WO2025138999A1 - 一种柜式空调室内机及控制方法 - Google Patents

一种柜式空调室内机及控制方法 Download PDF

Info

Publication number
WO2025138999A1
WO2025138999A1 PCT/CN2024/116361 CN2024116361W WO2025138999A1 WO 2025138999 A1 WO2025138999 A1 WO 2025138999A1 CN 2024116361 W CN2024116361 W CN 2024116361W WO 2025138999 A1 WO2025138999 A1 WO 2025138999A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outlet
cavity
blade
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2024/116361
Other languages
English (en)
French (fr)
Inventor
董明珠
丘晓宏
何振健
骆妍
林金煌
罗文君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gree Electric Appliances Inc of Zhuhai
Gree Green Refrigeration Technology Center Co Ltd of Zhuhai
Original Assignee
Gree Electric Appliances Inc of Zhuhai
Gree Green Refrigeration Technology Center Co Ltd of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc of Zhuhai, Gree Green Refrigeration Technology Center Co Ltd of Zhuhai filed Critical Gree Electric Appliances Inc of Zhuhai
Publication of WO2025138999A1 publication Critical patent/WO2025138999A1/zh
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants

Definitions

  • the present application belongs to the technical field of air conditioning, and in particular, relates to a cabinet-type air conditioning indoor unit and a control method thereof.
  • the positions of the air supply and return air outlets remain relatively unchanged; however, the indoor air temperature is stratified along the height direction, with high-temperature air gathering on the upper side of the room and low-temperature air gathering on the lower side of the room, resulting in these cabinet air conditioners being unable to take into account both cooling and heating needs, uneven indoor air temperature distribution, and poor comfort.
  • the air supply outlet is on the upper side of the indoor unit housing.
  • the cold air When cooling and sending cold air, the cold air first quickly reaches the upper part of the human activity area, and then naturally sinks, achieving rapid cooling and less blowing feeling, taking into account both temperature drop and comfort effects; at the same time, since the return air outlet is at the lower part of the indoor unit housing, the return air temperature is low, and the energy-saving effect is better; but when heating and sending hot air, due to the principle of hot air floating, the hot air cannot come down from the upper part of the room, resulting in the phenomenon of hot top and cold bottom, and the return air temperature is low, requiring more energy to achieve the same air outlet temperature, and the energy-saving effect is poor.
  • the prior art realizes reversible upward and downward air supply by setting an axial flow fan or a mixed flow fan in the air duct.
  • an axial flow fan when used, the manufacturing cost of the motor is high, and the axial flow fan has the problems of short air supply distance and low wind pressure.
  • a mixed flow fan When a mixed flow fan is used, the fan speed is high, the noise is high and the efficiency is low.
  • the present application provides a cabinet air-conditioning indoor unit and a control method to solve the problems in the prior art of setting an axial flow fan or a mixed flow fan in the air duct to achieve reversible up and down air supply, such as a small air supply range, slow temperature change and uneven distribution of indoor air, and a long time required for the room where the indoor unit is located to reach the set temperature.
  • the present application provides a cabinet air conditioner indoor unit, comprising a shell and an air duct assembly, wherein the shell is arranged to form a shell cavity and an upper front air port is formed at the upper part of the shell, and a lower front air port is formed at the lower part of the shell; the air duct assembly is arranged in the shell cavity and the air duct assembly is formed with an upper air duct, a power fan blade cavity and a lower air duct arranged in sequence from top to bottom; the upper air duct is connected to the room through the upper front air port, the lower air duct is connected to the room through the lower front air port, and the power fan blade cavity is connected to the shell cavity through the fan blade cavity inlet; the upper air duct can be selectively connected to the power fan blade cavity or the shell cavity; the lower air duct can be selectively connected to the power fan blade cavity or the shell cavity;
  • the cabinet air conditioner indoor unit may form an upper air outlet main flow path that takes in air from the lower front air outlet and discharges air from the upper front air outlet;
  • the cabinet air conditioner indoor unit can form a lower air outlet main flow path that takes in air from the upper front air outlet and discharges air from the lower front air outlet.
  • an upper rear air outlet is formed at the upper portion of the shell, the upper front air outlet and the upper rear air outlet are arranged opposite to each other front and back, and the upper rear air outlet can be selectively opened or closed;
  • a lower rear air outlet is formed at the lower portion of the shell, the lower front air outlet and the lower rear air outlet are arranged opposite to each other front and back, and the lower rear air outlet can be selectively opened or closed; the upper portion of the shell cavity is connected to the indoor through the upper rear air outlet, and the lower portion of the shell cavity is connected to the indoor through the lower rear air outlet;
  • the cabinet air conditioner indoor unit may form a lower auxiliary air intake flow path assisted by the lower rear air vent;
  • the cabinet air conditioner indoor unit may be provided with an air inlet assisted by the upper rear air vent.
  • the cabinet air conditioner indoor unit may form an upper and lower simultaneous auxiliary air intake flow path in which the upper rear air vents and the lower rear air vents simultaneously assist in the air intake.
  • the cabinet air-conditioning indoor unit can form an upper and lower simultaneous air outlet main flow path from the upper front air outlet and the lower front air outlet.
  • an A1 vent and an A2 vent are formed at the lower portion of the upper air duct;
  • a first upper wind shield structure is movably provided between the A1 vent and the A2 vent, the first upper wind shield structure having a first working position and a second working position, when the first upper wind shield structure is in the first working position, the first upper wind shield structure opens the A1 vent and closes the A2 vent at the same time, so that the upper air duct is connected to the shell cavity and the upper air duct is not connected to the power fan cavity; when the first upper wind shield structure is in the second working position, the first upper wind shield structure closes the A1 vent and opens the A2 vent at the same time, so that the upper air duct is not connected to the shell cavity and the upper air duct is connected to the power fan cavity;
  • a B1 vent and a B2 vent are formed at the upper portion of the downwind duct; a first lower wind shield structure is movably arranged between the B1 vent and the B2 vent, the first lower wind shield structure having a third working position and a fourth working position, when the first lower wind shield structure is in the third working position, the first lower wind shield structure opens the B1 vent and closes the B2 vent at the same time, so that the downwind duct is connected to the shell cavity and the downwind duct is not connected to the power blade cavity; when the first lower wind shield structure is in the fourth working position, the first lower wind shield structure closes the B1 vent and opens the B2 vent at the same time, so that the downwind duct is not connected to the shell cavity and the downwind duct is connected to the power blade cavity.
  • the power blade chambers are provided with two, and the two power blade chambers include an upper blade chamber and a lower blade chamber arranged in sequence from top to bottom; an upper blade is rotatably arranged in the upper blade chamber, and the upper blade chamber is formed with an upper blade chamber inlet and an upper blade chamber outlet; the upper blade chamber inlet is connected with the upper blade chamber and the housing chamber, and the upper blade chamber outlet is connected with the A2 vent;
  • a downwind blade is rotatably arranged in the downwind blade cavity, and the downwind blade cavity is formed with a downwind blade cavity inlet and a downwind blade cavity outlet; the downwind blade cavity inlet is connected with the downwind blade cavity and the housing cavity, and the downwind blade cavity outlet is connected with the B2 vent;
  • the upper wind blades do not rotate and the lower wind blades rotate, and indoor air can flow through the lower air outlet main channel.
  • the power fan blade cavity is provided with one and the power fan blade cavity is an intermediate fan blade cavity; an intermediate fan blade is rotatably provided in the intermediate fan blade cavity and the intermediate fan blade cavity is formed with an intermediate fan blade cavity inlet, an intermediate fan blade cavity upper outlet and an intermediate fan blade cavity lower outlet; the intermediate fan blade cavity inlet is connected to the intermediate fan blade cavity and the shell cavity, the intermediate fan blade cavity upper outlet is connected to the A2 vent, and the intermediate fan blade cavity lower outlet is connected to the B2 vent;
  • the middle fan blade rotates, and indoor air can flow through the upper air outlet main channel;
  • the middle fan blade rotates, and indoor air can flow through the lower air outlet main channel.
  • a second upper wind shield structure and a second lower wind shield structure are rotatably provided in the intermediate wind blade cavity; the second upper wind shield structure is close to the upper outlet of the intermediate wind blade cavity, and the second lower wind shield structure is close to the lower outlet of the intermediate wind blade cavity; the second upper wind shield structure and the second lower wind shield structure are both adapted to the profile of the intermediate wind blade cavity;
  • the second lower wind shielding structure cooperates with the first lower wind shielding structure to guide the air in the middle wind blade cavity to the upper wind duct;
  • the second upper wind shield structure cooperates with the first upper wind shield structure to guide the air in the middle wind blade cavity to the lower wind duct.
  • the power blade chambers are provided with two, and the two power blade chambers include an upper blade chamber and a lower blade chamber arranged in sequence from top to bottom; an upper blade is rotatably arranged in the upper blade chamber, and the upper blade chamber is formed with an upper blade chamber inlet, an upper blade chamber C1 outlet, an upper blade chamber C2 outlet, and an upper blade chamber C3 outlet; the upper blade chamber inlet is connected to the upper blade chamber and the housing chamber, and the upper blade chamber C1 outlet is connected to the A2 vent;
  • a downwind blade is rotatably arranged in the downwind blade cavity, and the downwind blade cavity is formed with a downwind blade cavity inlet, a downwind blade cavity D1 outlet, a downwind blade cavity D2 outlet, and a downwind blade cavity D3 outlet; the downwind blade cavity inlet is connected to the downwind blade cavity and the housing cavity, and the downwind blade cavity D1 outlet is connected to the B2 vent;
  • the air duct assembly also forms an upper auxiliary air duct, a middle auxiliary air duct and a lower auxiliary air duct which are arranged in sequence from top to bottom; the upper auxiliary air duct connects the upper front air port and the upper air blade cavity C2 outlet, the lower auxiliary air duct connects the lower front air port and the lower air blade cavity D2 outlet, and the middle auxiliary air duct connects the upper air blade cavity C3 outlet and the lower air blade cavity D3 outlet.
  • the outlet of the upper wind blade chamber C2 may be movably provided with a third upper wind shielding structure, and the third upper wind shielding structure may open or close the outlet of the upper wind blade chamber C2;
  • the outlet of the lower wind blade chamber D2 may be movably provided with a third lower wind shielding structure, and the third lower wind shielding structure may open or close the outlet of the lower wind blade chamber D2;
  • the third upper wind shielding structure opens the outlet of the upper wind blade cavity C2 and the third lower wind shielding structure closes the outlet of the lower wind blade cavity D2, the lower wind duct, the lower wind blade cavity, the middle auxiliary wind duct, the upper wind blade cavity, the upper wind duct and the upper auxiliary wind duct are connected to form the upper air outlet main flow path;
  • the third upper wind shielding structure closes the outlet of the upper wind blade cavity C2 and the third lower wind shielding structure opens the outlet of the lower wind blade cavity D2, the upper air duct, the upper wind blade cavity, the middle auxiliary air duct, the lower wind blade cavity, the lower air duct and the lower auxiliary air duct are connected to form the lower air outlet main flow path;
  • the third upper wind shielding structure closes the outlet of the upper wind blade cavity C2 and the third lower wind shielding structure closes the outlet of the lower wind blade cavity D2
  • the upper wind blade cavity and the upper air duct and the lower wind blade cavity and the lower air duct form the upper and lower simultaneous air outlet main flow paths.
  • the power blade chambers are provided with two, and the two power blade chambers include an upper blade chamber and a lower blade chamber arranged in sequence from top to bottom; an upper blade is rotatably arranged in the upper blade chamber, and the upper blade chamber is formed with an upper blade chamber inlet, an upper blade chamber C1 outlet and an upper blade chamber C3 outlet; the upper blade chamber inlet is connected with the upper blade chamber and the shell chamber, the upper blade chamber C1 outlet is connected with the A2 vent, and a lower auxiliary air duct is formed between the upper blade chamber C3 outlet and the lower front air outlet; a fourth upper wind shielding structure is movably arranged at the upper blade chamber C3 outlet, and the fourth upper wind shielding structure can open or close the upper blade chamber C3 outlet;
  • a downwind blade is rotatably arranged in the downwind blade cavity, and the downwind blade cavity is formed with a downwind blade cavity inlet, a downwind blade cavity D1 outlet and a downwind blade cavity D3 outlet;
  • the downwind blade cavity inlet is connected with the downwind blade cavity and the shell cavity, the downwind blade cavity D1 outlet is connected with the B2 vent, and an upper auxiliary air duct is formed between the downwind blade cavity D3 outlet and the upper front air outlet;
  • a fourth downwind shielding structure is movably arranged at the downwind blade cavity D3 outlet, and the fourth downwind shielding structure can open or close the downwind blade cavity D3 outlet.
  • the first upper wind shielding structure when the first upper wind shielding structure is in the second working position, the first lower wind shielding structure is in the third working position, the outlet of the upper wind blade chamber C3 is closed, and the outlet of the lower wind blade chamber D3 is opened, the lower wind duct, the upper wind blade chamber, and the upper wind duct are sequentially connected to form the upper air outlet main flow path, and the lower wind duct, the lower wind blade chamber, and the upper auxiliary wind duct are sequentially connected to form the upper air outlet auxiliary flow path;
  • the first upper wind shield structure When the first upper wind shield structure is in the first working position, the first lower wind shield structure is in the fourth working position, the upper wind blade cavity C3 outlet is open and the lower wind blade cavity D3 outlet is closed, the upper air duct, the lower wind blade cavity and the lower air duct are connected in sequence to form the lower air outlet main flow path, and the upper air duct, the upper wind blade cavity and the lower auxiliary air duct are connected in sequence to form the lower air outlet auxiliary flow path.
  • the housing includes a left side wall of the housing, the fan chamber inlet includes a left fan chamber inlet, and the left fan chamber inlet The opening corresponds to the left side wall of the shell;
  • the air conditioner indoor unit also includes an indoor heat exchanger, the indoor heat exchanger includes a left heat exchanger, and the left heat exchanger is arranged between the left side wall of the shell and the left inlet of the fan blade chamber;
  • the shell also includes a right side wall of the shell, and the fan blade chamber inlet includes a right fan blade chamber inlet, and the right fan blade chamber inlet corresponds to the right side wall of the shell;
  • the air conditioner indoor unit also includes an indoor heat exchanger, and the indoor heat exchanger includes a right heat exchanger, and the right heat exchanger is arranged between the right side wall of the shell and the right fan blade chamber inlet.
  • the left heat exchanger includes an E1 heat exchange section and an F1 heat exchange section; the E1 heat exchange section extends toward the upper air duct, and the F1 heat exchange section extends toward the lower air duct; the E1 heat exchange section is arranged above the F1 heat exchange section and satisfies: 90° ⁇ 180°; and/or,
  • the right heat exchanger includes an E2 heat exchange section and an F2 heat exchange section; the E2 heat exchange section extends toward the upper air duct, and the F2 heat exchange section extends toward the lower air duct; the E2 heat exchange section is arranged above the F2 heat exchange section and satisfies: 90° ⁇ 180°;
  • is the angle between the heat exchange surface of the E1 heat exchange section and the heat exchange surface of the F1 heat exchange section
  • is the angle between the heat exchange surface of the E2 heat exchange section and the heat exchange surface of the F2 heat exchange section.
  • the present application also provides a control method for an indoor unit of a cabinet air-conditioner, wherein the indoor unit of the cabinet air-conditioner comprises a shell and an air duct assembly, the shell is surrounded by a shell cavity, and an upper front air outlet and an upper rear air outlet are formed at the upper portion of the shell, and a lower front air outlet and a lower rear air outlet are formed at the lower portion of the shell; the air duct assembly is arranged in the shell cavity, and the air duct assembly forms an upper air outlet main flow path which takes in air from the lower front air outlet and discharges air from the upper front air outlet, a lower air outlet main flow path which takes in air from the upper front air outlet and discharges air from the lower front air outlet, and an upper and lower simultaneous air outlet main flow path which discharges air from the upper front air outlet and the lower front air outlet at the same time; a lower auxiliary air inlet flow path which is assisted by the lower rear air outlet to take in air, an upper auxiliary air inlet flow path which is assisted by the upper rear air outlet to
  • the control method comprises:
  • the target operating mode is a heating mode or a cooling mode
  • the target main flow path is an upper air outlet main flow path or a lower air outlet main flow path or an upper and lower simultaneous air outlet main flow path
  • the target auxiliary air inlet flow path is a lower auxiliary air inlet flow path or an upper auxiliary air inlet flow path or an upper and lower simultaneous auxiliary air inlet flow path.
  • determining the target main flow path and the target auxiliary air inlet flow path according to the target operating mode and the comparison result between the current temperature and the first preset temperature includes:
  • the target main flow path is the simultaneous upper and lower air outlet main flow path
  • the target auxiliary air inlet flow path is the simultaneous upper and lower auxiliary air inlet flow path.
  • the determining the target main flow path and the target auxiliary air inlet flow path according to the target operating mode and the comparison result between the current temperature and the first preset temperature further includes:
  • the target operation mode is the cooling mode and the current temperature is less than or equal to the first preset temperature
  • the temperature difference between the upper and lower indoor air temperatures is calculated and compared with the second preset temperature
  • the target main flow path is the upper air outlet main flow path
  • the target auxiliary air inlet flow path is the lower auxiliary air inlet flow path
  • the target main flow path is the upper outlet main flow path
  • the target The auxiliary air inlet flow path is a simultaneous upper and lower auxiliary air inlet flow path.
  • the determining the target main flow path and the target auxiliary air inlet flow path according to the target operating mode and the comparison result between the current temperature and the first preset temperature further includes:
  • the target operation mode is the heating mode and the current temperature is greater than or equal to the first preset temperature
  • the upper and lower temperature difference between the indoor upper air temperature and the indoor lower air temperature is calculated and the upper and lower temperature difference is compared with a third preset temperature
  • the target main flow path is the lower outlet main flow path
  • the target auxiliary air inlet flow path is the upper auxiliary air inlet flow path
  • the target main flow path is the lower outlet main flow path
  • the target auxiliary air inlet flow path is the upper and lower auxiliary air inlet flow paths.
  • An upper front air outlet is formed on the upper part of the shell and a lower front air outlet is formed on the lower part of the shell, which optimizes the positions of the upper front air outlet and the lower front air outlet and increases the distance between the upper front air outlet and the lower front air outlet;
  • the cabinet air conditioner indoor unit forms an upper air outlet main flow path, and the indoor air can enter the upper air outlet main flow path through the lower front air outlet and be discharged from the upper front air outlet;
  • the cabinet air conditioner indoor unit forms a lower air outlet main flow path, and the indoor air can enter the lower air outlet main flow path through the upper front air outlet and be discharged from the lower front air outlet;
  • FIG1 is a schematic diagram of the external structure of an embodiment of a cabinet-type air-conditioning indoor unit provided by the present application;
  • FIG2 is a schematic diagram of the internal structure of a cabinet-type air-conditioning indoor unit embodiment 1 provided in the present application;
  • FIG3a, FIG3b, FIG3c and FIG3d are flow path schematic diagrams of Example 1 when the cabinet air conditioner indoor unit provided by the present application is in the upper air outlet mode;
  • FIG. 4a , FIG. 4b , FIG. 4c and FIG. 4d are flow path schematic diagrams of Example 1 when the cabinet air conditioner indoor unit provided by the present application is in a downward air outlet mode;
  • FIG5a, FIG5b and FIG5c are flow path schematic diagrams of Example 1 when the cabinet air conditioner indoor unit provided by the present application is in a mode of simultaneously discharging air from top to bottom;
  • FIG6 is a schematic diagram of the internal structure of a cabinet-type air-conditioning indoor unit according to Embodiment 2 of the present application.
  • FIG10 is a schematic diagram of the internal structure of a cabinet-type air-conditioning indoor unit according to Embodiment 3 of the present application.
  • FIG. 12a , FIG. 12b , FIG. 12c and FIG. 12d are flow path schematic diagrams of Embodiment 3 when the cabinet air conditioner indoor unit provided by the present application is in a downward air outlet mode;
  • FIGS 18a and 18b are flow path schematic diagrams of Example 4 of the cabinet air conditioner indoor unit provided by the present application when the indoor unit is in the upper air outlet mode (lower front air outlet air inlet and upper front air outlet air outlet);
  • Example 4 of the cabinet air conditioner indoor unit provided by the present application when the indoor unit is in a downward air outlet mode (air is simultaneously introduced from the upper front air outlet and the lower rear air outlet);
  • 21a and 21b are flow path schematic diagrams of Example 4 of the cabinet air conditioner indoor unit provided by the present application when the indoor unit is in a downward air outlet mode (the upper front air outlet, the upper rear air outlet and the lower rear air outlet are simultaneously inlet);
  • Example 4 of the cabinet air conditioner indoor unit provided by the present application when it is in a downward air outlet mode upper front air outlet for air inlet and lower front air outlet for air outlet
  • Example 3 of the cabinet air conditioner indoor unit provided by the present application when the indoor unit is in a simultaneous upper and lower air outlet mode (the upper rear air outlet and the lower rear air outlet take in air at the same time);
  • the prior art realizes reversible upward and downward air supply by arranging an axial flow fan or a mixed flow fan in the air duct, but the manufacturing cost of the motor is high when the axial flow fan is used, and the axial flow fan has the problems of short air supply distance and low air pressure.
  • the mixed flow fan is used, the fan speed is high, the noise is high, and the efficiency is low.
  • the present application creatively provides a cabinet air conditioner indoor unit, comprising a shell 1 and an air duct assembly, wherein the shell 1 is enclosed to form a shell cavity 17 and an upper front air port 151 is formed at the upper portion of the shell 1, and a lower front air port 111 is formed at the lower portion of the shell 1;
  • the air duct assembly is arranged in the shell cavity 17 and the air duct assembly is formed with an upper air duct 24, a power fan blade cavity and a lower air duct 25 arranged in sequence from top to bottom;
  • the upper air duct 24 is connected to the room through the upper front air port 151, the lower air duct 25 is connected to the room through the lower front air port 111, and the power fan blade cavity is connected to the shell cavity 17 through the fan blade cavity inlet;
  • the upper air duct 24 can be selectively connected to the power fan blade cavity or the shell cavity 17;
  • the lower air duct 25 can be selectively connected to the power fan blade cavity or the shell cavity 17;
  • the upper part of the shell 1 is formed with an upper front air vent 151 and the lower part of the shell 1 is formed with a lower front air vent 111, the positions of the upper front air vent 151 and the lower front air vent 111 are optimized, and the distance between the upper front air vent 151 and the lower front air vent 111 is increased; when cooling, the upper air duct 24 is connected to the power fan chamber and the lower air duct 25 is connected to the shell chamber 17, and the cabinet air conditioner indoor unit is formed with an upper air outlet main flow path, and the indoor air can enter the upper air outlet main flow path through the lower front air vent 111 and be discharged through the upper front air vent 151; when heating, the upper air duct 24 and the shell chamber are connected.
  • the cabinet air conditioner indoor unit forms a downwind main flow path, the indoor air can enter the downwind main flow path through the upper front air outlet 151 and be discharged through the lower front air outlet 111; the principle that cold air sinks during cooling and hot air floats during heating is fully utilized to form a large vortex flow in the room where the indoor unit is located, thereby increasing the temperature change rate of the indoor air, making the temperature distribution of the indoor air uniform and the flow rate stable, shortening the time required for the room where the indoor unit is located to reach the set temperature, and improving the air comfort.
  • the housing 1 includes a housing top wall 15 and a housing front side wall 11.
  • the housing top wall 15 is formed with an upper front air vent 151.
  • a lower front air outlet 111 is formed at the lower portion of the wall 11; the upper portion of the upper air duct 24 is connected to the indoor space via the upper front air outlet 151, and the lower portion of the lower air duct 25 is connected to the indoor space via the lower front air outlet 111; the lower portion of the upper air duct 24 can be selectively connected to the power fan blade cavity or the shell cavity 17; the upper portion of the lower air duct 25 can be selectively connected to the power fan blade cavity or the shell cavity 17.
  • an upper rear air port 152 is further formed at the upper portion of the housing 1, the upper front air port 151 and the upper rear air port 152 are arranged opposite to each other front to back, and the upper rear air port 152 can be selectively opened or closed;
  • a lower rear air port 141 is further formed at the lower portion of the housing 1, the lower front air port 111 and the lower rear air port 141 are arranged opposite to each other front to back, and the lower rear air port 141 can be selectively opened or closed;
  • the upper portion of the housing cavity 17 is connected to the indoor room through the upper rear air port 152, and the lower portion of the housing cavity 17 is connected to the indoor room through the lower rear air port 141;
  • the cabinet air conditioner indoor unit may form a lower auxiliary air intake flow path assisted by the lower rear air vent 141;
  • the cabinet air conditioner indoor unit may form an upper auxiliary air intake flow path assisted by the upper rear air vent 152;
  • the cabinet air conditioner indoor unit can form an upper and lower auxiliary air inlet flow path that is assisted by the upper rear air vent 152 and the lower rear air vent 141 at the same time;
  • the upper auxiliary air inlet flow path, the lower auxiliary air inlet flow path and the upper and lower auxiliary air inlet flow paths increase the air intake volume and reduce the air intake resistance; reduce the noise of the indoor unit and ensure that the air output volume and noise meet the requirements;
  • auxiliary air inlet flow path can realize different air inlet and outlet modes, specifically:
  • the upper auxiliary air inlet flow path is combined with the upper main air outlet flow path, and the cabinet air conditioner indoor unit can realize the first air inlet and outlet mode of air intake from the upper rear air outlet 152 and the lower front air outlet 111 at the same time and air outlet from the upper front air outlet 151;
  • the cabinet air conditioner indoor unit can realize a second air inlet and outlet mode in which air is simultaneously taken in by the lower rear air outlet 141 and the lower front air outlet 111 and air is discharged by the upper front air outlet 151;
  • the cabinet air conditioner indoor unit can realize a third air inlet and outlet mode in which air is simultaneously taken in by the upper rear air outlet 152, the lower rear air outlet 141 and the lower front air outlet 111 and air is discharged by the upper front air outlet 151;
  • the cabinet air conditioner indoor unit can realize a fourth air inlet and outlet mode in which air is simultaneously taken in by the upper rear air outlet 152 and the upper front air outlet 151 and air is discharged by the lower front air outlet 111;
  • the cabinet air conditioner indoor unit can realize the fifth air inlet and outlet mode of air intake from the lower rear air outlet 141 and the upper front air outlet 151 at the same time and air outlet from the lower front air outlet 111;
  • the cabinet air conditioner indoor unit can realize the sixth air inlet and outlet mode of simultaneously taking in air through the upper rear air outlet 152 , the lower rear air outlet 141 and the upper front air outlet 151 and exhausting air through the lower front air outlet 111 .
  • the shell top wall 15 is also formed with an upper rear air outlet 152;
  • the shell 1 also includes a shell rear side wall 14, the shell front side wall 11 and the shell rear side wall 14 are arranged opposite to each other front and back, and the shell front side wall 11 and the shell rear side wall 14 are both connected to the shell top wall 15;
  • a lower rear air outlet 141 is formed at the lower part of the shell rear side wall 14.
  • the cabinet air conditioner indoor unit can form an upper and lower simultaneous air outlet main flow path from the upper front air outlet 151 and the lower front air outlet 111.
  • the housing 1 further includes a right side wall 13 of the housing, the inlet of the fan chamber includes a right inlet of the fan chamber, and the right inlet of the fan chamber corresponds to the right side wall 13 of the housing;
  • the indoor unit of the air conditioner further includes an indoor heat exchanger 4, and the indoor heat exchanger 4 includes a right heat exchanger, and the right heat exchanger is arranged at the right side wall 13 of the housing and Between the right inlet of the fan chamber.
  • A1 vents 241 are formed on the lower sidewall of the upper air duct 24 , and A2 vents 242 are formed at the lower end of the upper air duct 24 ; B1 vents 251 are formed on the upper sidewall of the lower air duct 25 , and B2 vents 252 are formed at the upper end of the lower air duct 25 .
  • the power fan blade cavity is provided with one and the power fan blade cavity is the middle fan blade cavity 23, the upper air duct 24, the middle fan blade cavity 23 and the lower air duct 25 are arranged in sequence from top to bottom;
  • the lower part of the upper air duct 24 is formed with an A1 vent 241 and an A2 vent 242, the A1 vent 241 connects the upper air duct 24 and the shell cavity 17;
  • the upper part of the lower air duct 25 is formed with a B1 vent 251 and a B2 vent 252, the B1 vent
  • the opening 251 is connected to the lower air duct 25 and the shell cavity 17;
  • the intermediate blade 233 is rotatably arranged in the intermediate blade cavity 23, and the intermediate blade cavity 23 is formed with an intermediate blade cavity inlet, an intermediate blade cavity upper outlet 231 and an intermediate blade cavity lower outlet 232;
  • the intermediate blade cavity 23 inlet is connected to the intermediate blade cavity 23 and the shell cavity 17, the intermediate blade cavity upper outlet 231 is connected to the A2 vent 242, and the intermediate blade
  • a first upper wind shielding structure 311 is rotatably provided between the A1 vent 241 and the A2 vent 242.
  • the first upper wind shielding structure 311 has a first working position and a second working position.
  • the first upper wind shielding structure 311 opens the A1 vent 241 and closes the A2 vent 242, so that the upper air duct 24 is connected to the shell cavity 17 and the upper air duct 24 is not connected to the power blade cavity;
  • the first upper wind shielding structure 311 closes the A1 vent 241 and opens the A2 vent 242, so that the upper air duct 24 is not connected to the shell cavity 17 and the upper air duct 24 is connected to the power blade cavity;
  • a first lower wind shielding structure 321 is rotatably provided between the B1 vent 251 and the B2 vent 252.
  • the first lower wind shielding structure 321 has a third working position and a fourth working position.
  • the first lower wind shielding structure 321 opens the B1 vent 251 and closes the B2 vent 252, so that the lower air duct 25 is connected to the shell cavity 17 and the lower air duct 25 is not connected to the power blade cavity;
  • the first lower wind shielding structure 321 when the first lower wind shielding structure 321 is in the fourth working position, the first lower wind shielding structure 321 closes the B1 vent 251 and opens the B2 vent 252, so that the lower air duct 25 is not connected to the shell cavity 17 and the lower air duct 25 is connected to the power blade cavity;
  • the middle fan blade 233 rotates, and the indoor air can flow through the upper air outlet main flow path;
  • the middle fan blade 233 rotates, and the indoor air can flow through the lower air outlet main channel;
  • a second upper wind shielding structure 312 and a second lower wind shielding structure 322 are rotatably provided in the middle wind blade cavity 23; the second upper wind shielding structure 312 is close to the upper outlet 231 of the middle wind blade cavity, and the second lower wind shielding structure 322 is close to the upper and lower outlets 232 of the middle wind blade cavity; the second upper wind shielding structure 312 and the second lower wind shielding structure 322 are both adapted to the profile of the middle wind blade cavity 23; preferably, the second upper wind shielding structure 312 and the second lower wind shielding structure 322 are both baffles;
  • the second lower wind shielding structure 322 cooperates with the first lower wind shielding structure 321 to guide the air in the middle wind blade cavity 23 to the upper air duct 24;
  • the second upper wind shielding structure 312 cooperates with the first upper wind shielding structure 311 to guide the air in the middle wind blade cavity 23 to the lower air duct 25 .
  • the upper air outlet modes include the following four types:
  • the middle fan blade 233 rotates, and the indoor air near the lower rear air outlet 141 enters the shell cavity 17 through the lower rear air outlet 141; the indoor air near the lower front air outlet 111 enters the lower air duct 25 through the lower front air outlet 111, and then enters the shell cavity 17 through the B1 vent 251; the air in the shell cavity 17 enters the middle fan blade cavity 23 through the inlet of the middle fan blade cavity 23, and then enters the upper air duct 24 through the A2 vent 242, and is discharged through the upper front air outlet 151;
  • the middle fan blade 233 rotates, and the indoor air near the upper rear air outlet 152 enters the shell cavity 17 through the upper rear air outlet 152;
  • the indoor air near the lower front air outlet 111 enters the lower air duct 25 through the lower front air outlet 111, and then enters the shell cavity 17 through the B1 vent 251;
  • the air in the shell cavity 17 enters the middle fan blade cavity 23 through the inlet of the middle fan blade cavity 23, and then enters the upper air duct 24 through the A2 vent 242, and is discharged through the upper front air outlet 151;
  • the above four upper air outlet modes can meet different cooling needs.
  • the middle fan blade 233 rotates, and the indoor air near the upper rear air port 152 enters the shell cavity 17 through the upper rear air port 152; the indoor air near the upper front air port 151 enters the upper air duct 24 through the upper front air port 151, and then enters the shell cavity 17 through the A1 vent 241; the air in the shell cavity 17 enters the middle fan blade cavity 23 through the inlet of the middle fan blade cavity 23, and then enters the lower air duct 25 through the B2 vent 252, and is discharged through the lower front air port 111;
  • the middle fan blade 233 rotates, and the indoor air near the lower rear air outlet 141 enters through the lower rear air outlet 141.
  • the indoor air near the upper front air outlet 151 enters the upper air duct 24 through the upper front air outlet 151, and then enters the housing cavity 17 through the A1 vent 241;
  • the air in the housing cavity 17 enters the middle air blade cavity 23 through the inlet of the middle air blade cavity 23, and then enters the lower air duct 25 through the B2 vent 252, and is discharged through the lower front air outlet 111;
  • the middle fan blade 233 rotates, and the indoor air close to the lower rear air outlet 141 enters the shell cavity 17 through the lower rear air outlet 141; the air in the shell cavity 17 enters the middle fan blade cavity 23 through the inlet of the middle fan blade cavity 23, a part of the air enters the upper air duct 24 through the A2 vent 242, and is discharged through the upper front air outlet 151; the other part of the air enters the lower air duct 25 through the B2 vent 252, and is discharged through the lower front air outlet 111.
  • A1 vents 241 are formed on the lower sidewall of the upper air duct 24 , and A2 vents 242 are formed at the lower end of the upper air duct 24 ; B1 vents 251 are formed on the upper sidewall of the lower air duct 25 , and B2 vents 252 are formed at the upper end of the lower air duct 25 .
  • an A1 vent 241 and an A2 vent 242 are formed at the lower portion of the upper air duct 24; two power air blade chambers are provided, and the two power air blade chambers include an upper air blade chamber 21 and a lower air blade chamber 22 arranged sequentially from top to bottom; an upper air blade 214 is rotatably arranged in the upper air blade chamber 21, and the upper air blade chamber 21 is formed with an upper air blade chamber inlet, an upper air blade chamber C1 outlet 211, an upper air blade chamber C2 outlet 212 and an upper air blade chamber C3 outlet 213; the upper air blade chamber inlet is connected to the upper air blade chamber 21 and the housing chamber 17, and the upper air blade chamber C1 outlet 211 is connected to the A2 vent 242;
  • a first upper wind shielding structure 311 is rotatably disposed between the A1 vent 241 and the A2 vent 242.
  • the first upper wind shielding structure 311 has a first working position and a second working position.
  • the first upper wind shielding structure 311 opens the A1 vent
  • the vent 241 simultaneously closes the A2 vent 242, so that the upper air duct 24 is connected to the shell cavity 17, and the upper air duct 24 is not connected to the upper wind blade cavity 21;
  • the first upper wind shielding structure 311 closes the A1 vent 241 and simultaneously opens the A2 vent 242, so that the upper air duct 24 is not connected to the shell cavity 17, and the upper air duct 24 is connected to the upper wind blade cavity 21;
  • the upper part of the downwind duct 25 is formed with a B1 vent 251 and a B2 vent 252; a downwind blade 224 is rotatably provided in the downwind blade cavity 22, and the downwind blade cavity 22 is formed with a downwind blade cavity inlet, a downwind blade cavity D1 outlet 221, a downwind blade cavity D2 outlet 222, and a downwind blade cavity D3 outlet 223; the downwind blade cavity inlet is connected to the downwind blade cavity 22 and the housing cavity 17, and the downwind blade cavity D1 outlet 221 is connected to the B2 vent 252;
  • a first lower wind shield structure 321 is rotatably provided between the B1 vent 251 and the B2 vent 252, and the first lower wind shield structure 321 has a third working position and a fourth working position.
  • the first lower wind shield structure 321 opens the B1 vent 251 and closes the B2 vent 252 at the same time, so that the downwind duct 25 is connected to the shell cavity 17, and the downwind duct 25 is not connected to the downwind blade cavity 22;
  • the first lower wind shield structure 321 is in the fourth working position, the first lower wind shield structure 321 closes the B1 vent 251 and opens the B2 vent 252 at the same time, so that the downwind duct 25 is not connected to the shell cavity 17, and the downwind duct 25 is connected to the power blade cavity.
  • the air duct assembly is further formed with an upper auxiliary air duct 261, a middle auxiliary air duct 262 and a lower auxiliary air duct 263 which are arranged in sequence from top to bottom;
  • the upper auxiliary air duct 261 is connected to the upper front air outlet 151 and the upper air blade chamber C2 outlet 212
  • the lower auxiliary air duct 263 is connected to the lower front air outlet 111 and the lower air blade chamber D2 outlet 222
  • the middle auxiliary air duct 262 is connected to the upper air blade chamber C3 outlet 213 and the lower air blade chamber D3 outlet 223;
  • the upper wind blade chamber C2 outlet 212 is rotatably provided with a third upper wind shielding structure 313, and the third upper wind shielding structure 313 can open or close the upper wind blade chamber C2 outlet 212; when the upper wind blade chamber C2 outlet 212 is opened, the upper wind blade chamber 21 is connected to the upper auxiliary air duct 261, and when the upper wind blade chamber C2 outlet 212 is closed, the upper wind blade chamber 21 and the upper auxiliary air duct 261 are not connected;
  • the lower wind blade chamber D2 outlet 222 is rotatably provided with a third lower wind shielding structure 323, and the third lower wind shielding structure 323 can open or close the lower wind blade chamber D2 outlet 222; when the lower wind blade chamber D2 outlet 222 is opened, the lower wind blade chamber 22 is connected to the lower auxiliary air duct 263, and when the lower wind blade chamber D2 outlet 222 is closed, the lower wind blade chamber 22 and the lower auxiliary air duct 263 are not connected;
  • the third upper wind shielding structure 313 opens the upper wind blade cavity C2 outlet 212
  • the third lower wind shielding structure 323 closes the lower wind blade cavity D2 outlet 222
  • the lower wind duct 25, the lower wind blade cavity 22, the middle auxiliary wind duct 262, the upper wind blade cavity 21, the upper wind duct 24 and the upper auxiliary wind duct 261 are connected to form an upper air outlet main flow path;
  • the third upper wind shielding structure 313 closes the upper wind blade cavity C2 outlet 212
  • the third lower wind shielding structure 323 opens the lower wind blade cavity D2 outlet 222
  • the upper air duct 24, the upper wind blade cavity 21, the middle auxiliary air duct 262, the lower wind blade cavity 22, the lower air duct 25 and the lower auxiliary air duct 263 are connected to form a lower air outlet main flow path;
  • the third upper wind shield structure 313 closes the upper wind blade chamber C2 outlet 212
  • the third lower wind shield structure 323 closes the lower wind blade chamber D2 outlet 222
  • the upper wind blade chamber 21 and the upper air duct 24 and the lower wind blade chamber 22 and the lower air duct 25 form upper and lower main air outlet paths at the same time;
  • the third upper wind shield structure 313 and the third lower wind shield structure 323 are both baffles.
  • the upper air outlet modes include the following four types:
  • the upper rear air outlet 152 is open and the lower rear air outlet 141 is closed, the first upper wind shielding structure 311 is in the second working position and the first lower wind shielding structure 311 is in the second working position.
  • the third upper wind shielding structure 313 opens the upper wind blade chamber C2 outlet 212 and the third lower wind shielding structure 323 closes the lower wind blade chamber D2 outlet 222, the upper wind blades 214 and the lower wind blades 224 rotate, and the indoor air near the upper rear air port 152 enters the shell cavity 17 through the upper rear air port 152; the indoor air near the lower front air port 111 enters the lower air duct 25 through the lower front air port 111, and then enters the shell cavity 17 through the B1 vent 251; a part of the shell cavity 17
  • the divided air enters the lower blade chamber 22 through the lower blade chamber inlet, then enters the middle auxiliary air duct 262 through the lower blade chamber D2 outlet 222, and enters the upper blade chamber 21; another
  • the above four upper air outlet modes can meet different cooling needs.
  • the air in the housing cavity 17 enters the upper wind blade cavity 21 through the upper wind blade cavity inlet, then enters the upper wind duct 24 through the upper wind blade cavity C1 outlet 211 and the A2 vent 242, and is discharged through the upper front air outlet 151; another part of the air in the housing cavity 17 enters the lower wind blade cavity 22 through the lower wind blade cavity inlet, then enters the lower wind duct 25 through the lower wind blade cavity D1 outlet 221 and the B2 vent 252, and is discharged through the lower front air outlet 111;
  • the air in the shell cavity 17 enters the upper wind blade cavity 21 through the upper wind blade cavity inlet, then enters the upper air duct 24 through the upper wind blade cavity C1 outlet 211 and the A2 vent 242, and is discharged through the upper front air outlet 151; another part of the air in the shell cavity 17 enters the lower wind blade cavity 22 through the lower wind blade cavity inlet; then enters the lower air duct 25 through the lower wind blade cavity D1 outlet 221 and the B2 vent 252, and is discharged through the lower front air outlet 111.
  • A1 vents 241 are formed on the lower sidewall of the upper air duct 24 , and A2 vents 242 are formed at the lower end of the upper air duct 24 ; B1 vents 251 are formed on the upper sidewall of the lower air duct 25 , and B2 vents 252 are formed at the upper end of the lower air duct 25 .
  • an A1 vent 241 and an A2 vent 242 are formed at the lower part of the upper air duct 24; two power air blade chambers are provided, and the two power air blade chambers include an upper air blade chamber 21 and a lower air blade chamber 22 arranged in sequence from top to bottom; an upper air blade 214 is rotatably provided in the upper air blade chamber 21, and the upper air blade chamber 21 is formed with an upper air blade chamber inlet, an upper air blade chamber C1 outlet 211 and an upper air blade chamber C3 outlet 213; the upper air blade chamber inlet is connected to the upper air blade chamber 21 and the shell chamber 17, the upper air blade chamber C1 outlet 211 is connected to the A2 vent 242, and a lower auxiliary air duct 272 is formed between the upper air blade chamber C3 outlet 213 and the lower front air outlet 111; a fourth upper wind shielding structure 314 is rotatably provided at the upper air blade chamber C3 outlet 213, and the fourth upper wind shielding structure 314 can open or close the upper air
  • a first upper wind shielding structure 311 is rotatably provided between the A1 vent 241 and the A2 vent 242.
  • the first upper wind shielding structure 311 has a first working position and a second working position.
  • the first upper wind shielding structure 311 opens the A1 vent 241 and closes the A2 vent 242, so that the upper air duct 24 is connected to the shell cavity 17 and the upper air duct 24 is not connected to the upper wind blade cavity 21;
  • the first upper wind shielding structure 311 closes the A1 vent 241 and opens the A2 vent 242, so that the upper air duct 24 is not connected to the shell cavity 17 and the upper air duct 24 is connected to the upper wind blade cavity 21;
  • a B1 vent 251 and a B2 vent 252 are formed at the upper portion of the downwind duct 25; a downwind blade 224 is rotatably provided in the downwind blade cavity 22, and the downwind blade cavity 22 is formed with a downwind blade cavity inlet, a downwind blade cavity D3 outlet 223 and a downwind blade cavity D1 outlet 221; the downwind blade cavity inlet is connected to the downwind blade cavity 22 and the shell cavity 17, the downwind blade cavity D1 outlet 221 is connected to the B2 vent 252, and an upper auxiliary duct 271 is formed between the downwind blade cavity D3 outlet 223 and the upper front air outlet 151; a fourth lower wind shielding structure 324 is rotatably provided at the downwind blade cavity D3 outlet 223, and the fourth lower wind shielding structure 324 can open or close the downwind blade cavity D3 outlet 223; preferably, the fourth upper wind shielding structure 314 and the fourth lower wind shielding structure 324 are both baffles;
  • a first lower wind shield structure 321 is rotatably provided between the B1 vent 251 and the B2 vent 252, and the first lower wind shield structure 321 has a third working position and a fourth working position.
  • the first lower wind shield structure 321 opens the B1 vent 251 and closes the B2 vent 252 at the same time, so that the downwind duct 25 is connected to the shell cavity 17 and the downwind duct 25 is not connected to the downwind blade cavity 22;
  • the first lower wind shield structure 321 is in the fourth working position, the first lower wind shield structure 321 closes the B1 vent 251 and opens the B2 vent 252 at the same time, so that the downwind duct 25 is not connected to the shell cavity 17 and the downwind duct 25 is connected to the downwind blade cavity 22.
  • the first upper wind shielding structure 311 when the first upper wind shielding structure 311 is in the second working position, the first lower wind shielding structure 321 is in the third working position, the upper wind blade chamber C3 outlet 213 is closed, and the lower wind blade chamber D3 outlet 223 is opened, the lower wind duct 25, the upper wind blade chamber 21, and the upper wind duct 24 are sequentially connected to form an upper air outlet main flow path, and the lower wind duct 25, the lower wind blade chamber 22, and the upper auxiliary wind duct 271 are sequentially connected to form an upper air outlet auxiliary flow path;
  • the first upper wind shield structure 311 When the first upper wind shield structure 311 is in the first working position, the first lower wind shield structure 321 is in the fourth working position, the upper wind blade chamber C3 outlet 213 is opened and the lower wind blade chamber D3 outlet 223 is closed, the upper air duct 24, the lower wind blade chamber 22 and the lower air duct 25 are connected in sequence to form a lower air outlet main flow path, and the upper air duct 24, the upper wind blade chamber 21 and the lower auxiliary air duct 272 are connected in sequence to form a lower air outlet auxiliary flow path.
  • the upper air outlet modes include the following four types:
  • the front air outlet 111 enters the lower air duct 25, and then enters the shell cavity 17 through the B1 vent 251; a part of the air in the shell cavity 17 enters the lower air blade cavity 22 through the lower air blade cavity inlet, and then is discharged through the lower air blade cavity D3 outlet 223, the upper auxiliary air duct 271 and the upper front air outlet 151; another part of the air in the shell cavity 17 enters the upper air blade cavity 21 through the upper air blade cavity inlet, and then is discharged through the upper air blade cavity C1 outlet 211, the upper air duct 24 and the upper front air outlet 151;
  • the above four upper air outlet modes can meet different cooling needs.
  • the front air outlet 151 enters the upper air duct 24, and then enters the shell cavity 17 through the A1 vent 241; a part of the air in the shell cavity 17 enters the upper air blade cavity 21 through the upper air blade cavity inlet, and then is discharged through the upper air blade cavity C3 outlet 213, the lower auxiliary air duct 272 and the lower front air outlet 111; another part of the air in the shell cavity 17 enters the lower air blade cavity 22 through the lower air blade cavity inlet, and then is discharged through the lower air blade cavity D1 outlet 221, the lower air duct 25 and the lower front air outlet 111;
  • A1 vents 241 are formed on the lower sidewall of the upper air duct 24 , and A2 vents 242 are formed at the lower end of the upper air duct 24 ; B1 vents 251 are formed on the upper sidewall of the lower air duct 25 , and B2 vents 252 are formed at the upper end of the lower air duct 25 .
  • the present embodiment provides a control method for a cabinet air conditioner indoor unit, wherein the cabinet air conditioner indoor unit comprises a housing 1 and an air duct assembly, wherein the housing 1 is arranged to form a housing cavity 17 and an upper front air outlet 151 and an upper rear air outlet 152 are formed at the upper portion of the housing 1, and a lower front air outlet 151 and an upper rear air outlet 152 are formed at the lower portion of the housing 1.
  • the air duct assembly is arranged in the shell cavity 17 and the air duct assembly forms an upper air outlet main flow path for taking in air from the lower front air outlet 111 and discharging air from the upper front air outlet 151, a lower air outlet main flow path for taking in air from the upper front air outlet 151 and discharging air from the lower front air outlet 111, and an upper and lower simultaneous air outlet main flow path for discharging air from the upper front air outlet 151 and the lower front air outlet 111 at the same time; a lower auxiliary air inlet flow path for assisting air intake from the lower rear air outlet 141, an upper auxiliary air inlet flow path for assisting air intake from the upper rear air outlet 152, and an upper and lower simultaneous auxiliary air inlet flow path for assisting air intake from the upper rear air outlet 152 and the lower rear air outlet 141 at the same time are formed between the shell cavity 17 and the air duct assembly; preferably, the cabinet air-conditioning indoor unit is the cabinet air-conditioning indoor unit in
  • Control methods include:
  • the target operating mode is heating mode or cooling mode
  • the target mainstream path is the upper air outlet mainstream path or the lower air outlet mainstream path or the upper and lower simultaneous air outlet mainstream path
  • the target auxiliary air inlet path is the lower auxiliary air inlet path or the upper auxiliary air inlet path or the upper and lower simultaneous auxiliary air inlet path.
  • S3 includes:
  • the target main flow path is the upper and lower simultaneous air outlet main flow path
  • the target auxiliary air inlet flow path is the upper and lower simultaneous auxiliary air inlet flow path
  • the air is discharged through the upper front air vents 151 and the lower front air vents 111 at the same time, achieving enveloping cooling or enveloping heating.
  • S3 also includes:
  • the target operation mode is the cooling mode and the current temperature is less than or equal to the first preset temperature
  • the upper and lower temperature differences between the indoor upper air temperature and the lower air temperature are calculated and compared with the second preset temperature
  • the target main flow path is the upper outlet main flow path
  • the target auxiliary air inlet flow path is the lower auxiliary air inlet flow path
  • the target main flow path is the upper outlet main flow path
  • the target auxiliary air inlet flow path is the upper and lower auxiliary air inlet flow paths
  • S3 includes:
  • the target operation mode is the heating mode and the current temperature is greater than or equal to the first preset temperature
  • the upper and lower temperature difference between the indoor upper air temperature and the lower air temperature is calculated and compared with the third preset temperature
  • the target main flow path is the lower outlet main flow path, and the target auxiliary air inlet flow path is the upper auxiliary air inlet flow path; the temperature of the air inlet at the upper rear air inlet is high, the compressor operating frequency is reduced, and air conditioning energy saving is achieved;
  • the target mainstream path is the lower outlet mainstream path
  • the target auxiliary air inlet path is the upper and lower auxiliary air inlet paths at the same time; hot air does not blow on the head, thereby improving air conditioning comfort.
  • An upper temperature sensing package is provided at the upper layer of the room to detect the temperature of the upper air layer of the room; a lower temperature sensing package is provided at the lower layer of the room to detect the temperature of the lower air layer of the room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种柜式空调室内机及控制方法,该柜式空调室内机包括壳体(1)和风道组件,所述壳体(1)围设成壳体腔(17),壳体(1)的上部形成有上前风口(151)和上后风口(152),壳体(1)的下部形成有下前风口(111)和下后风口(141);风道组件形成有依次设置的上风道(24)、动力风叶腔和下风道(25);上风道(24)和上前风口(151)连通,下风道(25)和下前风口(111)连通,动力风叶腔和壳体腔(17)连通;使上风道(24)和动力风叶腔连通且下风道(25)和壳体腔(17)连通,柜式空调室内机形成有由下前风口(111)进风且由上前风口(151)出风的上出风主流路;使上风道(24)和壳体腔(17)连通且下风道(25)和动力风叶腔连通,柜式空调室内机形成有由上前风口(151)进风且由下前风口(111)出风的下出风主流路;使上后风口(152)和/或下后风口(141)打开及上风道(24)和下风道(25)均和动力风叶腔连通,柜式空调室内机形成有由上前风口(151)和下前风口(111)同时出风的上下同时出风主流路。该柜式空调室内机提高了空气的舒适性。

Description

一种柜式空调室内机及控制方法
本申请要求于2023年12月29日提交至中国国家知识产权局、申请号为202311863033.4、申请名称为“一种柜式空调室内机及控制方法”的专利申请的优先权。
技术领域
本申请属于空调技术领域,尤其涉及一种柜式空调室内机及控制方法。
背景技术
传统柜式空调室内机中,送风口和回风口的位置相对不变;但室内空气温度沿高度方向分层,温度高的空气聚集在室内的上侧,温度低的空气聚集在室内的下侧,导致这些柜式空调无法兼顾制冷制热需求、室内空气温度分布不均和舒适性差。以上送风下回风的柜式空调室内机为例,送风口在室内机壳体的上侧,制冷送冷风时冷风先快速到达人体活动区域的上方,后自然下沉,实现快速降温和较小吹风感,兼顾温降和舒适性效果;同时由于回风口在室内机壳体的下部,回风温度低,节能效果较好;但在制热送热风时,由于热气上浮原理热风在房间上部下不来,出现上热下凉现象,回风温度低,需要消耗更多的能量才能达到相同的出风温度,节能效果较差。
针对上述问题,现有技术通过在风道内设置轴流风机或混流风机实现可逆上下送风,但采用轴流风机时对电机的制造成本要求高,且轴流风机存在送风距离短和风压小的问题;采用混流风机时风机转速高噪音大和效率低。
发明内容
鉴于此,本申请提供一种柜式空调室内机及控制方法,以解决现有技术中在风道内设置轴流风机或混流风机实现可逆上下送风时送风范围小、室内空气的温度变化较慢、分布不均匀及室内机所在房间达到设定温度所需时间长等问题。
本申请提供一种柜式空调室内机,包括壳体和风道组件,所述壳体围设成壳体腔且所述壳体的上部形成有上前风口,所述壳体的下部形成有下前风口;所述风道组件设置在所述壳体腔内且所述风道组件形成有由上至下依次设置的上风道、动力风叶腔和下风道;所述上风道通过所述上前风口和室内连通,所述下风道通过所述下前风口和室内连通,所述动力风叶腔通过风叶腔进口和壳体腔连通;所述上风道可选择地与动力风叶腔或壳体腔连通;所述下风道可选择地与动力风叶腔或壳体腔连通;
所述上风道和动力风叶腔连通且所述下风道和壳体腔连通时,所述柜式空调室内机可形成有由所述下前风口进风且由所述上前风口出风的上出风主流路;
所述上风道和壳体腔连通且所述下风道和动力风叶腔连通时,所述柜式空调室内机可形成有由所述上前风口进风且由所述下前风口出风的下出风主流路。
进一步可选地,所述壳体的上部还形成有上后风口,所述上前风口和上后风口前后相对设置且所述上后风口可选择地打开或关闭;所述壳体的下部还形成有下后风口,所述下前风口和下后风口前后相对设置且所述下后风口可选择地打开或关闭;所述壳体腔的上部通过所述上后风口和室内连通,所述壳体腔的下部通过所述下后风口和室内连通;
所述上后风口关闭且所述下后风口打开时,所述柜式空调室内机可形成有由所述下后风口辅助进风的下辅助进风流路;
所述上后风口打开且所述下后风口关闭时,所述柜式空调室内机可形成有由所述上后风口辅助进 风的上辅助进风流路;
所述上后风口和下后风口均打开时,所述柜式空调室内机可形成有由所述上后风口和下后风口同时辅助进风的上下同时辅助进风流路。
进一步可选地,所述上后风口和下后风口中的至少一个打开、所述上风道和下风道均和动力风叶腔连通时,所述柜式空调室内机可形成有由所述上前风口和下前风口同时出风的上下同时出风主流路。
进一步可选地,所述上风道的下部形成有A1通风口和A2通风口;所述A1通风口和A2通风口之间可活动地设置有第一上挡风结构,所述第一上挡风结构具有第一工作位和第二工作位,所述第一上挡风结构处于所述第一工作位时,所述第一上挡风结构打开所述A1通风口同时关闭所述A2通风口,使所述上风道和壳体腔连通且所述上风道和动力风叶腔不连通;所述第一上挡风结构处于所述第二工作位时,所述第一上挡风结构关闭所述A1通风口同时打开所述A2通风口,使所述上风道和壳体腔不连通且所述上风道和动力风叶腔连通;
所述下风道的上部形成有B1通风口和B2通风口;所述B1通风口和B2通风口之间可活动地设置有第一下挡风结构,所述第一下挡风结构具有第三工作位和第四工作位,所述第一下挡风结构处于所述第三工作位时,所述第一下挡风结构打开所述B1通风口同时关闭所述B2通风口,使所述下风道和壳体腔连通且所述下风道和动力风叶腔不连通;所述第一下挡风结构处于所述第四工作位时,所述第一下挡风结构关闭所述B1通风口同时打开所述B2通风口,使所述下风道和壳体腔不连通且所述下风道和动力风叶腔连通。
进一步可选地,所述动力风叶腔设置有两个,两个所述动力风叶腔包括由上至下依次设置的上风叶腔和下风叶腔;所述上风叶腔内可转动地设置有上风叶且所述上风叶腔形成有上风叶腔进口和上风叶腔出口;所述上风叶腔进口连通所述上风叶腔和壳体腔,所述上风叶腔出口和A2通风口连通;
所述下风叶腔内可转动地设置有下风叶且所述下风叶腔形成有下风叶腔进口和下风叶腔出口;所述下风叶腔进口连通所述下风叶腔和壳体腔,所述下风叶腔出口和B2通风口连通;
所述第一上挡风结构处于所述第二工作位且所述第一下挡风结构处于所述第三工作位时,所述上风叶转动且所述下风叶不转动,室内空气可流经所述上出风主流路;
所述第一上挡风结构处于所述第一工作位且所述第一下挡风结构处于所述第四工作位时,所述上风叶不转动且所述下风叶转动,室内空气可流经所述下出风主流路。
进一步可选地,所述动力风叶腔设置有一个且所述动力风叶腔为中间风叶腔;所述中间风叶腔内可转动地设置有中间风叶且所述中间风叶腔形成有中间风叶腔进口、中间风叶腔上出口和中间风叶腔下出口;所述中间风叶腔进口连通所述中间风叶腔和壳体腔,所述中间风叶腔上出口和A2通风口连通,所述中间风叶腔下出口和B2通风口连通;
所述第一上挡风结构处于所述第二工作位且所述第一下挡风结构处于所述第三工作位时,所述中间风叶转动,室内空气可流经所述上出风主流路;
所述第一上挡风结构处于所述第一工作位且所述第一下挡风结构处于所述第四工作位时,所述中间风叶转动,室内空气可流经所述下出风主流路。
进一步可选地,所述中间风叶腔内还可转动地设置有第二上挡风结构和第二下挡风结构;所述第二上挡风结构靠近所述中间风叶腔上出口,所述第二下挡风结构靠近所述中间风叶腔下出口;所述第二上挡风结构、所述第二下挡风结构均与所述中间风叶腔的型线相适配;
所述第一上挡风结构处于所述第二工作位且所述第一下挡风结构处于所述第三工作位时,所述第二下挡风结构和第一下挡风结构配合可将所述中间风叶腔内的空气导向所述上风道;
所述第一上挡风结构处于所述第一工作位且所述第一下挡风结构处于所述第四工作位时,所述第二上挡风结构和第一上挡风结构配合可将所述中间风叶腔内的空气导向所述下风道。
进一步可选地,所述动力风叶腔设置有两个,两个所述动力风叶腔包括由上至下依次设置的上风叶腔和下风叶腔;所述上风叶腔内可转动地设置有上风叶且所述上风叶腔形成有上风叶腔进口、上风叶腔C1出口、上风叶腔C2出口和上风叶腔C3出口;所述上风叶腔进口连通所述上风叶腔和壳体腔,所述上风叶腔C1出口和A2通风口连通;
所述下风叶腔内可转动地设置有下风叶且所述下风叶腔形成有下风叶腔进口、下风叶腔D1出口、下风叶腔D2出口和下风叶腔D3出口;所述下风叶腔进口连通所述下风叶腔和壳体腔,所述下风叶腔D1出口和B2通风口连通;
所述风道组件还形成有由上至下依次设置的上辅助风道、中辅助风道和下辅助风道;所述上辅助风道连通所述上前风口和上风叶腔C2出口,所述下辅助风道连通所述下前风口和下风叶腔D2出口,所述中辅助风道连通所述上风叶腔C3出口和下风叶腔D3出口。
进一步可选地,所述上风叶腔C2出口可活动地设置有第三上挡风结构,所述第三上挡风结构可打开或关闭所述上风叶腔C2出口;所述下风叶腔D2出口可活动地设置有第三下挡风结构,所述第三下挡风结构可打开或关闭所述下风叶腔D2出口;
所述第三上挡风结构打开所述上风叶腔C2出口,所述第三下挡风结构关闭所述下风叶腔D2出口时,所述下风道、下风叶腔、中辅助风道、上风叶腔、上风道和上辅助风道连通并形成所述上出风主流路;
所述第三上挡风结构关闭所述上风叶腔C2出口,所述第三下挡风结构打开所述下风叶腔D2出口时,所述上风道、上风叶腔、中辅助风道、下风叶腔、下风道和下辅助风道连通并形成所述下出风主流路;
所述第三上挡风结构关闭所述上风叶腔C2出口,所述第三下挡风结构关闭所述下风叶腔D2出口时,所述上风叶腔和上风道及所述下风叶腔和下风道形成所述上下同时出风主流路。
进一步可选地,所述动力风叶腔设置有两个,两个所述动力风叶腔包括由上至下依次设置的上风叶腔和下风叶腔;所述上风叶腔内可转动地设置有上风叶且所述上风叶腔形成有上风叶腔进口、上风叶腔C1出口和上风叶腔C3出口;所述上风叶腔进口连通所述上风叶腔和壳体腔,所述上风叶腔C1出口和A2通风口连通,所述上风叶腔C3出口和下前风口之间形成有下副风道;所述上风叶腔C3出口处可活动地设置有第四上挡风结构,所述第四上挡风结构可打开或关闭所述上风叶腔C3出口;
所述下风叶腔内可转动地设置有下风叶且所述下风叶腔形成有下风叶腔进口、下风叶腔D1出口和下风叶腔D3出口;所述下风叶腔进口连通所述下风叶腔和壳体腔,所述下风叶腔D1出口和B2通风口连通,所述下风叶腔D3出口和上前风口之间形成有上副风道;所述下风叶腔D3出口处可活动地设置有第四下挡风结构,所述第四下挡风结构可打开或关闭所述下风叶腔D3出口。
进一步可选地,所述第一上挡风结构处于所述第二工作位、所述第一下挡风结构处于所述第三工作位、所述上风叶腔C3出口关闭及所述下风叶腔D3出口打开时,所述下风道、上风叶腔和上风道依次连通形成所述上出风主流路,所述下风道、下风叶腔和上副风道依次连通形成上出风副流路;
所述第一上挡风结构处于所述第一工作位、所述第一下挡风结构处于所述第四工作位、所述上风叶腔C3出口打开及所述下风叶腔D3出口关闭时,所述上风道、下风叶腔和下风道依次连通形成所述下出风主流路,所述上风道、上风叶腔和下副风道依次连通形成下出风副流路。
进一步可选地,所述壳体包括壳体左侧壁,所述风叶腔进口包括风叶腔左进口,所述风叶腔左进 口与壳体左侧壁对应;所述空调室内机还包括室内换热器,所述室内换热器包括左换热器,所述左换热器设置在所述壳体左侧壁与风叶腔左进口之间;和/或,
所述壳体还包括壳体右侧壁,所述风叶腔进口包括风叶腔右进口,所述风叶腔右进口与壳体右侧壁对应;所述空调室内机还包括室内换热器,所述室内换热器包括右换热器,所述右换热器设置在所述壳体右侧壁与风叶腔右进口之间。
进一步可选地,所述左换热器包括E1换热段和F1换热段;所述E1换热段向所述上风道延伸,所述F1换热段向所述下风道延伸;所述E1换热段设置在所述F1换热段的上方,且满足:90°≤ɑ≤180°;和/或,
所述右换热器包括E2换热段和F2换热段;所述E2换热段向所述上风道延伸,所述F2换热段向所述下风道延伸;所述E2换热段设置在所述F2换热段的上方,且满足:90°≤β≤180°;
其中,ɑ为所述E1换热段的换热面与F1换热段的换热面之间的夹角,β为所述E2换热段的换热面与F2换热段的换热面之间的夹角。
本申请还提供一种柜式空调室内机的控制方法,所述柜式空调室内机包括壳体和风道组件,所述壳体围设成壳体腔且所述壳体的上部形成有上前风口和上后风口,所述壳体的下部形成有下前风口和下后风口;所述风道组件设置在所述壳体腔内且所述风道组件形成有由所述下前风口进风且由所述上前风口出风的上出风主流路、由所述上前风口进风且由所述下前风口出风的下出风主流路及由所述上前风口和下前风口同时出风的上下同时出风主流路;所述壳体腔和风道组件之间形成有由所述下后风口辅助进风的下辅助进风流路、由所述上后风口辅助进风的上辅助进风流路及由所述上后风口和下后风口同时辅助进风的上下同时辅助进风流路;
所述控制方法包括:
确定所述柜式空调室内机的目标运行模式;
对比室内空气的当前温度和第一预设温度;
根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路;
其中,所述目标运行模式为制热模式或制冷模式,所述目标主流路为上出风主流路或下出风主流路或上下同时出风主流路;所述目标辅助进风流路为下辅助进风流路或上辅助进风流路或上下同时辅助进风流路。
进一步可选地,所述根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路包括:
所述目标运行模式为制冷模式且所述当前温度大于第一预设温度时,或所述目标运行模式为制热模式且所述当前温度小于第一预设温度时,所述目标主流路为所述上下同时出风主流路,所述目标辅助进风流路为上下同时辅助进风流路。
进一步可选地,所述根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路还包括:
所述目标运行模式为制冷模式且所述当前温度小于或等于所述第一预设温度时,计算室内上层空气温度和下层空气温度的上下温度差并对比所述上下温度差和第二预设温度;
当所述上下温度差大于所述第二预设温度时,所述目标主流路为上出风主流路,所述目标辅助进风流路为下辅助进风流路;
当所述上下温度差小于或等于所述第二预设温度时,所述目标主流路为上出风主流路,所述目标 辅助进风流路为上下同时辅助进风流路。
进一步可选地,所述根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路还包括:
所述目标运行模式为制热模式且所述当前温度大于或等于所述第一预设温度时,计算室内上层空气温度和下层空气温度的上下温度差并对比所述上下温度差和第三预设温度;
当所述上下温度差大于所述第三预设温度时,所述目标主流路为下出风主流路,所述目标辅助进风流路为上辅助进风流路;
当所述上下温度差小于或等于所述第三预设温度时,所述目标主流路为下出风主流路,所述目标辅助进风流路为上下同时辅助进风流路。
与现有技术相比,本申请的有益效果主要在于:
壳体的上部形成有上前风口和壳体的下部形成有下前风口,优化了上前风口和下前风口的位置,增大了上前风口和下前风口之间的距离;制冷时,使上风道和动力风叶腔连通且下风道和壳体腔连通,柜式空调室内机形成有上出风主流路,室内空气可由下前风口进入上出风主流路并由上前风口排出;制热时,使上风道和壳体腔连通且下风道和动力风叶腔连通,柜式空调室内机形成有下出风主流路,室内空气可由上前风口进入下出风主流路,并由下前风口排出;充分利用制冷时冷气下沉和制热时热气上浮的原理,使气流在室内机所在房间内形成大的回旋涡流,提高了室内空气的温度变化速度,使室内空气的温度分布均匀和流速稳定,缩短了室内机所在房间达到设定温度所需时长,提高了空气的舒适性。
附图说明
为了更清楚地说明本申请的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引申获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容得能涵盖的范围内。
图1为本申请提供的柜式空调室内机实施例外部结构示意图;
图2为本申请提供的柜式空调室内机实施例1内部结构示意图;
图3a、图3b、图3c和图3d为本申请提供的柜式空调室内机处于上出风方式时的实施例1流路示意图;
图4a、图4b、图4c和图4d为本申请提供的柜式空调室内机处于下出风方式时的实施例1流路示意图;
图5a、图5b和图5c为本申请提供的柜式空调室内机处于上下同时出风方式时的实施例1流路示意图;
图6为本申请提供的柜式空调室内机实施例2内部结构示意图;
图7a、图7b、图7c和图7d为本申请提供的柜式空调室内机处于上出风方式时的实施例2流路示意图;
图8a、图8b、图8c和图8d为本申请提供的柜式空调室内机处于下出风方式时的实施例2流路示意图;
图9a、图9b和图9c为本申请提供的柜式空调室内机处于上下同时出风方式时的实施例2流路示意图;
图10为本申请提供的柜式空调室内机实施例3内部结构示意图;
图11a、图11b、图11c和图11d为本申请提供的柜式空调室内机处于上出风方式时的实施例3流路示意图;
图12a、图12b、图12c和图12d为本申请提供的柜式空调室内机处于下出风方式时的实施例3流路示意图;
图13a、图13b和图13c为本申请提供的柜式空调室内机处于上下同时出风方式时的实施例3流路示意图;
图14a和图14b为本申请提供的柜式空调室内机实施例4内部结构示意图;
图15a和图15b为本申请提供的柜式空调室内机处于上出风方式时(下前风口和下后风口同时进风)的实施例4流路示意图;
图16a和图16b为本申请提供的柜式空调室内机处于上出风方式时(下前风口和上后风口同时进风)的实施例4流路示意图;
图17a和图17b为本申请提供的柜式空调室内机处于上出风方式时(下前风口、下后风口和上后风口同时进风)的实施例4流路示意图;
图18a和图18b为本申请提供的柜式空调室内机处于上出风方式时(下前风口进风和上前风口出风)的实施例4流路示意图;
图19a和图19b为本申请提供的柜式空调室内机处于下出风方式时(上前风口和上后风口同时进风)的实施例4流路示意图;
图20a和图20b为本申请提供的柜式空调室内机处于下出风方式时(上前面风口和下后风口同时进风)的实施例4流路示意图;
图21a和图21b为本申请提供的柜式空调室内机处于下出风方式时(上前风口、上后风口和下后风口同时进风)的实施例4流路示意图;
图22a和图22b为本申请提供的柜式空调室内机处于下出风方式时(上前风口进风和下前风口出风)的实施例4流路示意图;
图23a和图23b为本申请提供的柜式空调室内机处于上下同时出风方式时(上后风口和下后风口同时进风)的实施例4流路示意图;
图24a和图24b为本申请提供的柜式空调室内机处于上下同时出风方式时(上后风口进风)的实施例4流路示意图;
图25a和图25b为本申请提供的柜式空调室内机处于上下同时出风方式时(下后风口进风)的实施例4流路示意图;
图中:
1-壳体;11-壳体前侧壁;111-下前风口;12-壳体左侧壁;13-壳体右侧壁;14-壳体后侧壁;141-下后风口;15-壳体顶壁;151-上前风口;152-上后风口;16-底座;17-壳体腔;
21-上风叶腔;211-上风叶腔C1出口;212-上风叶腔C2出口;213-上风叶腔C3出口;214-上风叶;22-下风叶腔;221-下风叶腔D1出口;222-下风叶腔D2出口;223-下风叶腔D3出口;224-下风叶;23-中间风叶腔;231-中间风叶腔上出口;232-中间风叶腔下出口;233-中间风叶;24-上风道;241-A1通风口;242-A2通风口;25-下风道;251-B1通风口;252-B2通风口;261-上辅助风道;262- 中辅助风道;263-下辅助风道;271-上副风道;272-下副风道;
311-第一上挡风结构;312-第二上挡风结构;313-第三上挡风结构;314-第四上挡风结构;321-第一下挡风结构;322-第二下挡风结构;323-第三下挡风结构;324-第四下挡风结构;
4-室内换热器;41-E1换热段;42-F1换热段;43-E2换热段;44-F2换热段。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种,但是不排除包含至少一种的情况。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
传统柜式空调室内机在制热送热风时,由于热气上浮原理热风在房间上部下不来,出现上热下凉现象,回风温度低,需要消耗更多的能量才能达到相同的出风温度,节能效果较差;针对上述问题,现有技术通过在风道内设置轴流风机或混流风机实现可逆上下送风,但采用轴流风机时对电机的制造成本要求高,且轴流风机存在送风距离短和风压小的问题;采用混流风机时风机转速高噪音大和效率低;
如图1所示,本申请创造性地提供一种柜式空调室内机,包括壳体1和风道组件,壳体1围设成壳体腔17且壳体1的上部形成有上前风口151,壳体1的下部形成有下前风口111;风道组件设置在壳体腔17内且风道组件形成有由上至下依次设置的上风道24、动力风叶腔和下风道25;上风道24通过上前风口151和室内连通,下风道25通过下前风口111和室内连通,动力风叶腔通过风叶腔进口和壳体腔17连通;上风道24可选择地与动力风叶腔或壳体腔17连通;下风道25可选择地与动力风叶腔或壳体腔17连通;
壳体1的上部形成有上前风口151和壳体1的下部形成有下前风口111,优化了上前风口151和下前风口111的位置,增大了上前风口151和下前风口111之间的距离;制冷时,使上风道24和动力风叶腔连通且下风道25和壳体腔17连通,柜式空调室内机形成有上出风主流路,室内空气可由下前风口111进入上出风主流路并由上前风口151排出;制热时,使上风道24和壳体腔17连通且下风道25和动力风叶腔连通,柜式空调室内机形成有下出风主流路,室内空气可由上前风口151进入下出风主流路,并由下前风口111排出;充分利用制冷时冷气下沉和制热时热气上浮的原理,使气流在室内机所在房间内形成大的回旋涡流,提高了室内空气的温度变化速度,使室内空气的温度分布均匀和流速稳定,缩短了室内机所在房间达到设定温度所需时长,提高了空气的舒适性。
具体地,壳体1包括壳体顶壁15和壳体前侧壁11,壳体顶壁15形成有上前风口151,壳体前侧 壁11的下部形成有下前风口111;上风道24的上部通过上前风口151和室内连通,下风道25的下部通过下前风口111和室内连通;上风道24的下部可选择地与动力风叶腔或壳体腔17连通;下风道25的上部可选择地与动力风叶腔或壳体腔17连通。
针对进风量不足的问题,本实施例提出,壳体1的上部还形成有上后风口152,上前风口151和上后风口152前后相对设置且上后风口152可选择地打开或关闭;壳体1的下部还形成有下后风口141,下前风口111和下后风口141前后相对设置且下后风口141可选择地打开或关闭;壳体腔17的上部通过上后风口152和室内连通,壳体腔17的下部通过下后风口141和室内连通;
上后风口152关闭且下后风口141打开时,柜式空调室内机可形成有由下后风口141辅助进风的下辅助进风流路;
上后风口152打开且下后风口141关闭时,柜式空调室内机可形成有由上后风口152辅助进风的上辅助进风流路;
上后风口152和下后风口141均打开时,柜式空调室内机可形成有由上后风口152和下后风口141同时辅助进风的上下辅助进风流路;
上辅助进风流路、下辅助进风流路和上下辅助进风流路增加了进风量,减少了进风阻力;减少室内机噪音,保证出风量和噪音达到要求;
辅助进风流路和主流路结合,可实现不同的进出风方式,具体为:
上辅助进风流路和上出风主流路结合,柜式空调室内机可实现由上后风口152和下前风口111同时进风且由上前风口151出风的第一进出风方式;
下辅助进风流路和上出风主流路结合,柜式空调室内机可实现由下后风口141和下前风口111同时进风且由上前风口151出风的第二进出风方式;
上下辅助进风流路和上出风主流路结合,柜式空调室内机可实现由上后风口152、下后风口141和下前风口111同时进风且由上前风口151出风的第三进出风方式;
上辅助进风流路和下出风主流路结合,柜式空调室内机可实现由上后风口152和上前风口151同时进风且由下前风口111出风的第四进出风方式;
下辅助进风流路和下出风主流路结合,柜式空调室内机可实现由下后风口141和上前风口151同时进风且由下前风口111出风的第五进出风方式;
上下辅助进风流路和下出风主流路结合,柜式空调室内机可实现由上后风口152、下后风口141和上前风口151同时进风且由下前风口111出风的第六进出风方式。
具体地,壳体顶壁15还形成有上后风口152;壳体1还包括壳体后侧壁14,壳体前侧壁11和壳体后侧壁14前后相对设置,且壳体前侧壁11和壳体后侧壁14均和壳体顶壁15连接;壳体后侧壁14的下部形成有下后风口141。
进一步,上后风口152和下后风口141中的至少一个打开、上风道24和下风道25均和动力风叶腔连通时,柜式空调室内机可形成有由上前风口151和下前风口111同时出风的上下同时出风主流路。
此外,壳体1包括壳体左侧壁12,风叶腔进口包括风叶腔左进口,风叶腔左进口与壳体左侧壁12对应;空调室内机还包括设置在壳体腔17内的室内换热器4,在室内换热器4的进风面设置有过滤装置,用于过滤壳体腔17内的空气;室内换热器4包括左换热器,左换热器设置在壳体左侧壁12与风叶腔左进口之间;
壳体1还包括壳体右侧壁13,风叶腔进口包括风叶腔右进口,风叶腔右进口与壳体右侧壁13对应;空调室内机还包括室内换热器4,室内换热器4包括右换热器,右换热器设置在壳体右侧壁13与 风叶腔右进口之间。
进一步,左换热器包括E1换热段41和F1换热段42;E1换热段41向上风道24延伸,F1换热段42向下风道25延伸;E1换热段41设置在F1换热段42的上方,且满足:90°≤ɑ≤180°;
右换热器包括E2换热段43和F2换热段44;E2换热段43向上风道24延伸,F2换热段44向下风道25延伸;E2换热段43设置在F2换热段44的上方,且满足:90°≤β≤180°;
其中,ɑ为E1换热段41的换热面与F1换热段42的换热面之间的夹角,β为E2换热段43的换热面与F2换热段44的换热面之间的夹角。
壳体前侧壁11、壳体左侧壁12、壳体后侧壁14和壳体右侧壁13依次连接形成壳体腔17;壳体1还包括底座16,底座16设置在壳体前侧壁11、壳体左侧壁12、壳体后侧壁14和壳体右侧壁13的底部,壳体顶壁15设置在壳体前侧壁11、壳体左侧壁12、壳体后侧壁14和壳体右侧壁13的顶部,壳体前侧壁11、壳体左侧壁12、壳体后侧壁14和壳体右侧壁13依次连接并与壳体顶壁15、底座16形成有壳体腔17。
实施例1
如图2至图5c所示,本实施例中,动力风叶腔设置有两个,两个动力风叶腔包括上风叶腔21和下风叶腔22,则上风道24、上风叶腔21、下风叶腔22和下风道25由上至下依次设置;上风道24的下部形成有A1通风口241和A2通风口242,A1通风口241连通上风道24和壳体腔17;上风叶腔21内可转动地设置有上风叶214且上风叶腔21形成有上风叶腔进口和上风叶腔C1出口211;上风叶腔进口连通上风叶腔21和壳体腔17,上风叶腔C1出口211和A2通风口242连通;A1通风口241和A2通风口242之间可转动地设置有第一上挡风结构311,第一上挡风结构311具有第一工作位和第二工作位,第一上挡风结构311处于第一工作位时,第一上挡风结构311打开A1通风口241同时关闭A2通风口242,使上风道24和壳体腔17连通,上风道24和上风叶腔21不连通;第一上挡风结构311处于第二工作位时,第一上挡风结构311关闭A1通风口241同时打开A2通风口242,使上风道24和壳体腔17不连通且上风道24和上风叶腔21连通;
下风道25的上部形成有B1通风口251和B2通风口252,B1通风口251连通下风道25和壳体腔17;下风叶腔22内可转动地设置有下风叶224且下风叶腔22形成有下风叶腔进口和下风叶腔D1出口221;下风叶腔进口连通下风叶腔22和壳体腔17,下风叶腔D1出口221和B2通风口252连通;B1通风口251和B2通风口252之间可转动地设置有第一下挡风结构321,第一下挡风结构321具有第三工作位和第四工作位,第一下挡风结构321处于第三工作位时,第一下挡风结构321打开B1通风口251同时关闭B2通风口252,使下风道25和壳体腔17连通且下风道25和下风叶腔22不连通;第一下挡风结构321处于第四工作位时,第一下挡风结构321关闭B1通风口251同时打开B2通风口252,使下风道25和壳体腔17不连通且下风道25和下风叶腔22连通;优先的,第一上挡风结构311和第一下挡风结构321均为挡板;
第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,上风叶214转动且下风叶224不转动,室内空气可流经上出风主流路;
第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,上风叶214不转动且下风叶224转动,室内空气可流经下出风主流路。
具体地,上出风方式包括以下四种:
①上后风口152关闭且下后风口141打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使上风叶214转动,靠近下后风口141的室内空气经下后风口141进入 壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经上风叶腔进口进入上风叶腔21,后经A2通风口242进入上风道24,并经上前风口151排出;
②上后风口152打开且下后风口141关闭,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使上风叶214转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经上风叶腔进口进入上风叶腔21,后经A2通风口242进入上风道24,并经上前风口151排出;
③上后风口152和下后风口141均打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使上风叶214转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经上风叶腔进口进入上风叶腔21,后经A2通风口242进入上风道24,并经上前风口151排出;
④上后风口152和下后风口141均关闭,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使上风叶214转动,靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经上风叶腔进口进入上风叶腔21,后经A2通风口242进入上风道24,并经上前风口151排出;
通过上述四种上出风方式,可满足不同的制冷需求。
下出风方式包括以下四种:
①上后风口152打开且下后风口141关闭,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使下风叶224转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经下风叶腔进口进入下风叶腔22,后经B2通风口252进入下风道25,并经下前风口111排出;
②上后风口152关闭且下后风口141打开,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使下风叶224转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经下风叶腔进口进入下风叶腔22,后经B2通风口252进入下风道25,并经下前风口111排出;
③上后风口152和下后风口141均打开,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使下风叶224转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经下风叶腔进口进入下风叶腔22,后经B2通风口252进入下风道25,并经下前风口111排出;
④上后风口152和下后风口141均关闭,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使下风叶224转动,靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经下风叶腔进口进入下风叶腔22,后经B2通风口252进入下风道25,并经下前风口111排出;
通过上述四种下出风方式,可满足不同的制热需求。
上下同时出风方式包括以下三种:
①上后风口152和下后风口141均打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;壳体腔17内的一部分空气经上风叶腔进口进入上风叶腔21,后经A2通风口242进入上风道24,并经上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经B2通风口252进入下风道25,并经下前风口111排出;
②上后风口152打开且下后风口141关闭,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;壳体腔17内的一部分空气经上风叶腔进口进入上风叶腔21,后经A2通风口242进入上风道24,并经上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经B2通风口252进入下风道25,并经下前风口111排出;
③上后风口152关闭且下后风口141打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位时,使上风叶214和下风叶224均转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;壳体腔17内的一部分空气经上风叶腔进口进入上风叶腔21,后经A2通风口242进入上风道24,并经上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经B2通风口252进入下风道25,并经下前风口111排出。
上风道24的下部的侧壁形成有A1通风口241,上风道24的下端形成有A2通风口242;下风道25的上部侧壁形成有B1通风口251,下风道25的上端形成有B2通风口252。
实施例2
如图6至图9c所示,本实施例中,动力风叶腔设置有一个且动力风叶腔为中间风叶腔23,上风道24、中间风叶腔23和下风道25由上至下依次设置;上风道24的下部形成有A1通风口241和A2通风口242,A1通风口241连通上风道24和壳体腔17;下风道25的上部形成有B1通风口251和B2通风口252,B1通风口251连通下风道25和壳体腔17;中间风叶腔23内可转动地设置有中间风叶233且中间风叶腔23形成有中间风叶腔进口、中间风叶腔上出口231和中间风叶腔下出口232;中间风叶腔23进口连通中间风叶腔23和壳体腔17,中间风叶腔上出口231和A2通风口242连通,中间风叶腔下出口232和B2通风口252连通;
A1通风口241和A2通风口242之间可转动地设置有第一上挡风结构311,第一上挡风结构311具有第一工作位和第二工作位,第一上挡风结构311处于第一工作位时,第一上挡风结构311打开A1通风口241同时关闭A2通风口242,使上风道24和壳体腔17连通且上风道24和动力风叶腔不连通;第一上挡风结构311处于第二工作位时,第一上挡风结构311关闭A1通风口241同时打开A2通风口242,使上风道24和壳体腔17不连通且上风道24和动力风叶腔连通;
B1通风口251和B2通风口252之间可转动地设置有第一下挡风结构321,第一下挡风结构321具有第三工作位和第四工作位,第一下挡风结构321处于第三工作位时,第一下挡风结构321打开B1通风口251同时关闭B2通风口252,使下风道25和壳体腔17连通且下风道25和动力风叶腔不连通;第一下挡风结构321处于第四工作位时,第一下挡风结构321关闭B1通风口251同时打开B2通风口252,使下风道25和壳体腔17不连通且下风道25和动力风叶腔连通;
第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,中间风叶233转动,室内空气可流经上出风主流路;
第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,中间风叶233转动,室内空气可流经下出风主流路;
进一步,中间风叶腔23内还可转动地设置有第二上挡风结构312和第二下挡风结构322;第二上挡风结构312靠近中间风叶腔上出口231,第二下挡风结构322靠近中间风叶腔上下出口232;第二上挡风结构312、第二下挡风结构322均与中间风叶腔23的型线相适配;优选的,第二上挡风结构312和第二下挡风结构322均为挡板;
第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,第二下挡风结构322和第一下挡风结构321配合可将中间风叶腔23内的空气导向上风道24;
第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,第二上挡风结构312和第一上挡风结构311配合可将中间风叶腔23内的空气导向下风道25。
具体地,上出风方式包括以下四种:
①上后风口152关闭且下后风口141打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使中间风叶233转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经A2通风口242进入上风道24,并经上前风口151排出;
②上后风口152打开且下后风口141关闭,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使中间风叶233转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经A2通风口242进入上风道24,并经上前风口151排出;
③上后风口152和下后风口141均打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使中间风叶233转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经A2通风口242进入上风道24,并经上前风口151排出;
④上后风口152和下后风口141均关闭,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位时,使中间风叶233转动,靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经A2通风口242进入上风道24,并经上前风口151排出;
通过上述四种上出风方式,可满足不同的制冷需求。
下出风方式包括以下四种:
①上后风口152打开且下后风口141关闭,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使中间风叶233转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经B2通风口252进入下风道25,并经下前风口111排出;
②上后风口152关闭且下后风口141打开,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使中间风叶233转动,靠近下后风口141的室内空气经下后风口141进 入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经B2通风口252进入下风道25,并经下前风口111排出;
③上后风口152和下后风口141均打开,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使中间风叶233转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经B2通风口252进入下风道25,并经下前风口111排出;
④上后风口152和下后风口141均关闭,及第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位时,使中间风叶233转动,靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的空气后经中间风叶腔23进口进入中间风叶腔23,后经B2通风口252进入下风道25,并经下前风口111排出;
通过上述四种下出风方式,可满足不同的制热需求。
上下同时出风方式包括以下三种:
①上后风口152和下后风口141均打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位时,使中间风叶233转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;壳体腔17内的空气经中间风叶腔23进口进入中间风叶腔23,一部分空气经A2通风口242进入上风道24,并经上前风口151排出;另一部分空气经B2通风口252进入下风道25,并经下前风口111排出;
②上后风口152打开且下后风口141关闭,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位时,使中间风叶233转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;壳体腔17内的空气经中间风叶腔23进口进入中间风叶腔23,一部分空气经A2通风口242进入上风道24,并经上前风口151排出;另一部分空气经B2通风口252进入下风道25,并经下前风口111排出;
③上后风口152关闭且下后风口141打开,及第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位时,使中间风叶233转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;壳体腔17内的空气经中间风叶腔23进口进入中间风叶腔23,一部分空气经A2通风口242进入上风道24,并经上前风口151排出;另一部分空气经B2通风口252进入下风道25,并经下前风口111排出。
上风道24的下部的侧壁形成有A1通风口241,上风道24的下端形成有A2通风口242;下风道25的上部侧壁形成有B1通风口251,下风道25的上端形成有B2通风口252。
实施例3
如图10至图13c所示,本实施例中,上风道24的下部形成有A1通风口241和A2通风口242;动力风叶腔设置有两个,两个动力风叶腔包括由上至下依次设置的上风叶腔21和下风叶腔22;上风叶腔21内可转动地设置有上风叶214且上风叶腔21形成有上风叶腔进口、上风叶腔C1出口211、上风叶腔C2出口212和上风叶腔C3出口213;上风叶腔进口连通上风叶腔21和壳体腔17,上风叶腔C1出口211和A2通风口242连通;
A1通风口241和A2通风口242之间可转动地设置有第一上挡风结构311,第一上挡风结构311具有第一工作位和第二工作位,第一上挡风结构311处于第一工作位时,第一上挡风结构311打开A1 通风口241同时关闭A2通风口242,使上风道24和壳体腔17连通,上风道24和上风叶腔21不连通;第一上挡风结构311处于第二工作位时,第一上挡风结构311关闭A1通风口241同时打开A2通风口242,使上风道24和壳体腔17不连通,上风道24和上风叶腔21连通;
下风道25的上部形成有B1通风口251和B2通风口252;下风叶腔22内可转动地设置有下风叶224且下风叶腔22形成有下风叶腔进口、下风叶腔D1出口221、下风叶腔D2出口222和下风叶腔D3出口223;下风叶腔进口连通下风叶腔22和壳体腔17,下风叶腔D1出口221和B2通风口252连通;
B1通风口251和B2通风口252之间可转动地设置有第一下挡风结构321,第一下挡风结构321具有第三工作位和第四工作位,第一下挡风结构321处于第三工作位时,第一下挡风结构321打开B1通风口251同时关闭B2通风口252,使下风道25和壳体腔17连通,下风道25和下风叶腔22不连通;第一下挡风结构321处于第四工作位时,第一下挡风结构321关闭B1通风口251同时打开B2通风口252,使下风道25和壳体腔17不连通,下风道25和动力风叶腔连通。
进一步,风道组件还形成有由上至下依次设置的上辅助风道261、中辅助风道262和下辅助风道263;上辅助风道261连通上前风口151和上风叶腔C2出口212,下辅助风道263连通下前风口111和下风叶腔D2出口222,中辅助风道262连通上风叶腔C3出口213和下风叶腔D3出口223;
上风叶腔C2出口212可转动地设置有第三上挡风结构313,第三上挡风结构313可打开或关闭上风叶腔C2出口212;上风叶腔C2出口212打开时上风叶腔21和上辅助风道261连通,上风叶腔C2出口212关闭时上风叶腔21和上辅助风道261不连通;下风叶腔D2出口222可转动地设置有第三下挡风结构323,第三下挡风结构323可打开或关闭下风叶腔D2出口222;下风叶腔D2出口222打开时下风叶腔22和下辅助风道263连通,下风叶腔D2出口222关闭时下风叶腔22和下辅助风道263不连通;
第三上挡风结构313打开上风叶腔C2出口212,且第三下挡风结构323关闭下风叶腔D2出口222时,下风道25、下风叶腔22、中辅助风道262、上风叶腔21、上风道24和上辅助风道261连通并形成上出风主流路;
第三上挡风结构313关闭上风叶腔C2出口212,且第三下挡风结构323打开下风叶腔D2出口222时,上风道24、上风叶腔21、中辅助风道262、下风叶腔22、下风道25和下辅助风道263连通并形成下出风主流路;
第三上挡风结构313关闭上风叶腔C2出口212,且第三下挡风结构323关闭下风叶腔D2出口222时,上风叶腔21和上风道24及下风叶腔22和下风道25形成上下同时出风主流路;优选的,第三上挡风结构313和第三下挡风结构323均为挡板。
具体地,上出风方式包括以下四种:
①上后风口152关闭且下后风口141打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位、第三上挡风结构313打开上风叶腔C2出口212及第三下挡风结构323关闭下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D2出口222进入中辅助风道262,并进入上风叶腔21;壳体腔17内的另一部分空气后经上风叶腔进口进入上风叶腔21;上风叶腔21的一部分空气经A2通风口242、上风道24和上前风口151排出;上风叶腔21的另一部分空气经上风叶腔C2出口212、上辅助风道261和上前风口151排出;
②上后风口152打开且下后风口141关闭、第一上挡风结构311处于第二工作位且第一下挡风结 构321处于第三工作位、第三上挡风结构313打开上风叶腔C2出口212及第三下挡风结构323关闭下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D2出口222进入中辅助风道262,并进入上风叶腔21;壳体腔17内的另一部分空气后经上风叶腔进口进入上风叶腔21;上风叶腔21的一部分空气经A2通风口242、上风道24和上前风口151排出;上风叶腔21的另一部分空气经上风叶腔C2出口212、上辅助风道261和上前风口151排出;
③上后风口152和下后风口141均打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位、第三上挡风结构313打开上风叶腔C2出口212及第三下挡风结构323关闭下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D2出口222进入中辅助风道262,并进入上风叶腔21;壳体腔17内的另一部分空气后经上风叶腔进口进入上风叶腔21;上风叶腔21的一部分空气经A2通风口242、上风道24和上前风口151排出;上风叶腔21的另一部分空气经上风叶腔C2出口212、上辅助风道261和上前风口151排出;
④上后风口152和下后风口141均关闭、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位、第三上挡风结构313打开上风叶腔C2出口212及第三下挡风结构323关闭下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D2出口222进入中辅助风道262,并进入上风叶腔21;壳体腔17内的另一部分空气后经上风叶腔进口进入上风叶腔21;上风叶腔21的一部分空气经A2通风口242、上风道24和上前风口151排出;上风叶腔21的另一部分空气经上风叶腔C2出口212、上辅助风道261和上前风口151排出;
通过上述四种上出风方式,可满足不同的制冷需求。
下出风方式包括以下四种:
①上后风口152打开且下后风口141关闭、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位、第三上挡风结构313关闭上风叶腔C2出口212及第三下挡风结构323打开下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C2出口212进入中辅助风道262,并进入下风叶腔22;壳体腔17内的另一部分空气后经下风叶腔进口进入下风叶腔22;下风叶腔22的一部分空气经B2通风口252、下风道25和下前风口111排出;下风叶腔22的另一部分空气经下风叶腔D2出口222、下辅助风道263和下前风口111排出;
②上后风口152关闭且下后风口141打开、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位、第三上挡风结构313关闭上风叶腔C2出口212及第三下挡风结构323打开下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C2出口 212进入中辅助风道262,并进入下风叶腔22;壳体腔17内的另一部分空气后经下风叶腔进口进入下风叶腔22;下风叶腔22的一部分空气经B2通风口252、下风道25和下前风口111排出;下风叶腔22的另一部分空气经下风叶腔D2出口222、下辅助风道263和下前风口111排出;
③上后风口152和下后风口141均打开、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位、第三上挡风结构313关闭上风叶腔C2出口212及第三下挡风结构323打开下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C2出口212进入中辅助风道262,并进入下风叶腔22;壳体腔17内的另一部分空气后经下风叶腔进口进入下风叶腔22;下风叶腔22的一部分空气经B2通风口252、下风道25和下前风口111排出;下风叶腔22的另一部分空气经下风叶腔D2出口222、下辅助风道263和下前风口111排出;
④上后风口152和下后风口141均关闭、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位、第三上挡风结构313关闭上风叶腔C2出口212及第三下挡风结构323打开下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C2出口212进入中辅助风道262,并进入下风叶腔22;壳体腔17内的另一部分空气后经下风叶腔进口进入下风叶腔22;下风叶腔22的一部分空气经B2通风口252、下风道25和下前风口111排出;下风叶腔22的另一部分空气经下风叶腔D2出口222、下辅助风道263和下前风口111排出;
通过上述四种下出风方式,可满足不同的制热需求。
上下同时出风方式包括以下三种:
①上后风口152和下后风口141均打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位,第三上挡风结构313关闭上风叶腔C2出口212,及第三下挡风结构323关闭下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;壳体腔17内的一部分空气经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211和A2通风口242进入上风道24,并经上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22;后经下风叶腔D1出口221和B2通风口252进入下风道25,并经下前风口111排出;
②上后风口152打开且下后风口141关闭、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位,第三上挡风结构313关闭上风叶腔C2出口212,及第三下挡风结构323关闭下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;壳体腔17内的一部分空气经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211和A2通风口242进入上风道24,并经上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22;后经下风叶腔D1出口221和B2通风口252进入下风道25,并经下前风口111排出;
③上后风口152关闭及下后风口141打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位,第三上挡风结构313关闭上风叶腔C2出口212,及第三下挡风结构323关闭下风叶腔D2出口222时,使上风叶214和下风叶224均转动,靠近下后风口141的室内空气经上后风 口152进入壳体腔17;壳体腔17内的一部分空气经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211和A2通风口242进入上风道24,并经上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22;后经下风叶腔D1出口221和B2通风口252进入下风道25,并经下前风口111排出。
上风道24的下部的侧壁形成有A1通风口241,上风道24的下端形成有A2通风口242;下风道25的上部侧壁形成有B1通风口251,下风道25的上端形成有B2通风口252。
实施例4
如图14a至图25b所示,上风道24的下部形成有A1通风口241和A2通风口242;动力风叶腔设置有两个,两个动力风叶腔包括由上至下依次设置的上风叶腔21和下风叶腔22;上风叶腔21内可转动地设置有上风叶214且上风叶腔21形成有上风叶腔进口、上风叶腔C1出口211和上风叶腔C3出口213;上风叶腔进口连通上风叶腔21和壳体腔17,上风叶腔C1出口211和A2通风口242连通,上风叶腔C3出口213和下前风口111之间形成有下副风道272;上风叶腔C3出口213处可转动地设置有第四上挡风结构314,第四上挡风结构314可打开或关闭上风叶腔C3出口213;
A1通风口241和A2通风口242之间可转动地设置有第一上挡风结构311,第一上挡风结构311具有第一工作位和第二工作位,第一上挡风结构311处于第一工作位时,第一上挡风结构311打开A1通风口241同时关闭A2通风口242,使上风道24和壳体腔17连通且上风道24和上风叶腔21不连通;第一上挡风结构311处于第二工作位时,第一上挡风结构311关闭A1通风口241同时打开A2通风口242,使上风道24和壳体腔17不连通且上风道24和上风叶腔21连通;
下风道25的上部形成有B1通风口251和B2通风口252;下风叶腔22内可转动地设置有下风叶224且下风叶腔22形成有下风叶腔进口、下风叶腔D3出口223和下风叶腔D1出口221;下风叶腔进口连通下风叶腔22和壳体腔17,下风叶腔D1出口221和B2通风口252连通,下风叶腔D3出口223和上前风口151之间形成有上副风道271;下风叶腔D3出口223处可转动地设置有第四下挡风结构324,第四下挡风结构324可打开或关闭下风叶腔D3出口223;优先的,第四上挡风结构314和第四下挡风结构324均为挡板;
B1通风口251和B2通风口252之间可转动地设置有第一下挡风结构321,第一下挡风结构321具有第三工作位和第四工作位,第一下挡风结构321处于第三工作位时,第一下挡风结构321打开B1通风口251同时关闭B2通风口252,使下风道25和壳体腔17连通且下风道25和下风叶腔22不连通;第一下挡风结构321处于第四工作位时,第一下挡风结构321关闭B1通风口251同时打开B2通风口252,使下风道25和壳体腔17不连通且下风道25和下风叶腔22连通。
进一步,第一上挡风结构311处于第二工作位、第一下挡风结构321处于第三工作位、上风叶腔C3出口213关闭及下风叶腔D3出口223打开时,下风道25、上风叶腔21和上风道24依次连通形成上出风主流路,下风道25、下风叶腔22和上副风道271依次连通形成上出风副流路;
第一上挡风结构311处于第一工作位、第一下挡风结构321处于第四工作位、上风叶腔C3出口213打开及下风叶腔D3出口223关闭时,上风道24、下风叶腔22和下风道25依次连通形成下出风主流路,上风道24、上风叶腔21和下副风道272依次连通形成下出风副流路。
具体地,上出风方式包括以下四种:
①上后风口152关闭且下后风口141打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位,及上风叶腔C3出口213关闭且下风叶腔D3出口223打开时,使上风叶214和下风叶224均转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近下前风口111 的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D3出口223、上副风道271和上前风口151排出;壳体腔17内的另一部分空气经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211、上风道24和上前风口151排出;
②上后风口152打开且下后风口141关闭、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位,及上风叶腔C3出口213关闭且下风叶腔D3出口223打开时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D3出口223、上副风道271和上前风口151排出;壳体腔17内的另一部分空气经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211、上风道24和上前风口151排出;
③上后风口152和下后风口141均打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位,及上风叶腔C3出口213关闭且下风叶腔D3出口223打开时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D3出口223、上副风道271和上前风口151排出;壳体腔17内的另一部分空气经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211、上风道24和上前风口151排出;
④上后风口152和下后风口141均关闭、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第三工作位,及上风叶腔C3出口213关闭且下风叶腔D3出口223打开时,使上风叶214和下风叶224均转动,靠近下前风口111的室内空气经下前风口111进入下风道25,后经B1通风口251进入壳体腔17;壳体腔17内的一部分空气后经下风叶腔进口进入下风叶腔22,后经下风叶腔D3出口223、上副风道271和上前风口151排出;壳体腔17内的另一部分空气经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211、上风道24和上前风口151排出;
通过上述四种上出风方式,可满足不同的制冷需求。
下出风方式包括以下四种:
①上后风口152打开且下后风口141关闭、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位,及上风叶腔C3出口213打开且下风叶腔D3出口223关闭时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C3出口213、下副风道272和下前风口111排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经下风叶腔D1出口221、下风道25和下前风口111排出;
②上后风口152关闭且下后风口141打开、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位,及上风叶腔C3出口213打开且下风叶腔D3出口223关闭时,使上风叶214和下风叶224均转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C3出口213、下副风道272和下前风口111排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经下风叶腔D1出口221、下 风道25和下前风口111排出;
③上后风口152和下后风口141均打开、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位,及上风叶腔C3出口213打开且下风叶腔D3出口223关闭时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C3出口213、下副风道272和下前风口111排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经下风叶腔D1出口221、下风道25和下前风口111排出;
④上后风口152和下后风口141均关闭、第一上挡风结构311处于第一工作位且第一下挡风结构321处于第四工作位,及上风叶腔C3出口213打开且下风叶腔D3出口223关闭时,使上风叶214和下风叶224均转动,靠近上前风口151的室内空气经上前风口151进入上风道24,后经A1通风口241进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C3出口213、下副风道272和下前风口111排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经下风叶腔D1出口221、下风道25和下前风口111排出;
通过上述四种下出风方式,可满足不同的制热需求。
上下同时出风方式包括以下三种:
①上后风口152和下后风口141均打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位,及上风叶腔C3出口213和下风叶腔D3出口223均关闭时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17,靠近下后风口141的室内空气经下后风口141进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211、上风道24和上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经下风叶腔D1出口221、下风道25和下前风口111排出;
②上后风口152打开且下后风口141关闭、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位,及上风叶腔C3出口213和下风叶腔D3出口223均关闭时,使上风叶214和下风叶224均转动,靠近上后风口152的室内空气经上后风口152进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211、上风道24和上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经下风叶腔D1出口221、下风道25和下前风口111排出;
③上后风口152关闭且下后风口141打开、第一上挡风结构311处于第二工作位且第一下挡风结构321处于第四工作位,及上风叶腔C3出口213和下风叶腔D3出口223均关闭时,使上风叶214和下风叶224均转动,靠近下后风口141的室内空气经下后风口141进入壳体腔17;壳体腔17内的一部分空气后经上风叶腔进口进入上风叶腔21,后经上风叶腔C1出口211、上风道24和上前风口151排出;壳体腔17内的另一部分空气经下风叶腔进口进入下风叶腔22,后经下风叶腔D1出口221、下风道25和下前风口111排出。
上风道24的下部的侧壁形成有A1通风口241,上风道24的下端形成有A2通风口242;下风道25的上部侧壁形成有B1通风口251,下风道25的上端形成有B2通风口252。
实施例5
本实施例提供一种柜式空调室内机的控制方法,柜式空调室内机包括壳体1和风道组件,壳体1围设成壳体腔17且壳体1的上部形成有上前风口151和上后风口152,壳体1的下部形成有下前风口 111和下后风口141;风道组件设置在壳体腔17内且风道组件形成有由下前风口111进风且由上前风口151出风的上出风主流路、由上前风口151进风且由下前风口111出风的下出风主流路及由上前风口151和下前风口111同时出风的上下同时出风主流路;壳体腔17和风道组件之间形成有由下后风口141辅助进风的下辅助进风流路、由上后风口152辅助进风的上辅助进风流路及由上后风口152和下后风口141同时辅助进风的上下同时辅助进风流路;优选的,柜式空调室内机为实施例1或实施例2或实施例3或实施例4中的柜式空调室内机;
控制方法包括:
S1、确定柜式空调室内机的目标运行模式;
S2、对比室内空气的当前温度和第一预设温度;
S3、根据目标运行模式及当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路;
S4、控制柜式空调室内机运行目标运行模式,使室内空气流经目标主流路和目标辅助进风流路;
其中,目标运行模式为制热模式或制冷模式,目标主流路为上出风主流路或下出风主流路或上下同时出风主流路;目标辅助进风流路为下辅助进风流路或上辅助进风流路或上下同时辅助进风流路。
进一步,S3包括:
目标运行模式为制冷模式且当前温度大于第一预设温度时,或目标运行模式为制热模式且当前温度小于第一预设温度时,目标主流路为上下同时出风主流路,目标辅助进风流路为上下同时辅助进风流路;
空气同时经上前风口151和下前风口111排出,实现环抱式制冷或环抱式制热。
S3还包括:
目标运行模式为制冷模式且当前温度小于或等于第一预设温度时,计算室内上层空气温度和下层空气温度的上下温度差并对比上下温度差和第二预设温度;
当上下温度差大于第二预设温度时,目标主流路为上出风主流路,目标辅助进风流路为下辅助进风流路;下后进风口进风的温度低,降低压缩机运行频率,实现空调节能;
当上下温度差小于或等于第二预设温度时,目标主流路为上出风主流路,目标辅助进风流路为上下同时辅助进风流路;实现冷风不吹人,提高空调舒适性;
此外,S3还包括:
目标运行模式为制热模式且当前温度大于或等于第一预设温度时,计算室内上层空气温度和下层空气温度的上下温度差并对比上下温度差和第三预设温度;
当上下温度差大于第三预设温度时,目标主流路为下出风主流路,目标辅助进风流路为上辅助进风流路;上后进风口进风的温度高,降低压缩机运行频率,实现空调节能;
当上下温度差小于或等于第三预设温度时,目标主流路为下出风主流路,目标辅助进风流路为上下同时辅助进风流路;实现热风不吹头,提高空调舒适性。
室内上层设置有上感温包,用于检测室内上层空气温度;室内下层设置有下感温包,用于检测室内下层空气温度。
以上具体地示出和描述了本公开的示例性实施例。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (17)

  1. 一种柜式空调室内机,其特征在于,包括壳体和风道组件,所述壳体围设成壳体腔且所述壳体的上部形成有上前风口,所述壳体的下部形成有下前风口;所述风道组件设置在所述壳体腔内且所述风道组件形成有由上至下依次设置的上风道、动力风叶腔和下风道;所述上风道通过所述上前风口和室内连通,所述下风道通过所述下前风口和室内连通,所述动力风叶腔通过风叶腔进口和壳体腔连通;所述上风道可选择地与动力风叶腔或壳体腔连通;所述下风道可选择地与动力风叶腔或壳体腔连通;
    所述上风道和动力风叶腔连通且所述下风道和壳体腔连通时,所述柜式空调室内机可形成有由所述下前风口进风且由所述上前风口出风的上出风主流路;
    所述上风道和壳体腔连通且所述下风道和动力风叶腔连通时,所述柜式空调室内机可形成有由所述上前风口进风且由所述下前风口出风的下出风主流路。
  2. 根据要求1所述的柜式空调室内机,其特征在于,所述壳体的上部还形成有上后风口,所述上前风口和上后风口前后相对设置且所述上后风口可选择地打开或关闭;所述壳体的下部还形成有下后风口,所述下前风口和下后风口前后相对设置且所述下后风口可选择地打开或关闭;所述壳体腔的上部通过所述上后风口和室内连通,所述壳体腔的下部通过所述下后风口和室内连通;
    所述上后风口关闭且所述下后风口打开时,所述柜式空调室内机可形成有由所述下后风口辅助进风的下辅助进风流路;
    所述上后风口打开且所述下后风口关闭时,所述柜式空调室内机可形成有由所述上后风口辅助进风的上辅助进风流路;
    所述上后风口和下后风口均打开时,所述柜式空调室内机可形成有由所述上后风口和下后风口同时辅助进风的上下同时辅助进风流路。
  3. 根据权利要求2所述的柜式空调室内机,其特征在于,所述上后风口和下后风口中的至少一个打开、所述上风道和下风道均和动力风叶腔连通时,所述柜式空调室内机可形成有由所述上前风口和下前风口同时出风的上下同时出风主流路。
  4. 根据权利要求3所述的柜式空调室内机,其特征在于,所述上风道的下部形成有A1通风口和A2通风口;所述A1通风口和A2通风口之间可活动地设置有第一上挡风结构,所述第一上挡风结构具有第一工作位和第二工作位,所述第一上挡风结构处于所述第一工作位时,所述第一上挡风结构打开所述A1通风口同时关闭所述A2通风口,使所述上风道和壳体腔连通且所述上风道和动力风叶腔不连通;所述第一上挡风结构处于所述第二工作位时,所述第一上挡风结构关闭所述A1通风口同时打开所述A2通风口,使所述上风道和壳体腔不连通且所述上风道和动力风叶腔连通;
    所述下风道的上部形成有B1通风口和B2通风口;所述B1通风口和B2通风口之间可活动地设置有第一下挡风结构,所述第一下挡风结构具有第三工作位和第四工作位,所述第一下挡风结构处于所述第三工作位时,所述第一下挡风结构打开所述B1通风口同时关闭所述B2通风口,使所述下风道和壳体腔连通且所述下风道和动力风叶腔不连通;所述第一下挡风结构处于所述第四工作位时,所述第一下挡风结构关闭所述B1通风口同时打开所述B2通风口,使所述下风道和壳体腔不连通且所述下风道和动力风叶腔连通。
  5. 根据权利要求4所述的柜式空调室内机,其特征在于,所述动力风叶腔设置有两个,两个所述动力风叶腔包括由上至下依次设置的上风叶腔和下风叶腔;所述上风叶腔内可转动地设置有上风叶且所述上风叶腔形成有上风叶腔进口和上风叶腔出口;所述上风叶腔进口连通所述上风叶腔和壳体腔, 所述上风叶腔出口和A2通风口连通;
    所述下风叶腔内可转动地设置有下风叶且所述下风叶腔形成有下风叶腔进口和下风叶腔出口;所述下风叶腔进口连通所述下风叶腔和壳体腔,所述下风叶腔出口和B2通风口连通;
    所述第一上挡风结构处于所述第二工作位且所述第一下挡风结构处于所述第三工作位时,所述上风叶转动且所述下风叶不转动,室内空气可流经所述上出风主流路;
    所述第一上挡风结构处于所述第一工作位且所述第一下挡风结构处于所述第四工作位时,所述上风叶不转动且所述下风叶转动,室内空气可流经所述下出风主流路。
  6. 根据权利要求4所述的柜式空调室内机,其特征在于,所述动力风叶腔设置有一个且所述动力风叶腔为中间风叶腔;所述中间风叶腔内可转动地设置有中间风叶且所述中间风叶腔形成有中间风叶腔进口、中间风叶腔上出口和中间风叶腔下出口;所述中间风叶腔进口连通所述中间风叶腔和壳体腔,所述中间风叶腔上出口和A2通风口连通,所述中间风叶腔下出口和B2通风口连通;
    所述第一上挡风结构处于所述第二工作位且所述第一下挡风结构处于所述第三工作位时,所述中间风叶转动,室内空气可流经所述上出风主流路;
    所述第一上挡风结构处于所述第一工作位且所述第一下挡风结构处于所述第四工作位时,所述中间风叶转动,室内空气可流经所述下出风主流路。
  7. 根据权利要求6所述的柜式空调室内机,其特征在于,所述中间风叶腔内还可转动地设置有第二上挡风结构和第二下挡风结构;所述第二上挡风结构靠近所述中间风叶腔上出口,所述第二下挡风结构靠近所述中间风叶腔下出口;所述第二上挡风结构、所述第二下挡风结构均与所述中间风叶腔的型线相适配;
    所述第一上挡风结构处于所述第二工作位且所述第一下挡风结构处于所述第三工作位时,所述第二下挡风结构和第一下挡风结构配合可将所述中间风叶腔内的空气导向所述上风道;
    所述第一上挡风结构处于所述第一工作位且所述第一下挡风结构处于所述第四工作位时,所述第二上挡风结构和第一上挡风结构配合可将所述中间风叶腔内的空气导向所述下风道。
  8. 根据权利要求4所述的柜式空调室内机,其特征在于,所述动力风叶腔设置有两个,两个所述动力风叶腔包括由上至下依次设置的上风叶腔和下风叶腔;所述上风叶腔内可转动地设置有上风叶且所述上风叶腔形成有上风叶腔进口、上风叶腔C1出口、上风叶腔C2出口和上风叶腔C3出口;所述上风叶腔进口连通所述上风叶腔和壳体腔,所述上风叶腔C1出口和A2通风口连通;
    所述下风叶腔内可转动地设置有下风叶且所述下风叶腔形成有下风叶腔进口、下风叶腔D1出口、下风叶腔D2出口和下风叶腔D3出口;所述下风叶腔进口连通所述下风叶腔和壳体腔,所述下风叶腔D1出口和B2通风口连通;
    所述风道组件还形成有由上至下依次设置的上辅助风道、中辅助风道和下辅助风道;所述上辅助风道连通所述上前风口和上风叶腔C2出口,所述下辅助风道连通所述下前风口和下风叶腔D2出口,所述中辅助风道连通所述上风叶腔C3出口和下风叶腔D3出口。
  9. 根据权利要求8所述的柜式空调室内机,其特征在于,所述上风叶腔C2出口可活动地设置有第三上挡风结构,所述第三上挡风结构可打开或关闭所述上风叶腔C2出口;所述下风叶腔D2出口可活动地设置有第三下挡风结构,所述第三下挡风结构可打开或关闭所述下风叶腔D2出口;
    所述第三上挡风结构打开所述上风叶腔C2出口,所述第三下挡风结构关闭所述下风叶腔D2出口时,所述下风道、下风叶腔、中辅助风道、上风叶腔、上风道和上辅助风道连通并形成所述上出风主流路;
    所述第三上挡风结构关闭所述上风叶腔C2出口,所述第三下挡风结构打开所述下风叶腔D2出口时,所述上风道、上风叶腔、中辅助风道、下风叶腔、下风道和下辅助风道连通并形成所述下出风主流路;
    所述第三上挡风结构关闭所述上风叶腔C2出口,所述第三下挡风结构关闭所述下风叶腔D2出口时,所述上风叶腔和上风道及所述下风叶腔和下风道形成所述上下同时出风主流路。
  10. 根据权利要求4所述的柜式空调室内机,其特征在于,所述动力风叶腔设置有两个,两个所述动力风叶腔包括由上至下依次设置的上风叶腔和下风叶腔;所述上风叶腔内可转动地设置有上风叶且所述上风叶腔形成有上风叶腔进口、上风叶腔C1出口和上风叶腔C3出口;所述上风叶腔进口连通所述上风叶腔和壳体腔,所述上风叶腔C1出口和A2通风口连通,所述上风叶腔C3出口和下前风口之间形成有下副风道;所述上风叶腔C3出口处可活动地设置有第四上挡风结构,所述第四上挡风结构可打开或关闭所述上风叶腔C3出口;
    所述下风叶腔内可转动地设置有下风叶且所述下风叶腔形成有下风叶腔进口、下风叶腔D1出口和下风叶腔D3出口;所述下风叶腔进口连通所述下风叶腔和壳体腔,所述下风叶腔D1出口和B2通风口连通,所述下风叶腔D3出口和上前风口之间形成有上副风道;所述下风叶腔D3出口处可活动地设置有第四下挡风结构,所述第四下挡风结构可打开或关闭所述下风叶腔D3出口。
  11. 根据权利要求10所述的柜式空调室内机,其特征在于,所述第一上挡风结构处于所述第二工作位、所述第一下挡风结构处于所述第三工作位、所述上风叶腔C3出口关闭及所述下风叶腔D3出口打开时,所述下风道、上风叶腔和上风道依次连通形成所述上出风主流路,所述下风道、下风叶腔和上副风道依次连通形成上出风副流路;
    所述第一上挡风结构处于所述第一工作位、所述第一下挡风结构处于所述第四工作位、所述上风叶腔C3出口打开及所述下风叶腔D3出口关闭时,所述上风道、下风叶腔和下风道依次连通形成所述下出风主流路,所述上风道、上风叶腔和下副风道依次连通形成下出风副流路。
  12. 根据权利要求1所述的柜式空调室内机,其特征在于,所述壳体包括壳体左侧壁,所述风叶腔进口包括风叶腔左进口,所述风叶腔左进口与壳体左侧壁对应;所述空调室内机还包括室内换热器,所述室内换热器包括左换热器,所述左换热器设置在所述壳体左侧壁与风叶腔左进口之间;和/或,
    所述壳体还包括壳体右侧壁,所述风叶腔进口包括风叶腔右进口,所述风叶腔右进口与壳体右侧壁对应;所述空调室内机还包括室内换热器,所述室内换热器包括右换热器,所述右换热器设置在所述壳体右侧壁与风叶腔右进口之间。
  13. 根据权利要求12所述的柜式空调室内机,其特征在于,所述左换热器包括E1换热段和F1换热段;所述E1换热段向所述上风道延伸,所述F1换热段向所述下风道延伸;所述E1换热段设置在所述F1换热段的上方,且满足:90°≤ɑ≤180°;和/或,
    所述右换热器包括E2换热段和F2换热段;所述E2换热段向所述上风道延伸,所述F2换热段向所述下风道延伸;所述E2换热段设置在所述F2换热段的上方,且满足:90°≤β≤180°;
    其中,ɑ为所述E1换热段的换热面与F1换热段的换热面之间的夹角,β为所述E2换热段的换热面与F2换热段的换热面之间的夹角。
  14. 一种柜式空调室内机的控制方法,其特征在于,所述柜式空调室内机包括壳体和风道组件,所述壳体围设成壳体腔且所述壳体的上部形成有上前风口和上后风口,所述壳体的下部形成有下前风口和下后风口;所述风道组件设置在所述壳体腔内且所述风道组件形成有由所述下前风口进风且由所述上前风口出风的上出风主流路、由所述上前风口进风且由所述下前风口出风的下出风主流路及由所述 上前风口和下前风口同时出风的上下同时出风主流路;所述壳体腔和风道组件之间形成有由所述下后风口辅助进风的下辅助进风流路、由所述上后风口辅助进风的上辅助进风流路及由所述上后风口和下后风口同时辅助进风的上下同时辅助进风流路;
    所述控制方法包括:
    确定所述柜式空调室内机的目标运行模式;
    对比室内空气的当前温度和第一预设温度;
    根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路;
    其中,所述目标运行模式为制热模式或制冷模式,所述目标主流路为上出风主流路或下出风主流路或上下同时出风主流路;所述目标辅助进风流路为下辅助进风流路或上辅助进风流路或上下同时辅助进风流路。
  15. 根据权利要求14所述的柜式空调室内机的控制方法,其特征在于,所述根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路包括:
    所述目标运行模式为制冷模式且所述当前温度大于第一预设温度时,或所述目标运行模式为制热模式且所述当前温度小于第一预设温度时,所述目标主流路为所述上下同时出风主流路,所述目标辅助进风流路为上下同时辅助进风流路。
  16. 根据权利要求15所述的柜式空调室内机的控制方法,其特征在于,所述根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路还包括:
    所述目标运行模式为制冷模式且所述当前温度小于或等于所述第一预设温度时,计算室内上层空气温度和下层空气温度的上下温度差并对比所述上下温度差和第二预设温度;
    当所述上下温度差大于所述第二预设温度时,所述目标主流路为上出风主流路,所述目标辅助进风流路为下辅助进风流路;
    当所述上下温度差小于或等于所述第二预设温度时,所述目标主流路为上出风主流路,所述目标辅助进风流路为上下同时辅助进风流路。
  17. 根据权利要求15所述的柜式空调室内机的控制方法,其特征在于,所述根据目标运行模式及所述当前温度和第一预设温度的对比结果确定目标主流路和目标辅助进风流路还包括:
    所述目标运行模式为制热模式且所述当前温度大于或等于所述第一预设温度时,计算室内上层空气温度和下层空气温度的上下温度差并对比所述上下温度差和第三预设温度;
    当所述上下温度差大于所述第三预设温度时,所述目标主流路为下出风主流路,所述目标辅助进风流路为上辅助进风流路;
    当所述上下温度差小于或等于所述第三预设温度时,所述目标主流路为下出风主流路,所述目标辅助进风流路为上下同时辅助进风流路。
PCT/CN2024/116361 2023-12-29 2024-09-02 一种柜式空调室内机及控制方法 Pending WO2025138999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311863033.4A CN120232071A (zh) 2023-12-29 2023-12-29 一种柜式空调室内机及控制方法
CN202311863033.4 2023-12-29

Publications (1)

Publication Number Publication Date
WO2025138999A1 true WO2025138999A1 (zh) 2025-07-03

Family

ID=96163681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/116361 Pending WO2025138999A1 (zh) 2023-12-29 2024-09-02 一种柜式空调室内机及控制方法

Country Status (2)

Country Link
CN (1) CN120232071A (zh)
WO (1) WO2025138999A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035144A (ko) * 2001-10-30 2003-05-09 한라공조주식회사 2층 공기유동구조를 가진 센터 마운팅 타입 자동차용공기조화장치
CN103776090A (zh) * 2012-10-18 2014-05-07 珠海格力电器股份有限公司 房间空调器及其控制方法
CN106594867A (zh) * 2016-11-18 2017-04-26 珠海格力电器股份有限公司 空调器
CN211041151U (zh) * 2019-08-05 2020-07-17 宁波奥克斯电气股份有限公司 一种可实现多种出风模式的室内机
CN113932298A (zh) * 2021-08-11 2022-01-14 珠海格力电器股份有限公司 风机系统、空调器以及出风控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035144A (ko) * 2001-10-30 2003-05-09 한라공조주식회사 2층 공기유동구조를 가진 센터 마운팅 타입 자동차용공기조화장치
CN103776090A (zh) * 2012-10-18 2014-05-07 珠海格力电器股份有限公司 房间空调器及其控制方法
CN106594867A (zh) * 2016-11-18 2017-04-26 珠海格力电器股份有限公司 空调器
CN211041151U (zh) * 2019-08-05 2020-07-17 宁波奥克斯电气股份有限公司 一种可实现多种出风模式的室内机
CN113932298A (zh) * 2021-08-11 2022-01-14 珠海格力电器股份有限公司 风机系统、空调器以及出风控制方法

Also Published As

Publication number Publication date
CN120232071A (zh) 2025-07-01

Similar Documents

Publication Publication Date Title
CN110388692B (zh) 用于近零能耗建筑的冷热源新风装置及其控制方法
CN110388693A (zh) 房间空气环境调控系统及其控制方法
CN210267517U (zh) 用于近零能耗建筑的冷热源新风装置
CN221593123U (zh) 一种风道装置及室内机
CN107741064A (zh) 一种带新风热回收系统的空调室外机
CN107084517A (zh) 天井式空调器化霜方法及天井式空调器
WO2025138999A1 (zh) 一种柜式空调室内机及控制方法
CN204165327U (zh) 一种双向气流烘烤装置
CN110966677B (zh) 一种可逆送风的空调室内机和空调器
CN118757898A (zh) 风道组件、柜式空调室内机及控制方法
CN113719911A (zh) 一种结构紧凑的节能型一体式上送风空调机组
CN110425637B (zh) 一种可实现多种出风模式的室内机及其控制方法
CN211119676U (zh) 一种可逆送风的空调室内机和空调器
CN209459054U (zh) 空调内机和空调器
CN107461866A (zh) 新风用热交换装置旁通结构
CN207123031U (zh) 新风用热交换装置旁通结构
CN215808910U (zh) 一种结构紧凑的节能型一体式上送风空调机组
CN215295584U (zh) 一种麦芽干燥炉的风门组合系统
CN212139278U (zh) 一种分体式闭式循环热泵烟叶烘烤房
CN110762621B (zh) 一种可逆送风的空调室内机和空调器
CN211119672U (zh) 一种可逆送风的空调室内机和空调器
CN201575540U (zh) 一种可实现节能的中央空调
CN221744177U (zh) 一种柜式空调室内机
CN207065936U (zh) 蒸发器组件、车载空调系统及车辆
CN112611101A (zh) 一种新风系统的预热装置及其控制方法、新风系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24909945

Country of ref document: EP

Kind code of ref document: A1