WO2025007593A1 - 一种电池全流程破碎分选回收系统及方法 - Google Patents

一种电池全流程破碎分选回收系统及方法 Download PDF

Info

Publication number
WO2025007593A1
WO2025007593A1 PCT/CN2024/082723 CN2024082723W WO2025007593A1 WO 2025007593 A1 WO2025007593 A1 WO 2025007593A1 CN 2024082723 W CN2024082723 W CN 2024082723W WO 2025007593 A1 WO2025007593 A1 WO 2025007593A1
Authority
WO
WIPO (PCT)
Prior art keywords
materials
sorting
crushing
screening
shredding
Prior art date
Application number
PCT/CN2024/082723
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李长东
阮丁山
李凤光
缪镇
Original Assignee
广东邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2025007593A1 publication Critical patent/WO2025007593A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/04Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • B09B3/35Shredding, crushing or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • B09B2101/16Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present application relates to the technical field of battery crushing, and more specifically, to a battery full-process crushing, sorting and recycling system and method.
  • the recycling of batteries on the market adopts manual disassembly, releasing the electrolyte and then crushing it, which not only takes up manpower, but also has the risk of explosion, and the leaked electrolyte will also cause pollution.
  • the current market adopts the method of first crushing and then unified recycling for the recycling of black powder in the battery.
  • the processing efficiency is very high, the actual recovery rate of black powder is very low.
  • the purity of the metal finally recovered is also low. Therefore, how to make the battery able to be efficiently disassembled and improve the recovery rate while ensuring the efficiency of black powder recovery is the technical problem to be solved by this application. Therefore, it is necessary to propose a battery full-process crushing, sorting and recycling system and method to at least partially solve the problems existing in the prior art.
  • the present application provides a battery full-process crushing, sorting and recycling system, including: a feeding system for supplying materials to the anaerobic shredding system;
  • the anaerobic shredding system is used to perform two-stage pre-shredding of materials in an anaerobic environment
  • a low-temperature drying system is used to transfer the shredded materials from the anaerobic shredding system to the pre-sorting system, and simultaneously perform a drying operation to treat the electrolyte;
  • the pre-sorting system is used to sort heavy materials and light materials, and recycle the heavy materials and transport the light materials to the high-temperature pyrolysis system;
  • the high temperature pyrolysis system is used to perform thermal treatment on light materials and organic matter
  • Multiple screening and sorting systems are used to perform multiple crushing and screening of materials after high-temperature pyrolysis
  • the further processing system is used to strip and sort the remaining metals after screening according to their categories;
  • the tail gas treatment system is used to treat the tail gas generated during the entire sorting and recycling process.
  • Fire protection system used for fire protection monitoring of the above multiple systems
  • Control system used to program, monitor and control the above multiple systems.
  • the anaerobic shredding system includes a double-shaft shredder for pre-crushing materials, and a special shredder that can realize electrically shredding, wherein the special shredder is arranged below the double-shaft shredder, and a conveying device is arranged at the bottom of the special shredder for conveying the shredded materials to the low-temperature drying system, the anaerobic shredding system is filled with nitrogen, and the conveying system transports the materials to a sealed transition bin located above the double-shaft shredder, and the exhaust gas treatment system and the fire protection system are connected to the anaerobic shredding system.
  • the drying system includes a drying furnace and a lifting plate. Multiple groups of heating wires are arranged at the bottom and top of the drying furnace and the furnace tube can rotate.
  • the lifting plate is arranged in the furnace tube of the drying furnace.
  • the drying furnace is filled with nitrogen to control the oxygen content. The temperature in the drying furnace does not exceed 600°C.
  • the pre-sorting system includes two Z-shaped sorting systems and a first medium crusher arranged between the two Z-shaped sorting systems.
  • the dried material is sent to the first Z-shaped sorting system via a conveying device for sorting heavy materials and light materials.
  • the sorted light materials are transported to the high-temperature pyrolysis system, and the sorted heavy materials are transported to the first medium crusher for crushing.
  • the crushed materials are transported to the second Z-shaped sorting system for sorting heavy materials and light materials.
  • the light materials sorted for the second time are transported to the high-temperature pyrolysis system, and the heavy materials sorted for the second time are separated from the iron by a magnetic separator.
  • the high-temperature pyrolysis system includes a pyrolysis furnace and a lifting plate. Multiple groups of electric heating wires are arranged at the bottom and top of the pyrolysis furnace and the furnace tube can rotate.
  • the lifting plate is arranged in the furnace tube of the pyrolysis furnace.
  • the pyrolysis furnace is filled with nitrogen to control the oxygen content. The temperature in the pyrolysis furnace does not exceed 1000°C.
  • the multi-group screening and sorting system includes a closed conveying system for conveying the material pyrolyzed by the high-temperature pyrolysis system to the primary screening system, a second medium crusher for crushing the heavy material on the screen screened by the primary screening system, a secondary screening system for screening the material crushed by the second medium crusher, a fine crusher for crushing the heavy material on the screen screened by the secondary screening system, and a tertiary screening system for screening the material crushed by the fine crusher.
  • the heavy material on the screen screened by the tertiary screening system is sent to the deep processing system for category separation.
  • the deep processing system is composed of a specific gravity separator for separating heavy materials screened by multiple screening and sorting systems, and the separated aluminum particles are screened by a circular vibrating screen for final light material screening.
  • it further includes a powder conveying system for collecting the black powder sieved from the above-mentioned multiple systems; the powder conveying system conveys the black powder collected from the multiple systems to a collection bin.
  • a recycling method for a battery full-process crushing and sorting recycling system characterized in that the steps include:
  • S1 The battery is transported to the anaerobic shredding system through the feeding system;
  • S2 The battery is shredded in the oxygen-free shredding system. During the shredding process, nitrogen is injected to control the temperature, explosion and combustion reactions that occur during battery shredding, and the fire protection system monitors the shredding process in real time.
  • Materials include electrolyte, bulk materials, and battery casing;
  • the screw conveyor sends the coarsely crushed materials to the low-temperature drying system, where the materials are dried in an oxygen-deficient environment to volatilize the electrolyte.
  • the materials are monitored in real time by the fire protection system, and the dried materials are sent to the pre-sorting system for screening.
  • the volatilized electrolyte will be pumped to the exhaust gas treatment system by a fan.
  • the dried materials include pole pieces, black powder, battery shells, and pole ears.
  • the dried materials are screened into heavy materials and light materials through the pre-sorting system, and the heavy materials are recycled, while the light materials are transported to the high-temperature pyrolysis system;
  • the heavy materials include battery casings and tabs, and the light materials include electrode materials and black powder;
  • S6 The pyrolyzed materials are crushed and screened multiple times in a multi-group screening and sorting system; the crushed materials include black powder, aluminum material and copper particles;
  • a water cooling shell is provided on the outer shell of the screw conveyor for conveying materials, and the water cooling shell is filled with circulating cooling water.
  • This system uses multi-stage black powder collection, which is different from the current market where screening and collection are performed at the end.
  • the black powder obtained by multi-stage collection has lower impurity content, and the purity of each type of material is higher, and the recycling value is higher.
  • the anaerobic shredding system reduces the risk of fire and can shred the entire battery. Different from the existing technology of manually breaking the battery and releasing the electrolyte before shredding, the anaerobic shredding process used in this system is more environmentally friendly, safe and efficient.
  • FIG1 is a schematic diagram of a feeding system and an anaerobic shredding system in the present application (the direction of the arrow is the direction of material movement).
  • FIG. 2 is a schematic diagram of an anaerobic shredding system and a low-temperature drying system in the present application.
  • FIG3 is a schematic diagram of a low-temperature drying system, a pre-sorting system, and a high-temperature pyrolysis system in the present application (the direction of the arrow is the direction of material movement).
  • FIG4 is a schematic diagram of a high-temperature pyrolysis system and a multi-group screening and sorting system in the present application.
  • FIG5 is a schematic diagram of the deep processing system in this application.
  • 1 feeding system 2 anaerobic shredding system, 3 low temperature drying system, 4 pre-sorting system, 5 high temperature pyrolysis system, 6 multi-group screening and sorting system, 7 deep processing system.
  • the present application provides a battery full-process crushing and sorting recycling system and method, including a feeding system, an oxygen-free shredding system, a low-temperature drying system, a pre-sorting system, a high-temperature pyrolysis system, a multi-group screening and sorting system, a deep processing system, an exhaust gas treatment system, a fire protection system, a control system, and a powder conveying system.
  • the steps for recycling by coordinating multiple systems are as follows:
  • S1 The materials are transported by a feeding system including transition silos, belt conveyors and other conveying equipment.
  • the feeding system is connected to the anaerobic shredding system.
  • the feeding interval time and feeding speed are set through the control system to ensure that the material is fully crushed and dissociated.
  • the batteries When conveying materials, the batteries are directly placed into the belt conveyor, and the belt conveyor transports the batteries to the anaerobic shredding system for coarse shredding.
  • the battery When feeding, the battery is first sent to the sealed transition bin above the intermediate bin, and then the upper gate (the gate connected to the sealed transition bin) and the lower gate (the gate connected to the shredding chamber) of the intermediate bin are opened alternately to cut off the air.
  • the knife roller of the double-shaft shredder cuts the material into blocks or strips, and then falls into the anaerobic crusher. The material is sheared instantly, and the lithium battery is shredded into flakes. The thickness of the crushed product flakes is ⁇ 40mm (the particle size of the crushed product of 18650 small cylindrical battery is ⁇ 15mm), and the shredded fragments fall into the screw conveyor.
  • the temperature is controlled by injecting nitrogen during the coarse shredding process, as well as the explosion and combustion reactions that occur when the batteries are shredded.
  • the fire protection system is also equipped with a nitrogen fire extinguishing system and an explosion relief valve.
  • Usually three flame detection alarms can be configured at the same time to fully ensure the normal use of the detection function.
  • the oxygen content needs to be monitored at all times during the coarse crushing process.
  • the equipment can only operate normally if the oxygen content is lower than the specified value.
  • the oxygen, nitrogen content and flame are monitored throughout the entire process and synchronously fed back to the PLC (control system).
  • the anaerobic shredding system in this application is a charged shredding system (the battery after discharge treatment can also use the anaerobic shredding system).
  • the battery material is transported to the double-shaft shredder through the feeding system, and then falls directly into the anaerobic shredder for charged shredding.
  • the anaerobic shredder is our patented product (patent number: 202122571709.5), which can prevent the charged monomer from exploding during the crushing process and avoid a lot of heat during the crushing process. At the same time, it can make the crushed material fully dispersed without wrapping.
  • the electrolyte volatilized during the crushing process is directly incorporated into the exhaust system connected to the low-temperature drying system for purification.
  • the materials include electrolyte, block materials, and battery casings; the coarsely crushed materials will fall into the screw conveyor.
  • the screw conveyor mentioned in this application is different from the usual one.
  • this application adds a water-cooled shell filled with circulating cooling water to the outer shell of the screw conveyor to cool the internal materials.
  • the outer wall of the shredding chamber is also provided with a water-cooled shell filled with circulating cooling water, so that the material temperature can be controlled to ⁇ 60°C.
  • the screw conveyor delivers the coarsely crushed materials to the low-temperature drying system
  • the low-temperature drying system can be a drying furnace in the form of a continuous rotary furnace.
  • the low-temperature drying system (drying furnace) can be a horizontal structure with a certain inclination angle.
  • the furnace tube is heated by multiple groups of electric heating wires at the bottom and top.
  • the materials are heated indirectly by heating the furnace tube, so that the materials can be slowly pushed forward in the rotating heating furnace tube.
  • Multiple groups of lifting plates are arranged along the circumferential direction inside the furnace tube, so that the materials can be turned over during the rotation of the furnace tube, so that the materials are heated more evenly. The materials are turned over, pushed forward and dried during the movement through the rotation of the lifting plates and the furnace tube.
  • Nitrogen protection needs to be continuously filled into the furnace tube to prevent air from entering the furnace tube, so that the materials can be dried in an oxygen-deficient environment. Because its main purpose is to dry and volatilize the electrolyte, the maximum working temperature of the low-temperature drying system can be 600°C.
  • the volatilized electrolyte will be sent to the exhaust gas treatment system for treatment by means of fan pumping.
  • the waste gas generated by this recovery system is mainly the electrolyte volatile gas, diaphragm, residual electrolyte and adhesive and other secondary combustion tail gas generated during the crushing and low-temperature volatilization of the battery monomer.
  • the volatile gas generated during crushing enters the spray tower after dust removal and condensation, and the pyrolysis gas (waste gas generated by the low-temperature drying system) needs to undergo high-temperature combustion (assisted natural gas for combustion, the combustion chamber temperature is controlled at 1000-1200°C, and the pyrolysis gas stays in the combustion chamber for no more than 20s), (the exhaust gas generated by combustion) rapid cooling treatment (quickly control the flue gas temperature below 200°C), dust removal treatment, and then enter the spray tower, and finally uniformly pass through carbon adsorption to meet the emission standards before being discharged.
  • high-temperature combustion assisted natural gas for combustion, the combustion chamber temperature is controlled at 1000-1200°C, and the pyrolysis gas stays in the combustion chamber for no more than 20s
  • the exhaust gas generated by combustion rapid cooling treatment (quickly control the flue gas temperature below 200°C), dust removal treatment, and then enter the spray tower, and finally uniformly pass through carbon adsorption to meet the emission standards before being discharged.
  • the heat released by the combustion of pyrolysis gas can assist the system in heating, and the generated HF gas is first purified by water washing and alkali washing, absorbs acidic gases, and then reacts with high calcium ion solution to generate CaF2 precipitation.
  • the wastewater after defluorination is returned to the quenching process and used as quenching spray water to achieve zero wastewater discharge.
  • the drying furnace may include a heating section furnace body, a cooling system, a rotary furnace tube, a feeding device, a refractory insulation layer, an electric heating device, a mechanical transmission, a front and rear stopper wheel support assembly, a discharging device, a sealing device, an air intake system, an exhaust system, an electrical control system, and a heat dissipation system. System.
  • the low-temperature drying system is connected to the control system, and can realize automatic operation functions such as automatic operation control, operation status monitoring, operation status simulation display, and operation fault alarm indication of the entire equipment through PLC programmable controller, touch screen, and configuration interface.
  • the Z-shaped sorting system is our patented product (patent number: 201920981030.3), which can be used as an independent system. It has a stable and good sorting effect when set before and after the intermediate crusher.
  • the intermediate crusher is our patented product (patent number: 201920461021.1, 201610908938.2). Its blade structure is not a common blade, but a hammer blade, which can better separate the powder on the pole piece by hammering.
  • the material After passing through the secondary crusher, the material will enter the Z-shaped sorting system again to screen the remaining pole pieces and black powder again.
  • the sorted heavy materials will be sent to the collection bucket by the belt conveyor below.
  • the belt conveyor is equipped with a magnetic separator, which can screen out the iron in the material and finally separate the iron from the outer shell and pole ears.
  • the light materials separated from the above two times will be sent to the high-temperature pyrolysis system for pyrolysis.
  • the entire pre-sorting system adopts negative pressure dust collection and is controlled by PLC (control system).
  • the materials are separated and sorted twice by the Z-shaped sorting system, which can effectively screen and select aluminum, iron shells and tabs.
  • An additional medium crusher was installed to perform additional crushing on the basis of the anaerobic shredding system to fully ensure the stripping of the positive electrode powder and to ensure the recovery rate and quality of the black powder in multiple processes.
  • the black powder collected by the Z-shaped sorting system will be stored in a storage tank, and the black powder in the storage tank will be transported to the collection bin through the powder conveying system.
  • the light material is transported to the high-temperature pyrolysis system for pyrolysis, the PVDF coating material of the positive electrode is removed, and the fine-grained diaphragm and plastic produced during the pyrolysis process are carbonized; the materials after pyrolysis include pole pieces and black powder; the maximum pyrolysis working temperature of the high-temperature pyrolysis system is 1000°C.
  • the high-temperature pyrolysis system is also equipped with a cooling section (the same as the cooling system in the low-temperature drying system). The heat-treated materials can directly enter the cooling section for rapid cooling and then enter the back-end process.
  • the materials after pyrolysis include pole pieces and black powder.
  • the material coming out of the high-temperature pyrolysis system is transported to the round roller screen (primary screening system) by the chain conveyor (closed conveying system).
  • the chain conveyor will be provided with an exhaust port to extract the black powder in the material on the chain conveyor.
  • a part of the black powder will be collected and stored in the storage tank of the multi-group screening and sorting system and then transported to the powder conveying system.
  • the black powder in the storage tank is transported to the collection bin.
  • the material is sent to the tumbler screen, it is screened again by the tumbler screen, and the black powder will be screened down the mesh, and then collected in the storage tank of the multi-group screening and sorting system, and the black powder in the storage tank is transported to the collection bin through the powder conveying system.
  • the pole piece will be left on the screen surface and taken to the (second) secondary crusher set in the multi-group screening and sorting system, and crushed to obtain black powder, aluminum material, and copper particles.
  • the material coming out of the medium crusher is transported to another circular vibrating screen (secondary screening system) through an elevator.
  • the circular vibrating screen will separate a portion of the black powder from the aluminum and copper particles.
  • the black powder is collected in the storage tank of the multi-group screening and sorting system, and the black powder in the storage tank is transported to the collection bin through the powder conveying system.
  • the separated aluminum and copper particles enter the fine crusher and are crushed to obtain particles of 3 to 5 mm. They are then sent to the third circular vibrating screen (tertiary screening system) by air conveying to collect the black powder.
  • the black powder is collected in the storage tank of the multi-group screening and sorting system, and the black powder in the storage tank is transported to the collection bin through the powder conveying system.
  • the material screened out by the third circular vibrating screen is a mixture of aluminum and copper particles.
  • the multi-group screening and sorting system can achieve a greater degree of recovery of valuable metals.
  • the materials are pre-screened by multi-group screening, air separation, and gravity sorting systems, and the peeled electrode powder is separated from the heavy materials such as the shell and the tabs and the electrode materials such as copper foil and aluminum foil through medium and fine crushing.
  • the screened aluminum and copper particles are sent to the gravity separator (the principle of the gravity separator is to separate the materials through vibration and air separation) to separate the pure copper particles; the aluminum material is sent to the granulator by air conveyance.
  • the aluminum particles are sent to the circular vibrating screen to separate the remaining black powder.
  • the black powder is collected in the storage tank of the deep processing system, and the black powder in the storage tank is transported to the collection bin through the powder conveying system.
  • the separated materials are sent to the gravity separator to separate the remaining copper particles from the aluminum particles, and obtain two materials of high-purity aluminum particles and copper particles.
  • the separated copper particles are lifted and bagged.
  • the purity of the copper foil product is >90%.
  • the recycling system is equipped with a powder conveying system throughout the line to collect the black powder in multiple black powder storage tanks.
  • This recycling system can be roughly divided into three crushing stages (coarse crushing, medium crushing, and fine crushing). By changing the length and angle of the conveyor connecting the two stages, the floor can be crossed, so that the system is no longer limited to the same floor plane, thus reducing the site requirements. In addition, most materials are conveyed by air conveying, so the equipment can be placed more flexibly and modified according to the actual site.
  • the hard materials (battery casings, tabs) will be screened out first, which can reduce the wear of the fine crusher and increase its service life.
  • This system adopts multi-stage black powder collection, which is different from the current market that only screens and collects at the end.
  • the black powder obtained by multi-stage collection has lower impurity content, and the purity of each type of material is higher, and the recovery value is higher.
  • the coarse crushing adopts oxygen-free crushing treatment, which reduces the risk of fire and can crush the entire battery.
  • the oxygen-free crushing treatment adopted by this system is more environmentally friendly and Safe and efficient.
  • Each section of the air conveying system is equipped with a relevant fan, which can independently control the in and out of materials.
  • the present application adopts a double Z-shaped sorting system for black powder collection, which can ensure that most of the black powder is collected and reduce the consumption of black powder.
  • the comprehensive recovery rate of black powder in this application is ⁇ 98%; the recovery rate of copper and aluminum is ⁇ 98%;
  • the recovery rate of black powder can be calculated by the following formula:
  • mjt the mass of jt element obtained after recycling of unit mass target electrode
  • Mjt the mass of jt element in unit mass target electrode before recycling.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种电池全流程破碎分选回收系统及方法。该回收系统包括:上料系统(1)、无氧撕碎系统(2)、低温烘干系统(3))、预分选系统(4)、高温热解系统(5)、多组筛分分选系统(6)、深加工系统(7)、尾气处理系统、消防系统、控制系统。该系统采用了多段的黑粉收集,有别于目前市场上最后才进行筛分收集,多段收集得到的黑粉杂质含量更低,并且每类物料的纯度更高,回收价值更高。无氧撕碎系统,用于在无氧环境下将物料进行双级预碎,降低了起火的风险,可以对整块电池进行破碎,有别于现有技术中人工破开电池,释放电解液之后,才进行破碎,所采用的无氧破碎处理更加环保、安全、高效。

Description

一种电池全流程破碎分选回收系统及方法 技术领域
本申请涉及电池破碎技术领域,更具体地说,本申请涉及一种电池全流程破碎分选回收系统及方法。
背景技术
目前市面上对于电池的回收都是采用人工破拆、释放电解液后再进行破碎,不仅占用人工,而且也存在爆燃的风险,泄漏的电解液也会造成污染。同时,目前市场对于电池内黑粉的回收都是采用先破碎,最后统一回收的方式。虽然处理效率很高,但是黑粉的实际回收率很低。并且最后回收的金属纯度也较低。因此如何使电池能够高效破拆,并在保证黑粉回收效率的同时提高回收率,是本申请要解决的技术问题。因此,有必要提出一种电池全流程破碎分选回收系统及方法,以至少部分地解决现有技术中存在的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中详细说明。本申请的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为至少部分地解决上述问题,本申请提供了一种电池全流程破碎分选回收系统,包括:上料系统,用于向无氧撕碎系统供应物料;
所述无氧撕碎系统,用于在无氧环境下将物料进行双级预碎;
低温烘干系统,用于将撕碎后的物料从所述无氧撕碎系统转运至预分选系统,并同步进行烘干操作,对电解液进行处理;
所述预分选系统,用于分选重物料和轻物料,并将重物料回收,轻物料运送至高温热解系统;
所述高温热解系统,用于对轻物料、有机物进行热处理;
多组筛分分选系统,用于对高温热解后的物料进行多次粉碎和筛分;
深加工系统,用于筛分后剩余的金属根据品类进行剥离分拣;
尾气处理系统,用于将整个分拣、回收过程中产生的尾气进行处理,
消防系统,用于对上述多个系统进行消防监控;
控制系统,用于对上述多个系统进行编程、监测和控制。
在一实施例中,所述无氧撕碎系统包括对物料进行预破碎的双轴撕碎机,以及可以实现带电撕碎的专用撕碎机,所述专用撕碎机设置在所述双轴撕碎机的下方,所述专用撕碎机的底部设置有输送设备,用于将撕碎的物料输送至所述低温烘干系统,所述无氧撕碎系统内填充氮气,输送系统将物料运输至位于所述双轴撕碎机上方的密封过渡仓内,所述尾气处理系统及消防系统与所述无氧撕碎系统连接。
在一实施例中,所述烘干系统包括烘干炉和扬料板,烘干炉底部和顶部设置有多组电热丝并且炉管可以旋转,扬料板设置在所述烘干炉炉管内,所述烘干炉内填充氮气控制含氧量,所述烘干炉内的温度不超过600℃。
在一实施例中,所述预分选系统包括两个Z字分选系统和设置在两个Z字分选系统之间的第一中碎机,烘干后的物料经由输送设备送至第一个Z字分选系统进行重物料和轻物料的分选,分选出的轻物料经输送至所述高温热解系统,分选出的重物料输送至所述第一中碎机进行破碎,并将破碎后的物料输送至第二个Z字分选系统进行重物料和轻物料的分选,第二次分选的轻物料输送至所述高温热解系统,第二次分选的重物料经由磁选机将铁从重物料中分离。
在一实施例中,所述高温热解系统包括热解炉和扬料板,热解炉底部和顶部设置有多组电热丝并且炉管可以旋转,扬料板设置在所述热解炉炉管内,所述热解炉内填充氮气控制氧气含量,所述热解炉内的温度不超过1000℃。
在一实施例中,所述多组筛分分选系统包括用于将所述高温热解系统热解后的物料输送至一次筛分系统的密闭输送系统、用于将一次筛分系统筛分的筛上重物料破碎的第二中碎机、用于对第二中碎机破碎的物料进行筛分的二次筛分系统、用于将二次筛分系统筛分的筛上重物料破碎的精细破碎机,以及用于将精细破碎机破碎后的物料筛分的三次筛分系统,经三次筛分系统筛分后的筛上重物料送至所述深加工系统进行品类分离。
在一实施例中,所述深加工系统由对多组筛分分选系统筛选后的重物料进行分选的比重分选机,分选后的铝粒经由圆振筛的筛选进行最后的轻物料筛分。
在一实施例中,还包括用于收集上述多个系统中筛分的黑粉的粉体输送系统;所述粉体输送系统将从多个系统中收集的黑粉输送至收集仓内。
一种电池全流程破碎分选回收系统的回收方法,其特征在于,步骤包括:
S1:通过上料系统将电池运输至无氧撕碎系统;
S2:电池在无氧撕碎系统内进行粗碎处理,在粗碎处理的同时通过注入氮气的方式控制温度,以及电池撕碎时发生的爆炸和燃烧反应,并通过消防系统进行实时监控,粗碎处理后 物料包括电解液、块状物料、电池外壳;
S3:螺旋输送机将粗碎后的物料送至低温烘干系统,让物料在贫氧环境下烘干,将电解液挥发,并通过消防系统进行实时监控,烘干后的物料送至预分选系统进行筛选;挥发的电解液会通过风机抽送的方式送至尾气处理系统;烘干后物料包括极片、黑粉、电池外壳、极耳;
S4:烘干后的物料经由预分选系统,筛分出重物料和轻物料,并将重物料回收,轻物料运送至高温热解系统;重物料包括电池外壳和极耳,轻物料包括电极料和黑粉;
S5:将轻物料输送至高温热解系统进行热解,去除正极的涂覆材料PVDF,以及将热解过程中产生的细粒级隔膜、塑料碳化;热解后的物料包括极片和黑粉;
S6:热解后的物料在多组筛分分选系统中进行多次粉碎和筛分;破碎后的物料包括黑粉、铝料和铜粒;
S7:筛分后的物料在深加工系统中破碎、筛分,并将剩余的金属根据品类进行剥离分拣。
在一实施例中,用于输送物料用的螺旋输送机上的外壳上设置有水冷壳,并且水冷壳内填充有循环的冷却水。
相比现有技术,本申请至少包括以下有益效果:
本系统采用了多段的黑粉收集,有别于目前市场上最后才进行筛分收集,多段收集得到的黑粉杂质含量更低,并且每类物料的纯度更高,回收价值更高。无氧撕碎系统,降低了起火的风险,可以对整块电池进行破碎,有别于现有技术中人工破开电池,释放电解液之后,才进行破碎,本系统采用的无氧破碎处理更加环保、安全、高效。
本申请所述的电池全流程破碎分选回收系统及方法,本申请的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本申请的研究和实践而为本领域的技术人员所理解。
附图说明
附图用来提供对本申请的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请,并不构成对本申请的限制。在附图中:
图1为本申请中上料系统与无氧撕碎系统的示意图(箭头方向为物料移动方向)。
图2为本申请中无氧撕碎系统与低温烘干系统的示意图。
图3为本申请中低温烘干系统、预分选系统、高温热解系统的示意图(箭头方向为物料移动方向)。
图4为本申请中高温热解系统和多组筛分分选系统的示意图。
图5为本申请中深加工系统的示意图。
图中:1上料系统、2无氧撕碎系统、3低温烘干系统、4预分选系统、5高温热解系统、6多组筛分分选系统、7深加工系统。
具体实施方式
下面结合附图以及实施例对本申请做详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
如图1-图5所示,本申请提供了一种电池全流程破碎分选回收系统及方法,包括上料系统、无氧撕碎系统、低温烘干系统、预分选系统、高温热解系统、多组筛分分选系统、深加工系统、尾气处理系统、消防系统、控制系统、粉体输送系统。多个系统之间配合进行回收的步骤如下:
S1:由包括过渡料仓、皮带输送机等输送设备的上料系统,对物料进行输送。
其中,上料系统与无氧撕碎系统连接,根据不同物料(包括方形、软包电池等三元锂电池),通过控制系统设置投料间隔时间、给料速度,以确保物料充分破碎解离。
输送物料的时候直接将电池投放至皮带输送机中,皮带输送机将电池运输至无氧撕碎系统内进行粗碎处理。
S2:为防止电解液挥发物燃爆,破碎作业必须确保在惰性气体保护、绝氧密闭环境中进行。电池在双轴撕碎机与无氧破碎机中进行粗碎前,先向中间仓(双轴撕碎机破碎电池的腔室)和撕碎腔(无氧破碎机破碎电池的腔室)内充氮。当中间仓和撕碎腔氧含量达到设定值后,皮带输送机启动可以进料,并定时投料。投料时电池先送至位于中间仓上方的密封过渡仓内,然后中间仓的上闸板(与密封过渡仓连接的闸板)及下闸板(与撕碎腔连接的闸板)交替打开,隔断空气,双轴撕碎机的刀辊将物料切成块或条状后,落入无氧破碎机,物料瞬间剪切,实现锂电池撕碎成片状,破碎产品片状厚度≤40mm(18650小型圆柱电池破碎产品粒度≤15mm),撕碎的碎料落入到螺旋输送机。在粗碎处理的同时通过注入氮气的方式控制温度,以及控制电池撕碎时发生的爆炸和燃烧反应。
在无氧破碎阶段,全程通过消防系统的火焰检测报警器实时监控,消防系统内还配备氮气灭火系统,以及泄爆阀。通常可以同时配置三份火焰检测报警器,以充分保证检测功能的正常使用。
粗碎过程中需要随时监测氧含量,低于氧含量的规定值,设备才能正常投料运行,并且 全程对氧、氮含量及火焰进行监测,并同步反馈到PLC(控制系统)。
本申请中的无氧撕碎系统为带电破碎系统(经放电处理后的电池,也可以使用无氧撕碎系统),电池物料通过上料系统输送至双轴撕碎机,再直接落入无氧破碎机中进行带电撕碎。该无氧破碎机为我司专利产品(专利号:202122571709.5),可以使带电单体在破碎过程中不会产生爆炸、避免破碎过程中大量发热,同时可以使破碎后的物料充分分散,无包裹现象。破碎过程挥发的电解液,则直接并入与低温烘干系统连接的尾气系统进行净化处理。
经过无氧破碎后,物料中的物质包括电解液、块状物料、电池外壳;粗碎后的物料会落入螺旋输送机内。需要注意的是,本申请中提及的螺旋输送机跟平常用的有所不同,为了控制物料的温度,避免起火,本申请在螺旋输送机的外壳上增加了填充有循环的冷却水的水冷壳,以对内部的物料进行冷却。撕碎腔的外壁也设置有填充循环的冷却水的水冷壳,从而可以控制物料温度﹤60℃。
S3:螺旋输送机将粗碎后的物料送至低温烘干系统(低温烘干系统可以为采用连续回转炉形式的烘干炉)中,低温烘干系统(烘干炉)可以为卧式结构,并带有一定的倾斜角度,通过底部、顶部多组电热丝加热炉管,通过给炉管加热的方式,间接加热物料,从而使物料可以在旋转的加热炉管内缓慢推进。炉管内部沿圆周方向设置有多组扬料板,从而在炉管转动的过程实现对物料的翻动,使物料受热更加均匀,物料通过扬料板及炉管的转动,实现了物料在运动过程中翻滚、推进和烘干的作用。炉管内需要持续充入氮气保护,防止空气进入炉管内,使物料在贫氧环境下烘干。因为其主要目的在于烘干、挥发电解液,所以低温烘干系统的工作最高温度为600℃即可。
挥发的电解液会通过风机抽送的方式,送至尾气处理系统进行处理。本回收系统所产生的废气主要为电池单体在破碎及低温挥发过程中,产生的电解液挥发气体、隔膜、残留电解液以及粘接剂等二燃尾气。破碎时产生的挥发气通过除尘及冷凝后,进入喷淋塔,热解气(低温烘干系统产生的废气)则需要经过高温燃烧(辅助天然气进行燃烧,燃烧室温度控制在1000-1200℃,热解气在燃烧室停留时间不超过20s)、(燃烧产生的尾气)急冷处理(迅速将烟气温度控制在200℃以下)、除尘处理后,再进入喷淋塔,最后统一经过碳吸附后达到排放标准以后排放。热解气(低温烘干系统产生的废气)燃烧释放的热量,可以辅助系统供热,而产生的HF气体先通过水洗、碱洗进行净化,吸收酸性气体,然后与高钙离子溶液反应生成CaF2沉淀。脱氟后的废水返回急冷工序,用于急冷喷淋用水,实现废水零排放。
烘干炉可以包括加热段炉体、冷却系统、回转炉管、进料装置、耐火保温层、电加热装置、机械传动、前后挡轮支撑组件、出料装置、密封装置、进气系统、排气系统、电气控制系 统。
同时低温烘干系统与控制系统连接,可以通过PLC可编程控制器、触摸屏、组态界面,实现整个设备的自动运行控制、运行状态监控、运行状态模拟显示、运行故障报警指示等自动化运行功能。
S4:从低温烘干系统里出来的物料(电极料、黑粉、电池外壳、极耳等)由螺旋输送机(带水冷壳)以及提升机(用于垂直输送物料)将物料运输至Z字分选系统中,分选出来的重物料(电池外壳、极耳)通过提升机的作用输送至(第一)中碎机中进行破碎,分选出的轻物料(电极料、黑粉)会被风送至螺旋输送机中送往高温热解系统。
其中,Z字分选系统为我司专利产品(专利号:201920981030.3),可做为独立的系统使用,在中碎机前后设置具有稳定、良好的分选效果。中碎机为我司专利产品(专利号:201920461021.1、201610908938.2),其刀体结构不是常见的片刀,而是锤片,通过捶打的方式能让极片上的极粉更好的分离。-
物料通过中碎机后会再次进入Z字分选系统中,将残余的极片跟黑粉再次进行筛分,分选出的重物料将由底下的皮带输送机送往收集斗中,皮带输送机上设置有磁选机,能够将物料中的铁筛分出来,最终将铁从外壳、极耳分离出来。
上述的两次分选出来的轻物料会送至高温热解系统中进行热解。
预分选系统全线采用负压收尘,并通过PLC控制(控制系统)。
物料先后经两次Z字分选系统的独立分选,能够有效筛分、选出铝、铁外壳及极耳等。
增设中碎机,在无氧撕碎系统基础上进行了额外的破碎,以充分保证正极粉的剥离,保证多个工序的黑粉回收率及品质。
本工序中由Z字分选系统收集的黑粉会储存到储存罐内,并通过粉体输送系统将储存罐内的黑粉输送至收集仓内。
S5:将轻物料输送至高温热解系统进行热解,去除正极的涂覆材料PVDF,以及将热解过程中产生的细粒级隔膜、塑料碳化;热解后的物料包括极片和黑粉;高温热解系统热解工作最高温度为1000℃。高温热解系统同样设置有冷却段(同低温烘干系统中的冷却系统),热处理完成的物料可直接进入冷却段进行急速冷却后进入后端工序。热解后的物料包括极片和黑粉。
S6:从高温热解系统中出来的物料由链板输送机(密闭输送系统)输送至圆滚筛(一次筛分系统)中,链板输送机上会开设抽风口,用于抽送位于链板输送机上的物料中的黑粉,对一部分黑粉进行收集,黑粉会储存在多组筛分分选系统的储存罐内,并通过粉体输送系统 将储存罐内的黑粉输送至收集仓内。物料送至圆滚筛后,通过圆滚筛对物料再次进行筛分,黑粉会被筛下网孔,然后被收集至多组筛分分选系统的储存罐内,并通过粉体输送系统将储存罐内的黑粉输送至收集仓内。筛分后极片会被留在筛面上,被带往设置在多组筛分分选系统的(第二)中碎机中,破碎并得到黑粉、铝料、铜粒。
(第二)中碎机中出来的物料通过提升机输送至另一个圆振筛(二次筛分系统)中,圆振筛会将一部分黑粉跟铝料、铜粒分离,黑粉被收集至多组筛分分选系统的储存罐内,并通过粉体输送系统将储存罐内的黑粉输送至收集仓内。分离出的铝料、铜粒进入到精细破碎机,进行细碎得到3至5mm的颗粒,然后通过风送的方式将其送至第三个圆振筛(三次筛分系统),收集黑粉,黑粉被收集至多组筛分分选系统的储存罐内,并通过粉体输送系统将储存罐内的黑粉输送至收集仓内。此时的第三个圆振筛筛选出来的物料为铝料和铜粒的混合物。
多组筛分分选系统可以实现有价金属更大程度的回收。高温热解后物料通过多组筛分、风选、重力分选系统实现已剥离的极粉预先筛分,经中碎、细碎实现外壳、极耳等重物料与铜箔、铝箔等电极料的分离。
S7:筛分得到的铝料和铜粒混合物进入比重分选机(比重分选机的原理是通过振动、风选将物料进行分离),分选出纯净的铜粒;而铝料则会被风送送往制粒机中制粒。得到的铝粒进入圆振筛中,将最后剩余的黑粉分离,黑粉被收集至深加工系统的储存罐内,并通过粉体输送系统将储存罐内的黑粉输送至收集仓内。分离后的物料进入比重分选机中将剩余的铜粒与铝粒分离,得到高纯度的铝粒跟铜粒两种物料。
其中,混合物进入比重分选机后,分选出的铜粒进行提升、装袋。铜箔产品纯度>90%。
本回收系统全线配有粉体输送系统,用于统一收集多个黑粉存储罐内的黑粉。
本回收系统大致可以分为3次破碎(粗碎、中碎、细碎)。通过更改连接两个阶段的输送机长度、角度能够实现楼层的跨越,从而使本系统不再局限于同一楼层平面,因此可以降低场地要求。而且大部分物料的传送使用的是风送的方式,设备摆放可以更加灵活,并根据实际场地进行修改。
在进入细碎之前,会先把硬质物料(电池外壳、极耳)筛分出来,可以减少精细破碎机的磨损,增加使用寿命。
本系统采用了多段的黑粉收集,有别于目前市场上最后才进行筛分收集,多段收集得到的黑粉杂质含量更低,并且每类物料的纯度更高,回收价值更高。
粗碎采用了无氧破碎处理,降低了起火的风险,可以对整块电池进行破碎,有别于现有技术中人工破开电池,释放电解液之后,才进行破碎,本系统采用的无氧破碎处理更加环保、 安全、高效。
每段风送系统都安装有关风机,可单独控制物料的进出。
本申请采用了双重Z字分选系统进行黑粉收集,能确保大部分的黑粉得到收集,减少黑粉的消耗。
本申请的黑粉综合回收率≥98%;铜、铝回收率≥98%;
其中黑粉的回收率可通过下述公式进行计算:
其中,mjt:单位质量目标极片经回收后获得jt元素的质量;Mjt:回收前单位质量目标极片中jt元素的质量。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。

Claims (10)

  1. 一种电池全流程破碎分选回收系统,其特征在于,包括:上料系统,用于向无氧撕碎系统供应物料;
    所述无氧撕碎系统,用于在无氧环境下将物料进行双级预碎;
    低温烘干系统,用于将撕碎后的物料从所述无氧撕碎系统转运至预分选系统,并同步进行烘干操作,对电解液进行处理;
    所述预分选系统,用于分选重物料和轻物料,并将重物料回收,轻物料运送至高温热解系统;
    所述高温热解系统,用于对轻物料、有机物进行热处理;
    多组筛分分选系统,用于对高温热解后的物料进行多次粉碎和筛分;
    深加工系统,用于筛分后剩余的金属根据品类进行剥离分拣;
    尾气处理系统,用于将整个分拣、回收过程中产生的尾气进行处理,
    消防系统,用于对上述多个系统进行消防监控;
    控制系统,用于对上述多个系统进行编程、监测和控制。
  2. 根据权利要求1所述的电池全流程破碎分选回收系统,其特征在于,所述无氧撕碎系统包括双轴撕碎机以及专用撕碎机,所述双轴撕碎机对物料进行预破碎,所述专用撕碎机可以实现带电撕碎,所述专用撕碎机设置在所述双轴撕碎机的下方,所述专用撕碎机的底部设置有输送设备,用于将撕碎的物料输送至所述低温烘干系统,所述无氧撕碎系统内填充氮气,输送系统将物料运输至位于所述双轴撕碎机上方的密封过渡仓内,所述尾气处理系统及消防系统与所述无氧撕碎系统连接。
  3. 根据权利要求1所述的电池全流程破碎分选回收系统,其特征在于,所述烘干系统包括烘干炉和扬料板,所述烘干炉底部和顶部设置有多组电热丝并且炉管可以旋转,所述扬料板设置在所述烘干炉炉管内,所述烘干炉内填充氮气控制氧气含量,所述烘干炉内的温度不超过600℃。
  4. 根据权利要求1所述的电池全流程破碎分选回收系统,其特征在于,所述预分选系统包括两个Z字分选系统和设置在两个所述Z字分选系统之间的第一中碎机,烘干后的物料经由输送设备送至第一个所述Z字分选系统进行重物料和轻物料的分选,分选出的轻物料经输送至所述高温热解系统,分选出的重物料输送至所述第一中碎机进行破碎,并将破碎后的物料输送至第二个所述Z字分选系统进行重物料和轻物料的分选,第二次分选的轻物料输送至所述高温热解系统,第二次分选的重物料经由磁选机将铁从重物料中分离。
  5. 根据权利要求1所述的电池全流程破碎分选回收系统,其特征在于,所述高温热解系统包括热解炉和扬料板,所述底部和顶部设置有多组电热丝并且炉管可以旋转,所述扬料板设置在所述热解炉炉管内,所述热解炉内填充氮气控制氧气含量,所述热解炉内的温度不超 过1000℃。
  6. 根据权利要求1所述的电池全流程破碎分选回收系统,其特征在于,所述多组筛分分选系统包括用于将所述高温热解系统热解后的物料输送至一次筛分系统的密闭输送系统、用于将所述一次筛分系统筛分的筛上物料破碎的第二中碎机、用于对所述第二中碎机破碎的物料进行筛分的二次筛分系统、用于将所述二次筛分系统筛分的筛上物料破碎的精细破碎机、用于将所述精细破碎机破碎后的物料筛分的三次筛分系统,以及用于将所述三次筛分系统筛分后的筛上物料进行品类分离的所述深加工系统。
  7. 根据权利要求1所述的电池全流程破碎分选回收系统,其特征在于,所述深加工系统包括比重分选机和圆振筛,所述比重分选机对多组筛分分选系统筛选后的重物料进行分选,所述圆振筛对分选后的铝粒进行最后的轻物料筛分。
  8. 根据权利要求1所述的电池全流程破碎分选回收系统,其特征在于,还包括用于收集上述多个系统中筛分的黑粉的粉体输送系统;所述粉体输送系统将从多个系统中收集的黑粉输送至收集仓内。
  9. 一种根据权利要求1所述的电池全流程破碎分选回收系统的回收方法,其特征在于,步骤包括:
    S1:通过上料系统将电池运输至无氧撕碎系统;
    S2:电池在无氧撕碎系统内进行粗碎处理,在粗碎处理的同时通过注入氮气的方式控制温度以及电池撕碎时发生的爆炸和燃烧反应,并通过消防系统进行实时监控,粗碎处理后物料包括电解液、块状物料、电池外壳;
    S3:螺旋输送机将粗碎后的物料送至低温烘干系统,让物料在贫氧环境下烘干,将电解液挥发,并通过所述消防系统进行实时监控,烘干后的物料送至预分选系统进行筛选;挥发的电解液会通过风机抽送的方式送至尾气处理系统;烘干后物料包括极片、黑粉、电池外壳、极耳;
    S4:烘干后的物料通过预分选系统筛分出重物料和轻物料,并将重物料回收,轻物料运送至高温热解系统;重物料包括电池外壳和极耳,轻物料包括电极料和黑粉;
    S5:将轻物料输送至高温热解系统进行热解,去除正极的涂覆材料PVDF,以及将热解过程中产生的细粒级隔膜、塑料碳化;热解后的物料包括极片和黑粉;
    S6:热解后的物料在多组筛分分选系统中进行多次粉碎和筛分;破碎后的物料包括黑粉、铝料和铜粒;
    S7:筛分后的物料在深加工系统中破碎、筛分,并将剩余的金属根据品类进行剥离分拣。
  10. 根据权利要求9所述的电池全流程破碎分选回收系统的回收方法,其特征在于,用于输送物料用的所述螺旋输送机上的外壳上设置有水冷壳,并且所述水冷壳内填充有循环的冷却水。
PCT/CN2024/082723 2023-07-06 2024-03-20 一种电池全流程破碎分选回收系统及方法 WO2025007593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310824175.3 2023-07-06
CN202310824175.3A CN116713305A (zh) 2023-07-06 2023-07-06 一种电池全流程破碎分选回收系统及方法

Publications (1)

Publication Number Publication Date
WO2025007593A1 true WO2025007593A1 (zh) 2025-01-09

Family

ID=87873369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/082723 WO2025007593A1 (zh) 2023-07-06 2024-03-20 一种电池全流程破碎分选回收系统及方法

Country Status (2)

Country Link
CN (1) CN116713305A (zh)
WO (1) WO2025007593A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116713305A (zh) * 2023-07-06 2023-09-08 广东联之冠环保科技有限公司 一种电池全流程破碎分选回收系统及方法
CN117655066A (zh) * 2023-12-18 2024-03-08 隽诺环保装备科技(肇庆)有限公司 一种废旧电池破碎分选线
CN118699047B (zh) * 2024-08-29 2024-12-20 安徽法恩莱特新能源科技有限公司 一种锂电池电解液烘干和黑粉分离设备及分离方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000871A (ja) * 2002-04-03 2004-01-08 Jfe Kankyo Corp 廃棄物処理システム及び廃乾電池処理方法
CN112871991A (zh) * 2021-02-03 2021-06-01 顺尔茨环保(北京)有限公司 一种废旧锂电池低温蒸发回收电极粉系统及方法
CN113083857A (zh) * 2021-04-02 2021-07-09 深圳市守正创新有限公司 一种锂离子带电破碎回收方法及系统
CN113161640A (zh) * 2021-02-03 2021-07-23 顺尔茨环保(北京)有限公司 一种废旧锂电池多级热解回收黑粉的系统及方法
CN113976595A (zh) * 2021-11-01 2022-01-28 江苏荣麒循环科技有限公司 一种软包锂离子电池回收处理系统及工艺
CN114006070A (zh) * 2021-10-31 2022-02-01 湖南江冶机电科技股份有限公司 一种废旧锂电池高温热解及气动力剥离分选的方法
CN114151802A (zh) * 2021-11-30 2022-03-08 湖南江冶机电科技股份有限公司 一种废旧锂电池全组分回收再利用的方法
CN114405967A (zh) * 2022-01-25 2022-04-29 江西格润新材料有限公司 一种安全环保的废旧锂电池带电破碎分选系统
CN116713305A (zh) * 2023-07-06 2023-09-08 广东联之冠环保科技有限公司 一种电池全流程破碎分选回收系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000871A (ja) * 2002-04-03 2004-01-08 Jfe Kankyo Corp 廃棄物処理システム及び廃乾電池処理方法
CN112871991A (zh) * 2021-02-03 2021-06-01 顺尔茨环保(北京)有限公司 一种废旧锂电池低温蒸发回收电极粉系统及方法
CN113161640A (zh) * 2021-02-03 2021-07-23 顺尔茨环保(北京)有限公司 一种废旧锂电池多级热解回收黑粉的系统及方法
CN113083857A (zh) * 2021-04-02 2021-07-09 深圳市守正创新有限公司 一种锂离子带电破碎回收方法及系统
CN114006070A (zh) * 2021-10-31 2022-02-01 湖南江冶机电科技股份有限公司 一种废旧锂电池高温热解及气动力剥离分选的方法
CN113976595A (zh) * 2021-11-01 2022-01-28 江苏荣麒循环科技有限公司 一种软包锂离子电池回收处理系统及工艺
CN114151802A (zh) * 2021-11-30 2022-03-08 湖南江冶机电科技股份有限公司 一种废旧锂电池全组分回收再利用的方法
CN114405967A (zh) * 2022-01-25 2022-04-29 江西格润新材料有限公司 一种安全环保的废旧锂电池带电破碎分选系统
CN116713305A (zh) * 2023-07-06 2023-09-08 广东联之冠环保科技有限公司 一种电池全流程破碎分选回收系统及方法

Also Published As

Publication number Publication date
CN116713305A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2025007593A1 (zh) 一种电池全流程破碎分选回收系统及方法
CN105826629B (zh) 一种废旧锂电池全组分物料分离收集装置及方法
WO2023070801A1 (zh) 一种废旧锂离子电池有价组分的回收方法
CN108941162A (zh) 一种锂电池无氧裂解回收分选工艺
CN110112480A (zh) 一种带电动力电池的充保护气破碎无氧裂解回收工艺
CN212093672U (zh) 一种废旧镍氢电池综合回收装置
CN111934042B (zh) 退役动力电池物理回收再利用方法
CN205609702U (zh) 一种废旧锂电池全组分物料分离收集装置
CN111842410A (zh) 废旧动力电池单体全组分回收系统
CN111282956A (zh) 一种高效环保废旧锂离子电池回收处理工艺
CN109046720A (zh) 一种废旧锂电池冷冻破碎及金属分选的成套装置和方法
CN218568962U (zh) 一种废旧锂电池撕碎破碎一体化装置
CN208800245U (zh) 一种废旧锂电池冷冻破碎及金属分选的成套装置
CN212551007U (zh) 废旧动力电池单体全组分回收系统
CN109453867A (zh) 一种人字形齿剪切破碎机及废旧锂电池带电破碎的方法
CN118180109A (zh) 一种报废动力电池拆解破碎回收工艺及生产线
CN117531817A (zh) 一种锂电池破碎生产线
CN215933683U (zh) 一种多通道废旧锂电池带电拆解回收设备
CN202479199U (zh) 废旧冰箱无害化资源化回收处理系统
CN117655066A (zh) 一种废旧电池破碎分选线
CN221150122U (zh) 一种锂电池正极片热解脱粉装置
CN109985712A (zh) 一种用于筛选废旧电池中铜铝材料的装置及其工艺
CN209997756U (zh) 一种用于筛选废旧电池中黑粉的装置
CN117299761A (zh) 一种锂电池破碎裂解回收系统及工艺
CN217569065U (zh) 一种锂电池正极提取自动化产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24835080

Country of ref document: EP

Kind code of ref document: A1