WO2025055023A1 - 电池单元及其制备方法、环形电池、电池、电池模组和用电设备 - Google Patents
电池单元及其制备方法、环形电池、电池、电池模组和用电设备 Download PDFInfo
- Publication number
- WO2025055023A1 WO2025055023A1 PCT/CN2023/121878 CN2023121878W WO2025055023A1 WO 2025055023 A1 WO2025055023 A1 WO 2025055023A1 CN 2023121878 W CN2023121878 W CN 2023121878W WO 2025055023 A1 WO2025055023 A1 WO 2025055023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shell wall
- battery cell
- battery
- cell according
- inner shell
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/213—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention belongs to the technical field of lithium batteries, and in particular relates to a battery unit and a preparation method thereof, a ring-shaped battery, a battery, a battery module and an electrical device.
- Lithium-ion batteries have the advantages of light weight, high energy density, long cycle life and high safety performance, and have become the mainstream battery.
- lithium-ion batteries are square shell batteries, cylindrical batteries and soft pack batteries.
- cylindrical batteries their processing is highly automated, with high production efficiency, good consistency and relatively low cost.
- lithium-ion batteries At present, many industries have adopted lithium-ion batteries, and the working conditions in which lithium-ion batteries are used are becoming more and more complex. For example, in certain working conditions, lithium-ion batteries may be subjected to severe vibration or external impact, which may easily cause the electrical connection between at least one pole of the bare cell in the lithium-ion battery and the battery casing to fail.
- the present invention provides a battery unit and a preparation method thereof, a ring-shaped battery, a battery, a battery module and an electrical device, which are at least used to improve the reliability of the electrical connection between one pole of a bare battery core and a battery casing.
- the present invention provides a battery, comprising:
- a battery housing comprising an outer shell wall and an inner shell wall disposed inside the outer shell wall, a portion of the tube wall of the inner shell wall protrudes inward to form a protrusion, and an electrical connection space is formed on an outward side of the protrusion;
- a bare battery cell sleeved between the outer shell wall and the inner shell wall;
- a first busbar is arranged at the bottom of the outer shell wall, and the first busbar includes an electrode connecting portion and a first pole lug connecting portion, the first pole lug connecting portion is used to electrically connect the pole lug at one end of the bare battery cell, the electrode connecting portion is at least partially located in the electrical connection space, and at least part of the electrode connecting portion located in the electrical connection space is electrically connected to the bottom of the outer shell wall.
- the electrode connecting portion is provided with an overload narrowing zone.
- the overload narrowing zone includes a narrowing hole arranged in the electrode connecting portion, and/or a narrowing groove arranged at the edge of the electrode connecting portion.
- an insulating gasket is provided between the bottom of the outer shell wall and the first busbar, and in an orthographic projection perpendicular to the axis of the inner shell wall, the first pole lug connection portion and the overload narrowing zone are both located within the insulating gasket.
- an insulating layer is disposed on the outer side of the first busbar, and the insulating layer extends at least from the top of the insulating gasket to the bottom of the bare cell and covers the outer side of the bottom of the bare cell.
- the outer edge of the insulating layer coincides with the outer edge of the insulating gasket, or is located inside the outer edge of the insulating gasket.
- the protrusion passes through both ends of the inner shell wall.
- the electrode connecting portion is fixed to the bottom of the shell wall by welding, and, in an orthographic projection perpendicular to the axial direction, the welding position is located within the electrical connection space.
- two or more protrusions are provided in the circumferential direction of the inner shell wall, and the electrode connecting portions are provided in one-to-one correspondence with each other.
- the two or more protrusions are evenly arranged in the circumferential direction.
- the shape of the electrical connection space is a triangle, a quadrilateral, a polygon, an arc or a U shape.
- one end of the inner shell wall is closed and the other end is open; or, both ends of the inner shell wall are open.
- the wall thickness of the protrusion is less than or equal to the wall thickness of the remaining parts of the inner shell wall.
- the inner shell wall is provided with a hole, and the hole extends along the axis of the inner shell wall.
- the hole is a heat dissipation hole.
- the cross section of the hole is a circle, a regular polygon, an ellipse or a non-equilateral polygon.
- the cross section of the outer shell wall and/or the inner shell wall is a circle, a regular polygon, an ellipse or a non-equilateral polygon.
- the maximum straight-line distance between any two points on the hole cross section is 0.11-0.65 of the maximum straight-line distance between any two points on the shell wall cross section.
- a plurality of heat dissipation protrusions are provided on the hole wall of the hole.
- a second bus is provided at one end of the bare battery cell facing away from the first bus, and the second bus includes a second pole lug connection portion and a pole post connection portion; the second pole lug connection portion is electrically connected to the pole lug of the bare battery cell, and the pole post connection portion is electrically connected to the pole post of the battery unit.
- it further includes an end cover, on which the pole is arranged; and/or, the end cover is provided with a liquid injection hole and an explosion-proof valve.
- the utility model provides a ring-shaped battery, comprising the above-mentioned battery unit.
- the outer shell wall and the inner shell wall are arranged to form a cavity for accommodating the bare battery cell, and the cross-sectional shape of the cavity is annular.
- the utility model provides a battery, including the above-mentioned annular battery.
- the utility model provides a battery module, comprising a plurality of the above-mentioned annular batteries, wherein the plurality of the annular batteries are connected in series and/or in parallel; or, comprising a plurality of the above-mentioned batteries, wherein the plurality of the batteries are connected in series and/or in parallel.
- the utility model provides an electrical device, comprising a plurality of the above-mentioned annular batteries; or, comprising a plurality of the above-mentioned batteries; or, comprising the above-mentioned battery module.
- the present invention provides a method for preparing the above-mentioned battery cell, comprising the following steps:
- the welding needle is controlled to extend from the electrical connection space to the bottom of the shell wall, and the end of the welding needle is in the electrical connection space, the electrode connecting part is pressed against the bottom of the shell wall, and the electrode connecting part is welded to the bottom of the shell wall.
- the welding includes laser welding, ultrasonic welding, resistance welding, electromagnetic welding, friction welding or resistance welding.
- the electrode connection portion of the first busbar electrically connected to the bare battery cell is at least partially arranged in the electrical connection space, and the welding needle of the welding equipment extends from the electrical connection space into the outer The bottom of the shell wall, and the end of the welding needle is in the electrical connection space, the electrode connecting part is pressed against the bottom of the shell wall to weld the electrode connecting part to the bottom of the shell wall, which can improve the welding quality of the electrode connecting part and the bottom of the shell wall, and then improve the reliability of the connection between the electrode connecting part and the bottom of the shell wall, avoid the separation of the electrode connecting part and the bottom of the shell wall, and cause the problem of electrical connection failure. Therefore, at least the reliability of the electrical connection between one pole of the bare battery cell and the battery shell is improved.
- FIG1 is a perspective view of a battery provided in an embodiment of the present invention.
- FIG2 is a top view of FIG1 ;
- Fig. 3 is a cross-sectional view of the A-A portion of Fig. 2;
- Fig. 4 is a cross-sectional view of the B-B portion of Fig. 3;
- FIG5 is a perspective view of a battery housing provided in an embodiment of the present invention.
- FIG6 is a perspective view of a battery housing provided by another embodiment of the present invention.
- FIG7 is a front view of a first bus provided by an embodiment of the present invention.
- FIG8 is a front view of a first bus provided by another embodiment of the present invention.
- FIG9 is a cross-sectional view corresponding to the B-B portion in FIG2 provided by another embodiment of the present invention.
- FIG10 is a cross-sectional view corresponding to the B-B portion in FIG2 provided by another embodiment of the present invention.
- FIG11 is a cross-sectional view corresponding to the B-B portion in FIG2 provided by another embodiment of the present invention.
- FIG12 is a schematic diagram of the assembly of a second busbar and an end cover provided in an embodiment of the present invention.
- FIG. 13 is a flow chart of a method for preparing a battery provided in an embodiment of the present invention.
- Battery housing 1 outer shell wall 11, inner shell wall 12, protrusion 121, electrical connection space 122, Hole 123, end cover 2, pole 21, injection hole 22, explosion-proof valve 23, bare battery cell 3, first bus 4, electrode connection part 41, first pole ear connection part 42, narrowing hole 43, narrowing groove 44, insulating gasket 5, insulating layer 6, second bus 7, second pole ear connection part 71, pole connection part 72.
- a battery unit provided in an embodiment of the present invention includes:
- a battery housing 1 comprising an outer shell wall 11 and an inner shell wall 12 disposed inside the outer shell wall 11, a portion of the inner shell wall 12 protrudes inwardly to form a protrusion 121, and an electrical connection space 122 is formed on an outward side of the protrusion 121;
- protrusions 121 and electrical connection spaces 122 are provided; in the example shown in FIG. 6 , four protrusions 121 and electrical connection spaces are provided. 122; of course, in other examples, other numbers of protrusions 121 and electrical connection spaces 122 may also be provided.
- the battery housing 1 can be made of metal, such as steel, aluminum, and aluminum alloy, etc. On the one hand, it can protect the bare battery cell 3 disposed therein, and on the other hand, it can also serve as one of the electrodes of the battery, such as the negative electrode or the positive electrode.
- At least one end of the battery housing 1 is open, and an end cover 2 may be welded to the opening.
- the end cover 2 may be provided with a pole 21, a liquid injection hole 22, etc.
- the outer shell wall 11 and the inner shell wall 12 may both be annular structures, and the inner shell wall 12 may form a hole 123 located in the center, and the hole 123 extends along the axis of the inner shell wall 12, which may be used as a heat dissipation hole for heat dissipation.
- the outer shell wall 11 and the inner shell wall 12 may be an integral structure, such as formed by casting or stamping a metal plate; referring to FIG. 9 , FIG. 10 or FIG. 11 , the outer shell wall 11 and the inner shell wall 12 may also be a two-body structure, and the two-body structure referred to here means that the outer shell wall 11 and the inner shell wall 12 are two independent components.
- the inner shell wall 12 and the outer shell wall 11 may be connected together by welding.
- the inner shell wall 12 can be directly welded to the bottom plate of the outer shell wall 11, and the bottom plate of the outer shell wall 11 is provided with a hole connected to the hole 123;
- the outer shell wall 11 is only an annular wall, the inner shell wall 12 can be connected to the outer shell wall 11 with the help of an end cover, for example, one end of the inner shell wall 12 is welded to the end cover, and the end cover is welded to one end of the outer shell wall 11, and at this time, one end of the end cover can be provided with a hole connected to the hole 123.
- the cross section of the outer shell wall 11 may be circular, regular polygonal, elliptical or non-equilateral polygonal.
- the cross section of the inner shell wall 12 may also be circular, regular polygonal, elliptical or non-equilateral polygonal.
- the cross section of the hole 123 may also be circular, regular polygonal, elliptical or non-equilateral polygonal.
- Part of the tube wall of the inner shell wall 12 protrudes inward to form a protrusion 121.
- the surface area of the inner side of the inner shell wall 12 can be increased, which is beneficial to improve the heat dissipation capacity of the center of the inner shell wall 12 and is beneficial to heat dissipation in the middle of the battery.
- an electrical connection space 122 can be formed on the outward side thereof. The electrical connection space 122 can be used to store a certain amount of electrolyte, so as to increase the amount of electrolyte without increasing the volume of the battery.
- the inner side of the bare cell 3 squeezes the inner shell wall 12.
- the inner shell wall 12 will deform after being squeezed, and shrink in the radial direction to offset the radial inward deformation of the bare cell 3, so as to avoid the bare cell 3 only expanding outward in the radial direction due to the rigid structure of the inner shell wall 12, causing the battery case 1 to deform outward.
- the electrical connection space 122 can also be used as a storage space for electrolyte and a buffer space for the bare cell 3 when it expands thermally.
- a cavity is formed between the outer shell wall 11 and the inner shell wall 12 , the cross-sectional shape of the cavity is annular, and the cavity at least serves as an installation space for the bare battery cell 3 .
- the bare battery core 3 is sleeved between the outer shell wall 11 and the inner shell wall 12, that is, located in the above-mentioned installation space.
- the cross section of the bare battery core 3 can be circular, regular polygonal, elliptical or non-equilateral polygonal.
- the first busbar 4 is arranged at the bottom of the outer shell wall 11, and the first busbar 4 includes a first pole ear connection part 42 and an electrode connection part 41, the first pole ear connection part 42 is used to electrically connect the pole ear at one end of the bare battery cell 3, and the electrode connection part 41 is at least partially located in the electrical connection space 122, and at least part of the electrode connection part 41 located in the electrical connection space 122 is electrically connected to the bottom of the outer shell wall 11.
- the first pole ear connection portion 42 of the first bus 4 is welded and fixed to the pole ear at one end of the bare battery cell 3, and the electrode connection portion 41 is welded and fixed to the bottom of the outer shell wall 11 in the electrical connection space 122; that is, the pole ear at one end of the bare battery cell 3 is electrically connected to the bottom of the outer shell wall 11 through the first bus 4, and the outer shell wall 11 serves as one of the poles of the battery, such as the positive pole or the negative pole.
- the electrode connection part 41 of the first busbar 4 electrically connected to the bare battery cell 3 is at least partially arranged in the electrical connection space 122, and the welding needle of the welding equipment extends from the electrical connection space 122 to the bottom of the shell wall 11, and the end of the welding needle is in the electrical connection space 122, and the electrode connection part 41 is pressed against the bottom of the shell wall 11 to weld the electrode connection part 41 to the bottom of the shell wall 11, which can improve the welding quality of the electrode connection part 41 and the bottom of the shell wall 11, thereby improving the reliability of the connection between the electrode connection part 41 and the bottom of the shell wall 11, and avoiding the problem of separation of the electrode connection part 41 from the bottom of the shell wall 11, which leads to electrical connection failure. Therefore, at least the reliability of the electrical connection between one pole of the bare battery cell 3 and the battery housing 1 is improved.
- the electrode connecting portion 41 is provided with an overload narrowing area.
- the electrode connecting part 41 By setting an overload narrowing zone at the electrode connecting part 41, during the charging and discharging process, if the current increases abnormally, the electrode connecting part 41 will melt in the overload narrowing zone, causing the first pole ear connecting part 42 of the first bus 4 and the electrode connecting part 41 to be short-circuited, that is, one of the poles of the battery is in a short-circuited state, which can avoid the bare battery cell 3 from heating up too high due to excessive current and causing combustion, explosion, etc. Therefore, by setting an overload narrowing zone at the electrode connecting part 41, the safety of the battery can be improved.
- the overload narrowing area is a narrowing hole 43 provided in the electrode connecting portion 41 .
- the narrowing hole 43 may be a through hole or a blind hole, and a through hole is preferably used.
- the overload narrowing zone is a narrowing groove 44 disposed at the edge of the electrode connecting portion 41 .
- an insulating gasket 5 is provided between the bottom of the outer shell wall 11 and the first busbar 4 , and in the orthographic projection perpendicular to the axis of the inner shell wall 12 , the first pole ear connection portion 42 and the overload narrowing zone are both located within the insulating gasket 5 .
- the battery housing 1 and the first bus bar 4 can be in an open-circuit state after the electrode is connected to the overload narrowing area and melts due to an abnormal increase in current in the battery.
- one of the poles of the bare battery cell 3 connected to the first bus bar 4 is also in an open-circuit state with the battery housing 1, thereby preventing the fault from further aggravating.
- an insulating layer 6 may be provided on the first busbar 4 except for the electrical connection position, and an insulating block and other structures may be provided between the first busbar 4 and the bottom of the shell wall 11, which are not listed here one by one.
- an insulating layer 6 is provided on the outer side of the first busbar 4 , and the insulating layer 6 extends at least from the top of the insulating gasket 5 to the bottom of the bare cell 3 , and covers the outer side of the bottom of the bare cell 3 .
- the outer side of the first bus bar 4 and the bottom of the bare cell 3 are covered by at least the insulating layer 6, so that the outer side of the first bus bar 4 and the outer side of the bare cell 3 are insulated from the inner side of the outer shell wall 11.
- the fault will not be further aggravated due to the electrical connection between the outer side of the first bus bar 4 and the outer side of the bare cell 3 and the inner side of the outer shell wall 11.
- the outer edge of the insulating layer 6 coincides with the outer edge of the insulating gasket 5 , or is located inside the outer edge of the insulating gasket 5 .
- the outer edge of the insulating layer 6 coincides with the outer edge of the insulating gasket 5, or is located inside the outer edge of the insulating gasket 5, so that a certain distance can be maintained between the outer side of the first bus 4 and the outer side of the bare battery cell 3 and the inner side of the outer shell wall 11, thereby avoiding the occurrence of conductive connection between the outer side of the first bus 4 and the outer side of the bare battery cell 3 and the inner side of the outer shell wall 11.
- the protrusion 121 passes through both ends of the inner shell wall 12 .
- each protrusion 121 is provided with the electrode connecting portion 41 in a one-to-one correspondence.
- the size of a single electrode connection part 41 can be reduced while satisfying the current transmission requirements between the first pole ear connection part 42 and the shell wall 11.
- the reduction in the size of a single electrode connection part 41 also reduces the current required for its fusing. Therefore, according to the specific conditions of the battery, the size of a single electrode connection part 41 can be designed to be able to be fused with a current that exceeds a small proportion of the rated current of the single electrode connection part 41, so as to improve safety performance.
- the rated current of a single electrode connection part 41 can be considered as the current value of the maximum rated current of the battery divided by the number of electrode connection parts 41.
- the proportion of the fusing current of a single electrode connection part 41 exceeding the rated current of the single electrode connection part 41 can be determined according to actual conditions, for example, but not limited to, the rated current of a single electrode connecting portion 41 may be exceeded by 5%, 8%, 10%, etc.
- the two or more protrusions 121 are evenly arranged in the circumferential direction.
- the shape of the electrical connection space 122 is a triangle, a quadrilateral, a polygon, an arc or a U.
- the shape of the electrical connection space 122 is a quadrilateral, specifically, a rectangle.
- one end of the inner shell wall 12 is closed and the other end is open; or, both ends of the inner shell wall 12 are open.
- the above-mentioned inner shell wall 12 itself can be closed at one end and open at the other end to form a hole 123 in the form of a blind hole, and the hole 123 is used to dissipate heat to the middle part of the battery.
- the bottom plate or end cover of the outer shell wall 11 is provided with a hole connected to the open end of the heat dissipation 123, so that the hole 123 dissipates heat to the middle part of the battery; in other examples, at least as shown in Figure 10, the above-mentioned inner shell wall 12 itself can be open at both ends, and one end thereof can be closed by other external components, for example, one end thereof is closed by the battery end cover or the bottom plate of the outer shell wall 11 to form a blind hole, and the blind hole can be used as the hole 123 to dissipate heat to the middle part of the battery.
- both ends of the inner shell wall 12 are open to form a through hole, which can be used as hole 123, and the bottom plate or end cover of the outer shell wall 11 is provided with a hole connected to hole 123, so that hole 123 dissipates heat to the middle of the battery.
- the maximum value of the straight-line distance between any two points on the cross section of the hole 123 is 0.11-0.65 of the maximum value of the straight-line distance between any two points on the cross section of the shell wall 11 .
- the maximum straight-line distance between any two points on the cross section of the hole 123 is 5 mm to 30 mm.
- the maximum straight-line distance between any two points on the cross section of the hole 123 is 8 mm to 25 mm.
- the maximum straight-line distance between any two points on the cross section of the hole 123 is 10 mm to 15 mm.
- the maximum value of the straight-line distance between any two points on the cross section of the hole 123 is 5.15mm, 5.3mm, 6.25mm, 7mm, 8.66mm, 13mm, 15.35mm, 18.7mm, 19mm, 22.9mm, 24mm, 28.4mm, 29.46mm, etc.
- the maximum value of the straight-line distance between any two points on the cross section of the hole 123 can be determined according to actual needs, as long as it satisfies that the maximum value of the straight-line distance between any two points on the cross section of the hole 123 is 0.11-0.65 of the maximum value of the straight-line distance between any two points on the cross section of the shell wall 11 of the battery shell 1.
- the maximum value of the straight-line distance between any two points on the cross section of the hole 123 can be selected to be slightly larger, that is, the maximum value of the straight-line distance between any two points on the cross section of the hole 123 is positively correlated with the length of the battery cell, so that the cooling medium can perform sufficient heat exchange in the hole 123 to take away the heat from the center of the battery cell to the maximum extent, thereby improving the heat dissipation effect on the battery cell.
- the heat dissipation of the cooling medium in the hole 123 can be achieved by inputting the cooling medium through a liquid cooling pipe, and the cooling medium dissipates heat to the center of the battery unit, or by heat conduction such as a cooling column to achieve heat dissipation to the center of the battery unit.
- a plurality of heat dissipation protrusions are provided on the hole wall of the hole 123.
- the surface area of the hole wall of the hole 123 is increased.
- the area in contact with the cooling medium also increases accordingly, and the area for heat exchange increases accordingly.
- the heat in the middle of the battery cell can be fully heat exchanged with the cooling medium flowing in the hole 123 to take away the heat in the middle of the battery cell and reduce the temperature of the battery equipped with the battery cell during charging and discharging.
- each of the heat dissipation protrusions is an annular protrusion arranged around the hole wall of the hole 123.
- the heat dissipation protrusion is arranged as an annular protrusion around the hole wall of the hole 123, which can dissipate heat evenly in the circumferential direction of the hole wall.
- the heat dissipation protrusion can also be a protrusion structure in a dot shape, a column shape or other shapes, and is not limited to the annular protrusion in the above implementation manner.
- the wall thickness of the protrusion 121 is set to be less than or equal to the wall thickness of the rest of the inner shell wall 12. On the one hand, it is easy to process. On the other hand, the radial stiffness of the protrusion 121 can be made less than or equal to the rest of the inner shell wall 12, so that when the inner shell wall 12 is squeezed radially inward by the bare battery cell 3, it is easy for the inner shell wall 12 to deform to offset the radial inward deformation of the bare battery cell 3.
- the second busbar 7 is respectively fixed to the pole lug at the other end of the bare cell 3 and the pole 21 connected to the cover plate 2 by welding.
- the second pole lug connection portion 71 is an annular connection portion, and a pole connection portion 72 extends outward from the second pole lug connection portion 71 .
- the pole connection portion 72 may be an electrical connection sheet, and the electrical connection sheet is electrically connected to the pole 21 .
- the second pole ear connection part 71 can be welded to the pole ear at the other end of the bare battery cell 3 first, and then the pole post connection part 72 can be welded to the back side of the pole post 21 on the cover plate 2, and then the cover plate 2 can be flipped over and covered on the opening of the battery shell 1, and then the end cover 2 can be welded to the outer shell wall 11.
- an explosion-proof valve 23 is further provided on the end cover 2 .
- the utility model provides an annular battery, which includes the above-mentioned battery cell, and the cross-sectional shapes of the outer shell wall 11 and the inner shell wall 12 of the battery cell included in the annular battery are both annular, that is, the cross-sectional shape of the cavity formed by the outer shell wall 11 and the inner shell wall 12 is annular, so that the annular battery with the battery cell is an annular battery as a whole.
- the utility model provides a battery module, comprising a plurality of annular batteries as described above, wherein the plurality of annular batteries are connected in series and/or in parallel.
- the number of ring batteries to be used and their series-parallel relationship can be determined based on the output voltage and capacity of the battery module.
- the battery module includes a plurality of the above-mentioned batteries, which are connected in series and/or in parallel.
- the number of batteries to be used and their series-parallel relationship can be determined according to the output voltage and capacity of the battery module.
- the utility model provides an electrical device, including the above-mentioned annular battery; or, including the above-mentioned battery; or, including the above-mentioned battery module.
- Electrical equipment includes, but is not limited to, new energy vehicles (electric vehicles, hybrid vehicles, etc.), digital products, etc.
- the present invention provides a method for preparing the above-mentioned battery, comprising the following steps:
- the welding includes laser welding, ultrasonic welding, resistance welding, electromagnetic welding, friction welding, and resistance welding.
- a hole is provided at the end of the welding needle, and a laser generator is provided in the hole, and the laser generator generates laser for welding.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, unless otherwise specified, “plurality” means two or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
一种电池单元及其制备方法、环形电池、电池、电池模组和用电设备,其中,电池单元包括电池壳体(1),电池壳体包括外壳壁(11)以及设置于所述外壳壁内的内壳壁(12),内壳壁的部分管壁向内凸起形成凸起部(121),凸起部向外的一侧形成有电连接空间(122);裸电芯(3),套设于外壳壁和内壳壁之间;第一汇流排(4),设置于外壳壁的底部,第一汇流排包括电极连接部(41)和第一极耳连接部(42),第一极耳连接部(42)用于电连接裸电芯(3)一端的极耳,电极连接部(41)至少部分位于电连接空间(122)内,且位于电连接空间(122)内的至少部分电极连接部电连接外壳壁的底部。上述方案至少可以提高裸电芯其中一极与电池壳体电连接的可靠性。
Description
本申请基于申请号为202311183221.2、申请日为2023年9月13日和申请号为202322491537.X、申请日为2023年9月13日的中国专利申请提出,并要求该两件中国专利申请的优先权,该两件中国专利申请的全部内容在此引入本申请作为参考。
本发明属于锂电池技术领域,具体涉及一种电池单元及其制备方法、环形电池、电池、电池模组和用电设备。
锂离子电池具有重量轻、能量密度高、循环寿命长、安全性能高等优点,已经成为主流的电池。
锂离子电池的主要形态有方壳电池、柱状电池和软包电池。对于柱状电池来说,其加工的自动化程度高、生产效率高、一致性好、成本相对较低。
目前,很多行业都采用了锂离子电池,锂离子电池所应用的工况环境也越来越复杂,例如,在某些工况环境中,锂离子电池会受到剧烈的震动或外力冲击等,容易造成锂离子电池内裸电芯至少其中一极与电池壳体电连接失效。
发明内容
本发明提供一种电池单元及其制备方法、环形电池、电池、电池模组和用电设备,至少用于提高裸电芯其中一极与电池壳体电连接的可靠性。
第一方面,本发明提供一种电池,包括:
电池壳体,所述电池壳体包括外壳壁以及设置于所述外壳壁内的内壳壁,所述内壳壁的部分管壁向内凸起形成凸起部,所述凸起部向外的一侧形成有电连接空间;
裸电芯,套设于所述外壳壁和所述内壳壁之间;
第一汇流排,设置于所述外壳壁的底部,所述第一汇流排包括电极连接部和第一极耳连接部,所述第一极耳连接部用于电连接所述裸电芯一端的极耳,所述电极连接部至少部分位于所述电连接空间内,且位于所述电连接空间内的至少部分所述电极连接部电连接所述外壳壁的底部。
作为可实现方式,所述电极连接部设置有过载减窄区。
作为可实现方式,所述过载减窄区包括设置于所述电极连接部内的减窄孔,和/或设置于所述电极连接部边缘的减窄槽。
作为可实现方式,所述外壳壁的底部与所述第一汇流排之间设置有绝缘垫片,且在垂直于所述内壳壁轴线的正投影中,所述第一极耳连接部和过载减窄区均位于所述绝缘垫片内。
作为可实现方式,所述第一汇流排的外侧设置有绝缘层,所述绝缘层至少从所述绝缘垫片的顶部延伸至所述裸电芯的底部,且包覆在所述裸电芯底部的外侧。
作为可实现方式,在所述正投影中,所述绝缘层的外侧边缘与所述绝缘垫片的外侧边缘重合,或位于所述绝缘垫片的外侧边缘内。
作为可实现方式,在所述内壳壁的轴向上,所述凸起部贯通所述内壳壁的两端。
作为可实现方式,所述电极连接部与所述外壳壁的底部焊接固定,且,在垂直于所述轴向的正投影中,焊接的位置位于所述电连接空间内。
作为可实现方式,在所述内壳壁的圆周方向上,设置有两个以上所述凸起部,各所述凸起部一一对应的设置有所述电极连接部。
作为可实现方式,两个以上所述凸起部在所述圆周方向上均匀排布。
作为可实现方式,作为可实现方式,在垂直于所述内壳壁轴线的正投影中,所述电连接空间的形状为三角形、四边形、多边形、弧形或U形。
作为可实现方式,所述内壳壁的一端封闭,另一端开放;或者,所述内壳壁的两端均开放。
作为可实现方式,所述凸起部的壁厚小于或等于所述内壳壁其余部位的壁厚。
作为可实现方式,所述内壳壁设置有孔,所述孔沿所述内壳壁的轴线延伸。
作为可实现方式,所述孔为散热孔。
作为可实现方式,所述孔的横截面为圆形、正多边形、椭圆形或非等边的多边形。
作为可实现方式,所述外壳壁和/或所述内壳壁的横截面为圆形、正多边形、椭圆形或非等边的多边形。
作为可实现方式,所述裸电芯的横截面为圆形、正多边形、椭圆形或非等边的多边形。
作为可实现方式,所述孔横截面上任意两点之间的直线距离最大值为所述外壳壁横截面上任意两点之间的直线距离最大值的0.11-0.65
作为可实现方式,所述孔的孔壁上设置有多个散热凸起。
作为可实现方式,所述裸电芯背离所述第一汇流排的一端设置有第二汇流排,所述第二汇流排包括第二极耳连接部和极柱连接部;所述第二极耳连接部与所述裸电芯的极耳电连接,所述极柱连接部与所述电池单元的极柱电连接。
作为可实现方式,还包括端盖,所述端盖上设有所述极柱;和/或,所述端盖上设有注液孔和防爆阀。
第二方面,本实用新型提供一种环形电池,包括上述的电池单元。
作为可实现方式,所述外壳壁和所述内壳壁围设形成容纳所述裸电芯的空腔,所述空腔的横截面形状为环形。
第三方面,本实用新型提供一种电池,包括上述的环形电池。
第四方面,本实用新型提供一种电池模组,包括多个上述的环形电池,多个所述环形电池串联和/或并联;或,包括多个上述的电池,多个所述电池串联和/或并联。
第五方面,本实用新型提供一种用电设备,包括多个上述的环形电池;或,包括多个上述的电池;或,包括上述的电池模组。
第六方面,本发明提供一种上述的电池单元的制备方法,包括以下步骤:
将第一汇流排放置于电池壳体内,且使所述第一汇流排的电极连接部至少部分位于电连接空间内;
控制焊针从所述电连接空间伸入到所述外壳壁的底部,且所述焊针的端部于所述电连接空间内,将所述电极连接部压在所述外壳壁的底部,并将所述电极连接部与所述外壳壁的底部进行焊接。
作为可实现方式,所述焊接包括激光焊、超声波焊接、电阻焊、电磁焊接、摩擦焊或电阻焊。
上述方案,通过将与裸电芯电连接的第一汇流排的电极连接部至少部分设置于电连接空间内,焊接设备的焊针从电连接空间伸入到外
壳壁的底部,且焊针的端部于电连接空间内,将电极连接部压在外壳壁的底部,以将电极连接部与外壳壁的底部进行焊接,可以提高电极连接部与外壳壁的底部的焊接质量,进而提高电极连接部与外壳壁的底部连接的可靠性,避免电极连接部与外壳壁的底部分离,而导致电连接失效的问题发生,因此,至少提高了裸电芯其中一极与电池壳体电连接的可靠性。
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为本发明实施例提供的电池的立体图;
图2为图1的俯视图;
图3为图2的A-A部位的剖视图;
图4为图3的B-B部位的剖视图;
图5为本发明实施例提供的电池壳体的立体图;
图6为本发明另一实施例提供的电池壳体的立体图;
图7为本发明实施例提供的第一汇流排的主视图;
图8为本发明另一实施例提供的第一汇流排的主视图;
图9为本发明另一实施例提供的对应于图2中B-B部位的剖视图;
图10为本发明另一实施例提供的对应于图2中B-B部位的剖视图;
图11为本发明另一实施例提供的对应于图2中B-B部位的剖视图;
图12为本发明实施例提供的提供的第二汇流排及端盖的装配示意图;
图13为本发明实施例提供的电池的制备方法的流程图。
附图标记说明:
电池壳体1,外壳壁11,内壳壁12,凸起部121,电连接空间122,
孔123,端盖2,极柱21,注液孔22,防爆阀23,裸电芯3,第一汇流排4,电极连接部41,第一极耳连接部42,减窄孔43,减窄槽44,绝缘垫片5,绝缘层6,第二汇流排7,第二极耳连接部71,极柱连接部72。
电池壳体1,外壳壁11,内壳壁12,凸起部121,电连接空间122,
孔123,端盖2,极柱21,注液孔22,防爆阀23,裸电芯3,第一汇流排4,电极连接部41,第一极耳连接部42,减窄孔43,减窄槽44,绝缘垫片5,绝缘层6,第二汇流排7,第二极耳连接部71,极柱连接部72。
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
如图1-图5所示,本发明实施例提供的电池单元,包括:
电池壳体1,所述电池壳体1包括外壳壁11以及设置于所述外壳壁11内的内壳壁12,所述内壳壁12的部分管壁向内凸起形成凸起部121,所述凸起部121向外的一侧形成有电连接空间122;
其中,图5所示的示例中,设置了两个凸起部121以及电连接空间122;图6所示的示例中,设置了四个凸起部121以及电连接空间
122;当然,在其他示例中,还可以设置其他数量的凸起部121以及电连接空间122。
一般地,电池壳体1可以为金属材质,如钢、铝以及铝合金等。其一方面可以对其内设置的裸电芯3起到保护作为,另一方面还可以作为电池的其中一极,如负极或正极。
电池壳体1的至少一端开口,该开口上可以焊接端盖2,端盖2上可以设置极柱21、注液孔22等。
其中,外壳壁11与内壳壁12可以均呈环形结构,内壳壁12会形成一个位于中心的孔123,该孔123沿内壳壁12轴线延伸,其可以作为散热孔,用于散热。至少参见图3所示,外壳壁11与内壳壁12可以是一体结构,如通过铸造,或对一块金属板进行冲压而成;另参见图9、图10或图11所示,外壳壁11与内壳壁12还可以是两体结构,这里所指的两体结构是指,外壳壁11与内壳壁12是两个独立的部件。例如,可以通过焊接的方式将内壳壁12与外壳壁11连接在一起。在外壳壁11的底部具有底板的情况下,内壳壁12可以直接焊接在外壳壁11的底板上,外壳壁11的底板开设有与孔123连通的孔;若外壳壁11仅是环形壁时,内壳壁12可以借助端盖与外壳壁11连接在一起,如,内壳壁12的一端焊接在端盖上,端盖焊接在外壳壁11的一端,此时端盖的一端可以开设与孔123连通的孔。
本实施例中,具体的,可以是外壳壁11的横截面为圆形、正多边形、椭圆形或非等边的多边形。相对应地,内壳壁12的横截面也可以为圆形、正多边形、椭圆形或非等边的多边形。孔123的横截面也可以为圆形、正多边形、椭圆形或非等边的多边形。
内壳壁12的部分管壁向内凸起形成凸起部121,通过设置凸起部121,一方面可以增大内壳壁12内侧的表面积,利于提高内壳壁12中心的散热能力,有利于对电池中部进行散热,另一方面可以在其向外的一侧形成有电连接空间122,电连接空间122内可以用于存储一定量的电解液,以在不增大电池体积的情况下,增加电解液的保有量,
另外,在裸电芯3因温度升高产生热膨胀时,裸电芯3的内侧挤压内壳壁12,由于电连接空间122的存在,在内壳壁12收到挤压后,其会发生变形,在径向上发生收缩以抵消裸电芯3在径向上向内的形变量,避免因内壳壁12为刚性结构无法变形,所导致的裸电芯3只能在径向上向外膨胀,造成电池壳体1向外变形。也就是说,上述电连接空间122还可以作为电解液的存储空间以及裸电芯3热膨胀时的缓冲空间。
需要说明的是,外壳壁11与内壳壁12之间围设形成空腔,该空腔的横截面形状为环形,且该空腔至少作为裸电芯3的安装空间。
裸电芯3,套设于所述外壳壁11和所述内壳壁12之间,也即位于上述安装空间内。裸电芯3的横截面可以为圆形、正多边形、椭圆形或非等边的多边形。
至少另参见图7所示,第一汇流排4,设置于所述外壳壁11的底部,所述第一汇流排4包括第一极耳连接部42和电极连接部41,所述第一极耳连接部42用于电连接所述裸电芯3一端的极耳,所述电极连接部41至少部分位于所述电连接空间122内,且位于所述电连接空间122内的至少部分所述电极连接部41电连接所述外壳壁11的底部。
例如,第一汇流排4的第一极耳连接部42与裸电芯3一端的极耳焊接固定,电极连接部41在电连接空间122内与外壳壁11的底部焊接固定;也即,通过第一汇流排4将裸电芯3一端的极耳与外壳壁11的底部进行电连接,外壳壁11作为电池的其中一极,如正极或负极。
上述方案,通过将与裸电芯3电连接的第一汇流排4的电极连接部41至少部分设置于电连接空间122内,焊接设备的焊针从电连接空间122伸入到外壳壁11的底部,且焊针的端部于电连接空间122内,将电极连接部41压在外壳壁11的底部,以将电极连接部41与外壳壁11的底部进行焊接,可以提高电极连接部41与外壳壁11的底部的焊接质量,进而提高电极连接部41与外壳壁11的底部连接的可靠性,避免电极连接部41与外壳壁11的底部分离,而导致电连接失效的问
题发生,因此,至少提高了裸电芯3其中一极与电池壳体1电连接的可靠性。
作为可实现方式,所述电极连接部41设置有过载减窄区。
通过在电极连接部41设置过载减窄区,在充放电过程中,若电流异常增大,则电极连接部41会在过载减窄区熔断,使第一汇流排4的第一极耳连接部42和电极连接部41发生断路,也即,使电池的其中一极处于断路的状态,可以避免因电流过大造成裸电芯3发热过高而出现燃烧、爆炸等情况的发生,因此,通过在电极连接部41设置过载减窄区,可以提高该电池的安全性。
作为可实现方式,如图7所示,过载减窄区为设置于电极连接部41内的减窄孔43,该减窄孔43可以为通孔,也可以为盲孔,优选采用通孔。
作为另一种可实现方式,如图8所示,过载减窄区为设置于电极连接部41边缘的减窄槽44。
作为可实现方式,至少参见图3所示,所述外壳壁11的底部与所述第一汇流排4之间设置有绝缘垫片5,且在垂直于所述内壳壁12轴线的正投影中,第一极耳连接部42和过载减窄区均位于所述绝缘垫片5内。
通过在第一汇流排4与外壳壁11的底部之间设置有绝缘垫片5,可以在电极连接于过载减窄区因电池出现电流异常增大而熔断后,使电池壳体1与第一汇流排4处于断路状态,此时,与第一汇流排4连接的裸电芯3的其中一极,同样与电池壳体1处于断路状态,避免故障进一步加深。
除了可以采用在第一汇流排4与外壳壁11的底部之间设置绝缘垫片5,以使壳体与第一汇流排4在电极连接于过载减窄区熔断后处于断路状态,还可以在第一汇流排4除了电连接的位置之外设置绝缘层6,在第一汇流排4与外壳壁11的底部之间设置绝缘块等结构,这里不一一列举。
作为可实现方式,所述第一汇流排4的外侧设置有绝缘层6,所述绝缘层6至少从所述绝缘垫片5的顶部延伸至所述裸电芯3的底部,且包覆在所述裸电芯3底部的外侧。
采用上述结构,至少通过绝缘层6对第一汇流排4的外侧以及裸电芯3的底部进行包覆,使第一汇流排4的外侧以及裸电芯3的外侧与外壳壁11的内侧之间绝缘,在电极连接于过载减窄区熔断的情况下,不会因第一汇流排4的外侧以及裸电芯3的外侧与外壳壁11的内侧之间存在电连接而导致故障进一步恶化。
作为可实现方式,在所述正投影中,所述绝缘层6的外侧边缘与所述绝缘垫片5的外侧边缘重合,或位于所述绝缘垫片5的外侧边缘内。
绝缘层6的外侧边缘与绝缘垫片5的外侧边缘重合,或位于绝缘垫片5的外侧边缘内,可以使第一汇流排4的外侧以及裸电芯3的外侧与外壳壁11的内侧之间具有一定的距离,避免第一汇流排4的外侧以及裸电芯3的外侧与外壳壁11的内侧出现导电连接的情况出现。
作为可实现方式,在所述内壳壁12的轴向上,所述凸起部121贯通所述内壳壁12的两端。
作为可实现方式,在所述内壳壁12的圆周方向上,设置有两个以上所述凸起部121,各所述凸起部121一一对应的设置有所述电极连接部41。
通过设置多个电极连接部41,在满足第一极耳连接部42和外壳壁11之间电流传输需要的情况下,可以降低单个电极连接部41的尺寸,单个电极连接部41尺寸的减小,其熔断所需的电流也相应的降低,则可以根据电池的具体情况,将单个电极连接部41的尺寸设计为超过单个电极连接部41的额定电流较小比例的电流即可熔断,以提高安全性能。其中,单个电极连接部41的额定电流可以认为是电池最大额定电流除以电极连接部41数量的电流值,单个电极连接部41熔断电流超过单个电极连接部41的额定电流的比例可以根据实际情况确定,例
如但不限于,可以超过单个电极连接部41的额定电流的5%、8%、10%等。
作为可实现方式,两个以上所述凸起部121在所述圆周方向上均匀排布。
作为可实现方式,作为可实现方式,在垂直于所述内壳壁12轴线的正投影中,所述电连接空间122的形状为三角形、四边形、多边形、弧形或U形。该示例中,电连接空间122的形状为四边形,具体地,为矩形。
作为可实现方式,所述内壳壁12的一端封闭,另一端开放;或者,所述内壳壁12的两端均开放。
其中,至少如图9所示,上述内壳壁12自身可以是一端封闭一端开放,以形成盲孔形式的孔123,该孔123用于对电池中部进行散热,此时外壳壁11的底板或端盖设置与散热,123开放的一端连通的孔,以使得孔123对电池中部进行散热;在其他示例中,至少如图10所示,上述内壳壁12自身可以是两端都开放,借由外界的其他部件对其一端进行封闭,例如,其一端通过电池端盖或外壳壁11的底板进行封闭,以形成盲孔,该盲孔可以作为孔123,以对电池中部进行散热。
当然,在其他示例中,至少参见图11所示,内壳壁12的两端均开放,以形成通孔,该通孔可以作为孔123,外壳壁11的底板或端盖设置与孔123连通的孔,以使得孔123对电池中部进行散热。
作为可实现方式,孔123横截面上任意两点之间的直线距离最大值为所述外壳壁11横截面上任意两点之间的直线距离最大值的0.11-0.65。
作为可实现方式,孔123横截面上任意两点之间的直线距离最大值为5mm-30mm。
作为可实现方式,孔123横截面上任意两点之间的直线距离最大值为8mm-25mm。
作为可实现方式,孔123横截面上任意两点之间的直线距离最大值为10mm-15mm。
例如但不限于,孔123横截面上任意两点之间的直线距离最大值为5.15mm、5.3mm、6.25mm、7mm、8.66mm、13mm、15.35mm、18.7mm、19mm、22.9mm、24mm、28.4mm、29.46mm等。孔123横截面上任意两点之间的直线距离最大值可以根据实际需要确定,只要其满足孔123横截面上任意两点之间的直线距离最大值为电池壳体1的外壳壁11横截面上任意两点之间的直线距离最大值的0.11-0.65即可。另外,一般地,电池单元的长度越长,则孔123横截面上任意两点之间的直线距离最大值可以选择稍大的值,即孔123横截面上任意两点之间的直线距离最大值与电池单元的长度正相关,以使得冷却介质可以在孔123内进行充分的热交换,以尽大限度的带走电池单元中心部位的热量,提高对电池单元的散热效果。其中冷却介质在孔123内的散热,可以是通过液冷管道输入冷却介质,冷却介质对电池单元中心部位进行散热,也可以是冷却柱等热传导的方式实现对电池单元中心部位的散热。
作为可实现方式,为了提高该电池单元的散热能力,在孔123的孔壁上设置有多个散热凸起(图中未示出)。通过在孔123的孔壁上设置多个散热凸起,提高了该孔123孔壁的表面积,随着表面积的提高,其与冷却介质接触的面积亦相应的提高,则进行热交换的面积随之提高,该电池单元中部的热量可以与孔123内流动的冷却介质进行充分热交换,来带走该电池单元中部的热量,降低该具备该电池单元的电池充放电时的温度。
作为可实现方式,各所述散热凸起为围绕孔123孔壁设置的环状凸起。散热凸起设置为围绕孔123孔壁的环状凸起,可以在孔壁的周向上均匀的散热。可以理解的是,散热凸起也可以是点状、柱状或者其他形状的凸起结构,并非仅限于上述实现方式中的环状凸起。
作为可实现方式,所述凸起部121的壁厚小于等于所述内壳壁12
其余部位的壁厚,且,所述凸起部121与所述内壳壁12其余部位为一体结构。
将凸起部121的壁厚设置为小于等于内壳壁12其余部位的壁厚,一方面便于加工,另一方面,可以使凸起部121的径向刚度小于等于内壳壁12其余部位,便于内壳壁12在受到裸电芯3径向向内的挤压时,发生形变以抵消裸电芯3径向向内的形变量。
作为可实现方式,所述裸电芯3背离所述第一汇流排7的一端设置有第二汇流排7,如图12所示,所述第二汇流排7包括第二极耳连接部71和极柱连接部72;所述第二极耳连接部71与所述裸电芯3的极耳电连接,所述极柱连接部72与所述电池的极柱21电连接。
例如,第二汇流排7分别与裸电芯3另一端的极耳,以及连接在盖板2上的极柱21进行焊接固定。
作为可实现方式,第二极耳连接部71为环形连接部,第二极耳连接部71向外延伸有极柱连接部72,该极柱连接部72可以为电连接片,所述电连接片与所述极柱21电连接。
在进行连接时,可以先将第二极耳连接部71焊接在裸电芯3另一端的极耳上,然后将极柱连接部72与盖板2上的极柱21的背面焊接,随后将盖板2翻转并盖在电池壳体1的开口上,之后将端盖2与外壳壁11进行焊接。
作为可实现方式,端盖2上还设有防爆阀23。
第二方面,本实用新型提供一种环形电池,该环形电池包括上述的电池单元,而且该环形电池包括的电池单元的外壳壁11和内壳壁12的横截面形状均为环形,也就是使得外壳壁11和内壳壁12之前围设形成的空腔横截面形状为环形,进而使得具有电池单元的环形电池整体为环状的电池。
第三方面,本实用新型提供一种电池,该电池包括上述的环形电池,以实现通过孔123来对电池中部进行更好的散热。
第四方面,本实用新型提供一种电池模组,包括多个如上述的环形电池,多个所述环形电池串联和/或并联。
可以根据电池模组的输出电压以及容量,确定采用的环形电池数量以及其串并联关系。
或者,电池模组包括多个上述的电池,多个所述电池串联和/或并联。可以根据电池模组的输出电压以及容量,确定采用的电池数量以及其串并联关系。
第五方面,本实用新型提供一种用电设备,包括上述的环形电池;或,包括上述的电池;或,包括上述的电池模组。
用电设备例如但不限于新能源车辆(电动车、混合动力车等)、数码类产品等。
第六方面,如图13所示,本发明提供一种上述的电池的制备方法,包括以下步骤:
S1:将第一汇流排4放置于电池壳体内,且使第一汇流排4的电极连接部41至少部分位于电连接空间122内;
S2:控制焊针从所述电连接空间122伸入到所述外壳壁11的底部,且所述焊针的端部于所述电连接空间122内,将所述电极连接部41压在所述外壳壁11的底部,并将所述电极连接部41与所述外壳壁11的底部进行焊接。
作为可实现方式,所述焊接包括激光焊、超声波焊接、电阻焊、电磁焊接、摩擦焊、电阻焊。
需要说明的是,在采用激光焊的方案中,焊针的端部设置有孔,该孔内设置激光发生器,激光发生器产生用于进行焊接激光。
需要理解的是,上文如有涉及术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描
述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (29)
- 一种电池单元,其特征在于,包括:电池壳体(1),所述电池壳体(1)包括外壳壁(11)以及设置于所述外壳壁(11)内的内壳壁(12),所述内壳壁(12)的部分管壁向内凸起形成凸起部(121),所述凸起部(121)向外的一侧形成有电连接空间(122);裸电芯(3),套设于所述外壳壁(11)和所述内壳壁(12)之间;第一汇流排(4),设置于所述外壳壁(11)的底部,所述第一汇流排(4)包括电极连接部(41)和第一极耳连接部(42),所述第一极耳连接部(42)用于电连接所述裸电芯(3)一端的极耳,所述电极连接部(41)至少部分位于所述电连接空间(122)内,且位于所述电连接空间(122)内的至少部分所述电极连接部(41)电连接所述外壳壁(11)的底部。
- 根据权利要求1所述的电池单元,其特征在于,所述电极连接部(41)设置有过载减窄区。
- 根据权利要求2所述的电池单元,其特征在于,所述过载减窄区包括设置于所述电极连接部(41)内的减窄孔(43),和/或设置于所述电极连接部(41)边缘的减窄槽(44)。
- 根据权利要求2或3所述的电池单元,其特征在于,所述外壳壁(11)的底部与所述第一汇流排(4)之间设置有绝缘垫片(5),且在垂直于所述内壳壁(12)轴线的正投影中,所述第一极耳连接部(42)和过载减窄区均位于所述绝缘垫片(5)内。
- 根据权利要求4所述的电池单元,其特征在于,所述第一汇流排(4)的外侧设置有绝缘层(6),所述绝缘层(6)至少从所述绝缘垫片(5)的顶部延伸至所述裸电芯(3)的底部,且包覆在所述裸电芯(3)底部的外侧。
- 根据权利要求5所述的电池单元,其特征在于,在所述正投影 中,所述绝缘层(6)的外侧边缘与所述绝缘垫片(5)的外侧边缘重合,或位于所述绝缘垫片(5)的外侧边缘内。
- 根据权利要求1所述的电池单元,其特征在于,在所述内壳壁(12)的轴向上,所述凸起部(121)贯通所述内壳壁(12)的两端。
- 根据权利要求7所述的电池单元,其特征在于,所述电极连接部(41)与所述外壳壁(11)的底部焊接固定,且,在垂直于所述轴向的正投影中,焊接的位置位于所述电连接空间(122)内。
- 根据权利要求2或3所述的电池单元,其特征在于,在所述内壳壁(12)的圆周方向上,设置有两个以上所述凸起部(121),各所述凸起部(121)一一对应的设置有所述电极连接部(41)。
- 根据权利要求9所述的电池单元,其特征在于,两个以上所述凸起部(121)在所述圆周方向上均匀排布。
- 根据权利要求1-3任一项所述的电池单元,其特征在于,在垂直于所述内壳壁(12)轴线的正投影中,所述电连接空间(122)的形状为三角形、四边形、多边形、弧形或U形。
- 根据权利要求1-3任一项所述的电池单元,其特征在于,所述内壳壁(12)的一端封闭,另一端开放;或者,所述内壳壁(12)的两端均开放。
- 根据权利要求1-3任一项所述的电池单元,其特征在于,所述凸起部(121)的壁厚小于或等于所述内壳壁(12)其余部位的壁厚。
- 根据权利要求1所述的电池单元,其特征在于,所述内壳壁(12)设置有孔(123),所述孔(123)沿所述内壳壁(12)的轴线延伸。
- 根据权利要求14所述的电池单元,其特征在于,所述孔(123)为散热孔。
- 根据权利要求15所述的电池单元,其特征在于,所述孔(123)的横截面为圆形、正多边形、椭圆形或非等边的多边形。
- 根据权利要求1或15所述的电池单元,其特征在于,所述外壳壁(11)和/或所述内壳壁(12)的横截面为圆形、正多边形、椭圆形或非等边的多边形。
- 根据权利要求1或15所述的电池单元,其特征在于,所述裸电芯(5)的横截面为圆形、正多边形、椭圆形或非等边的多边形。
- 根据权利要求14所述的电池单元,其特征在于,所述孔(123)横截面上任意两点之间的直线距离最大值为所述外壳壁(11)横截面上任意两点之间的直线距离最大值的0.11-0.65。
- 根据权利要求14所述的电池单元,其特征在于,所述孔(123)的孔壁上设置有多个散热凸起。
- 根据权利要求14所述的电池单元,其特征在于,所述裸电芯(3)背离所述第一汇流排(4)的一端设置有第二汇流排(7),所述第二汇流排(7)包括第二极耳连接部和极柱连接部;所述第二极耳连接部与所述裸电芯(3)的极耳电连接,所述极柱连接部与所述电池单元的极柱(21)电连接。
- 根据权利要求21所述的电池单元,其特征在于,还包括端盖(2),所述端盖(2)上设有所述极柱(21);和/或,所述端盖(2)上设有注液孔(22)和防爆阀(23)。
- 一种环形电池,其特征在于,包括权利要求1-22任一项所述的电池单元。
- 根据权利要求23所述的环形电池,其特征在于,所述外壳壁(1)和所述内壳壁(12)围设形成容纳所述裸电芯(3)的空腔,所述空腔的横截面形状为环形。
- 一种电池,其特征在于,包括权利要求23或24所述的环形电池。
- 一种电池模组,其特征在于,包括多个如权利要求23或24所述的环形电池,多个所述环形电池串联和/或并联;或,包括多个权利要求25所述的电池,多个所述电池串联和/或并联。
- 一种用电设备,其特征在于,包括多个如权利要求23或24所述的环形电池;或,包括多个权利要求25所述的电池;或,包括权 利要求26所述的电池模组。
- 一种权利要求1-22任一项所述的电池单元的制备方法,其特征在于,包括以下步骤:将第一汇流排(4)放置于电池壳体内,且使所述第一汇流排(4)的电极连接部(41)至少部分位于电连接空间(122)内;控制焊针从所述电连接空间(122)伸入到所述外壳壁(11)的底部,且所述焊针的端部于所述电连接空间(122)内,将所述电极连接部(41)压在所述外壳壁(11)的底部,并将所述电极连接部(41)与所述外壳壁(11)的底部进行焊接。
- 根据权利要求28所述的制备方法,其特征在于,所述焊接包括激光焊、超声波焊接、电阻焊、电磁焊接、摩擦焊或电阻焊。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322491537.XU CN220914386U (zh) | 2023-09-13 | 2023-09-13 | 电池单元、环形电池、电池、电池模组和用电设备 |
CN202311183221.2A CN117039282A (zh) | 2023-09-13 | 2023-09-13 | 电池单元及其制备方法、环形电池、电池、电池模组和用电设备 |
CN202311183221.2 | 2023-09-13 | ||
CN202322491537.X | 2023-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025055023A1 true WO2025055023A1 (zh) | 2025-03-20 |
Family
ID=95020811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/121878 WO2025055023A1 (zh) | 2023-09-13 | 2023-09-27 | 电池单元及其制备方法、环形电池、电池、电池模组和用电设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025055023A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202308085U (zh) * | 2011-11-09 | 2012-07-04 | 深圳市倍特力电池有限公司 | 一种软包装圆柱型电池 |
CN204011491U (zh) * | 2014-06-11 | 2014-12-10 | 惠州市恒晔科技有限公司 | 一种微型圆柱锂离子电池 |
CN111129574A (zh) * | 2019-12-12 | 2020-05-08 | 深圳市东方芯愿新能源有限公司 | 一种一体成型的充电式电池及生产方法 |
CN210778709U (zh) * | 2019-08-29 | 2020-06-16 | 苏州力神能源科技有限公司 | 一种用于存储环形电池包的电池包外壳 |
CN214336793U (zh) * | 2021-03-31 | 2021-10-01 | 蜂巢能源科技(无锡)有限公司 | 一种圆柱电池 |
CN113767516A (zh) * | 2019-08-16 | 2021-12-07 | 株式会社Lg新能源 | 圆柱形电池 |
WO2023063540A1 (ko) * | 2021-10-15 | 2023-04-20 | 주식회사 엘지에너지솔루션 | 배터리의 제조방법 |
CN116325307A (zh) * | 2020-09-22 | 2023-06-23 | 瓦尔达微电池有限责任公司 | 蓄能器电芯 |
-
2023
- 2023-09-27 WO PCT/CN2023/121878 patent/WO2025055023A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202308085U (zh) * | 2011-11-09 | 2012-07-04 | 深圳市倍特力电池有限公司 | 一种软包装圆柱型电池 |
CN204011491U (zh) * | 2014-06-11 | 2014-12-10 | 惠州市恒晔科技有限公司 | 一种微型圆柱锂离子电池 |
CN113767516A (zh) * | 2019-08-16 | 2021-12-07 | 株式会社Lg新能源 | 圆柱形电池 |
CN210778709U (zh) * | 2019-08-29 | 2020-06-16 | 苏州力神能源科技有限公司 | 一种用于存储环形电池包的电池包外壳 |
CN111129574A (zh) * | 2019-12-12 | 2020-05-08 | 深圳市东方芯愿新能源有限公司 | 一种一体成型的充电式电池及生产方法 |
CN116325307A (zh) * | 2020-09-22 | 2023-06-23 | 瓦尔达微电池有限责任公司 | 蓄能器电芯 |
CN214336793U (zh) * | 2021-03-31 | 2021-10-01 | 蜂巢能源科技(无锡)有限公司 | 一种圆柱电池 |
WO2022206894A1 (zh) * | 2021-03-31 | 2022-10-06 | 蜂巢能源科技(无锡)有限公司 | 一种圆柱电池 |
WO2023063540A1 (ko) * | 2021-10-15 | 2023-04-20 | 주식회사 엘지에너지솔루션 | 배터리의 제조방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5356450B2 (ja) | 二次電池 | |
JP6491448B2 (ja) | 二次電池および電池モジュール | |
JP2006040901A (ja) | 二次電池 | |
JP2016189248A (ja) | 角形二次電池及びそれを用いた組電池 | |
WO2024159758A1 (zh) | 电池、电池包和车辆 | |
JPWO2018003290A1 (ja) | 電池ブロック | |
CN217239703U (zh) | 一种高能量密度圆柱型电池 | |
JP4496582B2 (ja) | リチウム二次電池 | |
CN221708889U (zh) | 端盖、电池单元、环形电池、电池、电池模组及用电设备 | |
CN217468602U (zh) | 电池单体及电池 | |
JP4342479B2 (ja) | 二次電池 | |
WO2025092238A1 (zh) | 电池单体、电池包和用电设备 | |
WO2025055023A1 (zh) | 电池单元及其制备方法、环形电池、电池、电池模组和用电设备 | |
CN219759901U (zh) | 电池 | |
WO2024198971A1 (zh) | 电池单体、电池及用电设备 | |
CN218005058U (zh) | 顶盖组件及电池 | |
CN217468601U (zh) | 盖板组件、连接件和电池 | |
WO2025055022A1 (zh) | 电池单元、环形电池、电池、电池模组、用电设备及焊接设备 | |
WO2025055021A1 (zh) | 电池单元、环形电池、电池、电池模组以及用电设备 | |
CN221668934U (zh) | 电池壳体、电池单元、环形电池单体、电池及模组和设备 | |
CN216488409U (zh) | 一种二次电池用防短路极耳、电极极片和二次电池 | |
EP3989356B1 (en) | Battery, battery module and battery pack | |
CN220914386U (zh) | 电池单元、环形电池、电池、电池模组和用电设备 | |
CN220774534U (zh) | 电池单元、环形电池、电池、电池模组以及用电设备 | |
CN118943459B (zh) | 圆柱电池及电池组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23951950 Country of ref document: EP Kind code of ref document: A1 |