WO2024245130A1 - 一种利用生物质及其废弃物制备小分子有机水溶性肥料制备方法及产品与应用 - Google Patents

一种利用生物质及其废弃物制备小分子有机水溶性肥料制备方法及产品与应用 Download PDF

Info

Publication number
WO2024245130A1
WO2024245130A1 PCT/CN2024/095116 CN2024095116W WO2024245130A1 WO 2024245130 A1 WO2024245130 A1 WO 2024245130A1 CN 2024095116 W CN2024095116 W CN 2024095116W WO 2024245130 A1 WO2024245130 A1 WO 2024245130A1
Authority
WO
WIPO (PCT)
Prior art keywords
soluble fertilizer
organic water
molecule organic
slurry
small molecule
Prior art date
Application number
PCT/CN2024/095116
Other languages
English (en)
French (fr)
Inventor
刘文治
贺敏
肖乐成
贺泊熙
Original Assignee
贺敏
刘文治
肖乐成
贺泊熙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贺敏, 刘文治, 肖乐成, 贺泊熙 filed Critical 贺敏
Publication of WO2024245130A1 publication Critical patent/WO2024245130A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C11/00Other nitrogenous fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • C05F3/04Fertilisers from human or animal excrements, e.g. manure from human faecal masses
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/02Other organic fertilisers from peat, brown coal, and similar vegetable deposits
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers

Definitions

  • the present invention belongs to the field of resource treatment of organic waste in biomass, and in particular relates to a preparation method of a small molecule organic water-soluble fertilizer, a product and an application thereof.
  • the traditional method of making organic fertilizer from organic waste in biomass adopts a long fermentation method, which results in a large loss of nutrients, environmental pollution, and poor fermentation effect of organic fertilizer.
  • the improved anaerobic biological acidification hydrolysis method has a long time and poor effect, and even if a high-temperature chemical hydrolysis reaction is added at the back end, the reaction time is also long.
  • the initial crushing, fine crushing, and pulping are performed using a mechanical high-speed pulping machine, which consumes a lot of electricity, has a short equipment life, and requires frequent maintenance.
  • the addition of trace elements with slurry mixing and stirring has low efficiency of chelation and nano-ization, and a low degree of chelation, resulting in low biomass utilization; low efficiency during slurry hydrolysis and high energy consumption; traditional fertilizer mineral nutrients are combined with organic fertilizers in a compound or blended form, and inorganic salts still exist in a free state, resulting in a large loss of fertilizer mineral nutrients and low utilization rate, and the nano-homogenization reaction time is too long and inefficient.
  • the present invention provides a method for preparing a small molecule organic water-soluble fertilizer, a product and an application.
  • a method for preparing a small molecule organic water-soluble fertilizer adopts the following technical scheme:
  • a method for preparing a small molecule organic water-soluble fertilizer comprises the following steps:
  • Step (1) the biomass organic waste after impurities removal is initially crushed, finely crushed, evenly distributed into a pressure tank for pressurization and pressure release, and then reciprocatedly collided and slurried in an impact tank to obtain a slurry;
  • Step (2) pumping the slurry obtained in step (1) into a pressure mixing tank, adding trace elements and catalysts, and gradient stirring to obtain a pre-chelated slurry;
  • Step (3) hydrolyzing and chelating the pre-chelated slurry obtained in step (2) in a hydrolysis tank, obtaining a hydrolyzed slurry;
  • Step (4) dividing the hydrolysis slurry obtained in step (3) into three reaction tanks, adding a potassium source, a nitrogen source, and a phosphorus source respectively, performing gradient grinding, mixing, filtering, and centrifuging to obtain a composite nano-mixed slurry;
  • Step (5) concentrating the composite nanostructured slurry obtained in step (4) by vacuum evaporation to remove excess water to obtain a concentrated solution;
  • Step (6) transferring the concentrated solution obtained in step (5) to a homogenizing tank, adding a stabilizer, gradient stirring, and ultrasonic homogenization to obtain the small molecule organic water-soluble fertilizer.
  • biomass organic waste is pressurized and released and collides into slurry in an impact tank, which greatly reduces energy consumption; trace elements and catalysts are added for pre-chelation, and chelation is completed through hydrolysis, inorganic nutrients are added, nano-sized and homogenized, and vacuum concentrated to obtain small molecule organic water-soluble fertilizers.
  • the small molecule, chelation and nano-sized fertilizers are highly efficient in the hydrolysis process, and the fertilizer does not precipitate or stratify for a long time, and has good stability.
  • the trace elements are soluble salts of iron, manganese, copper, zinc, borates, and molybdates; wherein the soluble salts of iron, manganese, copper, and zinc are calculated as metal elements, boric acid is calculated as boron, and molybdate is calculated as molybdenum, and the total amount of the trace elements added is 0.5-3.0wt% of the slurry.
  • the potassium source, nitrogen source and phosphorus source are added in a total amount of 5-20 wt% of the hydrolysis slurry in terms of pure nutrients K2O , N and P2O5 ; and the addition ratio of N: P2O5 : K2O is (0.8-1.0):(0.4-0.5):(0.7-0.9).
  • the stabilizer is added in an amount of 0.1-0.5 wt % of the concentrated solution; the stabilizer is selected from one or more of polyacrylic acid, polyvinyl alcohol, and polyvinyl pyrrolidone.
  • the addition of trace elements and inorganic fertilizers is controlled, so as to provide plants with supplementary trace elements and macroelements while avoiding the accumulation of excessive macroelements in the soil, which may cause soil compaction and acidification. Excessive addition of compound fertilizers may easily cause the loss of nutrients.
  • the pressure tanks are respectively connected to the symmetrical positions of the impact tanks, the pressure tanks are pressurized to 0.3-0.8 MPa, the quick-opening valves of the pressure tanks are opened simultaneously within 1-5 seconds, and the slurry in the pressure tanks collides reciprocally in the impact tanks through the coupled connecting pipes.
  • the pressure tank is pressurized, the quick-opening valve is opened in a short time, and large particles of organic materials are crushed by equal collision. Compared with traditional crushing methods, it greatly saves energy consumption, has high efficiency, and has a better slurrying effect.
  • step (2) gradient stirring is performed at room temperature and a pressure of 0.2-0.5 MPa; the gradient stirring is performed by installing two stirring devices in the pressure mixing reaction tank, one stirring device has a rotation speed of 30-50 r/min, and the other stirring device has a rotation speed of 50-100 r/min;
  • step (3) two stirring devices are installed in the hydrolysis tank, one stirring device has a rotation speed of 50-200 r/min, and the other stirring device has a rotation speed of 100-500 r/min;
  • the hydrolysis temperature is 110-160° C.
  • the pressure is 0.3-1.0 MPa
  • the hydrolysis time is 1-4 h;
  • the reaction tank is equipped with two stirring grinding devices, one with a rotation speed of 500-1400 r/min and the other with a rotation speed of 1500-2500 r/min; the pressure is 0.1-0.6 MPa; and the grinding time is 1-3 h.
  • the stirring devices in the pressure mixing tank and the hydrolysis tank perform differential stirring to form a gradient field, thereby enhancing the chelation efficiency and the hydrolysis efficiency; the two grinding devices in the reaction tank grind at different speeds to improve the degree of nano-crystallization.
  • the vacuum evaporation concentration heat source is 120-180°C water vapor
  • the water vapor associated pressure is 0.2-0.8MPa
  • the solid content of the concentrated liquid is 5-20wt%.
  • compressed gas is used to pressurize steam into saturated water to release the latent heat of phase change and compression heat.
  • the release of compression heat makes the vacuum evaporation concentration temperature stable, which saves 50% energy compared to simple steam heating.
  • step (6) two stirring devices are installed in the stabilization tank, one stirring device has a rotation speed of 50-100 r/min, and the other stirring device has a rotation speed of 80-130 r/min, to enhance the stabilization effect.
  • the ultrasonic frequency is 300-1000 KHz, and the stabilization homogenization time is 0.5-2 h.
  • the obtained small molecule organic water-soluble fertilizer is stable, does not produce precipitation, does not stratify, and is long-term stable.
  • a small molecule organic water-soluble fertilizer adopts the following technical solution:
  • a small molecule organic water-soluble fertilizer is prepared by any of the above methods for preparing small molecule organic water-soluble fertilizers.
  • the organic matter content, water-insoluble matter, pH value, etc. all meet or exceed national standards.
  • the small molecule organic water-soluble fertilizer prepared by adopting the above technical scheme and preparation method has good stability, does not produce precipitation, has balanced trace elements and macroelements, has good and lasting fertilizer effect, can be directly absorbed by crop roots in a phophore manner, and has high fertilizer efficiency.
  • Fig. 1 is a process flow chart of Example 1;
  • FIG2 is a photo of rice weed growth in the comparative example of Test Example 1;
  • FIG3 is a photo of rice weed growth in Experimental Example 1;
  • Figure 4 is a comparison of the overall growth in the field of Experimental Example 1;
  • FIG5 is a comparison diagram of Experimental Example 1 on the 65th day after transplanting
  • FIG6 is a comparison diagram of Experimental Example 1 on the 95th day after transplanting
  • FIG. 7 is a comparison diagram of rice diseases and insect pests in Experimental Example 1.
  • S1 coarse crushing, fine crushing, and pulping:
  • the organic waste food waste in the biomass is first transported to the coarse crusher and the fine crusher after impurities are removed.
  • the particle size of the solids after coarse and fine crushing is less than 1mm.
  • After fine crushing, it is evenly transported to two pressure tanks.
  • the two pressure tanks are respectively provided with quick-opening valves.
  • the two quick-opening valves are interconnected through a discharge pipe.
  • the discharge pipe is connected to an impact tank.
  • the diameter of the discharge pipe is 80mm and the length is 0.5m.
  • the pressure is increased to 0.5MPa, and the quick-opening valves are opened at the same time within 2s, so that the two streams of materials reciprocate and collide with each other, and are crushed into pulp;
  • the amount of trace elements of iron, manganese, copper, zinc sulfate is measured in metal
  • molybdate is measured in molybdenum
  • boric acid is measured in boron
  • the amount added is 2.5wt% of the slurry
  • a catalyst is added, and the catalyst addition amount is 5% of the slurry.
  • the slurry is put into a pressure mixing reaction tank for step stirring reaction. Two stirrers driven by two motors rotate simultaneously, and the speeds are 30r/min and 50r/min respectively. Under normal temperature conditions, the pressure is 0.2MPa, and the reaction time is 30min, so that it is mixed and pre-chelated;
  • the mixed pre-chelated slurry prepared in step S2 is catalytically hydrolyzed in a hydrolysis tank with two agitators.
  • the two agitators have different rotation speeds to form different speed gradients.
  • One agitator rotates at 50r/min and the other agitator rotates at 100r/min.
  • the number of collisions between the liquid components is increased to enhance the hydrolysis effect.
  • the heating temperature is controlled at 110°C and the air compressor is used to increase the pressure.
  • the pressure is further increased to 0.3Mpa for catalytic hydrolysis to reduce the organic macromolecules into small molecules such as sugars, organic acids, amino acid peptides, fatty acids, sugar alcohols, nucleotides, and humic acid-like substances.
  • the small molecule slurry enters three reaction tanks in equal amounts, and is automatically metered to add liquid potassium sulfate, ammonia water, and phosphoric acid.
  • the amount added is calculated based on pure nutrients K2O , P2O5 , and N.
  • the total amount added is 5wt% of the small molecule organic solution.
  • the general ratio of N : P2O5 : K2O is 1:0.5:0.8.
  • the small molecule organic solution is subjected to nano-homogenization reaction, and the three reaction tanks are ground and reacted and then mixed.
  • the gradient grinder is a set of grinding blades driven by two motors, one motor has a speed of 500r/min, and the other motor has a speed of 1500r/min, which generates a gradient velocity field, increases the number of grinding collisions, and ensures sufficient grinding.
  • the sealed grinder is pressurized by compressor air to control the added pressure at 0.1MPa, and the grinding time is 1h. Nano-scaled to 300-800 nanometers;
  • the heat source for heating is 120°C steam, which is then pressurized by an air compressor to exceed the steam-related pressure of 0.5MPa.
  • the steam is pressurized into saturated water to release the latent heat of phase change and compression heat, which saves 50% energy compared to simple steam heating.
  • the temperature is controlled not to drop by releasing the compression heat through air pressurization. Remove excess water and recycle recycled water.
  • concentration of small molecule organic water-soluble fertilizer after concentration reaches 15wt%;
  • stabilizer is added for gradient stirring and ultrasonic enhanced stabilization treatment, using two mixers for gradient stirring, one with a speed of 50r/min and the other with a speed of 80r/min, ultrasonic frequency of 300KHz, and ultrasonic homogenization for 0.5h. Finally, automatic measurement is performed and the filled products are put into storage.
  • S1 coarse crushing, fine crushing, and pulping: Human, livestock, and poultry manure in the organic waste in the biomass, such as dehydrated human manure, chicken manure, or dry pig manure or cow manure, are coarsely crushed and finely crushed after impurities are removed.
  • the particle size of the solid content after fine crushing is less than 1mm, and it is evenly transported to two pressure tanks.
  • the two pressure tanks are respectively equipped with quick-opening valves.
  • the two quick-opening valves are connected to each other through a discharge pipe.
  • the discharge pipe is connected to an impact tank.
  • the diameter of the discharge pipe is 80mm and the length is 0.5m.
  • the quick-opening valves are opened at the same time within 2s, so that the two streams of materials reciprocate and collide with each other, and are crushed into pulp;
  • the amount of trace elements iron, manganese, copper, zinc sulfate is measured in metal
  • ammonium molybdate is measured in molybdenum
  • boric acid is measured in boron
  • the addition amount is 0.5wt% of the slurry
  • the catalyst is added
  • the addition amount is 7% of the slurry
  • the slurry is put into the pressure mixing reaction tank for step stirring reaction.
  • Two stirrers driven by two motors rotate simultaneously, the speeds are 50r/min and 100r/min respectively, under normal temperature conditions, the air compressor is pressurized to 0.4MPa, and the reaction time is 10min;
  • the slurry prepared in step S2 is catalytically hydrolyzed in a hydrolysis tank equipped with two agitators.
  • the two agitators have different rotation speeds to form different speed gradients.
  • One agitator rotates at 200r/min and the other agitator rotates at 500r/min.
  • the number of collisions between the liquid components is increased, and the hydrolysis effect is enhanced.
  • the heating temperature is controlled at 140°C and the pressure is increased by an air compressor. On the basis of the steam-related pressure, the pressure is further increased to 0.7MPa.
  • step S4 after the enhanced hydrolysis in step S3 is completed, the small molecule slurry enters three reaction tanks in equal amounts and is automatically metered to add liquid potassium sulfate, ammonia water, and phosphoric acid.
  • the amount added is calculated based on pure nutrients K2O , P2O5 , and N.
  • the total amount added is 15wt% of the small molecule organic solution, and the general N: P2O5 : K2O ratio is 0.8:0.4:0.7.
  • the gradient grinder is a set of grinding blades driven by two motors, one motor has a speed of 1000r/min, and the other motor has a speed of 2000r/min, which generates a gradient velocity field, increases the number of grinding collisions, and makes the grinding sufficient.
  • the sealed grinder is pressurized by compressor air to control the re-pressure at 0.4MPa, the grinding time is 2h, and the nano-scale is 300-800 nanometers;
  • the heat source for heating is 120°C steam, which is then pressurized by an air compressor to exceed the steam-related pressure of 0.8MPa.
  • the saturated steam is pressurized into saturated water to release the latent heat of phase change and compression heat, which saves 50% energy compared to simple steam heating.
  • the temperature is controlled not to drop by releasing the compression heat through air pressurization. Remove excess water and recycle recycled water.
  • the concentration of the concentrated organic water-soluble fertilizer reaches 14wt%;
  • stabilizer is added for gradient stirring and ultrasonic enhanced stabilization treatment, using two stirrers for stirring, one with a speed of 80r/min and the other with a speed of 100r/min, ultrasonic frequency of 800KHz, and ultrasonic homogenization for 1.5h. Finally, the product is automatically measured and filled and stored.
  • S1 coarse crushing, fine crushing, pulping:
  • the crop straw in the biomass organic waste is coarsely crushed and finely crushed after impurities are removed.
  • the particle size of the solid content after crushing is less than 1mm, and it is evenly transported to two pressure tanks.
  • the two pressure tanks are respectively equipped with quick-opening valves.
  • the two quick-opening valves are connected to each other through a discharge pipe.
  • the discharge pipe is connected to an impact tank.
  • the diameter of the discharge pipe is 80mm and the length is 0.5m.
  • the quick-opening valves are opened at the same time within 3s to make the two streams of material reciprocate and collide with each other, and crush into pulp;
  • the amount of sulfate and molybdate of trace elements iron, manganese, copper, zinc is calculated as metal
  • the amount of boric acid is calculated as boron
  • the amount of addition is 1wt% of the slurry
  • the catalyst is added
  • the amount of catalyst added is 4% of the slurry
  • the slurry enters the pressure mixing reaction tank for step-by-step stirring reaction.
  • the two stirrers driven by two motors rotate simultaneously, with the speeds of 40r/min and 50r/min respectively. Under normal temperature conditions, the air compressor pressurizes 0.3MPa and the reaction time is 30min.
  • step S3 the slurry prepared in step S2 is catalytically hydrolyzed in a hydrolysis tank equipped with two agitators.
  • the two agitators have different rotation speeds to form different speed gradients.
  • One agitator rotates at 200r/min and the other agitator rotates at 500r/min.
  • the number of collisions between the liquid components is increased, which enhances the hydrolysis effect.
  • the heating temperature is controlled at 160°C, and the air compressor is used to increase the pressure.
  • the pressure is further increased to 1.0MPa, so that the organic macromolecules are reduced to small molecules, such as sugars, organic acids, amino acid peptides, fatty acids, sugar alcohols, nucleotides, and humic acid-like substances.
  • step S4 after the enhanced hydrolysis in step S3 is completed, the small molecule slurry enters three reaction tanks respectively for automatic metering to add liquid potassium sulfate, ammonia water, and phosphoric acid.
  • the added amount is calculated based on pure nutrients K2O , P2O5 , and N.
  • the total amount added is 20% of the small molecule organic solution.
  • the general ratio of N: P2O5 : K2O is 1:0.6:0.8.
  • the general type is subjected to nano-homogenization reaction with the small molecule organic solution and finally mixed.
  • the gradient grinder is a set of grinding blades driven by two motors, one motor has a speed of 1400r/min, and the other motor has a speed of 2500r/min, which generates a gradient velocity field, increases the number of grinding collisions, and makes the grinding sufficient.
  • the sealed grinder is pressurized by compressor air to control the added pressure at 0.6MPa.
  • the grinding time is 3h, and the nano-size is 300-800 nanometers.
  • the heat source for heating is 180°C steam, which is then pressurized by an air compressor to exceed the steam-related pressure of 1.0MPa, and the saturated steam is pressurized into saturated water to release the latent heat of phase change and compression heat, which saves 50% energy compared to simple steam heating.
  • the temperature is controlled not to drop by releasing the compression heat through air pressurization, and the excess water is removed through vacuum evaporation and concentration, and recycled water is recycled.
  • the concentration of the concentrated organic water-soluble fertilizer reaches 20wt%;
  • stabilizer is added for gradient stirring and ultrasonic enhanced stabilization treatment, using two stirrers for stirring, one with a speed of 100r/min and the other with a speed of 130r/min, ultrasonic frequency of 1000KHz, and ultrasonic homogenization for 2h. Finally, the product is automatically measured and filled and put into storage.
  • step S2 is carried out under normal pressure.
  • step S2 a stirrer is provided in the reaction tank, and the stirring speed is 50 r/min.
  • step S2 the stirring speed of the two stirrers installed in the reaction tank is 50 r/min.
  • the method for preparing an organic water-soluble fertilizer provided in Comparative Example 4 is different from that in Example 3 in that, in step S3, catalytic hydrolysis is performed under normal pressure.
  • step S3 the stirring speed of the two stirrers is 500 r/min.
  • step S4 The difference between the method for preparing an organic water-soluble fertilizer provided in Comparative Example 7 and that in Example 3 is that in step S4, two grinders are installed in the reaction tank, and the grinding speed is 2500 r/min.
  • step S4 the two grinders are replaced by two mixers, and the rotation speed of the two mixers is 300 r/min.
  • step S4 the two grinders are replaced by two mixers, one with a mixer speed of 200 r/min and the other with a mixer speed of 200 r/min.
  • the mixer speed is 500r/min.
  • the method for preparing an organic water-soluble fertilizer provided in Comparative Example 10 is different from that in Example 3 in that step S4 is carried out under normal pressure.
  • step S5 The difference between the method for preparing an organic water-soluble fertilizer provided in Comparative Example 11 and Example 3 is that in step S5, only a stabilizer is added, a mixer is used with a rotation speed of 500 r/min, and no ultrasound is performed.
  • step S5 The difference between the method for preparing an organic water-soluble fertilizer provided in Comparative Example 12 and Example 3 is that in step S5, only a stabilizer is added, the speed of the two mixers is 500 r/min, and ultrasound is not performed.
  • step S5 The difference between the method for preparing an organic water-soluble fertilizer provided in Comparative Example 13 and Example 3 is that in step S5, only a stabilizer is added, and the gradient stirring speeds of the two stirrers are 200 r/min and 500 r/min, respectively. No ultrasonic generator is used.
  • the chelation rate of trace elements and organic matter is 100%. Compared with Comparative Examples 1-3, the chelation rate of trace elements and organic matter in Examples 1-3 is greatly improved, and the chelation rate increases by 30-50%.
  • Examples 1-3 the degree of catalytic hydrolysis reaches 100%. Compared with Comparative Examples 4-6, the small molecule content in Examples 1-3 is increased by 20-36%.
  • the nano-crystallization degree is above 95%, while in Comparative Examples 7-10, the nano-crystallization degree is 30-40%.
  • the small molecule organic water-soluble fertilizers obtained in Examples 1-3 did not produce precipitation at the bottom within 30 days of long-term storage; the small molecule organic water-soluble fertilizers obtained in Comparative Examples 11-13 produced precipitation of varying masses after long-term storage for 30 days, and the solution became turbid.
  • the conventional method was used to detect the nano-scale degree of the prepared organic water-soluble fertilizer, and the data are shown in Table 2 below.
  • composition test data of organic fertilizer is shown in Table 3.
  • the organic water-soluble fertilizer prepared by the present invention has very little water-insoluble matter and a high organic matter content, which means that the degree of nano-sizing of the present invention is relatively high, and the heavy metal content is also low, indicating that the heavy metal content of the fertilizer prepared from kitchen waste is fully up to standard.
  • This test case is a large-scale field experiment to test the effect of a new type of liquid small molecule organic water-soluble fertilizer on rice yield.
  • Small molecule organic water-soluble fertilizer (basal fertilizer: N90g/L, P40g/L, K30g/L; tillering fertilizer: N80g/L P30g/L, K80g/L; jointing fertilizer N50g/L, P15g/L, K70g/L; ear fertilizer N20g/L, P15g/L, K80g/L);
  • the tested crops were rice varieties: Songzaoxiang No. 1;
  • Sowing method machine transplanting, machine hole sowing
  • the fertilizer comparison during the whole growth period is as follows:
  • Control group Chlorine first compound fertilizer + urea
  • Base fertilizer 40 jin/mu of compound fertilizer, tillering fertilizer: 15 jin/mu of urea, pesticide fertilizer: 20 jin/mu of compound fertilizer, jointing fertilizer: 10 jin/mu of urea, 10 jin/mu of compound fertilizer, flowering-promoting fertilizer: 18 jin/mu of urea, flowering-promoting fertilizer: 15 jin/mu of urea.
  • the total average yield per mu of the two experimental fields in the experimental group was 522.3 kg/mu, and the average yield per mu of the control group was 439 kg/mu, with an increase of 18.9% in the experimental group.
  • the small molecule organic water-soluble fertilizer prepared by the present invention is significantly superior to conventional fertilizers in terms of disease and insect pest resistance, yield and rice quality, and the small molecule organic water-soluble fertilizer prepared by the present invention has significant fertilizer effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

本发明公开了一种小分子有机水溶性肥料制备方法及产品与应用,用于解决传统方法螯合化、纳米化的效率低,螯合化程度低,导致生物质利用率低;浆料水解时效率低,能源消耗大的问题。一种小分子有机水溶性肥料制备方法,生物质经过对撞粉碎成浆后,添加微量元素、催化剂混合预螯合反应,进行水解并完成螯合反应,添加无机化肥进行纳米化,真空蒸发浓缩后加入稳定剂超声均质得到小分子有机水溶性肥料。增压差速梯度搅拌,有效提高微量元素与生物质螯合程度;生物质催化水解时增加压力,提高了有机大分子水解成有机小分子的效率;无机化肥在加压梯度研磨作用下,纳米化程度得到提高;超声波均质小分子有机水溶肥料,可溶性增强,久置不易产生沉淀。

Description

一种利用生物质及其废弃物制备小分子有机水溶性肥料制备方法及产品与应用 技术领域
本发明属于生物质中有机废弃物资源化处理领域,尤其涉及一种小分子有机水溶性肥料制备方法及产品与应用。
背景技术
传统的生物质中有机废弃物制有机肥采用长时间发酵方法,营养大量损失,污染环境,发酵有机肥效果差。改进采用的厌氧生物酸化水解时间长效果差,即使后端加高温化学水解反应时间也长。除杂后初碎、细碎、打浆,采用机械高速打浆机,耗电量大,设备寿命短,需经常维修。添加微量元素用浆液混和搅拌,螯合化、纳米化的效率低,螯合化程度低,导致生物质利用率低;浆料水解时效率低,能源消耗大;传统的化肥矿质营养同有机肥结合为复混或掺混形式,无机盐仍以游离状态存在,化肥矿质营养损失量大,利用率低,纳米化均质化反应时间过长效率低。
发明内容
为了解决螯合化、纳米化、均质化程度低以及水解小分子效率低,同时为了解决制备过程中能耗高的问题,本发明提供了一种小分子有机水溶性肥料制备方法及产品与应用。
第一方面,一种小分子有机水溶性肥料制备方法,采用如下技术方案:
一种小分子有机水溶性肥料制备方法,包括以下步骤:
步骤(1),除杂后的生物质有机废弃物经初碎、细碎,均分至压力罐中加压释压,在撞击罐往复对撞打浆,得到浆液;
步骤(2),将步骤(1)得到的所述浆液打入压力混合罐中,加入微量元素和催化剂,梯度搅拌,得到预螯合浆液;
步骤(3),将步骤(2)得到的所述预螯合浆液在水解罐中进行水解螯合, 得到水解浆液;
步骤(4),将步骤(3)得到的所述水解浆液均分至三个反应罐,分别加入钾源、氮源、磷源,梯度研磨,混合,过滤,离心,得到复合纳米化混合浆液;
步骤(5),将步骤(4)得到的所述复合纳米化浆料经真空蒸发浓缩,去掉多余水分,得到浓缩液;
步骤(6),将步骤(5)得到的所述浓缩液中转移至均质罐中,添加稳定剂,梯度搅拌,超声均质,得到所述小分子有机水溶性肥料。
通过采用上述技术方案,生物质有机废弃物在加压释压并在撞击罐中对撞成浆,大幅降低能耗;添加微量元素和催化剂进行预螯合,并通过水解完成螯合、添加无机养分,纳米化、均质化,经真空浓缩,制得小分子有机水溶性肥料,并且水解过程中小分子化、螯合化、纳米化效率高,久置不沉淀不分层,稳定性好。
优选的,步骤(2)中,所述微量元素为铁、锰、铜、锌的可溶盐,硼酸盐、钼酸盐;其中,铁、锰、铜、锌的可溶盐以金属元素计,硼酸以硼计,钼酸盐以钼计,所述微量元素添加总量为所述浆液的0.5-3.0wt%。
优选的,步骤(4)中,所述钾源、氮源、磷源以纯养分K2O、N、P2O5计,添加总量为所述水解浆液的5-20wt%;所述N:P2O5:K2O添加比例为(0.8-1.0):(0.4-0.5):(0.7-0.9)。
优选的,步骤(6)中,所述稳定剂添加量为所述浓缩液的0.1-0.5wt%;所述稳定剂选自聚丙烯酸、聚乙烯醇、聚乙烯吡咯烷酮中的一种或多种。
通过采用上述技术方案,控制添加微量元素和无机化肥,为植物提供补充微量元素和大量元素的同时避免过量的大量元素在土壤中富集而造成土地板结、酸化问题;过量添加复合肥,易造成营养成分流失。
优选的,步骤(1)中,所述压力罐分别联接撞击罐对称位置,所述压力罐均增压至0.3-0.8MPa,1-5s时间内同时打开所述压力罐的快开阀门,所述压力罐内的浆液通过偶联连通管道在所述撞击罐中往复对撞。
通过采用上述技术方案,压力罐中加压,在短时间内打开快开阀门,等量对撞粉碎大颗粒有机质物料,相较于传统破碎手段,大幅节约能耗,效率高,成浆效果较好。
优选的,步骤(2)中,在常温,压力为0.2-0.5MPa的条件下进行梯度搅拌;所述梯度搅拌为所述压力混合反应罐中安装二台搅拌装置,一台搅拌装置转速为30-50r/min,另一台搅拌装置转速为50-100r/min;
和/或,步骤(3)中,所述水解罐中安装两台搅拌装置,一台搅拌装置转数为50-200r/min,另一台搅拌装置转数为100-500r/min;水解温度为110-160℃,压力为0.3-1.0MPa,水解时间为1-4h;
和/或,步骤(4)中,所述反应罐中安装有两台搅拌式研磨装置,一台转数为500-1400r/min,另一台转数为1500-2500r/min;压力为0.1-0.6MPa;研磨时间为1-3h。
通过采用上述技术方案,压力混合罐、水解罐中搅拌装置差速搅拌形成梯度场,增强螯合化效率以及水解效率;反应罐中两台研磨装置,不同转速研磨,提高纳米化程度。
优选的,步骤(5)中,真空蒸发浓缩热源为120-180℃水蒸气,水蒸气关联压力为0.2-0.8MPa,利用空压机加压到0.5-1.0MPa;所述浓缩液固含量为5-20wt%。
通过采用上述技术方案,利用压缩气将蒸汽加压成饱和水释放相变潜热和压缩热,压缩热释放使得真空蒸发浓缩温度稳定,相较于单纯蒸汽加热节能50%。
优选的,步骤(6)中,所述稳定化罐中安装有两台搅拌装置,一台搅拌装置转速为50-100r/min,另一台搅拌装置转速为80-130r/min,增强稳定化效果。超声频率300-1000KHz,稳定化均质化时间为0.5-2h。
通过采用上述技术方案,稳定化均质罐中设置两台搅拌装置以及超声装置,在稳定剂以及梯度搅拌与超声波强化的作用下,得到的小分子有机水溶性肥料稳定,不产生沉淀,不分层,长效稳定。
第二方面,一种小分子有机水溶性肥料,采用如下技术方案:
一种小分子有机水溶性肥料,采用上述任一项所述小分子有机水溶性肥料制备方法制得。
有机质含量、水不溶物、PH值等均符合或优于国家标准。
通过采用上述技术方案、制备方法制得的小分子有机水溶性肥料稳定性好,不产生沉淀,微量元素、大量元素均衡,肥效持久良好,作物根系可直接胞饮式吸收,肥效高。
第三方面,一种小分子有机水溶性肥料的应用,采用如下技术方案:
一种小分子有机水溶性肥料的应用,采用上述任一项所述小分子有机水溶性肥料制备方法制得的小分子有机水溶性肥料用于作物种植。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1的工艺流程图;
图2是试验例1对比例水稻杂草生长照片;
图3是试验例1水稻杂草生长照片;
图4是试验例1田间整体长势对比图;
图5是试验例1移栽后第65天对比图;
图6是试验例1移栽后第95天对比图;
图7是试验例1水稻病虫害对比图。
具体实施方式
为使本发明的目的、技术方案和优越性更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出 创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例1
S1,粗碎、细碎、打浆:生物质中有机废弃物的餐厨垃圾通过除杂后先输送到粗破碎机和细破碎机粗碎细碎后固形物的粒径小于1mm。细碎后平均输送到二台压力罐,两台压力罐分别设有快开阀门,两个快开阀门通过出料管道相互连通,出料管道连通有撞击罐,出料管道的直径为80mm,长度为0.5m。二台压力罐等量进料后,加压到0.5MPa,2s内同时打开快开阀门,使二股料流往复相互撞击,细碎成浆;
S2,微量元素铁、锰、铜、锌硫酸盐的加量以金属计量,钼酸盐以钼计,硼酸以硼计,添加量为浆料的2.5wt%,添加催化剂,催化剂添加量为浆料的5%,同浆液进压力混和反应罐梯级搅拌反应,二台电机带动的二台搅拌机同时转动,转数分别为30r/min和50r/min,常温条件下,加压0.2MPa,反应时间为30min,使之混合预螯合反应;
S3,步骤S2制备的混合预螯合化的浆液在装置二个搅拌器的水解罐中进行催化水解。二个搅拌器转数不同,形成不同速度梯度,一台搅拌器转数为50r/min,另一台搅拌器转数为100r/min,料液成份的碰撞次数增加,增强水解效果,加热温度控制在110℃,用空压机增压,在蒸汽关联压力基础上,再加压至0.3Mpa时进行催化水解使有机高分子小分子化成为糖类、有机酸类、氨基酸肽类、脂肪酸类、糖醇类、核苷酸类、类黄腐酸类;
S4,步骤S3强化水解完成后的小分子浆料分别等量进入三个反应罐,分别进行经自动计量加液体硫酸钾、氨水、磷酸,加量以纯养分K2O、P2O5、N计算,所加总量为小分子有机溶液的5wt%,N:P2O5:K2O比例通用型为1:0.5:0.8。同小分子有机溶液进行纳米化均质化反应,三个反应罐研磨反应后再混合起来。梯度研磨机为二台电机分别带动一组研磨桨叶,一台电机转数为500r/min,另一台电机转数为1500r/min,产生梯度速度场,增加研磨碰撞次数,使研磨充分。密封的研磨机通过压缩机空气加压,使复加压力控制在0.1MPa,研磨时间为1h, 纳米化至300-800纳米;
S5,进行强化真空蒸发浓缩,去掉多余水分,回收再生水。加热的热源为120℃水蒸气,再用空压机加压,超过蒸汽关联压力为0.5MPa,将蒸汽加压成饱和水释放相变潜热和压缩热,比单纯蒸汽加热节能50%,通过空气加压释放压缩热控制温度不下降。去掉多余水分,回收再生水。使浓缩后的小分子有机水溶肥浓度达到15wt%;
S6,浓缩完成后加稳定剂进行梯度搅拌超声波强化稳定化处理,使用两台搅拌机进行梯度搅拌,一台转速50r/min,另一台转速80r/min,超声频率300KHz,超声均质0.5h。最后自动计量,灌装产品入库。
具体流程图如图1所示。
实施例2
S1,粗碎、细碎、打浆:生物质中的有机废弃物中的人、畜、禽粪污如脱水人粪、鸡粪或干猪粪或牛粪,除杂后粗碎、细碎,细碎后的固含物粒径小于1mm,平均输送到二台压力罐,两台压力罐分别设有快开阀门,两个快开阀门通过出料管道相互连通,出料管道连通有撞击罐,出料管道的直径为80mm,长度为0.5m。加压到0.28MPa后,在2s内同时打开快开阀门,使二股料流往复相互撞击,细碎成浆;
S2,微量元素铁、锰、铜、锌硫酸盐的加量以金属计量、钼酸铵以钼计,硼酸以硼计,添加量为浆料的0.5wt%,加入催化剂,添加量为浆料的7%,同浆液进压力混和反应罐梯级搅拌反应,二台电机带动的二台搅拌机同时转动,转数分别为50r/min和100r/min,常温条件下,空压机加压0.4MPa,反应时间为10min;
S3,步骤S2制备的浆液在装置二个搅拌器的水解罐中进行催化水解。二个搅拌器转数不同,形成不同速度梯度,一台搅拌器转数为200r/min,另一台搅拌器转数为500r/min,料液成份的碰撞次数增加,增强水解效果,进行催化水解时加热温度控制在140℃,用空压机增压,在蒸汽关联压力基础上,再加压至0.7MPa, 使有机高分子小分子化成为糖类、有机酸类、氨基酸肽类、脂肪酸类、糖醇类、核苷酸类、类黄腐酸类;
S4,步骤S3强化水解完成后的小分子浆料分别等量进入三台反应罐分别进行经自动计量加液体硫酸钾、氨水、磷酸,加量以纯养分K2O、P2O5、N计算,所加总量为小分子有机溶液的15wt%,通用型N:P2O5:K2O比例为0.8:0.4:0.7。最后混合起来同小分子有机溶液进行纳米化均质化反应。梯度研磨机为二台电机分别带动一组研磨桨叶,一台电机转数为1000r/min,另一台电机转数为2000r/min,产生梯度速度场,增加研磨碰撞次数,使研磨充分。密封的研磨机通过压缩机空气加压,使复加压力控制在0.4MPa,研磨时间为2h,纳米化至300-800纳米;
S5,进行强化真空蒸发浓缩,去掉多余水分,回收再生水。加热的热源为120℃水蒸气,再用空压机加压,超过蒸汽关联压力为0.8MPa,将饱和蒸汽加压成饱和水释放相变潜热和压缩热,比单纯蒸汽加热节能50%,通过空气加压释放压缩热控制温度不下降。去掉多余水分,回收再生水。使浓缩后的有机水溶肥浓度达到14wt%;
S6,浓缩完成后加稳定剂进行梯度搅拌超声波强化稳定化处理,使用两台搅拌机进行搅拌,一台转速80r/min,另一台转速100r/min,超声频率800KHz,超声均质1.5h。最后自动计量,灌装产品入库。
实施例3
S1,粗碎、细碎、打浆:生物质有机废弃物中的农作物秸秆通过除杂后粗碎、细碎,粉粹后固含物的粒径小于1mm,平均输送到二台压力罐,两台压力罐分别设有快开阀门,两个快开阀门通过出料管道相互连通,出料管道连通有撞击罐,出料管道的直径为80mm,长度为0.5m。加压到0.5MPa后,在3s内同时打开快开阀门,使二股料流往复相互撞击,细碎成浆;
S2,微量元素铁、锰、铜、锌的硫酸盐和钼酸盐的加量以金属计,硼酸加量以硼计,添加量为浆料的1wt%,加入催化剂,催化剂添加量为浆料的4%, 同浆液进压力混和反应罐梯级搅拌反应,二台电机带动的二台搅拌机同时转动,转数分别为40r/min、50r/min,常温条件下,空压机加压0.3MPa,反应时间为30min;
S3,步骤S2制备的浆液在装置二个搅拌器的水解罐中进行催化水解。二个搅拌器转数不同,形成不同速度梯度,一台搅拌器转数为200r/min,另一台搅拌器转数为500r/min,料液成份的碰撞次数增加,增强水解效果,进行催化水解时加热温度控制在160℃,用空压机增压,在蒸汽关联压力基础上再加压至1.0MPa,使有机高分子小分子化成为糖类、有机酸类、氨基酸肽类、脂肪酸类、糖醇类、核苷酸类、类黄腐酸类;
S4,步骤S3强化水解完成后的小分子浆料分别进入三台反应罐分别进行经自动计量加液体硫酸钾、氨水、磷酸,加量以纯养分K2O、P2O5、N计算,所加总量为小分子有机溶液的20%,N:P2O5:K2O比例通用型为1:0.6:0.8。通用型同小分子有机溶液进行纳米化均质化反应,最后混合。梯度研磨机为二台电机分别带动一组研磨桨叶,一台电机转数为1400r/min,另一台电机转数为2500r/min,产生梯度速度场,增加研磨碰撞次数,使研磨充分。密封的研磨机通过压缩机空气加压,使复加压力控制在0.6MPa,研磨时间3h,纳米化至300-800纳米;
S5,进行强化真空蒸发浓缩,去掉多余水分,回收再生水。加热的热源为180℃水蒸气,再用空压机加压超过蒸汽关联压力为1.0MPa,将饱和蒸汽加压成饱和水释放相变潜热和压缩热,比单纯蒸汽加热节能50%,通过空气加压释放压缩热控制温度不下降,通过真空蒸发浓缩去掉多余水分,回收再生水。使浓缩后的有机水溶肥浓度达到20wt%;
S6,浓缩完成后加稳定剂进行梯度搅拌超声波强化稳定化处理,使用两台搅拌机进行搅拌,一台转速100r/min,另一台转速130r/min,超声频率1000KHz,超声均质化2h。最后自动计量,灌装产品入库。
对比例
对比例1
对比例1提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S2中,常压下进行。
对比例2
对比例2提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S2中,反应罐中设置一个搅拌机,搅拌转速为50r/min。
对比例3
对比例3提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S2中,反应罐中安装的两台搅拌机搅拌转速均为50r/min。
对比例4
对比例4提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S3中,在常压下进行催化水解。
对比例5
对比例5提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S3中,两台搅拌机搅拌转速均为500r/min。
对比例6
对比例6提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S3中,在常温25℃的条件下进行水解。
对比例7
对比例7提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S4中,反应罐中安装的两台研磨机,研磨转速2500r/min。
对比例8
对比例8提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S4中,将两台研磨机替换为两台搅拌机,两台搅拌装置转速均为300r/min。
对比例9
对比例9提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S4中,将两台研磨机替换为两台搅拌机,一台搅拌机转速为200r/min,另一台 搅拌机转速为500r/min。
对比例10
对比例10提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S4中,常压下进行。
对比例11
对比例11提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S5中,只添加稳定剂,使用一台搅拌机,转速为500r/min,不进行超声。
对比例12
对比例12提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S5中,只添加稳定剂,两台搅拌机转速均为500r/min,不进行超声。
对比例13
对比例13提供的一种有机水溶性肥料制备方法与实施例3的区别在于,步骤S5中,只添加稳定剂,两台搅拌机梯度搅拌转速分别为200r/min和500r/min。没有使用超声发生器。
效果对比分析
实施例1-3,微量元素与有机质的螯合率为100%,实施例1-3相较于对比例1-3,微量元素与有机质的螯合率得到较大提升,螯合率上升30-50%。
实施例1-3,催化水解程度达到100%,实施例1-3相较于对比例4-6,小分子含量提升20-36%。
实施例1-3,纳米化程度95%以上,而对比例7-10中,纳米化程度30-40%。
实施例1-3得到的小分子有机水溶性肥料在久置30天内,在底部均未产生沉淀;对比例11-13得到的小分子有机水溶性肥料在久置30天后均产生质量不等的沉淀,溶液呈现浑浊。
效果试验
步骤(4)研磨试验工艺条件筛选
按照(4)的工艺进行操作,控制研磨机转数,一台为1000r/min,另一台为 2400r/min,对研磨时间和纳米化进行考察,具体数据如下表1。
表1
从以上数据可以看出,采用两台研磨机研磨可以显著提高肥料的纳米化程度,且研磨的时间与纳米化程度的关系大,
产品的纳米化程度检测
采用常规方法检测制备的有机水溶性肥的纳米化程度,数据如下表2。
表2
从以上试验可以看出,本发明制备的肥料的纳米化程度非常高。
有机肥的成分检测数据如下表3。
表3
从以上数据可以看出,本发明制备的有机水溶性肥的水不溶物非常少,有机质含量较高,也就说明本发明的纳米化程度相对较高,且重金属含量也较低,说明采用厨余垃圾制备成的肥料的重金属含量完全达标。
肥效试验
试验例
本试验例为新型液态小分子有机水溶肥料对水稻产量的促进作用,进行较大规模的的大田实验。
供试肥料:
小分子有机水溶肥(基肥:N90g/L、P40g/L、K30g/L;分蘖肥:N80g/L P30g/L、K80g/L;拔节肥N50g/L、P15g/L、K70g/L;穗肥N20g/L、P15g/L、K80g/L);
氯先机复合肥N:P:K=12:15:12尿素N46%;
供试作物为水稻品种:松早香1号;
播种方式:机插秧、机穴播
前茬作物:水稻
试验设计:大田对照试验;
全生育期用肥对照如下:
试验组:小分子有机水溶性肥料
基肥60斤/亩,分蘖肥40斤/亩,拔节肥35斤/亩,穗肥35斤/亩;
对照组:氯先机复合肥+尿素
基肥复合肥40斤/亩,分蘖肥尿素15斤/亩,药肥复合肥20斤/亩,拔节肥尿素10斤/亩、复合肥10斤/亩,促花肥尿素18斤/亩,促花肥尿素15斤/亩。
结果分析
松早香1号
试验组两处试验田总平均亩产522.3公斤/亩,对照组平均亩产439公斤/亩,试验组增产18.9%。
从以上对比试验可以看出,本发明制备的小分子有机水溶性肥料在抗病虫害及产量和水稻的品质上,都明显优于常规的肥料,本发明制备的小分子有机水溶性肥料的肥效显著。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种小分子有机水溶性肥料制备方法,其特征在于,包括以下步骤:
    步骤(1),除杂后的生物质有机废弃物经初碎、细碎,均分至压力罐中加压释压,在撞击罐中往复对撞,得到浆液;
    步骤(2),将步骤(1)得到的所述浆液打入梯度压力混合罐中,加入微量元素和催化剂,梯度搅拌,得到预螯合浆液;
    步骤(3),将步骤(2)得到的所述预螯合浆液在梯度催化水解罐中进行水解浆料小分子化同微量元素完全螯合,得到催化水解小分子化的完全螯合浆液;
    步骤(4),将步骤(3)得到的所述催化水解小分子化的完全螯合浆液均分至三个梯度反应罐,分别加入钾源、氮源、磷源,进行梯度反应,再经研磨,混合,过滤,离心,滤渣、离心渣返回研磨,得到复合纳米化浆液;
    步骤(5),将步骤(4)得到的所述复合纳米化浆料真空蒸发浓缩,得到浓缩液;
    步骤(6),将步骤(5)得到的所述浓缩液中转移至稳定化罐中,添加稳定剂,梯度搅拌,超声均质,得到所述小分子有机水溶性肥料;
    所述步骤(1)中,所述压力罐分别联接撞击罐对称位置,所述压力罐均增压至0.3-0.8MPa,1-5s时间内同时打开所述压力罐的快开阀门,所述压力罐内的浆液通过偶联连通管道在所述撞击罐中往复对撞;
    所述步骤(4)中,所述三个反应罐分别独立进行控制。
  2. 根据权利要求1所述的一种小分子有机水溶性肥料制备方法,其特征在于,步骤(2)中,所述微量元素为铁、锰、铜、锌的可溶盐,硼酸盐、钼酸盐;其中,铁、锰、铜、锌的可溶盐以金属元素计,硼酸以硼计,钼酸盐以钼计,所述微量元素添加量为所述浆液的0.5-3.0wt%。
  3. 根据权利要求1所述的一种小分子有机水溶性肥料制备方法,其特征在于,步骤(4)中,所述钾源、氮源、磷源以纯养分K2O、N、P2O5计,添加总量为所述水解浆液的5-20wt%;所述N:P2O5:K2O添加比例为(0.8-1.0):(0.4-0.5):(0.7-0.9)。
  4. 根据权利要求1所述的一种小分子有机水溶性肥料制备方法,其特征在于,步骤(6)中,所述稳定剂添加量为所述浓缩液的0.1-0.5wt%;所述稳定剂选自聚丙烯酸、聚乙烯醇、聚乙烯吡咯烷酮中的一种。
  5. 根据权利要求1所述的一种小分子有机水溶性肥料制备方法,其特征在于,步骤(2)中,在常温,压力为0.2-0.5MPa的条件下进行梯度搅拌;所述梯度搅拌为所述压力混合反应罐中安装二台搅拌装置,一台搅拌装置转速为30-50r/min,另一台搅拌装置转速为50-100r/min;
    和/或,步骤(3)中,所述催化水解罐中安装两台搅拌装置,一台搅拌装置转数为50-200r/min,另一台搅拌装置转数为100-500r/min;催化水解温度为110-160℃,压力为0.3-1.0MPa,催化水解时间为1-4h;
    和/或,步骤(4)中,所述三个反应罐中安装有两台搅拌式研磨装置,一台转数为500-1400r/min,另一台转数为1500-2500r/min;压力为0.1-0.6MPa;研磨时间为1-3h。
  6. 根据权利要求1所述的一种小分子有机水溶性肥料制备方法,其特征在于,步骤(5)中,真空蒸发浓缩热源为120-180℃水蒸气,空压机压力为0.5-1.0MPa,所述浓缩液固含量为5-20wt%。
  7. 根据权利要求1所述的一种小分子有机水溶性肥料制备方法,其特征在于,步骤(6)中,所述均质罐中安装有两台搅拌装置,一台搅拌装置转速为50-100r/min,另一台搅拌装置转速为80-130r/min;超声频率300-1000KHz,均质时间为0.5-2h。
  8. 一种小分子有机水溶性肥料,其特征在于,采用权利要求1-7任一项所述的小分子有机水溶性肥料制备方法制得。
  9. 一种小分子有机水溶性肥料应用,其特征在于,采用权利要求1-7任一项所述小分子有机水溶性肥料制备方法制得的小分子有机水溶性肥料用于植物种植。
PCT/CN2024/095116 2023-06-01 2024-05-24 一种利用生物质及其废弃物制备小分子有机水溶性肥料制备方法及产品与应用 WO2024245130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310644937.1 2023-06-01
CN202310644937.1A CN116854523B (zh) 2023-06-01 2023-06-01 一种小分子有机水溶性肥料制备方法及产品与应用

Publications (1)

Publication Number Publication Date
WO2024245130A1 true WO2024245130A1 (zh) 2024-12-05

Family

ID=88224103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/095116 WO2024245130A1 (zh) 2023-06-01 2024-05-24 一种利用生物质及其废弃物制备小分子有机水溶性肥料制备方法及产品与应用

Country Status (3)

Country Link
US (1) US12037299B1 (zh)
CN (1) CN116854523B (zh)
WO (1) WO2024245130A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116854523B (zh) * 2023-06-01 2024-11-08 播乐(海南)生态科技院(有限合伙) 一种小分子有机水溶性肥料制备方法及产品与应用
CN118834111B (zh) * 2024-09-23 2024-11-26 四川大学 一种利用萃余酸制备的水溶性悬浮态复合肥及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821886A (zh) * 2018-08-27 2018-11-16 甘肃天元化工有限公司 一种有机水溶肥料的生产工艺
CN111170790A (zh) * 2020-02-11 2020-05-19 刘文治 一种家庭分类厨余垃圾制水溶性液肥的方法
CN111575008A (zh) * 2020-05-09 2020-08-25 刘文治 一种沼液、沼渣资源化处理的成套设备
CN111592384A (zh) * 2020-04-24 2020-08-28 刘文治 一种无机化肥有机化的成套装置
CN112939667A (zh) * 2021-03-11 2021-06-11 刘文治 一种全营养水溶性肥料及其生产方法
WO2022253359A1 (zh) * 2021-06-01 2022-12-08 仲恺农业工程学院 一种利用沼液生产高效有机液体肥料的方法及其装置
CN116854523A (zh) * 2023-06-01 2023-10-10 播乐(海南)生态科技院(有限合伙) 一种小分子有机水溶性肥料制备方法及产品与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110017B2 (en) * 2008-03-11 2012-02-07 Lawrence Brooke Engineering, Llc. Fertilizer suspension and method of preparation
TW201132613A (en) * 2010-03-24 2011-10-01 Wen-Zhi Liu Method for producing water soluble fast-effect organic fertilizer using active sludge
CN106588313A (zh) * 2016-12-03 2017-04-26 青岛漾花湖农业科技有限公司 一种用农业废弃生物质催化制备的功能性液体肥
CN109081758A (zh) * 2018-09-30 2018-12-25 上海集熠节能环保技术有限公司 餐厨垃圾制作小分子有机能量肥的生产方法及能量肥成品
CN114591110A (zh) * 2022-04-15 2022-06-07 刘文治 一种制取小分子有机水溶肥及浓缩液联产微肥的装置
CN115215700B (zh) * 2022-07-20 2024-06-11 宁夏沃滴滴水肥科技有限公司 基于生物质发酵的液体肥料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821886A (zh) * 2018-08-27 2018-11-16 甘肃天元化工有限公司 一种有机水溶肥料的生产工艺
CN111170790A (zh) * 2020-02-11 2020-05-19 刘文治 一种家庭分类厨余垃圾制水溶性液肥的方法
CN111592384A (zh) * 2020-04-24 2020-08-28 刘文治 一种无机化肥有机化的成套装置
CN111575008A (zh) * 2020-05-09 2020-08-25 刘文治 一种沼液、沼渣资源化处理的成套设备
CN112939667A (zh) * 2021-03-11 2021-06-11 刘文治 一种全营养水溶性肥料及其生产方法
WO2022253359A1 (zh) * 2021-06-01 2022-12-08 仲恺农业工程学院 一种利用沼液生产高效有机液体肥料的方法及其装置
CN116854523A (zh) * 2023-06-01 2023-10-10 播乐(海南)生态科技院(有限合伙) 一种小分子有机水溶性肥料制备方法及产品与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU WENZHI: "Diversity And Leading-Edge Innovation Mode of Water-Soluble Fertilizer", PROCEEDINGS OF 2016 WATER-SOLUBLE FERTILIZER TECHNOLOGY INNOVATION AND WATER AND FERTILIZER INTEGRATION APPLICATION EXCHANGE CONFERENCE, 31 May 2020 (2020-05-31), pages 40 - 55, XP009559879 *

Also Published As

Publication number Publication date
US12037299B1 (en) 2024-07-16
CN116854523B (zh) 2024-11-08
CN116854523A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2024245130A1 (zh) 一种利用生物质及其废弃物制备小分子有机水溶性肥料制备方法及产品与应用
CN102219596B (zh) 一种沼液滴灌肥料及其制备方法
CN106431581A (zh) 一种基于浓缩沼液的有机液肥及其制备和应用方法
CN102584357A (zh) 一种蔬菜废弃物快速资源化零排放的处理方法
CN108821886A (zh) 一种有机水溶肥料的生产工艺
CN105367167B (zh) 一种含微量元素的有机碳液体肥的制备方法
CN105036994B (zh) 一种利用生物螯合技术制备水稻轻型无土育秧基质的方法
CN106631220B (zh) 环保型有机肥料生产设备及生产有机肥的方法
CN101891510A (zh) 用薯类酒糟生产商品有机肥的方法
CN105880259B (zh) 白酒糟分级去除稻壳和一种有机液肥基液制备方法
CN104844373A (zh) 一种水溶性复合肥料及其制备方法
CN111575008A (zh) 一种沼液、沼渣资源化处理的成套设备
CN107557018A (zh) 一种土壤改良剂的制备方法
CN109311774A (zh) 用于制造腐殖质有机肥料的方法
CN107739238A (zh) 一种含苦皮藤素的螯合型叶面肥的生产方法
CN105776611B (zh) 去除厌氧消化液中未被消化物和有机液肥基液制备方法
CN101417899A (zh) 一种利用衣康酸母液生产液体肥料的方法
CN107098824A (zh) 一种利用超重力反应器生产草酰胺的装置及生产方法
CN102267843B (zh) 增效水溶性肥料的制备方法
CN115872803A (zh) 一种综合利用农业废弃物制备肥料方法及其装置
CN213037676U (zh) 一种无机化肥有机化的成套装置
CN108484259A (zh) 利用圆盘造粒工艺提高甘蔗滤泥肥料落后产能的方法
CN107266690B (zh) 一种纳米腐植酸钾及其生产方法
CN102276300B (zh) 一种用于滴灌的全价有机肥及制备方法
CN113860971A (zh) 一步法融浆螯合活性腐植酸复合肥连续生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24813094

Country of ref document: EP

Kind code of ref document: A1