WO2025002458A1 - 叠片装置 - Google Patents

叠片装置 Download PDF

Info

Publication number
WO2025002458A1
WO2025002458A1 PCT/CN2024/102982 CN2024102982W WO2025002458A1 WO 2025002458 A1 WO2025002458 A1 WO 2025002458A1 CN 2024102982 W CN2024102982 W CN 2024102982W WO 2025002458 A1 WO2025002458 A1 WO 2025002458A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamination
pole piece
stacking
patching
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2024/102982
Other languages
English (en)
French (fr)
Inventor
王玉虎
丁乐群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svolt Energy Technology Co Ltd
Original Assignee
Svolt Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202321699642.6U external-priority patent/CN219979621U/zh
Priority claimed from CN202321699688.8U external-priority patent/CN220086121U/zh
Application filed by Svolt Energy Technology Co Ltd filed Critical Svolt Energy Technology Co Ltd
Publication of WO2025002458A1 publication Critical patent/WO2025002458A1/zh
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of battery manufacturing, and in particular to a stacking device.
  • the production methods of lithium batteries are mainly divided into two methods: winding and stacking.
  • winding the battery cells produced by the stacking method have higher energy density and better quality.
  • the stacking process as the key to the stacking production method, largely determines the production efficiency and product quality of stacked lithium batteries.
  • the stacking process is to stack the positive and negative electrodes conveyed by the vacuum belt, and after CCD visual inspection and UVW alignment platform positioning, the pick-and-place robot will alternately stack the positive and negative electrodes on the stacking table until the electrode group on the stacking table reaches the set number of electrodes, and the stacking table starts unloading.
  • the existing stacking solutions usually use a pair of four-station robots and an integrated eight-station stacking table for stacking.
  • the multi-station integrated stacking will cause high risk of sheet dropping, complex logic of kicking out and replacing sheets, and long time for kicking out and replacing sheets, resulting in reduced efficiency of the entire machine.
  • the present disclosure aims to provide a lamination device to achieve higher lamination efficiency.
  • a method comprising a lamination mechanism, a first feeding mechanism for conveying a first electrode sheet to the lamination mechanism, and a second feeding mechanism for conveying a second electrode sheet to the lamination mechanism, wherein the first feeding mechanism and the second feeding mechanism are respectively arranged on both sides of the lamination mechanism in a width direction;
  • the lamination mechanism comprises a plurality of lamination platforms arranged at intervals along the length direction, and a lamination robot assembly arranged corresponding to each of the lamination platforms, each of the lamination robot assemblies being capable of grabbing the first pole piece and the second pole piece and transporting them to the corresponding lamination platform for alternating lamination;
  • the first loading mechanism and the second loading mechanism both include a magnetic levitation conveyor line for conveying the first pole piece or the second pole piece, and a detection unit arranged on one side of the magnetic levitation conveyor line, and the detection unit can visually locate and detect the posture of the first pole piece or the second pole piece grasped by the stacking robot assembly.
  • the magnetic levitation conveyor line includes a magnetic levitation circular track, and a plurality of mover assemblies magnetically levitation-slidably arranged on the magnetic levitation circular track, and the first pole piece or the second pole piece is placed on each of the mover assemblies.
  • the magnetic levitation circular track is provided with a material picking area close to the lamination mechanism, and a loading area upstream of the material picking area.
  • Each of the movable subassemblies can receive the first pole piece or the second pole piece at the loading area and transport it to the material picking area for grabbing by the lamination robot assembly.
  • a buffer zone is provided on the magnetic suspension circular track between the material fetching zone and the material loading zone, and the buffer zone is used to cache each of the movable subassemblies sliding from the material loading zone to the material fetching zone.
  • the material picking area is provided with material picking stations corresponding to each of the stacking tables, each of the material picking stations can accommodate at least two of the movable sub-assemblies, and each of the stacking tables is provided with at least two stacking stations;
  • the stacking robot assembly includes a stacking robot arranged between the corresponding stacking table and the material picking station, and the stacking robot can grab the first pole piece or the second pole piece on each of the movable sub-assemblies from the material picking station, and place them respectively on each of the stacking stations in the corresponding stacking table.
  • first CCD camera assemblies for visually positioning the first pole piece or the second pole piece during lamination are respectively provided on both sides in the width direction of each lamination platform.
  • the detection unit includes a second CCD camera assembly respectively arranged corresponding to each of the material picking stations.
  • a waste rejection and sheet-replacing mechanism is provided between the first feeding mechanism and the sheet-stack mechanism and between the second feeding mechanism and the sheet-stack mechanism, and the waste rejection and sheet-replacing mechanism comprises a waste station provided on one side of the magnetic suspension circular track, and a waste rejection and sheet-replacing robot provided between the magnetic suspension circular track and the waste station;
  • the scrap station is arranged downstream of the material picking area and between the material picking area and the loading area.
  • the scrap rejection and patching robot can grab the first pole piece or the second pole piece that is NG detected by the detection unit and place it on the scrap station.
  • the waste rejection and patching mechanism includes a patching station arranged close to the waste station, and the waste rejection and patching robot can carry the qualified first pole piece or the second pole piece detected by the detection unit between the patching station and one of the movable subassemblies.
  • waste rejection and patching mechanisms are respectively provided on both sides of the stacking mechanism in the width direction;
  • the waste rejection and patching mechanism includes a waste rejection and patching robot, and a first driving unit driving the waste rejection and patching robot to slide back and forth along the length direction;
  • the waste rejection and patching robot can reject the NG first pole piece or the second pole piece detected by the detection unit from the first feeding mechanism or the second feeding mechanism, and can transport qualified first pole piece or second pole piece to the first feeding mechanism or the second feeding mechanism.
  • the waste rejection and patching mechanism includes a waste station for storing NG first pole pieces or second pole pieces, and a patching station for storing qualified first pole pieces or second pole pieces, and both the waste station and the patching station can be driven by the first driving unit and slide back and forth along the length direction with the waste rejection and patching robot.
  • the waste rejection and patching mechanism includes a guide rail extending along the length direction, and the waste rejection and patching robot is slidably arranged on the guide rail.
  • the guide rail is located in the magnetic suspension circular track.
  • the lamination mechanism includes a movable slide rail extending along the length direction, and a second driving unit capable of driving each of the lamination platforms to slide back and forth along the movable slide rail.
  • the present disclosure has the following advantages:
  • the dual-motor hybrid power system disclosed in the present invention based on the grasping flexibility of the stacking robot assembly and the cooperation of the detection unit that can locate the posture of the first pole piece or the second pole piece, can realize the pole piece correction and positioning functions on the basis of having the handling function.
  • the width of the stacking segment is greatly reduced, thereby reserving sufficient space for the pole piece transportation.
  • the first feeding mechanism and the second feeding mechanism both use a magnetic levitation conveyor line to cooperate with each other, which helps to improve the efficiency of pole piece transportation.
  • the stacking robot assembly plus the split stacking table design compared with the existing design of a manipulator and an integrated stacking table, can make the stacking processes between the stacking tables non-interfering with each other, so as to reduce the risk of falling pieces, reduce the complexity of the logic of rejecting and patching, and reduce the time of rejecting and patching. It has better operability and is conducive to breaking through the efficiency limitations of existing stacking methods.
  • the magnetic levitation conveyor line adopts a magnetic levitation circular track, which is conducive to the arrangement and coordination between the first feeding mechanism, the second feeding mechanism and the stacking mechanism, and has a better arrangement effect.
  • the coordination of the feeding area, the picking area and the buffer area is conducive to controlling the conveying efficiency of the magnetic levitation conveyor line and the stacking operation of the stacking mechanism at a better cooperative frequency to improve the stacking efficiency.
  • a plurality of stacking stations are arranged on the stacking table, and a plurality of picking stations and a plurality of stacking robots are arranged corresponding to each stacking station, which is conducive to coordinating the pole piece transfer, pole piece handling and stacking operation at a better working rhythm, further improving the stacking efficiency.
  • the setting of the first CCD camera assembly makes it unnecessary to set a mechanism for positioning the pole piece on the stacking table, that is, the stacking operation can be realized by using a stacking table with a stacking station, which can reduce the cost of the stacking table.
  • the use of the first CCD camera assembly and the second CCD camera assembly also has the advantages of simple structure, mature products, and high stability in use.
  • the setting of the waste rejection and patching mechanism is conducive to the rejection and patching of waste pieces of the first pole piece and the second pole piece, and the waste station and patching station are set between the material picking area and the loading area, and are located downstream of the material picking area, which has the advantage of reasonable layout.
  • the position of the waste rejection and patching robot can be adjusted in the length direction, which can also improve the efficiency of waste rejection and patching, thereby helping to break through the efficiency limitations of existing stacking methods.
  • the setting of the guide rail is conducive to improving the sliding stability of the waste rejection and patching robot, and the guide rail is set in the magnetic suspension ring track, which can save the space occupied by the stacking device, improve the compactness of the equipment, and facilitate miniaturization design.
  • the setting of the mobile slide rail and the second drive unit can realize the separate driving of each stacking table, which is conducive to the arrangement of the stacking table before stacking and the collective unloading after stacking.
  • FIG1 is a schematic diagram of the overall structure of a lamination device according to a first embodiment of the present disclosure
  • FIG2 is a schematic structural diagram of a lamination mechanism according to Embodiment 1 of the present disclosure.
  • FIG3 is an enlarged view of point A in FIG2 according to the first embodiment of the present disclosure
  • FIG4 is a schematic structural diagram of a lamination table according to Embodiment 1 of the present disclosure.
  • FIG5 is a schematic diagram of the structure of the movable slide rail according to the first embodiment of the present disclosure
  • FIG6 is an enlarged view of point B in FIG5 according to the first embodiment of the present disclosure.
  • FIG7 is a schematic structural diagram of the waste rejection and patching mechanism according to the first embodiment of the present disclosure.
  • FIG8 is a schematic diagram of a structural schematic diagram of a lamination device according to a second embodiment of the present disclosure.
  • FIG9 is an enlarged view of point C in FIG8 ;
  • FIG10 is a partial structural diagram of the waste rejection and patching mechanism according to the second embodiment of the present disclosure.
  • FIG11 is a schematic structural diagram of the movable slide rail according to the second embodiment of the present disclosure.
  • FIG12 is an enlarged view of point D in FIG11;
  • Waste station 61. Waste station; 62. Patching station; 63. Waste removal and patching robot; 64. Guide rail.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • the present embodiment relates to a lamination device, which, in terms of overall structure, as shown in FIGS. 1 to 7 , includes a lamination mechanism, a first loading mechanism 31 for conveying the first electrode sheet 21 to the lamination mechanism, and a second loading mechanism 32 for conveying the second electrode sheet 22 to the lamination mechanism, and the first loading mechanism 31 and the second loading mechanism 32 are respectively arranged on both sides of the lamination mechanism in the width direction.
  • the stacking mechanism includes a plurality of stacking tables 11 arranged at intervals along the length direction, and a stacking robot assembly arranged corresponding to each stacking table 11.
  • Each stacking robot assembly can grab the first pole piece 21 and the second pole piece 22 and transport them to the corresponding stacking table 11 for alternating stacking.
  • the first loading mechanism 31 and the second loading mechanism 32 both include a magnetic levitation conveying line for conveying the first pole piece 21 or the second pole piece 22, and a detection unit arranged on one side of the magnetic levitation conveying line, which can visually locate and detect the posture of the first pole piece 21 or the second pole piece 22 grasped by the stacking robot assembly.
  • the magnetic levitation conveyor line includes a magnetic levitation circular track 33, and a plurality of movable subassemblies magnetically levitation-slidably arranged on the magnetic levitation circular track 33, and each movable subassembly is placed with a first pole piece 21 or a second pole piece 22.
  • the magnetic suspension conveyor line adopts the magnetic suspension annular track 33, which is beneficial to the arrangement and coordination between the first feeding mechanism 31, the second feeding mechanism 32 and the lamination mechanism, and has a better arrangement effect.
  • the arrangement relationship between the magnetic suspension annular track 33 and the mover assembly can refer to the common magnetic suspension conveying system in the prior art.
  • the magnetic suspension annular track 33 is integrated with a stator assembly for cooperating with the magnetic suspension drive of the mover assembly.
  • the first electrode sheet 21 and the second electrode sheet 22 refer to the negative electrode sheet unit and the positive electrode sheet for lamination, respectively.
  • the negative electrode sheet unit here refers to the negative electrode sheet bag (a negative electrode sheet is provided with a diaphragm on both sides, and the diaphragms on both sides package the electrode sheets together).
  • the structural forms of the first loading mechanism 31 and the second loading mechanism 32 are basically the same, and the two can be regarded as mirror-image settings with the center line of each stacking table 11 as the axis.
  • the only difference is that the first loading mechanism 31 is used to transport the first electrode sheet 21, and the second loading mechanism 32 is used to transport the second electrode sheet 22.
  • a material picking area 34 close to the lamination mechanism and a loading area 35 upstream of the material picking area 34 are provided on the magnetic levitation circular track 33.
  • Each movable subassembly can receive the first pole piece 21 or the second pole piece 22 at the loading area 35 and transport it to the material picking area 34 for grabbing by the lamination robot assembly.
  • a buffer zone 36 is provided on the magnetic suspension circular track 33 of this embodiment, which is located between the material fetching area 34 and the material loading area 35 , and the buffer zone 36 is used to cache the various movable subassemblies sliding from the material loading area 35 to the material fetching area 34 .
  • the conveying efficiency of the magnetic suspension conveyor line and the lamination operation of the lamination mechanism are controlled at a better cooperative frequency, so as to improve the lamination efficiency.
  • each loading station can accommodate at least two movable components, and each stacking table 11 is provided with at least two stacking stations 111.
  • the stacking robot assembly includes a stacking robot 12 disposed between the corresponding stacking platform 11 and the material picking station.
  • the stacking robot 12 can grab the first pole piece 21 or the second pole piece 22 on each movable subassembly from the material picking station and place them respectively on each stacking station 111 in the corresponding stacking platform 11.
  • multiple stacking stations 111 are arranged on the stacking table 11, and multiple material picking stations and multiple stacking robots 12 are arranged corresponding to each stacking station 111, which is conducive to coordinating the electrode transfer, electrode handling and stacking operations at a better working rhythm, and further improving the stacking efficiency.
  • both sides of each stacking table 11 in the width direction are respectively provided with a first CCD camera assembly 41 for visually positioning the first pole piece 21 or the second pole piece 22 during stacking.
  • the detection unit includes a second CCD camera assembly 51 respectively arranged corresponding to each material picking station.
  • the second CCD camera assembly 51 is preferably configured to include two second CCD camera units, and the two second CCD camera units respectively correspond to the two ends of the moving subassembly at the material picking station (that is, the two ends of the first pole piece 21 or the second pole piece 22 at the material picking station) to ensure the correction and positioning effect.
  • the provision of the first CCD camera assembly 41 makes it unnecessary to provide a mechanism for positioning the pole piece on the stacking table 11, that is, the stacking operation can be achieved using the stacking table 11 with the stacking station 111, which can reduce the cost of the stacking table 11.
  • the use of the first CCD camera assembly 41 and the second CCD camera assembly 51 also has the advantages of simple structure, mature product, and high stability in use.
  • a waste rejection and patching mechanism is provided between the first feeding mechanism 31 and the stacking mechanism and between the second feeding mechanism 32 and the stacking mechanism.
  • the waste rejection and patching mechanism has a waste station 61 arranged on one side of the magnetic levitation circular track 33, and a waste rejection and patching robot 63 arranged between the magnetic levitation circular track 33 and the waste station 61.
  • the scrap station 61 is arranged downstream of the material picking area 34 and between the material picking area 34 and the loading area 35 .
  • the scrap removal and patching robot 63 can grab the NG first pole piece 21 or the second pole piece 22 detected by the detection unit and place it on the scrap station 61 .
  • the waste rejection and patching mechanism includes a patching station 62 arranged near the waste station 61, and the waste rejection and patching robot 63 can transport the qualified first pole piece 21 or the second pole piece 22 detected by the detection part between the patching station 62 and one of its movable components.
  • the waste removal and patching mechanisms can be set up to facilitate the removal and patching of waste sheets of the first pole piece 21 and the second pole piece 22, and the waste station 61 and the patching station 62 are set between the material taking area 34 and the loading area 35, and are located downstream of the material taking area 34, which has the advantage of reasonable layout.
  • the lamination mechanism includes a movable slide rail 13 extending along the length direction, and a second driving unit capable of driving each lamination platform 11 to slide back and forth along the movable slide rail 13 .
  • the arrangement of the movable slide rail 13 and the second driving unit can realize the separate driving of each stacking table 11, which is beneficial to the arrangement of the stacking tables 11 before stacking and the collective unloading after stacking.
  • the second driving unit can drive each stacking table 11 by adopting the existing technical means.
  • a rack 14 can be arranged on one side of the movable slide rail 13.
  • the second driving unit includes a driving motor which is separately arranged on each stacking table 11, and each driving motor is connected to a driving gear which can mesh with the rack 14 for transmission.
  • each driving gear model different, the sliding speed of each stacking table 11 is different, thereby realizing the separate driving of each stacking table 11 and parking at different positions.
  • the waste removal and patching robot 63 and the stacking robot 12 can adopt four-axis robots, and the movable component is provided with a fixture for carrying the pole piece.
  • each movable subassembly can carry two pole pieces (the first pole piece 21 or the second pole piece 22), and five lamination tables are configured.
  • a lamination robot assembly (that is, two lamination robots, for twelve lamination robots) is configured at each lamination table, and two lamination stations 111 are set on each lamination table 11 to realize a split double-station lamination design, and then the spacing between each lamination table 11 (lamination robot assembly) is set to 850mm, thereby realizing a design form in which each lamination table 11 can independently perform lamination at a spacing of 850mm during the lamination process.
  • each lamination table 11 after lamination is completed can be combined and unloaded simultaneously in the unloading area (arranged at the end of the moving slide rail 13 away from the lamination area) at a station spacing of 175mm.
  • two waste rejection and patching mechanisms may be provided, corresponding to the first feeding mechanism 31 and the second feeding mechanism 32 respectively, to complete the waste rejection and patching operations of the corresponding pole piece (the first pole piece 21 or the second pole piece 22).
  • the first loading mechanism 31 and the second loading mechanism 32 receive the pole pieces (the first pole piece 21 and the second pole piece 22) transferred from the previous process in their respective loading areas 35, and each movable subassembly receives two pole pieces. After receiving the pole pieces, each movable subassembly moves to the buffer area 36 through the magnetic suspension circular track 33, waiting for the pole pieces on each movable subassembly in the material collection area 34 to be taken away by the corresponding lamination robot 12.
  • the movable subassemblies that have taken the sheets and the movable subassemblies carrying the pole sheets in the buffer zone 36 move at the same time.
  • the movable subassemblies carrying the pole sheets move to the material taking area 34 to wait for the stacking robot 12 to take the sheets.
  • the stacking robot 12 adjusts the posture of the pole sheets with the help of the visual positioning parameters of the second CCD camera assembly 51, completes the pole sheet correction and then takes the sheets.
  • the movable subassemblies move to the loading area 35 to wait for material reception again.
  • the stacking robot 12 transports the pole sheets to the stacking table 11 for alternating stacking of the positive and negative pole sheets (the first pole sheet 21 and the second pole sheet 22).
  • the film picking process will be abandoned, and the motor assembly with the NG pole piece and other motor assemblies that have finished film picking will be transported to the waste rejection and film patching station 62, where the waste rejection and film patching robot will first perform waste removal processing, and then the stacking stations 111 that are missing pole pieces due to waste removal will be processed. Finally, several rounds of stacking operations will be performed on all the stacking stations 111 that are missing pole pieces until the number of pole pieces in the pole group on the stacking stations 111 that are missing pole pieces reaches the set number.
  • the lamination robot 12 stops, and the lamination table 11 is unloaded by means of the moving slide rail 13.
  • all lamination tables 11 are combined to keep the spacing of 175mm between each station and move to the unloading area together.
  • each lamination table 11 After unloading, each lamination table 11 returns along the original trajectory, and during the movement, it splits back to its respective lamination position and keeps the spacing of 850mm, and then a new pole group is laminated.
  • both pole pieces on the movable subassembly are NG pieces, then both pieces are rejected and sent to the scrap station 61 (which is equipped with a scrap box);
  • the second one is that one piece is NG and the other piece is OK, then the NG piece is placed in the scrap station 61 by the scrap rejection and patching robot, and the OK piece is placed in the patching station 62 by the scrap rejection and patching robot, waiting for the next OK piece to be paired, and then placed on the movable subassembly for transportation.
  • the movable subassembly does not need to stop receiving materials in the loading area 35.
  • the stacking device of this embodiment based on the grasping flexibility of the stacking robot assembly and the cooperation of the detection part that can locate the posture of the first pole piece 21 or the second pole piece 22, can realize the pole piece correction and positioning functions on the basis of having the carrying function.
  • the width of the stacking segment is greatly reduced, thereby reserving sufficient space for the pole piece transportation.
  • the first feeding mechanism 31 and the second feeding mechanism 32 both use a magnetic levitation conveyor line to help improve the pole piece transportation efficiency.
  • the stacking robot assembly plus the split stacking table 11 design compared with the existing design of a manipulator and an integrated stacking table 11, can make the stacking processes between the stacking tables 11 not interfere with each other, so as to reduce the risk of falling sheets, reduce the complexity of the logic of rejecting and patching, and reduce the time for rejecting and patching. It has better operability and is conducive to breaking through the efficiency limitations of existing stacking methods.
  • the present embodiment also involves a stacking device, which, in terms of overall structure, as shown in Figures 8 to 12, also includes a stacking mechanism, a first loading mechanism 31 for conveying the first electrode sheet 21 to the stacking mechanism, and a second loading mechanism 32 for conveying the second electrode sheet 22 to the stacking mechanism.
  • the stacking device of this embodiment differs from the stacking device in Example 1 mainly in the overall structural layout and the related structural settings involving the waste rejection and patching mechanisms.
  • the present embodiment although some components and contents, such as the stacking table 11, the stacking station 111, the stacking robot 12, the movable slide rail 13, the rack 14, the first loading mechanism 31, the second loading mechanism 32, the magnetic suspension circular track 33, the material picking area 34, the loading area 35, the buffer zone 36, the first CCD camera assembly 41, the second CCD camera assembly 51, the waste station 61, the patching station 62, the waste rejection and patching robot 63, etc., are similar to the relevant components and contents in the first embodiment to a certain extent, however, in consideration of the understanding of the overall layout and relevant contents of the stacking device of the present embodiment, in addition to focusing on the relevant contents of the improvement points involved in the present embodiment, the present embodiment also still introduces the relevant or identical components in the first embodiment to varying degrees.
  • the lamination mechanism of this embodiment is the same as that in the first embodiment, and includes a plurality of lamination platforms 11 arranged at intervals along the length direction, and a lamination robot assembly arranged corresponding to each lamination platform 11, and each lamination robot assembly can grab the first pole piece 21 and the second pole piece 22 and transport them to the corresponding lamination platform 11 for alternating lamination.
  • the first loading mechanism 31 and the second loading mechanism 32 both include a magnetic suspension conveyor line for conveying the first pole piece 21 or the second pole piece 22, and a detection unit provided on one side of the magnetic suspension conveyor line, and the detection unit can visually locate and detect the posture of the first pole piece 21 or the second pole piece 22 grabbed by the lamination robot assembly.
  • waste rejection and patching mechanisms are respectively provided on both sides of the lamination mechanism in the width direction of the present embodiment.
  • the waste rejection and patching mechanisms include a waste rejection and patching robot 63 and a first driving unit driving the waste rejection and patching robot 63 to slide back and forth along the length direction.
  • the waste rejection and patching robot 63 can reject the NG first pole piece 21 or the second pole piece 22 detected by the detection unit from the first feeding mechanism 31 or the second feeding mechanism 32, and can transport the qualified first pole piece 21 or the second pole piece 22 to the first feeding mechanism 31 or the second feeding mechanism 32.
  • the magnetic levitation conveyor line includes a magnetic levitation circular track 33 and a plurality of movable subassemblies magnetically slidably arranged on the magnetic levitation circular track 33, and each movable subassembly is placed with a first pole piece 21 or a second pole piece 22.
  • the magnetic suspension conveyor line adopts the magnetic suspension annular track 33, which is beneficial to the arrangement and coordination between the first feeding mechanism 31, the second feeding mechanism 32 and the lamination mechanism, and has a better arrangement effect.
  • the arrangement relationship between the magnetic suspension annular track 33 and the mover assembly can refer to the common magnetic suspension conveying system in the prior art.
  • the magnetic suspension annular track 33 is integrated with a stator assembly for cooperating with the magnetic suspension drive of the mover assembly.
  • first electrode sheet 21 and the second electrode sheet 22 of this embodiment refer to the negative electrode sheet unit and the positive electrode sheet for lamination, respectively.
  • the negative electrode sheet unit here refers to the negative electrode sheet bag (a negative electrode sheet is provided with a separator on both sides, and the separators on both sides seal the electrode sheets together).
  • the width direction of this embodiment is perpendicular to the length direction.
  • the structural forms of the first loading mechanism 31 and the second loading mechanism 32 are basically the same, and the two can be regarded as mirror-image settings with the center line of each stacking table 11 as the axis.
  • the only difference is that the first loading mechanism 31 is used to transport the first electrode sheet 21, and the second loading mechanism 32 is used to transport the second electrode sheet 22.
  • the waste rejection and patching mechanism includes a waste station 61 for storing NG first pole pieces 21 or second pole pieces 22, and a patching station 62 for storing qualified first pole pieces 21 or second pole pieces 22, and both the waste station 61 and the patching station 62 can be driven by the first driving unit and slide back and forth along the length direction with the waste rejection and patching robot 63.
  • the arrangement of the waste station 61 and the patch station 62 here can make the structure of the waste rejection and patch mechanism arranged reasonably, which is conducive to ensuring the efficiency of waste rejection and patch.
  • the first driving part can adopt a structure similar to the magnetic suspension conveyor line body to improve the driving accuracy and efficiency of the waste rejection and patch robot 63, the waste station 61 and the patch station 62 by magnetic suspension driving.
  • the waste rejection and patching mechanism includes a guide rail 64 extending along the length direction, and the waste rejection and patching robot 63 is slidably arranged on the guide rail 64, so as to improve the sliding stability of the waste rejection and patching robot 63.
  • the waste station 61 and the patching station 62 also slide on the guide rail 64.
  • the guide rail 64 of this embodiment is located in the magnetic suspension annular track 33 , which can save the space occupied by the lamination device, improve the compactness of the equipment, and facilitate miniaturization design.
  • a material picking area 34 close to the lamination mechanism and a loading area 35 upstream of the material picking area 34 are provided on the magnetic levitation circular track 33.
  • Each movable subassembly can receive the first pole piece 21 or the second pole piece 22 at the loading area 35 and transport it to the material picking area 34 for grabbing by the lamination robot assembly.
  • the magnetic levitation circular track 33 of this embodiment is provided with a buffer zone 36 located between the material picking area 34 and the material loading area 35 , and the buffer zone 36 is used to cache the various movable sub-assemblies sliding from the material loading area 35 to the material picking area 34 .
  • the conveying efficiency of the magnetic suspension conveyor line and the lamination operation of the lamination mechanism are controlled at a better cooperative frequency, thereby effectively improving the lamination efficiency.
  • a loading area 34 is provided with a loading station 341 corresponding to each stacking table 11, each loading station 341 can accommodate at least two movable components, and each stacking table 11 is provided with at least two stacking stations 111.
  • the stacking robot assembly includes a stacking robot 12 disposed between the corresponding stacking platform 11 and the material picking station 341 .
  • the stacking robot 12 can grab the first pole piece 21 or the second pole piece 22 on each movable subassembly from the material picking station 341 , and place them respectively on each stacking station 111 in the corresponding stacking platform 11 .
  • multiple stacking stations 111 are set on the stacking table 11, and multiple material picking stations 341 and multiple stacking robots 12 are set corresponding to each stacking station 111, which is conducive to coordinating the electrode transfer, electrode handling and stacking operations at a better working rhythm, and further improving the stacking efficiency.
  • the detection unit includes a second CCD camera assembly 51 respectively arranged corresponding to each material picking station 341.
  • the second CCD camera assembly 51 is preferably configured to include two second CCD camera units, and the two second CCD camera units respectively correspond to the two ends of the moving subassembly at the material picking station 341 (that is, the two ends of the first pole piece 21 or the second pole piece 22 at the material picking station 341) to ensure the correction and positioning effect.
  • a first CCD camera assembly 41 is provided on both sides of the width direction of each stacking table 11, and the first CCD camera assembly 41 is used to visually locate the first pole piece 21 or the second pole piece 22 during stacking.
  • the use of the first CCD camera assembly 41 and the second CCD camera assembly 51 has the advantages of simple structure, mature product, and high stability in use.
  • the setting of the second CCD camera assembly 51 makes it unnecessary to set a mechanism for positioning the pole piece on the stacking table 11, that is, the stacking operation can be achieved using the stacking table 11 with the stacking station 111, which can reduce the cost of the stacking table 11.
  • the lamination mechanism includes a movable slide rail 13 extending along the length direction, and a second driving unit capable of driving each lamination platform 11 to slide back and forth along the movable slide rail 13 .
  • the arrangement of the movable slide rail 13 and the second driving unit can realize the separate driving of each stacking table 11, which is beneficial to the arrangement of the stacking tables 11 before stacking and the collective unloading after stacking.
  • the second driving unit can drive each stacking table 11 by adopting the existing technical means.
  • a rack 14 can be arranged on one side of the movable slide rail 13.
  • the second driving unit includes a driving motor which is separately arranged on each stacking table 11, and each driving motor is connected to a driving gear which can mesh with the rack 14 for transmission.
  • each driving gear model different, the sliding speed of each stacking table 11 is different, thereby realizing the separate driving of each stacking table 11 and parking at different positions.
  • each movable subassembly can carry two pole pieces (the first pole piece 21 or the second pole piece 22), and be configured with six lamination tables 11, each lamination table 11 is configured with a lamination robot assembly (that is, two lamination robots 12, providing twelve lamination robots 12), and two lamination stations 111 are set on each lamination table 11 to realize a split double-station lamination table design.
  • each stacking table 11 stacking robot assembly
  • the spacing between each stacking table 11 is set to 1750mm, thereby realizing a design form in which each stacking table 11 can independently stack at a spacing of 1750mm during the stacking process.
  • the stacking tables 11 after stacking can be combined and unloaded simultaneously in the unloading area (arranged at the end of the moving slide rail 13 away from the stacking area) at a station spacing of 175mm.
  • two waste rejection and patching mechanisms can be provided, corresponding to the first feeding mechanism 31 and the second feeding mechanism 32 respectively, to complete the waste rejection and patching operations of the corresponding pole piece (the first pole piece 21 or the second pole piece 22).
  • the waste rejection and patching robots, the waste station 61 and the patching station 62 in the two waste rejection and patching mechanisms can be adjusted in position along the length direction, which is also conducive to improving the operation rhythm.
  • the first loading mechanism 31 and the second loading mechanism 32 receive the pole pieces (the first pole piece 21 and the second pole piece 22) transferred from the previous process in their respective loading areas 35, and each movable subassembly receives two pole pieces.
  • each movable subassembly moves to the buffer zone 36 through the magnetic suspension circular track 33.
  • the five movable subassemblies in the buffer zone 36 and a movable subassembly at the material picking station 341 No. 6 form a movable subassembly.
  • Each movable subassembly carries twelve pole pieces, and moves forward one movable subassembly at a time, that is, the spacing of six movable subassemblies, to supply pole pieces to all lamination robots 12.
  • the stacking robot 12 at the material taking station 341 No. 1 takes the last two pole pieces of a mover module, the six mover components of the mover module move to the material receiving area to receive the material. After each mover module is delivered to the right place, the stacking robot 12 uses the visual positioning parameters of the first CCD camera component 41 to adjust the pole piece posture, complete the pole piece deviation correction and then take the piece, and complete the double-station piece taking in two times. After taking the pieces, the stacking robot 12 will move them to the stacking table 11 for alternating stacking of positive and negative pole pieces (first pole piece 21 and second pole piece 22).
  • the stacking robot 12 stops, and the waste rejection and patching robot 63 moves to the NG position with the help of the magnetic suspension track to reject and patch.
  • the stacking robot 12 stops, and the stacking tables 11 move horizontally to unload the material with the help of the moving slide rail 13.
  • all stacking tables 11 are combined to maintain a station spacing of 175mm and move to the unloading area together.
  • the stacking tables 11 return along the original trajectory, split back to their respective stacking positions during the movement, and maintain a spacing of 1750mm, and then a new pole group is stacked.
  • the scrap rejection and patching robot 63 needs to first determine whether there are any pieces in the patching station 62 during the scrap rejection and patching process. If there are pieces, it will directly move to the NG position to perform scrap rejection and patching operations. If there are no pieces, the scrap rejection and patching robot 63 will move to the electrode loading area 35 and directly take two pieces of electrode pieces and place them on the patching station 62. After taking the pieces, the scrap rejection and patching robot 63 will move to the NG position to take away the NG pieces and place them on the scrap station 61, and then place the qualified electrode pieces on the patching station 62 at the electrode NG position, and the patching is completed.
  • the stacking device of this embodiment based on the grasping flexibility of the stacking robot assembly and the cooperation of the detection unit to locate the posture of the first pole piece 21 or the second pole piece 22, can realize the pole piece correction and positioning functions on the basis of having the handling function. Compared with the method of using a manipulator and a UVW alignment platform to cooperate with the correction and positioning in the prior art, the stacking segment width is greatly reduced, thereby being able to reserve sufficient space for the pole piece transportation. Combined with the use of the magnetic suspension conveyor line body used by the first feeding mechanism 31 and the second feeding mechanism 32, it is helpful to improve the pole piece transportation efficiency.
  • the stacking robot assembly plus the split stacking table 11 design can ensure that the stacking processes between the stacking tables 11 do not interfere with each other, thereby reducing the risk of sheet dropping, reducing the complexity of waste rejection and patching logic, and reducing the time for waste rejection and patching, with better operability.
  • the position of the waste rejection and patching robot 63 is adjustable in the length direction, which can also improve the efficiency of waste rejection and patching, thereby helping to break through the efficiency limitations of existing stacking methods.

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种叠片装置,包括叠片机构,向叠片机构输送第一极片的第一上料机构,以及向叠片机构输送第二极片的第二上料机构,且第一上料机构和第二上料机构分设于叠片机构的宽度方向的两侧;叠片机构包括沿长度方向间隔布置的多个叠片台,以及对应各叠片台布置的叠片机器人组件,各叠片机器人组件均能够抓取第一极片和第二极片并搬运至对应的叠片台上进行交替叠片;第一上料机构和第二上料机构均包括用于输送第一极片或第二极片的磁悬浮输送线体,以及设于磁悬浮输送线体一侧的检测部,检测部能够视觉定位与检测被叠片机器人组件抓取的第一极片或第二极片的姿态。所述的叠片装置,能够具有更高的叠片效率,且实用性高。

Description

叠片装置
本公开要求在2023年6月30日提交中国专利局、申请号为202321699642.6、专利申请名称为“叠片装置”的优先权,同时,本公开也要求在2023年6月30日提交中国专利局、申请号为202321699688.8、专利申请名称为“叠片设备”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池制造技术领域,特别涉及一种叠片装置。
背景技术
目前,锂电池的生产方式主要分为卷绕和叠片两种方式,相较于卷绕方式,叠片方式生产的电芯能量密度更高,质量更好,而叠片工序作为叠片生产方式的关键,在很大程度上决定了叠片式锂电池的生产效率和产品品质。
在热复合叠片方式中,叠片工序是将通过真空皮带输送过来的正、负极片,经过CCD视觉检测和UVW对位平台定位后,由取放机械手在叠片台进行正、负极片的交替叠片,直至叠片台上的极组达到设定极片数结束,叠台开始下料。
现有的热复合叠片方式中,通常采用取放机械手搬运,以及CCD视觉加UVW对位定位的叠片方式,该叠片方案的主要缺点是:采用一体式八工位叠台进行叠片,叠片方式单一,且需要CCD视觉与UVW对位平台同时对极片进行定位,叠片效率低下,同时,叠片设备结构复杂,极片转运预留空间小,导致搬运效率,且不易维修。
此外, 现有的叠片方案通常采用一对四工位机械手和一体式八工位叠台进行叠片的方式,多工位一体式叠加会造成掉片风险高、踢废补片逻辑复杂及踢废补片时间长等问题,导致整机效率降低。
发明内容
有鉴于此,本公开旨在提出一种叠片装置,以可具有更高的叠片效率。
为达到上述目的,本公开的技术方案是这样实现的:
一种包括叠片机构,向所述叠片机构输送第一极片的第一上料机构,以及向所述叠片机构输送第二极片的第二上料机构,且所述第一上料机构和所述第二上料机构分设于所述叠片机构的宽度方向的两侧;
所述叠片机构包括沿长度方向间隔布置的多个叠片台,以及对应各所述叠片台布置的叠片机器人组件,各所述叠片机器人组件均能够抓取所述第一极片和所述第二极片并搬运至对应的所述叠片台上进行交替叠片;
所述第一上料机构和所述第二上料机构均包括用于输送所述第一极片或所述第二极片的磁悬浮输送线体,以及设于所述磁悬浮输送线体一侧的检测部,所述检测部能够视觉定位与检测被所述叠片机器人组件抓取的所述第一极片或所述第二极片的姿态。
进一步的,所述磁悬浮输送线体包括磁悬浮环形轨道,以及磁悬浮滑动地设于所述磁悬浮环形轨道上的多个动子组件,各所述动子组件上均放置有所述第一极片或所述第二极片。
进一步的,所述磁悬浮环形轨道上设有靠近所述叠片机构的取料区,以及设于所述取料区上游的上料区,各所述动子组件能够在所述上料区处承接所述第一极片或所述第二极片,并输送至所述取料区处以供所述叠片机器人组件抓取。
进一步的,所述磁悬浮环形轨道上设有位于所述取料区和所述上料区之间的缓冲区,所述缓冲区用于缓存由所述上料区滑动至所述取料区的各所述动子组件。
进一步的,所述取料区内设有与各所述叠片台分别对应的取料工位,各所述取料工位能够容纳至少两个所述动子组件,且各所述叠片台上均设有至少两个叠片工位;所述叠片机器人组件包括设于对应的所述叠片台与所述取料工位之间的叠片机器人,所述叠片机器人能够自所述取料工位处抓取各所述动子组件上的所述第一极片或所述第二极片,并分别放置在对应的所述叠片台中的各所述叠片工位上。
进一步的,各所述叠片台的宽度方向的两侧分别设有用于对叠片时的所述第一极片或所述第二极片进行视觉定位的第一CCD相机组件。
进一步的,所述检测部包括与各所述取料工位分别对应设置的第二CCD相机组件。
进一步的,所述第一上料机构与所述叠片机构之间和所述第二上料机构与所述叠片机构之间均设有剔废与补片机构,所述剔废与补片机构具有设于所述磁悬浮环形轨道的一侧的废料工位,以及设于所述磁悬浮环形轨道和所述废料工位之间的剔废与补片机器人;
所述废料工位设于所述取料区的下游,且位于所述取料区与所述上料区之间,所述剔废与补片机器人能够抓取所述检测部检测到的NG的所述第一极片或所述第二极片,并放置在所述废料工位上。
进一步的,所述剔废与补片机构包括靠近所述废料工位布置的补片工位,所述剔废与补片机器人能够在所述补片工位和其一所述动子组件之间,搬运所述检测部检测到的合格的所述第一极片或所述第二极片。
进一步的,所述叠片机构的宽度方向的两侧分别设有剔废与补片机构;所述剔废与补片机构包括剔废与补片机器人,以及驱使所述剔废与补片机器人沿所述长度方向往复滑移的第一驱动部,所述剔废与补片机器人能够将所述检测部检测到的NG的所述第一极片或所述第二极片从所述第一上料机构或所述第二上料机构上剔除,并能够向所述第一上料机构或所述第二上料机构上搬运合格的所述第一极片或所述第二极片。
进一步的,所述剔废与补片机构包括用于存储NG的所述第一极片或所述第二极片的废料工位,以及用于存放合格的所述第一极片或所述第二极片的补片工位,且所述废料工位和所述补片工位均能够在所述第一驱动部的驱使下,随所述剔废与补片机器人沿所述长度方向往复滑移。
进一步的,所述剔废与补片机构包括沿所述长度方向延伸布置的导轨,所述剔废与补片机器人滑动地设于所述导轨上。
进一步的,所述导轨位于所述磁悬浮环形轨道中。
进一步的,所述叠片机构包括沿所述长度方向延伸布置的移动滑轨,以及能够驱使各所述叠片台分别沿所述移动滑轨往复滑移的第二驱动部。
相对于现有技术,本公开具有以下优势:
本公开的双电机混合动力系统,基于叠片机器人组件的抓取灵活性,以及检测部可定位第一极片或第二极片姿态的配合,能够在具有搬运功能的基础上,实现极片纠偏及定位功能,相较于现有技术中采用机械手和UVW对位平台配合纠偏及定位的方式,极大地缩小了叠片段宽度,进而能够给极片转运预留足够的空间,且第一上料机构和第二上料机构均采用磁悬浮输送线体的配合使用,有助于提升极片转运效率,同时,叠片机器人组件加分体式叠片台设计,相较于现有的机械手和一体式叠片台的设计方式,可使得各叠片台之间叠片过程互不干扰,以降低掉片风险,降低剔废补片逻辑复杂性,并减少剔废补片时长,具有更好的可操作性,利于突破现有叠片方式的效率限制。
此外,磁悬浮输送线体采用磁悬浮环形轨道,利于第一上料机构、第二上料机构和叠片机构之间的布置及协调配合,而具有较好的布置效果。上料区、取料区及缓存区的配合,利于将磁悬浮输送线体的输送效率与叠片机构的叠片操作控制在较好的协作频率上,以提升叠片效率。叠片台上设置多个叠片工位,以及对应各叠片工位设置多个取料工位和多个叠片机器人,利于将极片转运、极片搬运和叠片操作协调在较好的作业节奏上,进一步地提升叠片效率。
另外,第一CCD相机组件的设置,使得不需要在叠片台上设置定位极片的机构,也即使用具有叠片工位的叠片台即可实现叠片作业,可降低叠片台成本,同时,第一CCD相机组件和第二CCD相机组件的使用,还具有结构简单、产品成熟,使用稳定性高的优点。剔废与补片机构的设置,利于实现第一极片和第二极片的废片的剔除及补片,且废料工位和补片工位设置在取料区与上料区之间,并位于取料区的下游,具有布置合理的优点。
再者,剔废与补片机器人在长度方向上位置可调,也能够提升剔废及补片效率,从而利于突破现有叠片方式的效率限制。导轨的设置,利于提升剔废与补片机器人的滑动平稳性,且导轨设置在磁悬浮环形轨道中,能够节省叠片装置的占用空间,提升设备紧凑度,利于小型化设计。移动滑轨和第二驱动部的设置,可实现对各叠片台的分别驱动,利于叠片前叠片台的布置,以及叠片后的集体下料。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例一所述的叠片装置的整体结构示意图;
图2为本公开实施例一所述的叠片机构的结构示意图;
图3为本公开实施例一所述的图2中A处的放大图;
图4为本公开实施例一所述的叠片台的结构示意图;
图5为本公开实施例一所述的移动滑轨的结构示意图;
图6为本公开实施例一所述的图5中B处的放大图;
图7为本公开实施例一所述的剔废与补片机构的结构示意图;
图8为本公开实施例二所述的叠片装置的结构示意图的示意图;
图9为图8中C处的放大图;
图10为本公开实施例二所述的剔废与补片机构的部分结构示意图;
图11为本公开实施例二所述的移动滑轨的结构示意图;
图12为图11中D处的放大图;
附图标记说明:
11、叠片台;111、叠片工位;12、叠片机器人;13、移动滑轨;14、齿条; 
21、第一极片;22、第二极片;
31、第一上料机构;32、第二上料机构;33、磁悬浮环形轨道;34、取料区;341、取料工位;35、上料区;36、缓冲区;
41、第一CCD相机组件;
51、第二CCD相机组件;
61、废料工位;62、补片工位;63、剔废与补片机器人;64、导轨。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
在本公开的描述中,需要说明的是,若出现“上”、“下”、“内”、“外”等指示方位或位置关系的术语,其为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。另外,若出现“第一”、“第二”等术语,其也仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,在本公开的描述中,除非另有明确的限定,术语“安装”、“相连”、“连接”“连接件”应做广义理解。例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以结合具体情况理解上述术语在本公开中的具体含义。
下面将参考附图并结合实施例来详细说明本公开。
实施例一
本实施例涉及一种叠片装置,在整体结构上,如图1至图7所示,其包括叠片机构,向叠片机构输送第一极片21的第一上料机构31,以及向叠片机构输送第二极片22的第二上料机构32,且第一上料机构31和第二上料机构32分设于叠片机构的宽度方向的两侧。
其中,叠片机构包括沿长度方向间隔布置的多个叠片台11,以及对应各叠片台11布置的叠片机器人组件,各叠片机器人组件均能够抓取第一极片21和第二极片22并搬运至对应的叠片台11上进行交替叠片。
第一上料机构31和第二上料机构32均包括用于输送第一极片21或第二极片22的磁悬浮输送线体,以及设于磁悬浮输送线体一侧的检测部,检测部能够视觉定位与检测被叠片机器人组件抓取的第一极片21或第二极片22的姿态。
基于上述的整体介绍,本实施例中,作为一种示例性结构,仍如图1所示,磁悬浮输送线体包括磁悬浮环形轨道33,以及磁悬浮滑动地设于磁悬浮环形轨道33上的多个动子组件,各动子组件上均放置有第一极片21或第二极片22。
通过磁悬浮输送线体采用磁悬浮环形轨道33,利于第一上料机构31、第二上料机构32和叠片机构之间的布置及协调配合,而具有较好的布置效果。
当然,上述磁悬浮环形轨道33和动子组件的设置关系可参照现有技术中常见的磁悬浮输送系统,例如磁悬浮环形轨道33上集成有用于与动子组件磁悬浮驱动配合的定子组件等。
并且本实施例的第一极片21和第二极片22分别指用于叠片的负极片单元和正极片,此处的负极片单元是指负极片袋(负极片的两侧设有隔膜,且两侧隔膜把极片封装在一起的集成体)。
同时,需提及的是,本实施例中,第一上料机构31和第二上料机构32的结构形式基本相同,二者可视为以各叠片台11的中心连线为轴线镜像设置,不同之处仅在于第一上料机构31用于转运第一极片21,第二上料机构32用于转运第二极片22。
本实施例中,作为一种优选的实施形式,磁悬浮环形轨道33上设有靠近叠片机构的取料区34,以及设于取料区34上游的上料区35,各动子组件能够在上料区35处承接第一极片21或第二极片22,并输送至取料区34处以供叠片机器人组件抓取。
并且,作为一种优选的设置形式,本实施例的磁悬浮环形轨道33上设有位于取料区34和上料区35之间的缓冲区36,缓冲区36用于缓存由上料区35滑动至取料区34的各动子组件。
通过上料区35、取料区34及缓冲区36的配合,利于将磁悬浮输送线体的输送效率与叠片机构的叠片操作控制在较好的协作频率上,以提升叠片效率。
再者,考虑到叠片效率提升需求,本实施例中,作为一种优选的实施形式,如图2至图4所示,取料区34内设有与各叠片台11分别对应的取料工位,各取料工位能够容纳至少两个动子组件,且各叠片台11上均设有至少两个叠片工位111。
叠片机器人组件包括设于对应的叠片台11与取料工位之间的叠片机器人12,叠片机器人12能够自取料工位处抓取各动子组件上的第一极片21或第二极片22,并分别放置在对应的叠片台11中的各叠片工位111上。
可以理解的是,叠片台11上设置多个叠片工位111,以及对应各叠片工位111设置多个取料工位和多个叠片机器人12,利于将极片转运、极片搬运和叠片操作协调在较好的作业节奏上,进一步地提升叠片效率。
本实施例中,作为一种优选的实施形式,继续参照图3所示,各叠片台11的宽度方向的两侧分别设有用于对叠片时的第一极片21或第二极片22进行视觉定位的第一CCD相机组件41。
同时,也作为一种优选的实施形式,检测部包括与各取料工位分别对应设置的第二CCD相机组件51。当然,具体结构中,第二CCD相机组件51优选设置为包括两个第二CCD相机单元,两个第二CCD相机单元分别对应取料工位处的动子组件的两端(也即取料工位处第一极片21或第二极片22的两端),以确保纠偏及定位效果。
此处,第一CCD相机组件41的设置,使得不需要在叠片台11上设置定位极片的机构,也即使用具有叠片工位111的叠片台11即可实现叠片作业,能够降低叠片台11成本,同时,第一CCD相机组件41和第二CCD相机组件51的使用,还具有结构简单、产品成熟,使用稳定性高的优点。
此外,本实施例中,作为一种优选的实施形式,如图1及图7所示,第一上料机构31与叠片机构之间和第二上料机构32与叠片机构之间均设有剔废与补片机构,剔废与补片机构具有设于磁悬浮环形轨道33的一侧的废料工位61,以及设于磁悬浮环形轨道33和废料工位61之间的剔废与补片机器人63。
具体来讲,废料工位61设于取料区34的下游,且位于取料区34与上料区35之间,剔废与补片机器人63能够抓取检测部检测到的NG的第一极片21或第二极片22,并放置在废料工位61上。
并且,同样作为一种优选的改进形式,本实施例中,剔废与补片机构包括靠近废料工位61布置的补片工位62,剔废与补片机器人63能够在补片工位62和其一动子组件之间,搬运检测部检测到的合格的第一极片21或第二极片22。
如此,能够通过剔废与补片机构的设置,利于实现第一极片21和第二极片22的废片的剔除及补片,且废料工位61和补片工位62设置在取料区34与上料区35之间,并位于取料区34的下游,具有布置合理的优点。
另外,本实施例中,作为一种示例性结构,如图5及图6所示,叠片机构包括沿长度方向延伸布置的移动滑轨13,以及能够驱使各叠片台11分别沿移动滑轨13往复滑移的第二驱动部。
可以理解的是,移动滑轨13和第二驱动部的设置,能够实现对各叠片台11的分别驱动,利于叠片前叠片台11的布置,以及叠片后的集体下料。
当然,具体实施时,上述第二驱动部驱动各叠片台11的方式采用现有技术手段进行实现便可,例如具体可在移动滑轨13的一侧布置齿条14,第二驱动部包括分设于各叠片台11上的驱动电机,并在各驱动电机的驱动连接有能够与齿条14啮合传动的驱动齿轮,并通过使得各驱动齿轮型号不同的方式,实现各叠片台11的滑移速度不同,由此实现各叠片台11的分别驱动,以及不同位置的停放。
值得提及的是,本实施例叠片装置中未提及的各结构,均可参照本领域技术人员所熟知的常见相关设备,例如,剔废与补片机器人63和叠片机器人12可采用四轴机器人、动子组件上设置有用于承载极片的治具等。
本实施例的叠片装置在具体设置及布局时,可使得每个动子组件携带两片极片(第一极片21或第二极片22),并配置五个叠片台,各叠片台处配置一个叠片机器人组件(也即两个叠片机器人,供十二个叠片机器人),且在各叠片台11上均设置两个叠片工位111,以实现分体式双工位叠台设计,随后将各叠片台11(叠片机器人组件)之间的间距设置为850mm,进而实现各叠片台11可在叠片过程中以850mm间距分体独立进行叠片的设计形式,同时通过移送滑轨和第二驱动部的配合设置,使得叠片完成后的各叠片台11,能够以175mm的工位间距在下料区(设置在移动滑轨13远离叠片区域的一端)同时合体下料。
并且,在该叠片装置的结构布局中,可设置两个剔废与补片机构,分别对应第一上料机构31和第二上料机构32,以完成相应极片(第一极片21或第二极片22)的剔废及补片作业。
如此,通过采用四轴机器人搬运、纠偏及双工位叠片方式的方式,以及结合上述结构布局(五个叠片台)的方案设计,相较于现有采用一对四工位机械手和一体式八工位叠台的叠片方案,可突破其480ppm极限叠片效率的限制,实现800ppm叠片效率,也即解决了现有以取放机械手搬运、CCD视觉及UVW对位平台定位等为基础,使用八工位叠片台的叠片方案,存在效率瓶颈的问题。
在叠片时,第一上料机构31和第二上料机构32分别在各自的上料区35接收上一个工序转运所转运过来的极片(第一极片21和第二极片22),且每个动子组件接两片。接完片后的各动子组件通过磁悬浮环形轨道33移动至缓冲区36,等待取料区34的各动子组件上的极片被对应的叠片机器人12取走。
取完片的各动子组件和缓冲区36的载有极片的各动子组件同时移动,载有极片的各动子组件运动至取料区34等待叠片机器人12取片,叠片机器人12借助第二CCD相机组件51的视觉定位参数来调整极片姿态,完成极片纠偏然后进行取片,取完片后的动子组件移动至上料区35再次等待接料,叠片机器人12取完片后将极片搬运至叠片台11进行正、负极片(第一极片21和第二极片22)交替叠片。
若在叠片机器人12取片过程中出现极片NG,该次取片放弃,带有NG极片的动子组件和其他取完片的动子组件一起运转至剔废及补片工位62,由剔废及补片机器人首先进行剔废处理,随后由于剔废致使缺少极片的叠片工位111,最后可通过对所有缺片的叠片工位111再进行数轮叠片操作,直至缺片的叠片工位111上的极组中的极片达到设定数量为止。
等所有叠片工位111上的极组的极片数量达到设定值后,叠片机器人12停止,叠片台11借助移动滑轨13平移下料。在叠片台11下料移动过程中,所有叠片台11合并保持各工位175mm间距一起移动至下料区,等完成下料后,各叠片台11按原轨迹返回,在移动过程中分体回各自叠片位置,并保持间距为850mm,之后进行新的极组叠片。
需注意的是,剔废情况由以下两种:第一种,动子组件上的两个极片全为NG片,则两片全部剔废至废料工位61(设有废料盒),第二种情况为一片NG,另一片OK,则NG片由剔废及补片机器人放置废料工位61,OK片由剔废及补片机器人放置于补片工位62上,等待下一OK片进行配对,置于动子组件上运送走,该动子组件在上料区35则不需停止接料。
本实施例的叠片装置,基于叠片机器人组件的抓取灵活性,以及检测部可定位第一极片21或第二极片22姿态的配合,能够在具有搬运功能的基础上,实现极片纠偏及定位功能,相较于现有技术中采用机械手和UVW对位平台配合纠偏及定位的方式,极大地缩小了叠片段宽度,进而能够给极片转运预留足够的空间,且第一上料机构31和第二上料机构32均采用磁悬浮输送线体的配合使用,有助于提升极片转运效率,同时,叠片机器人组件加分体式叠片台11设计,相较于现有的机械手和一体式叠片台11的设计方式,可使得各叠片台11之间叠片过程互不干扰,以降低掉片风险,降低剔废补片逻辑复杂性,并减少剔废补片时间长,具有更好的可操作性,利于突破现有叠片方式的效率限制。
实施例二
本实施例涉及也涉及一种叠片装置,在整体结构上,如图8至图12所示,其也包括叠片机构,向叠片机构输送第一极片21的第一上料机构31,以及向叠片机构输送第二极片22的第二上料机构32等,本实施例的叠片装置与实施例一中的叠片装置的不同之处主要在于整体结构布局,以及涉及剔废与补片机构的相关结构设置上。
然而,值得说明的是,本实施例中,虽然部分部件及内容,诸如叠片台11、叠片工位111、叠片机器人12、移动滑轨13、齿条14、第一上料机构31、第二上料机构32、磁悬浮环形轨道33、取料区34、上料区35、缓冲区36第一CCD相机组件41、第二CCD相机组件51、废料工位61、补片工位62、剔废与补片机器人63等与实施例一中的相关部件及内容具有一定程度的相同之处,但是,考虑到对本实施例叠片装置的整体布局及相关内容的理解,本实施例在下文中除着重介绍本实施例中所涉及的改进点的相关内容外,也依然对与实施例一中的相关或相同部件进行了不同程度上的介绍。
具体而言,本实施例的叠片机构即如实施例一中,其包括沿长度方向间隔布置的多个叠片台11,以及对应各叠片台11布置的叠片机器人组件,各叠片机器人组件均能够抓取第一极片21和第二极片22并搬运至对应的叠片台11上进行交替叠片。第一上料机构31和第二上料机构32均包括用于输送第一极片21或第二极片22的磁悬浮输送线体,以及设于磁悬浮输送线体一侧的检测部,检测部能够视觉定位与检测被叠片机器人组件抓取的第一极片21或第二极片22的姿态。
此外,本实施例叠片机构的宽度方向的两侧分别设有剔废与补片机构。其中,剔废与补片机构包括剔废与补片机器人63,以及驱使剔废与补片机器人63沿长度方向往复滑移的第一驱动部,剔废与补片机器人63能够将检测部检测到的NG的第一极片21或第二极片22从第一上料机构31或第二上料机构32上剔除,并能够向第一上料机构31或第二上料机构32上搬运合格的第一极片21或第二极片22。
再者,本实施例中,作为一种示例性结构,如图8所示,磁悬浮输送线体包括磁悬浮环形轨道33,以及磁悬浮滑动地设于磁悬浮环形轨道33上的多个动子组件,各动子组件上均放置有第一极片21或第二极片22。
通过磁悬浮输送线体采用磁悬浮环形轨道33,利于第一上料机构31、第二上料机构32和叠片机构之间的布置及协调配合,而具有较好的布置效果。
当然,上述磁悬浮环形轨道33和动子组件的设置关系可参照现有技术中常见的磁悬浮输送系统,例如磁悬浮环形轨道33上集成有用于与动子组件磁悬浮驱动配合的定子组件等。
并且,本实施例的第一极片21和第二极片22分别指用于叠片的负极片单元和正极片,此处的负极片单元是指负极片袋(负极片的两侧设有隔膜,且两侧隔膜把极片封装在一起的集成体)。在图8所示状态下,本实施例的宽度方向与长度方向垂直。
同时,需提及的是,本实施例中,第一上料机构31和第二上料机构32的结构形式基本相同,二者可视为以各叠片台11的中心连线为轴线镜像设置,不同之处仅在于第一上料机构31用于转运第一极片21,第二上料机构32用于转运第二极片22。
本实施例中,作为一种优选的实施形式,如图10所示,剔废与补片机构包括用于存储NG的第一极片21或第二极片22的废料工位61,以及用于存放合格的第一极片21或第二极片22的补片工位62,且废料工位61和补片工位62均能够在第一驱动部的驱使下,随剔废与补片机器人63沿长度方向往复滑移。
此处废料工位61和补片工位62的设置,可使得剔废与补片机构的结构布置合理,利于确保剔废与补片效率。第一驱动部可采用与磁悬浮输送线体相类似的结构,以通过磁悬浮驱动的方式来提高对剔废与补片机器人63、废料工位61和补片工位62的驱动精度及效率。
再者,作为一种优选的实施形式,剔废与补片机构包括沿长度方向延伸布置的导轨64,剔废与补片机器人63滑动地设于导轨64上,以利于提升剔废与补片机器人63的滑动平稳性。当然,基于废料工位61和补片工位62滑动稳定性的考虑,废料工位61和补片工位62也滑动在导轨64上。
具体结构中,作为一种优选的实施形式,继续参照图8所示,本实施例的导轨64位于磁悬浮环形轨道33中,能够节省叠片装置的占用空间,提升设备紧凑度,利于小型化设计。
此外,本实施例中,作为一种优选的实施形式,磁悬浮环形轨道33上设有靠近叠片机构的取料区34,以及设于取料区34上游的上料区35,各动子组件能够在上料区35处承接第一极片21或第二极片22,并输送至取料区34处以供叠片机器人组件抓取。
具体来讲,作为一种优选的实施形式,本实施例的磁悬浮环形轨道33上设有位于取料区34和上料区35之间的缓冲区36,缓冲区36用于缓存由上料区35滑动至取料区34的各动子组件。
通过上料区35、取料区34及缓冲区36的配合,利于将磁悬浮输送线体的输送效率与叠片机构的叠片操作控制在较好的协作频率上,进而有效提升叠片效率。
同时,考虑到叠片效率提升需求,本实施例中,作为一种优选的实施形式,结合图8及图9所示,取料区34内设有与各叠片台11分别对应的取料工位341,各取料工位341能够容纳至少两个动子组件,且各叠片台11上均设有至少两个叠片工位111。
叠片机器人组件包括设于对应的叠片台11与取料工位341之间的叠片机器人12,叠片机器人12能够自取料工位341处抓取各动子组件上的第一极片21或第二极片22,并分别放置在对应的叠片台11中的各叠片工位111上。
可以理解的是,叠片台11上设置多个叠片工位111,以及对应各叠片工位111设置多个取料工位341和多个叠片机器人12,利于将极片转运、极片搬运和叠片操作协调在较好的作业节奏上,进一步地提升叠片效率。
本实施例中,作为一种优选的实施形式,如图9所示,检测部包括与各取料工位341分别对应设置的第二CCD相机组件51。当然,具体结构中,第二CCD相机组件51优选设置为包括两个第二CCD相机单元,两个第二CCD相机单元分别对应取料工位341处的动子组件的两端(也即取料工位341处第一极片21或第二极片22的两端),以确保纠偏及定位效果。
与此同时,作为一种优选的实施形式,继续参见图9所示,本实施例中,各叠片台11的宽度方向的两侧分别设有第一CCD相机组件41,第一CCD相机组件41用于对叠片时的第一极片21或第二极片22进行视觉定位。
此处,第一CCD相机组件41和第二CCD相机组件51的使用,具有结构简单、产品成熟,使用稳定性高的优点,同时,第二CCD相机组件51的设置,使得不需要在叠片台11上设置定位极片的机构,也即使用具有叠片工位111的叠片台11即可实现叠片作业,可降低叠片台11成本。
另外,作为一种示例性结构,如图11及图12所示,叠片机构包括沿长度方向延伸布置的移动滑轨13,以及能够驱使各叠片台11分别沿移动滑轨13往复滑移的第二驱动部。
可以理解的是,移动滑轨13和第二驱动部的设置,能够实现对各叠片台11的分别驱动,利于叠片前叠片台11的布置,以及叠片后的集体下料。
当然,具体实施时,上述第二驱动部驱动各叠片台11的方式采用现有技术手段进行实现便可,例如具体可在移动滑轨13的一侧布置齿条14,第二驱动部包括分设于各叠片台11上的驱动电机,并在各驱动电机的驱动连接有能够与齿条14啮合传动的驱动齿轮,并通过使得各驱动齿轮型号不同的方式,实现各叠片台11的滑移速度不同,由此实现各叠片台11的分别驱动,以及不同位置的停放。
本实施例的叠片装置在具体设置及布局时,可使得每个动子组件携带两片极片(第一极片21或第二极片22),并配置六个叠片台11,各叠片台11处配置一个叠片机器人组件(也即两个叠片机器人12,供十二个叠片机器人12),且在各叠片台11上均设置两个叠片工位111,以实现分体式双工位叠片台设计。
随后,将各叠片台11(叠片机器人组件)之间的间距设置为1750mm,进而实现各叠片台11可在叠片过程中以1750mm间距分体独立进行叠片的设计形式,同时通过移送滑轨和驱动部的配合设置,使得叠片完成后的各叠片台11,能够以175mm的工位间距在下料区(设置在移动滑轨13远离叠片区域的一端)同时合体下料。
并且,在该叠片装置的结构布局中,可设置两个剔废与补片机构,分别对应第一上料机构31和第二上料机构32,以完成相应极片(第一极片21或第二极片22)的剔废及补片作业,在具体实施时,两个剔废与补片机构中的剔废及补片机器人、废料工位61和补片工位62能够沿长度方向位置调节,还利于提升作业节拍。
如此,通过采用四轴机器人搬运、纠偏及双工位叠片方式的方式,以及结合上述结构布局(六个叠片台11)的方案设计,相较于现有采用一对四工位机械手和一体式八工位叠片台的叠片方案,可突破其480ppm极限叠片效率的限制,实现1000ppm叠片效率,也即解决了现有以取放机械手搬运、CCD视觉及UVW对位平台定位等为基础,使用八工位叠片台11的叠片方案,存在效率瓶颈的问题。
在叠片时,第一上料机构31和第二上料机构32分别在各自的上料区35接收上一个工序转运所转运过来的极片(第一极片21和第二极片22),且每个动子组件接两片。接完片后的各动子组件通过磁悬浮环形轨道33移动至缓冲区36,缓冲区36内的五个动子组件与正在⑥号取料工位341(从左到右依次为①~⑥取料工位341)的一个动子组成一个动子模组,每个动子模组携带十二片极片,每次前进一个动子模组,即六个动子组件的间距,给所有叠片机器人12进行供片。
当①号取料工位341处的叠片机器人12取完一个动子模组的最后两片极片后,该动子模组的六个动子组件移动至接料区接料。在每个动子模组送料到位后,叠片机器人12借助第一CCD相机组件41的视觉定位参数来调整极片姿态,完成极片纠偏然后进行取片,分两次完成双工位取片,叠片机器人12取完片后将搬运至叠片台11进行正、负极片(第一极片21和第二极片22)交替叠片。
若在机器人取料过程中出现极片NG,叠片机器人12停止,剔废与补片机器人63借助磁悬浮轨道移动至NG处进行剔废补片。等所有叠片台11的极组中的极片达到设定值后,叠片机器人12停止,叠片台11借助移动滑轨13平移下料。在叠片台下料移动过程中,所有叠片台11合并保持175mm的工位间距一起移动至下料区,等完成下料后,叠片台11按原轨迹返回,在移动过程中分体回各自叠片位置,并保持间距为1750mm,之后进行新的极组叠片。
需注意的是,剔废与补片机器人63在剔废补片过程中需先判断补片工位62是否有片,若有极片,则直接移动至NG处进行剔废补片操作,若没有极片,则剔废与补片机器人63移动至极片上料区35,直接取两片极片放置在补片工位62上。取完片后剔废与补片机器人63移动至NG处取走NG片并放置在废料工位61上,然后将补片工位62上的合格的极片放置极片NG处,补片完成。
本实施例的叠片装置,基于叠片机器人组件的抓取灵活性,以及检测部可定位第一极片21或第二极片22姿态的配合,能够在具有搬运功能的基础上,实现极片纠偏及定位功能,相较于现有技术中采用机械手和UVW对位平台配合纠偏及定位的方式,极大地缩小了叠片段宽度,进而能够给极片转运预留足够的空间,结合第一上料机构31和第二上料机构32均采用磁悬浮输送线体的配合使用,有助于提升极片转运效率;
同时,叠片机器人组件加分体式叠片台11设计,相较于现有的机械手和一体式叠片台11的设计方式,可使得各叠片台11之间叠片过程互不干扰,以降低掉片风险,降低剔废及补片逻辑复杂性,并减少剔废及补片时长,具有更好的可操作性,并且,剔废与补片机器人63在长度方向上位置可调,也能够提升剔废及补片效率,从而利于突破现有叠片方式的效率限制。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种叠片装置,其特征在于:
    包括叠片机构,向所述叠片机构输送第一极片的第一上料机构,以及向所述叠片机构输送第二极片的第二上料机构,且所述第一上料机构和所述第二上料机构分设于所述叠片机构的宽度方向的两侧;
    所述叠片机构包括沿长度方向间隔布置的多个叠片台,以及对应各所述叠片台布置的叠片机器人组件,各所述叠片机器人组件均能够抓取所述第一极片和所述第二极片并搬运至对应的所述叠片台上进行交替叠片;
    所述第一上料机构和所述第二上料机构均包括用于输送所述第一极片或所述第二极片的磁悬浮输送线体,以及设于所述磁悬浮输送线体一侧的检测部,所述检测部能够视觉定位与检测被所述叠片机器人组件抓取的所述第一极片或所述第二极片的姿态。
  2.  根据权利要求1所述的叠片装置,其特征在于:
    所述磁悬浮输送线体包括磁悬浮环形轨道,以及磁悬浮滑动地设于所述磁悬浮环形轨道上的多个动子组件,各所述动子组件上均放置有所述第一极片或所述第二极片。
  3.  根据权利要求2所述的叠片装置,其特征在于:
    所述磁悬浮环形轨道上设有靠近所述叠片机构的取料区,以及设于所述取料区上游的上料区,各所述动子组件能够在所述上料区处承接所述第一极片或所述第二极片,并输送至所述取料区处以供所述叠片机器人组件抓取。
  4.  根据权利要求3所述的叠片装置,其特征在于:
    所述磁悬浮环形轨道上设有位于所述取料区和所述上料区之间的缓冲区,所述缓冲区用于缓存由所述上料区滑动至所述取料区的各所述动子组件。
  5.  根据权利要求3所述的叠片装置,其特征在于:
    所述取料区内设有与各所述叠片台分别对应的取料工位,各所述取料工位能够容纳至少两个所述动子组件,且各所述叠片台上均设有至少两个叠片工位;
    所述叠片机器人组件包括设于对应的所述叠片台与所述取料工位之间的叠片机器人,所述叠片机器人能够自所述取料工位处抓取各所述动子组件上的所述第一极片或所述第二极片,并分别放置在对应的所述叠片台中的各所述叠片工位上。
  6.  根据权利要求5所述的叠片装置,其特征在于:
    各所述叠片台的宽度方向的两侧分别设有用于对叠片时的所述第一极片或所述第二极片进行视觉定位的第一CCD相机组件。
  7.  根据权利要求5所述的叠片装置,其特征在于:
    所述检测部包括与各所述取料工位分别对应设置的第二CCD相机组件。
  8.  根据权利要求3所述的叠片装置,其特征在于:
    所述第一上料机构与所述叠片机构之间和所述第二上料机构与所述叠片机构之间均设有剔废与补片机构,所述剔废与补片机构具有设于所述磁悬浮环形轨道的一侧的废料工位,以及设于所述磁悬浮环形轨道和所述废料工位之间的剔废与补片机器人;
    所述废料工位设于所述取料区的下游,且位于所述取料区与所述上料区之间,所述剔废与补片机器人能够抓取所述检测部检测到的NG的所述第一极片或所述第二极片,并放置在所述废料工位上。
  9.  根据权利要求8所述的叠片装置,其特征在于:
    所述剔废与补片机构包括靠近所述废料工位布置的补片工位,所述剔废与补片机器人能够在所述补片工位和其一所述动子组件之间,搬运所述检测部检测到的合格的所述第一极片或所述第二极片。
  10.  根据权利要求3所述的叠片装置,其特征在于:
    所述叠片机构的宽度方向的两侧分别设有剔废与补片机构;
    所述剔废与补片机构包括剔废与补片机器人,以及驱使所述剔废与补片机器人沿所述长度方向往复滑移的第一驱动部,所述剔废与补片机器人能够将所述检测部检测到的NG的所述第一极片或所述第二极片从所述第一上料机构或所述第二上料机构上剔除,并能够向所述第一上料机构或所述第二上料机构上搬运合格的所述第一极片或所述第二极片。
  11.  根据权利要求10所述的叠片装置,其特征在于:
    所述剔废与补片机构包括用于存储NG的所述第一极片或所述第二极片的废料工位,以及用于存放合格的所述第一极片或所述第二极片的补片工位,且所述废料工位和所述补片工位均能够在所述第一驱动部的驱使下,随所述剔废与补片机器人沿所述长度方向往复滑移。
  12.  根据权利要求10所述的叠片装置,其特征在于:
    所述剔废与补片机构包括沿所述长度方向延伸布置的导轨,所述剔废与补片机器人滑动地设于所述导轨上。
  13.  根据权利要求12所述的叠片装置,其特征在于:
    所述导轨位于所述磁悬浮环形轨道中。
  14.  根据权利要求1至13中任一项所述的叠片装置,其特征在于:
    所述叠片机构包括沿所述长度方向延伸布置的移动滑轨,以及能够驱使各所述叠片台分别沿所述移动滑轨往复滑移的第二驱动部。
PCT/CN2024/102982 2023-06-30 2024-07-01 叠片装置 Pending WO2025002458A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202321699642.6 2023-06-30
CN202321699642.6U CN219979621U (zh) 2023-06-30 2023-06-30 叠片装置
CN202321699688.8U CN220086121U (zh) 2023-06-30 2023-06-30 叠片设备
CN202321699688.8 2023-06-30

Publications (1)

Publication Number Publication Date
WO2025002458A1 true WO2025002458A1 (zh) 2025-01-02

Family

ID=93937644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/102982 Pending WO2025002458A1 (zh) 2023-06-30 2024-07-01 叠片装置

Country Status (1)

Country Link
WO (1) WO2025002458A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120221259A (zh) * 2025-05-30 2025-06-27 沈阳嘉恒机电设备有限公司 一种变压器铁芯生产设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921099A (zh) * 2019-02-26 2019-06-21 深圳吉阳智能科技有限公司 一种叠片设备
JP2020140892A (ja) * 2019-02-28 2020-09-03 株式会社豊田自動織機 積層装置
CN115020823A (zh) * 2022-06-30 2022-09-06 三一技术装备有限公司 电芯叠片装置和电芯生产线
CN115763994A (zh) * 2022-11-29 2023-03-07 苏州巨一智能装备有限公司 一种多片叠叠片机
CN218919006U (zh) * 2022-12-28 2023-04-25 蜂巢能源科技股份有限公司 极片叠片装置
CN219979621U (zh) * 2023-06-30 2023-11-07 蜂巢能源科技股份有限公司 叠片装置
CN220086121U (zh) * 2023-06-30 2023-11-24 蜂巢能源科技股份有限公司 叠片设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921099A (zh) * 2019-02-26 2019-06-21 深圳吉阳智能科技有限公司 一种叠片设备
JP2020140892A (ja) * 2019-02-28 2020-09-03 株式会社豊田自動織機 積層装置
CN115020823A (zh) * 2022-06-30 2022-09-06 三一技术装备有限公司 电芯叠片装置和电芯生产线
CN115763994A (zh) * 2022-11-29 2023-03-07 苏州巨一智能装备有限公司 一种多片叠叠片机
CN218919006U (zh) * 2022-12-28 2023-04-25 蜂巢能源科技股份有限公司 极片叠片装置
CN219979621U (zh) * 2023-06-30 2023-11-07 蜂巢能源科技股份有限公司 叠片装置
CN220086121U (zh) * 2023-06-30 2023-11-24 蜂巢能源科技股份有限公司 叠片设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120221259A (zh) * 2025-05-30 2025-06-27 沈阳嘉恒机电设备有限公司 一种变压器铁芯生产设备

Similar Documents

Publication Publication Date Title
EP4012815B1 (en) Integrated apparatus for die cutting and sheet stacking
CN110416592B (zh) 一种双叠片台叠片设备及其叠片方法
CN220086121U (zh) 叠片设备
JP6077522B2 (ja) 積層システム
CN217788495U (zh) 叠片装置和叠片机
WO2025002458A1 (zh) 叠片装置
CN217426836U (zh) 用于电芯与上盖组装的设备
CN209133621U (zh) 一种动力电池极片激光制片及叠片一体化设备
CN109921099A (zh) 一种叠片设备
CN210489767U (zh) 一种模切叠片一体设备
CN220420634U (zh) 电池生产线
CN115020823A (zh) 电芯叠片装置和电芯生产线
CN220412090U (zh) 极片送料机构、叠片装置及电池生产线
WO2025076937A1 (zh) 输送系统、输送方法及电池生产线
CN219979621U (zh) 叠片装置
CN109037781A (zh) 一种锂电池极片的叠片工艺
CN114566718A (zh) 一种电芯叠片及热压一体化装置
CN117374416A (zh) 电芯叠片装置和电芯生产线
CN217182237U (zh) 一种叠片装置及电池制造设备
CN115295887A (zh) 电芯叠片工艺、电芯叠片装置和电芯
WO2025077509A1 (zh) 一种光伏玻璃生产线冷端与深加工生产线的连接系统及连接方法
CN217555236U (zh) 片料转移装置及电芯生产设备
CN115000493B (zh) 电芯叠片装置和电芯生产线
KR102253590B1 (ko) 이차전지의 셀 스택 및 그 적층 장치 및 방법
CN219350289U (zh) 高速切叠一体机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24831078

Country of ref document: EP

Kind code of ref document: A1