WO2025066041A1 - 电动汽车充电及储能系统 - Google Patents

电动汽车充电及储能系统 Download PDF

Info

Publication number
WO2025066041A1
WO2025066041A1 PCT/CN2024/081010 CN2024081010W WO2025066041A1 WO 2025066041 A1 WO2025066041 A1 WO 2025066041A1 CN 2024081010 W CN2024081010 W CN 2024081010W WO 2025066041 A1 WO2025066041 A1 WO 2025066041A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
energy storage
power converter
isolated power
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2024/081010
Other languages
English (en)
French (fr)
Inventor
华东
孙中伟
张少育
林彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Hello Tech Energy Co Ltd
Original Assignee
Shenzhen Hello Tech Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hello Tech Energy Co Ltd filed Critical Shenzhen Hello Tech Energy Co Ltd
Publication of WO2025066041A1 publication Critical patent/WO2025066041A1/zh
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Definitions

  • the present application relates to the field of energy storage technology, and more specifically, to an electric vehicle charging and energy storage system.
  • the household energy storage system is similar to a micro energy storage power station, which can charge itself during the low electricity consumption period so as to be used as an emergency power supply during the peak electricity consumption period, and can also be used to balance the electricity load; the electric vehicle DC charging system uses an external charging module to provide high-voltage DC energy to the battery.
  • an electric vehicle charging and energy storage system including: a photovoltaic panel, an energy storage battery and a hybrid inverter; the hybrid inverter connects the photovoltaic panel, the energy storage battery and the power grid, and is used to realize energy exchange among the power grid, the photovoltaic panel and the energy storage battery; an isolated power converter, wherein the isolated power converter and the hybrid inverter are an integrated structure or a separate structure, and the hybrid inverter is indirectly or directly connected to the electric vehicle through the isolated power converter, and is used to charge and discharge the electric vehicle.
  • the hybrid inverter includes a non-isolated power optimizer, a non-isolated bidirectional inverter, a bus, a first switch device, a second switch device, a third switch device and a fourth switch device;
  • the photovoltaic panel is connected to the bus through the non-isolated power optimizer, and the power grid is connected to the bus through the non-isolated bidirectional inverter;
  • the bus is connected to the first end of the isolated power converter through the first switch device, the energy storage battery is connected to the second end of the isolated power converter through the second switch device, the electric vehicle is connected to the first end of the isolated power converter through the third switch device, and the electric vehicle is connected to the second end of the isolated power converter through the fourth switch device.
  • the third switching device is connected in parallel to an end of the first switching device close to the isolated power converter
  • the fourth switching device is connected in parallel to an end of the second switching device close to the isolated power converter
  • the busbar supplies power to the electric vehicle through a first circuit consisting of the first switching device, the isolated power converter and the fourth switching device, and the electric vehicle reversely discharges the busbar through the first circuit.
  • the energy storage battery supplies power to the electric vehicle through a second circuit consisting of the second switch device, the isolated power converter and the third switch device, and the electric vehicle reversely discharges the energy storage battery through the second circuit.
  • the hybrid inverter includes a non-isolated power optimizer, a non-isolated bidirectional inverter, a busbar and a non-isolated power converter, and the photovoltaic panel is connected to the busbar through the non-isolated power optimizer.
  • the power grid is connected to the busbar through the non-isolated bidirectional inverter, and the energy storage battery is connected to the busbar through the non-isolated power converter.
  • the hybrid inverter is connected to the isolated power converter through the energy storage battery and then connected to the electric vehicle.
  • the hybrid inverter is connected to the isolated power converter via the bus bar and then connected to the electric vehicle.
  • the hybrid inverter includes an energy management module, and the energy management module is used to schedule energy flow between the photovoltaic panel, the energy storage battery and the power grid.
  • the hybrid inverter is connected to a household load and is also used to supply power to the household load.
  • the present application provides an electric vehicle charging and energy storage system, including: photovoltaic panels, energy storage batteries, hybrid inverters and isolated power converters; the hybrid inverter connects the photovoltaic panels, the energy storage batteries and the power grid to realize energy exchange among the power grid, the photovoltaic panels and the energy storage batteries; the hybrid inverter connects the electric vehicle through the isolated power converter to perform charging and discharging operations on the electric vehicle. Therefore, the system provided by the present application realizes the power supply to the household load and the reasonable scheduling of the electric energy between the photovoltaic panels, the energy storage batteries and the power grid during the off-peak and peak periods through the connection of the photovoltaic panels, the energy storage batteries and the power grid with the hybrid inverter. Furthermore, the same system is used to realize the charging and discharging operations of the electric vehicle through the isolated power converter, thereby using one system to solve all the power usage needs in an average household and realize the reasonable scheduling and optimization of electric energy.
  • FIG1 shows a schematic structural diagram of an electric vehicle charging and energy storage system shown in an embodiment of the present application.
  • FIG2 shows a schematic structural diagram of another electric vehicle charging and energy storage system shown in an embodiment of the present application.
  • FIG3 shows a schematic structural diagram of another electric vehicle charging and energy storage system shown in an embodiment of the present application.
  • FIG4 shows a schematic structural diagram of another electric vehicle charging and energy storage system shown in an embodiment of the present application.
  • FIG5 shows a schematic structural diagram of yet another electric vehicle charging and energy storage system shown in an embodiment of the present application.
  • FIG6 shows a schematic structural diagram of yet another electric vehicle charging and energy storage system shown in an embodiment of the present application.
  • the electric vehicle charging and energy storage system 100 includes a photovoltaic panel 101, an energy storage battery 102, a hybrid inverter 103, and an isolated power converter 104, wherein the hybrid inverter 103 is connected to the photovoltaic panel 101 and the energy storage battery 102 while being connected to an external power grid, for realizing energy exchange between the photovoltaic panel 101, the energy storage battery 102, and the power grid, wherein the isolated power converter 104 and the hybrid inverter 103 are an integrated structure or a separate structure, and the hybrid inverter 103 is indirectly or directly connected to the electric vehicle through the isolated power converter 104, for charging and discharging the electric vehicle.
  • the photovoltaic panel 101, the hybrid inverter 103 and the energy storage battery 102 can form a basic home energy storage system, and the photovoltaic panel 101 and the energy storage battery 102 are connected to the hybrid inverter 103, and the hybrid inverter 103 is also connected to the power grid. As an implementation method, the hybrid inverter 103 is also connected to the home load 105. Photovoltaic panels are used to convert light energy into electrical energy. The hybrid inverter can not only convert the electrical energy of the photovoltaic panels into alternating current, but also regulate and optimize the electrical energy.
  • the photovoltaic panels 101 can charge the energy storage battery 102 while supplying power to the household load 105 through the hybrid inverter 103.
  • the power grid can also charge the energy storage battery 102 while supplying power to the household load 105 through the hybrid inverter 103.
  • the energy storage battery 102 can reversely discharge to supply power to the household load 105 through the hybrid inverter 103 and can also reversely discharge to the power grid through the hybrid inverter 103, thereby realizing the reasonable scheduling and use of electrical energy.
  • the household load refers to the equipment in the home that needs power supply, such as household appliances such as televisions and air conditioners, lighting equipment such as electric lights, and communication equipment such as computers and mobile phones.
  • the hybrid inverter 103 is also directly or indirectly connected to the electric vehicle through the isolated power converter 104, so that the hybrid inverter 103 can also transmit the electric energy from the photovoltaic panel 101, the energy storage battery 102 or the power grid to the electric vehicle through the isolated power converter 104, and charge the electric vehicle.
  • the isolated power converter 104 is a bidirectional converter, the electric vehicle can also reversely discharge to the photovoltaic panel 101, the energy storage battery 102 or the power grid through the isolated power converter 104, wherein the electric vehicle can refer to a pure electric vehicle, that is, a vehicle type that is completely driven by electricity, or a hybrid vehicle, that is, a vehicle type that can be driven by fuel or by electricity.
  • the electric vehicle charging and energy storage system 100 can not only realize the power supply to the household load and the reasonable dispatch of the electric energy between the photovoltaic panel, the energy storage battery and the power grid during the off-peak period and the peak period, but also use the same system to charge and discharge the electric vehicle through the isolated power converter, using one system to solve all the power usage needs in an average household, and realize the reasonable dispatch and optimization of electric energy.
  • the isolated power converter may be an isolated bidirectional DC-DC converter.
  • the circuit topology used in the isolated bidirectional DC-DC converter may be an LLC series-parallel resonant conversion circuit, a phase-shifted full-bridge conversion circuit, or a dual-active full-bridge conversion circuit.
  • the isolated solution isolates the branch circuit for charging and discharging the vehicle from the entire energy storage system, making it an electrically isolated, independent, ungrounded safety system, thereby ensuring the absolute safety of the charging and discharging process of the electric vehicle.
  • the hybrid inverter 103 includes an energy management module, and the energy management module is used to schedule the energy flow between the photovoltaic panels, the energy storage batteries and the power grid.
  • the energy management module can be as complex as an energy management system (EMS) or as simple as a microcontroller unit (MCU).
  • the present application provides an electric vehicle charging and energy storage system, including photovoltaic panels, energy storage batteries, hybrid inverters and isolated power converters; the hybrid inverter connects the photovoltaic panels, the energy storage batteries and the power grid to achieve energy exchange among the power grid, the photovoltaic panels and the energy storage batteries; the isolated power converter and the hybrid inverter are an integrated structure or a separate structure, and the hybrid inverter is indirectly or directly connected to the electric vehicle through the isolated power converter to perform charging and discharging operations on the electric vehicle. Therefore, the system provided in the present application is achieved by connecting the photovoltaic panels, energy storage batteries and the power grid with the hybrid inverter.
  • the electric vehicle charging and energy storage system 200 includes a photovoltaic panel 201, an energy storage battery 202, a hybrid inverter 203 and an isolated power converter 204, wherein the hybrid inverter 203 is connected to the photovoltaic panel 201 and the energy storage battery 202 while being connected to an external power grid, for realizing energy exchange between the photovoltaic panel 201, the energy storage battery 202 and the power grid, the hybrid inverter 203 and the isolated power converter 204 are an integrated structure, and the hybrid inverter 203 is directly connected to the electric vehicle through the isolated power converter 204 to charge and discharge the electric vehicle.
  • the hybrid inverter 203 is also connected to a household load 205.
  • the hybrid inverter 203 includes a non-isolated power optimizer 211, a non-isolated bidirectional inverter 212, a bus 213, a first switch device 214, a second switch device 215, a third switch device 216 and a fourth switch device 217, wherein the photovoltaic panel 201 is connected to the bus 213 through the non-isolated power optimizer 211, the power grid is connected to the bus 213 through the non-isolated bidirectional inverter 212, the bus 213 is connected to the first end of the isolated power converter 204 through the first switch device 214, the energy storage battery 202 is connected to the second end of the isolated power converter 204 through the second switch device 215, the electric vehicle is connected to the first end of the isolated power converter 204 through the third switch device 216, and the electric vehicle is connected to the second end of the isolated power converter 204 through the fourth switch device 217.
  • the hybrid inverter 204 and the hybrid inverter 203 are an integrated structure, the hybrid inverter can be directly connected to the electric vehicle based on the isolated power converter 204, and the hybrid inverter can also be directly connected to the energy storage battery based on the isolated power converter 204.
  • the switching devices on the circuit composed of the bus, the energy storage battery and the electric vehicle are reasonably combined to control the on and off of the bus and the energy storage battery circuit, the bus and the electric vehicle circuit, and the energy storage battery and the electric vehicle circuit, only one isolated power converter can be used to realize the energy flow between the bus, the energy storage battery and the electric vehicle.
  • the structure of the hybrid inverter is optimized and the cost is reduced.
  • the photovoltaic panel 201 supplies power to the household load 205 through the hybrid inverter 203 in the following manner: the electric energy generated by the photovoltaic panel 201 is transmitted to the bus 213 via the non-isolated power optimizer 211; the bus 213 is used to collect, distribute and transmit electric energy, and then the electric energy is supplied to the household load 205 via the non-isolated bidirectional inverter 212; during the off-peak period, when the electric energy on the photovoltaic panel 201 is surplus after providing electricity to the household load, the hybrid inverter 203 can also be used to charge the energy storage battery 202.
  • the electric energy generated by the photovoltaic panel 201 is transmitted to the bus 213 via the non-isolated power optimizer 211; the bus 213 is used to collect, distribute and transmit electric energy, and then the electric energy is supplied to the household load 205 via the non-isolated bidirectional inverter 212; during the off-peak period, when the electric energy on the photovoltaic panel 201 is surplus after providing electricity to the household load, the hybrid inverter 203 can be used to charge the energy storage battery 202. It is transmitted to the bus 213 through the non-isolated power optimizer 211, and then supplied to the energy storage battery 202 through the first switch device 214, the isolated power converter 204 and the second switch device 215.
  • the first switch device 214 and the second switch device 215 are closed, and the third switch device 216 and the fourth switch device 217 are disconnected, that is, the photovoltaic panel-energy storage battery circuit is connected, and the photovoltaic panel-electric vehicle circuit is disconnected, that is, the photovoltaic panel can only supply power to any one of the energy storage battery or electric vehicle at the same time.
  • the grid can also charge the energy storage battery 202 through the hybrid inverter 203.
  • the specific method can be: the grid power is transmitted to the bus 213 through the non-isolated bidirectional inverter 212, and then supplied to the energy storage battery 202 through the first switch device 214, the isolated power converter 204 and the second switch device 215.
  • the first switch device 214 and the second switch device 215 are closed, and the third switch device 216 and the fourth switch device 217 are disconnected, that is, the grid-energy storage battery loop is turned on, and the grid-electric vehicle loop is disconnected, that is, the grid can only supply power to any one of the electrical appliances in the energy storage battery or the electric vehicle at the same time.
  • the energy storage battery 202 supplies power to the household load 205 through the hybrid inverter 203 in the following manner: the electric energy from the photovoltaic panel 201 and the power grid stored in the energy storage battery 202 is transmitted to the bus 213 via the second switch device 215, the isolated power converter 204 and the first switch device 214.
  • the bus 213 is used to collect, distribute and transmit The electric energy is then supplied to the household load 205 via the non-isolated bidirectional inverter 212.
  • the first switch device 214 and the second switch device 215 are closed, and the third switch device 216 and the fourth switch device 217 are disconnected, that is, the energy storage battery-household load loop is turned on, and the energy storage battery-electric vehicle loop is disconnected, that is, the energy storage battery can only supply power to any one of the household loads or the electric vehicle at the same time.
  • the photovoltaic panel 201 supplies power to the electric vehicle through the hybrid inverter 203 in the following manner: the electric energy generated by the photovoltaic panel 201 is transmitted to the bus 213 via the non-isolated power optimizer 211, and then supplied to the electric vehicle via the first switch device 214, the isolated power converter 204 and the fourth switch device 217.
  • the power grid supplies power to the electric vehicle through the hybrid inverter 203 in the following manner: the power grid power is transmitted to the bus 213 via the non-isolated power optimizer 211, and then supplied to the electric vehicle via the first switch device 214, the isolated power converter 204 and the fourth switch device 217.
  • the bidirectional inverter 212 transmits the power to the bus 213, and then supplies the power to the electric vehicle through the first switch device 214, the isolated power converter 204 and the fourth switch device 217.
  • the first switch device 214 and the fourth switch device 217 are closed, and the second switch device 215 and the third switch device 216 are disconnected, that is, the power grid-electric vehicle loop is turned on, and the power grid-energy storage battery loop is disconnected; the energy storage battery supplies power to the electric vehicle through the hybrid inverter 203 in the following manner: the power stored in the energy storage battery 202 from the photovoltaic panel 201 and the power grid is directly supplied to the electric vehicle through the second switch device 215, the isolated power converter 204 and the third switch device 216.
  • the second switch device 215 and the third switch device 216 are closed, and the first switch device 214 and the fourth switch device 217 are disconnected, that is, the power storage battery-electric vehicle loop is turned on, and the power storage battery-household load loop is disconnected.
  • the electric vehicle charging and energy storage system 200 has the characteristic that the power supply end can only supply power to one type of load and any electrical device in the electric vehicle at the same time. Therefore, as an implementation method, the third switch device 216 is connected in parallel to the end of the first switch device 214 close to the isolated power converter 204, and the fourth switch device 217 is connected in parallel to the end of the second switch device 215 close to the isolated power converter 204.
  • the energy storage battery 202 when the first switch device 214 is disconnected, that is, the connection between the bus 213 and the isolated power converter 204 is disconnected, at this time, the energy storage battery 202 will not be able to supply power to the household load, but the energy storage battery 202 can still supply power to the electric vehicle by closing the third switch device 216.
  • the second switch device 215 is disconnected, that is, the connection between the energy storage battery 202 and the isolated power converter 204 is disconnected, at this time, the bus 213 will not be able to supply power to the energy storage battery 202, but at the same time, the photovoltaic panel 201 and the power grid can still charge the electric vehicle by closing the fourth switch device 217. Therefore, by reasonably setting the connection relationship of the switch devices, it can be ensured that the power supply end can only supply power to one type of load and any electrical device in the electric vehicle at the same time.
  • the electric vehicle charging and energy storage system 200 can also enable the electric vehicle to reversely discharge to the grid circuit or the energy storage battery during the peak period of electricity consumption.
  • the electric vehicle can reversely discharge to the grid circuit in the following manner: the electric energy of the electric vehicle is transmitted to the bus 213 through the fourth switch device 217, the isolated power converter 204 and the first switch device 214.
  • the bus After the bus collects and distributes the electric energy, it can be transmitted to the grid through the non-isolated bidirectional inverter 212, or it can be transmitted to the household load through the non-isolated bidirectional inverter 212; the electric vehicle can reversely discharge to the energy storage battery in the following manner: the electric energy of the electric vehicle is transmitted to the energy storage battery 202 through the third switch device 216, the isolated power converter 204 and the second switch device 215.
  • one end of the isolated power converter 204 connected by the first switch device 214 and the third switch device 216 is the input end, and one end of the isolated power converter 204 connected by the second switch device 215 and the fourth switch device 217 is the output end;
  • one end of the isolated power converter 204 connected by the first switch device 214 and the third switch device 216 is the output end, and one end of the isolated power converter 204 connected by the second switch device 215 and the fourth switch device 217 is the input end, and the rest of the cases can be deduced by analogy.
  • the non-isolated power optimizer 211 may be a non-isolated maximum power point tracking (MPPT) power optimizer.
  • the MPPT power optimizer is used to adjust the load connected to the system to match the load curve with the highest power transmission efficiency, so that the system has the best power generation efficiency.
  • the power branch circuit of the non-isolated solution is not completely isolated from the entire energy storage system, but its safety protection measures can be provided by the casing of the hybrid inverter, etc., thereby achieving the purpose of reducing costs.
  • the first switch device 214, the second switch device 215, the third switch device 216 and the fourth switch device 217 may be intelligent switch devices, for example, they may be switch devices such as relays and contactors.
  • the hybrid inverter 203 also includes an energy management module, which can be, for example, a complex EMS system or a simple microcontroller, a single chip microcomputer, etc.
  • the energy management module is connected to the non-isolated power optimizer 211, the non-isolated bidirectional inverter 212, the isolated power converter 204, the first switch device 214, the second switch device 215, the third switch device 216 and the fourth switch device 217, and is used to control the opening and closing of the first switch device 214, the second switch device 215, the third switch device 216 and the fourth switch device 217, and at the same time, the energy flow between the photovoltaic panel, the power grid, the energy storage battery, the electric vehicle and the household load is dispatched through the non-isolated power optimizer 211, the non-isolated bidirectional inverter 212 and the isolated power converter 204.
  • the isolated power converter may be an isolated bidirectional DC-DC converter.
  • the circuit topology used in the isolated bidirectional DC-DC converter may be an LLC series-parallel resonant conversion circuit, a phase-shifted full-bridge conversion circuit, or a dual active full-bridge conversion circuit.
  • the present application provides an electric vehicle charging and energy storage system, including a photovoltaic panel, an energy storage battery, a hybrid inverter and an isolated power converter
  • the hybrid inverter includes a non-isolated power optimizer, a non-isolated bidirectional inverter, a bus, a first switch device, a second switch device, a third switch device and a fourth switch device
  • the bus is connected to the first end of the isolated power converter through the first switch device
  • the energy storage battery is connected to the second end of the isolated power converter through the second switch device
  • the electric vehicle is connected to the first end of the isolated power converter through the third switch device
  • the electric vehicle is connected to the second end of the isolated power converter through the fourth switch device.
  • the system sets four switch devices and intelligently controls their opening and closing to enable the photoelectric device to charge and store energy.
  • the solar panel, the power grid and the energy storage battery can all charge the electric vehicle, and the energy storage battery and the electric vehicle can reversely discharge to the power grid loop.
  • the third switch device in parallel to one end of the first switch device close to the isolated power converter, and connecting the fourth switch device in parallel to one end of the second switch device close to the isolated power converter, it is ensured that the power supply end can only supply power to one type of load and any electrical device in the electric vehicle at the same time.
  • the system provided in the embodiment of the present application makes full use of the isolated power converter, saves the non-isolated power converter that must be included in the hybrid inverter in the ordinary household energy storage system in the system architecture, not only reduces the size of the hybrid inverter, but also reduces the cost and improves the conversion efficiency.
  • FIG. 3 shows a schematic diagram of the structure of another electric vehicle charging and energy storage system 300 shown in an embodiment of the present application.
  • the electric vehicle charging and energy storage system 300 includes a photovoltaic panel 301, an energy storage battery 302, a hybrid inverter 303 and an isolated power converter 304, wherein the hybrid inverter 303 is connected to the photovoltaic panel 301 and the energy storage battery 302 while being connected to the external power grid, for realizing energy exchange between the photovoltaic panel 301, the energy storage battery 302 and the power grid, and the hybrid inverter 303 and the isolated power converter 304 are an integrated structure, and the hybrid inverter 303 is indirectly connected to the isolated power converter 304 through the energy storage battery 302, thereby connecting the electric vehicle through the isolated power converter 304 to charge and discharge the electric vehicle.
  • the hybrid inverter 303 is also connected to a household load 305. Furthermore, the hybrid inverter 303 includes a non-isolated power optimizer 311, a non-isolated bidirectional inverter 312, a bus 313 and a non-isolated power converter 314, the photovoltaic panel 301 is connected to the bus 313 through the non-isolated power optimizer 311, the power grid is connected to the bus 313 through the non-isolated bidirectional inverter 312, and the energy storage battery 302 is connected to the bus 313 through the non-isolated power converter 314.
  • the hybrid inverter 303 is connected to the electric vehicle via the energy storage battery 302 and the isolated power converter 304.
  • the energy flow relationship between the basic home energy storage system composed of the photovoltaic panel 301, the hybrid inverter 303 and the energy storage battery 302 can refer to the aforementioned embodiment, and the method for charging the electric vehicle can be: the electric energy generated by the photovoltaic panel 301 is transmitted to the bus 313 via the non-isolated power optimizer 311, and then transmitted to the electric vehicle via the non-isolated power converter 314 and the isolated power converter 304; the electric energy generated by the power grid is transmitted to the bus 313 via the non-isolated bidirectional inverter 312, and then transmitted to the electric vehicle via the non-isolated power converter 314 and the isolated power converter 304.
  • the electric energy stored in the energy storage battery 302 from the photovoltaic panel 301 and the power grid is directly supplied to the electric vehicle via the isolated power converter 204.
  • the electric vehicle can discharge the electric energy of the electric vehicle to the power grid loop in reverse by directly discharging the electric energy of the electric vehicle back to the energy storage battery 302 via the isolated power converter 204; or, the electric energy of the electric vehicle is discharged to the bus 313 via the isolated power converter 204 and the non-isolated power converter 314, and the bus 313 can be discharged to the power grid or the household load 305 via the non-isolated bidirectional inverter 312.
  • FIG. 4 shows a schematic diagram of the structure of another electric vehicle charging and energy storage system 300, wherein the hybrid inverter 303 and the isolated power converter 304 can also be a separate structure, the isolated power converter 304 is arranged outside the hybrid inverter 303, and the hybrid inverter 303 is connected to the electric vehicle through the isolated power converter 304.
  • the energy flow mode of this example is the same as the above-mentioned embodiment, which will not be repeated here.
  • the hybrid inverter 303 can also be connected to the electric vehicle through the bus 313 to the isolated power converter 304.
  • Figure 5 shows a structural schematic diagram of another electric vehicle charging and energy storage system 300.
  • the hybrid inverter 303 and the isolated power converter 304 are an integrated structure.
  • the energy flow relationship between the basic home energy storage system composed of the photovoltaic panel 301, the hybrid inverter 303 and the energy storage battery 302 can refer to the aforementioned embodiment.
  • the method for charging the electric vehicle can be: the electric energy generated by the photovoltaic panel 301 is transmitted to the bus 313 through the non-isolated power optimizer 311, and the electric energy generated by the power grid is also transmitted to the bus 313 through the non-isolated power optimizer 311.
  • the bus collects and distributes the electric energy, it is directly transmitted to the electric vehicle through the isolated power converter 304; and then the isolated power converter 304 is transmitted to the electric vehicle; at the same time, the electric energy from the photovoltaic panel 301 and the power grid stored in the energy storage battery 302 is supplied to the electric vehicle through the non-isolated power optimizer 311 and the isolated power converter 204.
  • the electric vehicle can discharge the electric energy to the grid circuit in reverse by discharging the electric energy of the electric vehicle back to the energy storage battery 302 via the isolated power converter 204 and the non-isolated power converter 314; or, the electric energy of the electric vehicle can be discharged directly to the bus 313 via the isolated power converter 204, and the bus 313 can then discharge to the grid or household load 305 via the non-isolated bidirectional inverter 312.
  • FIG6 shows a schematic diagram of the structure of another electric vehicle charging and energy storage system 300, wherein the hybrid inverter 303 and the isolated power converter 304 can also be a separate structure, the isolated power converter 304 is arranged outside the hybrid inverter 303, and the hybrid inverter 303 is connected to the electric vehicle through the isolated power converter 304.
  • the energy flow mode of this example is the same as the above-mentioned embodiment, which will not be repeated here.
  • the hybrid inverter 303 is connected to the isolated power converter 304 and connected to the electric vehicle through different devices. During the charging and discharging process of the electric vehicle, the charging and discharging circuits are different based on the different connection relationships. Specifically, if the hybrid inverter 303 is connected to the electric vehicle via the energy storage battery 302 and the isolated power converter 304, then when energy exchange occurs between the energy storage battery 302 and the electric vehicle, only one isolated power converter 304 is required, while when energy exchange occurs between the photovoltaic panel 301 or the power grid and the electric vehicle, an isolated power converter 304 and a non-isolated power optimizer 311 or a non-isolated bidirectional inverter 312 are required.
  • the hybrid inverter 303 is connected to the electric vehicle via the energy storage battery 302 and the isolated power converter 304, compared with the hybrid inverter 303 can also be connected to the isolated power converter 304 through the bus 313 to connect to the electric vehicle, which is more suitable for the scenario where the energy storage battery is often used to charge and discharge the electric vehicle. Conversely, another implementation method is more suitable for the scenario where the electric vehicle is directly charged and discharged through the photovoltaic panel or the power grid.
  • the hybrid inverter 303 also includes an energy management module, which can be complex such as an EMS system or simple such as a microcontroller, a single chip microcomputer, etc.
  • the energy management module is connected to the non-isolated power optimizer 311, the non-isolated bidirectional inverter 312, the non-isolated power converter 314 and the isolated power converter 304, and is used to dispatch the energy flow between the photovoltaic panel, the power grid, the energy storage battery, the electric vehicle and the household load through the non-isolated power optimizer 311, the non-isolated bidirectional inverter 312, the non-isolated power converter 314 and the isolated power converter 304.
  • the non-isolated power optimizer may be a non-isolated maximum power point tracking (Maximum Power Point Tracking, MPPT) power optimizer.
  • MPPT Maximum Power Point Tracking
  • the isolated power converter may be an isolated bidirectional DC-DC converter.
  • the circuit topology used in the isolated bidirectional DC-DC converter may be an LLC series-parallel resonant conversion circuit, a phase-shifted full-bridge conversion circuit, or a dual active full-bridge conversion circuit.
  • the non-isolated power converter may be a non-isolated bidirectional DC-DC converter.
  • the present application provides an electric vehicle charging and energy storage system, including photovoltaic panels, energy storage batteries, hybrid inverters and isolated power converters, the hybrid inverters include non-isolated power optimizers, non-isolated bidirectional inverters, busbars and non-isolated power converters, the photovoltaic panels are connected to the busbars through non-isolated power optimizers, the power grid is connected to the busbars through non-isolated bidirectional inverters, and the energy storage batteries are connected to the busbars through non-isolated power converters.
  • the hybrid inverters include non-isolated power optimizers, non-isolated bidirectional inverters, busbars and non-isolated power converters
  • the photovoltaic panels are connected to the busbars through non-isolated power optimizers
  • the power grid is connected to the busbars through non-isolated bidirectional inverters
  • the energy storage batteries are connected to the busbars through non-isolated power converters.
  • the hybrid inverter is connected to the isolated power converter through the energy storage battery and then connected to the electric vehicle, or the hybrid inverter is connected to the isolated power converter through the busbar and then connected to the electric vehicle.
  • the connection between the photovoltaic panels, energy storage batteries and the power grid and the hybrid inverter realizes the power supply to the household load and the reasonable scheduling of the electric energy between the photovoltaic panels, energy storage batteries and the power grid during the off-peak and peak periods
  • the isolated power converter is connected to the electric vehicle through the hybrid inverter, and the charging and discharging operation of the electric vehicle is realized by using one system, thereby solving all the power usage needs in general households and realizing the reasonable scheduling and optimization of electric energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种电动汽车充电及储能系统,包括光伏板(101)、储能电池(102)、混合逆变器(103和隔离型功率转换器(104),其中,混合逆变器(103)连接光伏板(101)、储能电池(102)的同时连接外部电网,用于实现光伏板(101)、储能电池(102)和电网之间的能量交换,其中,隔离型功率转换器(104)与混合逆变器(103)为一体式结构或为分离式结构,混合逆变器(103)通过隔离型功率转换器(104)以间接或直接的方式连接电动汽车,用于对电动汽车进行充电放电操作。

Description

电动汽车充电及储能系统
优先权信息
本申请请求2023年09月26日向中国国家知识产权局提交的、专利申请号为202311254141.1的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及储能技术领域,更具体地,涉及一种电动汽车充电及储能系统。
背景技术
目前,家庭储能系统和电动汽车直流充电系统的发展均已较为成熟,其中,家庭储能系统类似于一个微型储能电站,能够在用电低谷时期自行充电以备在用电高峰时期用作应急电源,也可用于均衡用电负荷;电动汽车直流充电系统利用外部的充电模组提供高压直流能量到电池。
然而,家庭储能系统和电动汽车充电直流系统一般为两个独立的系统,随着电动汽车在家庭中的普及,在实现家庭用电需求或汽车充电需求时需要使用不同的方案,不利于节省资源及电能的合理利用。
发明内容
基于以上背景,本申请提出了一种电动汽车充电及储能系统,包括:光伏板、储能电池和混合逆变器;所述混合逆变器连接所述光伏板、所述储能电池和电网,用于实现所述电网、光伏板和储能电池三者间的能量交换;隔离型功率转换器,其中,所述隔离型功率转换器与所述混合逆变器为一体式结构或为分离式结构,所述混合逆变器通过所述隔离型功率转换器以间接或直接的方式连接电动汽车,用于对所述电动汽车进行充电放电操作。
可选地,所述混合逆变器包括非隔离型功率优化器、非隔离型双向逆变器、母线、第一开关器件、第二开关器件、第三开关器件和第四开关器件,所述光伏板通过所述非隔离型功率优化器连接所述母线,所述电网通过所述非隔离型双向逆变器连接所述母线;所述母线通过所述第一开关器件连接所述隔离型功率转换器的第一端,所述储能电池通过所述第二开关器件连接所述隔离型功率转换器的第二端,所述电动汽车通过所述第三开关器件连接所述隔离型功率转换器的第一端,所述电动汽车通过所述第四开关器件连接所述隔离型功率转换器的第二端。
可选地,所述第三开关器件并联在所述第一开关器件靠近所述隔离型功率转换器的一端上,所述第四开关器件并联在所述第二开关器件靠近所述隔离型功率转换器的一端上。
可选地,当所述第一开关器件闭合时,所述第四开关器件闭合,所述第二开关器件和第三开关器件断开,所述母线通过所述第一开关器件、隔离型功率转换器与第四开关器件组成的第一回路为所述电动汽车供电,所述电动汽车通过所述第一回路为所述母线反向放电。
可选地,当所述第二开关器件闭合时,所述第三开关器件闭合,所述第一开关器件和第四开关器件断开,所述储能电池通过所述第二开关器件、隔离型功率转换器与第三开关器件组成的第二回路为所述电动汽车供电,所述电动汽车通过所述第二回路为所述储能电池反向放电。
可选地,所述混合逆变器包括非隔离型功率优化器、非隔离型双向逆变器、母线和非隔离型功率转换器,所述光伏板通过所述非隔离型功率优化器连接所述母线,所 述电网通过所述非隔离型双向逆变器连接所述母线,所述储能电池通过所述非隔离型功率转换器连接所述母线。
可选地,所述混合逆变器通过所述储能电池连接所述隔离型功率转换器后连接所述电动汽车。
可选地,所述混合逆变器通过所述母线连接所述隔离型功率转换器后连接所述电动汽车。
可选地,所述混合逆变器包括能量管理模块,所述能量管理模块用于调度所述光伏板、储能电池和电网之间的能量流动。
可选地,所述混合逆变器连接家庭负载,还用于对所述家庭负载供电。
因此,本申请提供的一种电动汽车充电及储能系统,包括:光伏板、储能电池、混合逆变器和隔离型功率转换器;所述混合逆变器连接所述光伏板、所述储能电池和电网,用于实现所述电网、光伏板和储能电池三者间的能量交换;所述混合逆变器通过所述隔离型功率转换器连接电动汽车,用于对所述电动汽车进行充电放电操作。因此,本申请提供的系统通过光伏板及储能电池及电网与混合逆变器的连接实现对家庭负载的供电以及低谷用电期和高峰用电期下光伏板和储能电池和电网之间电能的合理调度,进一步地,使用同一个系统通过隔离型功率转换器实现了电动汽车充放电操作,从而,利用一个系统解决了一般家庭中的全部电能使用需求,实现电能的合理调度及优化。
本申请实施例的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例中示出的一种电动汽车充电及储能系统的结构示意图。
图2示出了本申请实施例中示出的另一种电动汽车充电及储能系统的结构示意图。
图3示出了本申请实施例中示出的再一种电动汽车充电及储能系统的结构示意图。
图4示出了本申请实施例中示出的又一种电动汽车充电及储能系统的结构示意图。
图5示出了本申请实施例中示出的又另一种电动汽车充电及储能系统的结构示意图。
图6示出了本申请实施例中示出的再另一种电动汽车充电及储能系统的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在 一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
请参阅图1,图1示出了本申请实施例提供的一种电动汽车充电及储能系统100。具体地,电动汽车充电及储能系统100包括光伏板101、储能电池102、混合逆变器103和隔离型功率转换器104,其中,混合逆变器103连接光伏板101、储能电池102的同时连接外部电网,用于实现光伏板101、储能电池102和电网之间的能量交换其中,隔离型功率转换器104与混合逆变器103为一体式结构或为分离式结构,混合逆变器103通过隔离型功率转换器104以间接或直接的方式连接电动汽车,用于对电动汽车进行充电放电操作。
具体地,光伏板101、混合逆变器103和储能电池102能够组成一个基础的家庭储能系统,光伏板101、储能电池102均与混合逆变器103连接,且混合逆变器103还连接到电网。作为一种实施方式,混合逆变器103还连接家庭负载105。光伏板用于将光能转换为电能,混合逆变器不仅能够将光伏板的电能转换为交流电,同时还可以对电能进行调节和优化,因此,在用电低谷期光伏板和电网的供电能力过剩时,光伏板101能够在通过混合逆变器103向家庭负载105供电的同时向储能电池102充电,电网也能够在通过混合逆变器103向家庭负载105供电的同时向储能电池102充电,而在用电高峰期光伏板和电网的供电能力不足时,储能电池102则可以通过混合逆变器103反向放电给家庭负载105供电又还可以通过混合逆变器103反向放电给电网,从而实现了电能的合理调度与使用。其中,家庭负载指家庭中需要电源供应的设备,常见的如电视机空调等家电设备,电灯等照明设备,电脑手机等通讯设备。
进一步地,混合逆变器103还通过隔离型功率转换器104直接或间接地连接到电动汽车,从而,混合逆变器103还能够将来自光伏板101、储能电池102或电网中的电能通过隔离型功率转换器104输送给电动汽车,对电动汽车进行充电操作,进一步地,当隔离型功率转换器104为双向转换器时,电动汽车还可以通过隔离型功率转换器104反向放电至光伏板101、储能电池102或电网,其中,电动汽车可以指纯电动车即完全由电力驱动的汽车类型,也可以为混合动力即可以通过燃油驱动也可以通过电力驱动的汽车类型。因此,电动汽车充电及储能系统100不仅可以实现对家庭负载的供电以及低谷用电期和高峰用电期下光伏板和储能电池和电网之间电能的合理调度,还可以使用同一个系统通过隔离型功率转换器对电动汽车进行充放电,利用一个系统解决了一般家庭中的全部电能使用需求,实现电能的合理调度及优化。
作为一种实施方式,隔离型功率转换器可以为隔离型双向DC-DC转换器,示例性地,隔离型双向DC-DC转换器中使用的电路拓扑结构可以为LLC串并联谐振变换电路、移相全桥变换电路或双有源全桥变换电路等方案。隔离型方案使汽车充放电的用电分支电路与整个储能系统隔离,使之成为一个在电气上被隔离的、独立的不接地安全系统,从而保证电动车充放电过程的绝对安全性。
作为一种实施方式,混合逆变器103中包括能量管理模块,能量管理模块用于调度光伏板、储能电池和电网之间的能量流动,示例性地,复杂地可以如能量管理系统(Energy Management System,EMS)或简单地可以如微控制单元(Microcontroller Unit,MCU)等。
因此,本申请提供的一种电动汽车充电及储能系统,包括光伏板、储能电池、混合逆变器和隔离型功率转换器;所述混合逆变器连接所述光伏板、所述储能电池和电网,用于实现所述电网、光伏板和储能电池三者间的能量交换;所述隔离型功率转换器与所述混合逆变器为一体式结构或为分离式结构,所述混合逆变器通过所述隔离型功率转换器以间接或直接的方式连接电动汽车,用于对所述电动汽车进行充电放电操作。因此,本申请提供的系统通过光伏板及储能电池及电网与混合逆变器的连接实现 对家庭负载的供电以及低谷用电期和高峰用电期下光伏板和储能电池和电网之间电能的合理调度,进一步地,使用同一个系统通过隔离型功率转换器实现了电动汽车充放电操作,从而,利用一个系统解决了一般家庭中的全部电能使用需求,实现电能的合理调度及优化。
请参阅图2,图2示出了本申请实施例中示出的另一种电动汽车充电及储能系统200的结构示意图。具体地,电动汽车充电及储能系统200包括光伏板201、储能电池202、混合逆变器203和隔离型功率转换器204,其中,混合逆变器203连接光伏板201、储能电池202的同时连接外部电网,用于实现光伏板201、储能电池202和电网之间的能量交换,混合逆变器203与隔离型功率转换器204为一体式结构,且混合逆变器203通过隔离型功率转换器204直接连接电动汽车,以对电动汽车进行充电和放电操作。作为一种实施方式,混合逆变器203还连接家庭负载205。
进一步地,混合逆变器203包括非隔离型功率优化器211、非隔离型双向逆变器212、母线213、第一开关器件214、第二开关器件215、第三开关器件216和第四开关器件217,其中,光伏板201通过非隔离型功率优化器211连接母线213,电网通过非隔离型双向逆变器212连接母线213,母线213通过第一开关器件214连接隔离型功率转换器204的第一端,储能电池202通过第二开关器件215连接隔离型功率转换器204的第二端,电动汽车通过第三开关器件216连接所述隔离型功率转换器204的第一端,电动汽车通过第四开关器件217连接隔离型功率转换器204的第二端。
可以理解的是,由于隔离型功率转换器204与混合逆变器203为一体式结构,因此,混合逆变器可以直接基于隔离型功率转换器204连接电动汽车,且混合逆变器还可以直接基于隔离型功率转换器204连接储能电池,当合理结合母线、储能电池及电动汽车三者组成的回路上的开关器件来控制母线与储能电池回路、母线与电动汽车回路以及储能电池与电动汽车回路的通断,就可以仅使用一个隔离型功率转换器来实现母线、储能电池及电动汽车之间的能量流动,相比于现有技术中混合逆变器需要多增加一个非隔离型功率转换器以连接储能电池的情况,优化了混合逆变器的结构,同时减少成本。
具体地,光伏板201通过混合逆变器203向家庭负载205供电的方式可以是:光伏板201产生的电能经非隔离型功率优化器211传输至母线213,母线213用于汇集、分配和传送电能,再将电能经非隔离型双向逆变器212供给至家庭负载205;在用电低谷期光伏板201上电能在提供家庭负载用电后富有盈余时,还可通过混合逆变器203向储能电池202充电,具体方式可以是:光伏板201产生的电能经非隔离型功率优化器211传输至母线213,再经第一开关器件214、隔离型功率转换器204和第二开关器件215供给至储能电池202,可以理解的是,此时第一开关器件214和第二开关器件215闭合,第三开关器件216和第四开关器件217断开,即光伏板-储能电池的这条回路导通,而光伏板-电动汽车的这条回路断开,也就是说,光伏板在同一时刻只能向储能电池或电动汽车中的任意一个用电器供电。
具体地,电网在用电低谷期提供家庭负载用电后富有盈余时,还可通过混合逆变器203向储能电池202充电,具体方式可以是:电网电能经非隔离型双向逆变器212传输至母线213,再经第一开关器件214、隔离型功率转换器204和第二开关器件215供给至储能电池202,可以理解的是,此时第一开关器件214和第二开关器件215闭合,第三开关器件216和第四开关器件217断开,即电网-储能电池的这条回路导通,而电网-电动汽车的这条回路断开,也就是说,电网在同一时刻只能向储能电池或电动汽车中的任意一个用电器供电。
具体地,储能电池202通过混合逆变器203向家庭负载205供电的方式可以是:储能电池202中储存的来自光伏板201和电网的电能经第二开关器件215、隔离型功率转换器204和第一开关器件214传输至母线213,母线213用于汇集、分配和传送 电能,再将电能经非隔离型双向逆变器212供给至家庭负载205。可以理解的是,此时第一开关器件214和第二开关器件215闭合,第三开关器件216和第四开关器件217断开,即储能电池-家庭负载的这条回路导通,而储能电池-电动汽车的这条回路断开,也就是说,储能电池在同一时刻只能向家庭负载或电动汽车中的任意一个用电器供电。
具体地,光伏板201通过混合逆变器203向电动汽车供电的方式可以是:光伏板201产生的电能经非隔离型功率优化器211传输至母线213,再经第一开关器件214、隔离型功率转换器204和第四开关器件217供给至电动汽车,可以理解的是,此时第一开关器件214和第四开关器件217闭合,第二开关器件215和第三开关器件216断开,即光伏板-电动汽车的这条回路导通,而光伏板-储能电池的这条回路断开;电网通过混合逆变器203向电动汽车供电的方式可以是:电网电能经非隔离型双向逆变器212传输至母线213,再经第一开关器件214、隔离型功率转换器204和第四开关器件217供给至电动汽车,此时第一开关器件214和第四开关器件217闭合,第二开关器件215和第三开关器件216断开,即电网-电动汽车的这条回路导通,而电网-储能电池的这条回路断开;储能电池通过混合逆变器203向电动汽车供电的方式可以是:储能电池202中储存的来自光伏板201和电网的电能经第二开关器件215、隔离型功率转换器204和第三开关器件216直接供给至电动汽车。可以理解的是,此时第二开关器件215和第三开关器件216闭合,第一开关器件214和第四开关器件217断开,即储能电池-电动汽车的这条回路导通,而储能电池-家庭负载的这条回路断开。
结合上述分析可知,若将储能电池与家庭负载视为一类负载,电动汽车充电及储能系统200具有同一时刻的供电端只能向一类负载与电动汽车中任一个用电器件供电的特点,因此,作为一种实施方式,第三开关器件216并联在第一开关器件214靠近隔离型功率转换器204的一端上,第四开关器件217并联在第二开关器件215靠近隔离型功率转换器204的一端上。示例性地,当第一开关器件214断开时,即断开了母线213与隔离型功率转换器204的连接,此时储能电池202将无法向家用负载供电,但仍然可以通过第三开关器件216的闭合能够使储能电池202向电动汽车供电,当第二开关器件215断开时,即断开了储能电池202与隔离型功率转换器204的连接,此时母线213将无法向储能电池202供电,但同时仍然可以通过第四开关器件217的闭合使光伏板201和电网能够向电动汽车充电,因此,通过合理设置开关器件的连接关系,可以保证供电端在同一时刻只能向一类负载与电动汽车中任一个用电器件供电。
具体地,电动汽车充电及储能系统200还可以在用电高峰期使电动汽车反向放电给电网回路或储能电池。示例性地,电动汽车反向放电给电网回路的方式可以是:电动汽车的电能经第四开关器件217、隔离型功率转换器204和第一开关器件214传输至母线213,母线对电能进行汇集分配后,可以通过非隔离型双向逆变器212传输给电网,也可以通过非隔离型双向逆变器212传输给家庭负载;电动汽车反向放电给储能电池的方式可以是:电动汽车的电能经第三开关器件216、隔离型功率转换器204和第二开关器件215传输至储能电池202。
作为一种实施方式,当光伏板201和电网通过隔离型功率转换器204向储能电池202或电动汽车供电时,第一开关器件214和第三开关器件216连接的隔离型功率转换器204的一端为输入端,第二开关器件215和第四开关器件217连接的隔离型功率转换器204的一端为输出端;当储能电池202通过隔离型功率转换器204向电动汽车或家庭负载供电时,第一开关器件214和第三开关器件216连接的隔离型功率转换器204的一端为输出端,第二开关器件215和第四开关器件217连接的隔离型功率转换器204的一端为输入端,其余情况可以以此类推。
作为一种实施方式,非隔离型功率优化器211可以为非隔离型最大功率点跟踪(Maximum Power Point Tracking,MPPT)功率优化器,MPPT功率优化器用于使系统连接的负载可以配合功率传输效率最高的负载曲线进行调整,使系统拥有最佳发电效 率,非隔离型方案的用电分支电路与整个储能系统不完全隔离,但其安全防护措施可以由混合逆变器的外壳等提供,从而达到降低成本的目的。
作为一种实施方式,第一开关器件214、第二开关器件215、第三开关器件216和第四开关器件217可以为智能开关器件,示例性地,可以为继电器、接触器等开关器件。
作为一种实施方式,混合逆变器203中还包括能量管理模块,示例性地,复杂地可以如EMS系统或简单地可以如微控制单元、单片机等。其中,能量管理模块与非隔离型功率优化器211、非隔离型双向逆变器212、隔离型功率转换器204、第一开关器件214、第二开关器件215、第三开关器件216和第四开关器件217均连接,用于控制第一开关器件214、第二开关器件215、第三开关器件216和第四开关器件217的开闭,同时通过非隔离型功率优化器211、非隔离型双向逆变器212和隔离型功率转换器204来调度光伏板、电网、储能电池、电动汽车及家庭负载之间的能量流动。
作为一种实施方式,隔离型功率转换器可以为隔离型双向DC-DC转换器,示例性地,隔离型双向DC-DC转换器中使用的电路拓扑结构可以为LLC串并联谐振变换电路、移相全桥变换电路或双有源全桥变换电路等方案。
因此,本申请提供的一种电动汽车充电及储能系统,包括光伏板、储能电池、混合逆变器和隔离型功率转换器,混合逆变器包括非隔离型功率优化器、非隔离型双向逆变器、母线、第一开关器件、第二开关器件、第三开关器件和第四开关器件,母线通过第一开关器件连接隔离型功率转换器的第一端,储能电池通过第二开关器件连接隔离型功率转换器的第二端,电动汽车通过第三开关器件连接隔离型功率转换器的第一端,电动汽车通过第四开关器件连接隔离型功率转换器的第二端,从而,该系统通过设置四个开关器件并智能控制其开断,使光伏板、电网和储能电池均能向电动汽车充电,且储能电池和电动汽车又可以反向放电给电网回路,进一步地,通过将第三开关器件并联在第一开关器件靠近隔离型功率转换器的一端上,将第四开关器件并联在第二开关器件靠近隔离型功率转换器的一端上,保证供电端在同一时刻只能向一类负载与电动汽车中任一个用电器件供电,因此,本申请实施例提供的系统使隔离型功率转换器被充分利用,在系统架构上节省了普通家庭储能系统中混合逆变器必须包含的非隔离型功率转换器,不仅减小了混合逆变器的体积,也降低了成本,提高了转换效率。
请参阅图3,图3示出了本申请实施例中示出的再一种电动汽车充电及储能系统300的结构示意图。具体地,电动汽车充电及储能系统300包括光伏板301、储能电池302、混合逆变器303和隔离型功率转换器304,其中,混合逆变器303连接光伏板301、储能电池302的同时连接外部电网,用于实现光伏板301、储能电池302和电网之间的能量交换,混合逆变器303与隔离型功率转换器304为一体式结构,混合逆变器303通过储能电池302间接连接到隔离型功率转换器304,从而通过隔离型功率转换器304连接电动汽车,以对电动汽车进行充电和放电操作。作为一种实施方式,混合逆变器303还连接家庭负载305。进一步地,混合逆变器303包括非隔离型功率优化器311、非隔离型双向逆变器312、母线313和非隔离型功率转换器314,光伏板301通过所述非隔离型功率优化器311连接母线313,电网通过非隔离型双向逆变器312连接母线313,储能电池302通过非隔离型功率转换器314连接母线313。
其中,混合逆变器303通过储能电池302连接隔离型功率转换器304连接电动汽车。此时,光伏板301、混合逆变器303和储能电池302组成的基础的家庭储能系统之间的能量流动关系可以参考前述实施例,给电动汽车充电的方法可以是:光伏板301产生的电能经非隔离型功率优化器311传输至母线313,再经非隔离型功率转换器314和隔离型功率转换器304传输至电动汽车;电网产生的电能经非隔离型双向逆变器312传输至母线313,再经非隔离型功率转换器314和隔离型功率转换器304传输至电动 汽车;同时,储能电池302中储存的来自光伏板301和电网的电能经隔离型功率转换器204直接供给至电动汽车。同理,电动汽车反向给电网回路放电的方式可以是:电动汽车的电能经隔离型功率转换器204直接放电回储能电池302;或者,电动汽车的电能经隔离型功率转换器204和非隔离型功率转换器314放电至母线313,母线313可经非隔离型双向逆变器312向电网或家庭负载305放电。
示例性地,请参阅图4,图4示出了又一种电动汽车充电及储能系统300的结构示意图,其中,混合逆变器303与隔离型功率转换器304还可以为分离式结构,隔离型功率转换器304设于混合逆变器303外部,混合逆变器303通过隔离型功率转换器304连接电动汽车。并且,此种示例的能量流动方式与上述实施方式相同,在此不再赘述。
作为一种实施方式,混合逆变器303还可以通过母线313连接隔离型功率转换器304连接电动汽车。具体地,请参阅图5,图5示出了又另一种电动汽车充电及储能系统300的结构示意图,混合逆变器303与隔离型功率转换器304为一体式结构,此时,光伏板301、混合逆变器303和储能电池302组成的基础的家庭储能系统之间的能量流动关系可以参考前述实施例,给电动汽车充电的方法可以是:光伏板301产生的电能经非隔离型功率优化器311传输至母线313,电网产生的电能也经非隔离型功率优化器311传输至母线313,母线对电能进行汇集分配后,直接通过隔离型功率转换器304传输至电动汽车;再隔离型功率转换器304传输至电动汽车;同时,储能电池302中储存的来自光伏板301和电网的电能经非隔离型功率优化器311和隔离型功率转换器204供给至电动汽车。同理,电动汽车反向给电网回路放电的方式可以是:电动汽车的电能经隔离型功率转换器204和非隔离型功率转换器314放电回储能电池302;或者,电动汽车的电能经隔离型功率转换器204直接放电至母线313,母线313再经非隔离型双向逆变器312向电网或家庭负载305放电。
示例性地,请参阅图6,图6示出了再另一种电动汽车充电及储能系统300的结构示意图,其中,混合逆变器303与隔离型功率转换器304还可以为分离式结构,隔离型功率转换器304设于混合逆变器303外部,混合逆变器303通过隔离型功率转换器304连接电动汽车。并且,此种示例的能量流动方式与上述实施方式相同,在此不再赘述。
可以理解的是,混合逆变器303通过不同的器件连接至隔离型功率转换器304并连接电动汽车,在电动汽车充放电过程中基于连接关系不同,充放电回路也有所不同。具体地,若混合逆变器303通过储能电池302连接隔离型功率转换器304连接电动汽车,那么,在储能电池302与电动汽车之间发生能量交换时,仅需通过一个隔离型功率转换器304,而在光伏板301或电网和电动汽车之间发生能量交换时,则需要通过一个隔离型功率转换器304以及一个非隔离型功率优化器311或一个非隔离型双向逆变器312,也就是说,能量传递需要多经过一次器件,就会多产生一次损耗,因此,混合逆变器303通过储能电池302连接隔离型功率转换器304连接电动汽车的方式,与混合逆变器303还可以通过母线313连接隔离型功率转换器304连接电动汽车相比,更适用于经常使用储能电池对电动汽车充放电时的情景,反之,另一种实施方式更适用于直接通过光伏板或电网对电动汽车充放电时的情景。
作为一种实施方式,混合逆变器303中还包括能量管理模块,示例性地,复杂地可以如EMS系统或简单地可以如微控制单元、单片机等。其中,能量管理模块与非隔离型功率优化器311、非隔离型双向逆变器312、非隔离型功率转换器314和隔离型功率转换器304均连接,用于通过非隔离型功率优化器311、非隔离型双向逆变器312、非隔离型功率转换器314和隔离型功率转换器304来调度光伏板、电网、储能电池、电动汽车及家庭负载之间的能量流动。
作为一种实施方式,非隔离型功率优化器可以为非隔离型最大功率点跟踪 (Maximum Power Point Tracking,MPPT)功率优化器。
作为一种实施方式,隔离型功率转换器可以为隔离型双向DC-DC转换器,示例性地,隔离型双向DC-DC转换器中使用的电路拓扑结构可以为LLC串并联谐振变换电路、移相全桥变换电路或双有源全桥变换电路等方案。
作为一种实施方式,非隔离型功率转换器可以为非隔离型双向DC-DC转换器。
因此,本申请提供的一种电动汽车充电及储能系统,包括光伏板、储能电池、混合逆变器和隔离型功率转换器,混合逆变器包括非隔离型功率优化器、非隔离型双向逆变器、母线和非隔离型功率转换器,光伏板通过非隔离型功率优化器连接母线,电网通过非隔离型双向逆变器连接母线,储能电池通过非隔离型功率转换器连接母线,进一步地,混合逆变器通过储能电池连接隔离型功率转换器后连接电动汽车,或者,混合逆变器通过母线连接隔离型功率转换器后连接电动汽车。从而,光伏板及储能电池及电网与混合逆变器的连接实现对家庭负载的供电以及低谷用电期和高峰用电期下光伏板和储能电池和电网之间电能的合理调度,并通过混合逆变器连接隔离型功率转换器与电动汽车,利用一个系统实现了电动汽车充放电操作,从而解决了一般家庭中的全部电能使用需求,实现电能的合理调度及优化。同时,还可以基于不同使用情况选择混合逆变器是通过母线还是储能电池连接到隔离型功率转换器,提高系统在不同情景下的能量利用率。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种电动汽车充电及储能系统,其特征在于,包括:
    光伏板、储能电池、混合逆变器和隔离型功率转换器;
    所述混合逆变器连接所述光伏板、所述储能电池和电网,用于实现所述电网、光伏板和储能电池三者间的能量交换;
    其中,所述隔离型功率转换器与所述混合逆变器为一体式结构或为分离式结构,所述混合逆变器通过所述隔离型功率转换器以间接或直接的方式连接电动汽车,用于对所述电动汽车进行充电放电操作。
  2. 根据权利要求1所述的系统,其特征在于,
    所述混合逆变器包括非隔离型功率优化器、非隔离型双向逆变器、母线、第一开关器件、第二开关器件、第三开关器件和第四开关器件,所述光伏板通过所述非隔离型功率优化器连接所述母线,所述电网通过所述非隔离型双向逆变器连接所述母线;
    所述母线通过所述第一开关器件连接所述隔离型功率转换器的第一端,所述储能电池通过所述第二开关器件连接所述隔离型功率转换器的第二端,所述电动汽车通过所述第三开关器件连接所述隔离型功率转换器的第一端,所述电动汽车通过所述第四开关器件连接所述隔离型功率转换器的第二端。
  3. 根据权利要求2所述的系统,其特征在于,所述第三开关器件并联在所述第一开关器件靠近所述隔离型功率转换器的一端上,所述第四开关器件并联在所述第二开关器件靠近所述隔离型功率转换器的一端上。
  4. 根据权利要求3所述的系统,其特征在于,当所述第一开关器件闭合时,所述第四开关器件闭合,所述第二开关器件和第三开关器件断开,所述母线通过所述第一开关器件、隔离型功率转换器与第四开关器件组成的第一回路为所述电动汽车供电,所述电动汽车通过所述第一回路为所述母线反向放电。
  5. 根据权利要求3所述的系统,其特征在于,当所述第二开关器件闭合时,所述第三开关器件闭合,所述第一开关器件和第四开关器件断开,所述储能电池通过所述第二开关器件、隔离型功率转换器与第三开关器件组成的第二回路为所述电动汽车供电,所述电动汽车通过所述第二回路为所述储能电池反向放电。
  6. 根据权利要求1所述的系统,其特征在于,所述混合逆变器包括非隔离型功率优化器、非隔离型双向逆变器、母线和非隔离型功率转换器,所述光伏板通过所述非隔离型功率优化器连接所述母线,所述电网通过所述非隔离型双向逆变器连接所述母线,所述储能电池通过所述非隔离型功率转换器连接所述母线。
  7. 根据权利要求6所述的系统,其特征在于,所述混合逆变器通过所述储能电池连接所述隔离型功率转换器后连接所述电动汽车。
  8. 根据权利要求6所述的系统,其特征在于,所述混合逆变器通过所述母线连接所述隔离型功率转换器后连接所述电动汽车。
  9. 根据权利要求1-8任一项所述的系统,其特征在于,所述混合逆变器包括能量管理模块,所述能量管理模块用于调度所述光伏板、储能电池和电网之间的能量流动。
  10. 根据权利要求1所述的系统,其特征在于,所述混合逆变器连接家庭负载,还用于对所述家庭负载供电。
PCT/CN2024/081010 2023-09-26 2024-03-11 电动汽车充电及储能系统 Pending WO2025066041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311254141.1 2023-09-26
CN202311254141.1A CN117424265A (zh) 2023-09-26 2023-09-26 电动汽车充电及储能系统

Publications (1)

Publication Number Publication Date
WO2025066041A1 true WO2025066041A1 (zh) 2025-04-03

Family

ID=89527434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/081010 Pending WO2025066041A1 (zh) 2023-09-26 2024-03-11 电动汽车充电及储能系统

Country Status (2)

Country Link
CN (1) CN117424265A (zh)
WO (1) WO2025066041A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117424265A (zh) * 2023-09-26 2024-01-19 深圳市华宝新能源股份有限公司 电动汽车充电及储能系统
CN120073875B (zh) * 2025-04-29 2025-08-15 浙江大学 基于多模式切换的光伏发电与v2h协同控制系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205610313U (zh) * 2016-05-13 2016-09-28 王晓民 一种双向储能逆变系统
CN107517001A (zh) * 2017-09-20 2017-12-26 重庆聚陆新能源有限公司 一种可重构的dc/dc变换器
CN107979160A (zh) * 2017-12-27 2018-05-01 广东产品质量监督检验研究院 一种光伏储能式直流充电柱及充电方法
CN112803570A (zh) * 2021-03-22 2021-05-14 阳光电源股份有限公司 一种储能系统及其控制方法
KR20230094202A (ko) * 2021-12-20 2023-06-28 주식회사 늘디딤 태양광 및 계통전력 겸용 전기차 충전시스템
CN116681468A (zh) * 2023-07-27 2023-09-01 国网浙江省电力有限公司营销服务中心 基于改进鲸鱼算法的光储直柔系统成本优化方法及装置
CN117424265A (zh) * 2023-09-26 2024-01-19 深圳市华宝新能源股份有限公司 电动汽车充电及储能系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205610313U (zh) * 2016-05-13 2016-09-28 王晓民 一种双向储能逆变系统
CN107517001A (zh) * 2017-09-20 2017-12-26 重庆聚陆新能源有限公司 一种可重构的dc/dc变换器
CN107979160A (zh) * 2017-12-27 2018-05-01 广东产品质量监督检验研究院 一种光伏储能式直流充电柱及充电方法
CN112803570A (zh) * 2021-03-22 2021-05-14 阳光电源股份有限公司 一种储能系统及其控制方法
KR20230094202A (ko) * 2021-12-20 2023-06-28 주식회사 늘디딤 태양광 및 계통전력 겸용 전기차 충전시스템
CN116681468A (zh) * 2023-07-27 2023-09-01 国网浙江省电力有限公司营销服务中心 基于改进鲸鱼算法的光储直柔系统成本优化方法及装置
CN117424265A (zh) * 2023-09-26 2024-01-19 深圳市华宝新能源股份有限公司 电动汽车充电及储能系统

Also Published As

Publication number Publication date
CN117424265A (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
CN111463807B (zh) 一种分布式直流耦合制氢系统及其控制方法
WO2023029335A1 (zh) 一种光储充系统的参数配置方法及终端
WO2025066041A1 (zh) 电动汽车充电及储能系统
US12015293B2 (en) Multi-port energy storage battery
WO2012144358A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
CN102882370A (zh) 双向双输入buck直流变换器及其功率分配方法
CN212921195U (zh) 新能源移动储能箱的供电系统
CN111231713A (zh) 一种电动汽车充放电系统及控制方法
Zolfi et al. A novel three-port DC-DC converter for integration of PV and storage in zonal DC microgrids
WO2025097784A1 (zh) 一种混合储能系统及其控制方法
Liu et al. Multiport DC/DC Converter for stand-alone photovoltaic lighting system with battery storage
WO2025130528A1 (zh) 功率分配装置、充电设备、储能设备和充电系统
CN222022560U (zh) 一种不间断风光储充电桩系统
TW202201926A (zh) 整合式通訊電源系統
CN210297273U (zh) 一种户用式多微源一体化能量变换装置
CN117498414A (zh) 一种光伏与储能配合实现通信基站节电降费的系统
WO2024255013A1 (zh) 一种智能家庭储能系统及其实现方法
CN211859616U (zh) 一种储能充电一体化系统
CN103312160A (zh) 双向双输入cuck/sepic直流变换器及其功率分配方法
CN209948707U (zh) 一种双向主动均衡电路
CN119142190B (zh) 储充一体装置、充电控制方法、充电桩及充电系统
CN112152196A (zh) 一种低压七端口电能路由器转换装置及其转换方法
CN222147556U (zh) 一种逆变器电路、光伏系统及用电设备
CN219980490U (zh) 一种可多途径充电的储能系统
CN223443339U (zh) 充放电智能切换的变电站电动汽车充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24869612

Country of ref document: EP

Kind code of ref document: A1