WO2024251118A1 - 一种光伏储能系统 - Google Patents
一种光伏储能系统 Download PDFInfo
- Publication number
- WO2024251118A1 WO2024251118A1 PCT/CN2024/097336 CN2024097336W WO2024251118A1 WO 2024251118 A1 WO2024251118 A1 WO 2024251118A1 CN 2024097336 W CN2024097336 W CN 2024097336W WO 2024251118 A1 WO2024251118 A1 WO 2024251118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy storage
- photovoltaic
- junction box
- charging
- discharging
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/36—Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/38—Energy storage means, e.g. batteries, structurally associated with PV modules
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
Definitions
- the present invention relates to the field of photovoltaic technology, and more specifically, to a photovoltaic energy storage system.
- photovoltaic energy storage usually uses photovoltaic high-voltage string power supply to charge high-voltage battery packs.
- Any power supply with E ⁇ 1A/V is called a point charge online nonlinear power supply. It is the power that is apparent but cannot do work.
- the potential resistance value R shall not exceed the allowable value range of [0.55 ⁇ , 1.82 ⁇ ]. When the potential resistance value exceeds 1.82 ⁇ , the rated current output will begin to decay automatically. The larger the resistance value, the greater the amplitude of the automatic decay of the current.
- the voltage of string power supply is generally high, and the fluctuation range at any time is also large, which usually produces a large fire arc, causing the energy storage power supply to heat up, assist combustion, or cause the risk of explosion;
- the current of the photovoltaic string power source is small, and the transition filling energy storage generally takes a relatively long time. It is impossible to obtain high current charging during the best sunlight time, and the actual extension of charging time is equivalent to wasting power;
- the present invention provides a photovoltaic energy storage system, comprising:
- charging and discharging energy storage modules electrically connected charging and discharging energy storage modules, negative parallel junction boxes, silicon wafers in series with photovoltaic panels, positive parallel junction boxes, integrated energy storage control cabinets, negative junction boxes, positive junction boxes, series energy storage batteries, integrated energy storage control cabinets, power grids, AC circuit breakers, grid-connected inverters, charging and discharging controllers, contactors and DC circuit breakers.
- the charging and discharging energy storage modules are used for charging and discharging energy storage.
- the negative parallel junction boxes are used to connect the negative and negative poles of multiple photovoltaic panel assemblies in parallel in the junction boxes.
- Silicon wafers in series with photovoltaic panels are used for multiple photovoltaic panels.
- the positive parallel junction boxes are used to connect the positive poles of multiple photovoltaic panel assemblies in parallel.
- the integrated energy storage control cabinet is used for cabinets equipped with one or more energy storage batteries and inverters. , charge and discharge controller, negative junction box is used to connect the negative poles of multiple photovoltaic panel assemblies in parallel to the junction box, positive junction box is used to connect the positive poles of multiple photovoltaic panel assemblies in parallel to the junction box, series energy storage batteries are used to connect multiple groups of energy storage batteries in series, integrated energy storage control cabinet is used to connect each group of photovoltaic modules to charge and discharge small energy storage batteries and then connect them in series and then connect them in series to manage the integrated energy storage battery control cabinet, the power grid is used for power supply, the AC circuit breaker is used to protect the circuit, the grid-connected inverter is used to convert DC power into AC power, the charge and discharge controller is used to control charging and discharging, the contactor is used to connect and disconnect the power supply, and the DC circuit breaker is used to convert DC power into AC power with a certain voltage, current and power.
- the charging and discharging energy storage module includes: each group of photovoltaic modules has more than two photovoltaic panels with positive and negative poles connected in parallel in a junction box to form a unit photovoltaic energy storage system.
- the integrated energy storage control cabinet comprises: each group of photovoltaic modules is connected to a charging and discharging battery, which are then connected in series and then connected to an integrated energy storage battery control cabinet for management.
- the integrated energy storage control cabinet includes: more than one group of photovoltaic modules, and the unit photovoltaic energy storage modules form a multi-channel or branch charging and discharging energy storage battery system.
- the AC circuit breaker comprises: NXB-63.
- the inverter comprises: a direct current-to-alternating current-to-grid inverter connected to the national grid.
- the charge and discharge controller comprises: a controller for achieving a balance in battery charge during charging and discharging.
- the charge and discharge controller is NCH8-63/40.
- the photovoltaic energy storage system implemented in the present invention has the following beneficial effects: by providing an electrically connected charging and discharging energy storage module, a negative electrode parallel junction box, a silicon wafer series photovoltaic panel, a positive electrode parallel junction box, an integrated energy storage control cabinet, a negative electrode junction box, a positive electrode junction box, a series energy storage battery, an integrated energy storage control cabinet, a power grid, an AC circuit breaker, a grid-connected inverter, a charging and discharging controller, a contactor and a DC circuit breaker, the voltage can be reduced, the actual current output is increased to several times the original, the charging speed of a battery of the same capacity is increased by several times, and the charging time is compressed.
- FIG1 is a schematic diagram of the structure of an outdoor distributed energy storage usage scenario of a photovoltaic energy storage system of the present invention
- FIG2 is a schematic diagram of the structure of a photovoltaic series-first, parallel-later unit energy storage usage scenario of the photovoltaic energy storage system of the present invention.
- 1-charging and discharging energy storage module 2-negative electrode parallel junction box, 3-silicon wafer series photovoltaic panel, 4-positive electrode parallel junction box, 5-integrated energy storage control cabinet, 6-negative electrode junction box, 7-positive electrode junction box, 8-series energy storage battery, 9-integrated energy storage control cabinet, 10-grid, 11-AC circuit breaker, 12-grid-connected inverter, 13-charging and discharging controller, 14-contactor, 15-DC circuit breaker.
- the embodiments of the present invention involve directional indications (such as up, down, left, right, front, back, etc.), the directional indications are only used to explain the relative position relationship, movement status, etc. between the components under a certain specific posture (as shown in the accompanying drawings). If the specific posture changes, the directional indication will also change accordingly.
- directional indications such as up, down, left, right, front, back, etc.
- FIG1 is a schematic diagram of the structure of the outdoor distributed energy storage use scenario of the photovoltaic energy storage system of the present invention, which is a single module, that is, a structure of a separate small-scale charging and discharging energy storage system.
- FIG2 is a schematic diagram of the structure of the photovoltaic series-first-parallel-later unit energy storage use scenario of the photovoltaic energy storage system of the present invention.
- the charging and discharging energy storage module is used for charging and discharging energy storage
- the negative parallel junction box is used to connect the negative poles and negative poles of multiple photovoltaic panel assemblies in parallel in the junction box
- the silicon wafer series photovoltaic panel is used to connect multiple photovoltaic panels in series
- the positive parallel junction box is used to connect the positive poles of multiple photovoltaic panel assemblies in parallel
- the integrated energy storage control cabinet It is used in cabinets equipped with one or more energy storage batteries, inverters, and charge and discharge controllers.
- the negative junction box is used to connect the negative poles of multiple photovoltaic panel assemblies in parallel to the junction box
- the positive junction box is used to connect the positive poles of multiple photovoltaic panel assemblies in parallel to the junction box
- the series energy storage battery is used to connect multiple groups of storage batteries in series
- the integrated energy storage control cabinet is used to connect each group of photovoltaic modules to charge and discharge small energy storage batteries and then connect them in series and then connect them in series to manage the integrated energy storage battery control cabinet
- the power grid is used for power supply
- the AC circuit breaker is used to protect the circuit
- the grid-connected inverter is used to convert DC power into AC power
- the charge and discharge controller is used to control charging and discharging
- the contactor is used to connect and disconnect the power supply
- the DC circuit breaker is used to convert DC power into AC power with a certain voltage, current and power.
- the charging and discharging energy storage module is used for charging and discharging energy storage, which means that the photovoltaic panel is equipped with more than two photovoltaic panels, and the positive and negative junction boxes are equipped with charging and discharging energy storage batteries, and the photovoltaic panel and the positive and negative junction boxes form a unit.
- the negative parallel junction box is used to connect the negative poles of 6 or more photovoltaic panel assemblies in parallel.
- the positive parallel junction box is used to connect the positive poles of 6 or more photovoltaic panel assemblies in parallel.
- the integrated energy storage control cabinet is used to be equipped with one or more energy storage batteries, inverters, and charge and discharge controllers.
- the integrated energy storage control cabinet can be an independent small household integrated energy storage control cabinet.
- the negative junction box is used to connect the negative poles of 6 or more photovoltaic panels in parallel to the junction box according to actual needs.
- the positive junction box is used to connect the positive poles of 6 photovoltaic panels in parallel to the junction box.
- the integrated energy storage control cabinet includes: more than one photovoltaic module in one group, and the unit photovoltaic energy storage module is a multi-channel or branch charging and discharging energy storage battery system.
- the cabinet is equipped with one or more energy storage batteries, inverters, and charging and discharging controllers. It can be an independent household small integrated energy storage control cabinet.
- the integrated energy storage control cabinet is used to connect each group of photovoltaic modules to charge and discharge small energy storage batteries, then connect them in series, and then connect them in series to manage the integrated energy storage battery control cabinet.
- the integrated energy storage control cabinet can be used for large-scale energy storage photovoltaic power stations to expand installed capacity.
- the integrated energy storage control cabinet includes: each group of photovoltaic modules is connected to charge and discharge energy storage batteries, then connected in series, and then connected in series to manage the integrated energy storage battery control cabinet.
- the integrated energy storage control cabinet is used in large-scale energy storage photovoltaic power stations.
- the power grid is a national power grid or a self-use power grid.
- AC circuit breaker is an electrical device used to protect the circuit. Its main function is to automatically cut off the circuit when abnormal conditions such as overload and short circuit are detected in the circuit to protect the electrical equipment and personal safety.
- the principle of AC circuit breaker is based on electromagnetic induction and thermal protection principles.
- the working principle of AC circuit breaker is realized through electromagnetic induction. When there is an overload or short circuit in the circuit, the current will increase sharply, causing the current in the electromagnet coil to increase sharply. At this time, the magnetic field in the electromagnet coil will become very strong, enough to attract the trigger in the circuit breaker, causing it to trip and cut off the circuit. In this way, the electrical equipment in the circuit can be prevented from being damaged by overload or short circuit.
- the AC circuit breaker can be Chint NXB-63, with a rated voltage of 400V and a rated current of 63A. It has overload protection, short circuit protection, and leakage protection. Tunnel-type terminal blocks tightly wrap the wires, making the wiring more reliable. Key components are made of strong flame-retardant nylon material, which is resistant to high temperatures to improve safety.
- the inverter is a converter that converts DC power (battery, storage battery) into constant frequency and voltage or frequency and voltage regulated AC power (usually 220V, 50Hz sine wave). It consists of an inverter bridge, control logic and filter circuit. The inverter is used to convert DC power to AC power and connect the inverter to the national grid or for self-use.
- the charge and discharge controller is used to balance and control the battery charge during charging and discharging.
- the charge and discharge controller is selected as Chint NCH8-63/40, with a rated voltage of 400V and a rated current of 63A.
- the rail-mounted design of the direct-acting flip-chip structure can be combined with a circuit breaker.
- the PC flame-retardant shell is made of thermosetting material with good heat resistance. It will only gradually carbonize and will not burn when exposed to open flames.
- Contactors are divided into AC contactors (voltage AC) and DC contactors (voltage DC), which are used in power, power distribution and power consumption.
- contactors refer to electrical appliances in industrial electricity that use current flowing through a coil to generate a magnetic field to close the contacts in order to control the load.
- the role of the contactor In the circuit, it plays the role of connecting and disconnecting the power supply, and also has the effect of undervoltage release. When the circuit pressure is 0, it can control a large capacity and is used to control the circuit.
- the contactor includes: Chint NCH8-63/40, rated voltage 400V, rated current 63A.
- the guide rail installation design direct-acting flip-up structure can be combined with the circuit breaker. PC flame-retardant shell, thermosetting material, good heat resistance, will only gradually carbonize when encountering open flames, and will not burn.
- a DC circuit breaker is a device that can convert the DC power in a circuit into an AC power with a certain voltage, current and power.
- the function of a DC circuit breaker is to convert the DC power in a circuit into an AC power with a certain voltage, current and power, so that the equipment or electrical appliances can be used for work.
- the DC circuit breaker is selected as Shanghai People's DZ47-63Z, with a rated voltage of DC1000V and a rated current of 63A.
- Photovoltaic DC circuit breaker has fast power-off, circuit breaker protection, and overload protection.
- Flame-retardant shell has good high and low temperature resistance.
- the parallel unit energy storage solution of the present invention converts the power supply into 59.16A 34V 2011.44W power supply, in which the voltage is reduced to one-sixth of the original, and the actual current output is increased to 6 times the original.
- the charging speed of the battery of the same capacity is increased by 6 times, and the charging time is compressed to one-sixth.
- Each photovoltaic module group has more than two photovoltaic panels, and the positive and negative poles of the photovoltaic panels are connected in parallel on the junction box to form a unit photovoltaic energy storage module.
- Each photovoltaic module group is connected to the charging and discharging energy storage battery, and then connected in series, and then connected to the integrated energy storage battery control cabinet for management.
- the unit photovoltaic energy storage module becomes a multi-way or branch charging system for the energy storage battery. Multi-way charging system Compared with the shunt charging system, it is 50% faster, has lower resistance, lower voltage, higher current and higher energy density.
- the high voltage and low current power supply of 9.86A204V is converted into a low voltage and high current power supply of 59.16A34V.
- the number of volts of voltage drop the number of amperes of current increase. Under the condition that the operating current and voltage are exchanged equally, the relay power will never change.
- the technical purpose of changing a 9.86A 204V power supply to a 59.16A 34V power supply is to:
- the power quality of the stored power will be further improved.
- the power generation unit module energy storage can be formed by combining two or more unit energy storage systems. When two unit energy storage batteries are combined into series discharge, the inverter discharge efficiency is amplified as the voltage gradually increases.
- the present invention has the beneficial effect of the above embodiments through the design: by providing an electrically connected charging and discharging energy storage module, a negative electrode parallel junction box, a silicon wafer series photovoltaic panel, a positive electrode parallel junction box, an integrated energy storage control cabinet, a negative electrode junction box, a positive electrode junction box, a series energy storage battery, an integrated energy storage control cabinet, a power grid, an AC circuit breaker, a grid-connected inverter, a charging and discharging controller, a contactor and a DC circuit breaker, the voltage can be reduced, the actual current output is increased to several times the original, the charging speed of a battery of the same capacity is increased by several times, and the charging time is compressed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种光伏储能系统,包括:充放储能模组(1)、负极并联汇流盒(2)、硅晶片串联光伏板(3)、正极并联汇流盒(4)、集成储能控制柜(5),充放储能模组用于充放电储能,负极并联汇流盒用于把多个光伏板组件负极和负极并联在一起,正极并联汇流盒用于把多个光伏板组件正极和正极并联一起。
Description
本发明涉及光伏技术领域,更具体地说,涉及一种光伏储能系统。
目前光伏储能通常采用光伏高压组串电源的方式,对高压电池组进行充电。例如9.86A 34V的24个光伏组件相互串联,形成直流电压为34V×24=816V,实际额定电流只是9.86A,在线的电通量E=9.86A÷816V=0.12安/伏线性数据,凡是E<1安/伏的电源,都叫做点电荷在线的非线性电源。它是视在而不能做功的不出力的功率。潜在电阻R=816V÷9.86A=82.76Ω,在光伏发电系统当中,潜在电阻值R不得超出【0.55Ω,1.82Ω】的允许值范围,潜在电阻值超出1.82Ω的状态下,额定电流输出将开始自动衰退,阻值越大电流自动衰减的幅度越大。
由多个光伏组件相互串联的电源,都是潜在电阻严重超标的电源,因为光伏发电系统的无功电压,始终和潜在电阻值成等比关系,系统电路有多大的电阻值就必产生多少无功效电压。
传统光伏储能方式存在以下缺陷:
组串电源的电压普遍较高,随时的波动范围也很大,通常会产生较大的火弧,导致储能电源发热,助燃着火或引起爆炸事件危险;
组串光伏电源的电流小,一般跃迁填充储能占用时间相对较长,在光照最佳时间无法获取大电流充电,实际延长充电时间等于浪费电源;
点电荷在线的非线性光伏储能,无常变化功率不是完全有效功率。大量的实践证明,非线性电能不能对等出力,视在功率的有效率一般在大幅
度降低,视在功率对等负载下甚至更底。
发明内容
针对现有技术的上述缺陷,本发明提供一种光伏储能系统,包括:
通过电气连接的充放储能模组、负极并联汇流盒、硅晶片串联光伏板、正极并联汇流盒、集成储能控制柜、负极汇流盒、正极汇流盒、串联储能电池、集成储能控制总柜、电网、交流断路器、并网逆变器、充放电控制器、接触器及直流断路器,充放储能模组用于充放电储能,负极并联汇流盒用于把多个光伏板组件负极和负极并联在汇流盒,硅晶片串联光伏板用于多个光伏板,正极并联汇流盒用于把多个光伏板组件正极并联在一起,集成储能控制柜用于柜内配有一至二以上的储能电池、逆变器、充放控制器,负极汇流盒用于把多个光伏板组件负极并联在汇流盒,正极汇流盒用于把多个光伏板组件正极并联汇流盒,串联储能电池用于将多组储能电池串联起来,集成储能控制总柜用于每一组光伏模组连接充放储能小电池然后串联在一起再串联集成储能电池控制总柜管理,电网用于供电,交流断路器用于保护电路,并网逆变器用于直流电转换为交流电,充放电控制器用于对充放电进行控制,接触器用于接通和断开电源,直流断路器用于将直流电变成具有一定电压、电流和功率的交流电。
优选地,充放储能模组包括:每一组光伏模组有两个以上的光伏板正极负极并联在汇流盒成为一个单元光伏储能系统。
优选地,集成储能控制柜包括:每一组光伏模组连接充放电池,然后串联在一起再接到集成储能电池控制总柜管理。
优选地,集成储能控制总柜包括:光伏模组在一组以上,单元光伏储能模组成为多路或者分路充放储能电池系统。
优选地,交流断路器包括:NXB-63。
优选地,逆变器包括:直流电转换交流电并网逆变器并网到国家电网。
优选地,充放电控制器包括:对于充电和放电时候达到电池充电的平衡的控制器。
优选地,所述充放电控制器为NCH8-63/40。
实施本发明的光伏储能系统,具有以下有益效果:通过设置通过电气连接的充放储能模组、负极并联汇流盒、硅晶片串联光伏板、正极并联汇流盒、集成储能控制柜、负极汇流盒、正极汇流盒、串联储能电池、集成储能控制总柜、电网、交流断路器、并网逆变器、充放电控制器、接触器及直流断路器,可以降低电压,实际电流的产出增加到原来的几倍,同一容量的电池充电速度提高上倍,把充电占用时间进行压缩。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的光伏储能系统的户外分布式储能使用场景结构示意图;
图2是本发明的光伏储能系统的光伏先串后并单元式储能使用场景结构示意图。
图中,1-充放储能模组,2-负极并联汇流盒,3-硅晶片串联光伏板,4-正极并联汇流盒,5-集成储能控制柜,6-负极汇流盒,7-正极汇流盒,8-串联储能电池,9-集成储能控制总柜,10-电网,11-交流断路器,12-并网逆变器,13-充放电控制器,14-接触器,15-直流断路器。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
图1为本发明的光伏储能系统的户外分布式储能使用场景结构示意图,为单个模组也就是单独小型充放储能系统的结构。图2为本发明的光伏储能系统的光伏先串后并单元式储能使用场景结构示意图。如图1、图2所示,在本发明第一实施例提供的光伏储能系统中,至少包括,通过电气连接的充放储能模组、负极并联汇流盒、硅晶片串联光伏板、正极并联汇流盒、集成储能控制柜、负极汇流盒、正极汇流盒、串联储能电池、集成储能控制总柜、电网、交流断路器、并网逆变器、充放电控制器、接触器及直流断路器,充放储能模组用于充放电储能,负极并联汇流盒用于把多个光伏板组件负极和负极并联在汇流盒,硅晶片串联光伏板用于串联多个光伏板,正极并联汇流盒用于把多个光伏板组件正极并联在一起,集成储能控制柜
用于柜内配有一至二以上的储能电池、逆变器、充放控制器,负极汇流盒用于把多个光伏板组件负极并联在汇流盒,正极汇流盒用于把多个光伏板组件正极并联汇流盒,串联储能电池用于将多组储电池串联起来,集成储能控制总柜用于每一组光伏模组连接充放储能小电池然后串联在一起再串联集成储能电池控制总柜管理,电网用于供电,交流断路器用于保护电路,并网逆变器用于直流电转换为交流电,充放电控制器用于对充放电进行控制,接触器用于接通和断开电源,直流断路器用于将直流电变成具有一定电压、电流和功率的交流电。
其中,充放储能模组用于充放储能,是指光伏板配有两个以上光伏板,正负级汇流盒配有充放储能电池,由光伏板和正负级汇流盒组成一个单元。
负极并联汇流盒用于把6个或者根据实际需求设置的多个光伏板组件负极和负极并联一起。正极并联汇流盒用于把6个或者根据实际需求设置的多个光伏板组件正极和正极并联一起。集成储能控制柜用于柜内配有一至二以上的储能电池、逆变器、充放控制器。集成储能控制柜可以是独立家用小型集成储能控制柜。
负极汇流盒用于把6个或者根据实际需求设置的多个光伏板组件负极和负极并联在汇流盒。正极汇流盒用于把6个光伏板组件正极和正极并联汇流盒。
集成储能控制柜包括:光伏模组在一组以上,单元光伏储能模组成为多路或者分路充放储能电池系统。柜内配有一至二以上的储能电池、逆变器、充放控制器,可以是独立家用小型集成储能控制柜。
集成储能控制总柜用于每一组光伏模组连接充放储能小电池然后串联在一起再串联集成储能电池控制总柜管理。集成储能控制总柜可以用于大型储能光伏电站扩大装机容量设备。集成储能控制总柜包括:由每一组光伏模组连接充放储能电池,然后串联在一起,再串联集成储能电池控制总柜管理。集成储能控制总柜用于大型储能光伏电站上。
电网为国家电网或者自用电网。
交流断路器是一种用于保护电路的电器设备,它的主要作用是在电路中检测到过载、短路等异常情况时,自动切断电路,以保护电器设备和人身安全。交流断路器的原理是基于电磁感应和热保护原理。交流断路器的工作原理是通过电磁感应来实现的。当电路中出现过载或短路时,电流会急剧增加,导致电磁铁线圈中的电流也会急剧增加。这时,电磁铁线圈中的磁场会变得非常强大,足以吸引断路器中的触发器,使其跳闸,切断电路。这样就可以避免电路中的电器设备受到过载或者短路的伤害。本实施例中,交流断路器可以为正泰NXB-63,额定电压400V,额定电流63A。具有过载保护,短路保护,漏电保护。隧道式接线端子,紧密包裹导线,接线更可靠。关键部件采用强阻燃尼龙料,耐高温提高安全性。
逆变器是把直流电能(电池、蓄电瓶)转变成定频定压或调频调压交流电(一般为220V,50Hz正弦波)的转换器。它由逆变桥、控制逻辑和滤波电路组成。逆变器用于直流电转换交流电并网逆变器并网到国家电网或者自用。
充放电控制器用于充电和放电时候达到电池充电的平衡和控制。本实施例中,充放电控制器选为正泰NCH8-63/40,额定电压400V,额定电流63A。导轨安装设计直动式倒装结构可与断路器组合。PC阻燃外壳,热固性材料,耐热性好,遇到明火只会逐步碳化,不会燃烧。
接触器分为交流接触器(电压AC)和直流接触器(电压DC),它应用于电力、配电与用电场合。接触器广义上是指工业电中利用线圈流过电流产生磁场,使触头闭合,以达到控制负载的电器。接触器的作用:在电路中,起到接通和断开电源的作用,还具有欠压释放的效果。当电路压力是0的时候,能控制容量大,用于操控电路,使用寿命比较长,减小电路对整个电网的影响;交流接触器被用在电力当中,当电流比较大的时候,也能够允许通过,所以它其实有一个过流或者保护的功能;打雷的时候,如果电线中有
雷电的情况,它能够自动切断电源,从而能够保护家中的电器不受损伤,最直接的表现就是会出现跳闸的问题。本实施例中,接触器包括:正泰NCH8-63/40,额定电压400V,额定电流63A。导轨安装设计直动式倒装结构可与断路器组合。PC阻燃外壳,热固性材料,耐热性好,遇到明火只会逐步碳化,不会燃烧。
直流断路器是一种能够将电路中的直流电变成具有一定电压、电流和功率的交流电的装置。直流断路器的功能是将电路中的直流电变成具有一定电压、电流和功率的交流电,以便于使用设备或电器进行工作。直流断路器工作原理:当电源经整流滤波后进入直流开关管,由该开关管导通角的大小来控制输出电压大小;当输入电源为额定值时,由于开关管的导通角为零而处于关断状态;如果输入电源低于额定值时,则该开关管导通角的增大而使输出电压升高;如果输入电源高于额定值时,则该开关管导通角的降低而减小输出电压;当负载电阻发生变化时,其阻性变化会使流过负载电流的变化量产生波动并引起过载保护动作。本实施例中,直流断路器选为上海人民DZ47-63Z,额定电压DC1000V,额定电流63A。光伏直流断路器,具有快速断电,断路保护,过载保护。采用含银触点,锁定手柄,防滑螺丝,紫铜线圈,电磁脱扣创新设计,用电异常时断电更迅速。阻燃外壳,具有良好耐高温和耐低温性。
传统光伏储能是将6个组件串联时的9.86A 204V 2011.44W,本发明的并联单元式储能方案,电源变成59.16A 34V 2011.44W电源,其中将电压下降到原来六分之一,实际电流的产出增加到原来的6倍,同一容量的电池充电速度提高6倍,把充电占用时间压缩到六分之一。
每一组光伏模组有两个以上的光伏板,光伏板的正极负极并联在汇流盒上,成为一个单元光伏储能模组。每一组光伏模组连接充放储能电池,然后串联在一起,再接到集成储能电池控制总柜管理。光伏模组一组以上,单元光伏储能模组成为储能电池多路或者叫分路充电系统。多路充电系统
较分路充电系统速度快50%、电阻小、电压小电流大、能量密度高。
在单元式光伏储能模组中,明显是把9.86A204V的高电压,小电流电源,变成59.16A 34V的低电压,大电流电源。
潜在电阻值R=34V/59.16A=0.575Ω,潜在电阻锁定在0.55≧R≧1.82Ω的允许范围,确保单元式光伏给电池充电的电压成为100%有效电压,这种情况下,电压下降的伏特数=电流增大的安培数,运行电流和电压实现对等交换的条件下,继电功率始终不会发生变化。
把9.86A 204V的电源,改变成59.16A 34V电源的技术目的是将:
电通量E=9.86A/204V=0.048安/伏的点电荷在线非线性电源变成:
电通量E=59.16A/34V=1.74安/伏的理想线性轨迹,这个线性轨迹就是光伏储能最高发电效率的数字确据。光伏电源给蓄电池充电,电通量E=A/V=1.74安/伏线性轨迹的前提条件下储存的电力,其电能质量属于100%的有效功率。光伏电源给蓄电池充电,电通量E=A/V=3.64安/伏线性轨迹的条件下,储存的电力,其电能质量将会更高提升。发电单元模组储能,可以由两个或两个以上的单元式储能系统结合变成。两个单元式储能电池结合成串联放电时,逆变放电效率为随着电压逐渐升高而放大。
本发明通过以上实施例的设计,其有益效果是:通过设置通过电气连接的充放储能模组、负极并联汇流盒、硅晶片串联光伏板、正极并联汇流盒、集成储能控制柜、负极汇流盒、正极汇流盒、串联储能电池、集成储能控制总柜、电网、交流断路器、并网逆变器、充放电控制器、接触器及直流断路器,可以降低电压,实际电流的产出增加到原来的几倍,同一容量的电池充电速度提高上倍,把充电占用时间进行压缩。
本发明是根据特定实施例进行描述的,但本领域的技术人员应明白在不脱离本发明范围时,可进行各种变化和等同替换。此外,为适应本发明技术的特定场合,可对本发明进行诸多修改而不脱离其保护范围。因此,本发明并不限于在此公开的特定实施例,而包括所有落入到权利要求保护
范围的实施例。
Claims (8)
- 一种光伏储能系统,其特征在于,包括:通过电气连接的充放储能模组、负极并联汇流盒、硅晶片串联光伏板、正极并联汇流盒、集成储能控制柜、负极汇流盒、正极汇流盒、串联储能电池、集成储能控制总柜、电网、交流断路器、并网逆变器、充放电控制器、接触器及直流断路器,所述充放储能模组用于充放电储能,所述负极并联汇流盒用于把多个光伏板组件负极和负极并联在汇流盒,所述硅晶片串联光伏板用于多个光伏板,所述正极并联汇流盒用于把多个光伏板组件正极并联在一起,所述集成储能控制柜用于柜内配有一至二以上的储能电池、逆变器、充放控制器,所述负极汇流盒用于把多个光伏板组件负极并联在汇流盒,所述正极汇流盒用于把多个光伏板组件正极并联汇流盒,所述串联储能电池用于将多组储能电池串联起来,所述集成储能控制总柜用于每一组光伏模组连接充放储能小电池然后串联在一起再串联集成储能电池控制总柜管理,所述电网用于供电,所述交流断路器用于保护电路,所述并网逆变器用于直流电转换为交流电,所述充放电控制器用于对充放电进行控制,所述接触器用于接通和断开电源,所述直流断路器用于将直流电变成具有一定电压、电流和功率的交流电。
- 根据权利要求1的光伏储能系统,其特征在于,所述充放储能模组包括:每一组光伏模组有两个以上的光伏板正极负极并联在汇流盒成为一个单元光伏储能系统。
- 根据权利要求1的光伏储能系统,其特征在于,所述集成储能控制柜包括:每一组光伏模组连接充放电池,然后串联在一起再接到集成储能电池控制总柜管理。
- 根据权利要求1的光伏储能系统,其特征在于,所述集成储能控制总柜包括:光伏模组在一组以上,单元光伏储能模组成为多路或者分路充放储能电池系统。
- 根据权利要求1的光伏储能系统,其特征在于,所述交流断路器包括:NXB-63。
- 根据权利要求1的光伏储能系统,其特征在于,所述逆变器包括:直流电转换交流电并网逆变器并网到国家电网。
- 根据权利要求1的光伏储能系统,其特征在于,所述充放电控制器包括:对于充电和放电时候达到电池充电的平衡的控制器。
- 根据权利要求7的光伏储能系统,其特征在于,所述充放电控制器为NCH8-63/40。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310683672.6A CN116707106A (zh) | 2023-06-09 | 2023-06-09 | 一种光伏储能系统 |
CN202310683672.6 | 2023-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024251118A1 true WO2024251118A1 (zh) | 2024-12-12 |
Family
ID=87825225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/097336 WO2024251118A1 (zh) | 2023-06-09 | 2024-06-04 | 一种光伏储能系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116707106A (zh) |
WO (1) | WO2024251118A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116707106A (zh) * | 2023-06-09 | 2023-09-05 | 浙江聚珖科技股份有限公司 | 一种光伏储能系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106953592A (zh) * | 2017-04-10 | 2017-07-14 | 上海质卫环保科技有限公司 | 太阳能电池自供电的抗pid装置及其控制方法 |
CN107579698A (zh) * | 2017-10-03 | 2018-01-12 | 常州工学院 | 一种光伏电站储能方法 |
CN211556974U (zh) * | 2020-03-26 | 2020-09-22 | 赵育文 | 一种光伏微电网与市电电网互补系统 |
CN116707106A (zh) * | 2023-06-09 | 2023-09-05 | 浙江聚珖科技股份有限公司 | 一种光伏储能系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205829569U (zh) * | 2016-07-19 | 2016-12-21 | 北京国电智深控制技术有限公司 | 一种光伏汇流箱和并网光伏发电系统 |
CN107834977B (zh) * | 2017-11-23 | 2020-03-24 | 湖南红太阳新能源科技有限公司 | 一种光伏组件智能接线盒及其控制方法 |
-
2023
- 2023-06-09 CN CN202310683672.6A patent/CN116707106A/zh active Pending
-
2024
- 2024-06-04 WO PCT/CN2024/097336 patent/WO2024251118A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106953592A (zh) * | 2017-04-10 | 2017-07-14 | 上海质卫环保科技有限公司 | 太阳能电池自供电的抗pid装置及其控制方法 |
CN107579698A (zh) * | 2017-10-03 | 2018-01-12 | 常州工学院 | 一种光伏电站储能方法 |
CN211556974U (zh) * | 2020-03-26 | 2020-09-22 | 赵育文 | 一种光伏微电网与市电电网互补系统 |
CN116707106A (zh) * | 2023-06-09 | 2023-09-05 | 浙江聚珖科技股份有限公司 | 一种光伏储能系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116707106A (zh) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Salomonsson et al. | Protection of low-voltage DC microgrids | |
Sarabia | Impact of distributed generation on distribution system | |
US12003096B2 (en) | Photovoltaic power generation system, photovoltaic inverter, and direct current combiner box | |
CN106856332A (zh) | 一种分布式光伏发电并网系统 | |
CN109995015A (zh) | 220kv两电两充直流系统 | |
WO2024251118A1 (zh) | 一种光伏储能系统 | |
Chen et al. | Coordinated control of SFCL and SMES for transient performance improvement of microgrid with multiple DG units | |
Patel et al. | A comprehensive review: AC & DC microgrid protection | |
CN205489519U (zh) | 高电压大功率直流断路器 | |
CN206712478U (zh) | 一种分布式光伏发电并网系统 | |
CN115102205B (zh) | 采用反并联晶闸管和快速机械开关进行并离网快速切换的储能装置 | |
CN204992611U (zh) | 光伏逆变单相交流并网箱 | |
CN210927126U (zh) | 一种智慧能源站用交直流微电网系统 | |
CN107612037A (zh) | 一种变电站光伏并网装置 | |
CN214590611U (zh) | 一种降低发电厂启备变空载损耗的系统 | |
CN105071439B (zh) | 光伏逆变单相交流并网箱 | |
CN212695892U (zh) | 一种双开关电源热备供电组 | |
CN210957781U (zh) | 一种基于感应型超导限流器的110kV变电站双母线系统 | |
CN221886048U (zh) | 用于城市轨道交通的光储节能稳压供电系统 | |
CN207705784U (zh) | 一种用于太阳能发电站内变压器的节能装置 | |
CN118554589A (zh) | 一种光伏电质量稳定储能充放系统 | |
CN112072770A (zh) | 一种光伏电源直流电能传输控制方法 | |
CN221886047U (zh) | 用于城市轨道交通的光储逆变节能稳压供电系统 | |
CN106451753B (zh) | 船用在线式直流电源装置 | |
CN221886045U (zh) | 用于城市轨道交通的风光储逆变节能稳压供电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24818650 Country of ref document: EP Kind code of ref document: A1 |