WO2025081727A1 - 储能电源、储能电源系统及储能电源的控制方法 - Google Patents
储能电源、储能电源系统及储能电源的控制方法 Download PDFInfo
- Publication number
- WO2025081727A1 WO2025081727A1 PCT/CN2024/085992 CN2024085992W WO2025081727A1 WO 2025081727 A1 WO2025081727 A1 WO 2025081727A1 CN 2024085992 W CN2024085992 W CN 2024085992W WO 2025081727 A1 WO2025081727 A1 WO 2025081727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery module
- module
- discharge
- charge
- control
- Prior art date
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 163
- 238000000034 method Methods 0.000 title claims description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 109
- 238000007599 discharging Methods 0.000 claims abstract description 75
- 101100083446 Danio rerio plekhh1 gene Proteins 0.000 claims description 141
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 claims description 124
- 230000002457 bidirectional effect Effects 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 12
- 230000008054 signal transmission Effects 0.000 claims description 5
- 238000007726 management method Methods 0.000 description 23
- 238000013507 mapping Methods 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 11
- 238000012544 monitoring process Methods 0.000 description 8
- 238000011217 control strategy Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- -1 sodium hexafluorophosphate Chemical compound 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J15/00—Systems for storing electric energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of battery technology, and more specifically, to an energy storage power supply, an energy storage power supply system, and a control method for an energy storage power supply.
- Energy storage power supply is a device that can store electrical energy and supply power to external loads.
- Current energy storage power supplies can use different types of batteries in parallel to broaden the normal operating temperature range of the energy storage power supply and increase the power of the energy storage power supply.
- the energy storage power supply is equipped with parallel lithium battery modules and sodium battery modules.
- the normal operating temperature range and energy density of lithium battery modules and sodium battery modules are different, so it is difficult for a battery management module that uses a single management method to manage both lithium battery modules and sodium battery modules at the same time.
- the embodiments of the present application provide an energy storage power supply, an energy storage power supply system and an energy storage power supply control method, which are at least used to solve the problem that a battery management module controlled by a single management method is difficult to manage lithium battery modules and sodium battery modules at the same time.
- the energy storage power supply of the embodiment of the present application includes a first battery module, a second battery module and a battery management module.
- the first battery module is used to store and/or release electrical energy.
- the second battery module is connected in parallel with the first battery module, and the second battery module is used to store and/or release electrical energy.
- the battery management module includes a collection module, a charge and discharge module, a conversion module and a control module.
- the collection module is electrically connected to the first battery module and the second battery module, and the collection module is used to obtain the first operating parameter of the first battery module and the second operating parameter of the second battery module.
- the charge and discharge module is electrically connected to the first battery module.
- the conversion module is electrically connected to the first battery module and the second battery module.
- the control module is electrically connected to the charge and discharge module, the conversion module and the collection module.
- the control module is used to obtain a first operating parameter of the first battery module and a second operating parameter of the second battery module, and control the charge and discharge module to charge and discharge the first battery module according to the first operating parameter, control the conversion module to charge and discharge the second battery module according to the second operating parameter, and control the electric energy balance between the first battery module and the second battery module according to the first operating parameter and the second operating parameter.
- the acquisition module includes a first acquisition module and a second acquisition module.
- the first acquisition module is electrically connected to the first battery module, the control module and the charging and discharging module, and the first acquisition module is used to obtain the first operating parameter.
- the second acquisition module is electrically connected to the second battery module, the control module and the conversion module, and the second acquisition module is used to obtain the second operating parameter.
- control module is further used to control the on and off of the charge and discharge module according to the first operating parameter, so as to control the charge and discharge module to charge and discharge the first battery module.
- the first operating parameter includes the maximum storage capacity Q max1 of the first battery module, the preset minimum remaining capacity Q min1 of the first battery module, the current remaining capacity Q A of the first battery module, the first temperature range [T min1 , T max1 ] of normal operation of the first battery module, and the current temperature TA of the first battery module;
- the charging and discharging module includes a charging switch and a discharging switch.
- the charging switch is used to control the on and off of the charging circuit of the first battery module.
- the discharging switch is used to control the on and off of the discharging circuit of the first battery module.
- the discharge switch is turned off and/or the charge switch is controlled to be turned on.
- control module is further used to control the on and off of the conversion module according to the second operating parameter, so as to control the conversion module to charge and discharge the second battery module.
- the second operating parameter includes the maximum storage capacity Q max2 of the second battery module, the preset minimum remaining capacity Q min2 of the second battery module, the current remaining capacity Q B of the second battery module, the second temperature range [T min2 , T max2 ] of normal operation of the second battery module, and the current temperature TB of the second battery module.
- the conversion module includes a first circuit and a second circuit. The first circuit is used to charge the second battery module. The second circuit is used to discharge the second battery module.
- control module is also used to control the flow of electric energy in the balancing circuit composed of the conversion module, the charging and discharging module, the first battery module and the second battery module according to the first operating parameter and the second operating parameter to balance the electric energy of the first battery module and the second battery module.
- the first operating parameter includes the maximum storage capacity Q max1 of the first battery module, the preset minimum remaining capacity Q min1 of the first battery module, the current remaining capacity Q A of the first battery module, the first temperature range [T min1 , T max1 ] of normal operation of the first battery module, and the current temperature TA of the first battery module.
- the second operating parameter includes the maximum storage capacity Q max2 of the second battery module, the preset minimum remaining capacity Q min2 of the second battery module, the current remaining capacity Q B of the second battery module, the second temperature range [ T min2 , T max2 ] of normal operation of the second battery module, and the current temperature TB of the second battery module.
- the conversion module includes a first circuit and a second circuit.
- the first circuit is used to control the on-off of a path for transmitting electric energy from the first battery module to the second battery module.
- the second circuit is used to control the on-off of a path for transmitting electric energy from the second battery module to the first battery module.
- the control module is further configured to, when T A ⁇ T min1 , T A >T max1 , T B ⁇ T min2 or T B >T max2 , control the first loop and the second loop to be disconnected; when T min2 ⁇ T min1 , T max1 ⁇ T max2 , T min2 ⁇ T B ⁇ T max1 and
- the battery management module further includes a shunt resistor, which is electrically connected to the conversion module.
- the shunt resistor is used to obtain a current circulation I 0 between the first battery module and the second battery module.
- the current circulation I 0 is less than a preset maximum circulation value I max .
- the battery management module further includes a connection module, and the connection module is electrically connected to the first battery module, the second battery module, the charge and discharge module, and the conversion module.
- the connection module is used to electrically connect to an external load and/or an external power supply so that the energy storage power supply can transmit electric energy to the external load and/or the external power supply.
- the connection module is also electrically connected to the control module, and the control module is also used to obtain the maximum charge and discharge power P max of the energy storage power supply when the charge and discharge module is turned on according to the first operating parameter and the second operating parameter, and control the charge and discharge module to charge and discharge the first battery module with the maximum charge and discharge power P max of the energy storage power supply, and obtain the maximum charge and discharge power P max of the energy storage power supply when the conversion module is turned on according to the first operating parameter and the second operating parameter, and control the conversion module to charge and discharge the second battery module with the maximum charge and discharge power P max of the energy storage power supply.
- the first operating parameter includes the current voltage UA of the first battery module, the current remaining power QA of the first battery module, and the current temperature TA of the first battery module.
- the second operating parameter includes the current voltage UB of the second battery module, the current remaining power QB of the second battery module, and the current temperature TB of the second battery module.
- the control module is further configured to obtain the maximum charge and discharge power P Amax of the first battery module according to the current voltage UA of the first battery module, the current remaining power QA of the first battery module, and the current temperature TA of the first battery module, and to obtain the maximum charge and discharge power P Amax of the first battery module according to the current voltage UA of the first battery module, the current remaining power QA of the first battery module, and the current temperature TA of the first battery module.
- the maximum charge and discharge power P Bmax of the second battery module is obtained based on the current voltage UB of the second battery module, the current remaining power Q B of the second battery module and the current temperature TB of the second battery module, and the maximum charge and discharge power P max of the energy storage power source is obtained based on the maximum charge and discharge power P Amax of the first battery module and the maximum charge and discharge power P Bmax of the second battery module.
- the battery management module further includes a digital isolator, one end of which is connected to the control module, and the other end of which is connected to the acquisition module and/or the connection module.
- the digital isolator is used to maintain signal transmission between the control module and the acquisition module, and/or to isolate the control module from the connection module.
- the energy storage power supply system of the embodiment of the present application includes the energy storage power supply described in any of the above embodiments.
- the energy storage power supply system further includes a transmission component, a charging component, and a bidirectional conversion component; the charging component and the bidirectional conversion component are both electrically connected to the energy storage power supply through the transmission component, and the transmission component is used to transmit the electric energy of the energy storage power supply to the charging component and the bidirectional conversion component, and to transmit the electric energy to the load; the charging component is used to electrically connect a photovoltaic power supply and the energy storage power supply, and the bidirectional conversion component is used to electrically connect a municipal power grid and the energy storage power supply and convert the voltage type connected to the bidirectional conversion component.
- the control method of the embodiment of the present application is applied to the energy storage power supply described in any of the above embodiments.
- the control method includes: obtaining a first operating parameter of the first battery module and a second operating parameter of the second battery module; controlling the charge and discharge module to charge and discharge the first battery module according to the first operating parameter; controlling the conversion module to charge and discharge the second battery module according to the second operating parameter; and controlling the electric energy balance between the first battery module and the second battery module according to the first operating parameter and the second operating parameter.
- controlling the charge and discharge module to charge and discharge the first battery module according to the first operating parameter includes: controlling the on and off of the charge and discharge module according to the first operating parameter; obtaining the maximum charge and discharge power P max of the energy storage power supply when the charge and discharge module is turned on; and charging and discharging the first battery module with the maximum charge and discharge power P max of the energy storage power supply.
- the first operating parameter includes a maximum storage capacity Q max1 of the first battery module, a preset minimum remaining capacity Q min1 of the first battery module, a current remaining capacity Q A of the first battery module, a first temperature range [T min1 , T max1 ] of normal operation of the first battery module, and a current temperature TA of the first battery module.
- the charge and discharge module includes a charge switch and a discharge switch, the charge switch is used to control the on and off of the charging circuit of the first battery module, and the discharge switch is used to control the on and off of the discharge circuit of the first battery module.
- controlling the conversion module to charge and discharge the second battery module according to the second operating parameter includes: controlling the on and off of the conversion module according to the second operating parameter; obtaining the maximum charge and discharge power P max of the energy storage power supply when the conversion module is turned on; and charging and discharging the second battery module with the maximum charge and discharge power P max of the energy storage power supply.
- the second operating parameter includes a maximum storage capacity Q max2 of the second battery module, a preset minimum remaining capacity Q min2 of the second battery module, a current remaining capacity Q B of the second battery module, a second temperature range [T min2 , T max2 ] of normal operation of the second battery module, and a current temperature TB of the second battery module.
- the conversion module includes a first circuit and a second circuit, the first circuit is used to charge the second battery module, and the second circuit is used to discharge the second battery module.
- the first operating parameter includes the current voltage UA of the first battery module, the current remaining power QA of the first battery module, and the current temperature TA of the first battery module.
- the obtaining of the maximum charge and discharge power P max of the energy storage power supply comprises: obtaining the maximum charge and discharge power P Amax of the first battery module according to the current voltage U B of the first battery module, the current remaining power Q B of the first battery module and the current temperature T A of the first battery module; obtaining the maximum charge and discharge power P Bmax of the second battery module according to the current voltage U B of the second battery module, the current remaining power Q B of the second battery module and the current temperature T B of the second battery module; and obtaining the maximum charge and discharge power P max of the energy storage power supply according to the maximum charge and discharge power P Amax of the first battery module and the maximum charge and discharge power P Bmax of the second battery module.
- controlling the electric energy balance between the first battery module and the second battery module according to the first operating parameter and the second operating parameter includes: controlling the electric energy flow of the balancing circuit composed of the conversion module, the charge and discharge module, the first battery module and the second battery module according to the first operating parameter and the second operating parameter to balance the electric energy of the first battery module and the second battery module.
- the conversion module includes a first circuit and a second circuit
- the first circuit is used to control the on-off of a path for transmitting electric energy from the first battery module to the second battery module
- the second circuit is used to control the on-off of a path for transmitting electric energy from the second battery module to the first battery module.
- the first operating parameter includes the maximum storage capacity Q max1 of the first battery module, the preset minimum remaining capacity Q min1 of the first battery module, the current remaining capacity Q A of the first battery module, the first temperature range [T min1 , T max1 ] of normal operation of the first battery module, and the current temperature TA of the first battery module.
- the second operating parameter includes the maximum storage capacity Q max2 of the second battery module, the preset minimum remaining capacity Q min2 of the second battery module, the current remaining capacity Q B of the second battery module, the second temperature range [T min2 , T max2 ] of normal operation of the second battery module, and the current temperature TB of the second battery module.
- the controlling of the electric energy flow direction of the balancing loop composed of the conversion module, the charging and discharging module, the first battery module and the second battery module according to the first operating parameter and the second operating parameter includes: in the case of T A ⁇ T min1 , T A >T max1 , T B ⁇ T min2 or T B >T max2 , controlling the first loop and the second loop to be disconnected; in the case of T min2 ⁇ T min1 , T max1 ⁇ T max2 and T min2 ⁇ T B ⁇ T max1 , if
- the battery management module in the energy storage power supply includes a control module, a charge and discharge module electrically connected to the first battery module, and a conversion module electrically connected to both the first battery module and the second battery module.
- the control module can control the charge and discharge of the first battery module through the charge and discharge module, and control the charge and discharge of the second battery module through the conversion module.
- the battery management module can control the first battery module and the second battery module respectively according to the different parameters of the first battery module and the second battery module, so as to make the charge and discharge mode of the energy storage power supply more accurate and extend the service life of the battery.
- control module can generate electric energy flow between the first battery module and the second battery module to balance the electric energy of the first battery module and the second battery module, thereby avoiding overcharging or over-discharging of the first battery module and/or the second battery module.
- FIG1 is a schematic diagram of a module of an energy storage power supply according to certain embodiments of the present application.
- FIG3 is a circuit connection diagram of an energy storage power supply according to certain embodiments of the present application.
- FIG4 is a circuit connection diagram of an energy storage power supply according to certain embodiments of the present application.
- the terms “installed”, “connected” and “connected” should be understood in a broad sense. In an example, it can be a fixed connection, or a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection, or they can communicate with each other; it can be a direct connection, or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between two elements.
- the conversion module 53 is electrically connected to the first battery module 10 and the second battery module 30.
- the control module 54 is electrically connected to the charge and discharge module 52, the conversion module 53 and the collection module 51.
- the control module 54 is used to obtain the first operating parameters of the first battery module 10 and the second operating parameters of the second battery module 30, and control the charge and discharge module 52 to charge and discharge the first battery module 10 according to the first operating parameters, control the conversion module 53 to charge and discharge the second battery module 30 according to the second operating parameters, and control the electric energy balance between the first battery module 10 and the second battery module 30 according to the first operating parameters and the second operating parameters.
- the battery management module 50 in the energy storage power supply 100 includes a control module 54, a charge and discharge module 52 electrically connected to the first battery module 10, and a conversion module 53 electrically connected to both the first battery module 10 and the second battery module 30.
- the control module 54 can control the charge and discharge of the first battery module 10 through the charge and discharge module 52, and control the charge and discharge of the second battery module 30 through the conversion module 53.
- the battery management module 50 can control the first battery module 10 and the second battery module 30 respectively according to the different parameters of the first battery module 10 and the second battery module 30, so as to make the charge and discharge mode of the energy storage power supply 100 more accurate and extend the service life of the battery.
- the normal operating temperature range of the lithium ion battery module i.e., the first temperature width range [T min1 , T max1 ]
- the normal operating temperature range of the sodium ion battery module i.e., the second temperature width range [T min2 , T max2 ]
- T min2 ⁇ T min1 ⁇ T max1 ⁇ T max2 The first battery module 10 and the second battery module 30 are battery modules that are independently arranged and electrically connected to each other in parallel, so the damage of any battery module will not affect the use of the other battery module.
- the first battery module 10 and the second battery module 30 can be replaced as a whole, which is convenient for users to adjust the number of the first battery module 10 and/or the second battery module 30 and the matching method of the two as needed.
- the battery management module 50 is capable of collecting the first operating parameters and the second operating parameters of the first battery module 10 and the second battery module 30 during operation, and calculates the charging and discharging power of the energy storage power supply 100 based on the first operating parameters and the second operating parameters, or selects a corresponding charging and discharging strategy so that the first battery module 10 and the second battery module 30 can maintain normal operation and extend the service life of the energy storage power supply 100.
- the first operating parameter includes the maximum storage power Q max1 of the first battery module 10, the preset minimum remaining power Q min1 of the first battery module 10, the current remaining power Q A of the first battery module 10, the current voltage UA of the first battery module 10, the first temperature width range [T min1 , T max1 ] for normal operation of the first battery module 10, and the current temperature TA of the first battery module 10.
- the current remaining power Q A of the first battery module 10 refers to the power value currently stored in the first battery module 10.
- the electric energy flows from the external power source and/or the second battery module 30 to the first battery module 10, and the current remaining power Q A of the first battery module 10 gradually increases until it reaches the maximum storage power Q max1 of the first battery module 10.
- the first battery module 10 is in a fully charged state, and the external power source and/or the second battery module 30 cannot continue to charge the first battery module 10.
- the electric energy flows from the first battery module 10 to the external device and/or the second battery module 30, and at this time, the current remaining power Q A of the first battery module 10 gradually decreases until it reaches the minimum remaining power Q min1 of the first battery module 10. At this time, the first battery module 10 is in a state of being exhausted, and the first battery module 10 cannot continue to discharge to the external device and/or the second battery module 30 .
- the maximum storage capacity Q max1 of the first battery module 10 refers to the maximum capacity that the first battery module 10 can currently store.
- the first battery module 10 is in a fully charged state. At this time, the first battery module 10 can no longer be charged internally but can be discharged externally.
- the energy storage power supply 100 is externally connected to another energy storage power supply 100, and the current remaining capacity of the external energy storage power supply 100 is less than the current remaining capacity Q A of the first battery module 10, the first battery module 10 can also be discharged externally.
- the preset minimum remaining capacity Q min1 of the first battery module 10 refers to the preset minimum remaining capacity of the first battery module 10.
- the first battery module 10 When the current remaining capacity Q A of the first battery module 10 reaches the preset minimum remaining capacity Q min1 of the first battery module 10, the first battery module 10 is in a state of exhaustion and needs to be charged internally. When the current remaining power Q A of the first battery module 10 exceeds the preset minimum remaining power Q min1 of the first battery module 10, the first battery module 10 is in a state of sufficient power, and the first battery module 10 can both discharge externally and be charged internally by an external power supply and/or the second battery module 30.
- the first temperature width range [T min1 , T max1 ] refers to the temperature range in which the first battery module 10 can maintain normal working functions, that is, the lower limit value T min1 of the first temperature width range is the lowest allowable use temperature at which the first battery module 10 can work normally, and the upper limit value T max1 of the first temperature width range is the highest allowable use temperature at which the first battery module 10 can work normally.
- the current temperature TA of the first battery module 10 is within the first temperature width range [T min1 , T max1 ]
- the first battery module 10 can operate normally and supply power to the outside.
- the first battery module 10 can also work, but at this time the cycle life of the first battery module 10 will be reduced, and the normal service life of the energy storage power supply 100 will be shortened, and the energy storage power supply 100 will be more easily damaged.
- the current temperature TA of the first battery module 10 refers to the current surface temperature of the first battery module 10, and the current temperature TA of the first battery module 10 is measured by a thermometer provided in the energy storage power supply 100.
- the current temperature TA of the first battery module 10 is lower than the lowest allowable use temperature Tmin1 of the first battery module 10, the first battery module 10 cannot discharge externally or charge internally.
- the first battery module 10 can discharge externally or charge internally, and at this time, the charge and discharge power of the first battery module 10 has a certain mapping relationship with the current temperature TA of the first battery module 10, and the specific mapping relationship is as follows: The relationship can be derived through experiments.
- the current voltage UA of the first battery module 10 refers to the voltage value that the first battery module 10 can provide under the current temperature and the current charge and discharge power. When the current temperature and the current charge and discharge power change, the current voltage UA of the first battery module 10 will also change accordingly. There is a certain mapping relationship between the current voltage UA of the first battery module 10, the charge and discharge power of the first battery module 10, and the current temperature TA of the first battery module 10. The specific mapping relationship can be obtained by experiment to obtain a corresponding curve.
- the second operating parameters include the maximum storage power Q max2 of the second battery module 30, the preset minimum remaining power Q min2 of the second battery module 30, the current remaining power Q B of the second battery module 30, the current voltage UB of the second battery module 30, the second temperature width range [T min2 , T max2 ] for normal operation of the second battery module 30, and the current temperature TB of the second battery module 30.
- the current remaining power Q B of the second battery module 30 refers to the power value currently stored in the second battery module 30.
- the electric energy flows from the external power source and/or the first battery module 10 to the second battery module 30, and the current remaining power Q B of the second battery module 30 gradually increases until it reaches the maximum storage power Q max2 of the second battery module 30.
- the second battery module 30 is in a fully charged state, and the external power source and/or the first battery module 10 cannot continue to charge the second battery module 30.
- the second battery module 30 discharges to the external device and/or the first battery module 10
- the electric energy flows from the second battery module 30 to the external device and/or the first battery module 10, and at this time, the current remaining power Q B of the second battery module 30 gradually decreases until it reaches the minimum remaining power Q min2 of the second battery module 30.
- the second battery module 30 is in a state of being exhausted, and the second battery module 30 cannot continue to discharge to the external device and/or the first battery module 10 .
- the maximum storage capacity Q max2 of the second battery module 30 refers to the maximum capacity that the second battery module 30 can currently store.
- the second battery module 30 is in a fully charged state. At this time, the second battery module 30 can no longer be charged internally but can be discharged externally.
- the energy storage power supply 100 is externally connected to another energy storage power supply 100, and the current remaining capacity of the external energy storage power supply 100 is less than the current remaining capacity Q B of the second battery module 30, the second battery module 30 can also be discharged externally.
- the preset minimum remaining capacity Q min2 of the second battery module 30 refers to the preset minimum remaining capacity of the second battery module 30.
- the second temperature width range [T min2 , T max2 ] refers to the temperature range in which the second battery module 30 can maintain normal working functions, that is, the lower limit value T min2 of the second temperature width range is the lowest allowable use temperature at which the second battery module 30 can work normally, and the upper limit value T max2 of the second temperature width range is the highest allowable use temperature at which the second battery module 30 can work normally.
- the second battery module 30 can operate normally and supply power to the outside.
- the second battery module 30 can also work, but at this time, the cycle life of the second battery module 30 will be reduced, and the normal service life of the energy storage power supply 100 will be shortened, and the energy storage power supply 100 will be more easily damaged.
- the current temperature TB of the second battery module 30 refers to the current surface temperature of the second battery module 30, and the current temperature TB of the second battery module 30 is measured by a thermometer provided in the energy storage power supply 100.
- the current temperature TB of the second battery module 30 is lower than the lowest allowable use temperature Tmin2 of the second battery module 30, the second battery module 30 cannot discharge externally or charge internally.
- the second battery module 30 can discharge externally or charge internally, and at this time, the charge and discharge power of the second battery module 30 and the current temperature TB of the second battery module 30 have a certain mapping relationship, and the specific mapping relationship can be obtained through experiments.
- the current voltage U B of the second battery module 30 refers to the voltage value that the second battery module 30 can provide under the current temperature and the current charge and discharge power. When the current temperature and the current charge and discharge power change, the current voltage U B of the second battery module 30 will also change accordingly. There is a certain mapping relationship between the current voltage U B of the second battery module 30, the charge and discharge power of the second battery module 30 and the current temperature TB of the second battery module 30, and the specific mapping relationship can be obtained by experiment to obtain a corresponding curve.
- the acquisition module 51 is capable of reading the first operating parameters and the first operating parameters of the first battery module 10.
- the acquisition module 51 is electrically connected to both the first battery module 10 and the second battery module 30, and the acquisition module 51 includes but is not limited to a battery monitoring unit, a voltage monitoring unit, a temperature monitoring unit, a current monitoring unit, a charge and discharge monitoring unit, a fault diagnosis unit, and a communication unit.
- the battery monitoring unit can be used to monitor the maximum storage capacity Q max1 of the first battery module 10, the preset minimum remaining capacity Q min1 of the first battery module 10, the current remaining capacity Q A of the first battery module 10, the maximum storage capacity Q max2 of the second battery module 30, the preset minimum remaining capacity Q min2 of the second battery module 30, and the current remaining capacity Q B of the second battery module 30.
- the voltage monitoring unit can be used to monitor the current voltage UA of the first battery module 10, the current voltage UB of the second battery module 30, and the fluctuation of the current voltage UA of the first battery module 10 and the current voltage UB of the second battery module 30, and obtain the change of the charge and discharge power of the first battery module 10 and the change of the charge and discharge power of the second battery module 30.
- the temperature monitoring unit can be used to monitor the current temperature TA of the first battery module 10, the current temperature TB of the second battery module 30, and the change of the current temperature TA of the first battery module 10 and the current temperature TB of the second battery module 30, and adjust the use of the first battery module 10 and the second battery module 30 in the energy storage power supply 100. For example, when the current temperature TA of the first battery module 10 is lower than the minimum allowable operating temperature Tmin1 of the first battery module 10, and the current temperature TB of the second battery module 30 is higher than the minimum allowable operating temperature Tmin2 of the second battery module 30 and lower than the maximum allowable operating temperature Tmax2 of the second battery module 30, only the second battery module 30 in the energy storage power supply 100 can be charged and discharged.
- the acquisition module 51 includes a first acquisition module 511 and a second acquisition module 513.
- the first acquisition module 511 is electrically connected to the first battery module 10, the control module 54 and the charge-discharge module 52.
- the first acquisition module 511 can be connected to the positive electrode of the first battery module 10 and the negative electrode of the first battery module 10 respectively to be connected in parallel with the first battery module 10, and obtain the first operating parameter, and can transmit the read first operating parameter to the control module 54.
- the control module 54 can derive a control strategy for the first battery module 10 according to the first operating parameter, and control the charge-discharge module 52 according to different strategies.
- the second acquisition module 513 is electrically connected to the second battery module 30, the control module 54 and the conversion module 53.
- the second acquisition module 513 can be respectively connected to the positive electrode of the first battery module 10 and the negative electrode of the first battery module 10 to be connected in parallel with the first battery module 10, and obtain the second operating parameters, and can transmit the read second operating parameters to the control module 54.
- the control module 54 can derive a control strategy for the second battery module 30 based on the first operating parameters and the second operating parameters, and control the charge and discharge module 52 according to different strategies.
- the charge-discharge module 52 is a structure for controlling the charge and discharge of the first battery module 10.
- One end of the charge-discharge module 52 is electrically connected to the first battery module 10, and the other end of the charge-discharge module 52 can be electrically connected to an external power source and/or an external load, so that the first battery module 10 discharges to the external load or is charged via an external power source.
- the other end of the charge-discharge module 52 can also be electrically connected to the second battery module 30 through the conversion module 53, so that the first battery module 10 and the second battery module 30 can exchange electric energy.
- the charge and discharge module 52 includes a charge switch 521 and a discharge switch 523.
- the energy storage power supply 100 is provided with a charging circuit for charging the first battery module 10 and a discharge circuit for discharging from the first battery module 10.
- the charge switch 521 is located on the charging circuit and can control the on and off of the charging circuit of the first battery module 10.
- the discharge switch 523 is located on the discharge circuit and can control the on and off of the discharge circuit of the first battery module 10.
- the charging circuit and the discharge circuit are independently arranged.
- the charging switch 521 and the discharging switch 523 are both metal-oxide-semiconductor field-effect transistors (MOSFET), and the charging switch 521 and the discharging switch 523 both include a gate (gate, G), a source (source, S) and a drain (drain, D) that are independently arranged, wherein the gate of the charging switch 521 and the gate of the discharging switch 523 are both electrically connected to the first acquisition module 511, and the first acquisition module 511 can also receive instructions transmitted by the control module 54 to control the on and off of the charging switch 521 and the on and off of the discharging switch 523.
- MOSFET metal-oxide-semiconductor field-effect transistors
- the source of the charging switch 521 is electrically connected to the first battery module 10
- the drain of the charging switch 521 is electrically connected to the source of the discharging switch 523
- the drain of the discharging switch 523 is electrically connected to the external power supply, the external load and/or the second battery module 30.
- a loop for current flow is formed between the source and drain of the charging switch 521 and the discharging switch 523, and a first element that can only allow current to flow from the first battery module 10 to the external power supply, the external load and/or the second battery module 30 is connected in parallel between the source and drain of the charging switch 521, and a first element that can only allow current to flow from the external power supply and/or the second battery module 30 is connected in parallel between the source and drain of the discharging switch 523.
- the discharge switch 523 and the charging switch 521 When both the discharge switch 523 and the charging switch 521 are turned off, the electric energy in the first battery module 10 cannot be exchanged with the external power supply, the external load and/or the second battery module 30, and the first battery module 10 cannot be charged or discharged.
- the discharge switch 523 and the charge switch 521 When both the discharge switch 523 and the charge switch 521 are turned on, the current can flow from the first battery module 10 through the first element, the source of the discharge switch 523 and the drain of the discharge switch 523 in sequence and flow to the external power supply, the external load and/or the second battery module 30, or flow from the external power supply and/or the second battery module 30 through the second element, the drain of the charge switch 521 and the source of the charge switch 521 in sequence and enter the first battery module 10. At this time, the first battery module 10 can both discharge externally and charge internally.
- the control module 54 controls the charging switch 521 and the discharging switch 523 to be closed, so that the first battery module 10 cannot be charged or discharged.
- the control module 54 needs to determine whether the first battery module 10 is in a fully charged state or an empty state according to the relationship between the current remaining power Q A of the first battery module 10, the maximum storage power Q max1 of the first battery module 10, and the preset minimum remaining power Q min1 of the first battery module 10, so as to control the on and off of the charging switch 521 and the on and off of the discharging switch 523 respectively.
- the control module 54 controls the discharge switch 523 to turn off and/or controls the charging switch 521 to turn on. According to the above control method, the first battery module 10 can be prevented from being overcharged or over-discharged, and the service life of the first battery module 10 can be extended.
- the conversion module 53 is a structure for controlling the charging and discharging of the second battery module 30.
- the conversion module 53 can electrically connect the first battery module 10 and the second battery module 30 so that electric energy can be exchanged between the first battery module 10 and the second battery module 30, that is, the second battery module 30 can discharge to the first battery module 10 and can also be charged by the first battery module 10.
- the conversion module 53 can also be electrically connected to an external power source and/or an external load so that the second battery module 30 can discharge to the outside or charge to the inside.
- the conversion module 53 includes a first circuit and a second circuit.
- the first circuit is used to charge the second battery module 30.
- the second circuit is used to discharge the second battery module 30, and the first circuit and the second circuit do not affect each other.
- the first circuit and the second circuit are independently arranged. In other embodiments, the first circuit and the second circuit partially overlap.
- the conversion module 53 further includes a first switch 531, a second switch 532, a third switch 533, and a fourth switch 534 which are independently arranged.
- the first switch 531 and the third switch 533 are both located on the second circuit, and the second switch 532 and the fourth switch 534 are both located on the first circuit.
- One end of the first switch 531 is electrically connected to the positive electrode of the second battery module 30, the other end of the first switch 531 is connected to one end of the third switch 533, and the other end of the third switch 533 is electrically connected to the negative electrode of the first battery module 10, the negative electrode of the second battery module 30, the external power supply, and the external load, so that the second battery module 30 can be connected to the positive electrode of the second battery module 30 via the first circuit.
- the two circuits discharge outward or discharge to the first battery module 10.
- One end of the second switch 532 is electrically connected to the negative electrode of the second battery module 30, the other end of the second switch 532 is connected to one end of the fourth switch 534, and the other end of the fourth switch 534 is electrically connected to the positive electrode of the first battery module 10 and the external power supply, so that the first battery module 10 and the external power supply can charge the second battery module 30 through the first circuit.
- the conversion module 53 may further include a driver 535, and the driver 535 is electrically connected to the first switch 531, the second switch 532, the third switch 533, and the fourth switch 534.
- the control module 54 can be electrically connected to the driver 535 to control the on and off of the first switch 531, the second switch 532, the third switch 533, and the fourth switch 534 in the conversion module 53 through the driver 535 according to the second operating parameter, so as to control the conversion module 53 to charge and discharge the second battery module 30.
- the control module 54 controls the first switch 531, the second switch 532, the third switch 533 and the fourth switch 534 to be closed, so that the first circuit and the second circuit are disconnected.
- the control module 54 needs to determine whether the second battery module 30 is in a fully charged state or an empty state according to the magnitude relationship between the current remaining power Q B of the second battery module 30, the maximum storage power Q max2 of the second battery module 30, and the preset minimum remaining power Q min2 of the second battery module 30, so as to control the on-off of the first circuit and the on-off of the second circuit respectively.
- the control module 54 controls the second circuit to be turned off and/or controls the first circuit to be turned on. According to the above control method, the second battery module 30 can be prevented from being overcharged or over-discharged, and the service life of the second battery module 30 can be extended.
- the balancing circuit is a circuit formed between the first battery module 10 and the second battery module 30, the first battery module 10 and the second battery module 30 can be electrically connected to each other through the balancing circuit and transmit electric energy to each other, and the conversion module 53 and the charge-discharge module 52 are both located on the balancing circuit.
- the control module 54 can also control the electric energy flow direction of the balancing circuit composed of the conversion module 53, the charge-discharge module 52, the first battery module 10 and the second battery module 30 according to the first operating parameter and the second operating parameter, so as to balance the electric energy of the first battery module 10 and the second battery module 30.
- Balancing the electric energy of the first battery module 10 and the second battery module 30 can make the electric energy of the first battery module 10 and the second battery module 30 similar, and enable the first battery module 10 and the second battery module 30 to be charged and discharged synchronously, thereby avoiding the situation where one of the battery modules is fully charged while the other is not yet fully charged, or one of the battery modules is discharged while the other still has remaining power, further avoiding overcharging and over-discharging of the first battery module 10 and the second battery module 30.
- the first circuit can also control the on-off of the path for transmitting electric energy from the first battery module 10 to the second battery module 30.
- the second circuit can also control the on-off of the path for transmitting electric energy from the second battery module 30 to the first battery module 10.
- One end of the first circuit is electrically connected to the positive electrode of the first battery module 10, and the other end of the first circuit is electrically connected to the negative electrode of the second battery module 30.
- the first circuit is turned on, electric energy flows from the first battery module 10 to the second battery module 30.
- One end of the second circuit is electrically connected to the positive electrode of the second battery module 30, and the other end of the first circuit is electrically connected to the negative electrode of the first battery module 10.
- the second circuit is turned on, electric energy flows from the second battery module 30 to the first battery module 10.
- the control module 54 controls the first circuit and the second circuit to be disconnected so that neither the first battery module 10 nor the second battery module 30 will be charged or discharged.
- the current temperature TA of the first battery module 10 is within the first temperature width range [T min1 , T max1 ] of the normal operation of the first battery module 10
- the current temperature TB of the second battery module 30 is within the second temperature width range [T min2 , T max2 ] of the normal operation of the second battery module 30, so both the first battery module 10 and the second battery module 30 can work normally
- the first temperature width range [T min1 , T max1 ] of the normal operation of the first battery is within the second temperature width range [T min2 , T max2] of the normal operation of the second battery module 30.
- the second temperature width range [T min2 , T max2 ] of the normal operation of the second battery module 30 is larger, and without considering factors such as failures, when the second battery module 30 has high and low temperature abnormalities and cannot work normally, the first battery module 10 cannot work normally either.
- the control module 54 needs to determine whether the energy storage power supply 100 needs to be balanced according to the relationship between the difference between the current remaining power Q A of the first battery module 10 and the current remaining power Q B of the second battery module 30 and the preset minimum power difference Q 0 between the first battery module 10 and the second battery module 30.
- Q 0 is a preset value, which can be obtained through experiments or according to user needs or battery characteristics.
- control module 54 also needs the size relationship between the current remaining power Q A of the first battery module 10 and the current remaining power Q B of the second battery module 30 to control the on and off of the second switch 532 and the fourth switch 534 on the first circuit and the on and off of the first switch 531 and the third switch 533 on the second circuit, so as to control the on and off of the first circuit and the second circuit respectively, and further control the flow of power between the first battery module 10 and the second battery module 30.
- the control module 54 controls the first circuit and the second circuit to be disconnected to cut off the power flow between the first battery module 10 and the second battery module 30 .
- the control module 54 does not need to control both the first circuit and the second circuit to be disconnected. Therefore, in order to make the operation steps simpler, the control module 54 can also perform the step of controlling both the first circuit and the second circuit to be disconnected only when both the first battery module 10 and the second battery module 30 are not in the charging and discharging mode.
- the control module 54 controls the first circuit to be turned on. In order to prevent the power in the second battery module 30 from flowing back to the first battery module 10 or flowing to the external load, the control module 54 also controls the second circuit to be disconnected.
- the control module 54 controls the second circuit to be turned on. To prevent the power in the first battery module 10 from flowing back to the second battery module 30, the control module 54 also controls the first circuit to be turned off.
- the battery management module 50 may further include a shunt resistor 57, which is electrically connected to the conversion module 53.
- the shunt resistor 57 can obtain the current circulation I 0 between the first battery module 10 and the second battery module 30.
- the current circulation I 0 between the first battery module 10 and the second battery module 30 should be less than the maximum circulation value I max preset in the balancing loop.
- the maximum circulation value I max preset in the balancing loop can be obtained by experiments or according to user needs and battery characteristics.
- the battery management module 50 further includes a connection module 55.
- the first battery module 10, the second battery module 30, the charge and discharge module 52 and the conversion module 53 are all electrically connected.
- the connection module 55 can be electrically connected to an external load and/or an external power source to enable the energy storage power supply 100 to transmit electric energy to the external load and/or the external power source.
- the connection module 55 is also electrically connected to the control module 54, and the control module 54 can also obtain the maximum charge and discharge power P max of the energy storage power supply 100 according to the first operating parameter and the second operating parameter when the charge and discharge module 52 is turned on, and control the charge and discharge module 52 to charge and discharge the first battery module 10 with the maximum charge and discharge power P max of the energy storage power supply 100, and obtain the maximum charge and discharge power P max of the energy storage power supply 100 according to the first operating parameter and the second operating parameter when the conversion module 53 is turned on, and control the conversion module 53 to charge and discharge the second battery module 30 with the maximum charge and discharge power P max of the energy storage power supply 100.
- control module 54 can also calculate and obtain the maximum charge and discharge power P Amax of the first battery module 10 based on the current voltage UA of the first battery module 10, the current remaining power Q A of the first battery module 10 and the current temperature TA of the first battery module 10, and calculate and obtain the maximum charge and discharge power P Bmax of the second battery module 30 based on the current voltage UB of the second battery module 30, the current remaining power Q B of the second battery module 30 and the current temperature TB of the second battery module 30.
- the control module 54 can also obtain the maximum charge and discharge power P max of the energy storage power supply 100 according to the maximum charge and discharge power P Amax of the first battery module 10 and the maximum charge and discharge power P Bmax of the second battery module 30, so as to avoid the maximum charge and discharge power P max of the energy storage power supply 100 exceeding any one of the maximum charge and discharge power P Amax of the first battery module 10 and the maximum charge and discharge power P Bmax of the second battery module 30, resulting in damage to the first battery module 10 or the second battery module 30.
- the battery management module 50 further includes a digital isolator 56, one end of the digital isolator 56 is connected to the control module 54, and the other end of the digital isolator 56 is connected to the acquisition module 51 and/or the connection module 55.
- the digital isolator 56 can maintain the signal transmission between the control module 54 and the acquisition module 51, and/or isolate the signal transmission between the control module 54 and the connection module 55.
- the digital isolator 56 can utilize its resistance isolation characteristics when transmitting digital signals and analog signals to isolate data transmission from electrical connections, thereby reducing noise during data transmission.
- the energy storage power supply system 1000 of the embodiment of the present application includes the energy storage power supply 100 of any of the above embodiments.
- the energy storage power supply system 1000 may also include a transmission component 200, a charging component 300, a bidirectional conversion component 400 and a load 500; the charging component 300, the bidirectional conversion component 400 and the load 500 that can be connected to the energy storage power supply system 1000 are all electrically connected to the energy storage power supply 100 through the transmission component 200, and the transmission component 200 is used to transmit the electric energy of the energy storage power supply 100 to the charging component 300 and the bidirectional conversion component 400, and transmit the electric energy to the load 500; the charging component 300 is used to electrically connect the photovoltaic power supply and the energy storage power supply 100, and the bidirectional conversion component 400 is used to electrically connect the municipal power grid and the energy storage power supply 100 and convert the voltage type connected to the bidirectional conversion component 400.
- the battery management module 50 in the energy storage power supply 100 includes a control module 54, a charge and discharge module 52 electrically connected to the first battery module 10, and a conversion module 53 electrically connected to both the first battery module 10 and the second battery module 30.
- the control module 54 can control the charge and discharge of the first battery module 10 through the charge and discharge module 52, and control the charge and discharge of the second battery module 30 through the conversion module 53.
- the battery management module 50 can control the first battery module 10 and the second battery module 30 respectively according to the different parameters of the first battery module 10 and the second battery module 30, so as to make the charge and discharge mode of the energy storage power supply 100 more accurate and extend the service life of the battery.
- control module 54 can generate electrical energy flow between the first battery module 10 and the second battery module 30 to balance the electrical energy of the first battery module 10 and the second battery module 30, thereby avoiding overcharging or over-discharging of the first battery module 10 and/or the second battery module 30.
- control method of the embodiment of the present application is applied to the energy storage power supply 100 of any of the above embodiments.
- the control method includes:
- the first operating parameters are various parameters of the first battery module 10 during operation.
- the first operating parameters include the maximum storage power Q max1 of the first battery module 10, the preset minimum remaining power Q min1 of the first battery module 10, the current remaining power Q A of the first battery module 10, the first temperature range [T min1 , T max1 ] of the normal operation of the first battery module 10, and the current temperature TA of the first battery module 10.
- the current remaining power Q A of the first battery module 10 refers to the power value currently stored in the first battery module 10.
- the electric energy flows from the external power source and/or the second battery module 30 to the first battery module 10, and the current remaining power Q A of the first battery module 10 gradually increases until it reaches the maximum storage power Q max1 of the first battery module 10.
- the first battery module 10 is in a fully charged state, and the external power source and/or the second battery module 30 cannot continue to charge the first battery module 10.
- the electric energy flows from the first battery module 10 to the external device and/or the second battery module 30, and at this time, the current remaining power Q A of the first battery module 10 gradually decreases until it reaches the minimum remaining power Q min1 of the first battery module 10. At this time, the first battery module 10 is in a state of being exhausted, and the first battery module 10 cannot continue to discharge to the external device and/or the second battery module 30 .
- the maximum storage capacity Q max1 of the first battery module 10 refers to the maximum capacity that the first battery module 10 can currently store.
- the first battery module 10 is in a fully charged state. At this time, the first battery module 10 can no longer be charged internally but can be discharged externally.
- the energy storage power supply 100 is externally connected to another energy storage power supply 100, and the current remaining capacity of the external energy storage power supply 100 is less than the current remaining capacity Q A of the first battery module 10, the first battery module 10 can also be discharged externally.
- the preset minimum remaining capacity Q min1 of the first battery module 10 refers to the preset minimum remaining capacity of the first battery module 10.
- the first battery module 10 When the current remaining capacity Q A of the first battery module 10 reaches the preset minimum remaining capacity Q min1 of the first battery module 10, the first battery module 10 is in a state of exhaustion and needs to be charged internally. When the current remaining power Q A of the first battery module 10 exceeds the preset minimum remaining power Q min1 of the first battery module 10, the first battery module 10 is in a state of sufficient power, and the first battery module 10 can both discharge externally and be charged internally by an external power supply and/or the second battery module 30.
- the first temperature width range [T min1 , T max1 ] refers to the temperature range in which the first battery module 10 can maintain normal working functions, that is, the lower limit value T min1 of the first temperature width range is the lowest allowable use temperature at which the first battery module 10 can work normally, and the upper limit value T max1 of the first temperature width range is the highest allowable use temperature at which the first battery module 10 can work normally.
- the current temperature TA of the first battery module 10 is within the first temperature width range [T min1 , T max1 ]
- the first battery module 10 can operate normally and supply power to the outside.
- the first battery module 10 can also work, but at this time the cycle life of the first battery module 10 will be reduced, and the normal service life of the energy storage power supply 100 will be shortened, and the energy storage power supply 100 will be more easily damaged.
- the current temperature TA of the first battery module 10 refers to the current surface temperature of the first battery module 10, and the current temperature TA of the first battery module 10 is measured by a thermometer provided in the energy storage power supply 100.
- the current temperature TA of the first battery module 10 is lower than the lowest allowable use temperature Tmin1 of the first battery module 10, the first battery module 10 cannot discharge externally or charge internally.
- the first battery module 10 can discharge externally or charge internally, and at this time, the charge and discharge power of the first battery module 10 has a certain mapping relationship with the current temperature TA of the first battery module 10, and the specific mapping relationship can be obtained through experiments.
- the second operating parameters are various parameters of the second battery module 30 during operation.
- the second operating parameters include the maximum storage capacity Q max2 of the second battery module 30, the preset minimum remaining capacity Q min2 of the second battery module 30, the current remaining capacity Q B of the second battery module 30, the current voltage U B of the second battery module 30, the second temperature range [T min2 , T max2 ] of the normal operation of the second battery module 30, and the current temperature T B of the second battery module 30.
- the current remaining power Q B of the second battery module 30 refers to the power value currently stored in the second battery module 30.
- the electric energy flows from the external power source and/or the first battery module 10 to the second battery module 30, and the current remaining power Q B of the second battery module 30 gradually increases until it reaches the maximum storage power Q max2 of the second battery module 30.
- the second battery module 30 is in a fully charged state, and the external power source and/or the first battery module 10 are charged. 10 cannot continue to charge the second battery module 30.
- the second battery module 30 discharges to the external device and/or the first battery module 10
- the electric energy flows from the second battery module 30 to the external device and/or the first battery module 10, and at this time, the current remaining power Q B of the second battery module 30 will gradually decrease until it reaches the minimum remaining power Q min2 of the second battery module 30.
- the second battery module 30 is in a state of exhaustion, and the second battery module 30 cannot continue to discharge to the external device and/or the first battery module 10.
- the maximum storage capacity Q max2 of the second battery module 30 refers to the maximum capacity that the second battery module 30 can currently store.
- the second battery module 30 is in a fully charged state. At this time, the second battery module 30 can no longer be charged internally but can be discharged externally.
- the energy storage power supply 100 is externally connected to another energy storage power supply 100, and the current remaining capacity of the external energy storage power supply 100 is less than the current remaining capacity Q B of the second battery module 30, the second battery module 30 can also be discharged externally.
- the preset minimum remaining capacity Q min2 of the second battery module 30 refers to the preset minimum remaining capacity of the second battery module 30.
- the second battery module 30 When the current remaining capacity Q B of the second battery module 30 reaches the preset minimum remaining capacity Q min2 of the second battery module 30, the second battery module 30 is in a state of exhaustion and needs to be charged internally to the second battery module 30. When the current remaining power Q B of the second battery module 30 exceeds the preset minimum remaining power Q min2 of the second battery module 30, the second battery module 30 is in a state of sufficient power, and the second battery module 30 can both discharge externally and be charged into the second battery module 30 through an external power supply and/or the first battery module 10.
- the second temperature width range [T min2 , T max2 ] refers to the temperature range in which the second battery module 30 can maintain normal working functions, that is, the lower limit value T min2 of the second temperature width range is the lowest allowable use temperature at which the second battery module 30 can work normally, and the upper limit value T max2 of the second temperature width range is the highest allowable use temperature at which the second battery module 30 can work normally.
- the second battery module 30 can operate normally and supply power to the outside.
- the second battery module 30 can also work, but at this time, the cycle life of the second battery module 30 will be reduced, and the normal service life of the energy storage power supply 100 will be shortened, and the energy storage power supply 100 will be more easily damaged.
- the current temperature TB of the second battery module 30 refers to the current surface temperature of the second battery module 30, and the current temperature TB of the second battery module 30 is measured by a thermometer provided in the energy storage power supply 100.
- the current temperature TB of the second battery module 30 is lower than the lowest allowable use temperature Tmin2 of the second battery module 30, the second battery module 30 cannot discharge externally or charge internally.
- the second battery module 30 can discharge externally or charge internally, and at this time, the charge and discharge power of the second battery module 30 and the current temperature TB of the second battery module 30 have a certain mapping relationship, and the specific mapping relationship can be obtained through experiments.
- controlling the charge-discharge module 52 to charge and discharge the first battery module 10 according to the first operating parameter includes:
- the first battery module 10 is charged and discharged with the maximum charge and discharge power P max of the energy storage power source 100 .
- the charge and discharge module 52 is a structure for controlling the charge and discharge of the first battery module 10.
- One end of the charge and discharge module 52 is electrically connected to the first battery module 10, and the other end of the charge and discharge module 52 can be electrically connected to an external power source and/or an external load, so that the first battery module 10 discharges to the external load or is charged via an external power source.
- the charge and discharge module 52 is turned on, the first battery module 10 can be charged and discharged.
- the charge and discharge module 52 is turned off, the first battery module 10 cannot be charged and discharged.
- the charging and discharging module 52 includes a charging switch 521 and a discharging switch 523.
- the energy storage power supply 100 is provided with a charging circuit for charging the first battery module 10 and a discharging circuit for discharging from the first battery module 10.
- the charging switch 521 is located on the charging circuit and can control the on and off of the charging circuit of the first battery module 10.
- the discharging switch 523 is located on the discharging circuit and can control the on and off of the discharging circuit of the first battery module 10.
- the charging circuit and the discharging circuit are independently arranged.
- the charging switch 521 When the charging switch 521 is disconnected, the first battery module 10 can still be discharged to the outside through the discharging circuit; when the discharging switch 523 is disconnected, the external power supply and/or the second battery module 30 can still be charged into the first battery module 10 through the charging circuit.
- the charging circuit and the discharging circuit partially overlap, and the charging switch 521 and the discharging switch 523 are both provided with electrical components that can make the current flow only in one direction, so that the charging circuit and the discharging circuit are connected.
- the charging switch 521 and the discharging switch 523 are both metal-oxide-semiconductor field-effect transistors (MOSFET), and the charging switch 521 and the discharging switch 523 each include a gate (G) independently set to each other, The source (source, S) and the drain (drain, D), wherein the gate of the charging switch 521 and the gate of the discharging switch 523 are both electrically connected to the first acquisition module 511, and the first acquisition module 511 can also receive instructions transmitted by the control module 54 to control the on and off of the charging switch 521 and the on and off of the discharging switch 523.
- MOSFET metal-oxide-semiconductor field-effect transistors
- controlling the on and off of the charge and discharge module 52 according to the first operating parameter includes:
- the control module 54 can also derive different charge and discharge control strategies according to the first operating parameter, and control the on and off of the charge and discharge module 52 according to the different charge and discharge control strategies, so as to control the charge and discharge module 52 to charge and discharge the first battery module 10.
- the control module 54 can control the on and off of the charging switch 521 and the discharging switch 523 through the first acquisition module 511, and can also directly control the on and off of the charging switch 521 and the discharging switch 523.
- the control module 54 controls the charging switch 521 and the discharging switch 523 to be closed, so that the first battery module 10 cannot be charged or discharged.
- the control module 54 needs to determine whether the first battery module 10 is in a fully charged state or an empty state according to the relationship between the current remaining power Q A of the first battery module 10, the maximum storage power Q max1 of the first battery module 10, and the preset minimum remaining power Q min1 of the first battery module 10, so as to control the on and off of the charging switch 521 and the on and off of the discharging switch 523 respectively.
- the control module 54 controls the discharge switch 523 to turn off and/or controls the charging switch 521 to turn on. According to the above control method, the first battery module 10 can be prevented from being overcharged or over-discharged, and the service life of the first battery module 10 can be extended.
- obtaining the maximum charge and discharge power P max of the energy storage power source 100 includes:
- the first operating parameter also includes the current voltage UA of the first battery module 10.
- the second operating parameter also includes the current voltage UB of the second battery module 30.
- the current voltage UA of the first battery module 10 refers to the voltage value that the first battery module 10 can provide at the current temperature and the current charge and discharge power. When the current temperature and the current charge and discharge power occur, the current voltage UA of the first battery module 10 will also change accordingly.
- the current voltage UB of the second battery module 30 refers to the voltage value that the second battery module 30 can provide at the current temperature and the current charge and discharge power. The voltage value that can be provided under the power.
- the current voltage U B of the second battery module 30 will also change accordingly.
- control module 54 can also calculate and obtain the maximum charge and discharge power P Amax of the first battery module 10 according to the current voltage UA of the first battery module 10, the current remaining power Q A of the first battery module 10 and the current temperature TA of the first battery module 10, and calculate and obtain the maximum charge and discharge power P Bmax of the second battery module 30 according to the current voltage UB of the second battery module 30, the current remaining power Q B of the second battery module 30 and the current temperature TB of the second battery module 30.
- the control module 54 can also obtain the maximum charge and discharge power P max of the energy storage power supply 100 according to the maximum charge and discharge power P Amax of the first battery module 10 and the maximum charge and discharge power P Bmax of the second battery module 30, so as to avoid the maximum charge and discharge power P max of the energy storage power supply 100 exceeding any one of the maximum charge and discharge power P Amax of the first battery module 10 and the maximum charge and discharge power P Bmax of the second battery module 30, resulting in damage to the first battery module 10 or the second battery module 30.
- controlling the conversion module 53 to charge and discharge the second battery module 30 according to the second operating parameter includes:
- the second battery module 30 is charged and discharged with the maximum charge and discharge power P max of the energy storage power source 100.
- the conversion module 53 is a structure for controlling the charging and discharging of the second battery module 30.
- the conversion module 53 can electrically connect the first battery module 10 and the second battery module 30 so that electric energy can be exchanged between the first battery module 10 and the second battery module 30, and the second battery module 30 can discharge to the first battery module 10 or be charged by the first battery module 10.
- the conversion module 53 can also be electrically connected to an external power source and/or an external load so that the second battery module 30 can discharge to the outside or charge to the inside.
- the conversion module 53 includes a first circuit and a second circuit.
- the first circuit is used to charge the second battery module 30.
- the second circuit is used to discharge the second battery module 30, and the first circuit and the second circuit do not affect each other.
- the first circuit and the second circuit are independently arranged. In other embodiments, the first circuit and the second circuit partially overlap.
- the conversion module 53 further includes a first switch 531, a second switch 532, a third switch 533, and a fourth switch 534 that are independently arranged, the first switch 531 and the third switch 533 are both located on the second circuit, and the second switch 532 and the fourth switch 534 are both located on the first circuit.
- One end of the first switch 531 is electrically connected to the positive electrode of the second battery module 30, the other end of the first switch 531 is connected to one end of the third switch 533, and the other end of the third switch 533 is electrically connected to the negative electrode of the first battery module 10, the negative electrode of the second battery module 30, the external power supply, and the external load, so that the second battery module 30 can discharge to the outside through the second circuit or discharge to the first battery module 10.
- One end of the second switch 532 is electrically connected to the negative electrode of the second battery module 30, the other end of the second switch 532 is connected to one end of the fourth switch 534, and the other end of the fourth switch 534 is electrically connected to the positive electrode of the first battery module 10 and the external power supply, so that the first battery module 10 and the external power supply can charge the second battery module 30 through the first circuit.
- controlling the on and off of the conversion module 53 according to the second operating parameter includes:
- the control module 54 can control the on and off of the first switch 531 , the second switch 532 , the third switch 533 and the fourth switch 534 in the conversion module 53 according to the second operating parameter, so as to control the conversion module 53 to charge and discharge the second battery module 30 .
- the control module 54 controls the first switch 531, the second switch 532, the third switch 533 and the fourth switch 534 to be closed, so that the first circuit and the second circuit are disconnected.
- the control module 54 needs to determine whether the second battery module 30 is in a fully charged state or an empty state according to the magnitude relationship between the current remaining power Q B of the second battery module 30, the maximum storage power Q max2 of the second battery module 30, and the preset minimum remaining power Q min2 of the second battery module 30, so as to control the on-off of the first circuit and the on-off of the second circuit respectively.
- the control module 54 controls the second circuit to be turned off and/or controls the first circuit to be turned on. According to the above control method, the second battery module 30 can be prevented from being overcharged or over-discharged, and the service life of the second battery module 30 can be extended.
- obtaining the maximum charge and discharge power P max of the energy storage power source 100 includes:
- control module 54 can also calculate and obtain the maximum charge and discharge power P Amax of the first battery module 10 according to the current voltage UA of the first battery module 10, the current remaining power Q A of the first battery module 10 and the current temperature TA of the first battery module 10, and calculate and obtain the maximum charge and discharge power P Bmax of the second battery module 30 according to the current voltage UB of the second battery module 30, the current remaining power Q B of the second battery module 30 and the current temperature TB of the second battery module 30.
- the control module 54 can also obtain the maximum charge and discharge power P max of the energy storage power supply 100 according to the maximum charge and discharge power P Amax of the first battery module 10 and the maximum charge and discharge power P Bmax of the second battery module 30, so as to avoid the maximum charge and discharge power P max of the energy storage power supply 100 exceeding any one of the maximum charge and discharge power P Amax of the first battery module 10 and the maximum charge and discharge power P Bmax of the second battery module 30, resulting in damage to the first battery module 10 or the second battery module 30.
- controlling the power balance between the first battery module 10 and the second battery module 30 according to the first operating parameter and the second operating parameter includes:
- the balancing circuit is a circuit formed between the first battery module 10 and the second battery module 30.
- the first battery module 10 and the second battery module 30 can be electrically connected to each other through the balancing circuit and transmit electric energy to each other.
- the conversion module 53 and the charge and discharge module 52 are Located on the balancing loop.
- the control module 54 can also control the flow of electric energy of the balancing loop composed of the conversion module 53, the charge and discharge module 52, the first battery module 10 and the second battery module 30 according to the first operating parameter and the second operating parameter, so as to balance the electric energy of the first battery module 10 and the second battery module 30.
- Balancing the electric energy of the first battery module 10 and the second battery module 30 can make the electric energy of the first battery module 10 and the second battery module 30 similar, and enable the first battery module 10 and the second battery module 30 to be charged and discharged synchronously, avoiding the situation that one of the battery modules is full while the other is not full, or one of the battery modules is empty while the other has remaining power, further avoiding the overcharge and over discharge of the first battery module 10 and the second battery module 30.
- the other end of the charge and discharge module 52 can also be electrically connected to the second battery module 30 through the conversion module 53, so that the first battery module 10 and the second battery module 30 can exchange electric energy.
- controlling the flow of electric energy of the balancing circuit composed of the conversion module 53, the charge and discharge module 52, the first battery module 10 and the second battery module 30 according to the first operating parameter and the second operating parameter includes:
- the first circuit can also control the on-off of the path for transmitting electric energy from the first battery module 10 to the second battery module 30.
- the second circuit can also control the on-off of the path for transmitting electric energy from the second battery module 30 to the first battery module 10.
- One end of the first circuit is electrically connected to the positive electrode of the first battery module 10, and the other end of the first circuit is electrically connected to the negative electrode of the second battery module 30.
- the first circuit is turned on, electric energy flows from the first battery module 10 to the second battery module 30.
- One end of the second circuit is electrically connected to the positive electrode of the second battery module 30, and the other end of the first circuit is electrically connected to the negative electrode of the first battery module 10.
- the second circuit is turned on, electric energy flows from the second battery module 30 to the first battery module 10.
- the control module 54 controls the first circuit and the second circuit to be disconnected so that neither the first battery module 10 nor the second battery module 30 will be charged or discharged.
- the current temperature TA of the first battery module 10 is within the first temperature width range [T min1 , T max1 ] of the normal operation of the first battery module 10
- the current temperature TB of the second battery module 30 is within the second temperature width range [T min2 , T max2 ] of the normal operation of the second battery module 30, so both the first battery module 10 and the second battery module 30 can work normally
- the first temperature width range [T min1 , T max1 ] of the normal operation of the first battery is within the current temperature TB of the second battery module 30 is within the second temperature width range [T min2 , T max2 ] of the normal operation of the second battery module 30.
- the second temperature width range [T min2 , T max2 ] of the normal operation of the second battery module 30 is larger, and without considering factors such as failures, in the first
- the second battery module 30 fails to work normally due to abnormal high or low temperature
- the first battery module 10 also fails to work normally.
- the control module 54 needs to determine whether the energy storage power supply 100 needs to be balanced according to the relationship between the difference between the current remaining power Q A of the first battery module 10 and the current remaining power Q B of the second battery module 30 and the preset minimum power difference Q 0 between the first battery module 10 and the second battery module 30.
- Q 0 is a preset value, which can be obtained through experiments or according to user needs or battery characteristics.
- control module 54 also needs the size relationship between the current remaining power Q A of the first battery module 10 and the current remaining power Q B of the second battery module 30 to control the on and off of the second switch 532 and the fourth switch 534 on the first circuit and the on and off of the first switch 531 and the third switch 533 on the second circuit, so as to control the on and off of the first circuit and the second circuit respectively, and further control the flow of power between the first battery module 10 and the second battery module 30.
- the control module 54 controls the first circuit and the second circuit to be disconnected to cut off the power flow between the first battery module 10 and the second battery module 30 .
- the control module 54 does not need to control both the first circuit and the second circuit to be disconnected. Therefore, in order to make the operation steps simpler, the control module 54 can also perform the step of controlling both the first circuit and the second circuit to be disconnected only when both the first battery module 10 and the second battery module 30 are not in the charging and discharging mode.
- the control module 54 controls the first circuit to be turned on. In order to prevent the power in the second battery module 30 from flowing back to the first battery module 10 or flowing to the external load, the control module 54 also controls the second circuit to be disconnected.
- the control module 54 controls the second circuit to be turned on. To prevent the power in the first battery module 10 from flowing back to the second battery module 30, the control module 54 also controls the first circuit to be turned off.
- the battery management module 50 in the energy storage power supply 100 includes a control module 54, a charge and discharge module 52 electrically connected to the first battery module 10, and a conversion module 53 electrically connected to both the first battery module 10 and the second battery module 30.
- the control module 54 can control the charge and discharge of the first battery module 10 through the charge and discharge module 52, and control the charge and discharge of the second battery module 30 through the conversion module 53.
- the battery management module 50 can control the first battery module 10 and the second battery module 30 respectively according to the different parameters of the first battery module 10 and the second battery module 30, so as to make the charge and discharge method of the energy storage power supply 100 more accurate and extend the service life of the battery.
- control module 54 can generate electrical energy flow between the first battery module 10 and the second battery module 30 to balance the electrical energy of the first battery module 10 and the second battery module 30, thereby avoiding overcharging or over-discharging of the first battery module 10 and/or the second battery module 30.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种储能电源(100)包括第一和第二电池模组及电池管理模组(50)。电池管理模组(50)包括获取第一和第二电池模组的运行参数的采集模块(51)、与第一电池模组(10)电连接的充放电模块(52)、与第一电池模组(10)和第二电池模组(30)均电连接的转换模块(53)及控制模块(54)。
Description
优先权信息
本申请请求2023年10月19日向中国国家知识产权局提交的、专利申请号为202311369868.4的专利申请的优先权和权益,并且通过参照将其全文并入此处。
本申请涉及电池技术领域,更具体而言,涉及一种储能电源、储能电源系统及储能电源的控制方法。
储能电源是一种能够储存电能并能向外部的负载供电的设备。目前的储能电源能够将不同类别的电池并联使用,以拓宽储能电源的正常工作的温宽范围,同时增大储能电源的功率。例如:储能电源内设有并联的锂电池模组和钠电池模组。但锂电池模组和钠电池模组的正常工作的温宽范围和能量密度等参数均不相同,因此使用单一管理方式进行控制的电池管理模组难以对锂电池模组和钠电池模组同时进行管理。
发明内容
本申请实施方式提供一种储能电源、储能电源系统及储能电源的控制方法,至少用于解决使用单一管理方式进行控制的电池管理模组难以对锂电池模组和钠电池模组同时进行管理的问题。
本申请实施方式的储能电源包括第一电池模组、第二电池模组及电池管理模组。所述第一电池模组用于储存和/或释放电能。所述第二电池模组与所述第一电池模组并联,所述第二电池模组用于储存和/或释放电能。所述电池管理模组包括采集模块、充放电模块、转换模块及控制模块。所述采集模块与所述第一电池模组和所述第二电池模组均电连接,所述采集模块用于获取所述第一电池模组的第一运行参数和所述第二电池模组的第二运行参数。所述充放电模块与所述第一电池模组电连接。所述转换模块与所述第一电池模组和所述第二电池模组均电连接。所述控制模块与所述充放电模块、所述转换模块及所述采集模块均电连接。所述控制模块用于获取所述第一电池模组的第一运行参数和所述第二电池模组的第二运行参数,并根据所述第一运行参数控制所述充放电模块对所述第一电池模组进行充放电、根据所述第二运行参数控制所述转换模块对所述第二电池模组进行充放电以及根据所述第一运行参数及所述第二运行参数控制所述第一电池模组与所述第二电池模组之间的电能平衡。
在某些实施方式中,所述采集模块包括第一采集模块及第二采集模块。所述第一采集模块与所述第一电池模组、所述控制模块及所述充放电模块均电连接,所述第一采集模块用于获取所述第一运行参数。所述第二采集模块与所述第二电池模组、所述控制模块及所述转换模块均电连接,所述第二采集模块用于获取所述第二运行参数。
在某些实施方式中,所述控制模块还用于根据所述第一运行参数控制所述充放电模块的通断,以控制所述充放电模块对所述第一电池模组进行充放电。
在某些实施方式中,所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA;所述充放电模块包括充电开关及放电开关。所述充电开关用于控制所述第一电池模组充电电路的通断。所述放电开关用于控制所述第一电池模组放电电路的通断。所述控制模块还用于在TA<Tmin1或TA>Tmax1的情况下控制所述充电开关及所述放电开关均关闭、在Tmin1<TA<Tmax1且QA<Qmax1的情况下控制所述充电开关开启、在Tmin1<TA<Tmax1且QA=Qmax1的情况下控制所述充电开关关闭、在Tmin1<TA<Tmax1且Qmin1<QA≤Qmax1的情况下控制所述放电开关开启及在Tmin1<TA<Tmax1且QA≤Qmin1的情况下控制
所述放电开关关闭和/或控制所述充电开关开启。
在某些实施方式中,所述控制模块还用于根据所述第二运行参数控制所述转换模块的通断,以控制所述转换模块对所述第二电池模组进行充放电。
在某些实施方式中,所述第二运行参数包括所述第二电池模组的最大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB。所述转换模块包括第一回路及第二回路。所述第一回路用于供所述第二电池模组充电。所述第二回路用于供所述第二电池模组放电。所述控制模块还用于在TB<Tmin2或TB>Tmax2的情况下控制所述第一回路和所述第二回路均断开、在Tmin2<TB<Tmax2且QB<Qmax2的情况下控制所述第一回路导通、在Tmin2<TB<Tmax2且QB=Qmax2的情况下控制所述第一回路断开、在Tmin2<TB<Tmax2且Qmin2<QB≤Qmax2的情况下控制所述第二回路导通及在Tmin2<TB<Tmax2且QB≤Qmin2的情况下控制所述第二回路断开和/或控制所述第一回路导通。
在某些实施方式中,所述控制模块还用于根据所述第一运行参数及所述第二运行参数控制所述转换模块、所述充放电模块、所述第一电池模组和所述第二电池模组组成的平衡回路的电能流向,以平衡所述第一电池模组和所述第二电池模组的电能。
在某些实施方式中,所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA。所述第二运行参数包括所述第二电池模组的最大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB。所述转换模块包括第一回路及第二回路。所述第一回路用于控制所述第一电池模组向所述第二电池模组传输电能的通路的通断。所述第二回路用于控制所述第二电池模组向所述第一电池模组传输电能的通路的通断。所述控制模块还用于在TA<Tmin1、TA>Tmax1、TB<Tmin2或TB>Tmax2的情况下控制所述第一回路及所述第二回路断开、在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1且∣QA-QB∣≤Q0的情况下控制所述第一回路及所述第二回路均断开、在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1、∣QA-QB∣>Q0且QB<QA≤Qmax1的情况下控制所述第一回路导通,所述第二回路断开、在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1、∣QA-QB∣>Q0且QA<QB<Qmax2的情况下控制所述第二回路导通,所述第一回路断开、在QA≤Qmin1和/或QB=Qmax2的情况下控制所述第一回路断开及在QB≤Qmin2和/或QA=Qmax1的情况下控制所述第二回路断开;其中,Q0为所述第一电池模组和所述第二电池模组之间预设的最小电量差值Q0。
在某些实施方式中,所述电池管理模组还包括分流电阻器,所述分流电阻器与所述转换模块电连接。所述分流电阻器用于获取所述第一电池模组与所述第二电池模组之间的电流环流I0。在所述第一电池模组的电能和所述第二电池模组的电能平衡的情况下,所述电流环流I0小于预设的最大环流值Imax。
在某些实施方式中,所述电池管理模组还包括连接模块,所述连接模块与所述第一电池模组、所述第二电池模组、所述充放电模块及所述转换模块均电连接。所述连接模块用于与外部负载和/或外部电源电连接,以使所述储能电源与所述外部负载和/或所述外部电源之间进行电能传输。所述连接模块还与所述控制模块电连接,所述控制模块还用于根据所述第一运行参数和所述第二运行参数在所述充放电模块开启的情况下获取所述储能电源的最大充放电功率Pmax,并以所述储能电源的最大充放电功率Pmax控制所述充放电模块对所述第一电池模组进行充放电及根据所述第一运行参数和所述第二运行参数在所述转换模块开启的情况下获取所述储能电源的最大充放电功率Pmax,并以所述储能电源的最大充放电功率Pmax控制所述转换模块对所述第二电池模组进行充放电。
在某些实施方式中,所述第一运行参数包括所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA。所述第二运行参数包括所述第二电池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第二电池模组的当前温度TB。所述控制模块还用于根据所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA获取所述第一电池模组的最大充放电功率PAmax、根据所述
第二电池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第二电池模组的当前温度TB获取所述第二电池模组的最大充放电功率PBmax及根据所述第一电池模组的最大充放电功率PAmax及所述第二电池模组的最大充放电功率PBmax获取所述储能电源的最大充放电功率Pmax。
在某些实施方式中,所述电池管理模组还包括数字隔离器,所述数字隔离器的一端与所述控制模块连接,所述数字隔离器的另一端与所述采集模块和/或所述连接模块连接。所述数字隔离器用于保持所述控制模块与所述采集模块之间、和/或隔离所述控制模块与所述连接模块之间的信号传输。
本申请实施方式的储能电源系统包括上述任一实施方式所述的储能电源。
在某些实施方式中,所述储能电源系统还包括传输组件、充电组件及双向转换组件;所述充电组件及所述双向转换组件均通过所述传输组件与所述储能电源电连接,所述传输组件用于传输所述储能电源的电能至所述充电组件及所述双向转换组件,以及传输电能至负载;所述充电组件用于电连接光伏电源与所述储能电源,所述双向转换组件用于电连接市电电网与所述储能电源并转换接入所述双向转换组件的电压类型。
本申请实施方式的控制方法应用于上述任一实施方式所述的储能电源。所述控制方法包括:获取所述第一电池模组的第一运行参数和所述第二电池模组的第二运行参数;根据所述第一运行参数控制所述充放电模块对所述第一电池模组进行充放电;根据所述第二运行参数控制所述转换模块对所述第二电池模组进行充放电;及根据所述第一运行参数及所述第二运行参数控制所述第一电池模组与所述第二电池模组之间的电能平衡。
在某些实施方式中,所述根据所述第一运行参数控制所述充放电模块对所述第一电池模组进行充放电,包括:根据所述第一运行参数控制所述充放电模块的通断;在所述充放电模块开启的情况下,获取所述储能电源的最大充放电功率Pmax;及以所述储能电源的最大充放电功率Pmax对所述第一电池模组进行充放电。
在某些实施方式中,所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA。所述充放电模块包括充电开关及放电开关,所述充电开关用于控制所述第一电池模组的充电电路的通断,所述放电开关用于控制所述第一电池模组的放电电路的通断。所述根据所述第一运行参数控制所述充放电模块的通断,包括:在TA<Tmin1或TA>Tmax1的情况下,控制所述充电开关及所述放电开关均关闭;在Tmin1<TA<Tmax1且QA<Qmax1的情况下,控制所述充电开关开启;在Tmin1<TA<Tmax1且QA=Qmax1的情况下,控制所述充电开关关闭;在Tmin1<TA<Tmax1且Qmin1<QA≤Qmax1的情况下,控制所述放电开关开启;及在Tmin1<TA<Tmax1且QA≤Qmin1的情况下,控制所述放电开关关闭,和/或控制所述充电开关开启。
在某些实施方式中,所述根据所述第二运行参数控制所述转换模块对所述第二电池模组进行充放电,包括:根据所述第二运行参数控制所述转换模块的通断;在所述转换模块开启的情况下,获取所述储能电源的最大充放电功率Pmax;及以所述储能电源的最大充放电功率Pmax对所述第二电池模组进行充放电。
在某些实施方式中,所述第二运行参数包括所述第二电池模组的最大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB。所述转换模块包括第一回路及第二回路,所述第一回路用于供所述第二电池模组充电,所述第二回路用于供所述第二电池模组放电。所述根据所述第二运行参数控制所述转换模块的通断,包括:在TB<Tmin2或TB>Tmax2的情况下,控制所述第一回路和所述第二回路均断开;在Tmin2<TB<Tmax2且QB<Qmax2的情况下,控制所述第一回路导通;在Tmin2<TB<Tmax2且QB=Qmax2的情况下,控制所述第一回路断开;在Tmin2<TB<Tmax2且Qmin2<QB≤Qmax2的情况下,控制所述第二回路导通;及在Tmin2<TB<Tmax2且QB≤Qmin2的情况下,控制所述第二回路断开,和/或控制所述第一回路导通。
在某些实施方式中,所述第一运行参数包括所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA。所述第二运行参数包括所述第二电
池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第二电池模组的当前温度TB。所述获取所述储能电源的最大充放电功率Pmax,包括:根据所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA获取所述第一电池模组的最大充放电功率PAmax;根据所述第二电池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第二电池模组的当前温度TB获取所述第二电池模组的最大充放电功率PBmax;及根据所述第一电池模组的最大充放电功率PAmax及所述第二电池模组的最大充放电功率PBmax获取所述储能电源的最大充放电功率Pmax。
在某些实施方式中,所述根据所述第一运行参数及所述第二运行参数控制所述第一电池模组与所述第二电池模组之间的电能平衡,包括:根据所述第一运行参数及所述第二运行参数控制所述转换模块、所述充放电模块、所述第一电池模组和所述第二电池模组组成的平衡回路的电能流向,以平衡所述第一电池模组和所述第二电池模组的电能。
在某些实施方式中,所述转换模块包括第一回路及第二回路,所述第一回路用于控制所述第一电池模组向所述第二电池模组传输电能的通路的通断,所述第二回路用于控制所述第二电池模组向所述第一电池模组传输电能的通路的通断。所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA。所述第二运行参数包括所述第二电池模组的最大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB。所述根据所述第一运行参数及所述第二运行参数控制所述转换模块、所述充放电模块、所述第一电池模组和所述第二电池模组组成的平衡回路的电能流向,包括:在TA<Tmin1、TA>Tmax1、TB<Tmin2或TB>Tmax2的情况下,控制所述第一回路及所述第二回路均断开;在Tmin2<Tmin1、Tmax1<Tmax2且Tmin2<TB<Tmax1的情况下,若∣QA-QB∣≤Q0,则控制所述第一回路及所述第二回路均断开;若∣QA-QB∣>Q0,且QB<QA≤Qmax1,则控制所述第一回路导通,所述第二回路断开;若∣QA-QB∣>Q0,且QA<QB<Qmax2,则控制所述第二回路导通,所述第一回路断开;在QA≤Qmin1和/或QB=Qmax2的情况下,控制所述第一回路断开;在QB≤Qmin2和/或QA=Qmax1的情况下,控制所述第二回路断开。其中,Q0为所述第一电池模组和所述第二电池模组之间预设的最小电量差值Q0。
本申请的储能电源、储能电源系统及储能电源的控制方法中,储能电源内的电池管理模组包括控制模块、与第一电池模组电连接的充放电模块以及与第一电池模组和第二电池模组均电连接的转换模块。控制模块能够通过充放电模块控制第一电池模组的充放电,以及通过转换模块控制第二电池模组的充放电。此时电池管理模组能够针对第一电池模组和第二电池模组的不同参数分别对第一电池模组和第二电池模组进行控制,以使储能电源的充放电方式更加精准,延长电池的使用寿命。在第一电池模组和第二电池模组的电能不平衡的情况下,控制模块能够使第一电池模组和第二电池模组之间产生电能流动以使第一电池模组和第二电池模组的电能平衡,避免第一电池模组和/或第二电池模组过度充电或过度放电。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的储能电源的模块示意图;
图2是本申请某些实施方式的储能电源的模块示意图;
图3是本申请某些实施方式的储能电源的电路连接图;
图4是本申请某些实施方式的储能电源的电路连接图;
图5是本申请某些实施方式的储能电源系统的模块示意图;
图6-图14是本申请某些实施方式的控制方法的流程示意图。
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
在本申请的描述中,应当理解的是,术语“厚度”、“上”、“顶”、“底”、“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而并非指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。以及,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。因此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,在一个例子中,可以是固定连接,或者是可拆卸地连接,或一体地连接;可以是机械连接,或者是电连接,或可以相互通讯;可以是直接相连,或者是通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。
请参阅图1及图2,本申请的储能电源100包括第一电池模组10、第二电池模组30及电池管理模组50。第一电池模组10用于储存和/或释放电能。第二电池模组30与第一电池模组10并联,第二电池模组30用于储存和/或释放电能。电池管理模组50包括采集模块51、充放电模块52、转换模块53及控制模块54。采集模块51与第一电池模组10和第二电池模组30均电连接,采集模块51用于获取第一电池模组10的第一运行参数和第二电池模组30的第二运行参数。充放电模块52与第一电池模组10电连接。转换模块53与第一电池模组10和第二电池模组30均电连接。控制模块54与充放电模块52、转换模块53及采集模块51均电连接。控制模块54用于获取第一电池模组10的第一运行参数和第二电池模组30的第二运行参数,并根据第一运行参数控制充放电模块52对第一电池模组10进行充放电、根据第二运行参数控制转换模块53对第二电池模组30进行充放电以及根据第一运行参数及第二运行参数控制第一电池模组10与第二电池模组30之间的电能平衡。
本申请的储能电源100中,储能电源100内的电池管理模组50包括控制模块54、与第一电池模组10电连接的充放电模块52以及与第一电池模组10和第二电池模组30均电连接的转换模块53。控制模块54能够通过充放电模块52控制第一电池模组10的充放电,以及通过转换模块53控制第二电池模组30的充放电。此时电池管理模组50能够针对第一电池模组10和第二电池模组30的不同参数分别对第一电池模组10和第二电池模组30进行控制,以使储能电源100的充放电方式更加精准,延长电池的使用寿命。在第一电池模组10和第二电池模组30的电能不平衡的情况下,控制模块54能够使第一电池模组10和第二电池模组30之间产生电能流动以使第一电池模组10和第二电池模组30的电能平衡,避免第一电池模组10和/或第二电池模组30过度充电或过度放电。下面结合附图对做进一步说明。
请参阅图1及图3,在某些实施方式中,第一电池模组10和第二电池模组30均为能够储存电能和/或将储存的电能释放到外部以向接入储能电源100的用电设备供电的装置。在储能电源100外接有其他电源,且第一电池模组10和第二电池模组30中的至少一者未处于电量充满的状态,此时外接电源能够向第一电池模组10和第二电池模组30中未充满的至少一者传输电能,以向储能电源100充电。在储能电源100外接有其他负载,且第一电池模组10和第二电池模组30中的至少一者未处于电量放空的状态,此时储能电源100内的第一电池模组10和第二电池模组30中未处于电量放空状态的至少一者能够向负载放电以将电能供给负载使用。
在本申请的实施方式中,第一电池模组10和第二电池模组30为不同类型的电池模组,因此,第一电池模组10的第一运行参数与第二电池模组30的第二运行参数不同。在本申请的一些具体实施方式中,第一电池模组10为锂离子电池模组,其正极材料的主要成分可为磷酸铁锂、锰酸锂
或钴酸锂等;第二电池模组30为钠离子电池模组,其正极材料的主要成分可为六氟磷酸钠、高氯酸钠或双氟磷酰亚胺钠等。其中,锂离子电池模组的正常工作的温度范围(即第一温宽范围[Tmin1,Tmax1])位于钠离子电池模组的正常工作的温度范围(即第二温宽范围[Tmin2,Tmax2])内。即,Tmin2<Tmin1<Tmax1<Tmax2。第一电池模组10和第二电池模组30为相互独立设置并通过并联的方式相互电连接的电池模组,因此任意一个电池模组损坏也不会影响另一个电池模组的使用。并且第一电池模组10和第二电池模组30均能作为一个整体进行更换,方便用户根据需要调整第一电池模组10和/或第二电池模组30的个数以及二者的搭配方式。
请参阅图2及图3,在某些实施方式中,电池管理模组50能够采集第一电池模组10和第二电池模组30在运行过程中的第一运行参数和第二运行参数,并根据第一运行参数和第二运行参数计算出储能电源100的充放电功率或选择相应的充放电策略以使第一电池模组10和第二电池模组30均能保持正常工作,并且延长储能电源100的使用寿命。
具体地,在某些实施方式中,第一运行参数包括第一电池模组10的最大存储电量Qmax1、第一电池模组10预设的最小剩余电量Qmin1、第一电池模组10的当前剩余电量QA、第一电池模组10的当前电压UA、第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1]及第一电池模组10的当前温度TA。
其中,第一电池模组10的当前剩余电量QA是指第一电池模组10当前存储的电量值。在外部电源和/或第二电池模组30向第一电池模组10充电的情况下,电能由外部电源和/或第二电池模组30流向第一电池模组10,第一电池模组10的当前剩余电量QA会逐渐增大,直到达到第一电池模组10的最大存储电量Qmax1。此时,第一电池模组10处于充满电的状态,外部电源和/或第二电池模组30无法继续向第一电池模组10充电。在第一电池模组10向外部设备和/或第二电池模组30放电的情况下,电能由第一电池模组10流向外部设备和/或第二电池模组30,此时,第一电池模组10的当前剩余电量QA会逐渐减小直到达到第一电池模组10的最小剩余电量Qmin1。此时,第一电池模组10处于电量耗尽的状态,第一电池模组10无法继续向外部设备和/或第二电池模组30放电。
第一电池模组10的最大存储电量Qmax1是指第一电池模组10当前能够存储的最大电量,在第一电池模组10的当前剩余电量QA等于第一电池模组10的最大存储电量Qmax1的情况下,第一电池模组10处于充满电的状态,此时第一电池模组10不能再向内充电而能够向外放电。同时,若储能电源100外接有另一个储能电源100,且外接的储能电源100的当前剩余电量少于第一电池模组10的当前剩余电量QA,此时第一电池模组10也能够向外放电。第一电池模组10预设的最小剩余电量Qmin1是指第一电池模组10预设当前能够剩余的最小电量,在第一电池模组10的当前剩余电量QA达到第一电池模组10预设的最小剩余电量Qmin1的情况下,第一电池模组10处于电量耗尽的状态,需要向第一电池模组10内充电。在第一电池模组10的当前剩余电量QA超过第一电池模组10预设的最小剩余电量Qmin1的情况下,第一电池模组10处于电量充足的状态,第一电池模组10既能够向外放电,也能够通过外部电源和/或第二电池模组30向第一电池模组10内充电。
第一温宽范围[Tmin1,Tmax1]是指第一电池模组10能够维持正常工作机能的温度范围,即,第一温宽范围的下限值Tmin1为第一电池模组10能够正常工作的最低允许使用温度,第一温宽范围的上限值Tmax1为第一电池模组10能够正常工作的最高允许使用温度。在第一电池模组10的当前温度TA处于第一温宽范围[Tmin1,Tmax1]内的情况下,第一电池模组10能够正常运行并向外供电。在第一电池模组10的当前温度TA处于第一温宽范围[Tmin1,Tmax1]外(即外界温度低于Tmin1或高于Tmax1)的情况下,第一电池模组10也能够工作,但此时第一电池模组10的循环寿命会降低,并且缩短储能电源100的正常使用寿命,储能电源100更容易损坏。
第一电池模组10的当前温度TA是指第一电池模组10当下的表面温度,第一电池模组10的当前温度TA由储能电源100内设置的温度计进行测量。在第一电池模组10的当前温度TA低于第一电池模组10的最低允许使用温度Tmin1的情况下,第一电池模组10无法向外放电或向内充电。在第一电池模组10的当前温度TA高于第一电池模组10的最低允许使用温度Tmin1且低于第一电池模组10的最高允许使用温度Tmax1的情况下,第一电池模组10能够向外放电或向内充电,并且此时第一电池模组10的充放电功率与第一电池模组10的当前温度TA具有一定的映射关系,具体的映
射关系能够通过实验得出。
第一电池模组10的当前电压UA是指第一电池模组10在当前温度和当前充放电功率下对应的能够提供的电压值。在当前温度和当前充放电功率发生变化的情况下,第一电池模组10的当前电压UA也会随之变化。第一电池模组10的当前电压UA、第一电池模组10的充放电功率与第一电池模组10的当前温度TA之间具有一定的映射关系,具体的映射关系能够通过实验得出对应曲线。
更具体地,在某些实施方式中,第二运行参数包括第二电池模组30的最大存储电量Qmax2、第二电池模组30预设的最小剩余电量Qmin2、第二电池模组30的当前剩余电量QB、第二电池模组30的当前电压UB、第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]及第二电池模组30的当前温度TB。
其中,第二电池模组30的当前剩余电量QB是指第二电池模组30当前存储的电量值。在外部电源和/或第一电池模组10向第二电池模组30充电的情况下,电能由外部电源和/或第一电池模组10流向第二电池模组30,第二电池模组30的当前剩余电量QB会逐渐增大,直到达到第二电池模组30的最大存储电量Qmax2。此时,第二电池模组30处于充满电的状态,外部电源和/或第一电池模组10无法继续向第二电池模组30充电。在第二电池模组30向外部设备和/或第一电池模组10放电的情况下,电能由第二电池模组30流向外部设备和/或第一电池模组10,此时,第二电池模组30的当前剩余电量QB会逐渐减小直到达到第二电池模组30的最小剩余电量Qmin2。此时,第二电池模组30处于电量耗尽的状态,第二电池模组30无法继续向外部设备和/或第一电池模组10放电。
第二电池模组30的最大存储电量Qmax2是指第二电池模组30当前能够存储的最大电量,在第二电池模组30的当前剩余电量QB等于第二电池模组30的最大存储电量Qmax2的情况下,第二电池模组30处于充满电的状态,此时第二电池模组30不能再向内充电而能够向外放电。同时,若储能电源100外接有另一个储能电源100,且外接的储能电源100的当前剩余电量少于第二电池模组30的当前剩余电量QB,此时第二电池模组30也能够向外放电。第二电池模组30预设的最小剩余电量Qmin2是指第二电池模组30预设当前能够剩余的最小电量,在第二电池模组30的当前剩余电量QB达到第二电池模组30预设的最小剩余电量Qmin2的情况下,第二电池模组30处于电量耗尽的状态,需要向第二电池模组30内充电。在第二电池模组30的当前剩余电量QB超过第二电池模组30预设的最小剩余电量Qmin2的情况下,第二电池模组30处于电量充足的状态,第二电池模组30既能够向外放电,也能够通过外部电源和/或第一电池模组10向第二电池模组30内充电。
第二温宽范围[Tmin2,Tmax2]是指第二电池模组30能够维持正常工作机能的温度范围,即,第二温宽范围的下限值Tmin2为第二电池模组30能够正常工作的最低允许使用温度,第二温宽范围的上限值Tmax2为第二电池模组30能够正常工作的最高允许使用温度。在第二电池模组30的当前温度TB处于第二温宽范围[Tmin2,Tmax2]内的情况下,第二电池模组30能够正常运行并向外供电。在第二电池模组30的当前温度TB处于第二温宽范围[Tmin2,Tmax2]外(即外界温度低于Tmin2或高于Tmax2)的情况下,第二电池模组30也能够工作,但此时第二电池模组30的循环寿命会降低,并且缩短储能电源100的正常使用寿命,储能电源100更容易损坏。
第二电池模组30的当前温度TB是指第二电池模组30当下的表面温度,第二电池模组30的当前温度TB由储能电源100内设置的温度计进行测量。在第二电池模组30的当前温度TB低于第二电池模组30的最低允许使用温度Tmin2的情况下,第二电池模组30无法向外放电或向内充电。在第二电池模组30的当前温度TB高于第二电池模组30的最低允许使用温度Tmin2且低于第二电池模组30的最高允许使用温度Tmax2的情况下,第二电池模组30能够向外放电或向内充电,并且此时第二电池模组30的充放电功率与第二电池模组30的当前温度TB具有一定的映射关系,具体的映射关系能够通过实验得出。
第二电池模组30的当前电压UB是指第二电池模组30在当前温度和当前充放电功率下对应的能够提供的电压值。在当前温度和当前充放电功率发生变化的情况下,第二电池模组30的当前电压UB也会随之变化。第二电池模组30的当前电压UB、第二电池模组30的充放电功率与第二电池模组30的当前温度TB之间具有一定的映射关系,具体的映射关系能够通过实验得出对应曲线。
进一步地,请参阅图1及图2,采集模块51为能够读取第一电池模组10的第一运行参数和第
二电池模组30的第二运行参数的结构。采集模块51与第一电池模组10和第二电池模组30均电连接,采集模块51内包括但不限于电池监控单元、电压监控单元、温度监控单元、电流监控单元、充放电监控单元、故障诊断单元及通讯单元等。电池监控单元能够用于监测第一电池模组10的最大存储电量Qmax1、第一电池模组10预设的最小剩余电量Qmin1、第一电池模组10的当前剩余电量QA、第二电池模组30的最大存储电量Qmax2、第二电池模组30预设的最小剩余电量Qmin2以及第二电池模组30的当前剩余电量QB等信息。电压监控单元能够用于监控第一电池模组10的当前电压UA、第二电池模组30的当前电压UB以及第一电池模组10的当前电压UA和第二电池模组30的当前电压UB的波动情况,并得出第一电池模组10的充放电功率的变化及第二电池模组30的充放电功率的变化。温度监控单元能够用于监控第一电池模组10的当前温度TA、第二电池模组30的当前温度TB以及第一电池模组10的当前温度TA和第二电池模组30的当前温度TB的变化情况,并调整储能电源100内第一电池模组10和第二电池模组30的使用情况。例如:在第一电池模组10的当前温度TA低于第一电池模组10的最低允许使用温度Tmin1,第二电池模组30的当前温度TB高于第二电池模组30的最低允许使用温度Tmin2且低于第二电池模组30的最高允许使用温度Tmax2的情况下,储能电源100内仅有第二电池模组30能够进行充放电。
具体地,请参阅图2及图3,在某些实施方式中,采集模块51包括第一采集模块511及第二采集模块513。第一采集模块511与第一电池模组10、控制模块54及充放电模块52均电连接,第一采集模块511能够分别连接第一电池模组10的正极和第一电池模组10的负极以与第一电池模组10并联,并获取第一运行参数,并能够将读取到的第一运行参数传输至控制模块54,控制模块54能够根据第一运行参数得出针对第一电池模组10的控制策略,并根据不同的策略对充放电模块52进行控制。第二采集模块513与第二电池模组30、控制模块54及转换模块53均电连接,第二采集模块513能够分别连接第一电池模组10的正极和第一电池模组10的负极以与第一电池模组10并联,并获取第二运行参数,并能够将读取到的第二运行参数传输至控制模块54,控制模块54能够根据第一运行参数和第二运行参数得出针对第二电池模组30的控制策略,并根据不同的策略对充放电模块52进行控制。
更进一步地,请参阅图2及图3,在某些实施方式中,充放电模块52为控制第一电池模组10进行充放电的结构。充放电模块52的一端与第一电池模组10电连接,充放电模块52的另一端能够与外部电源和/或外部负载电连接,以使第一电池模组10向外部负载放电或经由外部电源充电。充放电模块52的另一端还能够通过转换模块53以与第二电池模组30电连接,以使第一电池模组10和第二电池模组30之间能够进行电能交换。
具体地,请参阅图3及图4,在某些实施方式中,充放电模块52包括充电开关521及放电开关523。储能电源100内设有对第一电池模组10充电的充电电路和从第一电池模组10向外放电的放电电路,充电开关521位于充电电路上并能够控制第一电池模组10的充电电路的通断。放电开关523位于放电电路上并能够控制第一电池模组10的放电电路的通断。在一些实施方式中,充电电路与放电电路相互独立设置,在充电开关521断开的情况下,第一电池模组10仍能够经放电电路向外放电;在放电开关523断开的情况下,外部电源和/或第二电池模组30等仍能够经充电电路向第一电池模组10内充电。在另一些实施方式中,充电电路与放电电路部分重合,充电开关521和放电开关523上均设有能够使电流仅能单向流动的电器元件,以使充电电路与放电电路贯通。例如:充电开关521和放电开关523均为金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),充电开关521和放电开关523均包括相互独立设置的栅极(gate,G)、源极(source,S)和漏极(drain,D),其中,充电开关521的栅极和放电开关523的栅极均与第一采集模块511电连接,第一采集模块511还能够接收控制模块54传输的指令以控制充电开关521的通断和放电开关523的通断。
在某些实施方式中,充电开关521的源极与第一电池模组10电连接,充电开关521的漏极与放电开关523的源极电连接,放电开关523的漏极与外部电源、外部负载和/或第二电池模组30电连接。充电开关521和放电开关523的源极和漏极之间形成有供电流流动的回路,且充电开关521的源极和漏极之间并联有仅能使电流由第一电池模组10流向外部电源、外部负载和/或第二电池模组30的第一元件,放电开关523的源极和漏极之间并联有仅能使电流由外部电源和/或第二电
池模组30流向第一电池模组10的第二元件。在放电开关523关闭,充电开关521开启的情况下,电流由外部电源和/或第二电池模组30依次流过第二元件、充电开关521的漏极与充电开关521的源极并进入第一电池模组10,此时第一电池模组10处于充电状态。在放电开关523开启,充电开关521关闭的情况下,电流由第一电池模组10依次流过第一元件、放电开关523的源极及放电开关523的漏极并流向外部电源、外部负载和/或第二电池模组30,此时第一电池模组10处于放电状态。在放电开关523和充电开关521均关闭的情况下,第一电池模组10内的电能无法与外部电源、外部负载和/或第二电池模组30进行交换,此时第一电池模组10无法进行充放电。在放电开关523和充电开关521均开启的情况下,电流既能够由第一电池模组10依次流过第一元件、放电开关523的源极及放电开关523的漏极并流向外部电源、外部负载和/或第二电池模组30,也能够由外部电源和/或第二电池模组30依次流过第二元件、充电开关521的漏极与充电开关521的源极并进入第一电池模组10,此时,第一电池模组10既能够向外放电,也能够向内充电。
在某些实施方式中,控制模块54还能够根据第一运行参数得出不同的充放电控制策略,并根据不同的充放电控制策略控制充放电模块52的通断,以控制充放电模块52对第一电池模组10进行充放电。控制模块54既能够通过第一采集模块511控制充电开关521和放电开关523的通断,也能够直接控制充电开关521和放电开关523的通断。
具体地,在某些实施方式中,在TA<Tmin1或TA>Tmax1的情况下,第一电池模组10的当前温度TA超出第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1],因此第一电池模组10无法正常工作,此时控制模块54控制充电开关521及放电开关523均关闭,以使第一电池模组10无法充放电。
更具体地,在某些实施方式中,在Tmin1<TA<Tmax1的情况下,第一电池模组10的当前温度TA位于第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1]内,因此第一电池模组10能够正常工作。此时控制模块54需要根据第一电池模组10的当前剩余电量QA与第一电池模组10的最大存储电量Qmax1及第一电池模组10预设的最小剩余电量Qmin1之间的大小关系判断第一电池模组10是否处于充满的状态或电能放空的状态,以分别控制充电开关521的通断及放电开关523的通断。
若QA<Qmax1,则表明此时第一电池模组10未处于充满状态,因此外部电源和第二电池模组30均能够向第一电池模组10充电,控制模块54控制充电开关521开启。若QA=Qmax1,则表明此时第一电池模组10处于充满状态,因此外部电源和第二电池模组30均不能继续向第一电池模组10充电,控制模块54控制充电开关521关闭。若Qmin1<QA≤Qmax1,则表明此时第一电池模组10内电量充足能够向外放电,控制模块54控制放电开关523开启。若QA≤Qmin1,则表明此时第一电池模组10内电量不足,无法向外放电,但仍能够向内充电,控制模块54控制放电开关523关闭和/或控制充电开关521开启。根据上述控制方法能够避免第一电池模组10过充或过放,延长第一电池模组10的使用寿命。
再进一步地,请参阅图2及图3,在某些实施方式中,转换模块53为控制第二电池模组30充放电的结构,转换模块53能够电连接第一电池模组10和第二电池模组30以使第一电池模组10和第二电池模组30之间能够产生电能交换,即,第二电池模组30既能够向第一电池模组10放电,也能够由第一电池模组10向内充电。转换模块53还能够与外部电源和/或外部负载电连接,以使第二电池模组30能够向外放电或向内充电。
具体地,请参阅图2及图4,在某些实施方式中,转换模块53包括第一回路及第二回路。第一回路用于供第二电池模组30充电。第二回路用于供第二电池模组30放电,第一回路和第二回路互不影响。在一些实施方式中,第一回路与第二回路相互独立设置。在另一些实施方式中,第一回路与第二回路部分重叠。
更具体地,在某些实施方式中,转换模块53还包括相互独立设置的第一开关531、第二开关532、第三开关533和第四开关534,第一开关531和第三开关533均位于第二回路上,第二开关532和第四开关534均位于第一回路上。第一开关531的一端与第二电池模组30的正极电连接,第一开关531的另一端与第三开关533的一端连接,第三开关533的另一端与第一电池模组10的负极、第二电池模组30的负极、外部电源及外部负载均电连接,以使第二电池模组30能够经第
二回路向外放电或向第一电池模组10放电。第二开关532的一端与第二电池模组30的负极电连接,第二开关532的另一端与第四开关534的一端连接,第四开关534的另一端与第一电池模组10的正极及外部电源均电连接,以使第一电池模组10及外部电源能够经第一回路向第二电池模组30充电。
再具体地,在某些实施方式中,转换模块53还可包括驱动器535,驱动器535分别与第一开关531、第二开关532、第三开关533和第四开关534电连接。控制模块54能够与驱动器535电连接,以根据第二运行参数通过驱动器535分别控制转换模块53内第一开关531、第二开关532、第三开关533和第四开关534的通断,以控制转换模块53对第二电池模组30进行充放电。
在TB<Tmin2或TB>Tmax2的情况下,第二电池模组30的当前温度TB超出第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2],因此第二电池模组30无法正常工作,此时控制模块54控制第一开关531、第二开关532、第三开关533和第四开关534均关闭,以使第一回路和第二回路均断开。
在Tmin2<TB<Tmax2的情况下,第二电池模组30的当前温度TB位于第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]内,因此第二电池模组30能够正常工作。此时控制模块54需要根据第二电池模组30的当前剩余电量QB与第二电池模组30的最大存储电量Qmax2及第二电池模组30预设的最小剩余电量Qmin2之间的大小关系判断第二电池模组30是否处于充满的状态或电能放空的状态,以分别控制第一回路的通断及第二回路的通断。
若QB<Qmax2,则表明此时第二电池模组30未处于充满状态,因此外部电源和第一电池模组10均能够向第二电池模组30充电,控制模块54控制第一回路导通。若QB=Qmax,则表明此时第二电池模组30处于充满状态,因此外部电源和第一电池模组10均不能继续向第二电池模组30充电,控制模块54控制第一回路断开。若Qmin2<QB≤Qmax2,则表明此时第二电池模组30内电量充足能够向外放电,控制模块54控制第二回路导通。若QB≤Qmin2,则表明此时第二电池模组30内电量不足,无法向外放电,但仍能够向内充电,控制模块54控制第二回路断开和/或控制第一回路导通。根据上述控制方法能够避免第二电池模组30过充或过放,延长第二电池模组30的使用寿命。
还具体地,在某些实施方式中,平衡回路为第一电池模组10与第二电池模组30之间形成的回路,第一电池模组10和第二电池模组30能够通过平衡回路相互电连接并相互传输电能,转换模块53和充放电模块52均位于平衡回路上。控制模块54还能够根据第一运行参数及第二运行参数控制转换模块53、充放电模块52、第一电池模组10和第二电池模组30组成的平衡回路的电能流向,以平衡第一电池模组10和第二电池模组30的电能。平衡第一电池模组10和第二电池模组30的电能能够使第一电池模组10和第二电池模组30的电量相近,并使第一电池模组10和第二电池模组30能够同步进行充放电,避免出现其中一个电池模组已经充满,而另一个电池模组尚未充满的情况,或者其中一个电池模组已经放空,而另一个电池模组尚有剩余电量的情况,进一步避免第一电池模组10与第二电池模组30的过充和过放。
请参阅图2及图4,在某些实施方式中,第一回路还能够控制第一电池模组10向第二电池模组30传输电能的通路的通断。第二回路还能够控制第二电池模组30向第一电池模组10传输电能的通路的通断。第一回路的一端与第一电池模组10的正极电连接,第一回路的另一端与第二电池模组30的负极电连接,在第一回路导通的情况下,电能由第一电池模组10流向第二电池模组30。第二回路的一端与第二电池模组30的正极电连接,第一回路的另一端与第一电池模组10的负极电连接,在第二回路导通的情况下,电能由第二电池模组30流向第一电池模组10。
具体地,在TA<Tmin1、TA>Tmax1、TB<Tmin2或TB>Tmax2的情况下,第一电池模组10的当前温度TA超出第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1],第二电池模组30的当前温度TB超出第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2],因此第一电池模组10和第二电池模组30均无法正常工作,此时控制模块54控制第一回路及第二回路断开,以使第一电池模组10和第二电池模组30均不会充放电。
在QA≤Qmin1和/或QB=Qmax2的情况下,则表明此时第一电池模组10处于未充满状态,第二电池模组30处于充满状态,此时第一电池模组10内的电能不能流向第二电池模组30。控制模块54控制第一回路断开,以切断第一电池模组10向第二电池模组30的电能流动。但此时第二回路仍
可保持导通状态,以使第二电池模组30内的电能能够流向第一电池模组10。
在QB≤Qmin2和/或QA=Qmax1的情况下,则表明此时第一电池模组10处于充满状态,第二电池模组30处于未充满状态,此时第二电池模组30内的电能不能流向第一电池模组10。控制模块54控制第二回路断开,以切断第二电池模组30向第一电池模组10的电能流动。但此时第一回路仍可保持导通状态,以使第一电池模组10内的电能和/或外部电源的电能均能够流向第二电池模组30。
在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1的情况下,第一电池模组10的当前温度TA位于第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1]内,第二电池模组30的当前温度TB位于第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]内,因此第一电池模组10和第二电池模组30均能够正常工作,并且第一电池的正常工作的第一温宽范围[Tmin1,Tmax1]位于第二电池模组30的当前温度TB位于第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]内。即,第二电池模组30能够正常工作的第二温宽范围[Tmin2,Tmax2]更大,不考虑故障等因素的前提下,在第二电池模组30出现高低温异常而无法正常工作的情况下,第一电池模组10也无法正常工作。
此时控制模块54需要根据第一电池模组10的当前剩余电量QA与第二电池模组30的当前剩余电量QB之间的差值与第一电池模组10和第二电池模组30之间预设的最小电量差值Q0之间的关系判断储能电源100内是否需要进行电能平衡。其中,Q0为预设值,该预设值既能够通过实验得出,也能够根据用户需求或电池特性得出。同时,控制模块54还需要第一电池模组10的当前剩余电量QA与第二电池模组30的当前剩余电量QB之间的大小关系以分别控制第一回路上的第二开关532和第四开关534的通断以及第二回路上的第一开关531及第三开关533的通断,以分别控制第一回路和第二回路的通断,并进一步控制第一电池模组10与第二电池模组30之间的电能流向。
若∣QA-QB∣≤Q0,则表明此时第一电池模组10与第二电池模组30之间的电量差值较小,储能电源100内无需进行电能平衡,控制模块54控制第一回路及第二回路均断开以切断第一电池模组10与第二电池模组30之间的电能流动。
特别地,由于在第一电池模组10和第二电池模组30能够充放电的情况下,第一电池模组10和第二电池模组30内的电能处于实时变换状态,因此即使第一电池模组10的当前剩余电量QA与第二电池模组30的当前剩余电量QB之间的差值在某一时刻小于或等于第一电池模组10和第二电池模组30之间预设的最小电量差值Q0,控制模块54也无需控制第一回路及第二回路均断开。因此,为使操作步骤更加简单,控制模块54还能够仅在第一电池模组10和第二电池模组30均未处于充放电模式的情况下执行控制第一回路及第二回路均断开的步骤。
若∣QA-QB∣>Q0且QB<QA≤Qmax1,则表明此时第一电池模组10与第二电池模组30之间的电量差值较大,且第一电池模组10的当前剩余电量QA大于第二电池模组30的当前剩余电量QB,储能电源100内需要进行电能平衡,且电能应由第一电池模组10流向第二电池模组30,控制模块54控制第一回路导通。为避免第二电池模组30内的电能反流向第一电池模组10或流动至外部负载,控制模块54还控制第二回路断开。
若∣QA-QB∣>Q0且QA<QB<Qmax2,则表明此时第一电池模组10与第二电池模组30之间的电量差值较大,且第一电池模组10的当前剩余电量QA小于第二电池模组30的当前剩余电量QB,储能电源100内需要进行电能平衡,且电能应由第二电池模组30流向第一电池模组10,控制模块54控制第二回路导通。为避免第一电池模组10内的电能反流向第二电池模组30,控制模块54还控制第一回路断开。
请参阅图2及图4,在某些实施方式中,电池管理模组50还可包括分流电阻器57,分流电阻器57与转换模块53电连接。分流电阻器57能够获取第一电池模组10与第二电池模组30之间的电流环流I0。在第一电池模组10的电能和第二电池模组30的电能平衡的情况下,第一电池模组10与第二电池模组30之间应不会产生电能流动或产生小部分的电能流动,此时第一电池模组10与第二电池模组30之间的电流环流I0应当小于平衡回路内预设的最大环流值Imax。其中平衡回路内预设的最大环流值Imax既可以通过实验得出,也可以根据用户的需求和电池的特性得出。
请参阅图2及图4,在某些实施方式中,电池管理模组50还包括连接模块55,连接模块55
与第一电池模组10、第二电池模组30、充放电模块52及转换模块53均电连接。连接模块55能够与外部负载和/或外部电源电连接,以使储能电源100与外部负载和/或外部电源之间进行电能传输。连接模块55还与控制模块54电连接,控制模块54还能够根据第一运行参数和第二运行参数在充放电模块52开启的情况下获取储能电源100的最大充放电功率Pmax,并以储能电源100的最大充放电功率Pmax控制充放电模块52对第一电池模组10进行充放电及根据第一运行参数和第二运行参数在转换模块53开启的情况下获取储能电源100的最大充放电功率Pmax,并以储能电源100的最大充放电功率Pmax控制转换模块53对第二电池模组30进行充放电。
具体地,在某些实施方式中,控制模块54还能够根据第一电池模组10的当前电压UA、第一电池模组10的当前剩余电量QA及第一电池模组10的当前温度TA进行计算并获取第一电池模组10的最大充放电功率PAmax、根据第二电池模组30的当前电压UB、第二电池模组30的当前剩余电量QB及第二电池模组30的当前温度TB进行计算并获取第二电池模组30的最大充放电功率PBmax。在得到第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax后,控制模块54还能够根据第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax获取储能电源100的最大充放电功率Pmax,以避免储能电源100的最大充放电功率Pmax超出第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax中的任意一个数值,导致第一电池模组10或第二电池模组30损坏。
更具体地,在一些实施方式中,储能电源100的最大充放电功率Pmax等于第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax的平均值,即:Pmax=(PAmax+PBmax)/2。在另一些实施方式中,也可以第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax中较小的值。例如:若PAmax<PBmax,则Pmax=PAmax。若PAmax>PBmax,则Pmax=PBmax。若PAmax=PBmax,则Pmax=PAmax=PBmax。
请参阅图2及图4,在某些实施方式中,电池管理模组50还包括数字隔离器56,数字隔离器56的一端与控制模块54连接,数字隔离器56的另一端与采集模块51和/或连接模块55连接。数字隔离器56能够保持控制模块54与采集模块51之间、和/或隔离控制模块54与连接模块55之间的信号传输。具体地,数字隔离器56能够在数字信号和模拟信号传递时利用其电阻隔离的特性以使数据传输与电气连接相互隔离,减小数据传输过程中的噪声。
请参阅图1及图5,本申请实施方式的储能电源系统1000包括上述任一实施方式的储能电源100。
进一步地,在某些实施方式中,储能电源系统1000还可包括传输组件200、充电组件300、双向转换组件400及负载500;充电组件300、双向转换组件400及能够接入储能电源系统1000的负载500均通过传输组件200与储能电源100电连接,传输组件200用于传输储能电源100的电能至充电组件300及双向转换组件400,以及传输电能至负载500;充电组件300用于电连接光伏电源与储能电源100,双向转换组件400用于电连接市电电网与储能电源100并转换接入双向转换组件400的电压类型。
本申请的储能电源系统1000中,储能电源100内的电池管理模组50包括控制模块54、与第一电池模组10电连接的充放电模块52以及与第一电池模组10和第二电池模组30均电连接的转换模块53。控制模块54能够通过充放电模块52控制第一电池模组10的充放电,以及通过转换模块53控制第二电池模组30的充放电。此时电池管理模组50能够针对第一电池模组10和第二电池模组30的不同参数分别对第一电池模组10和第二电池模组30进行控制,以使储能电源100的充放电方式更加精准,延长电池的使用寿命。在第一电池模组10和第二电池模组30的电能不平衡的情况下,控制模块54能够使第一电池模组10和第二电池模组30之间产生电能流动以使第一电池模组10和第二电池模组30的电能平衡,避免第一电池模组10和/或第二电池模组30过度充电或过度放电。
请参阅图4及图6,本申请实施方式的控制方法应用于上述任一实施方式的储能电源100。控制方法包括:
01:获取第一电池模组10的第一运行参数和第二电池模组30的第二运行参数;
02:根据第一运行参数控制充放电模块52对第一电池模组10进行充放电;
03:根据第二运行参数控制转换模块53对第二电池模组30进行充放电;及
04:根据第一运行参数及第二运行参数控制第一电池模组10与第二电池模组30之间的电能平衡。
其中,第一运行参数为第一电池模组10在运行过程中的各项参数。第一运行参数包括第一电池模组10的最大存储电量Qmax1、第一电池模组10预设的最小剩余电量Qmin1、第一电池模组10的当前剩余电量QA、第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1]及第一电池模组10的当前温度TA。
第一电池模组10的当前剩余电量QA是指第一电池模组10当前存储的电量值。在外部电源和/或第二电池模组30向第一电池模组10充电的情况下,电能由外部电源和/或第二电池模组30流向第一电池模组10,第一电池模组10的当前剩余电量QA会逐渐增大,直到达到第一电池模组10的最大存储电量Qmax1。此时,第一电池模组10处于充满电的状态,外部电源和/或第二电池模组30无法继续向第一电池模组10充电。在第一电池模组10向外部设备和/或第二电池模组30放电的情况下,电能由第一电池模组10流向外部设备和/或第二电池模组30,此时,第一电池模组10的当前剩余电量QA会逐渐减小直到达到第一电池模组10的最小剩余电量Qmin1。此时,第一电池模组10处于电量耗尽的状态,第一电池模组10无法继续向外部设备和/或第二电池模组30放电。
第一电池模组10的最大存储电量Qmax1是指第一电池模组10当前能够存储的最大电量,在第一电池模组10的当前剩余电量QA等于第一电池模组10的最大存储电量Qmax1的情况下,第一电池模组10处于充满电的状态,此时第一电池模组10不能再向内充电而能够向外放电。同时,若储能电源100外接有另一个储能电源100,且外接的储能电源100的当前剩余电量少于第一电池模组10的当前剩余电量QA,此时第一电池模组10也能够向外放电。第一电池模组10预设的最小剩余电量Qmin1是指第一电池模组10预设当前能够剩余的最小电量,在第一电池模组10的当前剩余电量QA达到第一电池模组10预设的最小剩余电量Qmin1的情况下,第一电池模组10处于电量耗尽的状态,需要向第一电池模组10内充电。在第一电池模组10的当前剩余电量QA超过第一电池模组10预设的最小剩余电量Qmin1的情况下,第一电池模组10处于电量充足的状态,第一电池模组10既能够向外放电,也能够通过外部电源和/或第二电池模组30向第一电池模组10内充电。
第一温宽范围[Tmin1,Tmax1]是指第一电池模组10能够维持正常工作机能的温度范围,即,第一温宽范围的下限值Tmin1为第一电池模组10能够正常工作的最低允许使用温度,第一温宽范围的上限值Tmax1为第一电池模组10能够正常工作的最高允许使用温度。在第一电池模组10的当前温度TA处于第一温宽范围[Tmin1,Tmax1]内的情况下,第一电池模组10能够正常运行并向外供电。在第一电池模组10的当前温度TA处于第一温宽范围[Tmin1,Tmax1]外(即外界温度低于Tmin1或高于Tmax1)的情况下,第一电池模组10也能够工作,但此时第一电池模组10的循环寿命会降低,并且缩短储能电源100的正常使用寿命,储能电源100更容易损坏。
第一电池模组10的当前温度TA是指第一电池模组10当下的表面温度,第一电池模组10的当前温度TA由储能电源100内设置的温度计进行测量。在第一电池模组10的当前温度TA低于第一电池模组10的最低允许使用温度Tmin1的情况下,第一电池模组10无法向外放电或向内充电。在第一电池模组10的当前温度TA高于第一电池模组10的最低允许使用温度Tmin1且低于第一电池模组10的最高允许使用温度Tmax1的情况下,第一电池模组10能够向外放电或向内充电,并且此时第一电池模组10的充放电功率与第一电池模组10的当前温度TA具有一定的映射关系,具体的映射关系能够通过实验得出。
第二运行参数为第二电池模组30在运行过程中的各项参数。第二运行参数包括第二电池模组30的最大存储电量Qmax2、第二电池模组30预设的最小剩余电量Qmin2、第二电池模组30的当前剩余电量QB、第二电池模组30的当前电压UB、第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]及第二电池模组30的当前温度TB。
第二电池模组30的当前剩余电量QB是指第二电池模组30当前存储的电量值。在外部电源和/或第一电池模组10向第二电池模组30充电的情况下,电能由外部电源和/或第一电池模组10流向第二电池模组30,第二电池模组30的当前剩余电量QB会逐渐增大,直到达到第二电池模组30的最大存储电量Qmax2。此时,第二电池模组30处于充满电的状态,外部电源和/或第一电池模组
10无法继续向第二电池模组30充电。在第二电池模组30向外部设备和/或第一电池模组10放电的情况下,电能由第二电池模组30流向外部设备和/或第一电池模组10,此时,第二电池模组30的当前剩余电量QB会逐渐减小直到达到第二电池模组30的最小剩余电量Qmin2。此时,第二电池模组30处于电量耗尽的状态,第二电池模组30无法继续向外部设备和/或第一电池模组10放电。
第二电池模组30的最大存储电量Qmax2是指第二电池模组30当前能够存储的最大电量,在第二电池模组30的当前剩余电量QB等于第二电池模组30的最大存储电量Qmax2的情况下,第二电池模组30处于充满电的状态,此时第二电池模组30不能再向内充电而能够向外放电。同时,若储能电源100外接有另一个储能电源100,且外接的储能电源100的当前剩余电量少于第二电池模组30的当前剩余电量QB,此时第二电池模组30也能够向外放电。第二电池模组30预设的最小剩余电量Qmin2是指第二电池模组30预设当前能够剩余的最小电量,在第二电池模组30的当前剩余电量QB达到第二电池模组30预设的最小剩余电量Qmin2的情况下,第二电池模组30处于电量耗尽的状态,需要向第二电池模组30内充电。在第二电池模组30的当前剩余电量QB超过第二电池模组30预设的最小剩余电量Qmin2的情况下,第二电池模组30处于电量充足的状态,第二电池模组30既能够向外放电,也能够通过外部电源和/或第一电池模组10向第二电池模组30内充电。
第二温宽范围[Tmin2,Tmax2]是指第二电池模组30能够维持正常工作机能的温度范围,即,第二温宽范围的下限值Tmin2为第二电池模组30能够正常工作的最低允许使用温度,第二温宽范围的上限值Tmax2为第二电池模组30能够正常工作的最高允许使用温度。在第二电池模组30的当前温度TB处于第二温宽范围[Tmin2,Tmax2]内的情况下,第二电池模组30能够正常运行并向外供电。在第二电池模组30的当前温度TB处于第二温宽范围[Tmin2,Tmax2]外(即外界温度低于Tmin2或高于Tmax2)的情况下,第二电池模组30也能够工作,但此时第二电池模组30的循环寿命会降低,并且缩短储能电源100的正常使用寿命,储能电源100更容易损坏。
第二电池模组30的当前温度TB是指第二电池模组30当下的表面温度,第二电池模组30的当前温度TB由储能电源100内设置的温度计进行测量。在第二电池模组30的当前温度TB低于第二电池模组30的最低允许使用温度Tmin2的情况下,第二电池模组30无法向外放电或向内充电。在第二电池模组30的当前温度TB高于第二电池模组30的最低允许使用温度Tmin2且低于第二电池模组30的最高允许使用温度Tmax2的情况下,第二电池模组30能够向外放电或向内充电,并且此时第二电池模组30的充放电功率与第二电池模组30的当前温度TB具有一定的映射关系,具体的映射关系能够通过实验得出。
请参阅图4及图7,在某些实施方式中,02:根据第一运行参数控制充放电模块52对第一电池模组10进行充放电,包括:
021:根据第一运行参数控制充放电模块52的通断;
023:在充放电模块52开启的情况下,获取储能电源100的最大充放电功率Pmax;及
025:以储能电源100的最大充放电功率Pmax对第一电池模组10进行充放电。
具体地,充放电模块52为控制第一电池模组10进行充放电的结构。充放电模块52的一端与第一电池模组10电连接,充放电模块52的另一端能够与外部电源和/或外部负载电连接,以使第一电池模组10向外部负载放电或经由外部电源充电。在充放电模块52开启的情况下,第一电池模组10能够进行充放电。在充放电模块52关闭的情况下,第一电池模组10不能够进行充放电。
更具体地,在某些实施方式中,充放电模块52包括充电开关521及放电开关523。储能电源100内设有对第一电池模组10充电的充电电路和从第一电池模组10向外放电的放电电路,充电开关521位于充电电路上并能够控制第一电池模组10的充电电路的通断。放电开关523位于放电电路上并能够控制第一电池模组10的放电电路的通断。在一些实施方式中,充电电路与放电电路相互独立设置,在充电开关521断开的情况下,第一电池模组10仍能够经放电电路向外放电;在放电开关523断开的情况下,外部电源和/或第二电池模组30等仍能够经充电电路向第一电池模组10内充电。在另一些实施方式中,充电电路与放电电路部分重合,充电开关521和放电开关523上均设有能够使电流仅能单向流动的电器元件,以使充电电路与放电电路贯通。例如:充电开关521和放电开关523均为金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),充电开关521和放电开关523均包括相互独立设置的栅极(gate,G)、
源极(source,S)和漏极(drain,D),其中,充电开关521的栅极和放电开关523的栅极均与第一采集模块511电连接,第一采集模块511还能够接收控制模块54传输的指令以控制充电开关521的通断和放电开关523的通断。
请参阅图4及图8,在某些实施方式中,021:根据第一运行参数控制充放电模块52的通断,包括:
0211:在TA<Tmin1或TA>Tmax1的情况下,控制充电开关521及放电开关523均关闭;
0212:在Tmin1<TA<Tmax1且QA<Qmax1的情况下,控制充电开关521开启;
0213:在Tmin1<TA<Tmax1且QA=Qmax1的情况下,控制充电开关521关闭;
0214:在Tmin1<TA<Tmax1且Qmin1<QA≤Qmax1的情况下,控制放电开关523开启;及
0215:在Tmin1<TA<Tmax1且QA≤Qmin1的情况下,控制放电开关523关闭,和/或控制充电开关521开启。
其中,控制模块54还能够根据第一运行参数得出不同的充放电控制策略,并根据不同的充放电控制策略控制充放电模块52的通断,以控制充放电模块52对第一电池模组10进行充放电。控制模块54既能够通过第一采集模块511控制充电开关521和放电开关523的通断,也能够直接控制充电开关521和放电开关523的通断。
具体地,在某些实施方式中,在TA<Tmin1或TA>Tmax1的情况下,第一电池模组10的当前温度TA超出第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1],因此第一电池模组10无法正常工作,此时控制模块54控制充电开关521及放电开关523均关闭,以使第一电池模组10无法充放电。
更具体地,在某些实施方式中,在Tmin1<TA<Tmax1的情况下,第一电池模组10的当前温度TA位于第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1]内,因此第一电池模组10能够正常工作。此时控制模块54需要根据第一电池模组10的当前剩余电量QA与第一电池模组10的最大存储电量Qmax1及第一电池模组10预设的最小剩余电量Qmin1之间的大小关系判断第一电池模组10是否处于充满的状态或电能放空的状态,以分别控制充电开关521的通断及放电开关523的通断。
若QA<Qmax1,则表明此时第一电池模组10未处于充满状态,因此外部电源和第二电池模组30均能够向第一电池模组10充电,控制模块54控制充电开关521开启。若QA=Qmax1,则表明此时第一电池模组10处于充满状态,因此外部电源和第二电池模组30均不能继续向第一电池模组10充电,控制模块54控制充电开关521关闭。若Qmin1<QA≤Qmax1,则表明此时第一电池模组10内电量充足能够向外放电,控制模块54控制放电开关523开启。若QA≤Qmin1,则表明此时第一电池模组10内电量不足,无法向外放电,但仍能够向内充电,控制模块54控制放电开关523关闭和/或控制充电开关521开启。根据上述控制方法能够避免第一电池模组10过充或过放,延长第一电池模组10的使用寿命。
请参阅图4及图9,在某些实施方式中,023:获取储能电源100的最大充放电功率Pmax,包括:
0231:根据第一电池模组10的当前电压UA、第一电池模组10的当前剩余电量QA及第一电池模组10的当前温度TA获取第一电池模组10的最大充放电功率PAmax;
0233:根据第二电池模组30的当前电压UB、第二电池模组30的当前剩余电量QB及第二电池模组30的当前温度TB获取第二电池模组30的最大充放电功率PBmax;及
0235:根据第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax获取储能电源100的最大充放电功率Pmax。
其中,第一运行参数还包括第一电池模组10的当前电压UA。第二运行参数还包括第二电池模组30的当前电压UB。第一电池模组10的当前电压UA是指第一电池模组10在当前温度和当前充放电功率下对应的能够提供的电压值。在当前温度和当前充放电功率发生的情况下,第一电池模组10的当前电压UA也会随之变化。第一电池模组10的当前电压UA、第一电池模组10的充放电功率与第一电池模组10的当前温度TA之间具有一定的映射关系,具体的映射关系能够通过实验得出对应曲线。第二电池模组30的当前电压UB是指第二电池模组30在当前温度和当前充放电
功率下对应的能够提供的电压值。在当前温度和当前充放电功率发生变化的情况下,第二电池模组30的当前电压UB也会随之变化。第二电池模组30的当前电压UB、第二电池模组30的充放电功率与第二电池模组30的当前温度TB之间具有一定的映射关系,具体的映射关系能够通过实验得出对应曲线。
进一步地,控制模块54还能够根据第一电池模组10的当前电压UA、第一电池模组10的当前剩余电量QA及第一电池模组10的当前温度TA进行计算并获取第一电池模组10的最大充放电功率PAmax、根据第二电池模组30的当前电压UB、第二电池模组30的当前剩余电量QB及第二电池模组30的当前温度TB进行计算并获取第二电池模组30的最大充放电功率PBmax。在得到第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax后,控制模块54还能够根据第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax获取储能电源100的最大充放电功率Pmax,以避免储能电源100的最大充放电功率Pmax超出第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax中的任意一个数值,导致第一电池模组10或第二电池模组30损坏。
更进一步地,在一些实施方式中,储能电源100的最大充放电功率Pmax等于第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax的平均值,即:Pmax=(PAmax+PBmax)/2。在另一些实施方式中,也可以第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax中较小的值。例如:若PAmax<PBmax,则Pmax=PAmax。若PAmax>PBmax,则Pmax=PBmax。若PAmax=PBmax,则Pmax=PAmax=PBmax。
请参阅图4及图10,在某些实施方式中,03:根据第二运行参数控制转换模块53对第二电池模组30进行充放电,包括:
031:根据第二运行参数控制转换模块53的通断;
033:在转换模块53开启的情况下,获取储能电源100的最大充放电功率Pmax;及
035:以储能电源100的最大充放电功率Pmax对第二电池模组30进行充放电。
具体地,转换模块53为控制第二电池模组30充放电的结构,转换模块53能够电连接第一电池模组10和第二电池模组30以使第一电池模组10和第二电池模组30之间能够产生电能交换,级第二电池模组30既能够向第一电池模组10放电,也能够由第一电池模组10向内充电。转换模块53还能够与外部电源和/或外部负载电连接,以使第二电池模组30能够向外放电或向内充电。
具体地,在某些实施方式中,转换模块53包括第一回路及第二回路。第一回路用于供第二电池模组30充电。第二回路用于供第二电池模组30放电,第一回路和第二回路互不影响。在一些实施方式中,第一回路与第二回路相互独立设置。在另一些实施方式中,第一回路与第二回路部分重叠。
更具体地,在某些实施方式中,转换模块53还包括相互独立设置的第一开关531、第二开关532、第三开关533和第四开关534,第一开关531和第三开关533均位于第二回路上,第二开关532和第四开关534均位于第一回路上。第一开关531的一端与第二电池模组30的正极电连接,第一开关531的另一端与第三开关533的一端连接,第三开关533的另一端与第一电池模组10的负极、第二电池模组30的负极、外部电源及外部负载均电连接,以使第二电池模组30能够经第二回路向外放电或向第一电池模组10放电。第二开关532的一端与第二电池模组30的负极电连接,第二开关532的另一端与第四开关534的一端连接,第四开关534的另一端与第一电池模组10的正极及外部电源均电连接,以使第一电池模组10及外部电源能够经第一回路向第二电池模组30充电。
请参阅图4及图11,在某些实施方式中,031:根据第二运行参数控制转换模块53的通断,包括:
0311:在TB<Tmin2或TB>Tmax2的情况下,控制第一回路和第二回路均断开;
0312:在Tmin2<TB<Tmax2且QB<Qmax2的情况下,控制第一回路导通;
0313:在Tmin2<TB<Tmax2且QB=Qmax2的情况下,控制第一回路断开;
0314:在Tmin2<TB<Tmax2且Qmin2<QB≤Qmax2的情况下,控制第二回路导通;及
0315:在Tmin2<TB<Tmax2且QB≤Qmin2的情况下,控制第二回路断开,和/或控制第一回路导通。
其中,控制模块54能够根据第二运行参数分别控制转换模块53内第一开关531、第二开关532、第三开关533和第四开关534的通断,以控制转换模块53对第二电池模组30进行充放电。
在TB<Tmin2或TB>Tmax2的情况下,第二电池模组30的当前温度TB超出第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2],因此第二电池模组30无法正常工作,此时控制模块54控制第一开关531、第二开关532、第三开关533和第四开关534均关闭,以使第一回路和第二回路均断开。
在Tmin2<TB<Tmax2的情况下,第二电池模组30的当前温度TB位于第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]内,因此第二电池模组30能够正常工作。此时控制模块54需要根据第二电池模组30的当前剩余电量QB与第二电池模组30的最大存储电量Qmax2及第二电池模组30预设的最小剩余电量Qmin2之间的大小关系判断第二电池模组30是否处于充满的状态或电能放空的状态,以分别控制第一回路的通断及第二回路的通断。
若QB<Qmax2,则表明此时第二电池模组30未处于充满状态,因此外部电源和第一电池模组10均能够向第二电池模组30充电,控制模块54控制第一回路导通。若QB=Qmax,则表明此时第二电池模组30处于充满状态,因此外部电源和第一电池模组10均不能继续向第二电池模组30充电,控制模块54控制第一回路断开、若Qmin2<QB≤Qmax2,则表明此时第二电池模组30内电量充足能够向外放电,控制模块54控制第二回路导通。若QB≤Qmin2,则表明此时第二电池模组30内电量不足,无法向外放电,但仍能够向内充电,控制模块54控制第二回路断开和/或控制第一回路导通。根据上述控制方法能够避免第二电池模组30过充或过放,延长第二电池模组30的使用寿命。
请参阅图4及图12,在某些实施方式中,033:获取储能电源100的最大充放电功率Pmax,包括:
0331:根据第一电池模组10的当前电压UA、第一电池模组10的当前剩余电量QA及第一电池模组10的当前温度TA获取第一电池模组10的最大充放电功率PAmax;
0333:根据第二电池模组30的当前电压UB、第二电池模组30的当前剩余电量QB及第二电池模组30的当前温度TB获取第二电池模组30的最大充放电功率PBmax;及
0335:根据第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax获取储能电源100的最大充放电功率Pmax。
进一步地,控制模块54还能够根据第一电池模组10的当前电压UA、第一电池模组10的当前剩余电量QA及第一电池模组10的当前温度TA进行计算并获取第一电池模组10的最大充放电功率PAmax、根据第二电池模组30的当前电压UB、第二电池模组30的当前剩余电量QB及第二电池模组30的当前温度TB进行计算并获取第二电池模组30的最大充放电功率PBmax。在得到第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax后,控制模块54还能够根据第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax获取储能电源100的最大充放电功率Pmax,以避免储能电源100的最大充放电功率Pmax超出第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax中的任意一个数值,导致第一电池模组10或第二电池模组30损坏。
更进一步地,在一些实施方式中,储能电源100的最大充放电功率Pmax等于第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax的平均值,即:Pmax=(PAmax+PBmax)/2。在另一些实施方式中,也可以第一电池模组10的最大充放电功率PAmax及第二电池模组30的最大充放电功率PBmax中较小的值。例如:若PAmax<PBmax,则Pmax=PAmax。若PAmax>PBmax,则Pmax=PBmax。若PAmax=PBmax,则Pmax=PAmax=PBmax。
请参阅图4及图13,在某些实施方式中,04:根据第一运行参数及第二运行参数控制第一电池模组10与第二电池模组30之间的电能平衡,包括:
041:根据第一运行参数及第二运行参数控制转换模块53、充放电模块52、第一电池模组10和第二电池模组30组成的平衡回路的电能流向,以平衡第一电池模组10和第二电池模组30的电能。
其中,平衡回路为第一电池模组10与第二电池模组30之间形成的回路,第一电池模组10和第二电池模组30能够通过平衡回路相互电连接并相互传输电能,转换模块53和充放电模块52均
位于平衡回路上。控制模块54还能够根据第一运行参数及第二运行参数控制转换模块53、充放电模块52、第一电池模组10和第二电池模组30组成的平衡回路的电能流向,以平衡第一电池模组10和第二电池模组30的电能。平衡第一电池模组10和第二电池模组30的电能能够使第一电池模组10和第二电池模组30的电量相近,并使第一电池模组10和第二电池模组30能够同步进行充放电,避免出现其中一个电池模组已经充满,而另一个电池模组尚未充满的情况,或者其中一个电池模组已经放空,而另一个电池模组尚有剩余电量的情况,进一步避免第一电池模组10与第二电池模组30的过充和过放。充放电模块52的另一端还能够通过转换模块53以与第二电池模组30电连接,以使第一电池模组10和第二电池模组30之间能够进行电能交换。
请参阅图4及图14,在某些实施方式中,041:根据第一运行参数及第二运行参数控制转换模块53、充放电模块52、第一电池模组10和第二电池模组30组成的平衡回路的电能流向,包括:
0411:在TA<Tmin1、TA>Tmax1、TB<Tmin2或TB>Tmax2的情况下,控制第一回路及第二回路均断开;
0412:在Tmin2<Tmin1、Tmax1<Tmax2且Tmin2<TB<Tmax1的情况下,若∣QA-QB∣≤Q0,则控制第一回路及第二回路均断开;
0413:在Tmin2<Tmin1、Tmax1<Tmax2且Tmin2<TB<Tmax1的情况下,若∣QA-QB∣>Q0,且QB<QA≤Qmax1,则控制第一回路导通,第二回路断开;
0414:在Tmin2<Tmin1、Tmax1<Tmax2且Tmin2<TB<Tmax1的情况下,若∣QA-QB∣>Q0,且QA<QB<Qmax2,则控制第二回路导通,第一回路断开;
0415:在QA≤Qmin1和/或QB=Qmax2的情况下,控制第一回路断开;
0416:在QB≤Qmin2和/或QA=Qmax1的情况下,控制第二回路断开。其中,Q0为第一电池模组10和第二电池模组30之间预设的最小电量差值Q0。
其中,第一回路还能够控制第一电池模组10向第二电池模组30传输电能的通路的通断。第二回路还能够控制第二电池模组30向第一电池模组10传输电能的通路的通断。第一回路的一端与第一电池模组10的正极电连接,第一回路的另一端与第二电池模组30的负极电连接,在第一回路导通的情况下,电能由第一电池模组10流向第二电池模组30。第二回路的一端与第二电池模组30的正极电连接,第一回路的另一端与第一电池模组10的负极电连接,在第二回路导通的情况下,电能由第二电池模组30流向第一电池模组10。
具体地,在TA<Tmin1、TA>Tmax1、TB<Tmin2或TB>Tmax2的情况下,第一电池模组10的当前温度TA超出第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1],第二电池模组30的当前温度TB超出第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2],因此第一电池模组10和第二电池模组30均无法正常工作,此时控制模块54控制第一回路及第二回路断开,以使第一电池模组10和第二电池模组30均不会充放电。
在QA≤Qmin1和/或QB=Qmax2的情况下,则表明此时第一电池模组10处于未充满状态,第二电池模组30处于充满状态,此时第一电池模组10内的电能不能继续流向第二电池模组30。控制模块54控制第一回路断开,以切断第一电池模组10向第二电池模组30的电能流动。但此时第二回路仍可保持导通状态,以使第二电池模组30内的电能能够流向第一电池模组10。
在QB≤Qmin2和/或QA=Qmax1的情况下,则表明此时第一电池模组10处于充满状态,第二电池模组30处于未充满状态,此时第二电池模组30内的电能不能继续流向第一电池模组10。控制模块54控制第二回路断开,以切断第二电池模组30向第一电池模组10的电能流动。但此时第一回路仍可保持导通状态,以使第一电池模组10内的电能和/或外部电源的电能均能够流向第二电池模组30。
在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1的情况下,第一电池模组10的当前温度TA位于第一电池模组10的正常工作的第一温宽范围[Tmin1,Tmax1]内,第二电池模组30的当前温度TB位于第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]内,因此第一电池模组10和第二电池模组30均能够正常工作,并且第一电池的正常工作的第一温宽范围[Tmin1,Tmax1]位于第二电池模组30的当前温度TB位于第二电池模组30的正常工作的第二温宽范围[Tmin2,Tmax2]内。即,第二电池模组30能够正常工作的第二温宽范围[Tmin2,Tmax2]更大,不考虑故障等因素的前提下,在第
二电池模组30出现高低温异常而无法正常工作的情况下,第一电池模组10也无法正常工作。
此时控制模块54需要根据第一电池模组10的当前剩余电量QA与第二电池模组30的当前剩余电量QB之间的差值与第一电池模组10和第二电池模组30之间预设的最小电量差值Q0之间的关系判断储能电源100内是否需要进行电能平衡。其中,Q0为预设值,该预设值既能够通过实验得出,也能够根据用户需求或电池特性得出。同时,控制模块54还需要第一电池模组10的当前剩余电量QA与第二电池模组30的当前剩余电量QB之间的大小关系以分别控制第一回路上的第二开关532和第四开关534的通断以及第二回路上的第一开关531及第三开关533的通断,以分别控制第一回路和第二回路的通断,并进一步控制第一电池模组10与第二电池模组30之间的电能流向。
若∣QA-QB∣≤Q0,则表明此时第一电池模组10与第二电池模组30之间的电量差值较小,储能电源100内无需进行电能平衡,控制模块54控制第一回路及第二回路均断开以切断第一电池模组10与第二电池模组30之间的电能流动。
特别地,由于在第一电池模组10和第二电池模组30能够充放电的情况下,第一电池模组10和第二电池模组30内的电能处于实时变换状态,因此即使第一电池模组10的当前剩余电量QA与第二电池模组30的当前剩余电量QB之间的差值在某一时刻小于或等于第一电池模组10和第二电池模组30之间预设的最小电量差值Q0,控制模块54也无需控制第一回路及第二回路均断开。因此,为使操作步骤更加简单,控制模块54还能够仅在第一电池模组10和第二电池模组30均未处于充放电模式的情况下执行控制第一回路及第二回路均断开的步骤。大于
若∣QA-QB∣>Q0且QB<QA≤Qmax1,则表明此时第一电池模组10与第二电池模组30之间的电量差值较大,且第一电池模组10的当前剩余电量QA大于第二电池模组30的当前剩余电量QB,储能电源100内需要进行电能平衡,且电能应由第一电池模组10流向第二电池模组30,控制模块54控制第一回路导通。为避免第二电池模组30内的电能反流向第一电池模组10或流动至外部负载,控制模块54还控制第二回路断开。
若∣QA-QB∣>Q0且QA<QB<Qmax2,则表明此时第一电池模组10与第二电池模组30之间的电量差值较大,且第一电池模组10的当前剩余电量QA小于第二电池模组30的当前剩余电量QB,储能电源100内需要进行电能平衡,且电能应由第二电池模组30流向第一电池模组10,控制模块54控制第二回路导通。为避免第一电池模组10内的电能反流向第二电池模组30,控制模块54还控制第一回路断开。
本申请的储能电源100的控制方法中,储能电源100内的电池管理模组50包括控制模块54、与第一电池模组10电连接的充放电模块52以及与第一电池模组10和第二电池模组30均电连接的转换模块53。控制模块54能够通过充放电模块52控制第一电池模组10的充放电,以及通过转换模块53控制第二电池模组30的充放电。此时电池管理模组50能够针对第一电池模组10和第二电池模组30的不同参数分别对第一电池模组10和第二电池模组30进行控制,以使储能电源100的充放电方式更加精准,延长电池的使用寿命。在第一电池模组10和第二电池模组30的电能不平衡的情况下,控制模块54能够使第一电池模组10和第二电池模组30之间产生电能流动以使第一电池模组10和第二电池模组30的电能平衡,避免第一电池模组10和/或第二电池模组30过度充电或过度放电。
在本说明书的描述中,参考术语“某些实施方式”、“一个例子中”、“示例地”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。
Claims (22)
- 一种储能电源,其中,包括:第一电池模组,所述第一电池模组用于储存和/或释放电能;第二电池模组,所述第二电池模组与所述第一电池模组并联,所述第二电池模组用于储存和/或释放电能;及电池管理模组,所述电池管理模组包括:采集模块,所述采集模块与所述第一电池模组和所述第二电池模组均电连接,所述采集模块用于获取所述第一电池模组的第一运行参数和所述第二电池模组的第二运行参数;充放电模块,所述充放电模块与所述第一电池模组电连接;转换模块,所述转换模块与所述第一电池模组和所述第二电池模组均电连接;及控制模块,所述控制模块与所述充放电模块、所述转换模块及所述采集模块均电连接,所述控制模块用于获取所述第一电池模组的第一运行参数和所述第二电池模组的第二运行参数,并根据所述第一运行参数控制所述充放电模块对所述第一电池模组进行充放电、根据所述第二运行参数控制所述转换模块对所述第二电池模组进行充放电以及根据所述第一运行参数及所述第二运行参数控制所述第一电池模组与所述第二电池模组之间的电能平衡。
- 根据权利要求1所述的储能电源,其中,所述采集模块包括:第一采集模块,所述第一采集模块与所述第一电池模组、所述控制模块及所述充放电模块均电连接,所述第一采集模块用于获取所述第一运行参数;及第二采集模块,所述第二采集模块与所述第二电池模组、所述控制模块及所述转换模块均电连接,所述第二采集模块用于获取所述第二运行参数。
- 根据权利要求2所述的储能电源,其中,所述控制模块还用于根据所述第一运行参数控制所述充放电模块的通断,以控制所述充放电模块对所述第一电池模组进行充放电。
- 根据权利要求3所述的储能电源,其中,所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA;所述充放电模块包括:充电开关,所述充电开关用于控制所述第一电池模组充电电路的通断;及放电开关,所述放电开关用于控制所述第一电池模组放电电路的通断;所述控制模块还用于:在TA<Tmin1或TA>Tmax1的情况下控制所述充电开关及所述放电开关均关闭;在Tmin1<TA<Tmax1且QA<Qmax1的情况下控制所述充电开关开启;在Tmin1<TA<Tmax1且QA=Qmax1的情况下控制所述充电开关关闭;在Tmin1<TA<Tmax1且Qmin1<QA≤Qmax1的情况下控制所述放电开关开启;及在Tmin1<TA<Tmax1且QA≤Qmin1的情况下控制所述放电开关关闭和/或控制所述充电开关开启。
- 根据权利要求2所述的储能电源,其中,所述控制模块还用于根据所述第二运行参数控制所述转换模块的通断,以控制所述转换模块对所述第二电池模组进行充放电。
- 根据权利要求2所述的储能电源,其中,所述第二运行参数包括所述第二电池模组的最大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB;所述转换模块包括:第一回路,所述第一回路用于供所述第二电池模组充电;及第二回路,所述第二回路用于供所述第二电池模组放电;所述控制模块还用于:在TB<Tmin2或TB>Tmax2的情况下控制所述第一回路和所述第二回路均断开;在Tmin2<TB<Tmax2且QB<Qmax2的情况下控制所述第一回路导通;在Tmin2<TB<Tmax2且QB=Qmax2的情况下控制所述第一回路断开;在Tmin2<TB<Tmax2且Qmin2<QB≤Qmax2的情况下控制所述第二回路导通;及在Tmin2<TB<Tmax2且QB≤Qmin2的情况下控制所述第二回路断开和/或控制所述第一回路导通。
- 根据权利要求2所述的储能电源,其中,所述控制模块还用于根据所述第一运行参数及所述第二运行参数控制所述转换模块、所述充放电模块、所述第一电池模组和所述第二电池模组组成的平衡回路的电能流向,以平衡所述第一电池模组和所述第二电池模组的电能。
- 根据权利要求7所述的储能电源,其中,所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA;所述第二运行参数包括所述第二电池模组的最大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB;所述转换模块包括:第一回路,所述第一回路用于控制所述第一电池模组向所述第二电池模组传输电能的通路的通断;及第二回路,所述第二回路用于控制所述第二电池模组向所述第一电池模组传输电能的通路的通断;所述控制模块还用于:在TA<Tmin1、TA>Tmax1、TB<Tmin2或TB>Tmax2的情况下控制所述第一回路及所述第二回路均断开;在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1且∣QA-QB∣≤Q0的情况下控制所述第一回路及所述第二回路均断开;在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1、∣QA-QB∣>Q0且QB<QA≤Qmax1的情况下控制所述第一回路导通,所述第二回路断开;在Tmin2<Tmin1、Tmax1<Tmax2、Tmin2<TB<Tmax1、∣QA-QB∣>Q0且QA<QB<Qmax2的情况下控制所述第二回路导通,所述第一回路断开;在QA≤Qmin1和/或QB=Qmax2的情况下控制所述第一回路断开;及在QB≤Qmin2和/或QA=Qmax1的情况下控制所述第二回路断开;其中,Q0为所述第一电池模组和所述第二电池模组之间预设的最小电量差值Q0。
- 根据权利要求7所述的储能电源,其中,所述电池管理模组还包括:分流电阻器,所述分流电阻器与所述转换模块电连接,所述分流电阻器用于获取所述第一电池模组与所述第二电池模组之间的电流环流I0,在所述第一电池模组的电能和所述第二电池模组的电能平衡的情况下,所述电流环流I0小于预设的最大环流值Imax。
- 根据权利要求2所述的储能电源,其中,所述电池管理模组还包括:连接模块,所述连接模块与所述第一电池模组、所述第二电池模组、所述充放电模块及所述转换模块均电连接,所述连接模块用于与外部负载和/或外部电源电连接,以使所述储能电源与所述外部负载和/或所述外部电源之间进行电能传输;所述连接模块还与所述控制模块电连接,所述控制模块还用于:根据所述第一运行参数和所述第二运行参数在所述充放电模块开启的情况下获取所述储能电源的最大充放电功率Pmax,并以所述储能电源的最大充放电功率Pmax控制所述充放电模块对所述第一电池模组进行充放电;及根据所述第一运行参数和所述第二运行参数在所述转换模块开启的情况下获取所述储能电源的最大充放电功率Pmax,并以所述储能电源的最大充放电功率Pmax控制所述转换模块对所述第二电池模组进行充放电。
- 根据权利要求10所述的储能电源,其中,所述第一运行参数包括所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA;所述第二运行参数包括所述第二电池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第 二电池模组的当前温度TB;所述控制模块还用于:根据所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA获取所述第一电池模组的最大充放电功率PAmax;根据所述第二电池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第二电池模组的当前温度TB获取所述第二电池模组的最大充放电功率PBmax;及根据所述第一电池模组的最大充放电功率PAmax及所述第二电池模组的最大充放电功率PBmax获取所述储能电源的最大充放电功率Pmax。
- 根据权利要求10所述的储能电源,其中,所述电池管理模组还包括:数字隔离器,所述数字隔离器的一端与所述控制模块连接,所述数字隔离器的另一端与所述采集模块和/或所述连接模块连接,所述数字隔离器用于保持所述控制模块与所述采集模块之间、和/或隔离所述控制模块与所述连接模块之间的信号传输。
- 一种储能电源系统,其中,包括权利要求1-12任意一项所述的储能电源。
- 根据权利要求13所述的储能电源系统,其中,所述储能电源系统还包括传输组件、充电组件及双向转换组件;所述充电组件及所述双向转换组件均通过所述传输组件与所述储能电源电连接,所述传输组件用于传输所述储能电源的电能至所述充电组件及所述双向转换组件,以及传输电能至负载;所述充电组件用于电连接光伏电源与所述储能电源,所述双向转换组件用于电连接市电电网与所述储能电源并转换接入所述双向转换组件的电压类型。
- 一种控制方法,应用于权利要求1-12任意一项所述的储能电源,其中,所述控制方法包括:获取所述第一电池模组的第一运行参数和所述第二电池模组的第二运行参数;根据所述第一运行参数控制所述充放电模块对所述第一电池模组进行充放电;根据所述第二运行参数控制所述转换模块对所述第二电池模组进行充放电;及根据所述第一运行参数及所述第二运行参数控制所述第一电池模组与所述第二电池模组之间的电能平衡。
- 根据权利要求15所述的控制方法,其中,所述根据所述第一运行参数控制所述充放电模块对所述第一电池模组进行充放电,包括:根据所述第一运行参数控制所述充放电模块的通断;在所述充放电模块开启的情况下,获取所述储能电源的最大充放电功率Pmax;及以所述储能电源的最大充放电功率Pmax对所述第一电池模组进行充放电。
- 根据权利要求16所述的控制方法,其中,所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA;所述充放电模块包括充电开关及放电开关,所述充电开关用于控制所述第一电池模组的充电电路的通断,所述放电开关用于控制所述第一电池模组的放电电路的通断;所述根据所述第一运行参数控制所述充放电模块的通断,包括:在TA<Tmin1或TA>Tmax1的情况下,控制所述充电开关及所述放电开关均关闭;在Tmin1<TA<Tmax1且QA<Qmax1的情况下,控制所述充电开关开启;在Tmin1<TA<Tmax1且QA=Qmax1的情况下,控制所述充电开关关闭;在Tmin1<TA<Tmax1且Qmin1<QA≤Qmax1的情况下,控制所述放电开关开启;及在Tmin1<TA<Tmax1且QA≤Qmin1的情况下,控制所述放电开关关闭,和/或控制所述充电开关开启。
- 根据权利要求15所述的控制方法,其中,所述根据所述第二运行参数控制所述转换模块对所述第二电池模组进行充放电,包括:根据所述第二运行参数控制所述转换模块的通断;在所述转换模块开启的情况下,获取所述储能电源的最大充放电功率Pmax;及以所述储能电源的最大充放电功率Pmax对所述第二电池模组进行充放电。
- 根据权利要求18所述的控制方法,其中,所述第二运行参数包括所述第二电池模组的最 大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB;所述转换模块包括第一回路及第二回路,所述第一回路用于供所述第二电池模组充电,所述第二回路用于供所述第二电池模组放电;所述根据所述第二运行参数控制所述转换模块的通断,包括:在TB<Tmin2或TB>Tmax2的情况下,控制所述第一回路和所述第二回路均断开;在Tmin2<TB<Tmax2且QB<Qmax2的情况下,控制所述第一回路导通;在Tmin2<TB<Tmax2且QB=Qmax2的情况下,控制所述第一回路断开;在Tmin2<TB<Tmax2且Qmin2<QB≤Qmax2的情况下,控制所述第二回路导通;及在Tmin2<TB<Tmax2且QB≤Qmin2的情况下,控制所述第二回路断开,和/或控制所述第一回路导通。
- 根据权利要求16或18所述的控制方法,其中,所述第一运行参数包括所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA;所述第二运行参数包括所述第二电池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第二电池模组的当前温度TB;所述获取所述储能电源的最大充放电功率Pmax,包括:根据所述第一电池模组的当前电压UA、所述第一电池模组的当前剩余电量QA及所述第一电池模组的当前温度TA获取所述第一电池模组的最大充放电功率PAmax;根据所述第二电池模组的当前电压UB、所述第二电池模组的当前剩余电量QB及所述第二电池模组的当前温度TB获取所述第二电池模组的最大充放电功率PBmax;及根据所述第一电池模组的最大充放电功率PAmax及所述第二电池模组的最大充放电功率PBmax获取所述储能电源的最大充放电功率Pmax。
- 根据权利要求15所述的控制方法,其中,所述根据所述第一运行参数及所述第二运行参数控制所述第一电池模组与所述第二电池模组之间的电能平衡,包括:根据所述第一运行参数及所述第二运行参数控制所述转换模块、所述充放电模块、所述第一电池模组和所述第二电池模组组成的平衡回路的电能流向,以平衡所述第一电池模组和所述第二电池模组的电能。
- 根据权利要求21所述的控制方法,其中,所述转换模块包括第一回路及第二回路,所述第一回路用于控制所述第一电池模组向所述第二电池模组传输电能的通路的通断,所述第二回路用于控制所述第二电池模组向所述第一电池模组传输电能的通路的通断;所述第一运行参数包括所述第一电池模组的最大存储电量Qmax1、所述第一电池模组预设的最小剩余电量Qmin1、所述第一电池模组的当前剩余电量QA、所述第一电池模组的正常工作的第一温宽范围[Tmin1,Tmax1]及所述第一电池模组的当前温度TA;所述第二运行参数包括所述第二电池模组的最大存储电量Qmax2、所述第二电池模组预设的最小剩余电量Qmin2、所述第二电池模组的当前剩余电量QB、所述第二电池模组的正常工作的第二温宽范围[Tmin2,Tmax2]及所述第二电池模组的当前温度TB;所述根据所述第一运行参数及所述第二运行参数控制所述转换模块、所述充放电模块、所述第一电池模组和所述第二电池模组组成的平衡回路的电能流向,包括:在TA<Tmin1、TA>Tmax1、TB<Tmin2或TB>Tmax2的情况下,控制所述第一回路及所述第二回路均断开;在Tmin2<Tmin1、Tmax1<Tmax2且Tmin2<TB<Tmax1的情况下,若∣QA-QB∣≤Q0,则控制所述第一回路及所述第二回路均断开;若∣QA-QB∣>Q0,且QB<QA≤Qmax1,则控制所述第一回路导通,所述第二回路断开;若∣QA-QB∣>Q0,且QA<QB<Qmax2,则控制所述第二回路导通,所述第一回路断开;在QA≤Qmin1和/或QB=Qmax2的情况下,控制所述第一回路断开;在QB≤Qmin2和/或QA=Qmax1的情况下,控制所述第二回路断开;其中,Q0为所述第一电池模组和所述第二电池模组之间预设的最小电量差值Q0。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311369868.4 | 2023-10-19 | ||
CN202311369868.4A CN117614055A (zh) | 2023-10-19 | 2023-10-19 | 储能电源、储能电源系统及储能电源的控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025081727A1 true WO2025081727A1 (zh) | 2025-04-24 |
Family
ID=89956867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/085992 WO2025081727A1 (zh) | 2023-10-19 | 2024-04-03 | 储能电源、储能电源系统及储能电源的控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117614055A (zh) |
WO (1) | WO2025081727A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117614055A (zh) * | 2023-10-19 | 2024-02-27 | 深圳市华宝新能源股份有限公司 | 储能电源、储能电源系统及储能电源的控制方法 |
CN118523465B (zh) * | 2024-07-24 | 2024-10-18 | 武汉中原电子信息有限公司 | 一种用于采集终端后备电源的充放电稳压控制方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN213717647U (zh) * | 2020-10-28 | 2021-07-16 | 金国卫 | 一种蓄电池组充放电控制模块 |
CN114123465A (zh) * | 2021-11-19 | 2022-03-01 | 中国直升机设计研究所 | 一种无人直升机双电压均衡应急供电系统 |
CN216872891U (zh) * | 2022-02-18 | 2022-07-01 | 宁德时代新能源科技股份有限公司 | 储能系统 |
CN117614055A (zh) * | 2023-10-19 | 2024-02-27 | 深圳市华宝新能源股份有限公司 | 储能电源、储能电源系统及储能电源的控制方法 |
-
2023
- 2023-10-19 CN CN202311369868.4A patent/CN117614055A/zh active Pending
-
2024
- 2024-04-03 WO PCT/CN2024/085992 patent/WO2025081727A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN213717647U (zh) * | 2020-10-28 | 2021-07-16 | 金国卫 | 一种蓄电池组充放电控制模块 |
CN114123465A (zh) * | 2021-11-19 | 2022-03-01 | 中国直升机设计研究所 | 一种无人直升机双电压均衡应急供电系统 |
CN216872891U (zh) * | 2022-02-18 | 2022-07-01 | 宁德时代新能源科技股份有限公司 | 储能系统 |
CN117614055A (zh) * | 2023-10-19 | 2024-02-27 | 深圳市华宝新能源股份有限公司 | 储能电源、储能电源系统及储能电源的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117614055A (zh) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102392376B1 (ko) | 배터리 시스템 | |
US8232776B2 (en) | Charging method for an assembled cell and an assembled cell system | |
TWI472446B (zh) | 混合動力電源系統 | |
US20230027457A1 (en) | A Parallel Charging and Discharging Management System of Multiple Batteries | |
CN102545291B (zh) | 太阳能蓄电系统及太阳能供电系统 | |
TWI460960B (zh) | 電池單元平衡方法、系統及電路 | |
WO2025081727A1 (zh) | 储能电源、储能电源系统及储能电源的控制方法 | |
KR101249972B1 (ko) | 배터리 팩 그리고 배터리 팩의 액티브 셀 밸런싱 방법 | |
US20090184685A1 (en) | Battery pack and method of charging the same | |
KR20160099357A (ko) | 배터리 팩 및 이를 포함하는 배터리 시스템 | |
CN100461585C (zh) | 以单元管理实现多节串联二次电池组保护的方法及电路 | |
JP3841001B2 (ja) | 電池制御システム | |
CN114640155A (zh) | 电池包的充放电保护装置、电池包及电子设备 | |
KR102151652B1 (ko) | 척컨버터 토폴로지를 이용한 리튬이온 전지 셀밸런싱 장치 | |
JP2002354698A (ja) | 制御回路 | |
TWI693772B (zh) | 具有針對每一串聯二次電池芯進行充電管理功能的電池模組 | |
CN200990506Y (zh) | 以单元管理实现多节串联二次电池组保护的电路 | |
CN116094013A (zh) | 一种电池储能装置 | |
CN112768793B (zh) | 一种电池组主动均衡补偿方法、装置、系统及电子设备 | |
CN211556939U (zh) | 一种电池组用平衡保护电路 | |
TW201208228A (en) | Battery management circuit, battery module and battery management method | |
EP4123868A2 (en) | Battery pack | |
CN222321157U (zh) | 一种锂电池保护电路及锂电池 | |
CN218102673U (zh) | 一种电池包系统 | |
CN115800423B (zh) | 储能系统和储能系统的调节方法 |