WO2025039753A1 - 多蓄电池模块串联的蓄电装置、储能单元和供电系统 - Google Patents

多蓄电池模块串联的蓄电装置、储能单元和供电系统 Download PDF

Info

Publication number
WO2025039753A1
WO2025039753A1 PCT/CN2024/103315 CN2024103315W WO2025039753A1 WO 2025039753 A1 WO2025039753 A1 WO 2025039753A1 CN 2024103315 W CN2024103315 W CN 2024103315W WO 2025039753 A1 WO2025039753 A1 WO 2025039753A1
Authority
WO
WIPO (PCT)
Prior art keywords
conduction
power supply
storage device
supply system
bus
Prior art date
Application number
PCT/CN2024/103315
Other languages
English (en)
French (fr)
Inventor
张永照
吕冬梅
Original Assignee
安徽明德源能科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽明德源能科技有限责任公司 filed Critical 安徽明德源能科技有限责任公司
Publication of WO2025039753A1 publication Critical patent/WO2025039753A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the utility model relates to the technical field of energy storage, and in particular to an electric storage device, an energy storage unit and a power supply system in which multiple battery modules are connected in series.
  • Data centers not only require a large amount of electricity to maintain the operation of servers, storage devices, backup devices, cooling systems and other equipment, but also generally need to equip the data center's power supply system with corresponding battery packs to prevent sudden interruptions in the city power supply to which the data center is connected, resulting in data loss or damage to related equipment. In this way, the data center can still be powered by the battery packs in the event of an external power outage to maintain normal operation of the data center (similarly, energy storage power stations also require battery packs for energy storage).
  • the voltage of a data center or energy storage power station is relatively high, and more battery cells are required to be connected in series to form a battery pack.
  • several battery cells are first connected in series or in parallel to form a battery module, and then multiple battery modules are connected in series to form a battery pack.
  • this type of battery pack is generally connected to a DC bus between the DC output end of the power supply system and the load of the data center to draw power, and the battery pack is either charged directly using the DC bus, or a transformer unit is set between the DC bus and the battery pack so that all cells in the battery pack share a transformer unit for charging.
  • this may easily lead to uneven charging of cells between the battery modules (for example, cells in some battery modules are not fully charged, while cells in some battery modules are overcharged).
  • the utility model provides a power storage device, an energy storage unit and a power supply system with multiple battery modules connected in series, aiming to solve the problem of uneven charging of cells among the multiple battery modules connected in series.
  • the utility model proposes a power storage device with multiple battery modules connected in series
  • the power storage device includes a switch module, a battery group and multiple first functional units
  • the positive electrode of the battery group is electrically connected to the positive line of the DC bus of the power supply system through the switch module
  • the negative electrode of the battery group is electrically connected to the negative line of the DC bus
  • the battery group includes multiple battery modules connected in series in sequence, and each of the battery modules is electrically connected to the DC bus through one of the first functional units; the DC bus is arranged between the DC output end of the power supply system and the load of the data center.
  • the switch module is provided with a unidirectional conduction switch, a first conduction end of the unidirectional conduction switch is electrically connected to the positive electrode of the battery pack, a second conduction end of the unidirectional conduction switch is electrically connected to the positive electrode line of the DC bus, and a conduction direction of the unidirectional conduction switch is from the first conduction end of the unidirectional conduction switch to the second conduction end of the unidirectional conduction switch.
  • the unidirectional conduction switch is a diode, the anode of the diode is the first conduction end, and the cathode of the diode is the second conduction end;
  • the unidirectional conduction switch is a MOS tube
  • the power storage device further includes a control unit, a control signal output end of the control unit is electrically connected to the gate of the MOS tube, and when the battery pack is in a non-discharging state, the control unit controls the MOS tube to be in a cut-off state, and the conduction direction of the body diode in the MOS tube is the same as the conduction direction of the unidirectional conduction switch; when the battery pack is in a discharging state, the MOS tube is in a conducting state.
  • a control unit is provided in each of the battery modules.
  • the utility model further proposes an energy storage unit, comprising a second functional unit, a distribution unit and at least one power storage device, wherein the power storage device is a power storage device with multiple batteries connected in series as described above; the second functional unit and the distribution unit are connected in series in sequence between a DC output end of a power supply system and a load of the power supply system, and the power storage device is electrically connected to a DC bus between the second functional unit and the distribution unit.
  • the second functional unit is a unidirectional conducting device, and the conducting direction is from the DC output end to the load.
  • the utility model further proposes a power supply system, which includes a DC source and multiple energy storage units, wherein the energy storage units are the energy storage units described above, and each of the energy storage units is electrically connected to a DC output terminal of the DC source.
  • the beneficial effect of the technical solution of the utility model is that: by respectively configuring corresponding first functional units for multiple battery modules connected in series in the battery pack, the battery cells in each battery module can be independently charged by the corresponding first functional unit, so that the battery cells that are not fully charged can be independently charged by using the first functional unit paired with it, and this will not cause the fully charged battery module to be overcharged, thereby achieving charging balance between the battery cells in the multiple battery modules connected in series; at the same time, compared with the battery pack, the number of battery cells in each battery module is less, and the difference between the battery cells during charging and discharging will also be reduced, which will be easier to manage and balance; when the battery pack is discharging, if the voltages that can be provided by each battery module are not balanced, the battery module with low output voltage can also simultaneously draw power from the DC bus through the first functional unit paired with it and make up for the voltage difference, thereby increasing the output voltage of the battery pack so that the battery pack can discharge its own power as much as possible before the voltage difference is cut
  • FIG1 is a schematic structural diagram of an embodiment of a power storage device in which multiple battery modules are connected in series according to the utility model;
  • FIG2 is a schematic structural diagram of an energy storage unit according to an embodiment of the present utility model
  • FIG3 is a schematic structural diagram of another embodiment of the energy storage unit of the utility model.
  • FIG4 is a schematic structural diagram of an embodiment of a power supply system of the utility model.
  • first, second, etc. in the present utility model are only used for descriptive purposes and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • technical solutions between the various embodiments can be combined with each other, but they must be based on the ability of ordinary technicians in this field to implement them. When the combination of technical solutions is contradictory or cannot be implemented, it should be deemed that such a combination of technical solutions does not exist and is not within the scope of protection required by the present utility model.
  • the utility model proposes a power storage device with multiple battery modules connected in series.
  • the power storage device includes a switch module, a battery group and a plurality of first functional units.
  • the positive electrode of the battery group is electrically connected to the positive line of the DC bus of the power supply system through the switch module, and the negative electrode of the battery group is electrically connected to the negative line of the DC bus.
  • the battery group includes a plurality of battery modules connected in series in sequence, and each of the battery modules is electrically connected to the DC bus through one of the first functional units; the DC bus is arranged between the DC output end of the power supply system and the load of the data center.
  • the power storage device may be a power storage device arranged in a power supply system, which may be a power supply system of a data center.
  • a DC source is arranged in the power supply system, and a DC bus (divided into a positive line and a negative line) is arranged between the DC output terminal of the DC source and the load of the data center, so that the DC source can supply power to the load of the data center through the DC bus.
  • the DC source can be connected to external energy (such as AC mains) and convert the external energy into DC power suitable for the load of the data center.
  • external energy such as AC mains
  • the positive pole of the battery pack in the power storage device is electrically connected to the positive pole line of the DC bus through the switch module, and the negative pole of the battery pack is electrically connected to the negative pole line of the DC bus; wherein the first conductive end of the switch module is electrically connected to the positive pole of the battery pack, and the second conductive end of the switch module is electrically connected to the positive pole line of the DC bus.
  • the switch module is provided with a unidirectional conduction switch, a first conduction end of the unidirectional conduction switch is electrically connected to the positive electrode of the battery pack, a second conduction end of the unidirectional conduction switch is electrically connected to the positive line of the DC bus, and a conduction direction of the unidirectional conduction switch is from the first conduction end of the unidirectional conduction switch to the second conduction end of the unidirectional conduction switch.
  • the power supply system can directly use the DC source to supply power to the load via the DC bus.
  • the current provided by the DC output end cannot flow to the battery pack through the switch module; when the DC source of the power supply system is abnormal, it is necessary to enable the battery pack to discharge the DC bus to supply power to the load, and the current output by the positive electrode of the battery pack can flow to the positive line of the DC bus through the switch module.
  • the switch module may also be a non-unidirectional conduction switch, and when the battery pack is in a non-discharging state, the switch module is in a disconnected state.
  • the switch module may be a contactor, a relay, or a low-loss non-unidirectional conduction switch device.
  • the power storage device may also include a control unit (not shown in the figure), and the control signal output end of the control unit is electrically connected to the control end of the switch module, so that the control unit can control the switch module to be closed or opened by outputting a corresponding control signal to the switch module; and if the switch module is in a closed state, the circuit between the first conductive end and the second conductive end inside it is in a conductive state, and if the switch module is in an open state, the circuit between the first conductive end and the second conductive end inside it is in a disconnected state.
  • a control unit not shown in the figure
  • the power supply system can directly use the DC source to supply power to the load via the DC bus.
  • the battery pack does not need to discharge the DC bus, so the control unit controls the switch module to be in a disconnected state, so that the current provided by the DC output end cannot flow to the battery pack through the switch module;
  • the control unit controls the switch module to be in a closed state, so that the current output from the positive electrode of the battery pack can flow to the positive electrode line of the DC bus through the switch module, and supply power to the load through the DC bus.
  • a battery pack is provided with a plurality of battery modules connected in series, and the positive electrode of the first battery module in the series circuit can be used as the positive electrode of the battery pack, and the negative electrode of the first battery module is electrically connected to the positive electrode of the next battery module (the negative electrode of the next battery module is electrically connected to the positive electrode of the next battery module), and so on, until the negative electrode of the last battery module is used as the negative electrode of the battery pack.
  • a plurality of cells are connected in series or in parallel.
  • the power storage device is also provided with the same number of first functional units as the battery modules, that is, one first functional unit is configured for each battery module.
  • the positive input terminal of each first functional unit is electrically connected to the positive line of the DC bus
  • the negative input terminal of each first functional unit is electrically connected to the negative line of the DC bus
  • the positive output terminal of each first functional unit is electrically connected to the positive electrode of the corresponding battery module
  • the negative output terminal of each first functional unit is electrically connected to the negative electrode of the corresponding battery module.
  • the first functional unit may be a unidirectional transformer unit (such as a DC/DC (direct current to direct current) voltage power conversion unit), and the conduction direction is from the DC bus to the battery module; the first functional unit may be used to convert the DC voltage received from the DC bus into a charging voltage adapted to the battery module, and then output the converted voltage to the battery module.
  • the first functional unit is a primary-secondary isolation design.
  • the first functional unit may convert the received DC voltage into a charging voltage compatible with the battery module according to preset working parameters; or, the control end of the first functional unit may be electrically connected to the control signal output end of the control unit (not shown in the figure) and controlled by the control unit, so that the control unit may output a corresponding control signal to the first functional unit to set the working parameters of the first functional unit, so that the first functional unit may convert the received DC voltage into a corresponding DC voltage according to the charging requirements of the battery module (i.e., the control unit may adjust the voltage converted by the first functional unit according to the charging requirements).
  • control unit may be provided with a plurality of control signal output terminals, and various components (such as the switch module and/or the first functional unit) may be controlled respectively through different control signal output terminals.
  • each battery module connected in series in the battery pack are respectively configured with corresponding first functional units, each battery module can be charged independently through the corresponding first functional unit, that is, when the DC source of the power supply system is normal, the power supply system can directly use the DC source to supply power to the load through the DC bus. If any battery module in the battery pack is not fully charged, the battery module that is not fully charged can be charged independently using the first functional unit paired with it, and this will not cause the fully charged battery module to be overcharged, thereby achieving balanced charging of the cells between the multiple battery modules connected in series. At the same time, since the number of series-connected cells in each battery module is smaller, management is more effective and it is easier to replace or maintain.
  • the battery pack when the DC source of the power supply system is abnormal, it is necessary to enable the battery pack to discharge the DC bus to supply power to the load. In this way, multiple battery modules connected in series in the battery pack can provide power for the load together.
  • the battery module with low output voltage can also simultaneously draw power from the DC bus through the first functional unit paired with it to reduce its own discharge current, until the storage power (or output voltage) of all battery modules is roughly the same, so as to achieve balanced discharge of multiple battery modules connected in series, thereby extending the discharge time of the battery pack.
  • this solution can also increase the discharge cut-off voltage of the battery, so as to discharge the stored power as much as possible and extend the discharge time.
  • the switch module is a diode, the anode of the diode is the first conduction end, and the cathode of the diode is the second conduction end;
  • the switch module is a MOS tube
  • the power storage device further includes a control unit, wherein a control signal output end of the control unit is electrically connected to a gate of the MOS tube, and when the battery pack is in a non-discharging state, the control unit controls the MOS tube to be in a cut-off state, and a conduction direction of a body diode in the MOS tube is the same as a conduction direction of the diode; when the battery pack is in a discharging state, the MOS tube is in a conducting state.
  • the switch module may be a diode or a MOS tube.
  • the switch module is a diode
  • the first conduction end of the switch module is the anode of the diode
  • the second conduction end of the switch module is the cathode of the diode
  • the diode can automatically close or open the switch module by automatically detecting the voltage difference between the anode and the cathode.
  • the switch module is a MOS tube
  • the switch module has a control end, which is the gate of the MOS tube, and the gate of the MOS tube is electrically connected to the control signal output end of the control unit of the power storage device.
  • the control unit can control the MOS tube to be turned on or off by outputting a corresponding control signal to the gate of the MOS tube, thereby controlling the switch module to be closed or opened; wherein, if the switch module is a PMOS tube, the first conduction end of the switch module is the drain of the PMOS tube, and the second conduction end of the switch module is the source of the PMOS tube; if the switch module is an NMOS tube, the first conduction end of the switch module is the source of the NMOS tube, and the second conduction end of the switch module is the drain of the NMOS tube.
  • the conduction direction of the body diode in the MOS tube is the same as the conduction direction of the diode.
  • the switch module is a diode
  • the cathode voltage of the diode will be greater than the anode voltage.
  • the diode is in the cut-off state, and the switch module is automatically disconnected.
  • the current provided by the DC output end cannot flow to the battery pack through the switch module; when the DC source of the power supply system cannot discharge normally to the DC bus, the anode voltage of the diode will be greater than the cathode voltage.
  • the diode is in the on state, so that the current output from the positive electrode of the battery pack can flow to the positive line of the DC bus through the switch module.
  • the switch module is a MOS tube
  • the control unit can control the MOS tube to be in a cut-off state, and the switch module is disconnected, and the current provided by the DC output end cannot flow to the battery pack through the switch module; when the DC source of the power supply system cannot discharge normally to the DC bus, the battery pack is in a discharge state, and the control unit can control the MOS tube to be in a conductive state, so that the current output from the positive electrode of the battery pack can flow to the positive electrode line of the DC bus through the switch module.
  • the MOS tube and the diode can be set in parallel in the switch module to enhance the current carrying capacity of the switch module so that the current output by the battery pack through the switch module can meet the load power supply demand.
  • a control unit is provided in each battery module.
  • control unit provided in the battery module may be a battery management system (BATTERY MANAGEMENTSYSTEM, BMS).
  • control unit built into the battery module is responsible for monitoring and charging and discharging management of the batteries in this module.
  • control unit built into the battery module can also collect signals from this module, and report the storage capacity obtained from each battery module to the overall control unit of the storage device; the control units built into each battery module and the overall control unit of the storage device can be functionally and distributedly integrated; and the power supply system can manage the entire system according to the battery status to ensure coordinated system operation and issue early warnings in the event of a fault or insufficient power supply capacity.
  • the utility model further proposes an energy storage unit, comprising a second functional unit, a power distribution unit and at least one power storage device, wherein the second functional unit and the power distribution unit are sequentially connected in series between a DC output end of a power supply system and a load of the power supply system, and the power storage device is electrically connected to a DC bus between the second functional unit and the power distribution unit.
  • any power storage device in the energy storage unit can refer to the above embodiments. Since the energy storage unit adopts all the technical solutions of all the above embodiments, it at least has all the technical effects brought by the technical solutions of the above embodiments, which will not be repeated here one by one.
  • the second functional unit and the distribution unit in the energy storage unit are connected in series in sequence on the DC bus between the DC output end and the load, which is equivalent to the DC bus between the DC output end and the load (or the DC bus between the DC output end and the load) needing to pass through the second functional unit and the distribution unit.
  • one power storage device can be provided in the energy storage unit (as shown in FIG. 1 ), or multiple power storage devices can be provided in parallel (as shown in FIG. 3 ), and the input/output of each power storage device needs to be electrically connected to the DC output terminal via the second functional unit, and electrically connected to the load via the distribution unit.
  • the second functional unit is a unidirectional conducting device, and the conducting direction is from the DC output end to the load.
  • the second functional unit may be a unidirectional transformer unit (such as a DC/DC (direct current to direct current) voltage power conversion unit), and the conduction direction is from the DC output end to the load; the second functional unit may be used to convert the DC voltage received from the DC output end into a power supply unit adapted to the load power supply demand.
  • a DC bus voltage is provided to reduce transmission losses; or may be applied to a scenario where the existing DC bus voltage is lower than the working voltage and the DC/DC performs a voltage boost operation.
  • each distribution unit can be connected to one or more loads; in addition to being used to connect to the load, the distribution unit can also be used to monitor the load status, such as monitoring whether the load has a power supply demand, the load power supply demand, etc.; that is, the distribution unit can be used as a circuit protection device, and can have corresponding detection and metering functions (such as detecting whether there is a power storage device connected to one side of the load), and report the corresponding detection and metering to the control unit through a communication connection with the control unit.
  • the distribution unit can be used as a circuit protection device, and can have corresponding detection and metering functions (such as detecting whether there is a power storage device connected to one side of the load), and report the corresponding detection and metering to the control unit through a communication connection with the control unit.
  • the distribution unit can be an output distribution unit (such as a distribution cabinet, a small busbar, etc.) to distribute the output power of the energy storage unit to the load; at the same time, the control unit can make the distribution unit act as a circuit switch by controlling whether the output distribution unit is working, that is, by controlling whether the distribution unit is working, the line between the power storage device and the load can be controlled to be turned on or off accordingly.
  • an output distribution unit such as a distribution cabinet, a small busbar, etc.
  • a controllable switch may be provided in the power distribution unit, and the control unit controls the controllable switch to close or open, thereby correspondingly controlling the conduction or disconnection of the line between the energy storage unit and the load.
  • the second functional unit is used to enable the DC source to supply power to the load and/or charge the power storage device through the second functional unit when the DC source is supplying power normally.
  • the current output by the DC output terminal can be supplied to the load and the storage device after voltage conversion through the second functional unit to power the load and/or charge the storage device; wherein the second functional unit converts the first voltage output by the DC output terminal into a second voltage that matches the load demand voltage.
  • the utility model further proposes a power supply system.
  • the power supply system includes a DC source and multiple energy storage units.
  • the energy storage units can be distributed in different cabinets or equipment rooms.
  • the specific structure of the energy storage unit refers to the above embodiment. Since the power supply system adopts all the technical solutions of all the above embodiments, it at least has all the technical effects brought by the technical solutions of the above embodiments, which will not be repeated here one by one.
  • each energy storage unit is electrically connected to the DC output terminal of the DC source; and the power distribution unit of the energy storage unit is responsible for connecting to the load of the data center.
  • a single energy storage unit can be arranged alone, or multiple energy storage units can be arranged in parallel to improve the ability to supply power to the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本实用新型涉及储能技术,公开一种多蓄电池模块串联的蓄电装置、储能单元和供电系统,所述蓄电装置包括开关模块、蓄电池组和多个第一功能单元,所述蓄电池组的正极经所述开关模块电连接供电系统的直流母线的正极线,所述蓄电池组的负极电连接所述直流母线的负极线,所述蓄电池组包括多个依次串联的蓄电池模块,第一功能单元且每个所述蓄电池模块均经一个所述第一功能单元电连接所述直流母线;所述直流母线设置在所述供电系统的直流输出端和数据中心的负载之间。本实用新型旨在解决多个串联的蓄电池模块之间的电芯充电不均衡的问题。

Description

多蓄电池模块串联的蓄电装置、储能单元和供电系统
本申请要求于2023年08月21日提交中国专利局、申请号为202322239273.9、申请名称为:“多蓄电池模块串联的蓄电装置、储能单元和供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及储能技术领域,特别涉及一种多蓄电池模块串联的蓄电装置、储能单元和供电系统。
背景技术
数据中心不仅需要大量电力来维持服务器、储存设备、备份装置、冷却系统等设备的运作,而且为了防止数据中心接入的市电供应突然中断而导致数据丢失或损坏相关设备,一般还需要为数据中心的供电系统配备相应的蓄电池组以在外部断电时还可通过蓄电池组来为数据中心供电,维持数据中心的正常运作(同样储能电站也需要蓄电池组来进行储能)。
数据中心或储能电站的电压较高,需要较多电芯进行串联构成电池组。一般先将数个电芯进行串联或并联装配成蓄电池模块,然后再将多个蓄电池模块串联成蓄电池组。
目前一般将这种蓄电池组接入到供电系统的直流输出端至数据中心的负载之间的直流母线上进行取电,且要么是直接利用直流母线对蓄电池组充电,要么是在直流母线和蓄电池组之间设置一个变压单元,使蓄电池组中的所有电芯共用一个变压单元进行充电,但这样一来,就容易存在各蓄电池模块之间的电芯充电不均衡的问题(如有的蓄电池模块中的电芯未充满电,而同时有的蓄电池模块中的电芯又出现了过充的情况)。
上述内容仅用于辅助理解本实用新型的技术方案,并不代表承认上述内容是现有技术。
实用新型内容
本实用新型提出一种多蓄电池模块串联的蓄电装置、储能单元和供电系统,旨在解决多个串联的蓄电池模块之间的电芯充电不均衡的问题。
为实现上述目的,本实用新型提出一种多蓄电池模块串联的蓄电装置,所述蓄电装置包括开关模块、蓄电池组和多个第一功能单元,所述蓄电池组的正极经所述开关模块电连接供电系统的直流母线的正极线,所述蓄电池组的负极电连接所述直流母线的负极线,所述蓄电池组包括多个依次串联的蓄电池模块,且每个所述蓄电池模块均经一个所述第一功能单元电连接所述直流母线;所述直流母线设置在所述供电系统的直流输出端和数据中心的负载之间。
所述开关模块设有单向导通开关,所述单向导通开关的第一导通端电连接所述蓄电池组的正极,所述单向导通开关的第二导通端电连接所述直流母线的正极线,所述单向导通开关的导通方向为所述单向导通开关的第一导通端至所述单向导通开关的第二导通端。
可选的,所述单向导通开关为二极管,所述二极管的阳极为所述第一导通端,所述二极管的阴极为所述第二导通端;
或者,所述单向导通开关为MOS管,所述蓄电装置还包括控制单元,所述控制单元的控制信号输出端电连接所述MOS管的栅极,在所述蓄电池组处于非放电状态下,所述控制单元控制所述MOS管处于截止状态,所述MOS管中的体二极管的导通方向与所述单向导通开关的导通方向相同;当所述蓄电池组处于放电状态时,所述MOS管处于导通状态。
可选的,每个所述蓄电池模块内设置有控制单元。
本实用新型进一步提出一种储能单元,包括第二功能单元、配电单元和至少一个蓄电装置,其中,所述蓄电装置为如上所述的多蓄电池串联的蓄电装置;所述第二功能单元和所述配电单元依次串联在供电系统的直流输出端与供电系统的负载之间,所述蓄电装置电连接所述第二功能单元与所述配电单元之间的直流母线。
可选的,所述第二功能单元为单向导通器件,且导通方向为所述直流输出端至所述负载方向。
本实用新型进一步提出一种供电系统,所述供电系统包括直流源和多个储能单元,其中,所述储能单元为如上所述的储能单元,每个所述储能单元均电连接所述直流源的直流输出端。
本实用新型技术方案的有益效果在于:通过为蓄电池组中多个串联的蓄电池模块均分别配置相应的第一功能单元,使得每个蓄电池模块中的电芯均可以通过相应的第一功能单元进行独立充电,这样未充满电的电芯就可以使用与之配对的第一功能单元进行独立充电,而且这样还不会导致已充满电的蓄电池模块过充,以此实现多个串联的蓄电池模块中的电芯之间的充电均衡;同时,相比蓄电池组每个蓄电池模块的电芯数量更少,充放电时电芯的差异也会减少,会更容易进行管理和平衡;蓄电池组在放电时,若各蓄电池模块的所能提供的电压并不均衡,则输出电压低的蓄电池模块还可以同时通过与之配对的第一功能单元从直流母线处取电并补足电压差,从而提升电池组的输出电压以使得电池组在截止电压差之前尽可能放出自身电量,充分发挥电池的存储电量的备电能力。
附图说明
图1为本实用新型多蓄电池模块串联的蓄电装置一实施例的结构示意图;
图2为本实用新型储能单元一实施例的结构示意图;
图3为本实用新型储能单元另一实施例的结构示意图;
图4为本实用新型供电系统一实施例的结构示意图。
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的方案进行清楚完整的描述,显然,所描述的实施例仅是本实用新型中的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
需要说明的是,本实用新型实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
另外,在本实用新型中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
本实用新型提出一种多蓄电池模块串联的蓄电装置,参照图1,所述蓄电装置包括开关模块、蓄电池组和多个第一功能单元,所述蓄电池组的正极经所述开关模块电连接供电系统的直流母线的正极线,所述蓄电池组的负极电连接所述直流母线的负极线,所述蓄电池组包括多个依次串联的蓄电池模块,且每个所述蓄电池模块均经一个所述第一功能单元电连接所述直流母线;所述直流母线设置在所述供电系统的直流输出端和数据中心的负载之间。
本实施例中,蓄电装置可以是设置在供电系统中的蓄电装置,该供电系统可以是数据中心的供电系统,供电系统中设置有直流源,直流源的直流输出端与数据中心的负载之间设置有直流母线(分为正极线和负极线),这样直流源可通过直流母线为数据中心的负载供电。
其中,该直流源可接入的外部能源(如交流市电),并将外部能源转换为适合数据中心的负载使用的直流电。
可选的,蓄电装置中的蓄电池组的正极经开关模块电连接直流母线的正极线,蓄电池组的负极电连接直流母线的负极线;其中,开关模块的第一导通端电连接蓄电池组的正极,开关模块的第二导通端电连接直流母线的正极线。
可选的,所述开关模块设有单向导通开关,所述单向导通开关的第一导通端电连接所述蓄电池组的正极,所述单向导通开关的第二导通端电连接所述直流母线的正极线,所述单向导通开关的导通方向为所述单向导通开关的第一导通端至所述单向导通开关的第二导通端。
当供电系统的直流源供电正常时,供电系统可直接利用直流源经直流母线为负载供电,此时由于开关模块的单向导通作用,直流输出端提供的电流无法经开关模块流向蓄电池组;当供电系统的直流源供电异常,需要启用蓄电池组对直流母线放电,以为负载供电时,蓄电池组的正极输出的电流可经开关模块流向直流母线的正极线。
可选的,开关模块也可以是非单向导通开关,并在蓄电池组处于非放电状态下,开关模块处于断开状态。其中,开关模块可以是接触器、继电器或低损耗的非单向导通开关器件。
其中,若开关模块为非单向导通开关,则蓄电装置还可包括控制单元(图中未示出),且控制单元的控制信号输出端电连接开关模块的控制端,这样控制单元可以通过向开关模块输出相应的控制信号,以控制开关模块闭合或断开;且若开关模块处于闭合状态,则其内部的第一导通端和第二导通端之间线路处于导通状态,若开关模块处于断开状态,则其内部的第一导通端和第二导通端之间的线路处于断开状态。
可选的,当供电系统的直流源供电正常时,供电系统可直接利用直流源经直流母线为负载供电,此时蓄电池组无需对直流母线放电,因此控制单元控制开关模块处于断开状态,这样直流输出端提供的电流无法经开关模块流向蓄电池组;当供电系统的直流源供电异常,需要启用蓄电池组对直流母线放电,以为负载供电时,则控制单元控制开关模块处于闭合状态,使得蓄电池组的正极输出的电流可经开关模块流向直流母线的正极线,并通过直流母线为负载供电。
可选的,蓄电池组中设置有多个依次串联的蓄电池模块,且串联线路上的首个蓄电池模块的正极可作为蓄电池组的正极,而首个蓄电池模块的负极则电连接下一个蓄电池模块的正极(下一个蓄电池模块的负极则电连接下下个蓄电池模块的正极),以此类推,直至将最后一个蓄电池模块的负极作为蓄电池组的负极。其中,每个蓄电池模块中串联或并联有多个电芯。
此外,蓄电装置中还设置有与蓄电池模块数量相同的第一功能单元,即为每个蓄电池模块均配置一个第一功能单元。其中,每个第一功能单元的正极输入端均电连接直流母线的正极线,每个第一功能单元的负极输入端均电连接直流母线的负极线,每个第一功能单元的正极输出端电连接相应蓄电池模块的正极,每个第一功能单元的负极输出端电连接相应蓄电池模块的负极。
其中,所述第一功能单元可以是单向变压单元(如DC/DC(直流转直流)电压功率变换单元),且导通方向为直流母线至蓄电池模块方向;第一功能单元可以用于将从直流母线处接收到的直流电压转换为与蓄电池模块适配的充电电压后,再将转换后的电压输出至蓄电池模块。此外,所述第一功能单元为原副边隔离设计。
可选的,第一功能单元可以是按预先设置的工作参数,将接收到的直流电压转换为与蓄电池模块适配的充电电压;或者,第一功能单元的控制端电连接控制单元的控制信号输出端(图中未示出),并受控制单元控制,这样控制单元就可以通过向第一功能单元输出相应的控制信号,以设置第一功能单元的工作参数,以使第一功能单元可以按蓄电池模块的充电需求,将接收到的直流电压转换为相应的直流电压(即控制单元可按充电需求调配第一功能单元所转换的电压大小)。
需要说明的是,控制单元可设置多个控制信号输出端,并可通过不同的控制信号输出端分别控制各个元器件(如开关模块和/或第一功能单元)。
这样,由于为蓄电池组中多个串联的蓄电池模块均分别配置有相应的第一功能单元,使得每个蓄电池模块均可以通过相应的第一功能单元进行独立充电,即当供电系统的直流源供电正常,供电系统可直接利用直流源经直流母线为负载供电的过程中,若蓄电池组中有任一蓄电池模块未充满电,则未充满电的蓄电池模块均可以使用与之配对的第一功能单元进行独立充电,而且这样还不会导致已充满电的蓄电池模块过充,以此实现多个串联的蓄电池模块之间的电芯充电均衡。同时由于每个蓄电池模块的串联电芯数量更少,管理更有效,更加便于更换或者维护。
可选的,当供电系统的直流源供电异常,需要启用蓄电池组对直流母线放电,以为负载供电时,这样蓄电池组中多个串联的蓄电池模块可以为共同为负载提供电源,而且当蓄电池组中各蓄电池模块的所能提供的电压并不均衡时(如有的蓄电池模块因存储电量低,而输出低电压较低,放电时容易形成短板效应),输出电压低的蓄电池模块还可以同时通过与之配对的第一功能单元从直流母线处取电从而减少自身放电电流,直至所有蓄电池模块的蓄电量(或输出电压)大致相当,实现多个串联的蓄电池模块均衡放电,从而延长蓄电池组的放电时间。在具有最低工作电压要求的场景下,该方案还可以使电池的放电截止电压升高,从而尽可能放出存储的电量,延长放电时间。
此外,虽然上述开关模块设置在蓄电池组的正极与直流母线正极之间,但该开关模块也可以是设置在蓄电池组的负极与直流母线负极之间,通过相应的逻辑控制,可实现该开关模块与设置正极时等效的作用。
在一实施例中,在上述实施例的基础上,所述开关模块为二极管,所述二极管的阳极为所述第一导通端,所述二极管的阴极为所述第二导通端;
或者,所述开关模块为MOS管,所述蓄电装置还包括控制单元,所述控制单元的控制信号输出端电连接所述MOS管的栅极,在所述蓄电池组处于非放电状态下,所述控制单元控制所述MOS管处于截止状态,所述MOS管中的体二极管的导通方向与所述二极管的导通方向相同;当所述蓄电池组处于放电状态时,所述MOS管处于导通状态。
本实施例中,开关模块可以是二极管,也可以是MOS管。
可选的,若开关模块为二极管,则开关模块的第一导通端为二极管的阳极、开关模块的第二导通端为二极管的阴极,并且二极管可通过自动检测阳极与阴极之间的电压差,自动实现开关模块的闭合或断开。
可选的,若开关模块为MOS管,则开关模块具有控制端,该控制端即为MOS管的栅极,且MOS管的栅极电连接蓄电装置的控制单元的控制信号输出端,控制单元可通过向MOS管的栅极输出相应的控制信号,以控制MOS管导通或截止,从而实现控制开关模块闭合或断开;其中,若开关模块为PMOS管,则开关模块的第一导通端为PMOS管的漏极、开关模块的第二导通端为PMOS管的源极;若开关模块为NMOS管,则开关模块的第一导通端为NMOS管的源极、开关模块的第二导通端为NMOS管的漏极。
同时,所述MOS管中的体二极管的导通方向与所述二极管的导通方向相同。
可选的,若开关模块为二极管,当供电系统的直流源可正常向直流母线放电时,会使得二极管阴极电压大于阳极电压,此时二极管处于截止状态,则开关模块自动断开,直流输出端提供的电流无法经开关模块流向蓄电池组;当供电系统的直流源无法正常向直流母线放电时,会使得二极管阳极电压大于阴极电压,此时二极管处于导通状态,这样蓄电池组的正极输出的电流可经开关模块流向直流母线的正极线。
可选的,若开关模块为MOS管,当供电系统的直流源可正常向直流母线放电时,此时则无需使用蓄电池组为负载供电(即蓄电池组处于非放电状态),因此控制单元可控制MOS管处于截止状态,则开关模块断开,直流输出端提供的电流无法经开关模块流向蓄电池组;当供电系统的直流源无法正常向直流母线放电时,则使蓄电池组处于放电状态,控制单元可控制MOS管处于导通状态,这样蓄电池组的正极输出的电流可经开关模块流向直流母线的正极线。
需要说明的是,若开关模块中单独设置的MOS管的体二极管载流量不能满足负载供电需求时,还可以在开关模块中并联设置MOS管和二极管,以增强开关模块的载流能力,使得蓄电池组经开关模块输出的电流可以满足负载供电需求。
在一实施例中,在上述实施例的基础上,每个所述蓄电池模块内设置有控制单元。
本实施例中,蓄电池模块中设置的控制单元可以是电池管理系统(BATTERY MANAGEMENTSYSTEM,BMS)。
可选的,蓄电池模块内置的控制单元,负责对本模块内电池进行监控和充放电管理。此外,蓄电池模块内置的控制单元还可对本模块进行信号采集,并将从各蓄电池模块监测得到的蓄电量,上报至蓄电装置的总控制单元;各蓄电池模块内置的控制单元与蓄电装置的总控制单元之间可进行功能和分布整合;而供电系统则可根据电池情况对整个系统进行管理,确保系统协调工作,并在故障或供电能力不足时进行预警。
参照图2或图3,本实用新型进一步提出的一种储能单元,包括第二功能单元、配电单元和至少一个蓄电装置,其中,所述第二功能单元和所述配电单元依次串联在供电系统的直流输出端与供电系统的负载之间,所述蓄电装置电连接所述第二功能单元与所述配电单元之间的直流母线。
需要说明的是,储能单元中任一个蓄电装置的具体结构均可参照上述实施例,由于本储能单元采用了上述所有实施例的所有技术方案,因此至少具有上述实施例的技术方案所带来的全部技术效果,在此不再一一赘述。
本实施例中,储能单元中的第二功能单元和配电单元依次串联在直流输出端与负载之间的直流母线上,相当于直流输出端与负载之间的直流母线(或直流输出端与负载之间的直流母线)需穿过第二功能单元和配电单元。
此外,储能单元中可设置一个蓄电装置(如图1所示),或并联设置有多个蓄电装置(如图3所示),且每个蓄电装置的输入/输出均需经第二功能单元电连接直流输出端,以及经配电单元电连接负载。
可选的,所述第二功能单元为单向导通器件,且导通方向为所述直流输出端至所述负载方向。
可选的,所述第二功能单元可以是单向变压单元(如DC/DC(直流转直流)电压功率变换单元),且导通方向为直流输出端至负载方向;第二功能单元可以用于将从直流输出端处接收到的直流电压转换为与负载供电需求相适配的供电单元。此种方案可应用于为了降低传输损耗而提供供电直流母线电压的使用场景;或者可应用于既有直流母线电压低于工作电压,该DC/DC进行升压工作的场景。
可选的,每个配电单元可接入一个或多个负载;配电单元除用于接入负载外,还可用于监测负载状态,如监测负载是否存在供电需求、负载供电需求量等;即配电单元可作为电路保护器件,并可带有相应的检测计量功能(如检测负载一侧是否有接入蓄电装置),通过与控制单元的通信连接,将相应的检测计量上报至控制单元。其中,配电单元可以是一种输出配电单元(如配电柜、小母线之类的),以将储能单元的输出电能配送至负载;同时,控制单元通过控制输出配电单元工作与否,可使配电单元起到电路开关的作用,即通过控制配电单元工作与否,可相应实现控制蓄电装置与负载之间的线路导通或断开。
在一些可选实施例中,配电单元中还可设置可控开关,并由控制单元控制可控开关闭合或断开,从而相应实现控制储能单元与负载之间的线路导通或断开。
可选的,所述第二功能单元用于在所述直流源供电正常时,使所述直流源通过所述第二功能单元为所述负载供电和/或为所述蓄电装置充电。
可选的,当供电系统的直流源可正常向直流母线放电时,此时由直流输出端输出的电流,就可以通过第二功能单元进行电压转换后,供给给负载和蓄电装置,以为负载供电和/或为蓄电装置充电;其中,第二功能单元会将直流输出端输出的第一电压,转换为与负载需求电压相匹配的第二电压。
本实用新型进一步提出一种供电系统,参照图4,供电系统包括直流源和多个储能单元,各储能单元可以分布式的设置于不同机柜或者设备间内,该储能单元的具体结构参照上述实施例,由于本供电系统采用了上述所有实施例的所有技术方案,因此至少具有上述实施例的技术方案所带来的全部技术效果,在此不再一一赘述。
其中,每个储能单元的直流输入端电连接所述直流源的直流输出端;而储能单元的配电单元则负责接入数据中心的负载。
其中,在直流源与负载之间的单条直流母线上,可单独设置一个储能单元,也可以并联设置多个储能单元,以提高为负载供电的能力。
以上所述的仅为本实用新型的部分或优选实施例,无论是文字还是附图都不能因此限制本实用新型保护的范围,凡是在与本实用新型一个整体的构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型保护的范围内。

Claims (7)

  1. 一种多蓄电池模块串联的蓄电装置,其特征在于,所述蓄电装置包括开关模块、蓄电池组和多个第一功能单元,所述蓄电池组的正极经所述开关模块电连接供电系统的直流母线的正极线,所述蓄电池组的负极电连接所述直流母线的负极线,所述蓄电池组包括多个依次串联的蓄电池模块,且每个所述蓄电池模块均经一个所述第一功能单元电连接所述直流母线;所述直流母线设置在所述供电系统的直流输出端和数据中心的负载之间。
  2. 根据权利要求1所述的多蓄电池模块串联的蓄电装置,其特征在于,所述开关模块设有单向导通开关,所述单向导通开关的第一导通端电连接所述蓄电池组的正极,所述单向导通开关的第二导通端电连接所述直流母线的正极线,所述单向导通开关的导通方向为所述单向导通开关的第一导通端至所述单向导通开关的第二导通端。
  3. 根据权利要求2所述的多蓄电池模块串联的蓄电装置,其特征在于,所述单向导通开关为二极管,所述二极管的阳极为所述第一导通端,所述二极管的阴极为所述第二导通端;
    或者,所述单向导通开关为MOS管,所述蓄电装置还包括控制单元,所述控制单元的控制信号输出端电连接所述MOS管的栅极,在所述蓄电池组处于非放电状态下,所述控制单元控制所述MOS管处于截止状态,所述MOS管中的体二极管的导通方向与所述单向导通开关的导通方向相同;当所述蓄电池组处于放电状态时,所述MOS管处于导通状态。
  4. 根据权利要求1所述的多蓄电池模块串联的蓄电装置,其特征在于,每个所述蓄电池模块内设置有控制单元。
  5. 一种储能单元,其特征在于,包括第二功能单元、配电单元和至少一个蓄电装置,其中,所述蓄电装置为如权利要求1-4中任一项所述的多蓄电池串联的蓄电装置;所述第二功能单元和所述配电单元依次串联在供电系统的直流输出端与供电系统的负载之间,所述蓄电装置电连接所述第二功能单元与所述配电单元之间的直流母线。
  6. 根据权利要求5所述的储能单元,其特征在于,所述第二功能单元为单向导通器件,且导通方向为所述直流输出端至所述负载方向。
  7. 一种供电系统,其特征在于,包括直流源和多个储能单元,其中,所述储能单元为权利要求5或6所述的储能单元,每个所述储能单元均电连接所述直流源的直流输出端。
PCT/CN2024/103315 2023-08-21 2024-07-03 多蓄电池模块串联的蓄电装置、储能单元和供电系统 WO2025039753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202322239273.9 2023-08-21
CN202322239273.9U CN220570346U (zh) 2023-08-21 2023-08-21 多蓄电池模块串联的蓄电装置、储能单元和供电系统

Publications (1)

Publication Number Publication Date
WO2025039753A1 true WO2025039753A1 (zh) 2025-02-27

Family

ID=90094139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/103315 WO2025039753A1 (zh) 2023-08-21 2024-07-03 多蓄电池模块串联的蓄电装置、储能单元和供电系统

Country Status (2)

Country Link
CN (1) CN220570346U (zh)
WO (1) WO2025039753A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN220570346U (zh) * 2023-08-21 2024-03-08 安徽明德源能科技有限责任公司 多蓄电池模块串联的蓄电装置、储能单元和供电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242289A1 (en) * 2009-10-19 2012-09-27 Andre Boehm Method for precise power prediction for battery packs
CN205489606U (zh) * 2016-01-14 2016-08-17 深圳市泰昂能源科技股份有限公司 一种蓄电池备份电路及直流供电系统
CN107370201A (zh) * 2017-06-29 2017-11-21 杭州奥能电源设备有限公司 基于蓄电池串并联组合的直流电源系统
CN207426791U (zh) * 2017-09-20 2018-05-29 深圳市泰昂能源科技股份有限公司 直流电源装置及电源系统
CN111049245A (zh) * 2019-11-25 2020-04-21 国网浙江省电力有限公司湖州供电公司 一种变电站用高可靠性直流电源及检验方法
CN220570346U (zh) * 2023-08-21 2024-03-08 安徽明德源能科技有限责任公司 多蓄电池模块串联的蓄电装置、储能单元和供电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242289A1 (en) * 2009-10-19 2012-09-27 Andre Boehm Method for precise power prediction for battery packs
CN205489606U (zh) * 2016-01-14 2016-08-17 深圳市泰昂能源科技股份有限公司 一种蓄电池备份电路及直流供电系统
CN107370201A (zh) * 2017-06-29 2017-11-21 杭州奥能电源设备有限公司 基于蓄电池串并联组合的直流电源系统
CN207426791U (zh) * 2017-09-20 2018-05-29 深圳市泰昂能源科技股份有限公司 直流电源装置及电源系统
CN111049245A (zh) * 2019-11-25 2020-04-21 国网浙江省电力有限公司湖州供电公司 一种变电站用高可靠性直流电源及检验方法
CN220570346U (zh) * 2023-08-21 2024-03-08 安徽明德源能科技有限责任公司 多蓄电池模块串联的蓄电装置、储能单元和供电系统

Also Published As

Publication number Publication date
CN220570346U (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2019114547A1 (zh) 可扩展式充换电设备及其充放电单元
CN111786455B (zh) 一种用于ups的正负锂电池并机系统
CN110011408B (zh) 一种移动应急电源系统及其工作方法
CN220570354U (zh) 电池装置和数据中心的供电系统
WO2024230775A1 (zh) 采用直流输入的电池装置和供电系统
CN107681758A (zh) 复合能源系统
CN111181224A (zh) 一种多节串联电池组用充电系统及其充电方法
WO2025039753A1 (zh) 多蓄电池模块串联的蓄电装置、储能单元和供电系统
CN108899942A (zh) 基于电池组h桥串联结构的输出电压可调的放电控制电路及其控制方法
WO2025031045A1 (zh) 一种储能电池及其控制方法
CN115986888A (zh) 一种串联电池簇中电池包之间高安全的均衡系统
WO2023155325A1 (zh) 储能系统
CN108418263A (zh) 一种带有附加电源的可重构均衡电路
CN220492663U (zh) 一种电池单元、电池模块、电池簇和电池包
WO2025031487A1 (zh) 一种电池
CN113629800A (zh) 一种电芯级优化电池插箱、储能系统及其应用
CN107706997A (zh) 智能均衡配电设备、智能均衡配电系统和复合能源系统
CN219801959U (zh) 一种储能汇流柜及使用该储能汇流柜的储能系统
CN118249432A (zh) 簇间主动、被动均衡的储能黑启动系统及均衡方法
CN217692732U (zh) 一种带中线的电池系统充电均衡控制系统
CN114884168B (zh) 基于磷酸铁锂蓄电池的变电站直流系统
CN212588140U (zh) 一种用于ups的正负锂电池并机系统
CN212162838U (zh) 电池均衡管理电路
CN220570342U (zh) 多蓄电模块并联的电池装置和供电系统
CN114421028B (zh) 一种电池系统及电池包梯次利用的重组方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24855482

Country of ref document: EP

Kind code of ref document: A1