WO2025035970A1 - 电池装置和数据中心的供电系统 - Google Patents

电池装置和数据中心的供电系统 Download PDF

Info

Publication number
WO2025035970A1
WO2025035970A1 PCT/CN2024/102048 CN2024102048W WO2025035970A1 WO 2025035970 A1 WO2025035970 A1 WO 2025035970A1 CN 2024102048 W CN2024102048 W CN 2024102048W WO 2025035970 A1 WO2025035970 A1 WO 2025035970A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
battery device
output
electrically connected
conduction
Prior art date
Application number
PCT/CN2024/102048
Other languages
English (en)
French (fr)
Inventor
张永照
吕东梅
Original Assignee
安徽明德源能科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽明德源能科技有限责任公司 filed Critical 安徽明德源能科技有限责任公司
Publication of WO2025035970A1 publication Critical patent/WO2025035970A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the utility model relates to the technical field of energy storage, and in particular to a battery device and a power supply system for a data center.
  • Data centers not only require a large amount of electricity to maintain the operation of servers, storage devices, backup devices, cooling systems and other equipment, but also generally need to be equipped with corresponding batteries for the power supply system of the data center in order to prevent sudden interruption of the mains power supply connected to the data center, which may cause data loss or damage to related equipment. In this way, the data center can still be powered by batteries in the event of an external power outage to maintain normal operation of the data center.
  • the utility model proposes a battery device and a power supply system for a data center, aiming to propose a battery device that can increase or decrease the number of power storage units according to the actual power output needs of the battery device, and make the distribution Different battery devices arranged in a certain way can achieve power supply complementarity to ensure the safety and stability of power supply to the load.
  • the utility model proposes a battery device, which includes a DC input terminal, a control unit, a plurality of storage cells, a gating module and at least one output unit, wherein the DC input terminal is used to connect to the DC source of the power supply system, and the DC input terminal is electrically connected to the input terminal of each storage cell and the output unit through the gating module, the output terminal of each storage cell is electrically connected to the output unit, and the output unit is used to connect to a load, and the communication terminal and/or the control output terminal of the control unit are electrically connected to the storage cell, the gating module and the output unit; when the battery device inputs electric energy through the DC input terminal, the conduction direction of the gating module is from the DC input terminal to the output unit; when the battery device outputs electric energy through the DC input terminal, the conduction direction of the gating module is from the output unit to the DC input terminal.
  • the gating module is a bidirectional transformer unit
  • the gating module is provided with a unidirectional conduction switch and a first unidirectional transformer unit in parallel, wherein the conduction direction of the unidirectional conduction switch is from the DC input terminal to the output unit, and the conduction direction of the first unidirectional transformer unit is from the output unit to the DC input terminal.
  • the unidirectional conducting switch is a diode
  • the unidirectional conduction switch is a MOS tube, and the control output end of the control unit is also electrically connected to the control end of the MOS tube.
  • the power storage unit is connected to the battery device in a detachable electrical connection manner.
  • the battery device also includes a first switch module, wherein the selection module is electrically connected to the output unit via the first switch module; the input end and the output end of the power storage unit are electrically connected to the two conduction ends of the first switch module respectively; and the control output end of the control unit is electrically connected to the control end of the first switch module.
  • the battery device further comprises a second switch module, wherein the DC input terminal is electrically connected to the gating module via the second switch module; and the control output terminal of the control unit is electrically connected to the control terminal of the second switch module.
  • the power storage unit includes a second unidirectional transformer unit, a storage battery and a third switch module, wherein the input end of the second unidirectional transformer unit is the input end of the power storage unit, and the charging and discharging end of the storage battery is electrically connected to the output end of the second unidirectional transformer unit and the output end of the third switch module.
  • the first conduction end and the second conduction end of the third switch module are the output ends of the power storage unit.
  • the utility model proposes a power supply system for a data center, the power supply system comprising a DC source and a plurality of battery devices, the battery devices being the battery devices described above, and the DC source being electrically connected to the DC input terminals of the battery devices.
  • the beneficial effect of the technical solution of the utility model is that: a battery device that can be easily distributed in the power supply system is proposed, so that when the power supply system loses external energy supply, the distributed battery devices can continue to maintain the normal operation of multiple loads, while avoiding the risk of high temperature fire caused by the centralized setting of the battery devices, and even if any battery device fails, it will not affect other battery devices to continue to supply power to the load, and by arranging multiple parallel storage units in each battery device, the storage capacity of a single battery device can be increased to a certain extent, so that the power supply of the battery device can meet the power supply demand of the connected load as much as possible. When in use, the number of power storage units connected to a single battery device can be increased or decreased according to actual needs.
  • the battery device can also obtain power supply from other battery devices with surplus power in the power supply system to make up for the insufficient power supply (of course, if the battery device has surplus power, it can also supply power to other battery devices with insufficient power supply). In this way, the power between the battery devices can be reasonably allocated, thereby ensuring that the battery devices in the power supply system can meet the power supply demand of the corresponding load and avoiding any load power shortage.
  • FIG1 is a schematic structural diagram of an embodiment of a battery device of the utility model
  • FIG2 is a schematic structural diagram of another embodiment of the battery device of the utility model.
  • FIG3 is a schematic structural diagram of another embodiment of the battery device of the utility model.
  • FIG4 is a schematic diagram of the structure of a power storage unit in an embodiment of a battery device of the present invention.
  • FIG5 is another schematic diagram of the structure of the power storage unit in one embodiment of the battery device of the utility model
  • FIG6 is a schematic diagram of the structure of the power supply system of the present utility model.
  • first, second, etc. in the present utility model are only used for descriptive purposes and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • technical solutions between the various embodiments can be combined with each other, but they must be based on the ability of ordinary technicians in this field to implement them. When the combination of technical solutions is contradictory or cannot be implemented, it should be deemed that such a combination of technical solutions does not exist and is not within the scope of protection required by the present utility model.
  • the battery device 10 comprises a DC input terminal 11, a control unit 12, a plurality of storage cells 13, a gating module 14 and at least one output unit 15, wherein the DC input terminal 11 is used to access a DC source 20 of a power supply system, and the DC input terminal 11 is electrically connected to an input terminal of each storage cell 13 and the output unit 15 via the gating module 14, the output terminal of each storage cell 13 is electrically connected to the output unit 15, and the output unit 15 is used to access a load 30, and the communication terminal and/or the control output terminal of the control unit 12 are electrically connected to the storage cell 13, the gating module 14 and the output terminal; when the battery device 10 When electric energy is input through the DC input terminal 11, the conduction direction of the gating module 14 is from the DC input terminal 11 to the output unit 15; when the battery device 10 outputs electric energy through the DC input terminal 11, the conduction direction of the gating module 14 is from the output unit 15 to the DC input terminal 11.
  • the power supply system may be a power supply system of a data center.
  • the power supply system includes a DC source 20 and a plurality of battery devices 10.
  • the DC source 20 can be used to access external energy (such as AC mains), and convert the external energy into DC power suitable for the load 30 of the data center, and then output it to each battery device 10.
  • the DC source 20 may be provided with a plurality of DC output terminals, and each DC output terminal may be electrically connected to a battery device 10 .
  • the battery device 10 shown in FIG. 1 may be any battery device 10 provided in the power supply system.
  • the following description will be given by taking any battery device 10 provided in the power supply system as an example; wherein, the number of power storage units 13 provided in the battery device 10 is at least two, and what is shown in FIG. 1 is only an exemplary structure and should not constitute a limitation to this embodiment.
  • the DC input terminal 11 in the battery device 10 is used to connect to the DC output terminal of the DC source 20 , so that the DC power output by the DC output terminal of the DC source 20 can be input into the battery device 10 via the DC input terminal 11 in the battery device 10 .
  • control unit 12 may be a control system of the battery device 10, or a single-chip microcomputer-like device with a control function.
  • the power supply end of the control unit 12 may be electrically connected to the DC input end 11, or electrically connected to at least one storage unit 13, so as to draw power from the DC input end 11 or the storage unit 13 for the operation of the control unit 12.
  • the control unit 12 in the battery device 10 may be used to monitor and control the battery device 10 to which it belongs (such as monitoring the storage capacity of the storage unit 13, monitoring the current of any circuit of the battery device 10, or controlling the conduction mode of the switching gating module 14), and is responsible for the management of the battery device 10 (such as controlling the charging and discharging of each storage unit 13).
  • the communication end and/or control output end of the control unit 12 are electrically connected to the power storage unit 13, the gating module 14 and the output unit 15; the communication end of the control unit 12 is used to communicate with each module and unit in the battery device 10, and communicate with other battery devices 10 connected to the power supply system; the control output end of the control unit 12 is used to output corresponding control signals to each module and unit in the battery device 10 to control the operation of each module and unit.
  • the control unit 12 can also be provided with a plurality of detection ends for detecting the power of the battery 132 of each power storage unit 13, the current of any circuit of the battery device 10, etc.
  • first conduction end and the second conduction end of the gating module 14 are both bidirectional conduction ends, and the first conduction end is electrically connected to the DC input end 11, and the second conduction end is electrically connected to the input end of the storage unit 13 and the output unit 15.
  • control output end of the control unit 12 is electrically connected to the control end of the gating module 14, so the control unit 12 can control the gating module 14 to switch between different conduction modes by outputting a corresponding control signal to the gating module 14; wherein, the first conduction mode of the gating module 14 is that the current flows from the first conduction end to the second conduction end, and the second conduction mode of the gating module 14 is that the current flows from the second conduction end to the first conduction end.
  • the control unit 12 can control the gating module 14 to be in the first conduction mode, so that the current conduction direction of the gating module 14 is from the DC input terminal 11 to the output unit 15. Since the first conduction end of the gating module 14 is electrically connected to the DC input terminal 11, and the second conduction end of the gating module 14 is electrically connected to the input end of each storage unit 13 and the output unit 15, when the gating module 14 is in the first conduction mode, the DC power input from the DC input terminal 11 can flow through the gating module 14 and the output unit 15 in sequence, and be transmitted to the load 30 by the output unit 15 to supply power to the load 30, and/or charge the multiple storage units 13 arranged in parallel in the battery device 10 through the gating module 14.
  • Each battery device 10 is provided with one or more output units 15 , and each output unit 15 can be connected to one or more loads 30 .
  • the output unit 15 can also be used to monitor the state of the load 30, such as monitoring whether the load 30 has a power supply demand, the power supply demand of the load 30, etc.; that is, the output unit 15 can be used as a circuit protection device, and can have corresponding detection and metering functions (such as detecting whether a battery device 10 is connected to one side of the load 30), and report the corresponding detection and metering to the control unit 12 through a communication connection with the control unit 12.
  • the output unit 15 can be an output distribution unit (such as a distribution cabinet, a small busbar, etc.) to distribute the output power of the battery device 10 to the load 30; at the same time, the control unit 12 can make the distribution unit act as a circuit switch by controlling whether the output distribution unit is working, that is, by controlling whether the distribution unit is working, the line between the battery device 10 and the load 30 can be controlled to be turned on or off.
  • an output distribution unit such as a distribution cabinet, a small busbar, etc.
  • a controllable switch may be further provided in the output unit 15 , and the control unit 12 controls the controllable switch to be closed or opened, thereby correspondingly controlling the connection or disconnection of the line between the battery device 10 and the load 30 .
  • the second conducting end of the gating module 14 is electrically connected to the output unit 15, and the battery device
  • the input end of each storage unit 13 in the battery device 10 is electrically connected to the second conduction end of the gating module 14, and the output end of each storage unit 13 is electrically connected to the output unit 15, so the multiple storage units 13 in the battery device 10 can be equivalent to being connected in parallel between the second conduction end of the gating module 14 and the output unit 15 (or the line between the gating module 14 and the output unit 15 is regarded as a DC bus, then the multiple storage units 13 can be equivalent to being connected to the DC bus in parallel).
  • the power storage unit 13 in the battery device 10 may be enabled to supply power to the load 30 connected to the battery device 10 .
  • control unit 12 in the local battery device 10 may establish a communication connection with the control units 12 of other battery devices 10 in the power supply system.
  • the other battery devices 10 can send power shortage information to the control unit 12 of the local battery device 10.
  • the control unit 12 of the local battery device 10 can control the selection module 14 to switch to the second conduction mode, so that the current conduction direction of the selection module 14 is switched to the direction from the DC input terminal 11 to the output unit 15, so that the storage unit 13 in the local battery device 10 can pass through the selection module 14 and the DC output terminal in turn to reversely supply power to the DC output terminal of the DC source 20, and the DC source 20 transfers the current provided by the local battery device 10 to other battery devices 10, so that other battery devices 10 with insufficient power supply can obtain the power supply of the local battery device 10 from the DC output terminal of the DC source 20 to make up for the insufficient power supply.
  • the local battery device 10 can send power shortage information to the control units 12 of other battery devices 10, so that when the control units 12 of other battery devices 10 receive the power shortage information of the local battery device 10, if the other battery devices 10 do not need to supply power to the load 30 or other power supplies, If the storage capacity of the battery device 10 is sufficient to meet the power supply demand of the load 30 (that is, the other battery devices 10 have surplus power), the control unit 12 of the other battery devices 10 can reversely supply power to the DC output end of the DC source 20, and the DC source 20 transfers the current provided by the other battery devices 10 to the local battery device 10, so that the local battery device 10 can obtain the power supply of the other battery devices 10 from the DC output end of the power supply system (at this time, the control unit 12 of the local battery device 10 needs to control the selection module 14 to be
  • a battery device 10 that can be easily distributed in a power supply system is proposed, so that when the power supply system loses external energy supply, the distributed battery devices 10 can continue to maintain the normal operation of multiple loads 30, while avoiding the risk of high temperature fire caused by the centralized arrangement of the battery devices 10. Even if any battery device 10 fails, it will not affect other battery devices 10 to continue to supply power to the loads 30. Moreover, by arranging multiple parallel storage units 13 in each battery device 10, the storage capacity of a single battery device 10 can be increased to a certain extent, so that the power supply of the battery device 10 can meet the power supply demand of the connected load 30 as much as possible. The number of power storage units 13 connected to a single battery device 10 may be increased or decreased according to actual needs.
  • the battery device 10 may obtain power supply from other battery devices 10 with surplus power in the power supply system to make up for the insufficient power supply (of course, if the battery device 10 has surplus power, it can also supply power to other battery devices 10 with insufficient power supply). In this way, the power between the battery devices 10 can be reasonably allocated, thereby ensuring that the battery devices 10 in the power supply system can meet the power supply demand of the corresponding load 30 and avoiding the occurrence of insufficient power supply to any load 30.
  • the gating module 14 is a bidirectional transformer unit.
  • the bidirectional transformer unit can be a DC/DC (direct current to direct current) voltage power conversion unit.
  • the current flow direction of the bidirectional transformer unit is from the DC input terminal 11 to the output unit 15; when the selection module 14 is in the second conduction mode, the current flow direction of the bidirectional transformer unit is from the output unit 15 to the DC input terminal 11.
  • the bidirectional transformer unit can be used to convert the external The first voltage input to the DC input terminal 11 is converted into a second voltage that is compatible with the required voltage of the load 30 and/or the rated charging voltage of the storage unit 13. In this way, the first voltage input from the DC input terminal 11 can supply power to the load 30 and/or charge the storage unit 13 after being converted into the second voltage by the bidirectional transformer unit.
  • the bidirectional transformer unit can be used to convert the third voltage output by the storage unit 13 into a fourth voltage, wherein the fourth voltage is the voltage portion that is lacking in the battery device 10 with insufficient power supply in the power supply system.
  • the third voltage output by the storage unit 13 of the battery device 10 at this end after being converted into the fourth voltage by the bidirectional transformer unit, can be reversely output to the DC output end of the power supply system via the DC input end 11, so that other battery devices 10 with insufficient power supply can obtain the fourth voltage from the DC output end of the power supply system to make up for the insufficient power supply.
  • control unit 12 can also adjust the transformation parameters of the bidirectional transformer unit to adjust the voltage size converted by the bidirectional transformer unit.
  • the selection module 14 is provided with a unidirectional conduction switch 141 and a first unidirectional transformer unit 142 in parallel, wherein the conduction direction of the unidirectional conduction switch 141 is from the DC input terminal 11 to the output unit 15, and the conduction direction of the first unidirectional transformer unit 142 is from the output unit 15 to the DC input terminal 11.
  • the internal current of the unidirectional conduction switch 141 can only flow from the first conduction end of the unidirectional conduction switch 141 to the second conduction end of the unidirectional conduction switch 141, and the first conduction end of the unidirectional conduction switch 141 is electrically connected to the DC input end 11, and the second conduction end is electrically connected to the output unit 15, so that the current conduction direction of the unidirectional conduction switch 141 is from the DC input end 11 to the output unit 15;
  • the internal current of the first unidirectional transformer unit 142 can only flow from the input end of the first unidirectional transformer unit 142 to the output end of the first unidirectional transformer unit 142, and the output end of the first unit transformer unit is electrically connected to the DC input end 11, and the input end is electrically connected to the output unit 15, so that the current conduction direction of the first unidirectional transformer unit 142 is from the output end to the DC input end 11.
  • the unidirectional conducting switch 141 is electrically connected to the output end of the first unidirectional transformer 142, and the second conducting end of the unidirectional conducting switch 141 is electrically connected to the input end of the first unidirectional transformer 142, the unidirectional conducting switch 141 and the first unidirectional transformer 142 are connected to each other. It is equivalent to being arranged in parallel in the gating module 14.
  • control end of the first unidirectional transformer unit 142 is electrically connected to the control output end of the control unit 12, so that the control unit 12 can control the input and output ends of the first unidirectional transformer unit 142 to connect or disconnect the line between the internal circuit of the first unidirectional transformer unit 142 by outputting a corresponding control signal to the control end of the first unidirectional transformer unit 142.
  • the unidirectional conduction switch 141 may be a diode or a MOS tube. If the unidirectional conduction switch 141 is a diode, the first conduction end of the unidirectional conduction switch 141 is the anode of the diode, and the second conduction end of the unidirectional conduction switch 141 is the cathode of the diode; if the unidirectional conduction switch 141 is a PMOS tube, the first conduction end of the unidirectional conduction switch 141 is the drain of the PMOS tube, and the second conduction end of the unidirectional conduction switch 141 is the source of the PMOS tube; if the unidirectional conduction switch 141 is an NMOS tube, the first conduction end of the unidirectional conduction switch 141 is the source of the NMOS tube, and the second conduction end of the unidirectional conduction switch 141 is the drain of the NMOS tube.
  • the unidirectional conduction switch 141 is a diode
  • the internal path of the first unidirectional transformer unit 142 can be controlled to be disconnected, so that the input end and the output end of the first unidirectional transformer unit 142 cannot be conducted through the internal path.
  • the current input from the DC input terminal 11 to the gating module 14 can only flow out of the gating module 14 through the unidirectional conduction switch 141 (at this time, the unidirectional conduction switch 141 is in the on state); when the control unit 12 needs to control the gating module
  • the internal path of the first unidirectional transformer unit 142 can be controlled to be conducted, so that the input and output ends of the first unidirectional transformer unit 142 can be conducted through the internal path.
  • the current provided by the storage unit 13 can only be reversely transmitted to the DC input terminal 11 through the first unidirectional transformer unit 142 (at this time, the unidirectional conduction switch 141 is in the off state, and due to the unidirectional conduction characteristics of the unidirectional conduction switch 141, the current cannot flow to the DC input terminal 11 through the unidirectional conduction switch 141).
  • the control output end of the control unit 12 is also electrically connected to the gate of the MOS tube (not shown in the figure); when the control unit 12 needs to control the gating module 14 to be in the first conduction mode, the internal path of the first unidirectional voltage transformation unit 142 can be controlled to be disconnected, and the MOS tube can be controlled to be in the conduction state.
  • the current input from the DC input terminal 11 to the gating module 14 can only flow out of the gating module 14 through the MOS tube; when the control unit 12 needs to control the gating module 14 to be in the second conduction mode, the internal path of the first unidirectional voltage transformation unit 142 can be controlled to be turned on, and the MOS tube can be controlled to be in the cut-off state.
  • the current provided by the storage unit 13 can only flow out of the storage unit 13 through the DC input terminal 11.
  • the first unidirectional transformer unit 142 delivers the DC current in reverse direction to the DC input terminal 11 .
  • the first unidirectional voltage transformation unit 142 may be a DC/DC (direct current to direct current) voltage power conversion unit.
  • control unit 12 can also adjust the transformation parameters of the first unidirectional transformation unit 142 by outputting a corresponding control signal to the first unidirectional transformation unit 142 , thereby adjusting the voltage converted by the first unidirectional transformation unit 142 .
  • the scheme in which a first unidirectional transformer unit 142 and a unidirectional conduction switch 141 are arranged in parallel in the selection module 14 is particularly suitable for a scheme in which the electric energy provided by the DC source 20 can directly meet the power supply demand of the load 30; that is, when the selection module 14 is in the first conduction mode, the DC power input from the DC input terminal 11 can be directly transferred to the output unit 15 by the unidirectional conduction switch 141 to be directly used for powering the load 30.
  • the power storage unit 13 is connected to the battery device 10 in a detachable electrical connection manner.
  • the battery device 10 is provided with a plurality of first interfaces suitable for inserting the storage unit 13, and the interfaces are provided with first contacts corresponding to the connecting lines of each module and unit in the battery device 10 that need to be electrically connected to the storage unit 13; and the storage unit 13 has a second interface adapted to the first interface, and the second interface is provided with a second contact corresponding to the first contact (the second contact is the contact of the connecting line in the storage unit 13 that needs to be connected to other modules and units of the battery device 10).
  • the first interface and the second interface are detachably connected, and when the power storage unit 13 is inserted into the battery device 10 through the connection between the second interface and the first interface, the first contact point and the second contact point are electrically connected, and the power storage unit 13 can be connected to the battery device 10 in a detachable electrically connected manner. In this way, it is convenient to add, remove, or replace the power storage unit 13 in the battery device 10.
  • the battery device 10 further includes a first switch module 16, wherein the gating module 14 is electrically connected to the output unit 15 via the first switch module 16; the input end and the output end of the power storage unit 13 are electrically connected to the first The two conducting ends of the switch module 16; the control output end of the control unit 12 is electrically connected to the control end of the first switch module 16.
  • the first conductive end of the first switch module 16 is electrically connected to the second conductive end of the selection module 14 and the input end of each power storage unit 13; the second conductive end of the first switch module is electrically connected to the output unit 15 and the output end of each power storage unit 13.
  • the control output end of the control unit 12 is also electrically connected to the control end of the first switch module 16, so as to control the first switch module 16 to be closed or opened.
  • a normally open switch device (such as a normally open contactor, a normally open relay, etc.) is provided in the first switch module 16, so that when the battery device 10 loses power, the first switch module 16 will be disconnected to protect the circuit safety.
  • the first switch module 16 is controlled to be in a closed state so that the current input to the DC input terminal 11 can sequentially pass through the selection module 14, the first switch module 16 and the output unit 15 to supply power to the load 30; and when the DC source 20 supplies power abnormally so that the DC input terminal 11 has no power input, and the storage unit 13 needs to be enabled to supply power to the load 30, the first switch module 16 can be controlled to be in a disconnected state at this time to prevent the current output by the storage unit 13 from flowing back to the input terminal of the storage unit 13, thereby avoiding current circulation.
  • the battery device 10 further includes a second switch module 17 , wherein the DC input terminal 11 is electrically connected to the gating module 14 via the second switch module 17 ; and the control output terminal of the control unit 12 is electrically connected to the control terminal of the second switch module 17 .
  • the first conductive end of the second switch module 17 is electrically connected to the DC input end 11
  • the second conductive end of the second switch module 17 is electrically connected to the first conductive end of the selection module 14
  • the control end of the second switch module 17 is electrically connected to the control output end of the control unit 12.
  • the second switch module 17 may be provided with a controllable switch tube (such as a MOS tube) or a switch device (such as a contactor, a relay, etc.), and the control unit 12 may control the switch tube and/or the switch device in the second switch module 17 to be turned on or off to control the second switch module 17 to be closed or opened.
  • a controllable switch tube such as a MOS tube
  • a switch device such as a contactor, a relay, etc.
  • control output terminal of the control unit 12 is electrically connected to the control terminal of the second switch module 17, the corresponding control signal can be output to the control terminal of the second switch module 17. To control the second switch module 17 to close or open.
  • the second switch module 17 may also be a normally open switch device (such as a normally open contactor, a normally open relay, etc.).
  • a normally open switch device such as a normally open contactor, a normally open relay, etc.
  • the first conducting end of the second switch module 17 is electrically connected to the DC input end 11, and the second conducting end of the second switch module 17 is electrically connected to the first conducting end of the gating module 14, when the second switch module 17 is closed, a path can be formed between the DC input end 11 and the gating module 14, and the DC input end 11 can supply power to the load 30 through the gating module 14; conversely, if the second switch module 17 is disconnected, a circuit is formed between the DC input end 11 and the gating module 14, and the DC input end 11 cannot supply power to the load 30 through the gating module 14.
  • the voltage output by the storage unit 13 can be prevented from flowing back to the DC input end 11 by controlling the second switch module 17 to be disconnected.
  • the power storage unit 13 includes a second unidirectional transformer unit 131, a battery 132 and a third switch module 133, wherein the input end of the second unidirectional transformer unit 131 is the input end of the power storage unit 13, the charging and discharging end of the battery 132 is electrically connected to the output end of the second unidirectional transformer unit 131 and the first conduction end of the third switch module 133, and the second conduction end of the third switch module 133 is the output end of the power storage unit 13.
  • the input end of the second unidirectional transformer unit 131 is the input end of the power storage unit 13
  • the charging and discharging end of the battery 132 is electrically connected to the output end of the second unidirectional transformer unit 131 and the first conductive end of the third switch module 133
  • the second conductive end of the third switch module 133 is the output end of the power storage unit 13.
  • At least one unidirectional conduction switch (such as a diode or a MOS tube) is provided in the third switch module 133, and the current conduction direction of the unidirectional conduction switch is from the battery 132 to the output unit 15, so that the current in the third switch module 133 can only flow from the first conduction switch of the third switch module 133 to the output unit 15.
  • the conduction end flows to the second conduction end of the third switch module 133.
  • the anode of the diode needs to be electrically connected to the charge and discharge end of the battery 132, and the cathode needs to be electrically connected to the output unit 15, so that the current conduction direction of the unidirectional conduction switch is from the battery 132 to the output unit 15.
  • the control output end of the control unit 12 can also be electrically connected to the gate of the MOS tube (not shown in the figure), and the corresponding control signal is output to the gate of the MOS tube to control the MOS tube to be turned on or off, thereby controlling the unidirectional conduction switch to be closed or opened;
  • the unidirectional conduction switch is a diode, the unidirectional conduction switch can automatically realize the conduction or disconnection of the second switch device by automatically detecting the change in the voltage difference between the anode and the cathode.
  • a unidirectional conduction switch and a controllable switch can be arranged in parallel in the third switch module 133.
  • the third switch module 133 can be controlled to be disconnected; and as long as any one of the unidirectional conduction switch and the controllable switch is controlled to be closed, the third switch module 133 can be controlled to be closed.
  • a unidirectional conduction switch and a controllable switch may be arranged in series in the third switch module 133.
  • the third switch module 133 may be controlled to be disconnected; and by controlling the unidirectional conduction switch and the controllable switch to be closed at the same time, the third switch module 133 may be controlled to be closed.
  • the current of the second unidirectional transformer unit 131 flows from the input end to the output end of the second unidirectional transformer unit 131.
  • the input end of the second unidirectional transformer unit 131 serves as the input end of the power storage unit 13 and is electrically connected to the second conduction end of the gating module 14; the output end of the second unidirectional transformer unit 131 is electrically connected to the charging and discharging end of the battery 132.
  • the second unidirectional transformer unit 131 can be a DC/DC (direct current to direct current) voltage power conversion unit, and the second unidirectional transformer unit 131 can be used to convert the received DC voltage into a rated charging voltage compatible with the battery 132, and then output the converted voltage to the battery 132.
  • DC/DC direct current to direct current
  • the second unidirectional transformer 131 may be configured to convert the received DC voltage into a rated charging voltage adapted to the battery 132 according to preset working parameters; or, the control end of the second unidirectional transformer 131 is electrically connected to the control output end of the control unit 12 and is controlled by the control unit 12, so that the control unit 12 can output a corresponding control signal to the second unidirectional transformer 131 to set the working parameters of the second unidirectional transformer 131, so that the second unidirectional transformer 131 can convert the received DC voltage into a corresponding DC voltage according to the charging requirements of the battery 132 (that is, the control unit 12 can adjust the voltage converted by the second unidirectional transformer 131 according to the charging requirements).
  • Small the control unit 12 can adjust the voltage converted by the second unidirectional transformer 131 according to the charging requirements.
  • control unit 12 may be provided with a plurality of control output terminals, and various components (such as the gating module 14 and/or the second unidirectional voltage transformation unit 131) may be controlled respectively through different control output terminals.
  • the first conductive end of the third switch module 133 is electrically connected to the charging and discharging ends of the battery 132, when the third switch module 133 is turned on, a path can be formed between the battery 132 and the second conductive end of the third switch module 133, and the storage unit 13 has a voltage output; conversely, if the third switch module 133 is disconnected, a short circuit is formed between the battery 132 and the second conductive end of the third switch module 133, and the storage unit 13 has no voltage output.
  • the third switch module 133 when the DC input terminal 11 can supply power to the load 30 connected to the battery device 10, the third switch module 133 is disconnected and the power storage unit 13 has no output; when the DC input terminal 11 cannot meet the power supply demand of the load 30, the third switch module 133 is turned on, and the power storage unit 13 can supply power to the load 30 and/or supply power to other battery devices 10 with insufficient power supply through the DC input terminal 11.
  • the charging and discharging of the battery 132 in the storage unit 13 can be controlled in a timely manner. For example, when there is no current input to the DC input terminal 11, the battery 132 in any storage unit 13 is controlled to discharge to the load 30; or when there is current input to the DC input terminal 11 and the battery 132 is not fully charged, the second unidirectional transformer unit 131 can be controlled to charge the battery 132 using the current input from the DC input terminal 11.
  • the utility model further proposes a power supply system for a data center.
  • the power supply system includes a DC source 20 and a plurality of battery devices 10.
  • the specific structure of the battery device 10 refers to the above-mentioned embodiment. Since the power supply system adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the technical effects brought by the technical solutions of the above-mentioned embodiments, which will not be described one by one here.
  • each battery device 10 is electrically connected to the DC output end of the DC source 20 ; and the output unit of the battery device 10 is responsible for connecting to the load 30 of the data center.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池装置(10),所述电池装置(10)包括直流输入端(11)、控制单元(12)、多个蓄电单元(13)、选通模块(14)和至少一个输出单元(15),其中,所述直流输入端(11)用于接入供电系统的直流源(20),且所述直流输入端(11)经所述选通模块(14)电连接每个所述蓄电单元(13)的输入端和所述输出单元(15),每个所述蓄电单元(13)的输出端均电连接所述输出单元(15),且所述输出单元(15)用于接入负载(30),所述控制单元(12)的通信端和/或控制输出端电连接所述蓄电单元(13)、所述选通模块(14)和所述输出单元(15)。还提供一种数据中心的供电系统。旨在提出便于在供电系统中进行分布式设置的电池装置(10),且可根据电池装置(10)实际供电输出需要相应增减其中接入的蓄电单元(13),以满足为负载供电的安全性和稳定性。

Description

电池装置和数据中心的供电系统
本申请要求于2023年08月14日提交中国专利局、申请号为202322179636.4、申请名称为:“电池装置和数据中心的供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及储能技术领域,特别涉及一种电池装置和数据中心的供电系统。
背景技术
数据中心不仅需要大量电力来维持服务器、储存设备、备份装置、冷却系统等设备的运作,而且为了防止数据中心接入的市电供应突然中断而导致数据丢失或损坏相关设备,一般还需要为数据中心的供电系统配备相应的蓄电池,以在外部断电时还可通过蓄电池来为数据中心供电,维持数据中心的正常运作。
目前为了满足数据中心巨大的供电需求,往往需要为之配备多个蓄电池,并将这些蓄电池串联成蓄电池组,但这样一来,一旦其中一个蓄电池故障,就会导致其他蓄电池也无法为数据中心供电,且若蓄电池故障起火,还容易波及到其他蓄电池,引发其他蓄电池烧坏或短路,造成一定的设备损失。而若只是简单将蓄电池组分散设置,又可能会存现因单个蓄电池的蓄电量过低而无法满足负载供电的情况。
上述内容仅用于辅助理解本实用新型的技术方案,并不代表承认上述内容是现有技术。
实用新型内容
本实用新型提出一种电池装置和数据中心的供电系统,旨在提出可根据电池装置实际供电输出需要相应增减蓄电单元数量的电池装置,并且使分布 式设置的不同电池装置间实现供电互补,以满足为负载供电的安全性和稳定性。
为实现上述目的,本实用新型提出一种电池装置,所述电池装置包括直流输入端、控制单元、多个蓄电单元、选通模块和至少一个输出单元,其中,所述直流输入端用于接入供电系统的直流源,且所述直流输入端经所述选通模块电连接每个所述蓄电单元的输入端和所述输出单元,每个所述蓄电单元的输出端均电连接所述输出单元,且所述输出单元用于接入负载,所述控制单元的通信端和/或控制输出端电连接所述蓄电单元、所述选通模块和所述输出单元;当所述电池装置通过所述直流输入端输入电能时,所述选通模块的导通方向为所述直流输入端至所述输出单元方向;当所述电池装置通过所述直流输入端输出电能时,所述选通模块的导通方向为所述输出单元至所述直流输入端方向。
可选的,所述选通模块为双向变压单元;
或者,所述选通模块并联设置有单向导通开关和第一单向变压单元,其中,所述单向导通开关的导通方向为所述直流输入端至所述输出单元方向,所述第一单向变压单元的导通方向为所述输出单元至所述直流输入端方向。
可选的,所述单向导通开关为二极管;
或者,所述单向导通开关为MOS管,且所述控制单元的控制输出端还电连接所述MOS管的控制端。
可选的,所述蓄电单元以可拆卸性的电连接方式接入到所述电池装置中。
可选的,所述电池装置还包括第一开关模块,其中,所述选通模块经所述第一开关模块电连接所述输出单元;所述蓄电单元的输入端和输出端分别电连接所述第一开关模块的两个导通端;所述控制单元的控制输出端电连接所述第一开关模块的控制端。
可选的,所述电池装置还包括第二开关模块,其中,所述直流输入端经所述第二开关模块电连接所述选通模块;所述控制单元的控制输出端电连接所述第二开关模块的控制端。
可选的,所述蓄电单元包括第二单向变压单元、蓄电池和第三开关模块,其中,所述第二单向变压单元的输入端为所述蓄电单元的输入端,所述蓄电池的充放电端电连接所述第二单向变压单元的输出端、所述第三开关模块的 第一导通端,所述第三开关模块的第二导通端为所述蓄电单元的输出端。
为实现上述目的,本实用新型提出一种数据中心的供电系统,所述供电系统包括直流源和多个电池装置,所述电池装置为上述所述的电池装置,所述直流源电连接所述电池装置的直流输入端。
本实用新型技术方案的有益效果在于:提出一种可便于在供电系统中进行分布式设置的电池装置,以在供电系统失去外部能源供应时,可通过分布式设置的电池装置继续维持多路负载的正常运作的同时,又可避免因电池装置集中设置而容易引发高温起火的危险,并且即便任一电池装置故障,也不会影响到其他电池装置继续为负载供电,而且通过在各电池装置中设置多个并联的蓄电单元,可以在一定程度上提高单个电池装置的蓄电量,使得电池装置的供电量可以尽可能满足其所接入的负载的供电需求,使用时可根据实际情况需要增减在单个电池装置中接入的蓄电单元的数量,而且即便这样电池装置的供电量也不能满足其所接入的负载的供电需求时,电池装置还可以通过供电系统其他供电量有富余的电池装置获取到电力供应,以补足其供电不足的部分(当然,若电池装置的供电量有富余,同样可以向其他供电量不足的电池装置进行供电),这样就可以使得各电池装置之间的电量可以得到合理调配,从而保证供电系统中的电池装置能满足相应负载的供电需求,避免有任何负载供电不足的情况发生。
附图说明
图1为本实用新型电池装置一实施例的结构示意图;
图2为本实用新型电池装置另一实施例的结构示意图;
图3为本实用新型电池装置又一实施例的结构示意图;
图4为本实用新型电池装置一实施例中蓄电单元的结构示意图;
图5为本实用新型电池装置一实施例中蓄电单元的另一结构示意图;
图6为本实用新型供电系统的结构示意图。
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的方案进行清楚完整的描述,显然,所描述的实施例仅是本实用新型中的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
需要说明的是,本实用新型实施例中所有方向性指示(诸如上、下、左、右、前、后......)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
另外,在本实用新型中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
本实用新型提出一种电池装置,参照图1,所述电池装置10包括直流输入端11、控制单元12、多个蓄电单元13、选通模块14和至少一个输出单元15,其中,所述直流输入端11用于接入供电系统的直流源20,且所述直流输入端11经所述选通模块14电连接每个所述蓄电单元13的输入端和所述输出单元15,每个所述蓄电单元13的输出端均电连接所述输出单元15,且所述输出单元15用于接入负载30,所述控制单元12的通信端和/或控制输出端电连接所述蓄电单元13、所述选通模块14和所述输出端;当所述电池装置10 通过所述直流输入端11输入电能时,所述选通模块14的导通方向为所述直流输入端11至所述输出单元15方向;当所述电池装置10通过所述直流输入端11输出电能时,所述选通模块14的导通方向为所述输出单元15至所述直流输入端11方向。
本实施例中,供电系统可以是数据中心的供电系统。
可选的,该供电系统包括直流源20和多个电池装置10。其中,该直流源20可用于接入的外部能源(如交流市电),并将外部能源转换为适合数据中心的负载30使用的直流电,然后输出至各电池装置10中。
可选的,所述直流源20可以设置有多个直流输出端,每个直流输出端均可以电连接一个电池装置10。
可选的,图1所示的电池装置10,可为供电系统中所设置的任一个电池装置10,以下以供电系统中所设置的任一个电池装置10为例进行说明;其中,电池装置10中设置的蓄电单元13的数量为至少两个,图1所示的仅为一种示例性结构,不应构成对本实施例的限制。
可选的,电池装置10中的直流输入端11用于接入直流源20的直流输出端,这样由直流源20的直流输出端所输出的直流电,就可以经电池装置10中的直流输入端11输入到电池装置10中。
可选的,所述控制单元12可以是电池装置10的控制系统,或者单片机类具有控制功能的器件。其中,控制单元12的供电端可电连接直流输入端11,或者电连接至少一个蓄电单元13,以从直流输入端11或蓄电单元13处取电,供控制单元12运行。可选的,电池装置10中的控制单元12可用于对其所属的电池装置10进行监测和控制(如监测蓄电单元13的蓄电量、监测电池装置10任意电路的电流,或者控制切换选通模块14的导通模式),并负责电池装置10的管理工作(如控制各蓄电单元13充放电)。其中,所述控制单元12的通信端和/或控制输出端电连接所述蓄电单元13、所述选通模块14和所述输出单元15;控制单元12的通信端用于与电池装置10中各模块、单元通信,以及与供电系统接入的其他电池装置10通信;控制单元12的控制输出端则用于向电池装置10中各模块、单元输出相应的控制信号,以控制各模块、单元工作。此外,控制单元12还可设置有多个探测端,用于探测各蓄电单元13的蓄电池132电量、电池装置10任意电路的电流等。
可选的,选通模块14的第一导通端和第二导通端均为双向导通端,且第一导通端电连接直流输入端11,第二导通端电连接蓄电单元13的输入端、所述输出单元15。此外,控制单元12的控制输出端电连接选通模块14的控制端,因此控制单元12可以通过向选通模块14输出相应的控制信号,以控制选通模块14在不同的导通模式间进行切换;其中,选通模块14的第一导通模式为电流自第一导通端流向第二导通端,选通模块14的第二导通模式为电流自第二导通端流向第一导通端。
可选的,当直流输入端11有电源输入时,则控制单元12可控制选通模块14处于第一导通模式,使得选通模块14的电流导通方向为直流输入端11至所述输出单元15方向。而由于选通模块14的第一导通端电连接直流输入端11,且选通模块14的第二导通端电连接每个蓄电单元13的输入端以及所述输出单元15,因此当选通模块14处于第一导通模式时,由直流输入端11输入的直流电就可以依次流经选通模块14和输出单元15,并由输出单元15输送至负载30,以为负载30供电,和/或经选通模块14为电池装置10中多个并联式设置的蓄电单元13充电。
其中,每个电池装置10设置有一个或多个输出单元15,且每个输出单元15可接入一个或多个负载30。
可选的,输出单元15除用于接入负载30外,还可用于监测负载30状态,如监测负载30是否存在供电需求、负载30供电需求量等;即输出单元15可作为电路保护器件,并可带有相应的检测计量功能(如检测负载30一侧是否有接入电池装置10),通过与控制单元12的通信连接,将相应的检测计量上报至控制单元12。其中,输出单元15可以是一种输出配电单元(如配电柜、小母线之类的),以将电池装置10的输出电能配送至负载30;同时,控制单元12通过控制输出配电单元工作与否,可使配电单元起到电路开关的作用,即通过控制配电单元工作与否,可相应实现控制电池装置10与负载30之间的线路导通或断开。
在一些可选实施例中,输出单元15中还可设置可控开关,并由控制单元12控制可控开关闭合或断开,从而相应实现控制电池装置10与负载30之间的线路导通或断开。
可选的,由于选通模块14的第二导通端电连接输出单元15,且电池装置 10中的每个蓄电单元13的输入端均电连接选通模块14的第二导通端,以及每个蓄电单元13的输出端均电连接输出单元15,因此电池装置10中的多个蓄电单元13可相当于并联在选通模块14的第二导通端和输出单元15之间(或者将选通模块14与输出单元15之间的线路当作直流母线,那么多个蓄电单元13就可相当于以并联的方式接入到直流母线中)。这样,不仅可以在一定程度上提高单个电池装置10的蓄电量,而且当电池装置10中任一蓄电单元13故障时,就不会影响到其他蓄电单元13的正常使用,使得其他蓄电单元13可继续充电或为负载30供电,保证电池装置10可以稳定运行。
可选的,当直流输入端11无电源输入时(如直流源20供电异常时),则可以启用电池装置10中的蓄电单元13为电池装置10所接入的负载30供电。
可选的,本端电池装置10中的控制单元12,可与供电系统中的其他电池装置10的控制单元12建立有通信连接。
可选的,当供电系统接入的外部能源供电异常,供电系统的直流源20无电流输出时,若其他电池装置10的蓄电量不足以满足该电池装置10所接入的负载30的供电需求时,则其他电池装置10可以向本端电池装置10的控制单元12发送供电不足信息,这样当本端电池装置10的控制单元12接收到其他电池装置10的供电不足信息时,若检测到本端电池装置10无需为负载30供电或本端电池装置10的蓄电量足以满足负载30的供电需求(即本端电池装置10具有富余电量),则本端电池装置10的控制单元12可以控制选通模块14切换至第二导通模式,使得选通模块14的电流导通方向切换为直流输入端11至所述输出单元15方向,这样本端电池装置10中的蓄电单元13就可以依次通过选通模块14和直流输出端,以向直流源20的直流输出端反向供电,并由直流源20将本端电池装置10提供的电流中转至其他电池装置10,这样其他供电不足的电池装置10就可以从直流源20的直流输出端处获取到本端电池装置10的电源供应,以补足供电不足的部分。
可选的,当供电系统接入的外部能源供电异常,导致直流源20无电流输出时,若本端电池装置10的蓄电量不足以满足该电池装置10所接入的负载30的供电需求时,则本端电池装置10可以向其他电池装置10的控制单元12发送供电不足信息,这样当其他电池装置10的控制单元12接收到本端电池装置10的供电不足信息时,若其他电池装置10无需为负载30供电或其他电 池装置10的蓄电量足以满足负载30的供电需求(即其他电池装置10具有富余电量),则其他电池装置10的控制单元12可以向直流源20的直流输出端反向供电,并由直流源20将其他电池装置10提供的电流中转至本端电池装置10,这样本端电池装置10就可以从供电系统的直流输出端处获取到其他电池装置10的电源供应(此时本端电池装置10的控制单元12需控制选通模块14处于第一导通模式),以补足供电不足的部分。
在一实施例中,提出一种可便于在供电系统中进行分布式设置的电池装置10,以在供电系统失去外部能源供应时,可通过分布式设置的电池装置10继续维持多路负载30的正常运作的同时,又可避免因电池装置10集中设置而容易引发高温起火的危险,并且即便任一电池装置10故障,也不会影响到其他电池装置10继续为负载30供电,而且通过在各电池装置10中设置多个并联的蓄电单元13,可以在一定程度上提高单个电池装置10的蓄电量,使得电池装置10的供电量可以尽可能满足其所接入的负载30的供电需求,使用时可根据实际情况需要增减在单个电池装置10中接入的蓄电单元13的数量,而且即便这样电池装置10的供电量也不能满足其所接入的负载30的供电需求时,电池装置10还可以通过供电系统其他供电量有富余的电池装置10获取到电力供应,以补足其供电不足的部分(当然,若电池装置10的供电量有富余,同样可以向其他供电量不足的电池装置10进行供电),这样就可以使得各电池装置10之间的电量可以得到合理调配,从而保证供电系统中的电池装置10能满足相应负载30的供电需求,避免有任何负载30供电不足的情况发生。
在一实施例中,在上述实施例的基础上,所述选通模块14为双向变压单元。
本实施例中,双向变压单元可以是DC/DC(直流转直流)电压功率变换单元,当选通模块14处于第一导通模式时,则双向变压单元的电流流向为所述直流输入端11至所述输出单元15方向;当选通模块14处于第二导通模式时,则双向变压单元的电流流向为所述输出单元15至所述直流输入端11方向。
可选的,若选通模块14处于第一导通模式,则双向变压单元可用于将外 部输入到直流输入端11的第一电压,转换为与负载30需求电压和/或蓄电单元13的额定充电电压所适配的第二电压,这样由直流输入端11输入的第一电压,经双向变压单元转换为第二电压后,就可以为负载30供电和/或为蓄电单元13充电。
可选的,若选通模块14处于第二导通模式,则双向变压单元可用于将蓄电单元13输出的第三电压转换为第四电压,其中,该第四电压为供电系统中供电不足的电池装置10所欠缺的电压部分,这样当供电系统中的其他电池装置10无法满足负载30供电需求,而本端电池装置10的蓄电量有富余时,那么本端电池装置10的蓄电单元13输出的第三电压,经双向变压单元转换为第四电压后,就可以再经直流输入端11反向输出至供电系统的直流输出端,使得供电不足的其他电池装置10可以从供电系统的直流输出端处获取到第四电压,以补足其供电不足的部分。
需要说明的是,控制单元12除了可以控制选通模块14在不同的导通模式间进行切换外,还可以调节双向变压单元的变压参数,以调节双向变压单元所转换得到的电压大小。
或者,在一些可选实施例中,参照图2,所述选通模块14并联设置有单向导通开关141和第一单向变压单元142,其中,所述单向导通开关141的导通方向为所述直流输入端11至所述输出单元15方向,所述第一单向变压单元142的导通方向为所述输出单元15至所述直流输入端11方向。
可选的,单向导通开关141内部电流流向只能从单向导通开关141的第一导通端流向单向导通开关141的第二导通端,且单向导通开关141的第一导通端电连接直流输入端11、第二导通端电连接输出单元15,这样,单向导通开关141的电流导通方向为所述直流输入端11至所述输出单元15方向;第一单向变压单元142的内部电流流向只能从第一单向变压单元142的输入端流向第一单向变压单元142的输出端,且第一单元变压单元的输出端电连接直流输入端11、输入端电连接输出单元15,这样,第一单向变压单元142的电流导通方向为所述输出端至所述直流输入端11方向。
而且由于所述单向导通开关141的第一导通端电连接所述第一单向变压单元142的输出端,所述单向导通开关141的第二导通端电连接所述第一单向变压单元142的输入端,因此单向导通开关141和第一单向变压单元142 是相当于并联设置在选通模块14中的。
可选的,第一单向变压单元142的控制端电连接所述控制单元12的控制输出端,因此控制单元12可通过向第一单向变压单元142的控制端输出相应的控制信号,以控制第一单向变压单元142的输入端和输出端在第一单向变压单元142内部电路之间的线路导通或断开。
可选的,所述单向导通开关141可以是二极管,也可以是MOS管。其中,若单向导通开关141为二极管,则单向导通开关141的第一导通端为二极管的阳极、单向导通开关141的第二导通端为二极管的阴极;若单向导通开关141为PMOS管,则单向导通开关141的第一导通端为PMOS管的漏极、单向导通开关141的第二导通端为PMOS管的源极;若单向导通开关141为NMOS管,则单向导通开关141的第一导通端为NMOS管的源极、单向导通开关141的第二导通端为NMOS管的漏极。
可选的,若单向导通开关141为二极管,当控制单元12需要控制选通模块14处于第一导通模式时,则可以控制第一单向变压单元142内部通路断开,以使得第一单向变压单元142的输入端和输出端无法通过内部通路导通,此时由直流输入端11输入到选通模块14的电流,就只能经单向导通开关141流出选通模块14(此时单向导通开关141处于导通状态);当控制单元12需要控制选通模块14处于第二导通模式时,则可以控制第一单向变压单元142内部通路导通,以使得第一单向变压单元142的输入端和输出端可以通过内部通路导通,此时由蓄电单元13提供的电流,就只能经第一单向变压单元142流反向输送至直流输入端11(此时单向导通开关141处于截止状态,并且由于单向导通开关141的单向导通特性,使得此时电流无法经单向导通开关141流至直流输入端11)。
可选的,若单向导通开关141为MOS管,则控制单元12的控制输出端还电连接MOS管的栅极(图中未示出);当控制单元12需要控制选通模块14处于第一导通模式时,则可以控制第一单向变压单元142内部通路断开,以及控制MOS管处于导通状态,此时由直流输入端11输入到选通模块14的电流,就只能经MOS管流出选通模块14;当控制单元12需要控制选通模块14处于第二导通模式时,则可以控制第一单向变压单元142内部通路导通,以及控制MOS管处于截止状态,此时由蓄电单元13提供的电流,就只能经 第一单向变压单元142流反向输送至直流输入端11。
可选的,第一单向变压单元142可以是DC/DC(直流转直流)电压功率变换单元。
需要说明的是,控制单元12还可以通过向第一单向变压单元142输出相应的控制信号,以调节第一单向变压单元142的变压参数,从而实现调节第一单向变压单元142所转换得到的电压大小。
需要说明的是,选通模块14中并联设置有第一单向变压单元142和单向导通开关141的方案,尤其适用于直流源20提供的电能可直接满足负载30供电需求的方案;即当选通模块14处于第一导通模式时,可由单向导通开关141直接将直流输入端11输入的直流电,中转至输出单元15,以直接用于负载30供电。
在一实施例中,在上述实施例的基础上,所述蓄电单元13以可拆卸性的电连接方式接入到所述电池装置10中。
可选的,电池装置10中设置有多个适用于蓄电单元13插入的第一接口,并且接口中设置有电池装置10中所需要与蓄电单元13电连接的各模块、单元的连接线对应的第一触点;而蓄电单元13则具有与该第一接口适配的第二接口,且第二接口中设置有与第一触点相对应的第二触点(第二触点则为蓄电单元13中所需要与电池装置10其他模块、单元连接的连接线的触点)。
其中,第一接口与第二接口之间可拆卸性连接,且当蓄电单元13通过第二接口和第一接口的连接插入到电池装置10中时,即可使得第一触点与第二触点电连接,也就能实现蓄电单元13以可拆卸性的电连接方式接入到所述电池装置10中。这样,可便于在电池装置10中增减、更换蓄电单元13。
需要说明的是,上述实现蓄电单元13以可拆卸性的电连接方式接入到电池装置10的方式,仅为示例性说明,不排除蓄电单元13还可采用其他方式,等效接入到电池装置10。
在一实施例中,参照图3,在上述实施例的基础上,所述电池装置10还包括第一开关模块16,其中,所述选通模块14经所述第一开关模块16电连接所述输出单元15;所述蓄电单元13的输入端和输出端分别电连接所述第一 开关模块16的两个导通端;所述控制单元12的控制输出端电连接所述第一开关模块16的控制端。
本实施例中,第一开关模块16的第一导通端电连接选通模块14的第二导通端、各蓄电单元13的输入端;第一开关模模块的第二导通端电连接输出单元15、各蓄电单元13的输出端。此外,控制单元12的控制输出端还电连接第一开关模块16的控制端,以此控制第一开关模块16闭合或断开。
可选的,第一开关模块16中设置常开型开关器件(如常开接触器、常开继电器等),这样当电池装置10失电时,第一开关模块16就会断开,保护电路安全。
可选的,在电池装置10正常运作的过程中,当直流源20供电正常,使得直流输入端11有电能输入时,则控制第一开关模块16处于闭合状态,以使直流输入端11输入的电流可依次经选通模块14、第一开关模块16和输出单元15为负载30供电;而当直流源20供电异常,使得直流输入端11无电能输入,需要启用蓄电单元13为负载30供电时,此时可控制第一开关模块16处于断开状态,以免蓄电单元13输出的电流回流至蓄电单元13的输入端,即可避免发生电流环流。
在一实施例中,参照图4,在上述实施例的基础上,所述电池装置10还包括第二开关模块17,其中,所述直流输入端11经所述第二开关模块17电连接所述选通模块14;所述控制单元12的控制输出端电连接所述第二开关模块17的控制端。
本实施例中,所述第二开关模块17的第一导通端电连接所述直流输入端11,所述第二开关模块17的第二导通端电连接所述选通模块14的第一导通端,所述第二开关模块17的控制端电连接所述控制单元12的控制输出端。
可选的,第二开关模块17中可以是设置有可控的开关管(如MOS管)或开关器件(如接触器、继电器等),控制单元12可通过控制第二开关模块17中的开关管或/或开关器件导通或断开,以实现控制第二开关模块17闭合或断开。
需要说明的是,由于控制单元12的控制输出端电连接第二开关模块17的控制端,因此可以通过向第二开关模块17的控制端输出相应的控制信号, 以控制第二开关模块17闭合或断开。
可选的,第二开关模块17也可以是常开型开关器件(如常开接触器、常开继电器等),当第二开关模块17未接收到控制单元12输出的控制信号时,则第二开关模块17保持断开状态;当第二开关模块17接收到控制单元12输出的控制信号时,则第二开关模块17保持闭合状态。
其中,当第二开关模块17闭合时,则第二开关模块17的第一导通端与第二导通端之间可以形成通路;当第二开关模块17断开时,则第二开关模块17的第一导通端与第二导通端之间形成断路。
可选的,由于第二开关模块17的第一导通端电连接直流输入端11,而第二开关模块17的第二导通端电连接选通模块14的第一导通端,则当第二开关模块17闭合时,可使直流输入端11与选通模块14之间形成通路,并使得直流输入端11可通过选通模块14为负载30供电;反之,若第二开关模块17断开时,则直流输入端11与选通模块14之间形成断路,此时直流输入端11则无法通过选通模块14为负载30供电。尤其是在直流输出端无电源输入,需启用电池装置10中的蓄电单元13为负载30供电时,通过控制第二开关模块17断开,可以避免蓄电单元13输出的电压倒灌至直流输入端11。
在一实施例中,参照图5,在上述实施例的基础上,所述蓄电单元13包括第二单向变压单元131、蓄电池132和第三开关模块133,其中,所述第二单向变压单元131的输入端为所述蓄电单元13的输入端,所述蓄电池132的充放电端电连接所述第二单向变压单元131的输出端、所述第三开关模块133的第一导通端,所述第三开关模块133的第二导通端为所述蓄电单元13的输出端。
本实施例中,所述第二单向变压单元131的输入端为所述蓄电单元13的输入端,所述蓄电池132的充放电端电连接所述第二单向变压单元131的输出端、所述第三开关模块133的第一导通端,所述第三开关模块133的第二导通端为所述蓄电单元13的输出端。
可选的,第三开关模块133中至少设置有一单向导通开关(如二极管、MOS管),且该单向导通开关的电流导通方向为蓄电池132至输出单元15方向,这样第三开关模块133内部电流流向只能从第三开关模块133的第一导 通端流向第三开关模块133的第二导通端。以单向导通开关为二极管为例,则需设置二极管阳极电连接蓄电池132的充放电端、阴极电连接输出单元15,即可实现单向导通开关的电流导通方向为蓄电池132至输出单元15方向。
其中,若单向导通开关为MOS管,则控制单元12的控制输出端还可电连接MOS管的栅极(图中未示出),并通过向MOS管的栅极输出相应的控制信号,以控制MOS管导通或截止,从而实现控制单向导通开关闭合或断开;若单向导通开关为二极管,则单向导通开关可通过自动检测阳极和阴极之间的电压差变动,自动实现第二开关器件的导通或断开。
此外,在其他可选方案中,第三开关模块133中还可以并联设置单向导通开关和可控开关(如可控接触器、可控继电器等),通过控制单向导通开关和可控开关同时断开,即可实现控制第三开关模块133断开;而只要控制单向导通开关和可控开关中任一闭合,即可实现控制第三开关模块133闭合。
此外,在其他可选方案中,第三开关模块133中还可以串联设置单向导通开关和可控开关,通过控制单向导通开关和可控开关任一断开,即可实现控制第三开关模块133断开;通过控制单向导通开关和可控开关同时闭合,即可实现控制第三开关模块133闭合。
可选的,所述第二单向变压单元131的电流流向为第二单向变压单元131的输入端至输出端。其中,第二单向变压单元131的输入端作为蓄电单元13的输入端,电连接选通模块14的第二导通端;第二单向变压单元131的输出端电连接所述蓄电池132的充放电端。
其中,所述第二单向变压单元131可以是DC/DC(直流转直流)电压功率变换单元,第二单向变压单元131可以用于将接收到的直流电压转换为与蓄电池132适配的额定充电电压后,再将转换后的电压输出至蓄电池132。
可选的,第二单向变压单元131可以是按预先设置的工作参数,将接收到的直流电压转换为与蓄电池132适配的额定充电电压;或者,第二单向变压单元131的控制端电连接控制单元12的控制输出端,并受控制单元12控制,这样控制单元12就可以通过向第二单向变压单元131输出相应的控制信号,以设置第二单向变压单元131的工作参数,以使第二单向变压单元131可以按蓄电池132的充电需求,将接收到的直流电压转换为相应的直流电压(即控制单元12可按充电需求调配第二单向变压单元131所转换的电压大 小)。
需要说明的是,控制单元12可设置多个控制输出端,并可通过不同的控制输出端分别控制各个元器件(如选通模块14和/或第二单向变压单元131)。
其中,当第三开关模块133闭合时,则第三开关模块133的第一导通端与第二导通端之间可以形成通路;当第三开关模块133断开时,则第三开关模块133的第一导通端与第二导通端之间形成断路。
可选的,由于第三开关模块133的第一导通端电连接蓄电池132的充放电端,则当第三开关模块133导通时,可使蓄电池132与第三开关模块133的第二导通端之间形成通路,并使得蓄电单元13有电压输出;反之,若第三开关模块133断开时,则蓄电池132与第三开关模块133的第二导通端之间形成断路,此时蓄电单元13无电压输出。
可选的,当直流输入端11可为电池装置10接入的负载30供电时,则第三开关模块133断开,蓄电单元13无输出;当直流输入端11不能满足负载30的供电需求时,则第三开关模块133导通,蓄电单元13可为负载30供电和/或通过直流输入端11为其他供电不足的电池装置10供电。
需要说明的是,通过利用单向导通开关和第二单向变压单元131的器件特性,就可以适时地对蓄电单元13中蓄电池132进行充放电控制,如在直流输入端11无电流输入时,控制任意蓄电单元13中的蓄电池132对负载30放电,或在直流输入端11有电流输入,且蓄电池132未充满电时,则可控制第二单向变压单元131利用直流输入端11输入的电流为蓄电池132充电。
本实用新型进一步提出一种数据中心的供电系统,参照图6,供电系统包括直流源20和多个电池装置10,该电池装置10的具体结构参照上述实施例,由于本供电系统采用了上述所有实施例的所有技术方案,因此至少具有上述实施例的技术方案所带来的全部技术效果,在此不再一一赘述。
其中,每个电池装置10的直流输入端电连接所述直流源20的直流输出端;而电池装置10的输出单元则负责接入数据中心的负载30。
以上所述的仅为本实用新型的部分或优选实施例,无论是文字还是附图都不能因此限制本实用新型保护的范围,凡是在与本实用新型一个整体的构 思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型保护的范围内。

Claims (8)

  1. 一种电池装置,其特征在于,所述电池装置包括直流输入端、控制单元、多个蓄电单元、选通模块和至少一个输出单元,其中,所述直流输入端用于接入供电系统的直流源,且所述直流输入端经所述选通模块电连接每个所述蓄电单元的输入端和所述输出单元,每个所述蓄电单元的输出端均电连接所述输出单元,且所述输出单元用于接入负载,所述控制单元的通信端和/或控制输出端电连接所述蓄电单元、所述选通模块和所述输出单元;当所述电池装置通过所述直流输入端输入电能时,所述选通模块的导通方向为所述直流输入端至所述输出单元方向;当所述电池装置通过所述直流输入端输出电能时,所述选通模块的导通方向为所述输出单元至所述直流输入端方向。
  2. 根据权利要求1所述的电池装置,其特征在于,所述选通模块为双向变压单元;
    或者,所述选通模块并联设置有单向导通开关和第一单向变压单元,其中,所述单向导通开关的导通方向为所述直流输入端至所述输出单元方向,所述第一单向变压单元的导通方向为所述输出单元至所述直流输入端方向。
  3. 根据权利要求2所述的电池装置,其特征在于,所述单向导通开关为二极管;
    或者,所述单向导通开关为MOS管,且所述控制单元的控制输出端还电连接所述MOS管的控制端。
  4. 根据权利要求1所述的电池装置,其特征在于,所述蓄电单元以可拆卸性的电连接方式接入到所述电池装置中。
  5. 根据权利要求1所述的电池装置,其特征在于,所述电池装置还包括第一开关模块,其中,所述选通模块经所述第一开关模块电连接所述输出单元;所述蓄电单元的输入端和输出端分别电连接所述第一开关模块的两个导通端;所述控制单元的控制输出端电连接所述第一开关模块的控制端。
  6. 根据权利要求1所述的电池装置,其特征在于,所述电池装置还包括第二开关模块,其中,所述直流输入端经所述第二开关模块电连接所述选通模块;所述控制单元的控制输出端电连接所述第二开关模块的控制端。
  7. 根据权利要求1-6中任一项所述的电池装置,其特征在于,所述蓄电单元包括第二单向变压单元、蓄电池和第三开关模块,其中,所述第二单向变压单元的输入端为所述蓄电单元的输入端,所述蓄电池的充放电端电连接所述第二单向变压单元的输出端、所述第三开关模块的第一导通端,所述第三开关模块的第二导通端为所述蓄电单元的输出端。
  8. 一种数据中心的供电系统,其特征在于,所述供电系统包括直流源和多个电池装置,所述电池装置为权利要求1-7中任一项所述的电池装置,所述直流源电连接所述电池装置的直流输入端。
PCT/CN2024/102048 2023-08-14 2024-06-27 电池装置和数据中心的供电系统 WO2025035970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202322179636.4 2023-08-14
CN202322179636.4U CN220570354U (zh) 2023-08-14 2023-08-14 电池装置和数据中心的供电系统

Publications (1)

Publication Number Publication Date
WO2025035970A1 true WO2025035970A1 (zh) 2025-02-20

Family

ID=90089313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/102048 WO2025035970A1 (zh) 2023-08-14 2024-06-27 电池装置和数据中心的供电系统

Country Status (2)

Country Link
CN (1) CN220570354U (zh)
WO (1) WO2025035970A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667515A (zh) * 2023-05-10 2023-08-29 安徽明德源能科技有限责任公司 供电系统的管理方法和供电系统
CN220570354U (zh) * 2023-08-14 2024-03-08 安徽明德源能科技有限责任公司 电池装置和数据中心的供电系统
CN117154876A (zh) * 2023-08-17 2023-12-01 安徽明德源能科技有限责任公司 电池装置的管理方法和电池装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076584A (ko) * 2009-12-29 2011-07-06 주식회사 포스코 원격 제어 전원 공급 시스템
CN108847707A (zh) * 2018-06-26 2018-11-20 广州供电局有限公司 变电站直流供电系统和蓄电控制方法
CN208890390U (zh) * 2018-10-10 2019-05-21 无锡美凯能源科技有限公司 一种应用于基站的高效率储能供电系统
CN211958857U (zh) * 2020-03-27 2020-11-17 宁波吉利汽车研究开发有限公司 一种汽车电源系统及汽车
CN117154876A (zh) * 2023-08-17 2023-12-01 安徽明德源能科技有限责任公司 电池装置的管理方法和电池装置
CN220570354U (zh) * 2023-08-14 2024-03-08 安徽明德源能科技有限责任公司 电池装置和数据中心的供电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076584A (ko) * 2009-12-29 2011-07-06 주식회사 포스코 원격 제어 전원 공급 시스템
CN108847707A (zh) * 2018-06-26 2018-11-20 广州供电局有限公司 变电站直流供电系统和蓄电控制方法
CN208890390U (zh) * 2018-10-10 2019-05-21 无锡美凯能源科技有限公司 一种应用于基站的高效率储能供电系统
CN211958857U (zh) * 2020-03-27 2020-11-17 宁波吉利汽车研究开发有限公司 一种汽车电源系统及汽车
CN220570354U (zh) * 2023-08-14 2024-03-08 安徽明德源能科技有限责任公司 电池装置和数据中心的供电系统
CN117154876A (zh) * 2023-08-17 2023-12-01 安徽明德源能科技有限责任公司 电池装置的管理方法和电池装置

Also Published As

Publication number Publication date
CN220570354U (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2025035970A1 (zh) 电池装置和数据中心的供电系统
US11735953B2 (en) Apparatus and method for controlling battery module, power supply device and system
CN111786455B (zh) 一种用于ups的正负锂电池并机系统
WO2024230775A1 (zh) 采用直流输入的电池装置和供电系统
WO2012097594A1 (zh) 一种直流电源的电池保护装置和方法
CN108565960A (zh) 一种dtu配电终端超级电容后备电源系统
WO2025035946A1 (zh) 电池装置的管理方法和电池装置
CN111987792B (zh) 供电设备及其供电方法
CN116683559A (zh) 储能系统、储能设备和储能管理系统
CN107681758A (zh) 复合能源系统
WO2025039753A1 (zh) 多蓄电池模块串联的蓄电装置、储能单元和供电系统
CN107910914B (zh) 电源系统中并联应用锂电池组间的负荷分配方法
CN211606097U (zh) 一种互为热备用的在线放电直流系统
CN219801959U (zh) 一种储能汇流柜及使用该储能汇流柜的储能系统
CN113629800A (zh) 一种电芯级优化电池插箱、储能系统及其应用
WO2024230611A1 (zh) 供电系统的管理方法和供电系统
CN212588140U (zh) 一种用于ups的正负锂电池并机系统
CN220570342U (zh) 多蓄电模块并联的电池装置和供电系统
CN106300632B (zh) 直流不间断远程供电系统
CN212162838U (zh) 电池均衡管理电路
CN219643655U (zh) 供电系统和数据中心
CN217087556U (zh) 供电装置及数据中心
CN219843449U (zh) 供电系统的蓄电装置和供电系统
CN221862695U (zh) 双向转换电路、电池均衡系统、及数据中心
CN118713078B (zh) 配电系统的控制方法以及配电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24853385

Country of ref document: EP

Kind code of ref document: A1