AP129A - Expression of retrovirus gag protein eukaryotic cells - Google Patents

Expression of retrovirus gag protein eukaryotic cells Download PDF

Info

Publication number
AP129A
AP129A APAP/P/1989/000126A AP8900126A AP129A AP 129 A AP129 A AP 129A AP 8900126 A AP8900126 A AP 8900126A AP 129 A AP129 A AP 129A
Authority
AP
ARIPO
Prior art keywords
cells
gag
precursor protein
recombinant
dna molecule
Prior art date
Application number
APAP/P/1989/000126A
Other versions
AP8900126A0 (en
Inventor
Eric Jacobs
Dirk Gheysen
Original Assignee
Smithkline Biologicals S A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smithkline Biologicals S A filed Critical Smithkline Biologicals S A
Publication of AP8900126A0 publication Critical patent/AP8900126A0/en
Application granted granted Critical
Publication of AP129A publication Critical patent/AP129A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16211Human Immunodeficiency Virus, HIV concerning HIV gagpol
    • C12N2740/16222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Retrovirus gag precursor protein is expressed in eukaryotic cells by recombinant dna techniques and is used to induce immunoprotection in humans at risk of exposure to hiv and to diagnose exposure.

Description

Field of the Invention
This invention relates to expression of proteins in eukaryotic cells. More particularly it relates to the expression of immunodeficiency virus gag precursor protein.
Background of the Invention
Retroviruses, that is, viruses within the family, Retroviridae, are a large family of enveloped, icosohedral viruses of about 150 nm having a coiled nucleocapsid within the core structure and having RNA as the genetic
BAD ORIGINAL
material. The family comprises the oncoviruses such as the sarcoma and leukemia viruses, the immunodeficiency viruses and the lentiviruses.
Human Immunodeficiency Virus (HIV), the etiologic agent of acquired immune deficiency syndrome (AIDS) and related disorders, is a member of the Retroviridae family. There exist several isolates of HIV including human T-lymphotropic virus type-III (HTLV-III), the lymphadenopathy virus (LAV) and the AIDS-associated retrovirus (ARV) which have been grouped in type 1.
Related immunodeficiency viruses, include HIV type 2, which was shown recently to be associated with AIDS in
West Africa. Other immunodeficiency viruses include the
SIV viruses such as SIV „ -BK28.
mac
Molecular characterization of the HIV genome has demonstrated that the virus exhibits the same overall gag-pol-env organization as other retroviruses. In addition, it contains at least five genes that are not found in more ordinary retroviruses: sor, tat3, art/trs,
31orf and R. The gag region encodes 3 core proteins, pi7, p24 and pl6, which are prepared by cleavage of a 55 kilodalton gag precursor protein by the HIV protease. The protease is encoded by the pol region.
Recent reports have shown that antibodies to the HIV gag proteins, pl7, p24 and pl6, are present in human sera from infected individuals in the United States and Europe and that antibodies arise early after infection. The presence of these antibodies declines as the individual proceeds towards AIDS.
The gag protein pl7 with its submembrane localization is well positioned to be in close contact with the transmembrane protein gp41 and the viral membrane and with gag p24 and possibly gag pl5 viral RNA thereby playing a central role in the conformational changes involved in the viral entry and uncoating process. Furthermore, gag pl7 has been found to have a myristylated N-terminus.
APO00129
BAD ORIGINAL ft
Myristylation has been implicated in virion assembly and transport of viral components to the plasma membrane. Myristylated proteins are generally localized in the plasma membrane.
In spite of major research efforts in the area of AIDS, there continues to be a need for diagnostic reagents which can be used to monitor disease progression and for agents which can prevent primary infection, such as via immunization, and for agents which can prevent or inhibit secondary infection, such as by cell-to-cell transmission or by free virus infection.
Summary of the Invention
In one aspect, this invention is a recombinant DNA molecule for expression of gag precursor protein in eukaryotic cells which comprises a coding sequence there for operatively linked to a regulatory region which functions in the host cell.
In related aspects, this invention is host cells comprising the recombinant DNA molecule and cultures thereof.
In further related aspects, the invention is the gag precursor protein produced by the host cells of the invention, including a HIV core-like particle comprising the gag precursor protein.
In yet further related aspects, the invention is a process for producing the recombinant DNA molecule and _the host cell of the invention, a process for producing the gag precursor protein and particles of the invention, and related compositions and methods.
These and other aspects of the invention are fully described in the disclsoure and Examples which follow.
Detailed Description of the Invention It has now been found that retroviral gag precursor protein can be expressed in recombinant eukaryotic cells
BAD ORIGINAL
and that such expression can result in production of full-length gag precursor protein without use of pol DNA sequences and without use of 5' untranslated sequences from the virus. Exemplary of such cells are cells from lower eukaryotes such as yeast and fungi and animal cells including insect cells such as Drosophila or Lepidoptera cells; mammalian cell lines; mammalian primary cells, and insects and transgenic animals.
It has also been found, unexpectedly, that the gag precursor protein can form particles which resemble authentic gag particles formed in infected human cells in size and other physical properties and in antigenicity. During a natural retrovirus infection cycle, it appears that gag precursor protein, known in the case of HIV as p55, is formed largely into particles comprising predominantly full-length gag protein. These gag particles can be referred to as pre-core particles or immature core particles. Then, during viral maturation,’ the precursor is cleaved into the subunit proteins known in the case of HIV as pl7, p24 and pl6. These gag particles, now comprised predominantly of pl7, p24 and pl6, can be referred to as core particles or as mature core particles. Also during viral maturation, apparently during the budding process, the viral membrane is formed around the pre-core or core particles. As shown in the Examples below, HIV gag precursor expressed in recombinant Lepidoptera cells using a Baculovirus expression system are largely aggregated or packaged in particles which have physical and biological properties and dimensions similar to those of the core of HIV particles formed naturally in infected human cells. The particles of the invention comprise predominantly gag precursor protein (greater than 90% of all protein in the particles is full length gag precursor) but nevertheless are recognized after brief treatment with Triton X100 by anti-pl7 monoclonal antibodies (MABs), anti-p24 MABs and anti-pl6 MABs in
APO00129
BAD ORIGINAL &
addition to being recognized by anti-gag polyclonal antibodies from sera of infected patients. The particles, because they are prepared by recombinant DNA techniques as disclosed herein, lack viral functions required for viral maturation and replication especially viral RNA and also, preferably, reverse transciptase and protease functions.
The recombinant eukaryotic cells of the invention are engineered to express the gag precursor protein by introduction into the cells of the recombinant DNA molecule of the invention. The recombinant DNA molecule of the invention comprises a coding region for the gag precursor protein operatively linked to a regulatory element which functions in the selected host cells. As an aspect of this invention, it has been found that other HIV functions are not required for expression of the gag precursor protein and for pre-core-like particle formation. DNA sequences coding for other functions, e.g., for amplification functions, selection markers or maintenance functions, can also be comprised within the recombinant DNA molecule of the invention. - ...
A DNA coding region for gag precursor protein can be prepared from any of the several immunodeficiency virus genomic clones or gag-pol clones reported in the literature. See, for example, Shaw et al., Science 226:1165(1984); Kramer et al., Science 231:1580(1986) Alternatively, an immunodeficiency virus genomic clone can be prepared from virus isolated from clinical specimens by standard DNA cloning techniques. See, for example, Gallo et al., U.S. Patent 4,520,113; Montagnier et al., U.S. Patent 4,708,818. Having cloned a fragment of the genome which comprises the gag coding region, a region which codes only for the gag precursor can be prepared by restricting the DNA so as to isolate a portion of the DNA coding region and reconstructing the remaining portions through use of synthetic oligonucleotides, such as described in the Examples, below. Alternatively, a larger
fragment comprising the gag coding region and additional sequences can be cut back through use of exonucleases. In yet another alternative procedure, the entire coding region can be synthesized using standard automated DNA synthesizers by synthesizing fragments of the coding region and ligating these together to form a complete coding region. While use of a coding sequence which lacks the naturally occurring 5' and 3' flanking sequences is preferred, fusion of the coding sequence to other immunodeficiency virus sequences, e.g., envelope protein sequences, is not precluded from the preferred embodiments.
/
APO 0012 9
BAD ORIGINAL ft
An exemplary coding region for the HIV gag precursor protein has the following sequence.
1 ATG Met GGT Gly GCG Ala AGA Arg GCG Ala TCA Ser GTA Val TTA Leu AGC Ser GCG Gly GGA Gly GAA Glu
37 TTA GAT CGA TGG GAA AAA ATT CGG TTA AGG CCA GGG
Leu Asp Arg Trp Glu Ly« He Arg Leu Arg Pro Gly
73 GGA AAG AAA AAA TAT AAA TTA AAA CAT ATA GTA TGG
Gly Lys Lys Lys Tyr Lys Leu Lys His He Val Trp
109 GCA AGC AGG GAG CTA GAA CGA TTC GCA GTT AAT CCT
Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro
145 GGC CTG TTA GAA ACA TCA GAA GGC TGT AGA CAA ATA
Gly Leu Leu Glu Thr ser Glu Gly Cys Arg Gin lie
181 CTG GGA CAG CTA CAA CCA TCC CTT CAG ACA GGA TCA
Leu Gly Gin Leu Gin Pro Ser Leu Gin Thr Gly Ser
217 GAA GAA CTT AGA TCA TTA TAT AAT ACA GTA GCA ACC
Glu Glu Leu Arg Ser Leu Tyr Asn Thr Val Ala Thr
253 CTC TAT TGT GTG CAT CAA AGG ATA GAG ATA AAA GAC
Leu Tyr Cy· Val Hi· Gin Arg lie Glu He Lys Asp
289 ACC AAG GAA GCT TTA GAC AAG ATA GAG GAA GAG CAA
Thr Lys Glu Ala Leu Asp Lys lie Glu Glu Glu Gin
325 AAC AAA AGT AAG AAA AAA GCA CAG CAA GCA GCA GCT
Asn Lys Ser Ly· Lys Lys Ala Gin Gin Ala Ala Ala
361 GAC ACA GGA CAC AGC AGT CAG GTC AGC CAA AAT TAC
Asp Thr Gly His Ser Ser Gin Val Ser Gin Asn Tyr
397 CCT ATA GTG CAG AAC ATC CAG GGG CAA ATG GTA CAT
Pro lie Val Gin Asn lie Gin Gly Gin Met Val His
433 CAG GCC ATA TCA CCT AGA ACT TTA AAT GCA TGG GTA
Gin Ala lie Ser Pro Arg Thr Leu Asn Ala Trp Val
469 AAA GTA GTA GAA GAG AAG GCT TTC AGC CCA GAA GTA
Lys Val Val Glu Glu Lys Ala Phe Ser Pro Glu Val
- 7 BAD ORIGINAL
505 ATA He CCC Pro ATG Met TTT Phe TCA Ser GCA Ala TTA Leu TCA Ser GAA Glu GGA Gly GCC Ala ACC Thr 540
541 CCA CAA GAT TTA AAC ACC ATG CTA AAC ACA GTG GGG 576
Pro Gin Asp Leu Asn Thr Met Leu Asn Thr Val Gly
577 GGA CAT CAA GCA GCC ATG CAA ATG TTA AAA GAG ACC 612
Glv His Gin Ala Ala Met Gin Met Leu Lys Glu Thr
613 ATC AAT GAG GAA GCT GCA GAA TGG GAT AGA GTA CAT 648
He Asn Glu Glu Ala Ala Glu Trp Asp Arg Val His
649 CCA GTG CAT GCA GGG CCT ATT GCA CCA GGC CAG ATG 684
Pro Val His Ala Gly Pro lie Ala Pro Gly Gin Met
685 AGA GAA CCA AGG GGA AGT GAC ATA GCA GGA ACT ACT 720
Arg Glu Pro Arg Gly Ser Asp lie Ala Gly Thr Thr
721 AGT ACC CTT CAG GAA CAA ATA GGA TGG ATG ACA AAT 756
Ser Thr Leu Gin GlU Gin He Gly Trp Met Thr Asn
757 AAT CCA CCT ATC CCA GTA GGA GAA ATT TAT AAA AGA 792
Aan Pro Pro lie Pro Val Gly Glu lie Tyr Lys Arg
793 TGG ATA ATC CTG GGA TTA AAT AAA ATA GTA AGA ATG 828
Trp lie He Leu Gly Leu Asn Lys He Val Arg Met
829 TAT AGC CCT ACC AGC ATT CTG GAC ATA AGA CAA GGA 864
Tyr Ser Pro Thr Ser lie Leu Aep He Arg Gin Gly
865 CCA AAA GAA CCT TTT AGA GAC TAT GTA GAC CGG TTC 900
Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe
901 TAT AAA ACT CTA AGA GCC GAG CAA GCT TCA CAG GAG 936
Tyr Lys Thr Leu Arg Ala Glu Gin Ala Ser Gin Glu
937 GTA AAA AAT TGG ATG ACA GAA ACC TTG TTG GTC CAA 972
Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gin
973 AAT GCG AAC CCA GAT TGT AAG ACT ATT TTA AAA GCA 1008
Asn Ala Asn Pro Asp Cya Lys Thr lie Leu Lys Ala
1009 TTG GGA CCA GCG GCT ACA CTA GAA GAA ATG ATG ACA 1044
Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr
AP 0 0 0 1 2 9
-8 BAD ORIGINAL jg
1045 GCA Ala TGT CAG GGA GTA GGA GGA CCC GGC CAT AAG GCA 1080
Cys Gin Gly Val Gly Gly Pro Gly His Lys Ala
1081 AGA GTT TTG GCT GAA GCA ATG AGC CAA GTA ACA AAT 1116
Arg Val Leu Ala GlU Ala Met Ser Gin Val Thr Asn
1117 ACA GCT ACC ATA ATG ATG CAG AGA GGC AAT TTT AGG 1152
Thr Ala Thr He Met Met Gin Arg Gly Asn Phe Arg
1153 AAC CAA AGA AAG ATG GTT AAG TGT TTC AAT TGT GGC 1188
Asn Gin Arg Lys Met Val Lys Cys Phe Asn Cys Gly
1189 AAA GAA GGG CAC ACA GCC AGA AAT TGC AGG GCC CCT 1224
Lys Glu Gly His Thr Ala Arg Asn Cys Arg Ala Pro
1225 AGC AAA AAG GGC TGT TGG AAA TGT GGA AAG GAA GGA 1260
Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly
1251 CAC CAA ATO AAA GAT TGT ACT GAG AGA CAO GCT AAT 1296
Hie Gin Met Lys Asp Cys Thr Glu Arg Gin Ala Asn
1297 TTT TTA GGG AAG ATC TGG CCT TCC TAC AAG GGA AGG 1332
Phe Leu Gly Lys lie Trp Pro Ser Tyr Lye Gly Arg
1333 CCA GGG AAT TTT CTT CAG AGC AGA CCA GAG CCA ACA 1368
Pro Gly Asn Phe Leu Gin Ser Arg Pro Glu Pro Thr
1369 GCC CCA CCA TTT CTT CAG AGC AGA CCA GAG CCA ACA 1404
Ala Pro Pro Phe Leu Gin Ser Arg Pro Glu Pro Thr
1405 GCC CCA CCA GAA GAG AGC TTC AGG TCT GGG GTA GAG 1440
Ala Pro Pro Glu Glu Ser Phe Arg Ser Gly Val Glu
1441 ACA ACA ACT CCC CCT CAG AAG CAG GAG CCG ATA GAC 1476
Thr Thr Thr Pro Pro Gin Lys Gin Glu Pro lie Asp
1477 AAG GAA CTG TAT CCT TTA ACT TCC CTC AGA TCA CTC 1512
Lys Glu Leu Tyr Pro Leu Thr Ser Leu Arg Ser Leu
1513 TTT GGC AAC GAC CCC TCG TCA CAA TAA 1539
Phe Gly Asn Asp Pro Ser Ser Gin End
A variety of eukaryotic cells and expression systems are available for expression of heterologous proteins.
The most widely used among these are yeast, insect and mammalian systems, although the invention is not limited to use of these. Typically, these systems employ a recombinant DNA molecule comprising a coding sequence for the gene of interest operatively linked to a regulatory element, a selection marker and, in some cases, maintenance functions such as an origin of replication. A regulatory element is a DNA region or regions which comprise functions necessary or desirable for transcription and translation. Typically, the regulatory region comprises a promoter for RNA polymerase binding and initiation of transcription.
Insect cells which can be used in the invention include Drosophila cells and Lepidoptera cells. Useful Drosophila cells include SI, S2, S3, KC-0 and D. hydei cells. See, for example, Schneider et al., J. Embryol.
Exp. Morph. 27:353 (1972); Schulz et al., Proc. Natl.
Acad. Sci. USA 83:9428 (1986); Sinclair et al., Mol. Cell. Biol. 5:3208 (1985). Drosophila cells are transfected by standard techniques, including calcium phosphate precipitation, cell fusion, electroporation and viral transfection. Cells are cultured in accordance with standard cell culture procedures in a variety of nutrient media, including, e.g., M3 media which consists of balanced salts and essential amino acids. See, Lindquist, DIS 58:163 (1982).
Promoters known to be useful in Drosophila include mammalian cell promoters as well as Drosophila promoters, the latter being preferred. Examples of useful Drosophila promoters include the Drosophila metallothionein promoter, the 70 kilodalton heatshock protein promoter (HSP70) and the COPIA LTR. See, for example, DiNocera et al., Proc. Natl. Acad. Sci. USA 80:7095 (1983); McGarry et al., Cell 42:903 (1985). Conveniently, an expression cassette comprising the gag coding sequence and regulatory element
AP 0 0 0 1 2 9
- 10 BAD ORIGINAL Q can be cloned within a bacterial cloning vector for purposes of propagating the DNA prior to transfection of the animal cells.
In the preferred embodiments of this invention, the HIV gag precursor is expressed in Lepidoptera cells to produce immunogenic gag particles. For expression of the gag precursor protein in Lepidoptera cells, use of a Baculovirus expression system is preferred. In such system, an expression cassette comprising the gag coding sequence and regulatory element is placed into a standard cloning vector for purposes of propagation. The recombinant vector is then co-transfected into Lepidoptera cells with DNA from a wild type Baculovirus. Recombinant viruses resulting from honologous recombination are then selected and plaque purified substantially as described by Summers et al., TAES Bui1. NR 1555, May, 1987.
Useful Lepidoptera cells include cells from Trichoplusia ni, Spodoptera fruqiperda, Heliothis zea, Autographica californica, Rachiplusia ou. Galleria melonella, Manduca sexta or other cells which can be • -- - · · v infected with Baculoviruses, including nuclear polyhedrosis viruses (NPV), single nucleocapsid viruses (SNPV) and multiple nucleocapsid viruses (MNPV). The preferred Baculoviruses are NPV or MNPV Baculoviruses because these contain the polyhedrin gene promoter which is highly expressed in infected cells. Particularly exemplified hereinbelow is the MNPV virus from Autographica californica (AcMNPV). However, other MNPV and NPV viruses can also be employed the silkworm virus, Bombyx mori. Lepidoptera cells are co-transfected with DNA comprising the expression cassette of the invention and with the DNA of an infectious Baculovirus by standard transfection techniques, as discussed above. Cells are cultured in accordance with standard cell culture techniques in a variety of nutrient media, including, for example, TC100 (Gibco Europe; Gardiner et al., J. Inverteb. Pathol.
BAD ORIGINAL
25:363 (1975)) supplemented with 10 % fetal Calf serum (FCS). See, Miller et al., in Setlow et al., eds.,
Genetic Engineering: Principles and Methods, Volume 8,
New York, Plenum, 1986, pages 277-298.
Production in insect cells can also be accomplished by infecting insect larvae. For example, the gag precursor can be produced in Trichoplusia ni caterpillars by feeding the recombinant Baculovirus of the invention along with traces of wild type Baculovirus and then extracting the gag precursor from the hemolymph after about two days.
Promoters for use in Lepidoptera cells include promoters from a Baculovirus genome. The promoter of the polyhedrin gene is preferred because the polyhedrin protein is naturally over expressed relative to other Baculovirus proteins. The polyhedrin gene promoter from the AcMNPV virus is preferred. See, Summers et al., TAES Bull. NR 1555, May 1987; Smith et al. , EP-A-127,839; Smith et al. Proc. Natl. Acad. Sci. USA 82:8404(1985); and Cochran, EP-A-228,036.
For expression in mammalian cells, the expression cassette is likewise cloned within a cloning vector and is then used to transfect the mammalian cells. The vector preferably comprises additional DNA functions for gene amplification, e.g., a DHFR expression cassette, and may also comprise additional functions for selection and/or amplification, e.g., a neomycin resistance cassette for G418 selection. Other functions, such as for transcription enhancement can also be employed. Yet other functions can be comprised within the vector for stable episomal maintenance, if desired, such as maintenance functions of Bovine Papilloma Virus. The mammalian cell vector can also be a recombinant virus, such as a recombinant vaccinia or other pox virus. See, e.g., Paoletti, et al., U.S. Patent 4,603,112; Paoletti, et al. , Proc. Natl. Acad. Sci. U.S. 81:193 (1984).
Useful mammalian cells include cells from Chinese
AP000129
BAD ORIGINAL ft hamster ovary (CHO), NIH3T3, COS-7, CVI, mouse or rat myeloma, HAK, Vero, HeLa, human diploid cells such as MRC-5 and WI38, or chicken lymphoma cell lines.
Transfection and cell culture are carried out by standard techniques. Production in mammalian cells can also be accomplished by expression in transgenic animals. For example, the gag precursor can be expressed using a casein promoter and purified from milk.
Promoters useful in mammalian cell lines or mammalian primary cells include the SV 40 early and late gene promoters, the metallothionein promoter, viral LTR's such as the Rous sarcoma LTR, the Moloney sarcoma virus (MSV) LTR or the mouse mammary tumor virus (MMTV) LTR, or the adenovirus major late promoter and hybrid promoters such as a hybrid BK virus and adenovirus major late promoter. The regulatory region can also comprise downstream functions, such as regions for polyadenylation, or other functions, such as transcription enhancer sequences.
Yeasts which can be used in the practice of the invention include those of the genera Hanensula, Pichia, Kluveromyces, Schizosaccharomyces, Candida and
Saccharomyces. Saccharomyces cerevisiae is the preferred yeast host. Useful promoters include the copper inducible (CUP1) promoter, glycolytic gene promoters, e.g., TDH3,
PGK and ADH, and the PHO5 and ARG3 promoters. See, e.g., Miyanohara et al., Proc. Natl. Acad. Sci. USA 80:1 (1983); Mellor et al. , Gene 24; 1 (1983); Hitzeman et al., Science 219:620 (1983); Cabezon et al., Proc. Natl. Acad. Sci. USA 81:6594 (1984).
In the case of the gag precursor protein particles produced in accordance with this invention, it is to be understood that although particles comprising the gag precursor are preferred, particles comprising derivatives of the native gag precursor can also be prepared. For example, one or more nucleotides or amino acids shown in the sequence above can be deleted, substituted or added
BAD ORIGINAL without substantially adversely affecting the immunogenic cross-reactivity with authentic gag epitopes. In other words, such derivatives immunologically similar to authentic gag particles in theat they are recognized by antibodies raised against at least one of pl7, p24 and pl6. Such derivatives, while they may include amino acids from other regions, including antigenic regions of the HIV genome, do not encode other HIV functions, such as the protease function of the pol region or the reverse transcriptase function. In addition, such derivatives retain the ability to form particles in insect cell culture as disclosed herein. In this case, it is within the skill of the art to prepare gagd particles comprising hybrid proteins having one or more epitopes additional to the gag epitopes. Such additional epitopes can be of HIV origin or can be derived from other pathogenic organisms, e.g., Hepatitis B Virus or Herpes Virus.
The gag precursor protein is expressed in secreted form and in membrane bound form. It is isolated from conditioned medium by standard techniques of protein isolation and purification. Detergents can be added in order to free the protein from cell membrane material. Following treatment with detergent, e.g., Triton X100, a Tween or sodium dodecyl sulfate (SDS), the protein or particles can be purified by a series of ultrafiltration steps, ultracentrifugation steps, selective precipitations with, e.g., ammonium sulfate or PEG, density gradient centrifugation in CsCl or sucrose gradients and/or chromatographic steps, such as affinity chromatography, immunoaffinity chromatography, HPLC, reversed phase HPLC, cation and anion exchange, size exclusion chromatography and preparative isoelectric focusing. During or following purification, the protein or particles can be treated with, e.g., formaldehyde, glutaraldehyde or NAE to enhance stability or immunogenicity. In view of the discovery herein disclosed that the gag precursor can form
AP 0 0 0 1 2 9
BAD ORIGINAL
immunogenic particles in the absence of other viral functions, it is believed that when gag precursor is expressed in non-particulate form, it can be caused to form particles synthetically, as has been shown to be the case for the hepatitis B surface antigen following expression in yeast. See, e.g., EP-A-135,435. Such gag precursor protein particles are encompassed within the scope of this invention.
The HIV gag precursor protein and particles produced in accordance with this invention are useful as diagnostic agents for detection of exposure to HIV. The protein and particles are also useful in vaccines for the prevention of infection or for the inhibition or prevention of disease progression.
The Examples which follow are illustrative but not limiting of the invention. Restriction enymes and other reagents were used substantially in accordance with the vendors' instructions.
Examples Example 1. Vector Construction pRIT12982 (DT 12-16) is a vector which comprises a
1305 base pair (bp) coding sequence for the N-terminal region of gag precursor protein. It was prepared by ligating a Clal-Bglll fragment of the gag precursor protein coding region derived from an HIV genomic clone (Shaw et al., Science 226:1165 (1984)) to a synthetic oligonucleotide having the N-terminal coding sequence of the gag precursor protein. The oligonucleotide has the sequence:
5' C ATG GGT GCT AGA GCT TCC GTG TTG TCC GGT GGT GAA TTG GAT 3 CCA CGA TCT CGA AGG CAC AAC AGG CCA CCA CTT AAC CTA GC
Ncol Clal pRIT12983 is a vector which comprises a 250 bp region which codes for the C-terminal portion of gag precursor
BAD ORIGINAL protein. It was prepared by ligating a Bglll-Maelll fragment of the gag precursor coding region derived from an HIV genomic clone to a synthetic oligonucleotide having the C-terminal coding sequence of the gag precursor protein. The oligonucleotide has the sequence:
STOP
5' G TCA CAA TAA AGA TAG GAT CC 3'
TT ATT TCT ATC CTA GGA GCT
Maelll XhoI.
The 1305 base pair (bp) BamHI(NcoI)-BglII fragment from pRIT12982 was ligated to the 250 bp BglH-TAA-BamHI-XhoI fragment from pRIT12983 in pUC 12 which had been previously cut with BamHI and Sail. The resulting plasmid, identified as pRIT13001, therefore contains the entire coding region for the gag precursor protein on a BamHI(NeoI)-BamHI cassette.
A baculovirus expression vector was prepared by inserting the BamHI fragment from pRIT13001 into the BamHI site in pAc373. See, Smith, et al., Proc. Natl. Acad.
Sci. USA 82:8404(1985). pAc373 is a baculovirus transfer vector containing a modified polyhedrin gene into which a foreign gene can be cloned into a BamHI site and expressed under the control of the strong polyhedrin promoter. See Summers, et al., Texas Agricultural Exp. Station Bulletin NR 1555 (May 1987). A derivative of plasmid pAc373 having a small deletion present far upstream the strong polyhedrin promoter was also used as an expression vector. The slight modification did not appear to affect in vitro expression or growth of the recombinant virus. Insertion of the gag coding sequence into the Baculovirus vector resulted in plasmid pRIT13003.
A mammalian cell expression vector was prepared by ligating the BamHI fragment from pRIT13001 downstream of
APO 0 0 12 9
BAD ORIGINAL the SV40 late promoter in pSV529 (Gheysen et al., J. Mol. Appl. Genet. 1:385 (1982)). This vector is identified as pRIT13002.
A yeast expression vector was prepared as follows. An Ncol-Bglll fragment was isolated from pRIT12982 and inserted into a yeast plasmid downstream of and in-frame with the ARG3 promoter (see, Cabezon et al. , Proc. Natl. Acad. Sci. USA 81:6594 (1984)) giving rise to the vector, pRIT12984 (DT14-20). The C-terminal protion of the gag precursor protein was isolated from pRIT12983 as a Bglll-BamHI fragment and was inserted into the Bglll site of pRIT 12984, giving rise to the yeast vector, pRIT12985 (DT16-26). pRIT12985 thus comprises a coding sequence for the full gag precursor, devoid of other HIV sequences, operatively linked to the ARG3 promoter. In addition, it comprises replication functions from the yeast 2 micron vector and a URA3 gene selection marker.
Example 2. Expression in Insect Cells
Recombinant Baculovirus transfected with pRIT13003 were prepared substantially as described by Summers, et al., TAES Bull. NR 1555, May 1987, cited above.
Spodoptera frugiperda (S.f.) cells were cotransfected with wild type (wt) AcMNPV Baculovirus DNA and plasmid pRITl3003 at 1 pg and 50 pg, respectively. Resulting virus particles were obtained by collecting the supernatants. The virus-containing media were used to infect S.f. cells in a plaque assay. Subsequent infection of S.f. cells using the viral particles which include both wt AcNPV DNA and DNA recombined with the DNA encoding the p55 gag precursor protein resulted in cells expressing the gag protein instead of the polyhedrin protein.
The clear plaques (0.1 - 0.01% frequency) obtained in the plaque assay were further screened by filter hybridization with a gag specific probe. Plaques which hybridized to the gag probe were scored and subsequently
BAD ORIGINAL ft further plaque purified (2-3 times) before a virus stock was generated; the virus stock was also tested by ELISA.
t
S.f. cells were then infected with these recombinant gag virus stocks at a multiplicity of infection (MOI) of 1-10 and after 24 hr, 48 hr, 3 days and 5 days, aliquots of the conditioned medium (Supernatant) and/or cells were treated with Triton X100 to a final concentration of 1% and assayed.
The gag precursor protein synthesized in infected insect cells was observed in Western blots using p55 polyclonal antibodies or antiserum from a pool of AIDS patients (Zairan). A pre-dominant band at molecular weight (Mr) of 54 kilodaltons (kd) was observed with all tested sera and with p55 polyclonal antisera. A band at Mr 54 kd was also detected when testing conditioned medium after 48 hr, 3 days and 5 days. Bands at Mr 49 kd and Mr 47 kd (minor) and a band at Mr 30 kd could also be seen when cell extracts were analyzed. This latter band with apparent Mr 30 Kd is only detected with p55 polyclonal antibodies and not with serum of AIDS infected persons.
It was observed that at least 10 times more p55 epitopes expressed in S.f. cells than in Molt cells infected with HIV (Molt/HTLV-III) and about 80 times more p55 epitopes were present in the conditioned medium of S.f. cells infected with a gag recombinant virus than in the conditioned medium of Molt/HTLV-III cells.
In a second assay experiment, ultrafiltration (100,000 x g, 1 hr.) of the 48 hr, 3 day and 5 day conditioned media (2 ml to 200 ml) resulted in a small pellet which was analysed on SDS-gels and which was also analysed by immunoblotting. One band at Mr 55 kd was recognized with specific antibodies against pl7, p24 and p55,. Only very small amounts of degraded products at Mr 49-46 could be detected. On Coonassie-stained gels, a band at 55 kd could be seen which was 20-80% pure. This band corresponded with the immunoblot and was recognized by antibodies against pl7, p24 and p55 polypeptides.
BAD ORIGINAL
AP 0 0 0 1 2 9
In a third assay experiment, centrifugation (1 ml) of the 48 hr, 3 day and 5 day conditioned media in a microfuge at 12000 rpm for 5 to 20 minutes produced a band on SDS-gels at Mr 55 kd which was specific for HIV-I p55 gag precursor as revealed by antibodies against pl7, p24 and p55 polypeptides and as compared to the HIV cell lysate (Molt/HTLV-III) 55 kd band.
In a fourth assay experiment, 48 hr, 3 day and 5 day conditioned media (150 ml to 1 liter, containing 1 pg/ml of aprotinin which was added at 24 hrs. post-infection and also at the times of harvest) was treated first by addition of Tween 20 to 0.01% final concentration. Then, a solution of polyethylene glycol, Mr 6 kd, (PEG6000) (40 % w/v in 2M NaCl) was added to 10 % or 5 % final concentration. After 4 hours at 4°C or preferentially overnight at 4°C this precipitate was centrifuged at 5000 rpm for 10 min at 4°C. The PEG pellet was then taken up in 200 μΐ to 1 ml HBS-buffer (Hanks balanced salt, Flow Laboratories, 18-102-54) containing 0.1 % Tween 20 and centrifuged in sucrose gradients (20 % - 60 % in HBS-buffer, 0.1 % Tween 20 at 4°C containing 10 μΐ/ml aprotinin, Sigma Chemical Co., St. Louis, Missouri) for about 35 min at 50,000 rpm in a Beckman rotor TLA100 (Beckman Instruments, Fullerton, California) at 4°C, or for about 18 hr at 25,000 rpm on a Beckman SW41 rotor at 4°C. Fractions of 0.2 to 0.5 ml, respectively, from approximately 40-50% sucrose, were collected, frozen at -20°C and tested either with a specific antigen capture Elisa assay such as -24/Ig AIDS antiserum biotinylated or AIDS antiserum/Ig core POD (HIV-1 anticore EIA, Abbott Laboratories). One OD Elisa pick was detected, demonstrating that on surcrose gradients the p55 gag protein migrated as particles or aggregated structures. The pick fractions and the surrounding fractions were immunoblotted with pl7, p24 or p55 antibodies. One major band at Mr 55 kd in the SDS-reducing gels was detected
BAD ORIGINAL $ corresponding to p55 gag precursor protein as compared to an extract of Molt/HILV-IH cells prepared substantially as described above.
In a fifth assay experiment, a 5 % PEG6000 precipitate was prepared substantially as described for the fourth assay experiment from 150 ml of a S.f. culture which had been co-infected with the gag precursor recombinant Baculovirus and with a recombinant Baculovirus which expressed the HIV envelope protein at a MOI of 3 to 5.
The PEG6000 pellet was taken up in 200 ul of HBS-buffer containing 0.1 % Tween 20. After centrifugation at 15000 x g for 1 min, the supernatant was mixed with 11.5 ml of a
1.5 M CsCl solution (0.3 volumes HBS-buffer, 10 mM Tris-HCL (pH 8.0), 1 mM ethylendiamine tetraacetate (EDTA), 0.1 % Tween 20 and 10 ug/ml of aprotinin). This suspension was centrifuged in a Beckman Rotor 50Ti for about 72 hr at 44000 rpm at 18°. Fractions of 300 ul each were collected, frozen at -20°C and tested with a specific antigen capture Elisa assay (HIV anticore EIA).
Bands at densities of about 1.28 and 1.20 g/cm were recognized, the core-like particle apparently having the density of 1.28 g/cm .
Electron microscopy confirmed the presence of pre-core (and core) -like particles in the conditioned medium. Scanning electron microscopy revealed particles which apparently were budding onto the cell surfaces.
Immunogold transmission electron microscopy revealed particles which were recognized by p24 and and p55 antibodies. Also, pl7, p24 and p55 epitopes were recognized by immunogold labelling after brief treatment with Triton X100 of purified particles in electron microscopic preparations. The particles were approximately spherical and of about 100 - 150 nm in diameter. The particles display electron luscent centers surrounded by a dark staining ring and an outer shell and appear to have the majority of the pl7, p24, pl6 and p55 epitopes on the inside surface of the particle,
-20AP 0 0 0 1 2 9
BAD ORIGINAL ft
This Example, therefore, demonstrates expression and secretion of HIV pre-core-like (and core-like) particles comprising immunodeficiency virus gag precursor protein. The particles comprise predominantly (greater than 90% of total protein) full length gag precursor protein and are formed in the absence of DNA sequences of viral origin other than the gag precursor sequence and, hence in the absence of other viral functions such as the retrovirus protease and reverse transcriptase.
To demonstrate that the HIV gag precursor protein made in S.f. cells is efficiently myristylated, 3 X 106 cells 2 in F25 cm flask, were labelled at 48 hr p.i. with 500 pCi myristic acid NET-830 (Dupont, Wilmington, Delaware) for 18 hr after they had been infected with recombinant p55 gag baculoviruses at MOI of 5. Subsequently, the conditioned medium and the cells were processed separately for western blotting and SDS-gel radioautography. Conditioned medium displayed one major band at 55 kd which was also recognized as gag precursor in western blots as revealed by antibodies against pl7, p24, p55. Two other labelled minor bands were detected at Mr 49-46-47 kd and were recognized specifically by the same set of antibodies (pl7, p24, p55) in the western blot. Cell lysates made in 1 % triton x 100 and frozen at -20°C displayed on radioautography of the 12.5 % Laemli gel and western blot respectively band at 55 kd (and a minor band at 58 kd which apparently corresponded to the translation frame shift as described for the gag retroviral HIV-l virus genome and more prominent bands at Mr 49-47-46 and degradation products at Mr 30-27 kd the latter bands were not radioactive (containing no myristic acid).
Example 3. Expression in Mammalian Cells:
The plasmid pRITl3002 was introduced via the
Ca-phosphate coprecipitation technique (Wigler, et al., Cell 16:777(1979)) in CosI and CV1 cells. At 48 hr and
110 hr post-transfection, the cells and culture medium were assayed using an ELISA specific for gag antigen expression. Cell extracts (106 cells) were adjusted to 1 % Triton X100 or 0.5 % DOC-NP40. The p55 antigen was detected using ELISA capture antigen tests involving polyclonal and monoclonal antibodies to pl7, p24 or p55 or using the Dupont RIA test (NEK-040), involving a competition with purified p24 peptide. The expression levels obtained were between 4 and 10 ng/ml as measured by the p24 RIA Dupont test.
Example 4. Expression in yeast cells
The plasmid pRIT12985 was introduced into the
S. cerevisiae strain 02276b (ura3~ durO*1 rod-).
The p55 antigens were detected in yeast extracts (cells in mid-log phase, broken using glass beads or spheroplasting with zymolase). The p55 was detected using ELISA tests, involving polyclonal and monoclonal antibodies to the p24 peptide, or using the Dupont radioimmune assay (RIA) involving competition with the purified p24 peptide.
The p55 protein synthesized in S. cerevisiae was observed in Western blots, using pl7 or p24 specific monoclonal antibodies, and has a molecular weight similar to that of the p55 antigen obtained from infected cells.
When cellular extracts were obtained in the absence of detergents, an important fraction of the antigen was retained in the membrane pellet. This fraction of antigen was recovered using Triton X100. Use of detergents either prior to or after isolation enhanced antigenicity as measured in the RIA. The gag precursor produced in yeast was shown to be myristilated by labelling with tritiated myristic acid and was apparently associated with cell plasma membrane as shown by electron microscopy.
The above Examples demonstrate expression of gag precursor protein in animal cell culture and expression of immunodeficiency virus pre-core-like particles in
AP000129
BAD ORIGINAL ft
Lepidoptera cells using a Baculovirus expression system. The protein and/or particles thus prepared are purified and formulated into a vaccine for parenteral administration to humans in danger of exposure to HIV, in order to protect the vaccinees from onset of disease symptoms associated with HIV infection. Each vaccine dose comprises an amount of the protein or particle which is safe, i.e., does not cause significant adverse side effects, but which is effective in inducing an immune
A.
response. For example, each dose comprises 1 to 1000 ug, preferably 10 to 500 ug, of gag precursor protein or particle in a pharmaceutically acceptable carrier, e.g., an aqueous solution buffered to about pH 5 to 9, preferably pH 6 to 8. The vaccine can also comprise an adjuvant, e.g., aluminum hydroxide, muramyl dipeptide or a saponin such as Quil A. Useful buffers include buffers derived from sodium or ammonium cations and acetate, citrate, phosphate or glutamate anions. Other pharmaceutically acceptable carriers or diluents can be used to adjust isotonicity or to stabilize the formulation, e.g., sodium chloride, glucose, mannitol, albumin or polyethylene glycol. The vaccine can be lyophilized for convenience of storage and handling. Such vaccine is reconstituted prior to administration. Alternatively, the gag protein or particle can be formulated in liposomes or ISCOMS by known techniques. An exemplary vaccine dose comprises 100 ug of gag particles adsorbed on aluminum hydroxide in water buffered to pH 7 with sodium acetate.
In an alternative embodiment of the invention, the gag protein or particle is mixed with one or more other antigens by coexpression in the same cell culture or by co-formulation. Such other antigens can be other HIV antigens, e.g., antigens derived form the envelope protein, gpl60 or gpl20, or can be antigens derived from one or more other pathogenic organisms, cells or viruses,
BAD ORIGINAL ft such as hepatitis B surface antigen for conferring protection against Hepatitis B Virus or antigens derived from the Herpes Virus glycoprotein for conferring protection against Herpes Virus.
The vaccine is preferably administered parenterally, e.g., intramuscularly (im) or subcutaneously (sc), although other routes of administration may be useful in elicitng a protective response. The vaccine is administered in a one-dose or multiple-dose, e.g., 2 to 4, course. Immunoprotection can be ascertained by assaying serum anti-gag antibody levels. Thereafter, vaccinees can be revaccinated as needed, e.g., annually.
As a diagnostic reagent, the gag protein or particles can be used in any of the standard diagnostic assays, such as an ELISA or RIA, to detect the presence of anti-HIV antibodies in clinical specimens. Such diagnostic can be used in conjunction with other HIV antigens to monitor disease progression. Use of the gag protein or particle as a diagnostic reagent will generally involve contacting a sample of human or other animal serum or other body fluid with the protein or particle, preferably bound or otherwise affixed or entrapped, and then assaying for binding of anti-gag antibodies from the serum or other sample to the gag protein or particles. Such assay can be accomplished by standard techniques, including by quantitating binding of subsequently added labelled anti-gag antibodies.
The above description and examples fully disclose the invention and the preferred embodiments thereof. The invention, however, is not limited to the embodiments specifically disclosed herein but, rather, encompasses all improvements, variations and modifications thereof which come within the scope of the following claims.
ΑΡ000129
BAD ORIGINAL ft
EXAMPLE 5,
CONSTRUCTION AND EXPRESSION OF A MUTANT Pr559a*3 GENE
In order to examine the potential role of the N-myr s itoylation in the assembly and formation of extracellular gag particles we have constructed a glycine deletion mutant. Therefore a synthetic oligonucleotide linker syn3 was for the BamHI-Clal fragment in pRIT12982 (see Syn3 encodes the genuine N-terminal amino acids of protein except that the second glycine codon is This mutant BamHI Pr559a9 expression cassette was subcloned into the BamHI site of the baculo expression vector pAcYMl (Matsuura et al., J. Gen. Virol. 68.:1233 (1987)) and recombinant plaques were obtained and selected essentially as described in Example 1. The recombinant virus, AcGag 31-18, harbouring the glycine deletion mutation of the gag gene was used to infect S.f. cells. The gag precursor protein was efficiently synthesized as determined by an ELISA assay. Metabolic labelling with 3H-myristic acid essentially as in Example 2 revealed no myristic acid incorporation that deletion of the N-terminal glycine was to prevent myristoylation of the GAG precursor protein. Analysis of the cell extracts in Western blots (see Example 1) showed a prominent band of 55 kd and lower M.W. degradation products. The obtained pattern of protein bands was similar to the wild type (wt) Ργ55^3^ protein expressed in S.f. cells. In contrast with the wt Pr559a9 recombinant, no gag protein could be detected with the glyc.ine mutant 2 days p.i. using PEG or ultracentrifugation of the conditioned medium. Thus the mutated Pr55^a^ protein was only detected within the infected cells. The myristoylation process thus seems to be required for the extracellular release of the Pi559a9 product. Scanning electron microscopy (SEM) revealed rather smooth, showing no particles, electron microscopy and immunogold substituted, example 1). the gag deleted.
described conf i rming sufficient and 66 hrs virus revealed that the cell surface was Thin section transmission labelling performed on cells infected 24 hrs, p.i. with the Ac gag 31-18 (Myr-) recombinant tliafc the non-myristoylated GAG protein was efficiently expressed, scattered in the cytoplasm or associated to grey amorphous structures within the cytoplasm and the nucleus. These i,ntracellu 1 ar particles or particulate structures are morphologically different from the extracellular particles obtained with the myristoylated gag recombinant (AcGag7) as they display a double electron dense ring structure and contain a lipid bilayer derived from the cell membrane.
GAG protein nor budding structures were observed at the membrane.
These gag precuror do not
Neither cell results demonstrate that the myristoylation of the appears to be required for its plasma membrane location, budding and extracellular particle release. Myristoylation does not seem however to be required for the nmltimeiic assembly of the Pr55^a<3 molecules. Accumulation of the non-myristoy 1 ated Pr559a9 products within the nucleus (and nucleoli) is a surprising phenomenon.
24(a)
BAD ORIGINAL
EXAMPLE--fL· CONSTRUCTION AND EXPRESSION OF A TRUNCATED Pr559a9 PRECURSOR PROTEIN
In order to examine the role of the pl6 (COOH-end) of the HIV precursor GAG protein we made a GAG deletion mutant which encodes only the pl7-p24 precursor part of GAG.
The BamHI-CfrI GAG fragment of pRIT13003 was purified and ligated with a synthetic oligonucleotide sequence
5' GGC CAT AAG GCA AGA GTT TTA GTT AGT TAG 3’
TCT CAA AAT CAA TCA ATC CTA G 5' in the BamHI-site of pAcYMI. This genuine amino acid COOH-end of the two additional amino acids, Valine plasmid was used to co-transfect S,
3' TA TTC CGT purified and cloned sequence contains the core protein and This recombinant
AcMNPV DNA essentially as Recombinant plaques were described before (see screened as described in and f .
and gel linker HIV p24 Serine, cells with
Example 1)
Example 1.
A selected recombinant virus, Ac CfrI, was used to infect S.f. cells. A truncated gag-polypeptide (pl7-24) was detected at the expected M.W. of 41 Kd and which reacted in Western blot analysis with pl7 and p24 monoclonals. The pl7-24 product was predominantly expressed inside the cells but a small amount of extracellular pl7-24 product could be detected when analyzing the conditioned medium by Western blotting. PEG precipitation and ultracentrifugation of the conditioned medium of the CfrI mutant gag protein did not result in detectable pl7-p24 product. Electron microscopy analysis showed no evidence of budding or extracellular gag particles. Large profusions 1-4 μιη long in the form of tubular structures which are longitudinally connected to the cell membrane surface could be detected early in infection. Immunogold labelling showed that the truncated GAG protein (pl7-p24) was localized at the cell membrane and at the periphery of these tubular extensions, but no electron dense ring structures - typical of the Fr559a9 particle structures - could be detected. This probably indicates that the pl7-p24 product is not able to assemble in inultimeric structures, i.e., cap formations, at the cell membrane. These results suggest that at least a part of the pl6 polypeptide of the GAG precursor polypeptide is necess'a ry for particle formation.
A glycine deletion mutant of the CfrI cassette (non-myristoy1 a ted pl7-24) was made by exchanging the EcoRV-Pstl fragment of 669 bp of the pAcGag 31-18 non-myristoyla ted Ργ55^Α0 gene with the pAC CfrI EcoRV-Pstl + 9400 bp long fragment. This mutant displayed no protrusions of membranes as described above but showed pl7 and p24 immunogold decoration scattered in the cytoplasm and nucleus.
APO 0012 9
24(b)
BAD ORIGINAL
EXAMPLE_7,. CONSTRUCTION _AND_EXPR£SSION OF A GAG-POL PROTEIN
To express the gag-pol products, we have included most (about 80 %) of the pol gene into the baculovirus transfer vector carrying the Pr559a9 expression cassette (pRIT13003).
The pol gene UNA fragment is a BglH (2093) - EcoRI (4681) restriction fragment from BH10 (Shaw et al., Science 2.26:1165 (1984). A poly-stop synthetic DNA fragment 5* AAT TCC TAA CTA ACT AAG 3*
31GGA TTG AT TGA TTC CTA G 5' was added at the Eco RI site. The resulting baculovirus expression plasmid, LE-8-4, was used in a co-transfection experiment to generate recombinant plaques essentially as described in Example 1.
In this recombinant construct, the myristoylated Pr559a9 as well as a gag-pol product resulting from the HIV-specific translational frame-shift in S.f. cells, are expected to be produced, and subsequently processed by the protease. Recombinant baculovirus harbouring the gag-pol gene was screened and selected essentially as described in Example
1. In S.f. cells infected with such a gag-pol recombinant virus, VAC 8-5, no gag or gag-pol products were detected when the conditioned medium was analysed by Western Blot or pLecipitated with PEG.
Cell extracts however, did show a strong doublet band at 24 Kd and a band at 17 Kd which reacted with p24 and pl7 monoclonal antibodies in Western blots. Very small amounts of the precursor Pr559a9 band and intermediate 41 Kd (46 Kd) bands could also be detected in Western blots. This indicates that the protease is active in the gag-pol fusion protein, expressed by translational frame-shift in S.f. cells. This results in pl7, p24 polypeptides and intermediates (41 Kd,
46-49 Kd, 55 Kd). The large precursor gag-pol product was not detected with our p55, pl7 or p24 antibodies.
Electron microscopy showed on rare occasions a few particles budding at the cell membrane. These particles seem to be morphologially similar to the above described Pr559a9 particles. Co-infection experiments with recombinant viruses harbouring the Pr559a9 and the gag-pol gene did not result in detectable particles displaying a morphological difference such
EXAMPLE 8CONSTRUCTION AND EXPRESSION OF THE SIV Pr579a9 GENE IN S.F, CELLS
The gag gene of Simian Immunodeficiency virus (SIV) was subcloned from the molecularly cloned SIVrnac-BK28 (gift of J. Mullins; see Hirsh et al., C.eJLJL 4.2.:307 ( 1987) and Kestler et al., Nature 3J_L:619 (1988)). A 3504 bp Kpnl fragment of the pBK28 genome (nucleotides 1212 to 4716) was subcloned into pUC8. Two internal fragments of the gag gene, the 5' fragment Fnur>n( 1201) - Pst ( 1959) and the 3’ fragment Pstl ( 1959) Hphl (2803) were purified and synthetic oligonucleotide linkers, linker 1:
GAT CC ACC ATG GGC G TGG TAC CCG and linker 3:
TGCTGCACCTCAATTCTCTCTTTGGAGGAGACCAGTAGAGATCTGGTAC AACGACGTGGAGTTAAGAGAGAAACCTCCTCTGGTCATCTCTAGAC were ligated to adequate gag fragments to reconstitute entire the
G was used at the second codon, constructions by sequencing.
precursor gag gene. In a separate experiment a linker 2: GATCC ACC ATG GCC TGG TAC CGG
5* fragment, to introduce a mutation in the namely, GGC (Gly) to GCC (Ala). The different were cloned into blue scribe vectors and verified . The N-terminal fragment (BamHI-Pstl) and the carboxy-termina1 fragment (PsI-Bglll) were isolated and cloned into the BamHI digested, alkaline phosphatase treated pAcYMI baculovirus expression vector. The pAC gag Myr+ plasmid contains the native SIV gag gene and the pAc gag Myr contains the mutated (Gly to Ala) gene. S.f. cells were transfected with a mixture of purified AC MNPV viral DNA (1 respective recombinant transfer plasmids (50 pg) as described in Example 1. The recombinant plaques were screened and selected as described in Example 1.
The SIV gag Pr575a9 precursor polypeptide was efficiently synthesized in infected insect cells as observed in Western blots using the rabbit antiserum to SIV (metrizamide gradient purified SIV-BK28 virus) or a monoclonal directed the COOH-end of the HIV p24 polypeptide, which appear recognize the SIV core protein.
In a second assay experiment it was demonstrated that the SIV native gag precurser gene expressed in S.f. cells was efficiently myristoy1 a ted in contrast to the culture infected with the glycine to alanine mutant in which no myristoylation of the precursor Pr57ya9 protein could be detected when analysed on SDS-PAGE and radioautography.
As in the case of HIV-gag precursor protein we also observed gag particle formation and release of particles in the conditioned medium when the infected cultures were analysed by ultracentrifugation, sucrose gradients and electron microscopy py) and the essentia 1 ly against also to
APO0 0 1 2 9
- 24(d) BAD ORIGINAL £
(TEM and SEM). Similar SIV-gag Pr579a9 particles as those obtained when expressing HIV-Pr559a9 precursor gene in S.f. cells were observed. The extracellular gag particles form crescent structures at the cell membrane which assemble into typical buds that closely resemble immature virus budding particles. The SIV Pr579a9 as the HIV Pr559a9 particles were about 100-120 nm in diameter and showed a light grey transluscent center surrounded by a tick dark electron dense ring and an outer lipid bilayer. Experiments with the SIV non-myristoylated (Gly to Ala) mutant confirmed the observations made with the HIV-non myristoylated Pr559a9 mutant that N-myristoylation is essential for budding and extracellular particle formation.
The difference between the gag precursor protein of HIV and SIV is that the latter forms also intracellular particles and particulate structure when the native SIV gag protein (myristoylated) is expressed. This could be explained as follows : the expression level is about 3 times higher than the HIV gag expression level and maybe not all the SIV Pr579a9 molecules are myristoylated. Also more degradation products, especially a myristoylated p27 protein band could be detected in WB of cultures infected with the SIV Pr579a9 native construct.
It is possible that the cellular structures of about 40 nm in diameter and sometimes up to 1 pm. long - which are observed at late stage of infections - are composed at least in part of these degradation gag products. This could resemble the p24 core assembly into tubular structures observed in some rare cases of retroviral core maturation. Also when the p24 core protein of HIV-1 is expressed in E. coli, tubular structures containing p24 protein have been observed. Part of the intracellular particles observed with the native SIV gag precursor recombinant take form near the cell membrane, where they appear to differentiate into virus-like particles budding as described above. This process is reminiscent of the viral maturation of type D retrovirus which involves intermediate intracellular type A particles.
- 24(e)
X
X
BAD ORIGINAL &

Claims (24)

1 CLAIMS FOR ARIPO:
1. A recombinant DNA molecule comprising a DNA sequence which codes for a full length Immunodeficiency virus gag
5 precursor protein and which Is devoid of the naturally occurring 5' and 3' flanking sequences, operatively linked to a regulatory element which functions In eukaryotic cells.
2. The recombinant DNA molecule of claim 1 1n which the regulatory element Is one which functions In yeast. Insect or
10 mammalian cells and the gag precursor protein Is the HIV gag precursor protein.
3. The recombinant DNA molecule of claim 2 In which the regulatory element Is one which functions In Lepidoptera cells.
4. The recombinant DNA molecule of claim 3 In which the
15 regulatory element comprises the polyhedrln gene promoter.
5. A recombinant Baculovlrus comprising the recombinant DNA molecule of claim 2, 3 or 4.
6. An Insect cell Infected with the recombinant Baculovlrus of claim 5.
20
7. The Insect cell of claim 6 which Is a Lepidoptera cell.
8. The Insect cell of claim 6 which 1s a Spodoptera fruglperda cel 1.
9. The recombinant DNA molecule of claim 2 In which the
25 regulatory element 1s one which functions 1n Drosophila cells.
10. A Drosophila cell transformed with the recombinant DNA molecule of claim 9.
11. The recombinant DNA molecule of claim 2 in which the regulatory region is one which functions 1n mammalian cells.
30
12. A recombinant vaccinia virus comprising the recombinant DNA molecule of claim 11.
13. A mammalian cell comprising the recombinant DNA molecule of claim 11.
14. A mammalian cell infected with the recombinant
35 vaccinia virus of claim 12.
AP 0 0 0 1 2 9
BAD original
- 25 1 15. The mammalian cell of claim 13 which Is selected from the group consisting of CHO cells, COS-7 cells, NIH-3T3 cells, CV1 cells, mouse or rat myeloma cells, HAK cells, vero cells, HeLa cells, WI38 cells, MRC-5 cells or chicken lymphoma cells.
5 16. The recombinant ONA molecule of claim 2 In which the regulatory region Is one which functions In yeast.
17. The recombinant DNA molecule of claim 16 In which the regulatory element comprises the CUP1, TDH3, PGK, ADH, PHO5 or ARG3 promoter.
10 18. A recombinant yeast cell comprising the recombinant
DNA molecule of claim 16.
19. A recombinant S. cerevlslae cell comprising the recombinant DNA molecule of claim 17.
20. A recombinant DNA molecule for expressing In
15 Lepldoptera cells a particle which Is Immunologically similar to authentic Immunodeficiency virus gag particles which molecule comprises a DNA sequence which codes for all or a portion of an Immunodeficiency virus gag precursor protein or for a hybrid protein having all or a portion of an
20 Immunodeficiency virus gag precursor protein, operatively linked to a regulatory element which functions In Lepldoptera cells.
21. The recombinant DNA molecule of claim 20 for expressing a particle comprising predominantly full length HIV
25 gag precursor protein which codes for full length HIV gag precursor protein devoid of other HIV functions.
22. A recombinant DNA molecule comprising a coding sequence for an immunodeficiency virus gag precursor protein operatively linked to a regulatory region which functions in 30 Lepldoptera cells.
23. The recombinant DNA molecule of claim 22 in which the coding sequence is for a full length HIV gag precursor protein devoid of other HIV functions.
- 26 10
24. The recombinant DNA molecule of claim 20, 21, 22 or 23 In which the regulatory element comprises the polyhedrln gene promoter.
25. A recombinant Baculovlrus comprising the recombinant DNA molecule of claim 20 or 22.
26. A recombinant Baculovlrus comprising the recombinant DNA molecule of claim 24.
27. A Lepldoptera cell Infected with the recombinant Baculovlrus of claim 25.
28. A Spodoptera fruglperda cell Infected with the recombinant Baculovlrus of claim 26.
29. A gag precursor protein produced by culturing cell s of claim 6. 30. A gag precursor protein produced by culturing cells of claim 13 or 18. 31. A gag precursor protein produced by culturing cel 1 s of claim 27, 32. A gag precursor protein particle Isolated from conditioned medium from a culture of cells of claim 6. 33. A gag precursor protein particle produced by
culturing cells of claim 27.
34. An Immunogenic particle comprising gag precursor protein produced by recombinant eukaryotic cells which particle Is Immunologlcally similar to authentic Immunodeficiency virus gag particles.
35. The Immunogenic particle of claim 34 which comprises predominantly full length HIV gag precursor protein, which Is recognized by anti-pi6, anti-p24 and anti-pl7 antibodies and which lacks viral functions required for viral maturation and repli cation.
36. A vaccine comprising gag precursor protein produced by recombinant eukaryotic cells.
37. A vaccine comprising gag precursor protein particles produced by recombinant eukaryotic ceils.
BAD ORIGINAL
38. A method for collecting data useful In the diagnosis of exposure of an animal to an Immunodeficiency virus which comprises contacting a sample of serum or other bodily fluid from the animal with a gag precursor protein of claims 29, 30,
31 or 32.
39. A method for collecting data useful 1n the diagnosis of exposure of an animal to an Immunodeficiency virus which comprises contacting a sample of serum or other bodily fluid from the animal with the Immunogenic particle of claim 34 or 35.
40. The gag precursor protein of any of claims 29, 30, 31 or 32 for use as a vaccine agent.
41. The gag precursor protein of any of claims 29, 30, 31 or 32 for use as a vaccine agent for conferring protection In humans against Infection by HIV.
42. The gag precursor protein of any of claims 29, 30, 31 or 32 for use in the manufacture of a vaccine for conferring protection 1n humans against Infection by HIV.
43. The Immunogenic particle of claim 34 or 35 for use as a vaccine agent.
44. The Immunogenic particle of claim 34 or 35 for use as a vaccine agent for conferring protection In humans against Infection by HIV.
45. The Immunogenic particle of claim 34 or 35 for use 1n the manufacture of a vaccine for conferring protection In humans against infection by HIV.
APAP/P/1989/000126A 1988-06-03 1989-05-22 Expression of retrovirus gag protein eukaryotic cells AP129A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20227188A 1988-06-03 1988-06-03

Publications (2)

Publication Number Publication Date
AP8900126A0 AP8900126A0 (en) 1989-07-31
AP129A true AP129A (en) 1991-04-17

Family

ID=22749175

Family Applications (1)

Application Number Title Priority Date Filing Date
APAP/P/1989/000126A AP129A (en) 1988-06-03 1989-05-22 Expression of retrovirus gag protein eukaryotic cells

Country Status (8)

Country Link
EP (1) EP0345242A3 (en)
AP (1) AP129A (en)
AU (2) AU627465B2 (en)
IL (1) IL90381A0 (en)
NZ (1) NZ229297A (en)
PT (1) PT90731A (en)
WO (1) WO1991000904A1 (en)
ZA (1) ZA894137B (en)

Families Citing this family (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2003794C (en) * 1988-12-01 2000-02-08 Hanne R. Johansen Expression of hiv proteins in drosophila cells
US6174666B1 (en) 1992-03-27 2001-01-16 The United States Of America As Represented By The Department Of Health And Human Services Method of eliminating inhibitory/instability regions from mRNA
US5786464C1 (en) * 1994-09-19 2012-04-24 Gen Hospital Corp Overexpression of mammalian and viral proteins
US6290969B1 (en) 1995-09-01 2001-09-18 Corixa Corporation Compounds and methods for immunotherapy and diagnosis of tuberculosis
US6592877B1 (en) 1995-09-01 2003-07-15 Corixa Corporation Compounds and methods for immunotherapy and diagnosis of tuberculosis
US6458366B1 (en) 1995-09-01 2002-10-01 Corixa Corporation Compounds and methods for diagnosis of tuberculosis
US6534312B1 (en) 1996-02-22 2003-03-18 Merck & Co., Inc. Vaccines comprising synthetic genes
EP0907746B1 (en) 1996-04-05 2008-02-20 Novartis Vaccines and Diagnostics, Inc. Recombinant alphavirus-based vectors with reduced inhibition of cellular macromolecular synthesis
JP2001500738A (en) 1996-09-17 2001-01-23 カイロン コーポレイション Compositions and methods for treating intracellular diseases
US6114148C1 (en) * 1996-09-20 2012-05-01 Gen Hospital Corp High level expression of proteins
US6544523B1 (en) 1996-11-13 2003-04-08 Chiron Corporation Mutant forms of Fas ligand and uses thereof
EP0969862B1 (en) * 1997-02-07 2006-10-18 Merck & Co., Inc. Synthetic hiv gag genes
US6696291B2 (en) 1997-02-07 2004-02-24 Merck & Co., Inc. Synthetic HIV gag genes
US6261562B1 (en) 1997-02-25 2001-07-17 Corixa Corporation Compounds for immunotherapy of prostate cancer and methods for their use
US7087713B2 (en) 2000-02-25 2006-08-08 Corixa Corporation Compounds and methods for diagnosis and immunotherapy of tuberculosis
DE69838584T2 (en) 1997-08-04 2008-06-26 Cell Genesys, Inc., Foster City ENHANCERS OF HUMAN GLANDULAR CALLIQUE, VECTORS CONTAINING HIM, AND METHODS FOR ITS USE
US6914131B1 (en) 1998-10-09 2005-07-05 Chiron S.R.L. Neisserial antigens
ATE476508T1 (en) 1997-11-06 2010-08-15 Novartis Vaccines & Diagnostic NEISSERIAL ANTIGENS
JP2002507387A (en) 1997-12-24 2002-03-12 コリクサ コーポレイション Compounds for immunotherapy and diagnosis of breast cancer and methods for their use
EP2210945B1 (en) 1998-01-14 2013-06-26 Novartis Vaccines and Diagnostics S.r.l. Neisseria meningitidis antigens
EP1792988A3 (en) 1998-03-18 2007-08-22 Corixa Corporation Compounds and methods for therapy and diagnosis of lung cancer
US20020147143A1 (en) 1998-03-18 2002-10-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
NZ508366A (en) 1998-05-01 2004-03-26 Chiron Corp Neisseria meningitidis antigens and compositions
NZ509974A (en) 1998-08-07 2003-10-31 Univ Washington Immunological herpes simplex virus antigens and methods for use thereof
US20030235557A1 (en) 1998-09-30 2003-12-25 Corixa Corporation Compositions and methods for WT1 specific immunotherapy
EP1953229A3 (en) 1998-10-15 2008-12-24 Novartis Vaccines and Diagnostics, Inc. Metastatic breast and colon cancer regulated genes
EP1144642B1 (en) 1998-12-08 2010-05-26 Corixa Corporation Compounds and methods for treatment and diagnosis of chlamydial infection
ATE519840T1 (en) 1998-12-16 2011-08-15 Novartis Vaccines & Diagnostic HUMAN CYCLIN DEPENDENT KINASE (HPNQALRE)
US20020119158A1 (en) 1998-12-17 2002-08-29 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US6579973B1 (en) 1998-12-28 2003-06-17 Corixa Corporation Compositions for the treatment and diagnosis of breast cancer and methods for their use
US7935805B1 (en) 1998-12-31 2011-05-03 Novartis Vaccines & Diagnostics, Inc Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof
WO2000039302A2 (en) 1998-12-31 2000-07-06 Chiron Corporation Improved expression of hiv polypeptides and production of virus-like particles
US7625859B1 (en) 2000-02-16 2009-12-01 Oregon Health & Science University HER-2 binding antagonists
US7393823B1 (en) 1999-01-20 2008-07-01 Oregon Health And Science University HER-2 binding antagonists
CZ20013527A3 (en) 1999-04-02 2002-10-16 Corixa Corporation Compounds and methods for therapy and diagnostics of lung carcinoma
US8143386B2 (en) 1999-04-07 2012-03-27 Corixa Corporation Fusion proteins of mycobacterium tuberculosis antigens and their uses
US7368261B1 (en) 1999-04-30 2008-05-06 Novartis Vaccines And Diagnostics Srl Conserved Neisserial antigens
GB9911683D0 (en) 1999-05-19 1999-07-21 Chiron Spa Antigenic peptides
GB9916529D0 (en) 1999-07-14 1999-09-15 Chiron Spa Antigenic peptides
CA2386841A1 (en) 1999-10-07 2001-04-12 Corixa Corporation Fusion proteins of mycobacterium tuberculosis
MXPA02004283A (en) 1999-10-29 2002-10-17 Chiron Spa Neisserial antigenic peptides.
PT1232264E (en) 1999-11-18 2009-11-26 Novartis Vaccines & Diagnostic Human fgf-21 gene and gene expression products
DK1248647T3 (en) 2000-01-17 2010-09-27 Novartis Vaccines & Diagnostic Outer membrane vesicle (OMV) vaccine comprising N. meningitidis serogroup B outer membrane proteins
EP1854476A3 (en) 2000-02-09 2008-05-07 Bas Medical, Inc. Use of relaxin to treat diseases related to vasoconstriction
CA2400842C (en) 2000-02-23 2013-01-15 Smithkline Beecham Biologicals S.A. Novel compounds
CN1800385B (en) 2000-02-28 2010-06-02 启龙有限公司 Hybrid expression of neisserial proteins
US20040002068A1 (en) 2000-03-01 2004-01-01 Corixa Corporation Compositions and methods for the detection, diagnosis and therapy of hematological malignancies
AU2001249125A1 (en) 2000-03-08 2001-09-17 Chiron Corporation Human fgf-23 gene and gene expression products
EP1278855B1 (en) 2000-04-21 2008-03-12 Corixa Corporation Compounds and methods for treatment and diagnosis of chlamydial infection
ES2305086T3 (en) 2000-05-19 2008-11-01 Corixa Corporation PROFILACTIC AND THERAPEUTIC TREATMENT OF ALLERGIC, AUTOIMMUNE AND INFECTIOUS DISEASES WITH COMPOUNDS BASED ON MONOSACARIDS.
EP1950297A2 (en) 2000-05-31 2008-07-30 Novartis Vaccines and Diagnostics, Inc. Compositions and methods for treating neoplastic disease using chemotherapy and radiation sensitizers
US7700359B2 (en) 2000-06-02 2010-04-20 Novartis Vaccines And Diagnostics, Inc. Gene products differentially expressed in cancerous cells
EP1370684B1 (en) 2000-06-15 2008-05-28 Novartis Vaccines and Diagnostics, Inc. Polynucleotides related to colon cancer
DK2133100T3 (en) 2000-06-20 2012-01-23 Corixa Corp MTB32A Antigen of Mycobacterium tuberculosis with Inactivated Active Site and Fusion Proteins
ATE396265T1 (en) 2000-06-28 2008-06-15 Corixa Corp COMPOSITIONS AND METHODS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER
US7691821B2 (en) 2001-09-19 2010-04-06 University Of South Florida Inhibition of SHIP to enhance stem cell harvest and transplantation
US20020165192A1 (en) 2000-09-19 2002-11-07 Kerr William G. Control of NK cell function and survival by modulation of ship activity
MXPA03003690A (en) 2000-10-27 2004-05-05 Chiron Spa Nucleic acids and proteins from streptococcus groups a b.
WO2002046477A2 (en) 2000-12-07 2002-06-13 Chiron Corporation Endogenous retroviruses up-regulated in prostate cancer
GB0107658D0 (en) 2001-03-27 2001-05-16 Chiron Spa Streptococcus pneumoniae
GB0107661D0 (en) 2001-03-27 2001-05-16 Chiron Spa Staphylococcus aureus
WO2002081642A2 (en) 2001-04-06 2002-10-17 Georgetown University Gene brcc-3 and diagnostic and therapeutic uses thereof
WO2002081641A2 (en) 2001-04-06 2002-10-17 Georgetown University Gene scc-112 and diagnostic and therapeutic uses thereof
AU2002303261A1 (en) 2001-04-06 2002-10-21 Georgetown University Gene brcc2 and diagnostic and therapeutic uses thereof
JP2005504513A (en) 2001-05-09 2005-02-17 コリクサ コーポレイション Compositions and methods for treatment and diagnosis of prostate cancer
EP2412242A3 (en) 2001-07-05 2012-06-13 Novartis Vaccines and Diagnostics, Inc. Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof
WO2003004657A1 (en) 2001-07-05 2003-01-16 Chiron Corporation Polynucleotides encoding antigenic hiv type b and/or type c polypeptides, polypeptides and uses thereof
AU2002359446B2 (en) 2001-11-09 2008-12-04 Georgetown University Novel isoforms of vascular endothelial cell growth inhibitor
NZ562929A (en) 2001-12-12 2009-07-31 Novartis Vaccines & Diagnostic Immunisation against chlamydia trachomatis
AU2002365279B2 (en) 2001-12-17 2009-08-13 Corixa Corporation Compositions and methods for the therapy and diagnosis of inflammatory bowel disease
DE60326931D1 (en) 2002-01-08 2009-05-14 Novartis Vaccines & Diagnostic DIFFERENTIALLY EXPRESSED GENEVA PRODUCTS AND THEIR USE PROCEDURES IN CANNULAR MAMMA CELLS
AU2003213118A1 (en) 2002-02-15 2003-09-09 Corixa Corporation Fusion proteins of mycobacterium tuberculosis
JP2005532789A (en) 2002-03-15 2005-11-04 ワイス・ホールデイングス・コーポレーシヨン P4 protein variant of non-typeable Haemophilus influenzae with reduced enzymatic activity
AU2003218350A1 (en) 2002-03-21 2003-10-08 Sagres Discovery, Inc. Novel compositions and methods in cancer
US7244565B2 (en) 2002-04-10 2007-07-17 Georgetown University Gene shinc-3 and diagnostic and therapeutic uses thereof
US7138512B2 (en) 2002-04-10 2006-11-21 Georgetown University Gene SHINC-2 and diagnostic and therapeutic uses thereof
US20030206916A1 (en) 2002-05-03 2003-11-06 Rush-Presbyterian-St. Luke's Medical Center Immunogenic peptides
EP1532161B1 (en) 2002-06-13 2012-02-15 Novartis Vaccines and Diagnostics, Inc. Vectors for expression of hml-2 polypeptides
EP1523582B1 (en) 2002-07-18 2008-11-12 University of Washington Rapid, efficient purification of hsv-specific t-lymphocytes and hsv antigens identified via same
UA80447C2 (en) 2002-10-08 2007-09-25 Methods for treating pain by administering nerve growth factor antagonist and opioid analgesic
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
NZ540730A (en) 2002-12-24 2010-09-30 Rinat Neuroscience Corp Anti-NGF antibodies and methods using same
US7569364B2 (en) 2002-12-24 2009-08-04 Pfizer Inc. Anti-NGF antibodies and methods using same
MXPA05007295A (en) 2003-01-06 2005-09-30 Corixa Corp Certain aminoalkyl glucosaminide phosphate compounds and their use.
US7960522B2 (en) 2003-01-06 2011-06-14 Corixa Corporation Certain aminoalkyl glucosaminide phosphate compounds and their use
US7767387B2 (en) 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
US20040170982A1 (en) 2003-02-14 2004-09-02 Morris David W. Novel therapeutic targets in cancer
CA2516138A1 (en) 2003-02-14 2004-09-02 Sagres Discovery, Inc. Therapeutic gpcr targets in cancer
ATE491444T1 (en) 2003-02-19 2011-01-15 Rinat Neuroscience Corp METHOD FOR TREATING PAIN BY ADMINISTRATION OF A NERVE GROWTH FACTOR ANTAGONIST AND AN NSAID AND COMPOSITION CONTAINING THE SAME
GB0308198D0 (en) 2003-04-09 2003-05-14 Chiron Srl ADP-ribosylating bacterial toxin
CA2522359C (en) 2003-04-21 2013-09-24 Erlinda M. Gordon Pathotropic retroviral vector used to deliver diagnostic or therapeutic compositions
US20070178066A1 (en) 2003-04-21 2007-08-02 Hall Frederick L Pathotropic targeted gene delivery system for cancer and other disorders
US7812116B2 (en) 2003-07-03 2010-10-12 Rush University Medical Center Immunogenic peptides
US7807646B1 (en) 2003-11-20 2010-10-05 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
US7763592B1 (en) 2003-11-20 2010-07-27 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
SG166768A1 (en) 2003-12-23 2010-12-29 Rinat Neuroscience Corp Agonist anti-trkc antibodies and methods using same
US8268324B2 (en) 2004-03-29 2012-09-18 Galpharma Co., Ltd. Modified galectin 9 proteins and use thereof
KR101504729B1 (en) 2004-04-07 2015-03-19 리나트 뉴로사이언스 코프. Pharmaceutical composotion for treating bone cancer pain by administering a nerve growth factor antagonist
EP3203241A1 (en) 2004-07-14 2017-08-09 The Regents of The University of California Biomarkers for early detection of ovarian cancer
US20060024677A1 (en) 2004-07-20 2006-02-02 Morris David W Novel therapeutic targets in cancer
MX2007000998A (en) 2004-07-30 2007-07-11 Rinat Neuroscience Corp Antibodies directed against amyloid-beta peptide and methods using same.
EP1789552A2 (en) 2004-08-10 2007-05-30 Institute for Multiple Myeloma and Bone Cancer Research Methods of regulating differentiation and treating of multiple myeloma
ES2472441T3 (en) 2004-09-22 2014-07-01 Glaxosmithkline Biologicals S.A. Immunogenic composition for use in staphylococcal vaccination
CN101203529A (en) 2005-02-18 2008-06-18 诺华疫苗和诊断公司 Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli
EP1701165A1 (en) 2005-03-07 2006-09-13 Johannes Dr. Coy Therapeutic and diagnostic uses of TKTL1 and inhibitors and activators thereof
CN101184504A (en) 2005-03-31 2008-05-21 葛兰素史密丝克莱恩生物有限公司 Vaccines against chlamydial infection
WO2006110585A2 (en) 2005-04-07 2006-10-19 Novartis Vaccines And Diagnostics Inc. Cancer-related genes (prlr)
AU2006235276A1 (en) 2005-04-07 2006-10-19 Novartis Vaccines And Diagnostics Inc. CACNA1E in cancer diagnosis, detection and treatment
CN101273055B (en) 2005-04-29 2016-03-16 葛兰素史密丝克莱恩生物有限公司 For preventing or treat the novel method of m tuberculosis infection
MY148086A (en) 2005-04-29 2013-02-28 Rinat Neuroscience Corp Antibodies directed against amyloid-beta peptide and methods using same
KR20080039929A (en) 2005-07-22 2008-05-07 와이스 테라퓨틱스 가부시키가이샤 Anti-cd26 antibodies and methods of use thereof
ES2433251T5 (en) 2005-11-14 2020-03-13 Teva Pharmaceuticals Int Gmbh Antagonistic antibodies directed against a peptide related to the calcitonin gene and procedures using them
EP1979488A4 (en) 2006-01-09 2009-05-27 Univ California Immunostimulatory combinations of tnfrsf, tlr, nlr, rhr, purinergic receptor, and cytokine receptor agoinsts for vaccines and tumor immunotherapy
EP1981905B1 (en) 2006-01-16 2016-08-31 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Chlamydia vaccine
WO2007088479A1 (en) 2006-02-02 2007-08-09 Rinat Neuroscience Corp. Methods for treating obesity by administering a trkb antagonist
CA2648718A1 (en) 2006-04-07 2007-10-18 The Research Foundation Of State University Of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
KR101496433B1 (en) 2006-06-07 2015-02-26 바이오얼라이언스 씨.브이. Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
EP2054431B1 (en) 2006-06-09 2011-08-31 Novartis AG Conformers of bacterial adhesins
EP2064230A2 (en) 2006-08-16 2009-06-03 Novartis AG Immunogens from uropathogenic escherichia coli
US8673859B2 (en) 2007-03-20 2014-03-18 New York University GM-CSF cosmeceutical compositions and methods of use thereof
EP3061462B1 (en) 2007-07-02 2019-02-27 Etubics Corporation Methods and compositions for producing an adenovirus vector for use with multiple vaccinations
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
WO2009077993A2 (en) 2007-12-17 2009-06-25 Pfizer Limited Treatment of interstitial cystitis
AU2008338313B2 (en) 2007-12-18 2014-01-16 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
WO2009126306A2 (en) 2008-04-10 2009-10-15 Cell Signaling Technology, Inc. Compositions and methods for detecting egfr mutations in cancer
WO2009150623A1 (en) 2008-06-13 2009-12-17 Pfizer Inc Treatment of chronic prostatitis
TWI516501B (en) 2008-09-12 2016-01-11 禮納特神經系統科學公司 Pcsk9 antagonists
AU2009298879A1 (en) 2008-09-23 2010-04-08 President And Fellows Of Harvard College SIRT4 and uses thereof
WO2010080985A1 (en) 2009-01-08 2010-07-15 Dana-Farber Cancer Institute, Inc. Compositions and methods for induced brown fat differentiation
WO2010086828A2 (en) 2009-02-02 2010-08-05 Rinat Neuroscience Corporation Agonist anti-trkb monoclonal antibodies
US8568732B2 (en) 2009-03-06 2013-10-29 Novartis Ag Chlamydia antigens
WO2010118243A2 (en) 2009-04-08 2010-10-14 Genentech, Inc. Use of il-27 antagonists to treat lupus
EP3263128A3 (en) 2009-04-14 2018-01-24 GlaxoSmithKline Biologicals S.A. Compositions for immunising against staphylococcus aureus
WO2010146511A1 (en) 2009-06-17 2010-12-23 Pfizer Limited Treatment of overactive bladder
MX2012000734A (en) 2009-07-16 2012-01-27 Novartis Ag Detoxified escherichia coli immunogens.
WO2011038063A1 (en) 2009-09-28 2011-03-31 The Trustees Of The University Of Pennsylvania Method of diagnosing and treating interstitial cystitis
GB0919690D0 (en) 2009-11-10 2009-12-23 Guy S And St Thomas S Nhs Foun compositions for immunising against staphylococcus aureus
EP2526205A1 (en) 2010-01-21 2012-11-28 Dana-Farber Cancer Institute, Inc. Context specific genetic screen platform to aid in gene discovery and target validation
JP6010463B2 (en) 2010-01-27 2016-10-19 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Modified tuberculosis antigen
TWI552760B (en) 2010-02-24 2016-10-11 雷那特神經科學股份有限公司 Antagonist anti-il-7 receptor antibodies and methods
GB201003333D0 (en) 2010-02-26 2010-04-14 Novartis Ag Immunogenic proteins and compositions
CN102844332B (en) 2010-03-11 2015-08-19 瑞纳神经科学公司 The antibody combined in pH dependence antigen
GB201005625D0 (en) 2010-04-01 2010-05-19 Novartis Ag Immunogenic proteins and compositions
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
WO2012015758A2 (en) 2010-07-30 2012-02-02 Saint Louis University Methods of treating pain
US9539427B2 (en) 2010-11-08 2017-01-10 The Johns Hopkins University Methods for improving heart function
EP2663868A2 (en) 2010-12-01 2013-11-20 The University of North Carolina at Chapel Hill Methods and compositions for targeting sites of neovascular growth
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
US9267112B2 (en) 2011-05-10 2016-02-23 The Regents Of The University Of California Adenovirus isolated from Titi Monkeys
US10221218B2 (en) 2011-05-10 2019-03-05 The Regents Of The University Of California Adenovirus isolated from titi monkeys
MX2013013627A (en) 2011-06-21 2014-04-25 Oncofactor Corp Compositions and methods for the therapy and diagnosis of cancer.
US20130071375A1 (en) 2011-08-22 2013-03-21 Saint Louis University Compositions and methods for treating inflammation
WO2013028527A1 (en) 2011-08-23 2013-02-28 Indiana University Research And Technology Corporation Compositions and methods for treating cancer
WO2013033260A1 (en) 2011-08-29 2013-03-07 The Regents Of The University Of California Use of hdl-related molecules to treat and prevent proinflammatory conditions
US8969519B2 (en) 2011-09-13 2015-03-03 Dana-Farber Cancer Institute, Inc. Compositions and methods for brown fat induction and activity using FNDC5
WO2013055911A1 (en) 2011-10-14 2013-04-18 Dana-Farber Cancer Institute, Inc. Znf365/zfp365 biomarker predictive of anti-cancer response
AU2012335205A1 (en) 2011-11-11 2014-05-29 Rinat Neuroscience Corp. Antibodies specific for Trop-2 and their uses
AU2012356206A1 (en) 2011-12-22 2014-06-26 Rinat Neuroscience Corp. Human growth hormone receptor antagonist antibodies and methods of use thereof
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
US8603470B1 (en) 2012-08-07 2013-12-10 National Cheng Kung University Use of IL-20 antagonists for treating liver diseases
US9605276B2 (en) 2012-08-24 2017-03-28 Etubics Corporation Replication defective adenovirus vector in vaccination
RU2015115956A (en) 2012-11-09 2017-01-10 Пфайзер Инк. ANTIBODIES SPECIFIC TO THE THROMBOCYTE B GROWTH FACTOR, AND THEIR COMPOSITION AND APPLICATION
AU2014236208B2 (en) 2013-03-14 2018-07-19 Genvivo, Inc. Thymidine kinase diagnostic assay for gene therapy applications
CN105229023B (en) 2013-03-15 2019-08-16 加利福尼亚大学董事会 Peptide MOTS3 from mitochondria adjusts metabolism and cell survival
WO2014152232A2 (en) 2013-03-15 2014-09-25 Dyax Corp. Anti-plasma kallikrein antibodies
US9428537B2 (en) 2013-03-15 2016-08-30 The Board Of Trustees Of The Leland Stanford Junior University tRNA derived small RNAs (tsRNAs) involved in cell viability
JP2016518126A (en) 2013-04-19 2016-06-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Lone Star Virus
KR20160005749A (en) 2013-05-07 2016-01-15 리나트 뉴로사이언스 코프. Anti-glucagon receptor antibodies and methods of use thereof
WO2014210546A1 (en) 2013-06-27 2014-12-31 University Of Washington Through Its Center For Commercialization Biocompatible polymeric system for targeted treatment of thrombotic and hemostatic disorders
CA2953917C (en) 2013-07-01 2021-10-19 The Research Foundation For The State University Of New York Ship inhibition to combat obesity
US10208125B2 (en) 2013-07-15 2019-02-19 University of Pittsburgh—of the Commonwealth System of Higher Education Anti-mucin 1 binding agents and uses thereof
CN106211774B (en) 2013-08-02 2020-11-06 辉瑞公司 anti-CXCR 4 antibodies and antibody-drug conjugates
CA3056647A1 (en) 2013-11-13 2015-05-21 Robert ARCH Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
WO2015087187A1 (en) 2013-12-10 2015-06-18 Rinat Neuroscience Corp. Anti-sclerostin antibodies
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
UA123759C2 (en) 2014-03-21 2021-06-02 Тева Фармасьютікалз Інтернешнл Гмбх Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
CA2944903A1 (en) 2014-04-24 2015-10-29 Dana-Farber Cancer Institute, Inc. Tumor suppressor and oncogene biomarkers predictive of anti-immune checkpoint inhibitor response
US10308697B2 (en) 2014-04-30 2019-06-04 President And Fellows Of Harvard College Fusion proteins for treating cancer and related methods
CA2947605A1 (en) 2014-05-13 2015-11-19 Bioatla, Llc Conditionally active biological proteins
WO2015195812A1 (en) 2014-06-17 2015-12-23 The Research Foundation For The State University Of New York Ship inhibition to induce activation of natural killer cells
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
RU2764074C2 (en) 2014-08-28 2022-01-13 Байоатла, Ллк Conditionally active chimeric antigen receptors for modified t-cells
US10513699B2 (en) 2014-09-03 2019-12-24 Bioatla, Llc Discovering and producing conditionally active biologic proteins in the same eukaryotic cell production hosts
MA40595A (en) 2014-09-09 2021-05-26 Unum Therapeutics CHEMERICAL RECEPTORS AND USES OF THEM IN IMMUNE THERAPY
WO2016057367A1 (en) 2014-10-06 2016-04-14 Dana-Farber Cancer Institute, Inc. Angiopoietin-2 biomarkers predictive of anti-immune checkpoint response
US10806773B2 (en) 2014-10-09 2020-10-20 Dana-Farber Cancer Institute, Inc. Multiple-variable IL-2 dose regimen for treating immune disorders
TWI595006B (en) 2014-12-09 2017-08-11 禮納特神經系統科學公司 Anti-pd-1 antibodies and methods of use thereof
WO2016144673A1 (en) 2015-03-06 2016-09-15 Dana-Farber Cancer Institute, Inc. Pd-l2 biomarkers predictive of pd-1 pathway inhibitor responses in esophagogastric cancers
EP3270897A4 (en) 2015-03-20 2018-12-05 The Regents Of The University Of Michigan Immunogenic compositions for use in vaccination against bordetella
US9758575B2 (en) 2015-04-06 2017-09-12 Yung Shin Pharmaceutical Industrial Co. Ltd. Antibodies which specifically bind to canine vascular endothelial growth factor and uses thereof
KR102405104B1 (en) 2015-04-13 2022-06-07 화이자 인코포레이티드 Therapeutic antibodies and their uses
EA201890340A1 (en) 2015-07-21 2018-09-28 Дайэкс Корп. MONOCLONAL ANTIBODY-INHIBITOR OF FACTOR XIIA
US10877045B2 (en) 2015-07-21 2020-12-29 Saint Louis University Compositions and methods for diagnosing and treating endometriosis-related infertility
CA3025896A1 (en) 2015-07-23 2017-01-26 The Regents Of The University Of California Antibodies to coagulation factor xia and uses thereof
SG10201912817YA (en) 2015-08-19 2020-02-27 Pfizer Tissue factor pathway inhibitor antibodies and uses thereof
EA038146B1 (en) 2015-09-15 2021-07-13 Сколар Рок, Инк. Anti-pro/latent-myostatin antibodies and uses thereof
WO2017062246A1 (en) 2015-10-05 2017-04-13 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human rota virus g9p[6] strain and use as a vaccine
CA3001859A1 (en) 2015-10-16 2017-04-20 The Trustees Of Columbia University In The City Of New York Compositions and methods for inhibition of lineage specific antigens
US11207393B2 (en) 2015-10-16 2021-12-28 President And Fellows Of Harvard College Regulatory T cell PD-1 modulation for regulating T cell effector immune responses
EP3365369A1 (en) 2015-10-23 2018-08-29 Pfizer Inc Anti-il-2 antibodies and compositions and uses thereof
WO2017075037A1 (en) 2015-10-27 2017-05-04 Scholar Rock, Inc. Primed growth factors and uses thereof
US20210106661A1 (en) 2015-10-29 2021-04-15 Dana-Farber Cancer Institute, Inc. Methods for identification, assessment, prevention, and treatment of metabolic disorders using pm20d1 and n-lipidated amino acids
CN106699889A (en) 2015-11-18 2017-05-24 礼进生物医药科技(上海)有限公司 PD-1 resisting antibody and treatment application thereof
KR20180104635A (en) 2015-12-30 2018-09-21 코디악 사이언시스 인코포레이티드 Antibodies and conjugates thereof
US10221242B2 (en) 2016-01-21 2019-03-05 Pfizer Inc. Antibodies specific for epidermal growth factor receptor variant III and their uses
EP3433365B1 (en) 2016-03-21 2023-08-02 Dana-Farber Cancer Institute, Inc. T-cell exhaustion state-specific gene expression regulators and uses thereof
EP3478325A4 (en) 2016-07-01 2020-01-15 Research Development Foundation Elimination of proliferating cells from stem cell-derived grafts
WO2018057618A1 (en) 2016-09-20 2018-03-29 Dana-Farber Cancer Institute, Inc. Compositions and methods for identification, assessment, prevention, and treatment of aml using usp10 biomarkers and modulators
US20180119141A1 (en) 2016-10-28 2018-05-03 Massachusetts Institute Of Technology Crispr/cas global regulator screening platform
WO2018148246A1 (en) 2017-02-07 2018-08-16 Massachusetts Institute Of Technology Methods and compositions for rna-guided genetic circuits
CN110431152A (en) 2017-03-03 2019-11-08 雷纳神经科学公司 Anti- GITR antibody and its application method
CA3056182A1 (en) 2017-03-16 2018-09-20 Pfizer Inc. Tyrosine prototrophy
AU2018250695A1 (en) 2017-04-14 2019-11-07 Kodiak Sciences Inc. Complement factor D antagonist antibodies and conjugates thereof
EP3630841A1 (en) 2017-06-02 2020-04-08 Pfizer Inc. Antibodies specific for flt3 and their uses
EP3879535A1 (en) 2017-06-13 2021-09-15 BostonGene Corporation Systems and methods for identifying cancer treatments from normalized biomarker scores
KR20200028982A (en) 2017-07-13 2020-03-17 메사추세츠 인스티튜트 오브 테크놀로지 Targeting HDAC2-SP3 complex to enhance synaptic function
WO2019016784A1 (en) 2017-07-21 2019-01-24 Universidade De Coimbra Anti-nucleolin antibody
CN111356477A (en) 2017-08-01 2020-06-30 Ab工作室有限公司 Bispecific antibodies and uses thereof
WO2019056015A2 (en) 2017-09-18 2019-03-21 Children's Hospital Medical Center A strong insulator and uses thereof in gene delivery
KR20210027230A (en) 2017-10-04 2021-03-10 옵코 파마슈티칼스, 엘엘씨 Articles and methods for personalized treatment of cancer
EP3713958A4 (en) 2017-11-24 2021-11-03 Eucure (Beijing) Biopharma Co., Ltd Anti-ox40 antibodies and uses thereof
TW201936633A (en) 2018-02-01 2019-09-16 美商輝瑞大藥廠 Chimeric antigen receptors targeting CD70
BR112020015641A2 (en) 2018-02-01 2021-01-05 Pfizer Inc. SPECIFIC ANTIBODIES FOR CD70 AND ITS USES
CA3091352A1 (en) 2018-02-21 2019-08-29 The University Of Montana Diaryl trehalose compounds and uses thereof
CA3091502A1 (en) 2018-02-23 2019-08-29 Eucure (Beijing) Biopharma Co., Ltd Anti-pd-1 antibodies and uses thereof
PE20201342A1 (en) 2018-02-28 2020-11-25 Pfizer VARIANTS OF IL-15 AND USES OF THE SAME
US11572381B2 (en) 2018-03-02 2023-02-07 The University Of Montana Immunogenic trehalose compounds and uses thereof
BR112020022897A2 (en) 2018-05-23 2021-02-23 Pfizer Inc. specific antibodies to cd3 and their uses
BR112020022595A2 (en) 2018-05-23 2021-02-09 Pfizer Inc. specific antibodies to gucy2c and uses thereof
KR20210033029A (en) 2018-07-20 2021-03-25 유큐(베이징) 바이오파마 코., 엘티디 Anti-CD40 antibodies and uses thereof
US11389485B2 (en) 2018-08-28 2022-07-19 Vor Biopharma Inc. Genetically engineered hematopoietic stem cells and uses thereof
EP3850012A4 (en) 2018-09-12 2022-06-15 Eucure (Beijing) Biopharma Co., Ltd Anti-tnfrsf9 antibodies and uses thereof
EP3883969A4 (en) 2018-11-19 2022-11-16 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Anti-pd-1 antibodies and uses thereof
BR112021023292A2 (en) 2019-05-23 2022-02-08 The Univ Of Montana Compound, formulation, vaccine composition, pharmaceutical composition, and method for modulating an immune response in an individual
US20210005283A1 (en) 2019-07-03 2021-01-07 Bostongene Corporation Techniques for bias correction in sequence data
EP4041308A1 (en) 2019-10-07 2022-08-17 University of Virginia Patent Foundation Modulating lymphatic vessels in neurological disease
CN114786731A (en) 2019-10-10 2022-07-22 科达制药股份有限公司 Methods of treating ocular disorders
CA3152623A1 (en) 2019-10-11 2021-04-15 Richard D. Cummings Anti-tn antibodies and uses thereof
WO2021151079A1 (en) 2020-01-24 2021-07-29 University Of Virginia Patent Foundation Modulating lymphatic vessels in neurological disease
WO2021205325A1 (en) 2020-04-08 2021-10-14 Pfizer Inc. Anti-gucy2c antibodies and uses thereof
US20230181750A1 (en) 2020-05-06 2023-06-15 Crispr Therapeutics Ag Mask peptides and masked anti-ptk7 antibodies comprising such
CA3189590A1 (en) 2020-07-17 2022-01-20 Pfizer Inc. Therapeutic antibodies and their uses
CA3190227A1 (en) 2020-07-30 2022-02-03 Pfizer Inc. Cells having gene duplications and uses thereof
US20230374599A1 (en) 2020-10-19 2023-11-23 Alexander Gusev Germline biomarkers of clinical response and benefit to immune checkpoint inhibitor therapy
WO2022104104A2 (en) 2020-11-13 2022-05-19 Dana-Farber Cancer Institute, Inc. Personalized fusion cell vaccines
WO2022120256A2 (en) 2020-12-04 2022-06-09 Bostongene Corporation Hierarchical machine learning techniques for identifying molecular categories from expression data
WO2022159793A2 (en) 2021-01-25 2022-07-28 Dana-Farber Cancer Institute, Inc. Methods and compositions for identifying neuroendocrine prostate cancer
US20220372580A1 (en) 2021-04-29 2022-11-24 Bostongene Corporation Machine learning techniques for estimating tumor cell expression in complex tumor tissue
WO2022261183A2 (en) 2021-06-08 2022-12-15 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating and/or identifying an agent for treating intestinal cancers
CA3227875A1 (en) 2021-08-02 2023-02-09 Pfizer Inc. Improved expression vectors and uses thereof
AU2022349103A1 (en) 2021-09-27 2024-03-28 Sotio Biotech Inc. Chimeric receptor polypeptides in combination with trans metabolism molecules that re-direct glucose metabolites out of the glycolysis pathway and therapeutic uses thereof
CA3237201A1 (en) 2021-11-16 2023-05-25 Sotio Biotech Inc. Treatment of myxoid/round cell liposarcoma patients
WO2023097119A2 (en) 2021-11-29 2023-06-01 Dana-Farber Cancer Institute, Inc. Methods and compositions to modulate riok2
US20230245479A1 (en) 2022-01-31 2023-08-03 Bostongene Corporation Machine learning techniques for cytometry
WO2023148598A1 (en) 2022-02-02 2023-08-10 Pfizer Inc. Cysteine prototrophy
WO2023158732A1 (en) 2022-02-16 2023-08-24 Dana-Farber Cancer Institute, Inc. Methods for decreasing pathologic alpha-synuclein using agents that modulate fndc5 or biologically active fragments thereof
WO2024015561A1 (en) 2022-07-15 2024-01-18 Bostongene Corporation Techniques for detecting homologous recombination deficiency (hrd)
WO2024040208A1 (en) 2022-08-19 2024-02-22 Sotio Biotech Inc. Genetically engineered immune cells with chimeric receptor polypeptides in combination with multiple trans metabolism molecules and therapeutic uses thereof
WO2024040207A1 (en) 2022-08-19 2024-02-22 Sotio Biotech Inc. Genetically engineered natural killer (nk) cells with chimeric receptor polypeptides in combination with trans metabolism molecules and therapeutic uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230222A1 (en) * 1986-01-06 1987-07-29 F. Hoffmann-La Roche Ag Expression of HTLV-III gag-Gene

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931799A (en) * 1982-08-16 1984-02-20 Science & Tech Agency Recombinant plasmid and preparation of transformed yeast and hepatitis virus b surface antigen using the same
US4703008A (en) * 1983-12-13 1987-10-27 Kiren-Amgen, Inc. DNA sequences encoding erythropoietin
NZ217645A (en) * 1985-09-25 1991-11-26 Oncogen Recombinant viruses expressing lav/htlv-iii related epitopes and vaccine formulations
AU1391888A (en) * 1987-02-11 1988-09-14 Scripps Clinic And Research Foundation Retroviral expression vectors and methods for producing hbv antigens
IL90048A0 (en) * 1988-04-25 1989-12-15 Merck & Co Inc Recombinant gag precursor of hiv,its preparation and its use as aids vaccine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230222A1 (en) * 1986-01-06 1987-07-29 F. Hoffmann-La Roche Ag Expression of HTLV-III gag-Gene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCIENCE (March 28, 1986) Vol. 231, pp. 1580-1584: *

Also Published As

Publication number Publication date
AU4320689A (en) 1991-02-06
EP0345242A3 (en) 1990-05-30
WO1991000904A1 (en) 1991-01-24
ZA894137B (en) 1990-06-27
EP0345242A2 (en) 1989-12-06
IL90381A0 (en) 1989-12-15
NZ229297A (en) 1992-01-29
PT90731A (en) 1989-12-29
AU3725689A (en) 1991-01-03
AU627465B2 (en) 1992-08-27
AP8900126A0 (en) 1989-07-31

Similar Documents

Publication Publication Date Title
AP129A (en) Expression of retrovirus gag protein eukaryotic cells
US5643756A (en) Fusion glycoproteins
AU727107B2 (en) Hiv envelope polypeptides and vaccine
Wagner et al. Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine
US5580773A (en) Chimeric immunogenic gag-V3 virus-like particles of the human immunodeficiency virus (HIV)
US6043081A (en) Expression vectors encoding recombinant proteins comprising a VPR/VPX virion incorporation domain for targeting into HIV-1 or HIV-2 virions
PL161165B1 (en) The method of manufacture of proteins env virus aids
Luo et al. Expression of gag precursor protein and secretion of virus-like gag particles of HIV-2 from recombinant baculovirus-infected insect cells
EP0546787A2 (en) Expression of specific immunogens using viral antigens
WO1994028929A1 (en) Hiv envelope polypeptides
Kang et al. Development of HIV/AIDS vaccine using chimeric gag-env virus-like particles
IL102092A (en) Use of recombinant hiv envelope protein in medicament for treating hiv and therapeutic composition containing the agglomerated protein
EP0272858A2 (en) Recombinant HIV envelope proteins produced in insect cells
EP0577894B1 (en) Design, construction and expression of chimeric proteins for development of vaccines and diagnostic reagents
JPH01500161A (en) Glycoprotein of the virus causing AIDS, method for producing the glycoprotein, and vaccine
CA2155017C (en) Vpr function and activity
JP5290576B2 (en) Modified HIV-1 envelope protein
CA2190972A1 (en) Compositions of transactivating proteins of human immunodeficiency virus
JPH0349686A (en) Expression of retrovirus gag protein in eucaryote cell
JP3085704B2 (en) Expression of HIV protein in Drosophila cells
US6270959B1 (en) Human T-cell lymphotropic virus type II envelope protein and human monoclonal antibodies specific therefor
WO1995032000A1 (en) Hiv polyprotein immunogens
Halsey Construction and characterization of chimaeric human immunodefiency virus type 1 subtype C Gag virus-like particles
LV10497B (en) Process for the production of a vaccine containing polypeptides derived from the envelope gene of human immunodeficiency virus type i