WO2025092397A1 - 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用 - Google Patents

一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用 Download PDF

Info

Publication number
WO2025092397A1
WO2025092397A1 PCT/CN2024/124368 CN2024124368W WO2025092397A1 WO 2025092397 A1 WO2025092397 A1 WO 2025092397A1 CN 2024124368 W CN2024124368 W CN 2024124368W WO 2025092397 A1 WO2025092397 A1 WO 2025092397A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
flue gas
liquid
low
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2024/124368
Other languages
English (en)
French (fr)
Inventor
张丽
王云阳
金绪良
王海刚
黄忠源
张真
杨钧晗
贾嘉
殷爱鸣
董磊
殷东
孟凡钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Datang Corp Science And Technology General Research Institute
Datang North China Electric Power Test And Research Institute
Original Assignee
China Datang Corp Science And Technology General Research Institute
Datang North China Electric Power Test And Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Datang Corp Science And Technology General Research Institute, Datang North China Electric Power Test And Research Institute filed Critical China Datang Corp Science And Technology General Research Institute
Publication of WO2025092397A1 publication Critical patent/WO2025092397A1/zh
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines

Definitions

  • the present application belongs to the field of CO2 capture by chemical absorption after combustion in thermal power plants, and specifically relates to the preparation and application of a composite alcohol amine absorbent for low CO2 partial pressure flue gas.
  • the reaction heat of MEA and CO2 is very large, generating quite stable carbamates, and a large amount of heat is consumed when the solvent is regenerated by high-temperature decomposition reaction.
  • MEA is easy to react with the activated gas in the flue gas, resulting in a large loss of MEA.
  • the generated by-products further aggravate the corrosion of the equipment and promote the degradation of MEA.
  • the purpose of the present application is to provide a composite alcohol amine absorbent for low CO2 partial pressure flue gas, and to use it to absorb CO2 by optimizing the reflux process of regenerated gas condensate.
  • the technical problems to be solved by this application are: improving the reaction rate, increasing the absorption capacity, and reducing the regeneration energy consumption.
  • a preparation method for a composite alcohol amine absorbent for low CO2 partial pressure flue gas comprises the following steps:
  • the polyol amine absorbent is composed of the following components in mass fraction: 18%-40% of a main absorbent, 3%-15% of an auxiliary absorbent, 0.5%-1.5% of an antioxidant, 0.5%-1.5% of a corrosion inhibitor, and 42%-78% of water.
  • the main absorbent includes one or more of diethylenetriamine, N,N-diethylethanolamine and hydroxyethylethylenediamine.
  • the absorbent comprises one or more of monoethanolamine, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol and 2-amino-2-methyl-1-propanol.
  • the antioxidant comprises one or more of butanone oxime, acetone oxime, hydrazine carbonate and ammonium sulfite.
  • the corrosion inhibitor is sodium vanadate.
  • the dosage ratio of the main absorbent, water, auxiliary absorbent, antioxidant and corrosion inhibitor is (18-40) g: (42-78) mL: (3-15) g: (0.5-1.5) g: (0.5-1.5) g.
  • An application of a composite alcohol amine absorbent for low CO2 partial pressure flue gas, as shown in FIG1, comprises the following steps:
  • the flue gas After being cooled by the scrubber, the flue gas enters the bottom of the absorption tower and contacts with the lean absorbent solution entering from the top of the absorption tower in countercurrent to carry out the CO2 absorption process.
  • the flue gas is discharged from the top of the absorption tower and enters the recovery tower to recover the absorbent before being discharged.
  • the absorbent rich liquid After absorbing CO2, the absorbent rich liquid is discharged from the bottom of the absorber, and a part of it is reinjected into the top of the absorber together with the lean liquid. The other part of the rich liquid is heat exchanged in the lean-rich liquid heat exchanger and then enters the top of the regeneration tower for desorption.
  • the lean liquid of the absorbent after desorption enters the top of the absorption tower through the lean-rich liquid heat exchanger and the lean liquid cooler.
  • the regeneration gas CO2 at the top of the regeneration tower is purified by the regeneration cooler and the gas-liquid separator to obtain the product gas CO2.
  • the reaction between CO2 and tertiary amine occurs simultaneously with the reaction between CO2 and co-absorbent.
  • Co-absorbent primary amine or sterically hindered amine rapidly combines with CO2 at the gas-liquid interface, transfers CO2 to the absorption body in the liquid phase, and is regenerated.
  • Co-absorbent molecules shuttle repeatedly between the gas-liquid interface and the liquid phase until the solution absorption reaches saturation. A small amount of co-absorbent can effectively activate the absorption body, greatly shorten the reaction process between the absorption body and CO2 , and increase the reaction rate.
  • the technical solution of the present application can ensure that the absorbent has a good absorption efficiency of 85% to 92% in a low CO2 environment, can operate stably for more than 2 years in an oxygen-rich environment, and the annual average performance decay rate is less than 5% (calculated as CO2 capture rate).
  • the absorbent of the present application is also suitable for CO2 capture systems of industrial flue gases or tail gases such as coal-fired power plant flue gas, natural gas processing, lime kiln flue gas, blast furnace gas, and coke oven gas.
  • Figure 1 is a flow chart of the CO2 capture process.
  • the flue gas volume entering the capture system is 2857Nm3/h, the CO2 content is 4.493%, the flue gas temperature at the inlet of the absorption tower is 40°C, the absorbent circulation flow rate is 4.5m3/h, the regeneration tower pressure is 10kPa, and the reheat steam parameters are 0.4MPa(g) and 150°C; the valve of the regeneration gas condensate reflux pipe is closed, and the absorption test is carried out using the absorbent formula developed in this application.
  • the capture rate of the CO2 capture system is 88.07%, and the regeneration energy consumption is 3.234GJ/tCO2.
  • the flue gas intake of the capture system is 2857Nm3/h, the CO2 content is 4.493%, the flue gas temperature at the absorption tower inlet is 40°C, the absorbent circulation flow rate is 4.5m3/h, the regeneration tower pressure is 10kPa, and the reheat steam parameters are 0.4MPa(g) and 150°C; the valve of the regeneration gas condensation reflux pipeline is opened, and the absorption test is carried out using the absorbent formula developed in this application.
  • the capture rate of the CO2 capture system is 91.35%, and the regeneration energy consumption is 3.178GJ/tCO2.
  • Example 1 and Comparative Example 1 compared the optimization effect of the regeneration gas condensate reflux process under the same flue gas conditions and absorbent conditions. The results showed that after the regeneration gas condensate reflux process was optimized, the capture efficiency was improved and the regeneration energy consumption was reduced.
  • Example 1 and Comparative Example 1 compared the optimization effect of the regeneration gas condensate reflux process under the same flue gas conditions and absorbent conditions. The results showed that after the regeneration gas condensate reflux process was optimized, the capture efficiency was improved and the regeneration energy consumption was reduced.
  • the flue gas volume entering the capture system is 2700Nm3/h, the CO2 content is 4.6%, the flue gas temperature at the inlet of the absorption tower is 40°C, the absorbent circulation flow rate is 4.0m3/h, the regeneration tower pressure is 10kPa, and the reheat steam parameters are 0.4MPa(g) and 150°C; the absorption test was carried out using a formula with AMPD as the main absorbent, and the CO2 capture system capture rate was 88.71%, and the regeneration energy consumption was 3.72GJ/tCO2.
  • the flue gas volume entering the capture system is 2600Nm3/h, the CO2 content is 4.6%, the flue gas temperature at the inlet of the absorption tower is 37.8°C, the absorbent circulation flow rate is 5.0m3/h, the regeneration tower pressure is 10kPa, and the reheat steam parameters are 0.4MPa(g) and 150°C; the absorption test was carried out using a formula with AEEA as the main absorbent, the CO2 capture system capture rate was 90.10%, and the regeneration energy consumption was 3.59GJ/tCO2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种适应低CO2分压烟气CO2捕集工艺同时兼顾连续运行稳定性和安全性的多元醇胺吸收剂,其主要成分包括:主吸收剂、助吸收剂、抗氧化剂、缓蚀剂和水,吸收剂浓度按质量分数计为22%-58%;其中,主吸收组分包括二乙烯三胺、N,N-二乙基乙醇胺和羟乙基乙二胺中的一种或两种;助吸收剂包含一乙醇胺、2-氨基-2-甲基-1,3-丙二醇,2-氨基-2-乙基-1,3-丙二醇和2-氨基-2-甲基-1-丙醇中的一种或两种;抗氧化剂包含丁酮肟、丙酮肟、碳酸肼、亚硫酸铵中的一种或两种;缓蚀剂为钒酸钠;其余为除盐水。

Description

一种用于低CO2分压烟气的复配醇胺吸收剂的制备及其应用
本申请要求与2023年11月01日提交中国专利局、申请号为2023114409484、申请名称为“一种用于低CO2分压烟气的复配醇胺吸收剂的制备及其应用”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请属于火力发电厂燃烧后化学吸收法CO2捕集领域,具体地涉及一种用于低CO2分压烟气的复配醇胺吸收剂的制备及其应用。
背景技术
随着人类社会经济发展对能源的依存度越来越高,化石能源的广泛利用带来了一系列环境问题。利用CO2捕获和封存技术从工业集中排放源中将CO2分离、封存、长期与大气隔绝,是解决化石能源依赖与应对气候变化之间矛盾的重要举措。化学吸收法CO2捕集是实现大规模CO2捕集的关键技术。以MEA为代表的伯胺活性较强,能迅速与CO2发生反应,可以有效降低火电厂碳捕集吸收塔的高度,从而降低投资成本。并且MEA容易生产,可以确保原料供应稳定。然而,MEA工艺在实际应用中面临巨大的挑战,MEA与CO2的反应热非常大,生成相当稳定的氨基甲酸盐,通过高温分解反应实现溶剂再生时需要消耗大量的热量。且MEA易与烟道气中的活化气体发生反应,造成MEA的大量损耗,同时生成的副产物进一步加剧设备的腐蚀并促进MEA的降解。
现有技术中,单一传统醇胺吸收剂在CO2分压烟气存在很大的局限性,反应速率较慢、吸收容量小和再生能耗高等都是其显著的问题,因此,需要探索一种用于低CO2分压烟气的复配醇胺吸收剂。
申请内容
本申请的目的在于提供一种用于低CO2分压烟气的复配醇胺吸收剂,并通过再生气冷凝水优化回流工艺进行CO2吸收的应用。
本申请要解决的技术问题:提高反应速率、增大吸收容量、降低再生能耗。
本申请的目的可以通过以下技术方案实现:
一种用于低CO2分压烟气的复配醇胺吸收剂的制备,包括以下步骤:
S1、多元醇胺吸收剂按照以下质量分数的成分组成:主吸收剂18%-40%、助吸收剂3%-15%、抗氧化剂0.5%-1.5%、缓蚀剂0.5%-1.5%和水42%-78%。
S2、所述主吸收剂包括二乙烯三胺、N,N-二乙基乙醇胺和羟乙基乙二胺中的一种或多种。
S3、所述助吸收剂包含一乙醇胺、2-氨基-2-甲基-1,3-丙二醇,2-氨基-2-乙基-1,3-丙二醇和2-氨基-2-甲基-1-丙醇中的一种或多种。
S4、所述抗氧化剂包含丁酮肟、丙酮肟、碳酸肼和亚硫酸铵中的一种或多种。
S5、所述缓蚀剂为钒酸钠。
进一步地,多元醇胺吸收剂的具体制备步骤为:
将主吸收剂加入水溶液中,混合均匀后,加入助吸收剂,搅拌,控制温度在30℃-40℃,30min-45min,然后加入抗氧化剂和缓蚀剂,充分混匀后,制得多元醇胺吸收剂。
所述主吸收剂、水、助吸收剂、抗氧化剂和缓蚀剂的用量比为(18-40)g:(42-78)mL:(3-15)g:(0.5-1.5)g:(0.5-1.5)g。
一种用于低CO2分压烟气的复配醇胺吸收剂的应用,如图1所示,包括以下步骤:
S1、烟气经洗涤塔降温后进入吸收塔底部,与吸收塔顶部进入的吸收剂贫液逆流接触,进行CO2的吸收过程。
S2、完成CO2吸收后的烟气由吸收塔顶部排出进入回收塔回收吸收剂后排放。
S3、吸收CO2后的吸收剂富液从吸收塔塔底排出,一部分进行富液回注,与贫液一同重新送入吸收塔顶部。另一部分富液经贫富液换热器换热后进入再生塔顶部进行解吸。
S4、解吸后的吸收剂的贫液经贫富液换热器、贫液冷却器进入吸收塔顶部。再生塔顶部的再生气CO2经再生冷却器、气液分离器净化得到产品气CO2。
S5、再生气的冷凝水回流至吸收塔贫液入口管道。
本申请的有益效果:
1、本申请技术方案中,CO2和叔胺的反应与CO2和助吸收剂的反应同时发生,助吸收剂伯胺或空间位阻胺等在气液界面中快速与CO2结合,将CO2传递给液相主体中的吸收主体,并获得再生。助吸收剂分子在气液界面和液相主体之间反复穿梭,直到溶液吸收达到饱和。少量的助吸收剂即可有效活化吸收主体,大大缩短吸收主体与CO2的反应历程,提高反应速率。
2、本申请技术方案可以保证吸收剂在低CO2环境下具有良好的吸收效率85%~92%,在富氧环境下可以稳定运行2年以上,年平均性能衰减速率<5%(以CO2捕集率计),此外本申请吸收剂也适用于燃煤电厂烟气、天然气处理、石灰窑烟气、高炉煤气、焦炉煤气等工业烟气或尾气的CO2捕集系统。
附图说明
图1为CO2捕集工艺流程图。
具体实施方式
下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
实施例1
捕集系统进烟气量为2857Nm3/h,CO2含量为4.493%,吸收塔入口烟气温度为40℃,吸收剂循环流量为4.5m3/h,再生塔压力为10kPa,再热蒸汽参数为0.4MPa(g)、150℃;关闭再生气冷凝水回流管道阀门,使用本申请开发的吸收剂配方进行吸收试验,CO2捕集系统捕集率为88.07%,再生能耗为3.234GJ/tCO2。
对比例1
捕集系统进烟气量为2857Nm3/h,CO2含量为4.493%,吸收塔入口烟气温度为40℃,吸收剂循环流量为4.5m3/h,再生塔压力为10kPa,再热蒸汽参数为0.4MPa(g)、150℃;打开再生气冷凝回流管道阀门,使用本申请开发的吸收剂配方进行吸收试验,CO2捕集系统捕集率为91.35%,再生能耗为3.178GJ/tCO2。
实施例1和对比例1在烟气条件、吸收剂条件一致的情况下,对比了再生气冷凝水回流工艺的优化效果,结果证明,经再生气冷凝水回流工艺优化后,捕集效率得到提升,同时,再生能耗降低。
实施例1和对比例1在烟气条件、吸收剂条件一致的情况下,对比了再生气冷凝水回流工艺的优化效果,结果证明,经再生气冷凝水回流工艺优化后,捕集效率得到提升,同时,再生能耗降低。
实施例2
捕集系统进烟气量为2700Nm3/h,CO2含量为4.6%,吸收塔入口烟气温度为40℃,吸收剂循环流量为4.0m3/h,再生塔压力为10kPa,再热蒸汽参数为0.4MPa(g)、150℃;使用以AMPD为主吸收剂的配方进行吸收试验,CO2捕集系统捕集率为88.71%,再生能耗为3.72GJ/tCO2。
实施例3
捕集系统进烟气量为2600Nm3/h,CO2含量为4.6%,吸收塔入口烟气温度为37.8℃,吸收剂循环流量为5.0m3/h,再生塔压力为10kPa,再热蒸汽参数为0.4MPa(g)、150℃;使用以AEEA为主吸收剂的配方进行吸收试验,CO2捕集系统捕集率为90.10%,再生能耗为3.59GJ/tCO2。
北京市某天然气电厂烟气参数如表1所示:
表1.北京市某天然气电厂烟气参数
在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本申请所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离申请或者超越本权利要求书所定义的范围,均应属于本申请的保护范围。

Claims (4)

  1. 一种用于低CO2分压烟气的复配醇胺吸收剂的制备,其中:
    多元醇胺吸收剂按照以下质量分数的成分组成:主吸收剂18%-40%、助吸收剂3%-15%、抗氧化剂0.5%-1.5%、缓蚀剂0.5%-1.5%和水42%-78%。
  2. 根据权利要求1所述的一种用于低CO2分压烟气的复配醇胺吸收剂的制备,其中,主吸收剂包括二乙烯三胺、N,N-二乙基乙醇胺和羟乙基乙二胺中的一种或多种,对CO2吸收容量大,再生能耗较低。助吸收剂包含一乙醇胺、2-氨基-2-甲基-1,3-丙二醇,2-氨基-2-乙基-1,3-丙二醇和2-氨基-2-甲基-1-丙醇中的一种或多种,在气液界面中快速与CO2结合,以氨基甲酸盐的形式将CO2传递给液相主体中的主吸收剂。抗氧化剂包含丁酮肟、丙酮肟、碳酸肼和亚硫酸铵中的一种或多种,缓蚀剂为钒酸钠。
  3. 根据权利要求1所述的一种用于低CO2分压烟气的复配醇胺吸收剂的制备,其中,本申请适用烟气条件,其CO2体积分数为3%~7%,O2体积分数9%~13%,其余主要成分为氮气。
  4. 一种如权利要求1-3任一项所述的用于低CO2分压烟气的复配醇胺吸收剂的应用,其中,烟气经洗涤塔降温后进入吸收塔底部,完成CO2吸收后的烟气由吸收塔顶部排出进入回收塔回收吸收剂后排放。回收的富液重新进入吸收塔。吸收剂富液从吸收塔底排出,一部分与贫液一同重新送入吸收塔顶部。另一部分富液经贫富液换热器换热后进入再生塔顶部进行解吸。解吸后的吸收剂贫液经贫富液换热器、贫液冷却器进入吸收塔顶部。再生塔顶部的再生气CO2经再生冷却器、气液分离器净化得到产品气CO2。再生气的冷凝水回流至吸收塔贫液入口管道。
PCT/CN2024/124368 2023-11-01 2024-10-12 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用 Pending WO2025092397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311440948.4A CN117504536A (zh) 2023-11-01 2023-11-01 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用
CN202311440948.4 2023-11-01

Publications (1)

Publication Number Publication Date
WO2025092397A1 true WO2025092397A1 (zh) 2025-05-08

Family

ID=89755883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/124368 Pending WO2025092397A1 (zh) 2023-11-01 2024-10-12 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用

Country Status (2)

Country Link
CN (1) CN117504536A (zh)
WO (1) WO2025092397A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117504536A (zh) * 2023-11-01 2024-02-06 中国大唐集团科学技术研究总院有限公司华北电力试验研究院 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用
CN118698282A (zh) * 2024-07-12 2024-09-27 深圳市深汕特别合作区华润电力有限公司 一种适用于低分压co2捕集纯化的复合胺吸收体系和co2捕集纯化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091864A (zh) * 2007-05-15 2007-12-26 大连理工大学 回收混合气体中二氧化碳的复合脱碳溶液
US20100029466A1 (en) * 2006-11-24 2010-02-04 Aker Clean Carbon As Absorbent regeneration with compressed overhead stream to provide heat
CN113599973A (zh) * 2021-09-17 2021-11-05 安徽普泛能源技术有限公司 一种从混合气体中吸收co2的复合吸收剂及其装置和应用
CN114210176A (zh) * 2021-12-15 2022-03-22 北京民利储能技术有限公司 一种耦合热回收的二氧化碳捕捉工艺、仿真方法
CN117504536A (zh) * 2023-11-01 2024-02-06 中国大唐集团科学技术研究总院有限公司华北电力试验研究院 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029466A1 (en) * 2006-11-24 2010-02-04 Aker Clean Carbon As Absorbent regeneration with compressed overhead stream to provide heat
CN101091864A (zh) * 2007-05-15 2007-12-26 大连理工大学 回收混合气体中二氧化碳的复合脱碳溶液
CN113599973A (zh) * 2021-09-17 2021-11-05 安徽普泛能源技术有限公司 一种从混合气体中吸收co2的复合吸收剂及其装置和应用
CN114210176A (zh) * 2021-12-15 2022-03-22 北京民利储能技术有限公司 一种耦合热回收的二氧化碳捕捉工艺、仿真方法
CN117504536A (zh) * 2023-11-01 2024-02-06 中国大唐集团科学技术研究总院有限公司华北电力试验研究院 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用

Also Published As

Publication number Publication date
CN117504536A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN112126477A (zh) 基于高炉冲渣水余热回收利用的二氧化碳捕集系统及方法
WO2025092397A1 (zh) 一种用于低co2分压烟气的复配醇胺吸收剂的制备及其应用
CN102895860B (zh) 化学吸收co2捕获流程的降耗方法及系统
WO2012162944A1 (zh) 捕集混合气体中二氧化碳的复合脱碳溶液
CN109999618B (zh) 一种中高压气源中二氧化碳的分离系统及方法
CN114405258B (zh) 一种适用于低分压co2捕集纯化的吸收体系
CN101612509A (zh) 捕集混合气体中二氧化碳的复合脱碳溶液
CN106362551A (zh) 一种烟气二氧化碳捕集系统与工艺
CN105749728B (zh) 二氧化碳的捕集方法及装置
CN114405246B (zh) 一种适用于低分压co2捕集纯化的节能工艺
CN102322301A (zh) 一种燃煤发电-co2捕获-供热一体化系统及方法
CN109701362A (zh) 一种用于二氧化碳捕集的液-固相变吸收剂及其应用
CN102284227A (zh) 一种用复合脱碳溶液捕集混合气体中二氧化碳的方法
WO2021008242A1 (zh) 一种采用化学吸收法碳捕集技术的热力学循环构建方法
CN110152453A (zh) 使用溶剂吸收法捕集气体混合物中酸性气体的方法和设备
CN104772021B (zh) 多元醇‑乙二胺水溶液捕集工业气中co2的方法
CN116585868B (zh) 一种二氧化碳捕集与尿素制备一体化工艺
CN111437710A (zh) 一种醇-胺-水系二氧化碳捕集液及二氧化碳的捕集方法
CN119034434A (zh) 一种二氧化碳相变吸收剂、捕集系统及方法
CN101637689A (zh) 一种捕集或分离二氧化碳的吸收溶剂
CN113318572B (zh) 一种二氧化碳相变吸收剂有机醇再生调控方法及其应用
CN101327392A (zh) 用于酸性气体分离的吸收剂
CN117180928A (zh) 一种气体捕集储存系统及方法
CN115738667A (zh) 一种油页岩尾矿干馏烟气中二氧化碳捕集装置
CN113318571A (zh) 一种用于捕集co2的双相吸收剂及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24884401

Country of ref document: EP

Kind code of ref document: A1