AU2005285621B2 - A method and a system for energy recovery and/or cooling - Google Patents

A method and a system for energy recovery and/or cooling Download PDF

Info

Publication number
AU2005285621B2
AU2005285621B2 AU2005285621A AU2005285621A AU2005285621B2 AU 2005285621 B2 AU2005285621 B2 AU 2005285621B2 AU 2005285621 A AU2005285621 A AU 2005285621A AU 2005285621 A AU2005285621 A AU 2005285621A AU 2005285621 B2 AU2005285621 B2 AU 2005285621B2
Authority
AU
Australia
Prior art keywords
cell
compressor
heat
accordance
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005285621A
Other versions
AU2005285621A1 (en
Inventor
Sigmund Gjorven
Hans Kristian Holmen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norsk Hydro ASA
Cronus Energy AS
Original Assignee
Norsk Hydro ASA
Cronus Energy AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Hydro ASA, Cronus Energy AS filed Critical Norsk Hydro ASA
Publication of AU2005285621A1 publication Critical patent/AU2005285621A1/en
Application granted granted Critical
Publication of AU2005285621B2 publication Critical patent/AU2005285621B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Description

1 A method and a system for energy recovery and/or cooling The present invention relates to a method and a system for energy recovery and/or cooling of electrolysis cells for metal production, where excess heat is 5 extracted from the cells to cool the cells and/or to be used in an advantageous manner. A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was, in 10 Australia, known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims. In particular the invention comprises a method and a system for recovery of surplus heat from electrolysis cells in the aluminium industry, and the 15 conversion of the recovered heat energy into other forms of energy such as pressure and possibly electrical energy. Further, the heat exchange medium at an elevated pressure can be utilised to produce electrical energy and this energy can be fed to the cells to increase the production volume of said cells and/or to reduce the electrical power consumption from the ordinary grid. 20 Pressurised medium can be introduced into the cell for cooling purposes. In production of aluminium the energy consumption due to the electrolysis process will be approximately 13 kWh electrical energy plus consumption of about 0,4 kg (theoretical 0,334 kg C = 3,15 kWh) carbon pr. kg aluminium 25 produced. The theoretical enthalpy required per kg aluminium produced is approximately 6,4 kWh. Thus, there is a loss of energy in the cells due to the fact that the current that passes through the electrolyte generates excessive heat mainly due to the ohmic resistance of the electrolyte. 30 In electrolysis cells for the production of aluminium, it is necessary to keep a frozen ledge of solid electrolyte along the sidewalls of the cell cavity to prevent degrading and erosion of the cell lining material. If it should happen that this ledge melts down as a result of elevated temperature in the cell, the cells life span will be highly affected. P \Use8elnda\BEH796131\796131_spec, doc 2 On the other hand, if the cell becomes too cold in particular along its bottom part, the cathode will be successively covered by frozen electrolyte or sludge that reduces the active area for current distribution and consequently the 5 electric resistance will raise and energy efficiency will decrease because of unfavourable magnetohydrodynamic effects. Typically the thermal balance and thus the thickness of the ledge of an individual cell is regulated by modifying the cell resistance through the distance 10 between anode and cathode, while the amperage is the same for all cells in a serially connected row of cells. Introducing heat extraction systems in electrolysis cells involves a challenge with regard to keeping the balance between energy supplied to the cell and the cooling of each cell. On the other hand it allows a more flexible operation of cells including higher amperages 15 and better reaction to variations in the amperage or parameters affecting the cooling conditions, like ambient temperature. When an electrolysis cell for aluminium production is optimally operated, there is a mainly proportional relation between the amperage of the electric energy 20 supplied and the amount of aluminium produced. Increasing the amperage requires to keep or even increase the resistance of the electrolyte to maintain magnetohydrodynamic stability, if the cell was operated at lowest possible voltage. Thus, the energy supplied to the cell is increasing close to quadratic with production if no other modifications to the cell are applied. As a 25 simplifying consideration an increase in the production can be allowed as long as the temperature in the cell is controlled by the removal of excess heat from the cell. The excess heat can for instance be collected by allowing a cooling medium to circulate in a closed circuit that is heat exchanged with electrolyte and melted metal in heat exchangers. Such heat exchangers can be 30 implemented in the sidewalls of the cell and in the bottom thereof. The Applicant is aware of several proposed solutions to recover or use the excessive heat that is produced in aluminium electrolysis cells. P \UsenBenda\BEH\796131\796131_sp ec oc 3 Commonly, a relatively small part of the heat is at present recovered and for instance used to preheat feed-materials and anodes to keep up with the process temperature that normally is within the interval 950-965 0 C. 5 WO 87/00211 discloses a cell arrangement for electrometallurgical purposes, where cooling chambers having a base area covering small portions of the surface of the cells. Together these cooling chambers cover a substantial proportion of the cell surface without any significant space between the cooling chambers. The chambers are adapted to receive a through-flow of a cooling 10 medium which is controlled individually for each cooling chamber. The cooling medium is preferably helium and the extracted heat may be transformed into electrical energy by means of a turbine that drives a generator. The main idea of that invention is that the cooling medium circulates in one 15 closed loop per individual production cell, thereby the same medium is used both for transport of thermal energy as well as working medium in the engine needed for converting the thermal energy into electrical energy. The closed loop allows for the use of helium under elevated pressure as working medium. This will increase the specific weight and allow for reduced velocity and 20 reduced gas friction for a given rate of cooling. Helium has high thermal capacity pr. mass unit as well as low viscosity and high thermal conductivity compared to air. The rate of heat transfer for a given area and difference in temperature can therefore be high and the friction loss due to transport of the necessary amount of cooling medium through narrow channels will be low. 25 Consequently all cooling areas as well as active areas in heat exchangers can be reduced to minimum size, leaving a maximum portion of the available area for the main purpose, which is production of aluminium. The most important challenge concerning WO 87/00211 is that the closed 30 circuit including all involved components like heat exchangers, recuperator, compressor, turbine, instruments etc. has to be gas-tight to prevent leakage of working gas to the atmosphere, thus introducing significant costs. Some types of working gas are expensive. If helium is used and the circuit is not absolute leak-proof, accumulated leakage through hardly visible pinholes may over time P \UsertBelmda\BEH\796131\79e131_speci dc 4 represent expenses that exceed earnings due to reproduction of electricity as well the benefits from improvements in control of process due to the effective cooling of the cell. 5 WO 01/94667 discloses an electrolytic cell for the production of aluminium and a method for maintaining a crust on a sidewall and for recovering electricity. At least a part of the sidewall of the electrolytic cell consists of one or more evaporation cooled panels that forms element of a first circulation circuit. Three individual closed circuits plus a unit for dumping low-temperature energy 10 to the atmosphere are specified for a complete solution. For each of the electrolysis cells is needed: a) A plurality of primary heat collectors (14 units in parallel are shown in 15 the figure), using liquid metal at boiling temperature as medium for collecting heat energy from the cell. b) A closed loop circuit, using a preferably inert gas, is used for collecting thermal energy from condensation of evaporated liquid metal in the different 20 units in the first circuit. For the second closed loop, a separate pump is needed for circulating the bas. According to the expressed intention of WO 01/94667 to "convert thermal energy into electricity with an efficiency of 45 % or more", it is obvious that the operating temperature of this pump will have to be high, probably about 800 - 900 OC and the heat exchangers and 25 recuperator have to be extremely efficient and the inert gas has to be likely helium or hydrogen. Reliable pumps capable of operating under these conditions represent many technical challenges and may subsequently represent a substantial cost 30 increase both for the installation as well as for the operation. c) A third closed circuit, (the second closed loop using inert gas) is used for collecting thermal energy from several cells. P \UsenBeInda\BEF796131X796131_speo doc 5 For the third closed loop, a compressor and an expander combine the pumping function with conversion of the thermal energy into mechanical energy in a rotating shaft also driving an electrical generator. In this third closed loop is also included a recuperator and a cooler for dumping low 5 temperature energy to the atmosphere. It would be desirable to overcome or at least alleviate, one or more of the shortcomings, complexities and disadvantages associated with the prior art. 10 According to the present invention, there is provided a method of energy recovery and/or cooling in at least one electrolysis cell for the production of aluminium, where the cell(s) is provided with one or more heat exchangers and where a heat exchange medium is ducted into said heat exchanger(s) by a compressor and is further directed to an expander turbine, wherein the 15 expander turbine is mechanically connected with the compressor via one axle, the compressor supplies air, at elevated pressure to the cell for heat exchange and cooling of the cell in a substantially self propelling manner, and where the heat is extracted by heat exchanger(s) consisting of a material that is substantially inert with respect to oxygen at its operating pressure and 20 temperatures, and that a motor-generator is mechanically connected to the arrangement of expander turbine and compressor. According to the present invention, there is further provided a system for energy recovery and/or cooling in at least one electrolysis cell for the 25 production of aluminium, where the call has one or more heat exchangers and where a heat exchange medium is ducted into said heat exchanger(s) by one compressor and is further directed to an expander turbine wherein the expander turbine is mechanically connected via one axle with the compressor, said compressor supplies air, at elevated pressure for heat exchange to the 30 cells, and where the heat exchanger(s) is made out of a material that is substantially inert with respect to oxygen at its operating pressure and temperatures, and that a motor-generator is mechanically connected to the arrangement of expander turbine and compressor. CAponrd\706 131_SpeD 1j.doc 6 The present invention relates to energy recovery from electrolytic production cells. In particular the invention is suitable for cooling of and heat recovery in electrolysis cells and processes for production of aluminium. 5 The present invention also relates to the need for controlled removal of excess heat from electrolysis cells as well as the transformation of a substantial part of this thermal energy into mechanical energy. The mechanical energy may relatively easy be converted into electricity, 10 compressed air and/or other forms of potential energy that may be used in industrial processes. Advantageously, only one and the same working medium is used for both cooling the industrial process and as the working medium in the engine used for conversion of the collected thermal energy into mechanical energy. 15 Further advantageously, the present invention is based on a self-propelled cooling system using air as the working medium, instead of like other systems known to the Applicant where another working medium is used (preferably an inert gas). 20 Air is the only cooling medium that can be operated reasonable in an open loop system. For other cooling media different from air, the system will for obvious reasons have to be operated in a closed loop system to prevent major loss of working medium to the atmosphere. 25 Loss of working medium to the atmosphere will also be a problem if a leak should develop suddenly or over time during operation of a closed loop system. Since the cooling system should operate continually and undisturbed over the operational lifetime of the electrolysis cell, any leak may easily 30 accumulate to loss of larger amount of (expensive) cooling/working media (like Helium and others) and thereby increase the cost of system operation. While some leaks may be repaired without too many problems, most cracks and leaks related to the cooling chambers and their interconnections that P \UserBeIoda\BEH\796131\796131 soec doc 7 usually will have to be integrated in the side walls of the production cells, are virtually impossible to repair as long as the cell is in operation. An open loop system is by far less vulnerable to leaks as a closed loop system 5 since the cooling medium in an open loop system always should end up in the surrounding atmosphere. Most cracks and leaks that may occur during the operational lifetime, will have negligible influence on the cooling function of the cells, but may of course reduce the output of recovered energy (electricity, compressed air, etc.). 10 Air has up to now been avoided as cooling medium inside narrow channels as long as the channels are made of metal and integrated in cooling panels inside side linings for electrolysis cells. The temperature on the inner surface of the cooling channels may occasionally exceed the point where the metallic 15 material will react with the oxygen in the air. The applicants own, non-published patent application No 2003 1220 that relates to heat-exchanger panels is based upon the use of ceramic materials such as silicon carbide as contact material in the relatively narrow channels. 20 Since reaction between silicon carbide and oxygen only can take place at higher temperature than the normal process temperature in the electrolysis cells, the use of air should be without problems in this respect. Thus, this type of heat-exchangers may be very suitable for use in accordance with the present invention. 25 If the diameter and the length of the channels are optimized for the use of air instead of an inert gas, air will collect the necessary amount of thermal waste energy - like if an inert gas is used. Compared with for instance Helium, the use of air will result in only marginal increase in channel diameter, channel 30 length and friction loss. Another advantage that can be obtained if air is used in an open circuit, is however, the fact that the component preferably used for circulating the air through the cooling channels already exist in the form of turbochargers, P \User1Benda\BEH\796131\796131_spec doc 8 typically used for recovering waste energy from the exhaust from diesel engines. Turbochargers have good reputation for reliability and they have long operational lifetime. As they have been available as industrialised components already for a long time, the cost per unit is comparatively low. 5 The compressor part of the turbocharger compresses the air from ambient temperature and pressure to higher density than the atmosphere, meaning that the velocity of the air through the cooling channels is reduced as well as the friction loss in the channels will be reduced. After the air has passed the 10 cooling channels, the temperature has increased. The friction will result in a loss in pressure and an additional marginal temperature increase before the air enters the expansion turbine of the turbocharger. Under circumstances as described here to cool electrolysis cells, the turbine will produce more mechanical energy than what is needed for operating the compressor. 15 The recovered excess heat can therefore be converted into pressure energy and in one embodiment into electrical energy. The conversion may take place in a heat-engine, turbine or the similar. The turbine can be applied to drive a compressor, generator or the like. 20 Alternatively, the heat energy can be applied to produce steam to drive a steam turbine. In one embodiment of the present invention, the recovered energy is fed back to the same cell as it was gathered from. In one other embodiment the energy conversion system serves plural cells or public grid. 25 The heat exchange circuit may preferably be open. The invention shall be further explained by Figures and examples where: Fig. 1 discloses a first embodiment where energy is recovered from one 30 aluminium electrolysis cell in an energy conversion unit, Fig. 2 discloses a second embodiment for energy recovery from one cell, P -UserBeinda\8EH\79e131\796131_speci doc 9 Fig. 3 discloses a third embodiment for energy recovery including one combustor, Fig. 4 discloses a forth embodiment for energy recovery comprising two energy 5 conversion units, Fig. 5 discloses a fifth embodiment for energy recovery from more than one cell, using one (1) energy conversion unit, 10 Fig. 6 discloses a sixth embodiment for energy recovery from plural cells, using common electrical energy generator Fig. 7 discloses a seventh embodiment for energy recovery from plural cells, where at least one part of one cold side of the circuit is in common. 15 As seen I Fig. 1 an aluminium electrolysis cell 1 is provided with conduits 6, 8 for a circulating medium. Conduit 6 is arranged at the cold side of the circuit, while conduit 8 is arranged at the hot side. The medium can be a gas, preferable air but also other gases with acceptable properties may be applied. 20 In the cell, there are arranged heat exchangers (not shown). The heat exchangers can preferably be of the type as comprised in the applicants own patent application No 2003 1220. Heated medium from the cell is transported to an expander turbine 3 25 connected mechanically with a compressor 2 for instance by an axle 4. The outlet of the compressor 2 is connected to conduit 6 preferably via one check valve 7 to circulate medium to the heat exchangers arranged in the cell 1. The compressor may have an inlet 5 that allows ambient air to enter, preferably after being conditioned through a filter and a demister (not shown). At the 30 outlet side of the turbine, there may be arranged a restriction valve 10, before the gas enters one exhaust line 9. Figure 2 is based upon the same principles as stated in Figure 1, but in addition there is arranged one branch with a control valve 20 between the P \Usen elnda\BEH\796131\796131_speca doc 10 conduits that leads medium to/from the cell 1. The purpose of the branch including valve 20 is to by-pass medium from the cold side directly to the warm side, without traversing the exchangers in the cell and the valve make it possible to control cooling medium flow through the cell 1 and in this way 5 control the cooling effect. Figure 3 is based upon the principles as described in Figure 2. In addition the conduit at the hot side of the cell 1 includes a combustor 30. The combustor can be fed with a gas containing oxygen, such as air via the above mentioned 10 branch. The purpose of the combustor is to elevate the energy level (temperature) of the gas recovered from the cell, to ensure a more stable and efficient operation of the expander turbine(s). The combustor can keep the inlet temperature to the expander turbine on constant level independent of cell outlet temperature. In addition the combustor can be used in cases where 15 electricity price from the grid is high or in case of shortage of electrical energy. Figure 4 discloses a forth embodiment based upon the principles as described in Figure 3. In Figure 4, the hot side of the circuit leaving the cell 1 have in addition to combustor 3 and turbine 3 with its exhaust line 9, an additional 20 turbine 40 connected with a generator 41 arranged downstream said exhaust line. This embodiment makes possible that recovered electrical energy can be returned back to the cell(s) to support the electrolytic process. In Figure 5, where is shown an embodiment based upon the principles of the 25 embodiment as shown in Figure 3. In addition to the elements of that embodiment, one or more additional cells 51 are connected in parallel to the basic circuit by conduits 52 (cold side) and 53 (hot side) communicating with conduits 6 and 8 respectively. At the cold side connection between said cells 1, 51 there is arranged a three-way valve 50, to control the amounts of 30 circulating medium in the adjacent conduits. The advantage of connecting plural cells to the same energy recovery unit, is that plural cells will contribute to even the actual behaviour of individual cells, and the recovery unit will have more stable operating conditions. Further, there will be possible to reduce the investment costs by applying one larger compressor/turbine unit to serve plural P \Use\8eIhndarBEFI-796131\796131_speco doc 11 cells. One disadvantage is that it will require more complicated piping. Arrangement of control valves on cold side instead on hot side of the cell will reduce the investments considerably. 5 Figure 6 is based upon the principles of the embodiment disclosed in Figure 5 combining plural cells 1, 51 by conduits 52, 53, and where the hot side conduit 8 comprises combustor, expander turbine with exhaust line 9. The exhaust line is further connected with a second expander turbine 40 that runs one generator 41. This embodiment makes possible that recovered electrical 10 energy can be returned back to the cell(s) to support the electrolytic process. Figure 7 discloses an arrangement with two cells 1, 51 interconnected at their cold sides. Both cells 1, 51 have one compressor 2, 72 and expander turbine 3, 73 arrangement where the expander turbine drives the compressor via an 15 axle 4, 74. Further the cells have cold side conduits 6, 76 connecting compressor 2, 72 with cell 1, 51 and hot side conduits 8, 78 connecting the hot side of the cells 1, 51 with the turbines 3, 73. At the cold side of the circuits, in conduits 6, 76, there are arranged three-way 20 valves 81, 82 allowing cold, pressurized surplus medium to be branched off. The branched off cold medium is collected in one conduit 80 and further led to a pressure conversion unit (70) connected with an electrical generator (71). The excessive compressed air of more than two cells may be connected to the conduit 80. The pressure conversion unit may be an expansion engine such 25 as a gas motor, an air turbine or the similar. The advantage of this embodiment is that colder air is transported in the conduit 80 instead of as shown in the previous examples where the bleed-off air has higher temperature. 30 Colder air has less volume per mass unit than hot air. This will reduce the airspeed in the conduct for a given flowpipe-geometry and a given mass-flow. This will reduce the friction losses compared with transport of hot air. Since the temperature is lower, less and cheaper insulation will be needed to keep the thermal losses low. P \UserBehnda\8EH\796131\796131_speo doc 12 The heat-engine (turbocharger or compressor/expansion turbine) as disclosed in the above standing embodiments may be dimensioned for compressing the air to an overpressure of typically 3-5 bar. Thereby the temperature will 5 increase from ambient to typically 200-300 0C. Since the temperature is higher than ambient, material stress due to temperature shock when the cooling medium enter the cooling channels will be reduced. The compressed air is distributed between a plurality of heat exchangers containing cooling channels, preferably of the type as comprised in the applicant's own patent application 10 No 2003 1220. The compressed air will pick up excess heat from the electrolytic cell and thereby provide cooling of the side-wall. Only part of the collected energy will normally be needed to overcome the pressure loss in the cooling channels. There may be also some cracks and 15 minor leakage in some of the channels that will result in pressure loss. When the air is heated, the volume will increase. Therefore more mechanical energy may be produced in the expansion part of the heat-engine than what is needed for running the compressor. This means that only part of the overpressure that exsist before the expansion part is necessary to drive the compressor. 20 We have here the following options: a) A generator may be connected to the heat-engine. The expander will now produce electricity. b) A compressor may be connected, producing compressed air. 25 c) A hydraulic pump may produce hydraulic energy. d) A second expander may be connected in series with the first expander and thereby divide the total pressure potentials between the 2 separate units. 30 Further, it should be understood that the turbocharger unit may preferably be of a commercially available type, similar to those used in heavy duty trucks or ship motors with turbocharged combustion engines. Therefore, by using commercial modules it will be possible to keep the costs at a viable level. P \Use\Benda\BEHO796131\796131_sec doc 13 An electric motor-generator (not shown) may be in direct drive or via a transmission with the axle of the turbocharger, to assist the pumping/compressing activity when needed. Such need may occur for instance in start-up conditions, or when large amounts of heat have to be 5 removed from the cell. Further, the generator can be utilised to extract excessive energy when possible. Accordingly, the motor-generator can be controlled by a computer or the similar and thus be used to control the flow of medium through the cell. 10 The invention described herein is susceptible to variations, modifications and/or additions other than those specifically described and it is to be understood that the invention includes all such variations, modifications and/or additions which fall within the spirit and scope of the above description. 15 Throughout the description and the claims of this specification the word "comprise" and variations of the word, such as "comprising" and "comprises" is not intended to exclude other additives, components, integers or steps. P \UsenBelinda\BEH796131\796131_spmec doc

Claims (16)

1. A method of energy recovery and/or cooling in at least one electrolysis cell for the production of aluminium, where the cell(s) is provided with one or 5 more heat exchangers and where a heat exchange medium is ducted into said heat exchanger(s) by a compressor and is further directed to an expander turbine, wherein the expander turbine is mechanically connected with the compressor via one 10 axle, the compressor supplies air, at elevated pressure to the cell for heat exchange and cooling of the cell in a substantially self propelling manner, and where the heat is extracted by heat exchanger(s) consisting of a material that is substantially inert with respect to oxygen at its operating pressure and temperatures, and that a motor-generator is mechanically connected to the 15 arrangement of expander turbine and compressor.
2. A method in accordance with claim 1, wherein the heat exchange medium is led through a combustor for increasing the 20 temperature thereof before entering the expander turbine.
3. A method in accordance with claim 1, wherein a surplus of cold heat exchange medium from the compressor is branched off 25 upstream the cell through valves to one heat/pressure to electricity conversion unit.
4. A system for energy recovery and/or cooling in at least one electrolysis cell for the production of aluminium, where the call has one or more heat 30 exchangers and where a heat exchange medium is ducted into said heat exchanger(s) by one compressor and is further directed to an expander turbine wherein the expander turbine is mechanically connected via one axle with the compressor, said compressor supplies air, at elevated pressure for heat C:\po rn1x796131_speci[I doc 15 exchange to the cells, and where the heat exchanger(s) is made out of a material that is substantially inert with respect to oxygen at its operating pressure and temperatures, and that a motor-generator is mechanically connected to the arrangement of expander turbine and compressor. 5
5. A system in accordance with claim 4, wherein the heat exchange medium is ducted in one circuit that is open with respect to the surrounding. 10
6. A system in accordance with claim 4, wherein a combustor is arranged between the cell(s) and the expander turbine. 15
7. A system in accordance with claim 4, wherein one second expansion turbine is arranged downstream the expander turbine.
8. A system in accordance with claim 7, 20 wherein the second turbine is connected with one generator for electricity production.
9. A system in accordance with claim 8, wherein 25 the electricity produced is reverted back to the cell(s) or the public grid.
10. A system in accordance with claim 4, wherein cold medium pressurised by the compressor(s) is expanded in an expansion 30 engine that preferably drives one generator.
11. A system in accordance with claim 4, wherein the material of the heat exchanger(s) comprises a ceramic material. CAW ord\796131_spec[1j.doc 16
12. A system in accordance with claim 4, wherein the material of the heat exchanger(s) comprises silicon carbide. 5
13. A system in accordance with claim 4, wherein the pressure of the air that enters the heat exchanger(s) is between 3 to 5 bars. 10
14. A system in accordance with claim 4, wherein the temperature of the air that enters the heat exchanger(s) is between 200 and 300*C. 15
15. A method of energy recovery and/or cooling in at least one electrolysis cell for the production of aluminium substantially as herein described with reference to the accompanying drawings. 20
16. A system for energy recovery and/or cooling in at least one electrolysis cell for the production of aluminium substantially as herein described with reference to the accompanying drawings. CApofwrd\79131_spedj1j doc
AU2005285621A 2004-09-16 2005-09-09 A method and a system for energy recovery and/or cooling Ceased AU2005285621B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20043884A NO331938B1 (en) 2004-09-16 2004-09-16 Method and system for energy recovery and / or cooling
NO20043884 2004-09-16
PCT/NO2005/000330 WO2006031123A1 (en) 2004-09-16 2005-09-09 A method and a system for energy recovery and/or cooling

Publications (2)

Publication Number Publication Date
AU2005285621A1 AU2005285621A1 (en) 2006-03-23
AU2005285621B2 true AU2005285621B2 (en) 2010-05-27

Family

ID=35057611

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005285621A Ceased AU2005285621B2 (en) 2004-09-16 2005-09-09 A method and a system for energy recovery and/or cooling

Country Status (10)

Country Link
US (1) US20070261826A1 (en)
EP (1) EP1805350A1 (en)
CN (1) CN101044267B (en)
AU (1) AU2005285621B2 (en)
BR (1) BRPI0515342A (en)
CA (1) CA2580038C (en)
NO (1) NO331938B1 (en)
RU (1) RU2384655C2 (en)
WO (1) WO2006031123A1 (en)
ZA (1) ZA200702194B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610046B (en) * 2008-06-16 2011-04-20 湖南晟通科技集团有限公司 Method for utilizing waste heat of aluminum electrolyzing cell
CN101610047B (en) * 2008-06-16 2011-04-20 湖南晟通科技集团有限公司 Wind cooling type aluminum electrolytic cell waste heat utilizing device
CN101610048B (en) * 2008-06-16 2011-04-20 湖南晟通科技集团有限公司 Device for using waste heat of aluminum electrolytic cell
CN101880898B (en) * 2009-05-04 2013-01-02 厦门热工环保系统工程有限公司 Method for recovering flue gas waste heat of aluminum electrolysis cell
EP2458035A1 (en) * 2010-01-21 2012-05-30 Alstom Technology Ltd A method of ventilating an aluminium production electrolytic cell
CN103476969A (en) 2011-04-08 2013-12-25 Bhp比利顿铝技术有限公司 Heat exchange elements for use in pyrometallurgical process vessels
CN103469253A (en) * 2013-10-10 2013-12-25 郑州大学 Forced heat transferring type aluminum electrolyzing groove
CN105220177B (en) * 2014-06-30 2017-12-08 沈阳铝镁设计研究院有限公司 Aluminium cell forced ventilation residual heat using device and Application way
CN104562086B (en) * 2015-02-03 2017-09-19 奉新赣锋锂业有限公司 A kind of temperature-adjustable metal lithium electrolytic bath
CN108866574B (en) * 2018-09-05 2020-06-12 辽宁石油化工大学 Heat exchange device for aluminum electrolytic cell
CN112126948A (en) * 2020-09-24 2020-12-25 河南中孚铝业有限公司 Lateral furnace side repairing system of aluminum electrolytic cell
CN113774431A (en) * 2021-10-26 2021-12-10 中国华能集团清洁能源技术研究院有限公司 Heat management system and method for alkaline hydrogen production electrolytic cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222841A (en) * 1979-04-23 1980-09-16 Alumax Inc. Hall cell
US4749463A (en) * 1985-07-09 1988-06-07 H-Invent A/S Electrometallurgical cell arrangement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US422841A (en) * 1890-03-04 Irving m
US4154055A (en) * 1977-03-25 1979-05-15 Ford Motor Company Indirect Brayton energy recovery system
US4136516A (en) * 1977-06-03 1979-01-30 General Electric Company Gas turbine with secondary cooling means
US4473754A (en) * 1982-07-26 1984-09-25 Williams International Corporation Waste heat power generation system
JPS6183897A (en) * 1984-09-28 1986-04-28 Asahi Glass Co Ltd Ceramic heat exchanging unit
GB2216191B (en) * 1988-03-31 1992-08-12 Aisin Seiki Gas turbine cogeneration apparatus for the production of domestic heat and power
GB9211405D0 (en) * 1992-05-29 1992-07-15 Nat Power Plc A compressor for supplying compressed gas
US5813215A (en) * 1995-02-21 1998-09-29 Weisser; Arthur M. Combined cycle waste heat recovery system
US6318066B1 (en) * 1998-12-11 2001-11-20 Mark J. Skowronski Heat exchanger
NO318012B1 (en) * 2003-03-17 2005-01-17 Norsk Hydro As Structural elements for use in an electrolytic cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222841A (en) * 1979-04-23 1980-09-16 Alumax Inc. Hall cell
US4749463A (en) * 1985-07-09 1988-06-07 H-Invent A/S Electrometallurgical cell arrangement

Also Published As

Publication number Publication date
CA2580038A1 (en) 2006-03-23
RU2384655C2 (en) 2010-03-20
ZA200702194B (en) 2008-09-25
CA2580038C (en) 2012-11-06
AU2005285621A1 (en) 2006-03-23
CN101044267A (en) 2007-09-26
NO20043884D0 (en) 2004-09-16
EP1805350A1 (en) 2007-07-11
RU2007114050A (en) 2008-10-27
BRPI0515342A (en) 2008-07-22
NO20043884L (en) 2006-03-17
NO331938B1 (en) 2012-05-07
CN101044267B (en) 2012-11-14
WO2006031123A1 (en) 2006-03-23
US20070261826A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
AU2005285621B2 (en) A method and a system for energy recovery and/or cooling
CA1043860A (en) Pressurized fuel cell power plant with air bypass
CA1043857A (en) Pressurized fuel cell power plant with steam powered compressor
CA1043862A (en) Pressurized fuel cell power plant
US3972731A (en) Pressurized fuel cell power plant
US5537822A (en) Compressed air energy storage method and system
US4004947A (en) Pressurized fuel cell power plant
CA1043856A (en) Pressurized fuel cell power plant with steam flow through the cells
Winkler et al. The design of stationary and mobile solid oxide fuel cell–gas turbine systems
PL203744B1 (en) A thermodynamic apparatus
IT201900008367A1 (en) A NATURAL GAS LIQUEFACTION SYSTEM
CN108779712B (en) Compressed air storage power generation device
Datta et al. Fuel cell power source for a cold region
EP0951087A2 (en) Air supply device for fuel cell
JP5294291B2 (en) Power generation equipment
US11591957B2 (en) Energy storage apparatus and method
KR101403622B1 (en) Waste heat recovery system for ship that can remove dissolved oxygen by minimizing steam consumption
CN1243931C (en) Low hot water continuous district heating system utilizing heat integration power generation
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
JP4629950B2 (en) Molten carbonate fuel cell power generation system and power generation method in the power generation system
JP4745479B2 (en) Combined power plant
US20240125269A1 (en) Power plant system and method of operating the same
JP2002056879A (en) Water electrolysis device and phosphoric acid type fuel cell generating system
CN117328965A (en) Compressed air energy storage device system and method for coupling photo-thermal photovoltaics
CN116066317A (en) Photo-thermal coupling isothermal compressed air multi-mode power generation system

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired