment tank has a solution of water which also contains attractant vapours and carbon dioxide for a wet capture of insects. 15
10. An insect trap as claimed in claim 7, wherein the catchment tank incorporates a layer of sticky paper or material for dry capture of insects. 20
11. An insect trap as claimed in any one of the preceding claims incorporating an air heater comprising a lattice work or screen of conductors which are heated to further enhance capture of insects.
12. An insect trap as claimed in claim 11, wherein the conductors are located 25 by electrical resistance heating.
13. An insect trap as claimed in claims 11 or 12, wherein the conductors are of contrasting colours such as black and white. 12
14. An insect trap as claimed in claims 11, 12 or 13, wherein the conductors are housed in a transparent covering or lens made from plastics material. 5
15. An insect trap as claimed in claims 11, 12, 13 or 14, wherein the air heater a plurality of LEDS which emit light of differing wavelengths.
16. An insect trap as claimed in claim 15, wherein emission of the light is 10 carried out in pulses controlled by an appropriate circuit board.
17. An insect trap as claimed in claim 1 having a top compartment containing the air diffuser. 15
18. An insect trap as claimed in claim 17, wherein the top compartment also contains an air heater.
19. An insect trap as claimed in claims 17 or 18 wherein the air diffuser and air heater are supported by a chassis component located below the air 20 diffuser.
20. An insect trap as claimed in claim 19, wherein the catchment tank is located below the chassis component. 25
21. An insect trap as claimed in claims 17, 18, 19 or 20, wherein the top compartment also has passages for provision of a continuous flow of circulating air.
22. An insect trap as claimed in any one of the preceding claims, wherein the 30 housing has one side casing which is hollow and having one or more access apertures, which contains insect attractant solution. 13
23. An insect trap as claimed in claim 22, wherein the housing has another side casing containing a catalytic converter assembly for conversion of propane or other suitable alkane to carbon dioxide. 5
24. An insect trap substantially as herein described having reference to the accompanying drawings.
AU2008243253A 2007-11-13 2008-11-13 Insect trap Ceased AU2008243253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2008243253A AU2008243253B2 (en) 2007-11-13 2008-11-13 Insect trap

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AU2007906926A AU2007906926A0 (en) 2007-11-13 Insect trap
AU2007906926 2007-11-13
AU2007907121 2007-12-11
AU2007907121A AU2007907121A0 (en) 2007-12-11 Insect trap
AU2008900264A AU2008900264A0 (en) 2008-01-21 Insect trap
AU2008900264 2008-01-21
AU2008243253A AU2008243253B2 (en) 2007-11-13 2008-11-13 Insect trap

Publications (2)

Publication Number Publication Date
AU2008243253A1 true AU2008243253A1 (en) 2009-05-28
AU2008243253B2 AU2008243253B2 (en) 2013-05-23

Family

ID=40719269

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2008243253A Ceased AU2008243253B2 (en) 2007-11-13 2008-11-13 Insect trap

Country Status (1)

Country Link
AU (1) AU2008243253B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111955433A (en) * 2020-08-27 2020-11-20 四川农业大学 Forestry pest trapping device
CN112535161A (en) * 2020-12-02 2021-03-23 山东省寄生虫病防治研究所 Mosquito and fly trapping and killing device based on multifunctional rotary type electrons
FR3101520A1 (en) * 2019-10-04 2021-04-09 Alain Le Marchand Device for capturing and destroying insects
CN113229236A (en) * 2021-05-29 2021-08-10 周口师范学院 Agricultural insect pest prevention larva sample collecting device and collecting method thereof
FR3114221A1 (en) * 2020-09-21 2022-03-25 Alain Le Marchand Device for capturing and destroying insects
US20220132824A1 (en) * 2020-10-30 2022-05-05 19 Thrasio Nineteen, Inc. Insect capture device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2460876C (en) * 2001-10-04 2009-08-25 American Biophysics Corp. System for trapping flying insects and a method for making the same
US6718685B2 (en) * 2002-05-08 2004-04-13 Cpd Associates, Inc. Insect trap apparatus
US20060218851A1 (en) * 2005-03-30 2006-10-05 Weiss Robert W J Insect trap device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3101520A1 (en) * 2019-10-04 2021-04-09 Alain Le Marchand Device for capturing and destroying insects
CN111955433A (en) * 2020-08-27 2020-11-20 四川农业大学 Forestry pest trapping device
CN111955433B (en) * 2020-08-27 2022-02-11 四川农业大学 Forestry pest trapping device
FR3114221A1 (en) * 2020-09-21 2022-03-25 Alain Le Marchand Device for capturing and destroying insects
US20220132824A1 (en) * 2020-10-30 2022-05-05 19 Thrasio Nineteen, Inc. Insect capture device
CN112535161A (en) * 2020-12-02 2021-03-23 山东省寄生虫病防治研究所 Mosquito and fly trapping and killing device based on multifunctional rotary type electrons
CN112535161B (en) * 2020-12-02 2022-03-25 山东省寄生虫病防治研究所 Mosquito and fly trapping and killing device based on multifunctional rotary type electrons
CN113229236A (en) * 2021-05-29 2021-08-10 周口师范学院 Agricultural insect pest prevention larva sample collecting device and collecting method thereof
CN113229236B (en) * 2021-05-29 2022-05-20 周口师范学院 Agricultural insect pest prevention larva sample collecting device and collecting method thereof

Also Published As

Publication number Publication date
AU2008243253B2 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
US8402691B2 (en) Insect trap
US20100229459A1 (en) Devices for trapping insects
AU2008243253B2 (en) Insect trap
TWI549607B (en) Insect trap
US7832140B2 (en) Attracting mosquitoes for electrocution and/or trapping
US20110030266A1 (en) Flying insect capture apparatus
US20060218851A1 (en) Insect trap device
US20100024278A1 (en) Methods and devices for attracting and trapping insects
US20070039236A1 (en) Insect trap
JPH11346628A (en) Attracting and killing device or capturing device for mosquito
US20080066372A1 (en) Organic insect extermination lamp
US20040128904A1 (en) Mosquito trap
KR101825680B1 (en) hemiptera and noxious insect capture apparatus
KR20170106884A (en) Insect trap
US20070017150A1 (en) Insect trapping device
US7024815B1 (en) Lamp plus-insect exterminator
KR20170131250A (en) Insect trap
CN201178641Y (en) Improved apparatus for trapping fly insect
CN107182968B (en) Insect trap
KR20190000020A (en) Slim insect trap using ultraviolet light emitting diode
KR20160027835A (en) Apparatus for capturing vermin
KR200402319Y1 (en) device for capturing insects using a suction
CN210203084U (en) Mosquito-killing device
WO2016034933A1 (en) Insect traps and methods of trapping insects
KR20160002012A (en) Vermin capturing apparatus

Legal Events

Date Code Title Description
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS: ADD PRIORITY DETAILS 2007907121 11 DEC 2007 AU

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired