WO2025035634A1 - 一种用于超高压电力系统的油浸式绝缘组合互感器 - Google Patents
一种用于超高压电力系统的油浸式绝缘组合互感器 Download PDFInfo
- Publication number
- WO2025035634A1 WO2025035634A1 PCT/CN2023/132773 CN2023132773W WO2025035634A1 WO 2025035634 A1 WO2025035634 A1 WO 2025035634A1 CN 2023132773 W CN2023132773 W CN 2023132773W WO 2025035634 A1 WO2025035634 A1 WO 2025035634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transformer
- voltage transformer
- winding
- voltage
- current transformer
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 121
- 238000009413 insulation Methods 0.000 claims abstract description 73
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- 229910052573 porcelain Inorganic materials 0.000 claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 230000005291 magnetic effect Effects 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 7
- 230000035699 permeability Effects 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 3
- 239000011162 core material Substances 0.000 description 56
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 7
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 7
- 230000005350 ferromagnetic resonance Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase AC
- H01F38/34—Combined voltage and current transformers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase AC
- H01F38/34—Combined voltage and current transformers
- H01F38/36—Constructions
Definitions
- the invention relates to the field of electric power equipment, in particular to an oil-immersed insulating combined mutual inductor used in an ultra-high voltage electric power system.
- Combined transformers are commonly found in medium and low voltage power systems below 35kV. A small number of combined transformers are also used in high voltage power systems below 220kY.
- the structure of such combined transformers is generally shown in Figure 9.
- the secondary winding of the current transformer is placed in an aluminum shell, and an aluminum tube is welded to the lower part of the aluminum shell to lead out the secondary lead.
- the secondary coil is formed by the insulation of the external current transformer and arranged on the current transformer body at the head.
- the primary and secondary windings of the voltage transformer are set on the core column of the voltage transformer with a " ⁇ " or " ⁇ " shaped iron core to form the voltage transformer body.
- the combined transformer is formed by assembling the voltage transformer body and the current transformer body in the same body shell.
- the combined transformer of this structure is not easy to match because the potentials of the voltage transformer and the current transformer insulation are distributed in opposite directions inside the porcelain sleeve after the combination.
- due to the structural limitations of the voltage transformer it cannot meet the application requirements of ultra-high voltage power systems above 500kV.
- the purpose of the present invention is to provide an oil-immersed insulated combined transformer for an ultra-high voltage power system, which can not only ensure the reliability of insulation, but also avoid the ferromagnetic resonance of the voltage transformer unit, while also ensuring the stability of the measurement accuracy, and can be safely applied to the ultra-high voltage power system.
- An oil-immersed insulated combined transformer for an ultra-high voltage power system comprises an expander, an oil storage tank, a porcelain sleeve and a base connected in sequence from top to bottom, wherein a current transformer unit is arranged in the oil storage tank, a voltage transformer unit is arranged in the porcelain sleeve, and the voltage transformer unit comprises a voltage transformer winding assembly and a voltage transformer core assembly; a current transformer aluminum shell is arranged in the oil storage tank, and a current transformer secondary winding in the current transformer unit is arranged in the current transformer aluminum shell, a ring insulation is arranged outside the current transformer aluminum shell, an insulating tube and lead insulation are arranged in the porcelain sleeve, wherein the lead insulation is arranged integrally with the ring insulation, the insulating tube is arranged in the lead insulation, and the voltage transformer core assembly comprises a middle strip A voltage transformer core column with a lead through hole, and the voltage transformer core column is arranged in the insulating tube, the current transformer secondary lead of the current transformer secondary winding
- the current transformer unit includes a current transformer primary winding, and the current transformer primary winding passes through the current transformer secondary winding.
- the current transformer aluminum shell is annular, and the current transformer secondary winding composed of an annular iron core is arranged in the current transformer aluminum shell.
- the current transformer aluminum shell is provided with an annular insulation outside, and the current transformer primary winding passes through the center of the annular insulation.
- a current transformer secondary terminal box and a voltage transformer secondary terminal box are provided on the base.
- the current transformer secondary lead wire of the current transformer secondary winding passes through the lead through hole and is led into the current transformer secondary terminal box.
- the voltage transformer secondary lead wire of the voltage transformer secondary winding is led into the voltage transformer secondary terminal box.
- the voltage transformer core assembly comprises a core support, the lower end of the voltage transformer core column and the lower end of the insulating tube are both arranged on the core support, and the core support is arranged on the base.
- the voltage transformer iron core column is a single-column yoke-free iron core structure.
- the winding unit includes a unit seat and a winding wire.
- a mounting through hole is provided in the middle of the unit seat for the lead wire to pass through insulated.
- Limiting flanges are provided at the upper and lower ends of the unit seat, and the winding wire is wound between the two limiting flanges.
- the unit leads formed at both ends of the winding wire are respectively passed through the limiting flanges on the corresponding sides and connected to the adjacent winding units.
- the magnetic permeability G of the voltage transformer core column is calculated as follows:
- L is the height of the primary winding of the voltage transformer
- M is the height of the voltage transformer core column above the primary winding of the voltage transformer
- b is the average distance between each winding unit of the primary winding of the voltage transformer and the core column of the voltage transformer
- k 1 , k 2 , k 3 are empirical coefficients
- d is the equivalent diameter of the core column of the voltage transformer.
- the excitation current i0 of the voltage transformer unit is calculated as follows:
- lz is the equivalent height of the voltage transformer core
- Bm is the rated magnetic flux density
- W1 is the number of turns of the primary winding of the voltage transformer
- ⁇ is the magnetic permeability
- the present invention utilizes the lead insulation integrally arranged with the ring insulation of the current transformer unit to serve as the insulation of the voltage transformer unit, and the voltage transformer core column of the voltage transformer unit adopts a single-core yokeless core structure, which is arranged in an insulating tube supporting the aluminum shell of the current transformer, and the insulating tube is arranged in the lead insulation.
- the current transformer secondary lead of the current transformer unit passes through the lead through hole in the middle of the voltage transformer core column, and the voltage transformer secondary winding is wound on the voltage transformer core.
- the core column is arranged between the voltage transformer iron core column and the insulating tube, and the primary winding of the voltage transformer is wound on the outside of the lead insulation.
- the current transformer unit and the voltage transformer unit combination of the present invention converts the primary large current and ultra-high voltage of the power system into secondary standard current and voltage that can be measured and protected, and the stability of the core material ensures the stability of the measurement accuracy.
- the excitation curve of the voltage transformer unit of the present invention and the UI characteristic curve of the actual capacitance in the power grid that affects the occurrence of ferromagnetic resonance will not produce an intersection, thereby avoiding the occurrence of ferromagnetic resonance and ensuring the safe operation of the product.
- the primary winding of the voltage transformer of the present invention includes a plurality of winding units which are sequentially sleeved on the lead insulation from top to bottom, and the unit lead connection parts of adjacent winding units are set with equipotential connection with the corresponding capacitor screens in the lead insulation.
- the voltage distribution of each winding unit of the primary winding of the voltage transformer is linear at various frequencies, thereby ensuring that the potential of the capacitor screen inside the insulation is close when the product of the present invention is running, optimizing the field strength distribution in the insulation, and making the insulation more reliable.
- the overall structure of the present invention is more compact, and it also solves the problem that the existing combined transformer cannot meet the application of ultra-high voltage power systems above 500kY due to the structural limitations of the voltage transformer.
- FIG1 is a schematic structural diagram of the present invention
- FIG2 is a front view of the present invention in FIG1 ,
- FIG3 is an enlarged view of point I in FIG1
- FIG4 is a schematic diagram of the structure of the voltage transformer core assembly in FIG1 .
- FIG5 is a top view of the voltage transformer core assembly in FIG4 .
- FIG6 is a schematic diagram of the winding unit structure of the primary winding of the voltage transformer in FIG1 ,
- FIG7 is a schematic diagram of the excitation characteristic curve and the capacitor U-I characteristic curve of the voltage transformer unit of the present invention.
- FIG8 is a schematic diagram of a voltage distribution characteristic curve of each winding unit of the primary winding of the voltage transformer of the present invention
- FIG. 9 is a schematic diagram of the structure of a combined mutual inductor in the prior art.
- 1 is an expander
- 2 is an oil storage cabinet
- 3 is a porcelain sleeve
- 4 is a current transformer secondary terminal box
- 5 is a voltage transformer secondary terminal box
- 6 is a base
- 7 is a current transformer secondary winding
- 8 is a current transformer aluminum shell
- 9 is a ring insulation
- 10 is a current transformer primary winding
- 11 is an insulating tube
- 12 is a lead insulation
- 13 is a voltage transformer core column
- 14 is a current transformer secondary lead
- 15 is a voltage transformer secondary winding
- 16 is a voltage transformer primary winding
- 161 is a winding unit
- 1611 is a limit flange
- 1612 is a mounting through hole
- 162 is a winding conductor
- 1621 is a unit lead
- 17 is a core bracket
- 18 is a capacitor screen
- 19 is a voltage transformer core assembly
- 20 is a lead through hole
- 21 is a core
- 22 is a current
- the present invention includes an expander 1, an oil storage tank 2, a porcelain sleeve 3 and a base 6 connected in sequence from top to bottom, wherein a current transformer unit is arranged in the oil storage tank 2, the current transformer unit includes a current transformer secondary winding 7 and a current transformer primary winding 10 passing through the current transformer secondary winding 7, and both ends of the current transformer primary winding 10 are fixed on the oil storage tank 2, a voltage transformer unit is arranged in the porcelain sleeve 3, and the voltage transformer unit includes a voltage transformer winding assembly and a voltage transformer core assembly 19, wherein as shown in FIGS.
- the voltage transformer core assembly 19 includes a voltage transformer core column 13 with a lead through hole 20 in the middle , and as shown in Figures 1 to 3, the current transformer secondary lead 14 of the current transformer secondary winding 7 passes through the lead through hole 20 and is led to the current transformer secondary terminal box 4 on the base 6, the voltage transformer winding assembly includes a voltage transformer primary winding 16 and a voltage transformer secondary winding 15, wherein the voltage transformer secondary winding 15 is wound on the voltage transformer core column 13, and the voltage transformer secondary lead of the voltage transformer secondary winding 15 is led to the voltage transformer secondary terminal box 5 on the base 6, the voltage transformer secondary winding 15 is provided with a lead insulation 12 on the outside, and the voltage transformer primary winding 16 is provided on the outside of the lead insulation 12.
- a current transformer aluminum shell 8 is provided in the oil storage cabinet 2, an insulating tube 11 is provided in the porcelain sleeve 3, and the current transformer aluminum shell 8 is provided at the upper end of the insulating tube 11, and the current transformer aluminum shell 8 is supported by the insulating tube 11.
- the current transformer aluminum shell 8 is annular, and an aluminum shell through hole is provided in the middle thereof for the current transformer primary winding 10 to pass through, and the current transformer secondary winding 7 composed of an annular iron core is provided in the current transformer aluminum shell 8, and a ring insulation 9 is provided outside the current transformer aluminum shell 8, and the current transformer primary winding 10 is connected by the ring insulation 9.
- the voltage transformer core assembly 19 includes a core support 17, the lower end of the voltage transformer core column 13 and the lower end of the insulating tube 11 are both arranged on the core support 17, and the lower end of the core support 17 is arranged on the base 6.
- the lead wire insulation 12 is inserted with a capacitor screen 18 made of semiconductor material during the wrapping process to better utilize the insulation and evenly insulate the internal electric field.
- the primary winding 16 of the voltage transformer includes a plurality of winding units 161 sequentially arranged on the outside of the lead insulation 12 from top to bottom.
- the winding unit 161 includes a unit seat and a winding wire 162, wherein a mounting through hole 1612 is provided in the middle of the unit seat for the lead insulation 12 to pass through, and a limiting flange 1611 is provided at the upper and lower ends of the unit seat, and the winding wire 162 is wound between the two limiting flanges 1611, and the unit leads 1621 formed at both ends of the winding wire 162 are respectively passed through the limiting flanges 1611 on the corresponding side and connected in series with the adjacent winding units 161, and in order to ensure that each The voltage borne by each winding unit 161 is linearly distributed and has good impact voltage resistance performance.
- the connection points of the unit leads 1621 of adjacent winding units 161 are set with the corresponding capacitor screen 18 in the lead insulation 12 to have an equipotential
- the current transformer unit and voltage transformer unit combination of the present invention converts the primary large current and ultra-high voltage of the power system into secondary standard current and voltage for measurement and protection through the principle of electromagnetic induction, and the stability of the material of the voltage transformer core column 13 can ensure stable measurement accuracy.
- the primary winding 16 of the voltage transformer of the present invention is evenly distributed along the height of the voltage transformer core column 13, and the insulation between it and the voltage transformer core column 13 is capacitive insulation.
- the magnetic permeability G of the voltage transformer core column 13 of the voltage transformer unit of the present invention is calculated as follows:
- L is the height of the voltage transformer primary winding
- M is the height of the voltage transformer core column 13 above the voltage transformer primary winding
- b is the average distance between each winding unit 161 of the voltage transformer primary winding 16 and the voltage transformer core column
- k1 , k2 , k3 are empirical coefficients
- d is the equivalent diameter of the voltage transformer core column 13.
- the excitation current i0 of the voltage transformer unit of the present invention is calculated as follows:
- lz is the equivalent height of the voltage transformer core column 13 13
- Bm is the rated magnetic flux density
- W1 is the number of turns of the primary winding 16 of the voltage transformer
- ⁇ is the magnetic permeability.
- the above characteristics ensure that the excitation curve of the voltage transformer unit of the present invention and the U-I characteristic curve of the actual capacitance in the power grid that affects the occurrence of ferromagnetic resonance will not produce an intersection (as shown in Figure 7), thereby avoiding the occurrence of ferromagnetic resonance and ensuring the safe operation of the product.
- the voltage distribution of each winding unit 161 of the primary winding 16 of the voltage transformer distributed along the lead insulation is linear at various frequencies (as shown in Figure 8), thereby ensuring that the internal capacitor screen potential of the lead insulation 12 is close during operation of the present invention, optimizing the field strength distribution in the lead insulation 12, and making the insulation more reliable.
- the working principle of the present invention is:
- the combined transformer structure in the prior art places the secondary winding of the current transformer in an aluminum shell, an aluminum tube is welded to the lower part of the aluminum shell to lead out the secondary lead, and the insulation of the current transformer is wrapped to form a current transformer body 22 with a secondary coil at the head, and the primary and secondary windings of the voltage transformer are mounted on the " ⁇ "-shaped or " ⁇ "-shaped iron core 21 to form a voltage transformer body 23.
- the voltage transformer body 22 and the current transformer body 23 are assembled in the same shell to form a combined transformer.
- the combined transformer of this structure is not easy to match because the potentials of the voltage transformer and the insulation of the current transformer are reversely distributed inside the porcelain sleeve after the combination, and due to the structural limitations of the voltage transformer, it cannot meet the requirements of the ultra-high voltage power system above 500kY. Requirements for use.
- the present invention utilizes the lead insulation 12 integrally arranged with the ring insulation 9 of the current transformer unit as the insulation of the voltage transformer unit, and the voltage transformer core column 13 adopts a single-core yokeless core structure, the voltage transformer core column 13 is arranged in an insulating tube 11 supporting the current transformer aluminum shell 8, and the insulating tube 11 is arranged in the lead insulation 12, and at the same time, the current transformer secondary lead 14 of the current transformer unit passes through the lead through hole 20 in the middle of the voltage transformer core column 13, the voltage transformer secondary winding 15 is wound on the voltage transformer core column 13 and arranged between the voltage transformer core column 13 and the insulating tube 11, the voltage transformer primary winding 16 is wound on the outside of the lead insulation 12, and the voltage transformer primary winding 16 includes a plurality of winding units 161, adjacent The connection point of the unit lead 1621 of the winding unit 161 is set with an equipotential connection with the corresponding capacitor screen 18 in the lead insulation 12.
- the structure of the present invention can not only ensure the reliability of insulation, but also avoid the ferromagnetic harmonic resonance of the voltage transformer unit, and at the same time can also ensure the stability of measurement accuracy, and can be safely applied to ultra-high voltage power systems.
- the excitation curve of the voltage transformer unit of the present invention and the UI characteristic curve of the actual capacitance in the power grid that affects the occurrence of ferromagnetic resonance will not produce an intersection, thereby avoiding the occurrence of ferromagnetic resonance and ensuring the safety of product operation.
- each winding unit 161 of the primary winding 16 of the voltage transformer distributed along the lead insulation 12 of the present invention is linear at various frequencies, thereby ensuring that the potential of the internal capacitor screen of the insulation is close when the product of the present invention is running, so that the field strength distribution in the insulation is optimized and the insulation is more reliable.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transformers For Measuring Instruments (AREA)
Abstract
一种用于超高压电力系统的油浸式绝缘组合互感器,其储油柜(2)内的电流互感器二次绕组(7)设于电流互感器铝壳(8)中,电流互感器铝壳(8)外设有环部绝缘(9),瓷套(3)内设有绝缘管(11)和引线绝缘(12),且引线绝缘(12)与环部绝缘(9)一体设置,绝缘管(11)支撑电流互感器铝壳(8)并设于引线绝缘(12)中,电压互感器铁芯组件(19)包括中部带引线通孔(20)且设于绝缘管(11)中的电压互感器芯柱(13),电流互感器二次绕组(7)的二次引线由引线通孔(20)穿过,电压互感器二次绕组(15)绕制于电压互感器芯柱(13)上并设于电压互感器芯柱(13)与绝缘管(11)之间。该互感器可以安全应用于超高压电力系统。
Description
本发明涉及电力设备领域,具体地说是一种用于超高压电力系统的油浸式绝缘组合互感器。
组合互感器常见于35kV以下的中低压电力系统中,在220kY以下的高压电力系统也有少量组合互感器应用,此类组合互感器结构一般如图9所示,其将电流互感器二次绕组置于铝壳中,铝壳下部焊接一个铝管引出二次引线,外包电流互感器绝缘构成二次线圈设置在头部的电流互感器器身上,“口”字型或“日”字型铁心的电压互感器铁心芯柱上套装电压互感器的一次和二次绕组构成电压互感器器身部分,其通过将电压互感器器身和电流互感器器身组装在同一个器身外壳内构成组合互感器,这种结构的组合互感器由于组合后电压互感器与电流互感器绝缘的电位在瓷套内部呈反向分布,配合不易,并且由于电压互感器的结构限制,其无法满足500kV以上超高压电力系统应用的要求。
发明内容
本发明的目的在于提供一种用于超高压电力系统的油浸式绝缘组合互感器,其既能够保证绝缘的可靠性,又避免了电压互感器单元的铁磁谐谐振,同时还可以保证测量精度的稳定性,可以安全应用于超高压电力系统。
本发明的目的是通过以下技术方案来实现的:
一种用于超高压电力系统的油浸式绝缘组合互感器,包括由上到下依次连接的膨胀器、储油柜、瓷套和底座,其中储油柜内设有电流互感器单元,瓷套内设有电压互感器单元,并且所述电压互感器单元包括电压互感器绕组组件和电压互感器铁芯组件;所述储油柜内设有电流互感器铝壳,并且电流互感器单元中的电流互感器二次绕组设于所述电流互感器铝壳中,所述电流互感器铝壳外设有环部绝缘,所述瓷套内设有绝缘管和引线绝缘,其中引线绝缘与所述环部绝缘一体设置,所述绝缘管设于所述引线绝缘中,所述电压互感器铁芯组件包括中部带引线通孔的电压互感器铁心芯柱,并且所述电压互感器铁心芯柱设于所述绝缘管中,所述电流互感器二次绕组的电流互感器二次引线由所述引线通孔穿过,所述电压互感器绕组组件包括电压互感器一次绕组和电压互感器二次绕组,其中电压互感器二次绕组绕制于所述电压互感器铁心芯柱上并设置于所述电压互感器铁心芯柱和绝缘管之间,电压互感器一次绕组设于所述引线绝缘外侧,电压互感器一次绕组包括多个依次串联的绕组单元,所述引线绝缘内设有多个电容屏,并且相邻绕组单元的单元引线连接处与引线绝缘内对应的电容屏等电位连接。
所述电流互感器单元包括电流互感器一次绕组,且所述电流互感器一次绕组穿过所述电流互感器二次绕组。
所述电流互感器铝壳呈环形,由环形铁心构成的电流互感器二次绕组设于所述电流互感器铝壳中,所述电流互感器铝壳外设有环部绝缘,并且所述电流互感器一次绕组由所述环部绝缘中心穿过。
所述底座上设有电流互感器二次端子盒和电压互感器二次端子盒,所述电流互感器二次绕组的电流互感器二次引线穿过所述引线通孔后引至所述电流互感器二次端子盒内,所述电压互感器二次绕组的电压互感器二次引线引至所述电压互感器二次端子盒内。
所述电压互感器铁芯组件包括铁芯支架,所述电压互感器铁心芯柱下端和绝缘管下端均设于所述铁芯支架上,所述铁芯支架设于所述底座上。
所述电压互感器铁心芯柱为单芯柱的无轭铁心结构。
所述绕组单元包括单元座和绕组导线,所述单元座中部设有供所述引线绝缘穿过的安装通孔,所述单元座上端和下端均设有限位法兰,并且绕组导线绕制于两个限位法兰之间,所述绕组导线两端形成的单元引线分别由对应侧的限位法兰穿出并与相邻的绕组单元连接。
所述电压互感器铁心芯柱导磁率G计算如下式:
上式(1)中,L为电压互感器一次绕组高度,M为电压互感器铁心芯柱高出电压互感器一次绕组的高度,b为电压互感器一次绕组各个绕组单元与电压互感器铁心芯柱的平均距离,k1、k2、k3为经验系数,d为电压互感器铁心芯柱等效直径。
所述电压互感器单元的励磁电流i0计算如下式:
上式(2)中,lz为电压互感器铁心芯柱等效高度,Bm为额定磁通密度,W1电压互感器一次绕组匝数,μ磁导率。
本发明的优点与积极效果为:
1、本发明利用与电流互感器单元的环部绝缘一体设置的引线绝缘担当电压互感器单元的绝缘,并且所述电压互感器单元的电压互感器铁心芯柱采用单芯柱的无轭铁心结构,其设于支撑电流互感器铝壳的绝缘管中,所述绝缘管设于所述引线绝缘中,同时电流互感器单元的电流互感器二次引线由所述电压互感器铁心芯柱中部的引线通孔穿过,电压互感器二次绕组绕制于电压互感器铁心
芯柱上并设于所述电压互感器铁心芯柱与绝缘管之间,电压互感器一次绕组绕制于引线绝缘外侧,本发明的这种电流互感器单元和电压互感器单元组合将电力系统的一次大电流和超高压转换为可以测量和保护用的二次标准电流和电压,并且铁芯材料具有的稳定性保证了测量精度的稳定性,如图7所示,本发明电压互感器单元的励磁曲线与电网中影响铁磁谐振发生的实际电容的U-I特性曲线不会产生交点,从而避免铁磁谐振发生,保证产品运行安全。
2、本发明的电压互感器一次绕组包括多个由上到下依次套设于引线绝缘上的绕组单元,并且相邻绕组单元的单元引线连接处与所述引线绝缘内对应的电容屏设置等电位连接,这样便如图8所示,电压互感器一次绕组各绕组单元的电压分布在各种频率下均呈线性,从而保证本发明产品在运行时绝缘内部电容屏电位接近,使绝缘内场强分布优化,绝缘更加可靠。
3、本发明整体结构更加紧凑,同时也解决了现有组合互感器因为电压互感器的结构限制无法满足500kY以上超高压电力系统应用的问题。
图1为本发明的结构示意图,
图2为图1中本发明的主视图,
图3为图1中的I处放大图,
图4为图1中的电压互感器铁芯组件结构示意图,
图5为图4中的电压互感器铁芯组件俯视图,
图6为图1中电压互感器一次绕组的绕组单元结构示意图,
图7为本发明电压互感器单元的励磁特性曲线与电容U-I特性曲线示意图,
图8为本发明电压互感器一次绕组各绕组单元的电压分布特性曲线示意图,
图9为现有技术中的组合互感器结构示意图。
其中,1为膨胀器,2为储油柜,3为瓷套,4为电流互感器二次端子盒,5为电压互感器二次端子盒,6为底座,7为电流互感器二次绕组,8为电流互感器铝壳,9为环部绝缘,10为电流互感器一次绕组,11为绝缘管,12为引线绝缘,13为电压互感器铁心芯柱,14为电流互感器二次引线,15为电压互感器二次绕组,16为电压互感器一次绕组,161为绕组单元,1611为限位法兰,1612为安装通孔,162为绕组导线,1621为单元引线,17为铁芯支架,18为电容屏,19为电压互感器铁芯组件,20为引线通孔,21为铁芯,22为电流互感器器身,23为电压互感器器身。
下面结合附图对本发明作进一步详述。
如图1~8所示,本发明包括由上到下依次连接的膨胀器1、储油柜2、瓷套3和底座6,其中储油柜2内设有电流互感器单元,所述电流互感器单元包括电流互感器二次绕组7以及穿过所述电流互感器二次绕组7的电流互感器一次绕组10,并且所述电流互感器一次绕组10两端固定在所述储油柜2上,所述瓷套3内设有电压互感器单元,并且所述电压互感器单元包括电压互感器绕组组件和电压互感器铁芯组件19,其中如图4~5所示,所述电压互感器铁芯组件19包括中部带引线通孔20的电压互感器铁心芯柱13,并且如图1~3所示,所述电流互感器二次绕组7的电流互感器二次引线14穿过所述引线通孔20后引至所述底座6上的电流互感器二次端子盒4内,所述电压互感器绕组组件包括电压互感器一次绕组16和电压互感器二次绕组15,其中电压互感器二次绕组15绕制在所述电压互感器铁心芯柱13上,并且电压互感器二次绕组15的电压互感器二次引线引至所述底座6上的电压互感器二次端子盒5内,所述电压互感器二次绕组15外侧设有引线绝缘12,并且所述电压互感器一次绕组16设于所述引线绝缘12外侧。
如图1所示,所述储油柜2内设有电流互感器铝壳8,所述瓷套3内设有绝缘管11,并且所述电流互感器铝壳8设于所述绝缘管11上端,所述电流互感器铝壳8即通过所述绝缘管11支撑,所述电流互感器铝壳8呈环形,其中部设有供所述电流互感器一次绕组10穿过的铝壳通孔,而环形铁心构成的电流互感器二次绕组7设于所述电流互感器铝壳8中,所述电流互感器铝壳8外设有环部绝缘9,并且所述电流互感器一次绕组10由所述环部绝缘9中心穿过,所述引线绝缘12与所述环部绝缘9一体设置,如图3所示,所述绝缘管11设于所述引线绝缘12中,所述电压互感器铁心芯柱13设于所述绝缘管11中,所述电压互感器二次绕组15设于所述电压互感器铁心芯柱13和引线绝缘12之间,如图1和图4~5所示,所述电压互感器铁芯组件19包括铁芯支架17,所述电压互感器铁心芯柱13下端和绝缘管11下端均设于所述铁芯支架17上,所述铁芯支架17下端设于所述底座6上。
如图3所示,所述引线绝缘12在包扎过程中插入由半导体材料制成的电容屏18,以更好地利用绝缘并均匀绝缘内部电场。
如图1所示,所述电压互感器一次绕组16包括多个由上到下依次设于所述引线绝缘12外侧的绕组单元161,如图6所示,所述绕组单元161包括单元座和绕组导线162,其中所述单元座中部设有供所述引线绝缘12穿过的安装通孔1612,所述单元座上端和下端均设有限位法兰1611,并且绕组导线162绕制于两个限位法兰1611之间,所述绕组导线162两端形成的单元引线1621分别由对应侧的限位法兰1611穿出并与相邻的绕组单元161串联连接,而为了保证各
个绕组单元161承受的电压呈线性分布且具有良好的抗冲击电压性能,相邻绕组单元161的单元引线1621连接处与所述引线绝缘12内对应的电容屏18设置等电位连接。
本发明的电流互感器单元和电压互感器单元组合通过电磁感应原理将电力系统的一次大电流和超高压转换为可以测量和保护用的二次标准电流和电压,并且电压互感器铁心芯柱13材料具有的稳定性可以保证测量精度稳定,另外本发明的电压互感器一次绕组16沿电压互感器铁心芯柱13高度均匀分布,其与电压互感器铁心芯柱13之间的绝缘为电容型绝缘。
本发明电压互感器单元的电压互感器铁心芯柱13导磁率G计算如下式:
上式(1)中,L为电压互感器一次绕组16高度,M为电压互感器电压互感器铁心芯柱13高出电压互感器一次绕组16的高度,b为电压互感器一次绕组16各个绕组单元161与电压互感器电压互感器铁心芯柱13的平均距离,k1、k2、k3为经验系数,d为电压互感器铁心芯柱13的等效直径。
本发明电压互感器单元的励磁电流i0计算如下式:
上式(2)中,lz为电压互感器铁心芯柱13等效高度,Bm为额定磁通密度,W1电压互感器一次绕组16匝数,μ磁导率。
根据上式分析计算以及样品试验可知,上述特性使得本发明电压互感器单元的励磁曲线与电网中影响铁磁谐振发生的实际电容的U-I特性曲线不会产生交点(如图7所示),从而避免铁磁谐振发生,保证产品运行安全,而沿引线绝缘分布的电压互感器一次绕组16各个绕组单元161的电压分布在各种频率下均呈线性(如图8所示),从而保证本发明在运行时引线绝缘12内部电容屏电位接近,使引线绝缘12内场强分布优化,绝缘更加可靠。
本发明的工作原理为:
如图9所示,现有技术中的组合互感器结构将电流互感器二次绕组置于铝壳中,铝壳下部焊接一个铝管引出二次引线,外包电流互感器绝缘构成二次线圈在头部的电流互感器器身22,而“口”字型或“日”字型铁心21上套装电压互感器一次和二次绕组构成电压互感器器身23,将电压互感器器身22和电流互感器器身23组装在同一个外壳内构成组合互感器,这种结构的组合互感器由于组合后电压互感器与电流互感器绝缘的电位在瓷套内部呈反向分布,配合不易,并且由于电压互感器的结构限制无法满足500kY以上超高压电力系统应
用的要求。
而如图1~8所示,本发明利用与电流互感器单元的环部绝缘9一体设置的引线绝缘12担当电压互感器单元的绝缘,并且所述电压互感器铁心芯柱13采用单芯柱的无轭铁心结构,所述电压互感器铁心芯柱13设于支撑电流互感器铝壳8的绝缘管11中,所述绝缘管11设于所述引线绝缘12中,同时电流互感器单元的电流互感器二次引线14由所述电压互感器铁心芯柱13中部的引线通孔20穿过,电压互感器二次绕组15绕制于所述电压互感器铁心芯柱13上并设置于所述电压互感器铁心芯柱13和绝缘管11之间,电压互感器一次绕组16绕制于引线绝缘12外侧,并且所述电压互感器一次绕组16包括多个绕组单元161,相邻绕组单元161的单元引线1621连接处与所述引线绝缘12内对应的电容屏18设置等电位连接,因此本发明结构既能够保证绝缘的可靠性,又避免了电压互感器单元的铁磁谐谐振,同时还可以保证测量精度的稳定性,可以安全应用于超高压电力系统中,其中如图7所示,本发明电压互感器单元的励磁曲线与电网中影响铁磁谐振发生的实际电容的U-I特性曲线不会产生交点,从而避免铁磁谐振发生,保证产品运行安全,如图8所示,本发明沿引线绝缘12分布的电压互感器一次绕组16各个绕组单元161的电压分布在各种频率下均呈线性,从而保证本发明产品在运行时绝缘内部电容屏电位接近,使绝缘内场强分布优化,绝缘更加可靠。
Claims (9)
- 一种用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:包括由上到下依次连接的膨胀器(1)、储油柜(2)、瓷套(3)和底座(6),其中储油柜(2)内设有电流互感器单元,瓷套(3)内设有电压互感器单元,并且所述电压互感器单元包括电压互感器绕组组件和电压互感器铁芯组件(19);所述储油柜(2)内设有电流互感器铝壳(8),并且电流互感器单元中的电流互感器二次绕组(7)设于所述电流互感器铝壳(8)中,所述电流互感器铝壳(8)外设有环部绝缘(9),所述瓷套(3)内设有绝缘管(11)和引线绝缘(12),其中引线绝缘(12)与所述环部绝缘(9)一体设置,所述绝缘管(11)设于所述引线绝缘(12)中,所述电压互感器铁芯组件(19)包括中部带引线通孔(20)的电压互感器铁心芯柱(13),并且所述电压互感器铁心芯柱(13)设于所述绝缘管(11)中,所述电流互感器二次绕组(7)的电流互感器二次引线(14)由所述引线通孔(20)穿过,所述电压互感器绕组组件包括电压互感器一次绕组(16)和电压互感器二次绕组(15),其中电压互感器二次绕组(15)绕制于所述电压互感器铁心芯柱(13)上并设置于所述电压互感器铁心芯柱(13)和绝缘管(11)之间,电压互感器一次绕组(16)设于所述引线绝缘(12)外侧,电压互感器一次绕组(16)包括多个依次串联的绕组单元(161),所述引线绝缘(12)内设有多个电容屏(18),并且相邻绕组单元(161)的单元引线(1621)连接处与引线绝缘(12)内对应的电容屏(18)等电位连接。
- 根据权利要求1所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述电流互感器单元包括电流互感器一次绕组(10),且所述电流互感器一次绕组(10)穿过所述电流互感器二次绕组(7)。
- 根据权利要求2所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述电流互感器铝壳(8)呈环形,由环形铁心构成的电流互感器二次绕组(7)设于所述电流互感器铝壳(8)中,所述电流互感器铝壳(8)外设有环部绝缘(9),并且所述电流互感器一次绕组(10)由所述环部绝缘(9)中心穿过。
- 根据权利要求1所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述底座(6)上设有电流互感器二次端子盒(4)和电压互感器二次端子盒(5),所述电流互感器二次绕组(7)的电流互感器二次引线(14)穿过所述引线通孔(20)后引至所述电流互感器二次端子盒(4)内,所述电压互感器二次绕组(15)的电压互感器二次引线引至所述电压互感器二次端子盒(5)内。
- 根据权利要求1所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述电压互感器铁芯组件(19)包括铁芯支架(17),所述电压互感器铁心芯柱(13)下端和绝缘管(11)下端均设于所述铁芯支架(17)上,所述铁芯支架(17)设于所述底座(6)上。
- 根据权利要求1或5所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述电压互感器铁心芯柱(13)为单芯柱的无轭铁心结构。
- 根据权利要求1所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述绕组单元(161)包括单元座和绕组导线(162),所述单元座中部设有供所述引线绝缘(12)穿过的安装通孔(1612),所述单元座上端和下端均设有限位法兰(1611),并且绕组导线(162)绕制于两个限位法兰(1611)之间,所述绕组导线(162)两端形成的单元引线(1621)分别由对应侧的限位法兰(1611)穿出并与相邻的绕组单元(161)连接。
- 根据权利要求1所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述电压互感器铁心芯柱(13)导磁率G计算如下式:
上式(1)中,L为电压互感器一次绕组(16)高度,M为电压互感器铁心芯柱(13)高出电压互感器一次绕组(16)的高度,b为电压互感器一次绕组(16)各个绕组单元(161)与电压互感器铁心芯柱(13)的平均距离,k1、k2、k3为经验系数,d为电压互感器铁心芯柱(13)等效直径。 - 根据权利要求1所述的用于超高压电力系统的油浸式绝缘组合互感器,其特征在于:所述电压互感器单元的励磁电流i0计算如下式:
上式(2)中,lz为电压互感器铁心芯柱(13)等效高度,Bm为额定磁通密度,W1电压互感器一次绕组(16)匝数,μ磁导率。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311024410.5 | 2023-08-15 | ||
CN202311024410.5A CN116994867A (zh) | 2023-08-15 | 2023-08-15 | 一种用于超高压电力系统的油浸式绝缘组合互感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025035634A1 true WO2025035634A1 (zh) | 2025-02-20 |
Family
ID=88531935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/132773 WO2025035634A1 (zh) | 2023-08-15 | 2023-11-21 | 一种用于超高压电力系统的油浸式绝缘组合互感器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116994867A (zh) |
WO (1) | WO2025035634A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119833294A (zh) * | 2025-03-20 | 2025-04-15 | 成都市兴名源电器有限公司 | 一种采用多级绝缘结构的高压电流互感器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116994867A (zh) * | 2023-08-15 | 2023-11-03 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种用于超高压电力系统的油浸式绝缘组合互感器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0627750A1 (en) * | 1993-04-07 | 1994-12-07 | KONCAR- MJERNI TRANSFORMATORI d.o.o. | Combined current and voltage transformer for high voltages |
CN201449871U (zh) * | 2009-08-18 | 2010-05-05 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种具有开放式铁心的电磁式电压互感器 |
CN102136359A (zh) * | 2011-01-10 | 2011-07-27 | 东北电力科学研究院有限公司 | 一种新型油浸倒立式电流互感器及其绝缘检测方法 |
CN205264486U (zh) * | 2015-11-24 | 2016-05-25 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种高压油浸式组合互感器 |
CN108987069A (zh) * | 2018-07-30 | 2018-12-11 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种电磁式电压互感器 |
CN110088859A (zh) * | 2016-12-21 | 2019-08-02 | Abb瑞士股份有限公司 | 用于高压应用的组合式仪表互感器 |
CN209461276U (zh) * | 2019-03-26 | 2019-10-01 | 江苏思源赫兹互感器有限公司 | 一种非闭合铁心电压互感器 |
CN116994867A (zh) * | 2023-08-15 | 2023-11-03 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种用于超高压电力系统的油浸式绝缘组合互感器 |
-
2023
- 2023-08-15 CN CN202311024410.5A patent/CN116994867A/zh active Pending
- 2023-11-21 WO PCT/CN2023/132773 patent/WO2025035634A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0627750A1 (en) * | 1993-04-07 | 1994-12-07 | KONCAR- MJERNI TRANSFORMATORI d.o.o. | Combined current and voltage transformer for high voltages |
CN201449871U (zh) * | 2009-08-18 | 2010-05-05 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种具有开放式铁心的电磁式电压互感器 |
CN102136359A (zh) * | 2011-01-10 | 2011-07-27 | 东北电力科学研究院有限公司 | 一种新型油浸倒立式电流互感器及其绝缘检测方法 |
CN205264486U (zh) * | 2015-11-24 | 2016-05-25 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种高压油浸式组合互感器 |
CN110088859A (zh) * | 2016-12-21 | 2019-08-02 | Abb瑞士股份有限公司 | 用于高压应用的组合式仪表互感器 |
CN108987069A (zh) * | 2018-07-30 | 2018-12-11 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种电磁式电压互感器 |
CN209461276U (zh) * | 2019-03-26 | 2019-10-01 | 江苏思源赫兹互感器有限公司 | 一种非闭合铁心电压互感器 |
CN116994867A (zh) * | 2023-08-15 | 2023-11-03 | 特变电工康嘉(沈阳)互感器有限责任公司 | 一种用于超高压电力系统的油浸式绝缘组合互感器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119833294A (zh) * | 2025-03-20 | 2025-04-15 | 成都市兴名源电器有限公司 | 一种采用多级绝缘结构的高压电流互感器 |
Also Published As
Publication number | Publication date |
---|---|
CN116994867A (zh) | 2023-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2025035634A1 (zh) | 一种用于超高压电力系统的油浸式绝缘组合互感器 | |
CN101388279B (zh) | 一种壳式非晶合金变压器器身 | |
TW201303927A (zh) | 組合式繞線結構及磁性裝置 | |
CN206602009U (zh) | 封装的多级绝缘升压变压器 | |
CN110534316B (zh) | 一种谐振式变压器 | |
CN212587342U (zh) | 一种电抗器单元及无漏磁干式高压环型空心高压电抗器 | |
CN101572171A (zh) | 一种电抗器的线圈结构 | |
WO2012079261A1 (zh) | 一种单相高压试验变压器 | |
CN213459357U (zh) | 一种气体绝缘串级式铁心电抗器 | |
CN212625107U (zh) | 一种气体绝缘单级式铁心电抗器 | |
CN113823495B (zh) | 一种高压双线包组件和高压自升流标准电流互感器 | |
CN213459343U (zh) | 一种站用电压互感器 | |
EP2187409B1 (en) | Double active parts structure of reactor | |
CN210325463U (zh) | 一种站用变压器 | |
CN107658118A (zh) | 用于气体绝缘开关设备的电流互感器 | |
CN113871158A (zh) | 一种单柱套装的单相自耦变压器 | |
CN112071576A (zh) | 一种站用电压互感器 | |
CN218333419U (zh) | 一种550kv串级式电磁式电压互感器 | |
CN112908635A (zh) | 一种带椭圆形线圈的干式变压器 | |
CN214476929U (zh) | 一种高精度及一次高强度的油浸式电流互感器 | |
CN212695032U (zh) | 多绕组并联的大容量电压互感器 | |
CN216287942U (zh) | 一种组合式电压电流互感器用电流互感器 | |
CN221960822U (zh) | 一种大型电力变压器线圈压装垫块结构 | |
CN220627549U (zh) | 一种组合式互感器 | |
CN217588663U (zh) | 降低寄生电容干扰的共模滤波器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23949051 Country of ref document: EP Kind code of ref document: A1 |