AU2006200733B2 - Application framework for the use with net-centric application program architectures - Google Patents

Application framework for the use with net-centric application program architectures Download PDF

Info

Publication number
AU2006200733B2
AU2006200733B2 AU2006200733A AU2006200733A AU2006200733B2 AU 2006200733 B2 AU2006200733 B2 AU 2006200733B2 AU 2006200733 A AU2006200733 A AU 2006200733A AU 2006200733 A AU2006200733 A AU 2006200733A AU 2006200733 B2 AU2006200733 B2 AU 2006200733B2
Authority
AU
Australia
Prior art keywords
application
user
service
facility
conversation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2006200733A
Other versions
AU2006200733A1 (en
Inventor
Damon Michael Rolfs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accenture Global Services Ltd
Original Assignee
Accenture Global Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002319843A external-priority patent/AU2002319843B2/en
Application filed by Accenture Global Services Ltd filed Critical Accenture Global Services Ltd
Priority to AU2006200733A priority Critical patent/AU2006200733B2/en
Publication of AU2006200733A1 publication Critical patent/AU2006200733A1/en
Application granted granted Critical
Publication of AU2006200733B2 publication Critical patent/AU2006200733B2/en
Assigned to ACCENTURE GLOBAL SERVICES LIMITED reassignment ACCENTURE GLOBAL SERVICES LIMITED Request for Assignment Assignors: ACCENTURE GLOBAL SERVICES GMBH
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

S&F Ref: 644828D2
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Accenture Global Services GmbH, of Geschaftshaus Herrenacker 15, 8200, Schaffhausen, Switzerland Damon Michael Rolfs Spruson Ferguson St Martins Tower Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Application framework for use with net-centric application program architectures The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c APPLICATION FRAMEWORK FOR USE WITH NET-CENTRIC APPLICATION PROGRAM ARCHITECTURES FIELD OF THE INVENTION The invention relates to a toolkit for specifying net-centric applicatioh program architectures. More specifically, the invention relates to various general and reusable components, facilities, and frameworks for robustly structuring a net-centric application program in a modular manner.
BACKGROUND OF THE INVENTION Java 2 Platform, Enterprise Edition (J2EE) is a platform that enables solutions for developing, deploying and managing multi-tier net-centric or server-centric applications.
J2EE utilizes Java 2 Platform, Standard Edition to extend a Java platform to the enterprise level.
Conventionally, J2EE-based products have typically been implemented as "one-off" implementations on top of the J2EE platform. A "one-off' implementation refers to a 5 solution that is focused on a specific set of requirements, with little or no thought about reuse across other problem domains. Conventional J2EE-based one-off application architecture implementations typically include facilities for logging errors, setting up configuration behind the application, and structuring the application in accordance with the commonly known framework or pattern referred to as the model view controller.
2 0 As is well-known in the art, the model view controller framework includes three layers that work together: the view layer, which describes how information is presented to an application user; the controller layer, which interprets how user actions are translated into business activities or work within the application; and the model layer, which performs complicated computational tasks such as working with a database.
2 Activities and Presentations define boundary points in the Model-View-Controller framework. Activities define the boundary between the Controller and the Model, while Presentations define the boundary between the Controller and the View. These boundary points define what is commonly referred to as separation of concerns.
An alternative structural framework relative to the model view controller is message oriented middleware. Message oriented middleware based applications are esentially hooked together through a series of work queues for sending messages from one processing component to another processing component through these queues. The work queues typically include some type of message send and message receive mechanisms.
Message oriented middleware tasks are performed by exchanging messages in an /O asynchronous manner, which is in contrast to the synchronous nature of the remote .procedure call paradigm. Although the remote procedure call paradigm has been widely used, the message oriented middleware approach is beginning to be used more often than it has in the past. The message oriented middleware structural framework facilitates managing the work performed by such a series of queues by creating a processing pipeline in which work is performed on messages that are passed from one processing component to another processing component. Passing messages or work units between these processing components is managed through a messaging pipeline.
Unfortunately, conventional one-off J2EE-based, and other conventional net-centric application, program implementations tend to be fairly rigidly configured ,and not well a 3 suited to component and/or facility re-use, ease of maintenance, and future modification.
Accordingly, there is a need for a robust toolkit that provides facilities that can be assembled in a modular manner thereby enabling an application architect to specify the fundamental architecture of a net-centric application program including specifying which facilities the architect wants, and which facilities the architect does not want, to use for a S particular net-centric application program.
-2- -3- BRIEF SUMMARY OF THE INVENTION The present disclosure relates to a robust toolkit or set of components for defining a netcentric application program architecture that preferably lies on top of the Java 2 Enterprise Edition, commonly known as the J2EE. A toolkit or set of components may be separated into various major components or aspects for purposes of discussion, including: the bootstrapping process; the configuration facility; the factory; selectors; the pipeline architecture; Web application control flow; and the authorization facility.
A bootstrapping process may allow a project architect to use a declarative style for assembling various facilities within the architecture and initializing them. The bootstrapping process may be driven by an XML document at run time. The XML document could be edited to set up the architecture differently without having to 1s recompile and/or rebuild the system. The bootstrapping process can be extended by adding application-specific bootstrap tasks.
A toolkit and program architecture may include a configuration facility having a single API or method for getting properties that can be defined in any number of different sources. Once or more of the sources could be: one or more properties files on one or more file systems; environment variables within one or more computers at run time; data within one or more databases; or any other number of suitable permutations and/or combinations of suitable sources. A configuration facility enables an architect to assemble any number of these sources behind the configuration facility API so that application developers can go against a single API. The application developers, therefore, do not need to know where the sources are located. Through the bootstrapping process a project architect can assemble the configuration sources that the architect wants to provide to application developers. Any number of these configuration sources may be assembled into or, stated differently, included in, the configuration facility. The [R:\LIBCC]04852.doc:gmm -4declarative style of the bootstrapping process advantageously facilitates modification of configuration data.
A factory may allow a developer to de-couple how a resource is produced from where the resource is used. This de-coupling provides significant benefits for maintaining an application program over a long period of time and facilitating making changes to the program. A factory defines a simple API that application developers program in order to produce references to resources. How these references are produced can be plugged in according to any number of various strategies. This is unlike conventional factories, io which typically are more rigid and suited to one particular type of a reference-producing scenario.
The factory facility provides a standard way of coupling subsystems and increasing the modularity of an application program thereby facilitating modification of the program.
Advantageously, the factory facility may allow for moving access from local to distributed without breaking any higher level parts of an application. A factory can be used to lower network connectivity-associated overhead by substituting a lighter weight co-located component for a heavier-weight distributed component, such as an Enterprise Java Bean A selector framework may allow standard query language to be applied in contexts other than querying a database. The selector framework advantageously may allow for defining context-specific ways of evaluating identifiers within a selector expression. The selector framework may allow application of these types of expressions in different contexts that typically will have different types of identifiers. This is unlike the. use of SQL expressions in the database context wherein the identifiers are assumed to be database fields. A selector facility provides an engine for evaluating selector expressions and preferably offers a way to extend the selector framework to a number of different contexts.
[R:\LIBCC]04852.doc:gmm A pipeline architecture enables an architect to define a model view controller-like framework for a processing pipeline or message oriented middleware-type application.
An application architect and/or developer can specify how each processing component does work through a series of fine-grained activities. The specified activities can be assembled together into an activity plan. There could be several different aspects of an activity plan for covering the basic steps that are commonly performed by processing components. For instance, processing of messages, processing of elements within a message, how output is produced, how errors are handled, how redelivered messages are handled, and the like.
I0 The pipeline architecture provides a structured manner for specifying these fine-grained activities. The pipeline architecture provides a significant benefit by allowing developers to focus on writing these fine-grained activities. Developers can then re-use these finegrained activities in may different types of plans. This in turn significantly simplifies is development, testing, integration, maintenance, and modification of an application built in accordance with various inventive pipeline architecture principles.
Within a Web application, there are often conversations, or portions of the application, that should follow a very specific control flow, such as going from page A to page B to page C in only that specific order. Web application developers frequently confront this situation, namely, controlling the continuity of conversations within Web applications.
The term conversation refers to a cohesive set of pages that act together to perform some unit of work, such as purchasing an airline ticket or editing user profile information.
An architecture provides a way of controlling conversation flow.through the use of one or more selectors. Within the Web application framework context, a selector is a logical expression that makes certain portions of a conversation available when certain specified conditions have been met. The selectors-based approach provides a significant advantage relative to conventional techniques for controlling web application flow because the selectors-based approach is de-centralized and relatively lightweight. Selectors [R:\LIBCCj04852.doc:gmm -6advantageously provide a simpler way to control the continuity of conversations relative to conventional techniques that often require modelling an application as a finite state machine, which is a relatively complex task.
s An authorization facility may be used for associating permissions with a user to specify which portions of an application a user is authorized to use and which portions of the application the user is not authorized to use. The authorization facility is preferably integrated directly into a Web application and used to associate required permissions that are needed to enter certain Web conversations. Advantageously, the authorization facility 1o can associate requisite permissions at many levels of detail ranging from specific finegrained parts of an application through larger views of the application. The authorization facility may allow for declaratively associating, through a configuration approach, a required permission to enter a conversation (or a particular page with a conversation) within a Web application. Advantageously, these associated requisite permissions can be modified by changing declarative definitions. These declarative definitions can be implemented in XML or any other suitable format. The need to edit, compile, and rebuild Java code in order to change authorization permissions for the application and/or various parts of the application can, therefore, be avoided, thereby facilitating maintenance and/or modification of the authorization permissions.
[R:\LIBCC]04852.doc:gmm
I
BRIEF DESCRIPTION OF THE DRAWINGS N Figure 1 depicts an exemplary distributed computing environment in which various aspects of the present invention may be embodied.
Figure 2 depicts an exemplary computer system in which various aspects of the present 0 5 invention may be embodied.
I Figure 3 -depicts various components and aspects of a bootstrapping process in C accordance with illustrative embodiments of the invention.
Figure 4 depicts a legend for selected subsequent figures that are Unified Modeling Language analysis models.
/O Figure 5 depicts a UML analysis model for a configuration facility in accordance with illustrative embodiments of the invention.
Figure 6 depicts a UML static class diagram for a detailed illustrative embodiment of a configuration facility in accordance with various inventive principles.
Figure 7 depicts a UML dynamic sequence diagram for a detailed illustrative embodiment of the get environment operation of the configuration facility of Figure 5 in accordance with various inventive principles.
Figure 8 depicts a UML analysis model, similar to Figure 5, for a factory in accordance with illustrative embodiments of the invention.
Figure 9 is a UML static class diagram of a detailed illustrative embodiment of a factory in accordance with various inventive principles.
-7- S Figure 10 is a UML dynamic sequence diagram showing exemplary steps performed by a detailed illustrative embodiment of a factory in accordance with various inventive ;1 principles.
Figure 11 depicts a UML analysis model for a selector framework in accordance with illustrative embodiments of the invention.
Figure 12 is a UML static class diagram for a detailed illustrative embodiment of a selector framework in accordance with various inventive principles.
S Figure 13 is a UML dynamic sequence diagram showing exemplary steps for performing a getObject operation of GmdsSelectiveObject of Figure 12.
'O Figure 14 depicts a UML analysis model of a processing pipeline in accordance with illustrative embodiments of the invention.
Figure 15 is a UML static class diagram for a detailed illustrative embodiment of a pipeline architecture in accordance with various inventive principles Figure 16 is a UML dynamic sequence diagram showing exemplary steps for implementing a pipeline architecture in accordance with a detailed illustrative embodiment of the invention.
Figure 17 depicts a UML analysis model for controlling Web application flow in accordance with illustrative embodiments of the invention.
Figure 18 is a UML static class diagram for a detailed illustrative embodiment of a Web 1. application framework in accordance with various inventive principles.
Figure 19 is a UML dynamic sequence diagram showing exemplary steps performed by a servlet for handling a request from a Web browser in accordance with a detailed illustrative embodiment of the invention.
-8- Figures 20 and 21 are UML dynamic sequence diagrams showing exemplary steps performed by an authorization modifier in accordance with a detailed illustrative embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION I. Introduction The invention relates to a robust toolkit or set of components for defining a net-centric application program architecuture that preferably lies on top of the Java 2 Enterprise Edition, commonly known as the J2EE. A toolkit or set of components in accordance with illustrative embodiments of the invention may be separated into various major /O components or aspects for purposes of discussion. These major components or aspects will be presented herein in an order in which they build on one another to the extent possible. These components or aspects are presented below generally in the following order: the bootstrapping process; the configuration facility; the factory; (4) selectors; the pipeline architecture; Web application control flow; and the J authorization facility.
Before discussing these major components or aspects in detail, a brief introductory description of these aspects or components will be provided. The bootstrapping process may allow a project architect to specify in a declarative manner which facilities should be included within a net-centric application program architecture. The configuration facility provides a mechanism for plugging-in any number of various types of configuration sources. The factory can be used for producing references to any number of different types of resources and for de-coupling how the resource references are produced from the context in which the resource references are used. Selectors are essentially logical expressions that can be used in various contexts, such as controlling conversation flow 7" within a Web application. The pipeline architecture can be used for defining a model -9view controller-like framework in a message oriented mnddleware-type context. ilhe authorization facility can be integrated into a Web application and used for associating permissions with a user of the Web application program thereby specifying which portions of the program a user is authorized to use and which portions the user is not authorized to use.
II. Exemplary Distributed Computing Environment Various aspects of the present invention may be embodied on a distributed computer system, such as the system shown in Figure 1. Any of client device 100, web server 102, application server 104, and data server 106 could be a computer, such as computer 200 0 depicted in Figure 2. As will be apparent, although only a single client device 102, application server 104, and data server 106 are depicted in Figure 1, a distributed computer system could include multiple loosely coupled instances of any of these distributed computer system components. Client device 100 could be a desktop PC, a smart phone, a handheld computer and/or the like. In accordance with certain inventive principles described in more detail below, a web application architecture framework could define a model view controller framework such that the view and the controller are implemented on web server 102 via Java Server Pages (JSPs) and Java servlets, respectively; and the model is implemented on the application server 104 via Enterprise JavaBeans (EJB) and/or business domain objects.
23 Referring to Figure 2, computer 200 includes a central processor 210, a system memory 212 and a system bus 214 that couples various system components including the system memory 212 to the central processor unit 210. System bus 214 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The structure of system 2 memory 212 is well known to those skilled in the art and may include a basic input/output system (BIOS) stored in a read only memory (ROM) and one or more program modules such as operating systems, application programs and program data stored in random access memory (RAM).
q Computer 200 may also include a variety of interface units and drives for reading and writing data. In particular, computer 200 includes a hard disk interface 216 and a 5 removable memory interface 220 respectively coupling a hard disk drive 218 and a removable memory drive 222 to system bus 214. Examples of removable memory drives \1 include magnetic disk drives and optical disk drives. The drives and their associated computer-readable media, such as a floppy disk 224 provide nonvolatile storage of q computer readable instructions, data structures, program modules and other data for /0 computer 200. A single hard disk drive 218 and a single removable memory drive 222 are shown for illustration purposes only and with the understanding that computer 200 may include several of such drives. Furthermore, computer 200 may include drives for interfacing with other types of computer readable media.
A user can interact with computer 200 with a variety of input devices. Figure 2 shows a serial port interface 226 coupling a keyboard 228 and a pointing device 230 to system bus 214. Pointing device 228 may be implemented with a mouse, track ball, pen device, or similar device. Of course one or more other input devices (not shown) such as a joystick, game pad, satellite dish, scanner, touch sensitive screen or the like may be connected to computer 200.
Computer 200 may include additional interfaces for connecting devices to system bus 214. Figure 2 shows a universal serial bus (USB) interface 232 coupling a video or digital camera 234 to system bus 214. An IEEE 1394 interface 236 may be used to couple additional devices to computer 200. Furthermore, interface 236 may be configured to operate with particular manufacturers' interfaces such as FireWire 2 1 developed by Apple Computer and i.Link developed by Sony. Input devices may also be 11 coupled to system bus 214 through a parallel port, a game port, a PUI board or any other interface used to couple and input device to a computer.
Computer 200 also includes a video adapter 240 coupling a display device 242 to system bus 214. Display device 242 may include a cathode ray tube (CRT), liquid crystal display (LCD), field emission display (FED), plasma display or any other device that produces an image that is viewable by the user. Additional output devices, such as a printing device (not shown), may be connected to computer 200.
Sound can be recorded and reproduced with a microphone 244 and a speaker 266. A sound card 248 may be used to couple microphone. 244 and speaker 246 to system bus (0 214. One skilled in the art will appreciate that the device connections shown in Figure 2 are for illustration purposes only and that several of the peripheral devices could be coupled to system bus 214 via alternative interfaces. For example, video camera 234 could be connected to IEEE 2394 interface 236 and pointing device 230 could be conneoted to USB interface 232.
Computer 200 can operate in a networked environment using logical connections to one or more remote computers or other devices, such as a server, a router, a network personal computer, a peer device or other common network node, a wireless telephone or wireless personal digital assistant. Computer 200 includes a network interface 250 that couples system bus 214 to a local area network (LAN) 252. Networking environments are *2c commonplace in offices, enterprise-wide computer networks and home computer systems.
A wide area network (WAN) 254, such as the Internet, can also be accessed by computer 200. Figure 2 shows a modem unit 256 connected to serial port interface 226 and to WAN 254. Modem unit 256 may be located within or external to computer 200 and may 1C be any type of conventional modem such as a cable modem or a satellite modem. LAN -12- 252 may also be used to connect to WAN 254. Figure 2 shows a router 258 that may.
connect LAN 252 to WAN 254 in a conventional manner.
1 It will be appreciated that the network connections shown are exemplary and other ways of establishing a communications link between the computers can be used. The existence S" of any of various well-known protocols, such as TCP/IP, Frame Relay, Ethernet, FTP, HTTP and the like, is presumed, and computer 200 can be operated in a client-server configuration to permit a user to retrieve web pages from a web-based server. Computer 200 could also be operated in a more loosely coupled distributed computing environment.
q Furthermore, any of various conventional web browsers can be used to display and O( manipulate data on web pages.
The operation of computer 200 can be controlled by a variety of different program modules. Examples of program modules are routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The present invention may also be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessorbased or programmable consumer electronics, network PCS, minicomputers, mainframe computers, personal digital assistants and the like. Furthermore, the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed 2_ computing environment, program modules may be located in both local and remote memory storage devices.
III. Bootstrapping Process In accordance with illustrative embodiments of the invention, a bootstrapping process may allow a project architect to use a declarative style for assembling various facilities "1 within the architecture and initializing them. A set of facilities may be provided.
-13- Generally, each facility is focused on a particular problem, such as logging, configuration information, producing references to other .components, or managing the life cycle of a facility.
In accordance with illustrative embodiments of the invention, a bootstrapping process S may be driven by an XML document at run time. Such an XML document could be edited to set up the architecture differently without having to recompile and/or rebuild the system. Alternatively, the declarative approach to the bootstrapping process could be encapsulated within a specific class that would need to be edited and re-built to change a particular strategy.
1 0 Figure 3 depicts various components and aspects of a bootstrapping process in accordance with illustrative embodiments of the invention. XML facility deployment descriptor 300 is an XML document that details the facilities and their components and how those facilities should be set up for a particular application. The XML facility deployment descriptor 300 preferably contains elements for multiple facilities, such as logging, life-cycle management, authorization, and factory. The XML facility deployment descriptor 300 also preferably contains sub-elements that specify any behindthe-scenes components for each facility thereby defining how those facilities will work.
For instance, there is a configuration bootstrap task 302 for setting up the configuration facility. There could be sub-elements for plugging in a properties configuration source, a 23 database configuration source, a ".ini" file, and.the like. The configuration task and the sub-element tasks for each of the sources essentially define a resulting configuration facility produced by the configuration bootstrap task 302.
XML facility bootstrap 304 represents an entity that performs work. Dashed arrow 306 represents a dependency by the XML facility bootstrap 304 upon the XML facility 2 deployment descriptor 300 for performing the XML facility bootstrap's work. A parse facility deployment descriptor step 308 parses XML facility deployment descriptor 300, -14which is fed into the parse facility deployment descriptor step 308 via the XML tacility bootstrap 304 as indicated by arrows 310 -and 312. The execute facility bootstrap tasks in descriptor step 3 14 operates on the XML facility deployment descriptor 3 00 broken down into its elements and iterates over those elemefits. Each of these elements will typically correspond to a bootstrap task class. Referring back to the configuration bootstrap task 302 example, configuration bootstrap task 302 preferably: understands the XML facility deployment descriptor elements that were parsed; and does the work of setting up the configuration sources and plugging them into the configuration facility. The XML bootstrap facility may define, as part of its tasks, a framework through which subelements are provided to the facility bootstrap task 324 through, for example, a set of simple set-value operations. Following the execute facility bootstrap tasks in descriptor step 314, -the facility bootstrap process is complete, as depicted at 318 in Figure 3, and the configuration facility is set up.
Application-specific facilities that could be unique to a particular project could also have (their own corresponding bootstrap tasks. The facility bootstrap task 324 defines a common API for facility bootstrap tasid. Configuration bootstrap task 302, logging bootstrap task 320, and factory bootstrap task 322 are specific implementations of the facility bootstrap task API 324, as depicted by the hollow arrowhead leading from the configuration bootstrap task 302, the logging bootstrap task 320, and the factory 2 bootstrap task 322 to the facility bootstrap task 324. Ellipses 326 in Figure 3 represents that the bootstrap process can be extended by adding new bootstrap tasks. Dashed arrow 328 leading from the execute facility bootstrap tasks in descriptor step 314 to facility bootstrap task 324 represents a dependency of the execute facility bootstrap tasks in descriptor step 314 upon the specific implementations of the facility bootstrap task common API 324.
15 IV. Notation Used in Figures Figure 4 is essentially a legend for Figures 4-5,8,11,14, and 17, which depict Unified Modeling Language analysis models. Figures 4-5,8,11,14, and 17 show major entities within a model of various aspects of a toolkit and a net-centric application program in accordance with the present invention and how those major entities relate to one another. The different types of entities shown in these figures are depicted in Figure 4. A boundary class 400 defines an API or an interface. A control class 402 defines a process or an operation for doing some work. An entity class 404 is a concrete thing. An entity class could implement an interface, or it could be a database or something else. In /o Figures 4-5,8,11,14, and 17, arrows between these three major types of components represent either associations or transfers of control similar to a process flow.
V. Single Simple API A common principal, which preferably appears in multiple contexts within a toolkit and/or an architecture in accordance with illustrative embodiments of the invention, is the i use of a single simple API for application developers to use. Such an API preferably hides a server-provided interface that can have different implementations plugged in and/or composed behind the server-provided interface. The configuration facility is one example in which programmers can get properties of the system through a single get environment operation. The specific details about how such information is retrieved are 2 preferably completely hidden. For example, the GmdsConfigurationSource interface, set forth below, defines a simple API, which concrete configuration sources may implement to provide their view of the system's configuration environment. The example Concrete class, GmdsSystemPropertySource, set forth below, implements getEnvironment0, which returns a set of in-memory system variables. Normally, sources partition the configuration environment into domains and sub-domains, but in the example below, the GrndsSystemPropertySource assigns all system variables to every configuration domain 16and sub-domain combination. The other operations in the interface, in particular inito, finio, cloneG and refresho, are implemented to perform various lifecyple op'erations that may need to be performed by the source.
public interface GrndsConfigurationSource '~extends Serializable, Cloneable public abstract GrndsConfigurationEnvironmelt getEnvironment( String domain_, String(] sub-domains_ '0 throws GrndsConfigurationException; public abstract void init( String[] args_ throws Exception; public abstract void fini() throws Exception; public abstract void refresh(); public abstract Object clone 0; public final class GrndsSystemPropertySource extends GrndsObj ect implements GrndsConfigurationSource public GrndsSystemPropertySourceo( su~per 0;
I
public GrndsSystemPropertySource( GrndsgystemPropertySource rhs_
I
public Object clone() return new GrndsSystemPropertySource( this I -17public GrndsConfigurationEnvironment getEnvironnent( String domain_, String sub-domains_ GrndsConfigurationEnvironment result new GrndsConfigurationEnvironment U; result .putAll System.getProperties return result; /j public Enumeration getPropertyNames( String domain_, Stringf] sub-domainsreturn System.getProperties().keyso; public void init( String[] args_ public void fini() public void refresh() VI. Configuration Facility A toolkit and program architecture in accordance with illustrative embodiments of the 'invention may include a configuration facility having a single API or method for getting properties that can be defined in any number of different sources. One or more of the sources could be: one or more properties files on one or more file systems; environment variables within one or more computers at run time; data within one or more databases; 18 or any other number of suitable permutations and/or combinations of suitable sources. A configuration facility in accordance with illustrative embodiments of the invention enables an architect to assemble any number of these sources behind the configuration facility' API so that application developers can go against a single API. The application developers, therefore, do not need to know where the sources are located. Through the bootstrapping process a project architect can assemble, the configuration sources that the architect wants to provide to application developers. Any number of these configuration sources may be assembled into or, stated differently, included in the configuration facility.
/O The declarative style of the bootstrapping process advantageously facilitates modification of configuration data. For instance, a configuration facility could be used to define configuration data, such as a destination URL of a hyperlink. Rather than hard coding the URL, which would require re-compilation and rebuilding of all the code to change the destination URL, the configuration facility preferably associates the URL with a key.
Then, the destination URL of the hyperlink can be changed by changing the value associated with the key, which does not require re-compilation and rebuilding of all the code. A .configuration facility in accordance with illustrative embodiments of the invention enables an architect to plug different configuration information sources into the configuration facility, as desired, during the bootstrapping process. The configuration facility preferably depends on an abstract configuration source interface, but is provided concrete implementations of that interface, via the bootstrap process, to implement the get environment operation differently, such as to retrieve information from the system environment, from .properties file, from xml files, and/or the like. Example contents of an XML facility deployment descriptor document are provided in section VIII below.
2 Figure 5 depicts a UML analysis model for a configuration framework in accordance with illustrative embodiments of the invention. The sources, or where the configuration comes from, are de-coupled from the act of getting to. or accessing the configuration. The -19get configuration environment operation 502 is the main operation behind configuration S API 500. The get environment operation 502 uses configuration source interface 504 to build a single environment based upon data from one or more configuration sources, such as property file source 505, XML file source 506, and system property source 507.
Ellipses 508 in Figure 5 represents additional configuration sources that can be plugged into an architecture via specific implementations of configuration source interface 504.
The concrete implementations of configuration source interface 504, namely, property S file source 505, XML file source 506, and system property source 507, are depicted in Figure 5 with entity class symbols 404 to convey that these implementations of S'o configuration source interface 504 perform respective operations of obtaining configuration information from various configuration sources. The configuration sources are plugged into the configuration API 500 via the bootstrap process, which is depicted in Figure 5 and discussed above. Configuration sources may be specified via the configuration bootstrap task 502, or configuration sources may be specified in an XML file or the like to dictate how the configuration is assembled together.
The configuration facility builds the configuration environment by iterating over each configuration source, requesting its view of the environment. The configuration facility combines each source's environment view into a whole, preferably taking into consideration these precedence rules: configuration sources are ordered within the facility based on when they are added with earlier sources taking precedence over later sources.
Configuration environments are organized into domains and sub-domains, which are logically defined, and sub-domains override information specified at the domain level.
Figure 6 depicts a UML static class diagram for a detailed illustrative embodiment of a configuration facility in accordance with various inventive principles. Figure 6 shows 2 major components of such a configuration facility, including GrndsPropertyFileSource 505', GrndsXmlFileSource 506', and GmdsSystemPropertySource 507' objects, which are concrete implementations of GrndsConfiguration common API definition 500'.
Figure 7 depicts a UML dynamic sequence diagram for a detailed illustrative embodiment of the get environment operation 502 in accordance with various inventive principles. Figure 7 shows exemplary steps for delegating work from gmdsconfiguration C- 500' API to GmdsConfigurationSource 504'.
t The bootstrapping process preferably defines a mechanism to actively set up application to architecture facilities, whereas the configuration facility is typically one of the facilities Sset up by the bootstrap mechanism. The configuration facility preferably defines a Ci mechanism to get information about the application and its environment at runtime. The bootstrap mechanism is preferably capable of setting up the configuration facility first, CN o and then using data retrieved from the configuration facility to configure other facilities.
While the bootstrap mechanism may use the configuration facility to help set up other facilities, the other facilities do net necessarily depend on the configuration facility. In fact, facilities are preferably defined to be independent of the configuration facility thereby enabling the bootstrap mechanism to use any means for getting environment information.
VII. Factory A factory in accordance with illustrative embodiments of the invention may allow a developer to de-couple how a resource is produced from where the resource is used. This de-coupling provides significant benefits for maintaining an application program over a long period of time and facilitating making changes to the program. A factory in accordance with illustrative embodiments of the invention defines a simple API that application developers program in order to produce references to resources. How these references are produced can be plugged in according to any number of various strategies.
This is unlike conventional factories, which typically are more rigid and suited to one 2> particular type of a reference-producing scenario.
-21- O Figure 8 depicts a UML analysis model, similar to Figure 5, for a factory in accordance Swith illustrative embodiments of the invention. The produce operation 802, which T produces a reference to a resource, is the main operation behind the component factory API 800. Various producers, such as those represented by local producer 805, EJB producer 806, and XML activity plan producer 807 are concrete implementations of the c producer interface 804. These producers produce references to resources. These producers are plugged into factory API 800 through the bootstrap mechanism.
0 Alternatively, the factory could assemble various producers underneath it by using information located in a Java standard Properties class, such as one created using the o 1 configuration facility.
Figure 9 is a UML static class diagram of a detailed illustrative embodiment of a factory in accordance with various inventive principles. Figure 9 depicts the relationship among various components including GmdsFactory 800', GradsProducer 804', produce 802', GmdsLocalProducer 805', and GrdsEjbProducer 806', which correspond to the if following entities depicted in Figure 8: component factory API 800, producer interface 804, the produce operation 802, local producer 805, and EJB producer 806.
Figure 10 is a UML dynamic sequence diagram showing exemplary steps performed by a detailed illustrative embodiment of a factory in accordance with various inventive principles. Figure 10 depicts exemplary steps for identifying a producer corresponding to 2. a logical key or, if there is no corresponding producer, delegating to a default producer, which is preferably set up through a bootstrapping process in accordance with various inventive principles.
The factory facility provides a standard way of coupling subsystems and increasing the modularity of an application program thereby facilitating modification of the program.
2C Advantageously, the factory facility may allow for moving access from local to distributed without breaking any higher level parts of an application. In other words, -22higher level portions of the application are not directly dependent upon particular resource references. Accordingly a generalized factory facility is provided that may allow for changing out different producers behind the scenes.
A factory in accordance with illustrative embodiments of the invention can be used to lower network connectivity-associated overhead by substituting a lighter weight colocated component for a heavier-weight distributed component, such as an Enterprise Java Bean EJB's are. typically niaintained by an application server for performing tasks such as working with databases and/or legacy application software. A factory in accordance with illustrative embodiments of the invention advantageously may c allow for the interchangeability of co-located components and distributed components without requiring modification of the code of either the co-located components or the distributed components. A factory in accordance with illustrative embodiments of the invention can also be used to facilitate production of various other types of resources including, but not limited to, accessing database connections and simplifying access to a central naming service.
Vin. Example Contents Of An XML Facility Deployment Descriptor Document Example contents of an XML facility deployment descriptor document in accordance with illustrative embodiments of the invention are set forth below.
<?xml 2 <!--DOCTYPE grnds-web-app SYSTEM "DTD/grnds-web-app.dtd"--> <grnds-facility-deployment> <facilities> <configuration> 23- <source classname="org. grnds.facility. corfig.GrndsPropertyFileSource'y/> <source classname="org.grnds. facility.config.GrndsXmlFileSourceu> <domain name="webapp"> <config-sources> <source> <file>C: /bin/grnds-web-app-resrc. xconf</file> <dialectclass>org.grnds.stutrlwbcnfgGnse~pmIilc<daet class> </source> <Icon fig-sources>.
<sub-domain naine="foo'> <config-sources> suregrd-ebap-ercxof<rsore <dialectclass>org.grnds. structural.web. config.GrndsWebAppXmInDialect</dialect-.
class> </config-sources> </sub-domain> </domnain> </source> <source classname="org. grnds facility. config.GrndsSystemPropeitySource"/> </configurat ion> <factory> <Producer name= 1 default" classname=#org.qrnds.facility factory.GrndsLocalProducer"/> <p roducer> 3 Q <name>foo'Z/name> <classnane>org. grnds. facility. factory.GrndsEjbProducer</classname> <it-param> -24 <param-name>j ava. naming. factory. initia</parait-lae) <paraxn-value>weblogic .jndi .T31nitialCofltextFactory</paramvalue> </init-param> <init-paran> <param-name>j ava. naming. provider .url</param-flame> <param-value>t 3 ://localhost: 7001</param-value> </init-param> </producer> 2 <Producer name="lXmIPiplile" <target naxne="Authorizatiofl" producer="foo"/> <target name="alpha"' producer="default"> <init-param> <param-name>classflame</param-name> <paramvalue>org. grnds. foundation. util .GrndsSerializableObject</param-value> </init-param> </target> <tfarget namet1 Plan" producer=~"XmlPiPe1ifle"> <init-param> <param-name>plan. file</paraU-fame> <param-value>C: /grfds-test/test/grndsx/pipeline/plandescriptor. xml</param-value> </init-param> </target> factory> </facilities> 33 </grnds-facility-deployImet> As described above in connection with Figure 5, XI Facility Bootstrap class 504 is preferably responsible for parsing an XML facility-deployment descriptor file 500 and for executing each facility bootstrap task. In the sample XML code set forth above, two facilities are bootstrapped: a configuration facility and a factory facility. The configuration facility is setup with three configuration sources of the type shown in S Figure 5: a property file source 505; an XML file source 506, which is further configured with a collection of XML files organized into domains and sub-domains; and a system property source 507.
In the example provided above, the factory facility is setup with a set of producers and targets. The producers are named, given an implementation class, and may be provided with additional configuration information. The factory targets are given a logical name, \1 /o which can be used by developers to identify what should be produced, a named producer, and may be given additional properties to aid production. In this example, there is a named producer, XmlPipeline, which is assigned a single target, Plan. The Plan target is given a property, plan.file, that the producer parses to produce an activity plan object, GmdsActivityPlan.
i IX. Selectors The selector framework may allow standard query language to be applied in contexts other than querying a database. The selector framework advantageously may allow defining context specific ways of evaluating identifiers within a selector expression. A "Standard Query Language expression includes three major elements: identifiers, which are like variables; operators, such as a string comparison operator to check equality; and literals, such as numbers or character strings. The selector framework may allow application of these types of expressions in different contexts that typically will have different types of identifiers. This is unlike the use of SQL expressions in the database context wherein the identifiers are assumed to be database fields.
-26- A selector facility in accordance with illustrative embodiments of the invention provides an engine for evaluating selector expressions and preferably offers a way to extend the selector framework to a number of different contexts. In addition to the Web application S scenario, such as the airline ticket purchase example discussed below in section XII, the selector framework can be extended to the pipeline architecture, discussed below in r) section X. In the context of the pipeline architecture, selectors can be applied to various activities assembled into an activity plan to determine whether various activities should be applied to a message and/or to various elements within a message.
Figure 11 depicts a UML analysis model for a selector framework in accordance with illustrative embodiments of the invention. Selector API 1100 can be used for testing whether an expression is true or not, as depicted by the test expression operation 1102.
Test expression operation 1102 uses the evaluate identifier strategy API 1104 .for applying selectors to different problems. For example, there could be a special identifier strategy for the pipeline for pulling identifiers from the pipeline context, from the S message, or from other areas. This is different from the Web application context where identifier information could be pulled from an HTTP request or from some different parts of a Web session. Test expression 1102 applies the evaluate identifier strategy 1104 to the identifier entity 1106. Based upon the value of identifier 1106 and any literals in test expression 1102, a determination is made as to whether the test expression 1102 is true or 9 false.
Figure 12 is a UML static class diagram for a detailed illustrative embodiment of a selector framework in accordance with various inventive principles. GrndsSelector .1100', GrndsEvaluateIdentifier 1104', and Gmdsldentifier 1106' correspond to the selector API 1100, the evaluate identifier strategy 1104, and the identifier entity 1106.
2 s GmdsSelectiveObject 1200 includes a getObject operation 1202, illustrative steps of which are depicted in Figure 13.
-27- Through various implementations of the evaluate identifier strategy API 1104 an application developer can specify which identifiers can be used within selector expressions thereby facilitating tailoring the selector framework to any number of different contexts.
S A toolkit in accordance with illustrative embodiments of the invention preferably includes two separate and unique concrete implementations of the evaluate identifier strategy 1104, with one implementation corresponding to the pipeline and another implementation corresponding to the Web application. These unique strategies are passed into selector 1100 during the building of selector expression 1102. Selector /9 expressions are built when the web application XML map and pipeline activity plan are constructed; such as, during interpretation of XML configuration data for each respective framework.
X. Pipeline Architecture Under certain circumstances, a message oriented middleware approach facilitates integrating disparate computing systems by allowing one system to publish data to a work queue and by allowing a second system to subscribe to messages from the queue.
In this manner, the two computer systems are advantageously able to remain relatively de-coupled.
A pipeline architecture in accordance with illustrative embodiments of the invention 2 3 enables an architect to define a model view controller-like framework for a processing pipeline or message oriented middleware-type application. An application architect and/or developer can specify how each processing component does work through a series of fine-grained activities. In general, a processing component will receive a message as an input and produce a message as an output.
-28- The specified activities can be assembled together into an activity plan. There could be several different aspects of an activity plan for covering the basic steps that are commonly performed by processing compondnts. For instance, processing of messages, processing of elements within a message, how output is produced, how errors are S handled, how redelivered messages are handled, and the like.
The pipeline architecture provides a structured manner for specifying these fine-grained activities. The pipeline architecture provides a significant benefit by allowing developers to focus on writing these fine-grained activities. Developers can then re-use these finegrained activities in many different types of plans. This in turn significantly simplifies /0 development, testing, integration, maintenance, and modification of an application built in accordance with various inventive pipeline architecture principles.
Figure 14 depicts a UML analysis model of a processing pipeline in accordance with illustrative embodiments of the invention. JMS is a standard Java API for message oriented middleware. Destinations are a major component of the JMS. Destinations are code that plugs into the JMS middleware for receiving messages. The pipeline 1402 subscribes to and receives messages and/or events from input JMS destination 1400.
When the pipeline 1402 receives a message, pipeline 1402 invokes the onMessage process 1404, which uses an activity plan 1406.
The activity plan 1406 is an entity that describes the various activities that are used for 2' processing the incoming message: In this manner, the activity plan defines the plan for performing that processing. Activity plans are described in more detail below.
The get activities operation 1408 uses activity selector 1410, which is similar to the selector framework used for Web application flow, to execute one or more activities 1412. These activities will typically be application-specific concrete implementations of 2S Activity interface 1412 for performing tasks within an application. Typically, there will -29be many different activities within an activity plan 1406. Activities can be filtered or used based upon a selector expression wherein the selector expression .is based upon information in the received message, some state of the application, or the like.
Accordingly, not all activities in an activity plan will necessarily be executed for a particular message. Instead, activities may be selectively executed for a.particular message.
Figure 15 is a UML static class diagram for a detailed illustrative embodiment of a pipeline architecture in accordance with various inventive principles. GrndsPipeline 1402', GrndsActivityPlan 1406', and GmdsPipelineActivity 1412' correspond to pipeline 0 1402, activity plan 1406, and activity interface 1412.
Figure 16 is a UML dynamic sequence diagram showing exemplary steps for implementing a pipeline architecture in accordance with a detailed illustrative embodiment of the invention. Figure 16 depicts steps for abstracting various details of message oriented middleware so that developers are able to focus on developing activities /l for processing messages to perform specific tasks, thereby facilitating re-use of these activities in various types of activity plans.
XI. Activity Plan An activity plan, which is described in more detail below, essentially defines the steps to perform some process. The processing pipeline 1402 is an engine that receives events or messages. The pipeline 1402 does work through activities. An activity plan, such as activity plan 1406 tells the pipeline 1402 which activities should be performed and under what conditions those activities should be performed. In this manner, the activity plan 1406 ties specific tasks or activities together into a cohesive process.
An activity plan in accordance with illustrative embodiments of the invention, such as 2 activity plan 1406, may include several different sections. One section could be a S redelivered section for handling a situation in which a message is being redelivered, which may occur when a server shuts down and is restarted. Under these circumstances, messages may be sent more than once, which is not a normal operating condition.
For more common situations, an activity plan may include a message section, which performs activities on a received message at the message level or, in other words, performs activities on a received message as a whole. Messages, however, could contain many elements. Accordingly, an activity plan may include a message element section that executes a series of activities on individual elements within a received message. For example, if a message has five elements within its body, then the message element 0 section would be applied to each of these five elements. Stated another way the message elements section would be applied five times.
An activity plan may also include an output section for doing work to produce output or results of the process at the message level. Accordingly, the output section .would typically be executed one time per message. An activity plan may also include a set of error handling sections that may be applied at the message level and/or the message element level for handling situations in which errors are thrown while processing a message.
XII. Web Application Framework Control Within a Web application, there are often conversations, or portions of the application, that should follow a very specific contiol flow, such as going from page A to page B to page C in only that specific order. For instance, when a person uses a Web application to purchase an airline ticket and reserve a seat on a particular airline flight, the person should not be able to reserve a seat without already having purchased a ticket. A person, however, could bookmark a page for reserving a seat and could potentially reserve a seat 2 on another flight by returning to the book-marked page without having first purchased a -31ticket for this other flight. This scenario is possible under certain circumstances due to the relative lack of control of the manner in which users enter Web applications via the Internet. Web application developers frequently confront this situation, namely, controlling the continuity of conversations within Web applications. The term conversation refers to a cohesive set of pages that act together to perform some unit of work, such as purchasing an airline ticket or editing user profile information.
An architecture in accordance with illustrative embodiments of the invention provides a way of controlling conversation flow through the use of one or more selectors. Within the Web application framework context, a selector is a logical expression that makes So certain portions of a conversation available when certain specified conditions have been met. For example, in the context of the airline ticket purchase and seat reservation example, an application could set a flag, or a variable, to indicate that the user has purchased a ticket before sending the user to the seat selection page. A corresponding selector could be associated with producing the seat selection page. The selector could then be evaluated and used for making the seat reservation page available if and only if the user has actually purchased a ticket for a particular flight. Accordingly, if a user book-marked the seat selection page and entered the application directly into the seat selection page without first purchasing a ticket for the flight, the web application would not allow the user to select a seat because the selector would evaluate to false thereby 2.3 causing an error page to be displayed to the user and/or some other appropriate action to be taken.
The selectors-based approach provides a significant advantage relative to conventional techniques for controlling web application flow because the selectors-based approach is de-centralized and relatively lightweight. Selectors advantageously provide a simpler 2L way to control the continuity of conversations relative to conventional techniques, which often require modeling an application as a finite state machine. Modeling Web applications as finite state machines is a relatively complex task.
-32- L Figure 17 depicts a UML analysis model for a Web application in accordance with illustrative embodiments of the invention. Servlet 1700 is a standard API within the Java language. Servlet 1700 is a plug-in point for the server. When a Web request comes from a browser to a Web server, the elements that do work to process the request are implemented behind the servlet API 1700. Accordingly, the remainder of Figure 17 Simplements that API and plugs into that engine.
D
D Figure 17 shows how processing of a Web request may be structured in accordance with illustrative embodiments of the invention. The execute exchange operation 1702 is the main operation behind the Servlet 1700 API. The execute exchange operation 1702.
'0 implements specific details of its algorithm using the conversation interface 1704. The conversation interface 1704 provides access to get exchange presentation 1706 and get exchange activity 1708. These elements define the separation of concerns within the model view controller framework. The implementation of Servlet 1700 depicted in Figure 17 translates user events, such as a user clicking on a link or a button, into S application commands. The processing of those application commands includes two main units of work. The first main unit of work is performing some business activity in conjunction with the model layer, which defines the business logic. The activity defines the application logic, while the model layer defines the more detailed business logic, which may span applications. The second main unit of work is that the results of the activity are displayed through a presentation, which defines the view layer. The conversation defines associations between the activity and presentation elements with their corresponding user events.
When execute exchange 1702 begins running, it tells the conversation 1704 to do whatever work the conversation needs to do before the exchange's activity and 12 presentation are processed. The begin response operation 1710 looks to see whether there are any selectors 1712 registered for the received event/command. If a selector isidentified for the received event/command, it is evaluated. If the selector evaluates to -33true, the event/command is processed further, otherwise an illegal state exception is thrown, which may be routed by the J2EE platform to an error page presented to the user.
Once one or more selectors 1712 have been evaluated, an execute modifiers sub-process 1714 of the begin response operation 1710 transfers control to the execute modifiers operation 1714 and the exchange modifier 1716 API, which defines one or more extensions to the conversation, such as the authorization exchange modifier 1718. The execute modifiers operation iterates over each configured exchange modifier and executes them sequentially. The authorization exchange modifier 1718 checks whether the user has an appropriate permission to work with a particular part of an application or to perform a particular command, which is done through authorization facility 1722, which is described in more detail below.
There is preferably an XML document that describes the Web application structure. Such an XML document preferably ties: conversations to Servlets; commands to conversations; and activities and presentations to those commands. Such an XML documenit also preferably ties one or more selectors to those commands, and, with respect to the authorization facility 1722, the XML document may allow for specification of a minimum set of permissions that a user needs to have in order to execute a conversation and/or any specific command within a conversation.
If all of these authorization permission checks pass, then the conversation will return the 2Q configured exchange activity, which the servlet will run, and the servlet will work with various components within the business model to do work such as looking up all the seats that are available in the airline ticket purchase and seat reservation example. The servlet will then execute the presentation or, stated otherwise, output results to the user.
Figure 18 is, a UML static class diagram for a detailed illustrative embodiment of a Web 2( application framework in accordance with various inventive principles. Entities depicted -34in Figure 18 with prime reference numbers correspond to entities having corresponding non-prime reference numbers.
Figure 19 is a UML dynamic sequence diagram showing exemplary steps performed by a serviet for handling a request from a Web browser in accordance with; a detailed L3illustrative embodiment of the invention.
Contents of an example XMI document for describing the structure of a web application in accordance with illustrative embodiments of the invention are set forth below.
<?xml version="Ji.0"?> <!--DOCTYPE grnds-web-app SYSTEM "IDTD/grnds-web-app.dtd---> /0<grnds-web-app> <serviet mapping="gallery"> <conversations> <conversation> <default-conversation/> <conversation-class> homesite. HomesiteConversation </conversation-class> <commands> <command> <comxnand-name>default</comnand-nane> -command is available if f configuration property, -isGalleryAvailable, equals 'true' 2< <selector> 35 <![CDATAfconfig.isGalleryAvailable 'true']]> </selector> <activity type="method">default_xa</activity> <presentation type="url"> /grnds-docs/gallery/default/default jsp </presentation> <presentation type="url" branch-"error"> /grnds-docs/ .gAllery/default /default. error. isp </presentation> </coxnmand> </commands> <modifiers> <modifier> <modifier-class> org. grnds .structural, web. GrndsAuthorizationModifier </modifier-class> Apply permission at conversation level-> <init-param> <param-name>conversation .permission. class</param-name> <param-value>homesite. GalleryPermission</param-value> </init-param> <init-param> <param-name>conversation.permission resource</param-name> <parani-value>*</param-value> </init-param <i t-pa rain <param-narne>default .permission. actions</param-name> <param-value>read</param-value> /i nit-param> -36- Apply permission to default command <init-param> <param-name>default .permission. class</paraxn-name> <pararn-value>homesite. GalleryPermission</param-value> </init-param> <init-param> <param-name>default .permission..resource</param-name> <param-value>*</param-.value> </init-param> <init-param> <param-name>default .permission. actions</param-name> <param-value>read</param-value> init-param> </modifier> </modifiers> </conversation> </conversations> </servlet> </grnds-web-app> 1oIn the example set forth above, there is a single servlet, called "gallery", comprising a single conversation. The conversation contains one command and is protected by an authorization modifier. The cormmand, default, has a selector that prevents it from being available if the configuration property, isGalleryAvailable, is not set to "true"'. The default command is associated with a single activity, implemented by the conversation method "default xao". The default command is associated to two presentations: a standard path implemented via the /gmds-docs/gallery/defaultldefault.jsp file; and an alternative implemented via the /grnds-docs/gallery/defaultldefault.error.jsp file. The alternative presentation branch is used if the activity set the presentation branch by -37calling the conversation's setPresentationBranch( "error" The authorization modifier sets two permissions, one for the converisation and one for the default command.
XIII. Authorization Facility Authorization facility 1722 may be used for associating permissions with a user to specify which portions of an application a user is authorized to use and which portions of the application the user is not authorized to use. The authorization facility is preferably integrated directly into a Web application and used to associate required permissions that are needed to enter certain Web conversations. A user attempting to enter a Web conversation without the requisite permissions could be denied access to the Web 0 conversation. Advantageously, the authorization facility can associate requisite permissions at many levels of detail ranging from specific fine-grained parts of an application through larger views of the application. The authorization facility may allow for declaratively associating, through a configuration approach, a required permission to enter a conversation (or a particular page within a conversation) within a Web application. Advantageously, these associated requisite permissions can be modified by changing declarative definitions. These declarative definitions can be implemented in XML or any other suitable format. The need to edit, compile, and re-build Java code in order to change authorization permissions for the application and/or various parts of the application can, therefore, be avoided, thereby facilitating maintenance and/or z2r modification of the authorization permissions.
Referring to Figure 19, plug-in point 1900 is the point at which the Web application authorization integation UML dynamic sequence diagram of Figure 20 plugs into the steps shown in Figure 19.
-38- Figures 20 and 21 are UML dynamic sequence diagrams showing exemplary steps performed by the beginResponse and checkAuthorization operations of an aulthorization modifier in accordance with a detailed illustrative embodiment of the invention.
XIV. Variations and Permutations While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described architecture and tephniques that fall within the spirit and scope of the invention as set forth in the appended claims and their equivalents.
-39-

Claims (24)

  1. 2. The application framework of claim 1, wherein the servlet is configured to generate an illegal state exception that results in the display of an access error page when the selector associated with the user event evaluates to false.
  2. 3. The application framework of claim 1, further comprising an execute modifiers operation executable on the server computer to perform an authorization permission check, wherein the execute modifiers operation is enabled for execution when the selector evaluates to true.
  3. 4. The application framework of claim 3, further comprising an authorization exchange modifier executable on the server computer, wherein the authorization exchange modifier is executable to determine whether a user has appropriate permission to work with a part of an application, or perform a particular command. The application framework of claim 1, wherein the servlet further comprises a get exchange presentation and a get exchange activity that are executable only when the selector evaluates to true, wherein the get exchange activity is executable to access -41- data and the get exchange presentation is executable to display the data as an output to 0O a user.
  4. 6. The application framework of claim 1, wherein the document is an XML document that also describes a minimum set of permissions that a user needs to have to execute the conversation or a specified word within the conversation.
  5. 7. The application framework of claim 1, wherein the document is configurable 0 to include declarative definitions that are requisite authorization permissions to enter 0 N the conversation or a particular web page within the conversation. S8. The application framework of claim 7, wherein the declarative definitions are configured to be changeable absent modification to the business logic.
  6. 9. The application framework of claim 1, wherein the document further comprises a predefined association of the servlet with the conversation, a predefined association of the user command with the conversation and association of at least one of a predefined activity or presentation, or combinations thereof, with the user command. A method of processing a web request with an application framework within a net-centric application program, the method comprising: translating one or more user events into one or more application commands; controlling conversation flow, in a de centralized manner, within a conversation that is a cohesive set of web pages acting together through the use of a selector facility that provides a mechanism for specifying a plurality of identifiers of different types that are used within a plurality of selector expressions, wherein_the selector expressions are logical expressions that make certain portions of the conversation available only when certain specified conditions have been met; performing one or more business activities based upon predetermined business logic, results produced by the selector facility, and the one or more application commands; and generating a presentation of results produced by performing the one or more business activities. -42-
  7. 12. The method of claim 10 wherein the plurality of selector expressions are expressed in standard query language.
  8. 13. The method of claim 10 further comprising tying at least one pair of entities together through a document, the at least one pair of entities being selected from the group consisting of: at least one conversation and at least one servlet; at least one command and at least one conversation; and at least one selector and at least one command. i0
  9. 14. The method of claim 10 wherein the document is an XML document. The method of claim 10 further comprising associating one or more permissions with a user for specifying one or more portions of the application program that the user is authorized to use, wherein the one or more portions of the application can be specified at a plurality of different levels of detail.
  10. 16. The method of claim 15 wherein the plurality of different levels of detail range from a page of conversation to the entire application program.
  11. 17. The method of claim 15 further comprising declaratively associating in an XML document the one or more permissions with the application program.
  12. 18. An application framework defining netcentric application program architectures, the application framework comprising: a server computer operable on a network; an application or service operable on the server computer; an authorization facility operable on the server computer, the authorization facility configured to associate requisite permissions with interaction between the application or service and a user; a document accessible by the authorization facility, wherein the document includes a declarative definition that selectively enables access to at least predefined portions of a cohesive set of web pages only when predefined conditions are met, and wherein the cohesive set of web pages are generateable with the application or service; and [R:\LIBCC]05004.doc:gmm -43- an exchange modifier operable on the server computer in response to a user event initiated by a user, wherein the user event is an application command transmitted over the network to the server computer; the exchange modifier operable to integrate the authorization facility into the application or service to determine whether the user has permission to at least one of work with a particular part of the application or service, or to perform a particular command, or combinations thereof
  13. 19. The application framework of claim 18, wherein the declarative definition is a io logical expression that is readily changeable within the document without any other changes to the application or service to selectively specify a minimum set of permissions that a user needs to have. The application framework of claim 18, wherein the exchange modifier is is operable to enable a conversation element when it is determined the user has permission, the conversation element operable on the server computer to perform a business activity responsive to the user event and display the results of the business activity to the user.
  14. 21. The application framework of claim 18, wherein the requisite permissions are associated with the user to specify which portions of the application or service the user is authorized to use, and which portions of the application or service the user is not authorized to use.
  15. 22. The application framework of claim 18, wherein the authorization facility is integrated directly into a web application.
  16. 23. The application framework of claim 18, wherein the requisite permissions are associated with specific fine-grain parts of the application or service, or with a plurality of specific fine-grain parts of the application or service.
  17. 24. A method of processing a web request with an application framework within a net-centric application program, the method comprising: providing a server computer operable on a network; operating with the server computer an application or service that is configured to provide a cohesive set of web pages; [R:\LIBCC05004doc:gmm -44- operating an authorization facility with the server computer, wherein the authorization facility associates requisite permissions with interaction between the application or service and a user; the user accessing the application or service on the server computer over the network with a user event that is an application command to at least one of work with a particular part of the application or service, or to perform a particular command, or combinations thereof; executing the authorization facility in response to the user event to access a document, wherein the document includes a declarative definition that selectively enables access to at least predefined portions of the cohesive set of web pages only when predefined conditions are met; and enabling a response to the user event when the predefined conditions are met. The method of claim 24 further comprising changing the declarative definition included in the document to modify the requisite permissions without changes to the application or service or the authorization facility.
  18. 26. The method of claim 24 further comprising changing only the declarative definition to modify the requisite permissions.
  19. 27. The method of claim 24 wherein the document is an XML document that includes the declarative definition, the declarative definition indicative of at least one of the requisite permissions, and further comprising changing only the XML document to change at least one of the requisite permissions.
  20. 28. The method of claim 24 wherein operating an authorization facility comprises specifying in the document a minimum set of permissions that the user needs in order to at least one of work with a particular part of the application or service, or to perform a particular command, or combinations thereof.
  21. 29. The method of claim 24 wherein operating an authorization facility comprises associating permissions with the user to specify which portions of the application or service that the user is authorized to use, and which portions of the application or service the user is not authorized to use. [R:\LIBCC]05004.doc:gmm The method of claim 24 wherein operating an authorization facility comprises integrating the authorization facility directly into a web application with an exchange modifier that is operable on the server computer in response to receipt of the user event.
  22. 31. The method of claim 24 wherein the requisite permission is an authorization permission, and further comprising changing the authorization permission to change the user's access to the cohesive set of web pages.
  23. 32. The method of claim 24 further comprising operating an exchange modifier on io the server computer in response to the user event, the exchange modifier operable to integrate the authorization facility into the application or service to determine whether the user has permission to at least one of work with a particular part of the application or service, or to perform a particular command, or combinations thereof. Is 33. The method of claim 24 further comprising performing a business activity responsive to the user event and displaying the results of the business activity to the user when it is determined that the predefined conditions are met.
  24. 34. The method of claim 24 wherein accessing the application or service comprises evaluating a selector that is a logical expression to determine if the logical expression is true or false; and allowing access to at least one of the cohesive set of web pages when the logical expression evaluates to true. The method of claim 34 wherein evaluating a selector comprises controlling a conversation flow within the application or service. DATED this Fourteenth Day of February, 2006 Accenture Global Services GmbH Patent Attorneys for the Applicant SPRUSON FERGUSON [R:\LIBCC]05004.doc:gmm
AU2006200733A 2001-05-17 2006-02-22 Application framework for the use with net-centric application program architectures Expired AU2006200733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006200733A AU2006200733B2 (en) 2001-05-17 2006-02-22 Application framework for the use with net-centric application program architectures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/859,765 2001-05-17
AU2002319843A AU2002319843B2 (en) 2001-05-17 2002-05-17 General and reusable components for defining net-centric application program architectures
AU2006200733A AU2006200733B2 (en) 2001-05-17 2006-02-22 Application framework for the use with net-centric application program architectures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002319843A Division AU2002319843B2 (en) 2001-05-17 2002-05-17 General and reusable components for defining net-centric application program architectures

Publications (2)

Publication Number Publication Date
AU2006200733A1 AU2006200733A1 (en) 2006-03-16
AU2006200733B2 true AU2006200733B2 (en) 2008-02-14

Family

ID=36101654

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2006200733A Expired AU2006200733B2 (en) 2001-05-17 2006-02-22 Application framework for the use with net-centric application program architectures

Country Status (1)

Country Link
AU (1) AU2006200733B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOLLAND PUBLISHING, AMSTERDAM, Vol. 28, No. 11, May 1996, pages 1113-1122, ISSN 0169-7552. *
THAU R. Design considerations for the Apache Server API COMPUTER NETWORKS AND ISDN SYSTEMS, NORTH *

Also Published As

Publication number Publication date
AU2006200733A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
AU2002319843B2 (en) General and reusable components for defining net-centric application program architectures
AU2002319843A1 (en) General and reusable components for defining net-centric application program architectures
US7188158B1 (en) System and method for component-based software development
US8626803B2 (en) Method and apparatus for automatically providing network services
JP5248964B2 (en) Method and system for generating screen elements or data objects for wireless applications
US20020046301A1 (en) System and method for integrating disparate networks for use in electronic communication and commerce
US7055134B2 (en) Service provider integration framework in object oriented programming environment
US20020066074A1 (en) Method and system for developing and executing software applications at an abstract design level
Fox et al. Overview of grid computing environments
Bálek Connectors in software architectures
Gomaa et al. Feature driven dynamic customization of software product lines
Fayçal et al. Integrating legacy systems in a SOA using an agent based approach for information system agility
Bulej et al. A connector model suitable for automatic generation of connectors
AU2006200733B2 (en) Application framework for the use with net-centric application program architectures
Burt et al. Quality of service issues related to transforming platform independent models to platform specific models
Siegel A preview of CORBA 3
AU2006200734B2 (en) Pipeline architecture for use with net-centric application program architectures
CA2551025C (en) Application framework for use with net-centric program architectures
Lingyun et al. An approach for component-based software development
Bolcer Flexible and customizable workflow execution on the www
Katranuschkov et al. Product data server for concurrent engineering in A/E/C
US20040039994A1 (en) System and process for communication between Java server pages and servlets
Cachero et al. Extending UML for the migration of Legacy Systems to the Web
Talevski et al. Meta model driven framework for the integration and extension of application components
Heiser RESTful Collaborative Modeling

Legal Events

Date Code Title Description
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS: AMEND THE INVENTION TITLE TO READ APPLICATION FRAMEWORK FOR THE USE WITH NET-CENTRIC APPLICATION PROGRAM ARCHITECTURES

FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: ACCENTURE GLOBAL SERVICES LIMITED

Free format text: FORMER OWNER WAS: ACCENTURE GLOBAL SERVICES GMBH

MK14 Patent ceased section 143(a) (annual fees not paid) or expired