WO2024243926A1 - 电池模组、储能装置及用电设备 - Google Patents

电池模组、储能装置及用电设备 Download PDF

Info

Publication number
WO2024243926A1
WO2024243926A1 PCT/CN2023/097645 CN2023097645W WO2024243926A1 WO 2024243926 A1 WO2024243926 A1 WO 2024243926A1 CN 2023097645 W CN2023097645 W CN 2023097645W WO 2024243926 A1 WO2024243926 A1 WO 2024243926A1
Authority
WO
WIPO (PCT)
Prior art keywords
along
angle
plate
cross bar
battery module
Prior art date
Application number
PCT/CN2023/097645
Other languages
English (en)
French (fr)
Inventor
熊永锋
陈志雄
黄立炫
Original Assignee
深圳海辰储能控制技术有限公司
厦门海辰储能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳海辰储能控制技术有限公司, 厦门海辰储能科技股份有限公司 filed Critical 深圳海辰储能控制技术有限公司
Priority to PCT/CN2023/097645 priority Critical patent/WO2024243926A1/zh
Publication of WO2024243926A1 publication Critical patent/WO2024243926A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage devices, and in particular to a battery module, an energy storage device and an electrical equipment.
  • a battery module usually has multiple cells.
  • the structure of the battery module needs to support, fix and protect the cells, ensuring that the cells are properly positioned and protected from deformation that could damage their performance. How to fix the cells in the battery module and prevent the vibration of the battery module from affecting the shaking of the cells inside the battery module has become an urgent problem to be solved.
  • Embodiments of the present application provide a battery module, an energy storage device, and an electrical device that can mitigate or prevent the vibration of the battery module from affecting the shaking of the battery cells.
  • the embodiment of the present application provides a battery module, which includes a battery cell group and a bracket.
  • the battery cell group includes a plurality of battery cells arranged along a first direction, each of the battery cells includes a bottom plate arranged on one side along a second direction, two panels arranged oppositely along the first direction, and two side plates arranged oppositely along a third direction, the two panels and the two side plates are fixedly connected to the bottom plate, the first direction, the second direction and the third direction are perpendicular to each other; a first R angle is formed at the connection between the side plate and the panel;
  • the bracket is arranged between two adjacent battery cells, the bracket includes a frame, the width of the frame extending along the third direction is less than the width of the battery cell extending, the frame includes two vertical rods arranged oppositely along the third direction, each of the vertical rods is formed with a second R angle opposite to the first R angle on a side close to the battery cell, the openings of the first R angle and the second R angle face the same side;
  • a bracket is arranged between two adjacent battery cells, and the two adjacent battery cells are clamped and fixed by the bracket, so as to reduce or avoid the shaking of the battery cells inside the battery module due to the vibration of the battery module, ensure that the battery cells can be fixed intact in the battery module without deformation that damages the performance, and ensure the service life of the battery cells.
  • a first R angle is formed at the connection between the side plate and the panel, and a second R angle opposite to the first R angle is formed on the side of each vertical rod close to the battery cell, and the second R angle is greater than the first R angle, so that there is a gap between the vertical rod and the battery cell; and the width of the frame extending along the third direction is less than the width of the battery cell extending along the third direction, in other words, the spacing between the outer sides of the two vertical rods on the frame is less than the width of the battery cell extending along the third direction, so that the frame shrinks relative to the battery cell in the third direction, and there is a gap between the frame and the battery cell along the third direction, and the gap between the frame and the battery cell along the third direction is connected to the gap between the vertical rod and the battery cell, and the gap between the frame and the battery cell along the third direction and the gap between the vertical rod and the battery cell can be filled with thermal conductive glue, and the battery cell and the bracket are bonded and fixed by the thermal conductive glue,
  • the heat generated by the charging and discharging of the battery cell can also be dissipated by the thermal conductive glue, so as to avoid the heat generated by the battery cell from damaging the battery cell performance.
  • the second R angle is greater than the first R angle, which means that the radius of the second R angle is greater than the radius of the first R angle.
  • a ratio of the first R angle to the second R angle is S1
  • the ratio S1 of the first R angle to the second R angle satisfies: 1/2 ⁇ S1 ⁇ 2/3.
  • the value of the R angle (the first R angle or the second R angle) is the radius value of the R angle (the first R angle or the second R angle). If the gap along the third direction between the frame and the battery cell is too small, and the amount of thermal conductive adhesive filled in the gap is too small, the connection strength between the battery cell and the bracket will be reduced, and the battery cell may detach from the bracket. If the battery module vibrates, the battery cell is easy to detach from the bracket and shake in the battery module, resulting in damage to the performance of the battery cell.
  • the ratio S1 of the first R angle to the second R angle is greater than 2/3, the internal space of the battery cell is reduced, and the energy density in the battery cell is correspondingly reduced.
  • the ratio S1 of the first R angle to the second R angle satisfies 1/2 ⁇ S1 ⁇ 2/3. On the one hand, it ensures that there is enough space to fill the gap between the frame and the battery cell along the third direction with thermal conductive adhesive, improves the connection strength between the battery cell and the bracket, avoids the battery cell shaking in the battery module due to the vibration of the battery module, and reduces or avoids the situation where the battery performance is damaged due to shaking; on the other hand, it ensures that there is enough energy density inside the battery cell, effectively improving the energy density of the battery cell.
  • the bracket forms an accommodating space
  • each of the vertical rods has a first side surface facing away from the accommodating space
  • each of the side panels has a second side surface
  • the first width of the gap extending along the third direction is W1
  • the first width W1 of the gap satisfies: 0.5mm ⁇ W1 ⁇ 1.0mm.
  • the battery cell has two opposite sides along the third direction, and on the same side, the second R angle on the vertical rod cooperates with the first R angle at the first side, and on the vertical rod and the side plate that cooperate with each other, the first side and the second side have a gap along the third direction, and the gap between the frame and the battery cell along the third direction is the sum of the gaps on both sides.
  • the two vertical rods of the bracket are retracted relative to the battery cell, and a gap is formed.
  • the gap can be filled with thermal conductive glue to fix the bracket to the end plate of the battery module, improve the connection strength between the bracket and the end plate of the battery module, and improve the structural stability of the battery module.
  • the first width W1 of the gap extending along the third direction is less than 0.5mm, the space formed by the gap is too small, the volume of the thermal conductive glue filled in the gap is too small, the connection strength between the vertical rod and the end plate is reduced, and the end plate is easy to fall off; if the first width W1 of the gap extending along the third direction is greater than 1.0mm, along the third direction, the frame is too retracted relative to the battery cell, and the bracket cannot clamp and fix the battery cell.
  • the first width W1 of the gap extending along the third direction satisfies the following value: 0.5mm ⁇ W1 ⁇ 1.0mm.
  • the bracket can clamp and fix the battery cell, the gap is filled with sufficient thermal conductive adhesive to enhance the connection strength between the vertical rod and the end plate, thereby enhancing the structural stability of the battery module.
  • the bracket also includes a first cross bar and a second cross bar arranged relatively to each other along the second direction, and the two vertical bars are arranged relatively to each other along the third direction.
  • the first cross bar, one of the vertical bars, the second cross bar and the other vertical bar are fixedly connected in sequence, and the first cross bar, the second cross bar and the two vertical bars together form the accommodating space.
  • the battery module also includes a thermal insulation pad, and the thermal insulation pad is arranged in the accommodating space.
  • a first cross bar, one of the vertical bars, a second cross bar and another vertical bar are fixedly connected in sequence to form a square frame.
  • the bracket is used to fix and tighten two adjacent battery cells, and the first cross bar, the second cross bar and the two vertical bars together form an accommodation space.
  • the bracket can provide an accommodation space for placing a thermal insulation pad, so as to insulate two adjacent battery cells through the thermal insulation pad, prevent the battery cells working at high temperatures from diffusing due to thermal runaway and reduce the safety performance of the battery module, and improve the safety of the battery module.
  • the battery cell will expand and shrink after expansion during the charging and discharging process.
  • the bracket provided with an accommodation space can provide expansion space for two adjacent battery cells, reduce the expansion pressure between the battery cells, reduce the false triggering of the explosion-proof valve, and improve the safety of the battery module and the service life of the battery module.
  • the bracket further includes a groove, the groove is close to a connection between the vertical rod and the second cross rod, and a projection shape of the groove in the second direction is an arc.
  • the bracket is an injection-molded part
  • the projection shape of the groove along the second direction is an arc
  • the groove is close to the connection between the vertical rod and the second cross rod, so that after the connection between the second cross rod and the vertical rod is demolded and cooled, there will be no local shrinkage, thereby avoiding distortion of the bracket due to shrinkage and improving the structural strength of the bracket.
  • the bracket includes a first positioning clamp and a second positioning clamp, the first positioning clamp is provided at two opposite ends of the first cross bar along the third direction, and the first positioning clamp supports the battery core;
  • the second positioning clamp is arranged at two opposite ends of the second cross bar along the third direction, the battery core includes an end cover assembly, and the second positioning clamp abuts against the end cover assembly.
  • the first positioning clip is arranged at the opposite ends of the first cross bar along the third direction, that is, the first positioning clip is arranged at the connection between the first cross bar and the two vertical bars, and the number of the first positioning clips is two;
  • the second positioning clip is arranged at the opposite ends of the second cross bar along the third direction, that is, the second positioning clip is arranged at the connection between the second cross bar and the two vertical bars.
  • two corners of the frame are provided with the first positioning clips, and the other two corners are provided with the second positioning clips.
  • the first positioning clips and the second positioning clips can protect the four corners of the battery cell to prevent the end cover assembly at the four corners of the battery cell from warping and peeling, thereby ensuring the stability of the battery cell connection and further ensuring the safety of the battery module.
  • the battery module also includes an end plate, and the end plate is installed on both sides of the battery cell group along the third direction.
  • the first height between the first positioning card and the second positioning card is H1
  • the second height of the end plate extension is H2.
  • the first height H1 between the first positioning card and the second positioning card is greater than the second height H2 of the end plate extension
  • the first height H1 between the first positioning card and the second positioning card and the second height H2 of the end plate extension satisfy: 1.5mm ⁇ H1-H2 ⁇ 3.0mm.
  • the first height H1 between the first positioning card and the second positioning card is greater than the second height H2 of the end plate extension.
  • an assembly gap of the end plate is reserved to facilitate the bonding of the end plate and the vertical rod of the bracket.
  • the end plate is installed at both ends of the battery cell group along the third direction, and the space formed by the gap between the frame and the battery cell along the third direction and the vertical rod and the interval between the battery cell is filled with thermal conductive adhesive, so that the connection between the bracket, the battery cell and the end plate can be achieved.
  • H1-H2 represents the difference between the first height H1 between the first positioning card and the second positioning card, and the second height H2 of the end plate extension, and H1-H2 satisfies: 1.5mm ⁇ H1-H2 ⁇ 3.0mm. If H2-H2 ⁇ 1.5mm, the difficulty of installing the end plate increases; if H1-H2>3.0mm, the assembly gap between the end plate and the first positioning card or the end plate and the second positioning card is too large, and the end plate is easy to break away from the limitation of the first positioning card and the second positioning card.
  • the difference between the first height H1 between the first positioning card and the second positioning card and the second height H2 of the end plate extension satisfies 1.5mm ⁇ H1-H2 ⁇ 3.0mm, which is convenient for the installation of the end plate, and at the same time ensures that the end plate is located between the first positioning card and the second positioning card, ensures that the end plate fits the outer side of the vertical rod, and ensures the connection strength between the end plate and the vertical rod.
  • the first positioning card includes a first plate body and a second plate body arranged at an angle, the projection of the first plate body along the second direction is located on opposite sides of the projection of the first cross bar in the first direction, the first plate body is arranged at the first end of the vertical bar away from the second cross bar along the second direction, and is arranged on the side of the first cross bar away from the accommodating space along the second direction, the first plate body extends from the first end body along the third direction toward the accommodating space, and the first plate body supports the battery cell; the projection of the second plate body along the third direction is located on opposite sides of the projection of the vertical bar in the first direction, the second plate body is arranged on the side of the vertical bar away from the accommodating space in the third direction, and extends from the connection between the first plate body and the second plate body toward the second cross bar.
  • the first positioning card is composed of a first plate body and a second plate body arranged at an angle, for example, the first plate body and the second plate body can be perpendicular to each other.
  • the projection of the first plate body along the second direction is located on the opposite sides of the projection of the first cross bar along the second direction (specifically, the opposite sides of the projection of the first cross bar along the first direction), so that the first plate body can support two battery cells located on the opposite sides of the first cross bar along the first direction.
  • the projection of the second plate body along the third direction is located on the opposite sides of the projection of the vertical bar along the third direction (specifically, the opposite sides of the vertical bar along the first direction), so that the second plate body can limit the bottom of the two battery cells on both sides of the first cross bar in the third direction, wherein the bottom of the battery cell is the end of the battery cell away from the end cover assembly, preventing the battery cell from escaping from the range limited by the bracket, and ensuring that the bracket can firmly clamp and fix the two battery cells.
  • a third R angle is formed between the panel and the bottom plate, and the bracket further includes At least one first reinforcement member is provided at the connection between the first plate and the first cross bar, each of the first reinforcement members has a first arc surface matching the third R angle, and the first arc surface is a curved surface of the first reinforcement member facing the battery core.
  • At least one first reinforcement member is provided at the connection between the first plate body and the first cross bar to increase the structural strength of the corner where the first plate body and the first cross bar are connected, and to avoid the first plate body from being concave, resulting in unevenness between multiple battery cells, affecting the electrical connection between the multiple battery cells and the bar pieces when they are composed, and prone to welding leaks and cold welding between the bar pieces and the poles due to different heights.
  • each first reinforcement member is provided with a first arc surface facing the battery cell, the first arc surface is adapted to the third R angle, the third R angle abuts against the first arc surface, and the first arc surface is set to reserve assembly space for the battery cell assembly to avoid the first reinforcement member hindering the assembly of the battery cell and the first positioning card.
  • the first reinforcement includes a plurality of first reinforcements, and the plurality of first reinforcements are arranged at intervals along the second direction at the connection between the first plate body and the first crossbar.
  • the wall thickness of the bracket where the first reinforcement is set will increase.
  • the thicker area is prone to shrinkage due to uneven cooling of the wall thickness, resulting in deformation of the bracket structure and affecting the stability of the entire bracket structure.
  • Multiple first reinforcements are arranged at intervals to avoid the appearance of concave shrinkage holes on the back of the first plate body, which causes the first plate body to concave and causes unevenness between multiple battery cells, affecting the electrical connection between the multiple battery cells and the bar piece when they are grouped, and it is easy to cause welding leaks and cold welding between the bar piece and the pole due to inconsistent height.
  • a fourth R angle is formed between the side plate and the bottom plate, the first positioning member has a fifth R angle opposite to the fourth R angle, the fifth R angle is provided at the connection between the first plate body and the second plate body, and the fifth R angle is smaller than the fourth R angle.
  • the fifth R angle is opposite to the fourth R angle, and the fifth R angle is smaller than the fourth R angle, so that the two side surfaces of the fourth R angle can fit the bracket, thereby improving the stability of the connection between the battery cell and the bracket.
  • a ratio of the fifth R angle to the fourth R angle is S2, and the ratio S2 of the fifth R angle to the fourth R angle satisfies: 1/2 ⁇ S2 ⁇ 2/3.
  • the value of the size of the R angle is the radius value of the R angle (the fifth R angle or the fourth R angle). If the ratio S2 of the fifth R angle to the fourth R angle is less than 1/2, when the fifth R angle and the fourth R angle are matched, the gap between the fifth R angle and the fourth R angle is too large, and the first plate body needs to support the battery cell.
  • the large gap is likely to cause the first plate body to deform, causing the two adjacent battery cells to be uneven in the second direction, affecting the electrical connection stability between the battery cells; if the ratio S2 of the fifth R angle to the fourth R angle is greater than 2/3, when the bottom of the battery cell abuts against the first plate body, one of the two side surfaces at the fourth R angle will not fit the second plate body, and the overall structural stability of the battery cell and the bracket is poor.
  • the ratio S2 of the fifth R angle to the fourth R angle satisfies: 1/2 ⁇ S2 ⁇ 2/3, thereby avoiding excessive gap between the fifth R angle and the fourth R angle, ensuring the structural stability of the connection between the first plate body and the second plate body, and at the same time, ensuring that the two side surfaces at the fourth R angle can fit the bracket, thereby improving the overall structural stability of the battery cell and the bracket.
  • the second positioning card includes a third plate and a fourth plate that are arranged at an angle, the projection of the third plate along the second direction is located on opposite sides of the projection of the second cross bar in the first direction, the third plate is arranged at the second end of the vertical bar away from the first cross bar along the second direction, and extends from the second end toward the accommodating space along the third direction, and a side of the third plate facing the first cross bar abuts against the end cover assembly; the projection of the fourth plate along the third direction is located on opposite sides of the projection of the vertical bar in the first direction, the fourth plate is arranged on a side of the vertical bar away from the accommodating space in the third direction, and extends from the connection between the third plate and the fourth plate toward the direction of the first cross bar.
  • the second positioning fixture is composed of a third plate and a fourth plate arranged at an angle, for example, the third plate and the fourth plate can be perpendicular to each other.
  • the projection of the third plate along the second direction is located at the second crossbar along the second
  • the projection of the fourth plate along the third direction is located on the opposite sides of the projection of the vertical bar along the third direction (specifically, the opposite sides of the projection of the second horizontal bar along the first direction). In this way, the side of the third plate body facing the first horizontal bar can abut against the surfaces of the two battery cells on the opposite sides of the second horizontal bar along the first direction, preventing the edges of the end cover assembly of the battery cells from warping and peeling.
  • the projection of the fourth plate body along the third direction is located on the opposite sides of the projection of the vertical bar along the third direction (specifically, the opposite sides of the vertical bar along the first direction).
  • the fourth plate body can limit the tops of the two battery cells on both sides of the second horizontal bar in the third direction, wherein the top of the battery cell is one end of the battery cell close to the end cover assembly, preventing the battery cell from escaping from the range limited by the bracket, and ensuring that the bracket can firmly clamp and fix the two battery cells.
  • the second positioning clamp also includes a first clamping portion, which extends from the end of the third plate body in the third direction away from the fourth plate body in a direction away from the first cross bar, and the first clamping portion has a clamping groove and a guide slope, and the opening of the clamping groove is away from the accommodating space in the third direction.
  • the battery module also includes a cover body, and the cover body is provided with a second clamping portion, and the second clamping portion can extend into the clamping groove along the guide slope to cooperate with the first clamping portion.
  • the first clamping portion is arranged at the end of the third plate body away from the fourth plate body in the third direction, that is, the first clamping portion and the fourth plate body are located at opposite ends of the third plate body along the third direction, and along the third direction, the first clamping portion is closer to the battery cell than the fourth plate body, so that the clamping groove and the guide slope formed by the first clamping portion will not protrude from the side of the battery cell.
  • the size of the cover body of the battery module can be reduced, the volume of the battery module can be further reduced, and the energy density of the battery module can be improved.
  • the battery module further includes a wiring harness isolation plate, and along the third direction, a distance between two first clamping portions is greater than an extended width of the wiring harness isolation plate.
  • the distance between the two first clip parts located at both ends of the second cross bar is greater than the extended width of the wiring harness isolation plate, so that the wiring harness isolation plate is located between the two first clip parts.
  • the first length of the accommodating space extending is L1
  • the second length of the thermal insulation pad extending is L2
  • the first length L1 of the accommodating space extending and the second length L2 of the thermal insulation pad extending satisfy: 2.3mm ⁇ L1-L2 ⁇ 3.1mm.
  • the first cross bar, one of the vertical bars, the second cross bar and the other vertical bar are fixedly connected in sequence to form a square bracket, the bracket is used to fix and tighten two adjacent battery cells, and the first cross bar, the second cross bar and the two vertical bars together form a accommodating space, wherein the second length L2 of the thermal insulation pad extending along the first direction is less than the first length L1 of the accommodating space extending along the first direction. If the difference between the first length L1 of the accommodating space extending and the second length L2 of the thermal insulation pad extending along the first direction is less than 2.3mm (i.e.
  • the expansion space reserved for the battery cells on both sides is too small, and when the battery cells expand within the safe expansion distance during charging and discharging, the expanded battery cells are easily squeezed by the thermal insulation pad, resulting in an increase in the expansion pressure of the battery cells, thereby reducing the safety of the battery module. If L1-L2>3.1mm along the first direction, the gap between the thermal insulation pad and the battery cells on both sides is too large, and the battery cells expand during the charging and discharging process.
  • the gap between the thermal insulation pad and the battery cells on both sides is too large, the battery cells are not subject to certain constraints during the expansion process, resulting in excessive protrusion of the battery cell surface within the safe expansion distance, and the electrolyte infiltration effect is poor, resulting in lithium deposition on the electrodes in the battery cells, reducing the service life of the battery cells, and the gap between the thermal insulation pad and the battery cells on both sides is too large, the battery cells on both sides cannot exchange heat with the thermal insulation pad, and the thermal insulation effect is poor.
  • the first length L1 of the accommodating space extension and the second length L2 of the thermal insulation pad extension satisfy 2.3mm ⁇ L1-L2 ⁇ 3.1mm, ensuring that a certain space is reserved after the thermal insulation pad is installed in the accommodating space, and the installation position of the thermal insulation pad can be adjusted to ensure that there is a certain interval between the thermal insulation pad and the two adjacent battery cells, so as to avoid the thermal insulation pad from squeezing the battery cells expanding within the safe expansion distance, reduce the expansion pressure of the battery cells, and improve the safety of the battery module; and the thermal insulation pad can also restrain the battery cells from excessively protruding within the safe expansion distance during the charging and discharging process, so that the battery cells remain flat during the charging and discharging process, the electrolyte infiltration effect is better, and lithium plating can be reduced, thereby extending the number of charge and discharge cycles of the battery cells.
  • the third height of the accommodating space extension is H3, the fourth height of the thermal insulation pad extension is H4, and the third height H3 of the accommodating space extension and the fourth height H4 of the thermal insulation pad extension satisfy 1.5mm ⁇ H3-H4 ⁇ 5.0mm;
  • the second width of the accommodating space extension is W2, the third width of the thermal insulation pad extension is W3, and the second width W2 of the accommodating space extension and the third width W3 of the thermal insulation pad extension satisfy 1.5mm ⁇ W2-W3 ⁇ 5.0mm.
  • a certain deformation space is reserved between the accommodating space and the thermal insulation pad in the second direction and the third direction, and the thermal insulation pad can be placed in the accommodating space without high operating precision, and the thermal insulation pad is elastic and deformable.
  • the thermal insulation pad When two adjacent battery cells expand relatively, squeezing the thermal insulation pad will cause the thermal insulation pad to deform, and the fourth height H4 of the thermal insulation pad along the second direction and the third width W3 along the third direction will increase, and a certain deformation space needs to be reserved.
  • deformation space is reserved in both the second and third directions, making it easier for the thermal insulation pad to be squeezed and deformed by the battery cell, and will not affect the expansion of the battery cell, thereby improving the service life of the battery cell.
  • the deformation space of the thermal insulation pad along the second direction is too small, which affects the deformation of the thermal insulation pad and indirectly affects the expansion gap of the battery cell, thereby affecting the cycle performance of the battery cell; along the second direction, if the difference between the third height H3 of the accommodating space and the fourth height H4 of the thermal insulation pad is greater than 5.0mm (i.e.
  • the deformation space of the thermal insulation pad along the second direction is too large, and the thermal insulation effect of the thermal insulation pad is poor; along the second direction, the third height H3 of the accommodating space and the fourth height H4 of the thermal insulation pad satisfy 1.5mm ⁇ H3-H4 ⁇ 5.0mm, which makes the thermal insulation pad easier to deform and has good thermal insulation effect, thereby ensuring the cycle performance of the battery cell.
  • the deformation space of the thermal insulation pad along the third direction is too small, which affects the deformation of the thermal insulation pad and indirectly affects the expansion gap of the battery cell, thereby affecting the cycle performance of the battery cell; along the third direction, if the difference between the second width W2 of the accommodating space and the third width W3 of the thermal insulation pad is greater than 5.0mm (i.e.
  • the deformation space of the thermal insulation pad along the third direction is too large, and the thermal insulation effect of the thermal insulation pad is poor; along the third direction, the second width W2 of the accommodating space and the third width W3 of the thermal insulation pad satisfy: 1.5mm ⁇ W2-W3 ⁇ 5.0mm, which makes the thermal insulation pad easier to deform and has good thermal insulation effect, thereby ensuring the cycle performance of the battery cell.
  • the bracket also includes a plurality of second reinforcement members, which are arranged on the second cross bar, and a plurality of recesses extending along the third direction are formed on the second cross bar, and the recesses are recessed from a surface of the second cross bar close to the battery cell toward a direction away from the battery cell, and a second reinforcement member is formed between two adjacent recesses.
  • a plurality of second reinforcement members are arranged on the second cross bar to strengthen the structural strength of the second cross bar, effectively limit the excessive bulging of the two battery cells on both sides of the second cross bar which would cause the second cross bar to be lifted up, ensure that the second cross bar can be firmly restrained at the edge of the end cover assembly, avoid tearing at the welding joint between the end cover assembly and the shell of the battery cell, and improve the safety of the battery module.
  • the battery cell includes an end cap assembly, the end cap assembly includes a first surface, the first surface is a surface of the end cap assembly facing away from the first cross bar, and along the second direction, the second cross bar is arranged to protrude from the first surface.
  • the bracket is arranged between two adjacent battery cells, the second cross bar protrudes from the first surface of the end cover assembly, and the second cross bar can abut against the side of the end cover assembly to prevent warping or peeling of the edge of the end cover assembly.
  • the second crossbar includes a second surface, the second surface is a surface of the second crossbar facing away from the first crossbar, and along the second direction, a vertical distance between the second surface and the first surface is H5, a vertical distance H5 between the second surface and the first surface satisfies: 0.3mm ⁇ H5 ⁇ 0.6mm.
  • the second crossbar is easily lifted up by the edge of the end cap assembly that is warped or peeled off, resulting in a weakened fixing effect of the bracket on the battery cell; if the vertical distance H5 between the second surface of the second crossbar and the first surface of the end cap is greater than 0.6mm, the protruding distance of the second crossbar is too large, which hinders the installation of other components in the battery module, such as the wiring harness isolation plate needs to be installed on the side of the end cap away from the first crossbar.
  • the protruding distance of the second crossbar is too large, it will cause the wiring harness isolation plate to be lifted up.
  • the vertical distance H5 between the second surface of the second crossbar and the first surface of the end cap assembly satisfies: 0.3mm ⁇ H5 ⁇ 0.6mm, ensuring that the second crossbar can be firmly restricted at the edge of the end cap assembly, preventing the second crossbar from being lifted up when the edge of the end cap assembly is warped, and avoiding the protruding distance of the second crossbar being too large to affect the installation of other components in the battery module.
  • the battery cell includes an end cap assembly, a shell and an electrode assembly, the shell forms a receiving space, the electrode assembly is received in the receiving space, the end cap assembly covers the shell and is installed in two battery cells on the same bracket, and the connection between the end cap assembly and the shell is located within the second cross bar in an orthographic projection along the first direction.
  • connection between the end cover assembly and the shell is projected within the second cross bar along the first direction, so that part of the structure of the second cross bar can cover the connection between the end cover assembly and the shell, ensuring that the second cross bar can protrude from the connection between the end cover assembly and the shell, avoiding excessive bulging between the two battery cells on both sides of the second cross bar to squeeze the second cross bar, and the second cross bar to squeeze the side of the shell toward the bracket, causing tearing at the weld between the end cover assembly and the shell, thereby improving the safety of the battery module.
  • an embodiment of the present application provides an energy storage device, which includes the battery module as described in the first aspect.
  • a bracket is arranged between two adjacent battery cells, and the two adjacent battery cells are clamped and fixed by the bracket, so as to reduce or avoid the shaking of the battery cells inside the battery module due to the vibration of the battery module, ensure that the battery cells can be fixed intact in the battery module without deformation that damages the performance, and ensure the service life of the battery cells.
  • a first R angle is formed at the connection between the side plate and the panel, and a second R angle opposite to the first R angle is formed on the side of each vertical rod close to the battery cell, and the second R angle is greater than the first R angle, so that there is a gap between the vertical rod and the battery cell; and the width of the frame extending along the third direction is less than the width of the battery cell extending along the third direction, in other words, the spacing between the outer sides of the two vertical rods on the frame is less than the width of the battery cell extending along the third direction, so that the frame shrinks relative to the battery cell in the third direction, and there is a gap between the frame and the battery cell along the third direction, and the gap between the frame and the battery cell along the third direction is connected to the gap between the vertical rod and the battery cell, and the gap between the frame and the battery cell along the third direction and the gap between the vertical rod and the battery cell can be filled with thermal conductive glue, and the battery cell and the bracket are bonded and fixed by the thermal conductive glue,
  • the heat generated by the charging and discharging of the battery cell can also be dissipated by the thermal conductive glue, so as to avoid the heat generated by the battery cell from damaging the battery cell performance.
  • the second R angle is greater than the first R angle, which means that the radius of the second R angle is greater than the radius of the first R angle.
  • an embodiment of the present application provides an electrical device, wherein the electrical device comprises an energy storage device as described in the second aspect, and the energy storage device is used to supply power to the electrical device.
  • a bracket is arranged between two adjacent battery cells, and the two adjacent battery cells are clamped and fixed by the bracket, so as to reduce or avoid the shaking of the battery cells inside the battery module due to the vibration of the battery module, ensure that the battery cells can be fixed in the battery module intact without deformation that damages the performance, and ensure the service life of the battery cells.
  • a first R angle is formed at the connection between the side plate and the panel, and a second R angle is formed on the vertical rod opposite to the first R angle, and the second R angle is larger than the first R angle, so that there is a gap between the vertical rod and the battery cell; and the width of the frame extending along the third direction is smaller than the width of the battery cell extending along the third direction.
  • the width of the extension in other words, the spacing between the outer sides of the two vertical rods on the frame is smaller than the width of the battery cell extending along the third direction, so that the frame shrinks relative to the battery cell in the third direction, and there is a gap between the frame and the battery cell along the third direction.
  • the gap between the frame and the battery cell along the third direction is connected to the interval between the vertical rod and the battery cell.
  • the gap between the frame and the battery cell along the third direction and the interval between the vertical rod and the battery cell can be filled with thermal conductive adhesive, and the battery cell and the bracket are bonded and fixed by the thermal conductive adhesive to improve the bonding strength between the bracket and the battery cell, improve the structural stability of the battery cell and the bracket, avoid the battery cell from shaking in the battery module, and avoid damage to the battery cell performance.
  • the heat generated by the charging and discharging of the battery cell can also be dissipated by the thermal conductive adhesive to avoid the heat generated by the battery cell causing damage to the battery cell performance.
  • the second R angle is greater than the first R angle, which means that the radius of the second R angle is greater than the radius of the first R angle.
  • FIG1 is a schematic diagram of a scenario of an electric device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a three-dimensional structure of a battery module provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a three-dimensional exploded structure of the battery module shown in FIG2 ;
  • FIG4 is a schematic diagram of a three-dimensional exploded structure of the battery module shown in FIG3 ;
  • FIG5 is a schematic diagram of a three-dimensional structure of a bracket in a battery module provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a partial cross-sectional structure of a bracket in the battery module shown in FIG. 3 along line IV-IV;
  • FIG7 is an enlarged schematic diagram of the battery module at position VII shown in FIG2 ;
  • FIG8 is another schematic diagram of a three-dimensional structure of a battery module provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a three-dimensional exploded structure of the battery module shown in FIG8;
  • FIG10 is an enlarged schematic diagram of the battery module at X shown in FIG5 ;
  • FIG11 is an enlarged schematic diagram of the battery module shown in FIG5 at point XI;
  • FIG12 is a schematic diagram of a partial cross-sectional structure of the battery module shown in FIG2 along line XII-XII;
  • FIG. 13 is an enlarged schematic diagram of point XIII in the battery module described in FIG. 12 .
  • First direction A First direction B, third direction C; first width W1, first height H1, second height H2, first length L1, second length L2, third height H3, fourth height H4, second width W2, third width W3, vertical distance H5;
  • Battery module 100 battery cell group 10, battery cell 11, bottom plate 111, panel 112, side plate 113, second side surface 1131, first R angle 114, third R angle 115, fourth R angle 116, end cap assembly 13, first surface 131, top patch 132, end cap 133, shell 14, receiving space 141, electrode assembly 15, bracket 30, frame 31, vertical rod 311, second R angle 3111, first side surface 3112, first end 3113, second end 3114, first projection 312, first straight line segment 3121, second Straight line segment 3122, arc segment 3123, first cross bar 313, second cross bar 315, second surface 3151, recess 3152, accommodating space 32, groove 33, first positioning fixture 34, first plate 341, second plate 343, fifth R angle 345, second positioning fixture 35, third plate 351, fourth plate 353, clamping portion 355,
  • connection and “coupling” mentioned in this application, unless otherwise specified, include direct and indirect connections (couplings).
  • the main way to generate green electricity is to develop green energy such as photovoltaics and wind power to replace fossil energy.
  • the generation of green electricity generally relies on photovoltaics, wind power, water potential, etc., while wind and solar energy generally have strong intermittent and volatile problems, which will cause instability in the power grid, insufficient electricity during peak hours, too much electricity during low hours, and unstable voltage will also cause damage to electricity.
  • this solution provides an energy storage device 1000, which is equipped with a chemical battery.
  • the chemical elements in the chemical battery are mainly used as energy storage media.
  • the charging and discharging process is accompanied by chemical reactions or changes in the energy storage medium.
  • the electricity generated by wind energy and solar energy is stored in the chemical battery.
  • the use of external electricity reaches a peak, the stored electricity is released for use, or transferred to places where electricity is scarce for use.
  • energy storage i.e., energy storage
  • power generation side energy storage grid side energy storage
  • renewable energy grid-connected energy storage renewable energy grid-connected energy storage
  • user side energy storage user side energy storage.
  • the corresponding types of energy storage devices 1000 include:
  • FIG1 is a schematic diagram of a scenario of an energy storage device 1000 provided in an embodiment of the present application.
  • the energy storage device 1000 of the present application is not limited to a household energy storage scenario.
  • the present application provides a household energy storage system, which includes an electric energy conversion device (photovoltaic panel 2000), a user load (street lamp 3000a), a user load (household appliance 3000b), etc. and an energy storage device 1000, which is a small energy storage box that can be mounted on an outdoor wall by wall hanging.
  • the photovoltaic panel 2000 can convert solar energy into electric energy during the period of low electricity prices, and the energy storage device 1000 is used to store the electric energy and supply it to electrical equipment such as street lamps 3000a and household appliances 3000b for use during peak electricity prices, or to supply power when the power grid is out of power/power outage.
  • the energy storage device 1000 may include but is not limited to a single cell, a battery module, a battery pack, a battery system, etc.
  • the energy storage device 1000 may be a square battery.
  • the energy storage device 1000 includes a battery module 100 provided in an embodiment of the present application, and the battery module 100 includes a battery cell group 10 and a bracket 30.
  • the battery cell group 10 includes a plurality of battery cells 11 arranged along a first direction A, and each battery cell 11 includes a bottom plate 111 arranged on one side along a second direction B, two panels 112 arranged oppositely along the first direction A, and two side plates 113 arranged oppositely along a third direction C.
  • the two panels 112 and the two side plates 113 are fixedly connected to the bottom plate 111, and the first direction A, the second direction B and the third direction C are perpendicular to each other; a first R angle 114 is formed at the connection between the side plate 113 and the panel 112.
  • the bracket 30 is arranged between two adjacent battery cells 11, and the bracket 30 includes a frame body 31. Along the third direction C, the width of the frame body 31 is smaller than the width of the battery cell 11.
  • the frame body 31 includes two vertical rods 311 arranged opposite to each other along the third direction C.
  • a second R angle 3111 opposite to the first R angle 114 is formed on a side of each vertical rod 311 close to the battery cell 11, and the second R angle 3111 is larger than the first R angle 114.
  • first direction A is the length direction of the battery module 100, such as the A direction shown in FIG2 .
  • the second direction B is the height direction of the battery module 100, such as the B direction shown in FIG2 .
  • the third direction C is the width direction of the battery module 100, such as the C direction shown in FIG2 , and the first direction A, the second direction B and the third direction C are perpendicular to each other.
  • a bracket 30 is set between two adjacent battery cells 11, and the two adjacent battery cells 11 are clamped and fixed by the bracket 30 to reduce or avoid the shaking of the battery cell 11 inside the battery module 100 due to the vibration of the battery module 100, thereby ensuring that the battery cell 11 can be intactly fixed in the battery module 100 without deformation that damages the performance, thereby ensuring the service life of the battery cell 11.
  • a first R angle 114 is formed at the connection between the panel 112 and the side panel 113, and a second R angle 3111 opposite to the first R angle 114 is formed on the side of each vertical rod 311 close to the battery cell 11, and the second R angle 3111 is larger than the first R angle 114, so that there is a gap between the vertical rod 311 and the battery cell 11; and the width of the frame 31 extending along the third direction C is smaller than the width of the battery cell 11 extending along the third direction C.
  • the distance between the outer sides of the two vertical rods 311 on the frame 31 is smaller than the width of the battery cell 11 extending along the third direction C, so that the frame 31 is relatively close to the battery cell.
  • the gap between the frame 31 and the battery cell 11 along the third direction C is connected to the interval between the vertical rod 311 and the battery cell 11.
  • the gap between the frame 31 and the battery cell 11 along the third direction C and the interval between the vertical rod 311 and the battery cell 11 can be filled with thermal conductive adhesive, and the battery cell 11 and the bracket 30 are bonded and fixed by the thermal conductive adhesive, so as to improve the bonding strength between the bracket 30 and the battery cell 11, improve the structural stability of the battery cell 11 and the bracket 30, avoid the battery cell 11 from shaking in the battery module 100, and avoid the performance of the battery cell 11 from being damaged.
  • the heat generated by the charging and discharging of the battery cell 11 can also be dissipated by the thermal conductive adhesive, so as to avoid the heat generated by the battery cell 11 from damaging the performance of the battery cell 11.
  • the second R angle 3111 is greater than the first R angle 114, which means that the radius of the second R angle 3111 is greater than the radius of the first R angle 114.
  • a ratio of the first R angle 114 to the second R angle 3111 is S1
  • the ratio S1 of the first R angle 114 to the second R angle 3111 satisfies: 1/2 ⁇ S1 ⁇ 2/3.
  • the first R angle 114 is an R angle
  • the size of the first R angle 114 is the radius of the first R angle 114
  • the size of the second R angle 3111 is the radius of the second R angle 3111. If the ratio S1 of the first R angle 114 to the second R angle 3111 is less than 1/2, the gap between the frame 31 and the battery cell 11 along the third direction C is too small, the amount of thermal conductive glue filled in the gap is too small, the connection strength between the battery cell 11 and the bracket 30 will be reduced, and the battery cell 11 may be separated from the bracket 30. If the battery module 100 vibrates, the battery cell 11 is easy to be separated from the bracket 30 and shake in the battery module 100, resulting in impaired performance of the battery cell 11.
  • the ratio S1 of the first R angle 114 to the second R angle 3111 is greater than 2/3, the internal space of the battery cell 11 is reduced, and the energy density in the battery cell 11 is correspondingly reduced.
  • the ratio S1 of the first R angle 114 and the second R angle 3111 satisfies 1/2 ⁇ S1 ⁇ 2/3.
  • the gap between the frame 31 and the battery cell 11 along the third direction C has enough space to fill the thermal conductive adhesive, thereby improving the connection strength between the battery cell 11 and the bracket 30, and preventing the battery cell 11 from shaking inside the battery module 100 due to the vibration of the battery module 100, thereby reducing or avoiding the situation where the battery performance is damaged due to shaking; on the other hand, it ensures that the battery cell 11 has sufficient energy density inside, thereby effectively improving the energy density of the battery cell 11.
  • the vertical rod 311 has a first projection 312 in the second direction B.
  • the first projection 312 is formed by a first straight line segment 3121, a second straight line segment 3122 and two arc segments 3123.
  • the first straight line segment 3121 is larger than the second straight line segment 3122.
  • the first straight line segment 3121 and the second straight line segment 3122 are located on opposite sides of the first projection 312 in the third direction C.
  • the two arc segments 3123 are located on opposite sides of the first projection 312 in the first direction A.
  • Each arc segment 3123 forms a corresponding second R angle 3111.
  • the projection along a certain direction mentioned in this application may be an orthographic projection on a plane perpendicular to the certain direction.
  • the first projection 312 of the vertical rod 311 in the second direction B may be: the first projection 312 of the vertical rod 311 on a plane perpendicular to the second direction B.
  • the first straight line segment 3121 is larger than the second straight line segment 3122, that is, the plane where the first straight line segment 3121 is located is larger than the plane where the second straight line segment 3122 is located, wherein the plane where the first straight line segment 3121 is located is connected to the end plate 70 through insulating glue, thus improving the connection strength between the end plate 70 and the vertical rod 311.
  • the two arc segments 3123 can be used to cooperate with the battery cells 11 installed on opposite sides of the bracket 30, so as to facilitate filling the thermal conductive glue between the battery cells 11 and the surfaces where the arc segments 3123 are located, so as to achieve the adhesive connection between the bracket 30 and the battery cells 11, and to dissipate heat from the battery cells.
  • the bracket 30 is formed with an accommodating space 32, each vertical rod 311 has a first side 3112 away from the accommodating space 32, each side plate 113 has a second side 1131, and on the same side of the battery cell 11 along the third direction C, the first side 3112 and the second side 1131 have a gap extending along the third direction C, and the first width of the gap extending in the third direction C is W1, and the first width W1 of the gap satisfies: 0.5mm ⁇ W1 ⁇ 1.0mm.
  • the second R angle 3111 on the vertical rod 311 cooperates with the first R angle 114 at the first side 3112, and on the vertical rod 311 and the side plate 113 that cooperate with each other, there is a gap between the first side 3112 and the second side 1131 along the third direction C, and the gap between the frame 31 and the battery cell 11 along the third direction C is: the sum of the gaps on both sides of the battery cell 11.
  • the two vertical rods 311 of the bracket 30 are retracted relative to the battery cell 11, and a gap is formed.
  • the value of the first width W1 of the gap extending along the third direction C satisfies 0.5 mm ⁇ W1 ⁇ 1.0 mm. While ensuring that the bracket 30 can On the premise that the battery cell 11 can be clamped and fixed, it is ensured that the gap is filled with sufficient thermal conductive glue, the connection strength between the vertical rod 311 and the end plate 70 is improved, and the structural stability of the battery module 100 is improved.
  • the bracket 30 further includes a groove 33 , which is disposed near a connection between the vertical rod 311 and the second cross rod 315 , and a projection shape of the groove 33 in the second direction B is an arc.
  • the groove 33 is disposed at the connection between the vertical rod 311 and the second horizontal rod 315 , and the groove 33 is closer to the vertical rod 311 .
  • the bracket 30 is an injection-molded part, and the projection shape of the groove 33 in the second direction B is an arc, and the groove 33 is close to the connection between the vertical rod 311 and the second cross rod 315, so that after the connection between the second cross rod 315 and the vertical rod 311 is demolded and cooled, there will be no local shrinkage, thereby avoiding distortion of the bracket 30 due to shrinkage and improving the structural strength of the bracket 30.
  • the bracket 30 includes a first positioning clamp 34 and a second positioning clamp 35.
  • the first positioning clamp 34 is arranged at the opposite ends of the first cross bar 313 along the third direction C, and the first positioning clamp 34 supports the battery cell 11;
  • the second positioning clamp 35 is arranged at the opposite ends of the second cross bar 315 along the third direction C, the battery cell 11 includes an end cover assembly 13, and the second positioning clamp 35 abuts against the end cover assembly 13.
  • the first positioning clamp 34 and the second positioning clamp 35 can protect the four corners of the battery cell 11 to prevent the end cover assembly 13 from warping and peeling off at the four corners of the battery cell 11, thereby ensuring the stability of the connection of the battery cell 11 and further ensuring the safety of the battery module 100.
  • the first height H1 between the first positioning fixture 34 and the second positioning fixture 35 is greater than the second height H2 of the end plate.
  • an assembly gap of the end plate is reserved to facilitate the bonding of the end plate 70 with the vertical rod 311 of the bracket 30.
  • the end plate is installed at both ends of the battery cell 11 along the third direction C.
  • a first height H1 between the first positioning fixture 34 and the second positioning fixture 35 and a second height H2 of the end plate 70 extending therefrom satisfy: 1.5 mm ⁇ H1-H2 ⁇ 3.0 mm.
  • H1-H2 represents the difference between the first height H1 between the first positioning fixture 34 and the second positioning fixture 35 and the second height H2 of the end plate 70, and H1-H2 satisfies: 1.5mm ⁇ H1-H2 ⁇ 3.0mm. If H1-H2 is less than 1.5mm, the installation difficulty of the end plate 70 increases; if H1-H2 is greater than 3.0mm, the assembly gap between the end plate 70 and the first positioning fixture 34 or the end plate 70 and the second positioning fixture 35 is too large, and the end plate 70 is easy to break away from the limitation of the first positioning fixture 34 and the second positioning fixture 35.
  • the first positioning clamp 34 includes a first plate 341 and a second plate 343 arranged at an angle.
  • the projection of the first plate 341 along the second direction B is located at two opposite sides of the projection of the first cross bar 313 in the first direction A.
  • the first plate 341 is arranged at the first end 3113 of the vertical rod 311 away from the second cross bar 315 in the second direction B, and is arranged on a side of the first cross bar 313 away from the accommodating space 32 in the second direction B.
  • the first plate 341 extends from the first end 3113 toward the accommodating space 32 along the third direction C, and the first plate 341 supports the battery cell 11; the projection of the second plate 343 along the third direction C is located at two opposite sides of the projection of the vertical rod 311 in the first direction A.
  • the second plate 343 is arranged on a side of the vertical rod 311 away from the accommodating space 32 in the third direction C, and extends from the connection between the first plate 341 and the second plate 343 toward the second cross bar 315.
  • the projection of the second plate 343 along the third direction C is located on the opposite sides of the projection of the vertical rod 311 along the third direction C (specifically, the opposite sides of the vertical rod 311 in the first direction A).
  • the second plate 343 can limit the bottom of the two battery cells 11 on both sides of the first cross bar 313 in the third direction C, wherein the bottom of the battery cell 11 is the end of the battery cell 11 away from the end cover assembly 13, preventing the battery cell 11 from escaping from the range limited by the bracket 30, ensuring that the bracket 30 can firmly clamp and fix the two battery cells 11.
  • At least one first reinforcement member 36 is provided at the connection between the first plate 341 and the first cross bar 313 to increase the structural strength of the corner where the first plate 341 and the first cross bar 313 are connected, and to avoid the first plate 341 from being concave, resulting in unevenness between the multiple battery cells 11, affecting the electrical connection between the bar pieces when the multiple battery cells 11 are composed, and prone to welding leaks and cold welding between the bar pieces and the poles due to different heights.
  • each first reinforcement member 36 is provided with a first arc surface 361 facing the battery cell 11, the first arc surface 361 is adapted to the third R angle 115, the third R angle 115 is in contact with the first arc surface 361, and the first arc surface 361 is provided to reserve assembly space for the assembly of the battery cell 11, so as to avoid the first reinforcement member 36 hindering the assembly of the battery cell 11 and the first positioning card 34.
  • the wall thickness of the bracket 30 where the first reinforcement member 36 is arranged will increase, and uneven cooling of the wall thickness during the injection molding process may easily cause The thicker area shrinks, causing the bracket 30 to deform and affecting the stability of the entire bracket 30 structure.
  • Multiple first reinforcement members 36 are arranged at intervals to avoid the appearance of a concave shrinkage hole on the back of the first plate 341, which causes the first plate 341 to sag, resulting in unevenness between the multiple battery cells 11, affecting the electrical connection between the multiple battery cells 11 and the bar piece when they are assembled, and easily causing welding leaks and cold welding between the bar piece and the pole due to inconsistent height.
  • a fourth R angle 116 is formed between the side plate 113 and the bottom plate 111.
  • the first positioning card 34 has a fifth R angle 345 opposite to the fourth R angle 116.
  • the fifth R angle 345 is arranged at the connection between the first plate body 341 and the second plate body 343.
  • the fifth R angle 345 is smaller than the fourth R angle 116.
  • the fifth R angle 345 is opposite to the fourth R angle 116 , and the fifth R angle 345 is smaller than the fourth R angle 116 , so that two side surfaces of the fourth R angle 116 can fit the bracket 30 , thereby improving the stability of the connection between the battery cell 11 and the bracket 30 .
  • the ratio of the fifth R angle 345 to the fourth R angle 116 is S2, and the ratio S2 of the fifth R angle 345 to the fourth R angle 116 satisfies: 1/2 ⁇ S2 ⁇ 2/3.
  • the fourth R angle 116 and the fifth R angle 345 are both R angles, the size of the fourth R angle 116 is the radius of the fourth R angle 116 , and the size of the fifth R angle 345 is the radius of the fifth R angle 345 . If the ratio S2 of the fifth R angle 345 to the fourth R angle 116 is less than 1/2, when the fourth R angle 116 and the fifth R angle 345 are matched, the gap between the fourth R angle 116 and the fifth R angle 345 is too large, and the first plate 341 needs to support the battery cell 11.
  • the large gap can easily cause the first plate 341 to deform, resulting in unevenness between two adjacent battery cells 11 in the second direction B, affecting the electrical connection stability between the battery cells 11 and the tabs when they are assembled; if the ratio S2 of the fifth R angle 345 to the fourth R angle 116 is greater than 2/3, when the bottom of the battery cell 11 abuts against the first plate 341, one of the two side surfaces at the fourth R angle 116 will not be able to fit the second plate 343, and the overall structural stability of the battery cell 11 and the bracket 30 is poor.
  • the sizes of the first R angle 114, the third R angle 115 and the fourth R angle 116 may be the same or different.
  • the sizes of the first R angle 114 and the third R angle 115 are the same
  • the size of the fourth R angle is different from the first R angle 114 and the third R angle 115
  • the sizes of the first R angle 114, the third R angle 115 and the fourth R angle 116 are all different.
  • the second positioning clamp 35 includes a third plate 351 and a fourth plate 353 arranged at an angle.
  • the projection of the third plate 351 along the second direction B is located on opposite sides of the projection of the second cross bar 315 in the first direction A.
  • the third plate 351 is arranged on the second end 3114 of the vertical rod 311 away from the first cross bar 313 in the second direction B, and extends from the second end 3114 toward the accommodating space 32 along the third direction C.
  • the side of the third plate 351 facing the first cross bar 313 abuts against the end cover assembly 13; the projection of the fourth plate 353 along the third direction C is located on opposite sides of the projection of the vertical rod 311 in the first direction A.
  • the fourth plate 353 is arranged on the side of the vertical rod 311 away from the accommodating space 32 in the third direction C, and extends from the connection between the third plate 351 and the fourth plate 353 toward the direction of the first cross bar 313.
  • the second positioning fixture 35 is composed of a third plate 351 and a fourth plate 353 which are arranged at an angle, for example, the third plate 351 and the fourth plate 353 can be perpendicular to each other.
  • the projection of the third plate 351 along the second direction B is located on the opposite sides of the projection of the second crossbar 315 along the second direction B (specifically, the opposite sides of the projection of the second crossbar 315 along the first direction A), so that the side of the third plate 351 facing the first crossbar 313 can abut against the surfaces of the two battery cells 11 on the opposite sides of the second crossbar 315 along the first direction A, thereby preventing the edges of the end cap assembly 13 of the battery cell 11 from warping and peeling.
  • the projection of the fourth plate 353 along the third direction C is located on the opposite sides of the projection of the vertical rod 311 along the third direction C (specifically, the opposite sides of the vertical rod 311 along the first direction A).
  • the fourth plate 353 can limit the tops of the two battery cells 11 on both sides of the second cross bar 315 in the third direction C, wherein the top of the battery cell 11 is the end of the battery cell 11 close to the end cover assembly 13, to prevent
  • the battery cells 11 are out of the range defined by the bracket 30 , ensuring that the bracket 30 can firmly clamp and fix the two battery cells 11 .
  • the second positioning clamp 35 also includes a first clamping portion 355, which extends from the end of the third plate body 351 away from the fourth plate body 353 in the third direction C in a direction away from the first cross bar 313.
  • the first clamping portion 355 has a clamping groove 3551 and a guide slope 3553. The opening of the clamping groove 3551 is away from the accommodating space 32 in the third direction C.
  • the battery module 100 also includes a cover body 80, and the cover body 80 is provided with a second clamping portion 81.
  • the second clamping portion 81 can extend into the clamping groove 3551 along the guide slope 3553 and cooperate with the first clamping portion 355 to be connected.
  • the first clamping portion 355 is arranged at the end of the third plate 351 away from the fourth plate 353 in the third direction C, that is, the first clamping portion 355 and the fourth plate 353 are located at opposite ends of the third plate 351 along the third direction C, and along the third direction C, the first clamping portion 355 is closer to the battery cell 11 than the fourth plate 353, so that the clamping groove 3551 and the guide slope 3553 formed by the first clamping portion 355 will not protrude from the side of the battery cell 11.
  • the size of the cover body 80 of the battery module 100 can be reduced, the volume of the battery module 100 can be further reduced, and the energy density of the battery module 100 can be improved.
  • the second clamping portion 81 can be a through hole adapted to the first clamping portion 355, and the clamping groove 3551 and the guide slope 3553 together form a hook, which is clamped in the through hole and snapped onto the side wall of the through hole to achieve the mating connection between the first clamping portion 355 and the second clamping portion 81.
  • the battery module 100 further includes a wiring harness isolation plate 90 , and along the third direction C, the distance between the two first clamping portions 355 is greater than the width of the extension of the wiring harness isolation plate 90 .
  • the distance between the two first clip portions 355 located at both ends of the second cross bar 315 is greater than the extended width of the wiring harness isolation plate 90, so that the wiring harness isolation plate 90 is located between the two first clip portions 355.
  • the cover body 80 can cover the wiring harness isolation plate 90.
  • the first length of the accommodating space 32 is L1
  • the second length of the thermal insulation pad 50 is L2
  • the first length L1 of the accommodating space 32 and the second length L2 of the thermal insulation pad 50 satisfy: 2.3mm ⁇ L1-L2 ⁇ 3.1mm.
  • the first cross bar 313, one of the vertical bars 311, the second cross bar 315 and the other vertical bar 311 are fixedly connected in sequence to form a square bracket 30, and the bracket 30 is used to fix and tighten two adjacent battery cells 11, and the first cross bar 313, the second cross bar 315 and the two vertical bars 311 together form a accommodating space 32, wherein the length L2 of the thermal insulation pad 50 extending along the first direction A is less than the first length L1 of the accommodating space 32 extending along the first direction A.
  • the difference between the first length L1 of the accommodating space 32 extending along the first direction A and the second length L2 of the thermal insulation pad 50 extending along the first direction A is less than 2.3mm (i.e., L1-L2 ⁇ 2.3mm), the expansion space reserved for the battery cells 11 on both sides is too small, and when the battery cell 11 expands within the safe expansion distance during the charging and discharging process, the expanded battery cell 11 is easily squeezed by the thermal insulation pad 50, resulting in an increase in the expansion pressure of the battery cell 11, thereby reducing the safety of the battery module 100.
  • L1-L2>3.1mm the interval between the thermal insulation pad 50 and the battery cells 11 on both sides is too large, and the battery cells 11 expand during the charging and discharging process.
  • the battery cells 11 are not subject to certain constraints during the expansion process, resulting in excessive protrusion of the surface of the battery cells 11 within the safe expansion distance, and the electrolyte infiltration effect is poor, resulting in lithium deposition on the electrodes in the battery cells 11, reducing the service life of the battery cells 11, and the interval between the thermal insulation pad 50 and the battery cells 11 on both sides is too large, the battery cells 11 on both sides cannot exchange heat with the thermal insulation pad 50, and the thermal insulation effect is poor.
  • the first length L1 of the accommodating space 32 and the second length L2 of the thermal insulation pad 50 satisfy 2.3mm ⁇ L1-L2 ⁇ 3.1mm, ensuring that a certain amount of space is reserved after the thermal insulation pad 50 is installed in the accommodating space 32.
  • the installation position of the thermal insulation pad 50 can be adjusted to ensure that there is a certain interval between the thermal insulation pad 50 and the two adjacent battery cells 11, so as to avoid the thermal insulation pad 50 from squeezing the battery cell 11 that expands within the safe expansion distance, reduce the expansion pressure of the battery cell 11, and improve the safety of the battery module 100.
  • the thermal insulation pad 50 can also restrain the battery cell 11 from excessively protruding within the safe expansion distance during the charging and discharging process, so that the battery cell 11 remains flat during the charging and discharging process, and the electrolyte infiltration effect is better, which can reduce Lithium is deposited, thereby extending the number of charge and discharge cycles of the battery cell 11.
  • the third height of the accommodating space 32 extending is H3, and the fourth height of the thermal insulation pad 50 extending is H4.
  • the third height H3 of the accommodating space 32 extending and the fourth height H4 of the thermal insulation pad 50 extending satisfy: 1.5mm ⁇ H3-H4 ⁇ 5.0mm; along the third direction C, the second width of the accommodating space 32 extending is W2, and the third width of the thermal insulation pad 50 extending is W3.
  • the second width W2 of the accommodating space 32 extending and the third width W3 of the thermal insulation pad 50 extending satisfy 1.5mm ⁇ W2-W3 ⁇ 5.0mm.
  • a certain deformation space is reserved between the accommodating space 32 and the thermal insulation pad 50.
  • the thermal insulation pad 50 can be placed in the accommodating space 32 without high operating precision, and the thermal insulation pad 50 is elastic and deformable. When two adjacent battery cells 11 expand relatively, squeezing the thermal insulation pad 50 will cause the thermal insulation pad 50 to deform.
  • the fourth height H4 of the thermal insulation pad 50 along the second direction B and the third width W3 along the third direction C will increase, and a certain deformation space needs to be reserved.
  • deformation space is reserved in the second direction B and the third direction C, so that the thermal insulation pad 50 is easier to be squeezed and deformed by the battery cell 11, and will not affect the expansion of the battery cell 11, thereby improving the service life of the battery cell 11.
  • the deformation space of the thermal insulation pad 50 along the second direction B is too small, which affects the deformation of the thermal insulation pad 50 and indirectly affects the expansion gap of the battery cell 11, thereby affecting the cycle performance of the battery cell 11;
  • the difference between the third height H3 of the accommodating space 32 and the fourth height H4 of the thermal insulation pad 50 is greater than 5.0 mm (i.e., H3-H4 ⁇ 1.5 mm), the deformation space of the thermal insulation pad 50 along the second direction B is too large, and the thermal insulation effect of the thermal insulation pad 50 is poor;
  • the difference between the third height H3 of the accommodating space 32 and the fourth height H4 of the thermal insulation pad 50 is greater than or equal to 1.5 mm and less than or equal to 5.0 mm (i.e., H3-H4>5.0 mm), which makes
  • the deformation space of the thermal insulation pad 50 along the third direction C is too small, which affects the deformation of the thermal insulation pad 50 and indirectly affects the expansion gap of the battery cell 11, thereby affecting the cycle performance of the battery cell 11;
  • the third direction C if the difference between the second width W2 of the accommodating space 32 and the third width W3 of the thermal insulation pad 50 is greater than 5.0 mm, the deformation space of the thermal insulation pad 50 along the third direction C is too large, and the thermal insulation effect of the thermal insulation pad 50 is poor;
  • the second width W2 of the accommodating space 32 and the third width W3 of the thermal insulation pad 50 satisfy 1.5 mm ⁇ W2-W3 ⁇ 5.0 mm, so that the thermal insulation pad 50 is easier to deform and has a good thermal insulation effect, thereby ensuring the
  • the bracket 30 also includes a plurality of second reinforcement members 37, and the plurality of second reinforcement members 37 are arranged on the second cross bar 315.
  • the second cross bar 315 is formed with a plurality of recesses 3152 extending along the third direction C.
  • the recesses 3152 are recessed from a surface of the second cross bar 315 close to the battery cell 11 in a direction away from the battery cell 11, and a second reinforcement member 37 is formed between two adjacent recesses 3152.
  • the second crossbar 315 is provided with battery cells 11 on both sides of the first direction A, and multiple recesses 3152 are formed on both sides of the second crossbar 315 on the first direction A.
  • a surface of the second crossbar 315 close to the left battery cell 11 is the left side surface, and the multiple recesses 3152 on the left side are recessed in a direction away from the left battery cell 11.
  • a surface of the second crossbar 315 close to the right battery cell 11 is a side surface, and the multiple recesses 3152 on the right side are recessed in a direction away from the right battery cell 11.
  • a plurality of second reinforcement members 37 are provided on the second cross bar 315 to strengthen the structural strength of the second cross bar 315 and effectively limit the excessive bulging of the two battery cells 11 on both sides of the second cross bar 315 which would cause the second cross bar 315 to be lifted up, thereby ensuring that the second cross bar 315 can be firmly restrained at the edge of the end cover assembly 13 and avoiding tearing at the welding joint between the end cover assembly 13 and the shell of the battery cell 11, thereby improving the safety of the battery module 100.
  • the battery cell 11 includes an end cover assembly 13, and the end cover assembly 13 includes a first surface 131.
  • the first surface 131 is a surface of the end cover assembly 13 that is away from the first cross bar 313.
  • the second cross bar 315 is protruding from the first surface 131.
  • the orthographic projection of the connection between the end cap assembly 13 and the housing 14 along the first direction A is located inside the second crossbar 315 .
  • the orthographic projection of the connection between the top patch 132 and the housing 14 along the first direction A is located inside the second crossbar 315 .
  • the positive projection of the connection between the end cover assembly 13 and the shell 14 along the first direction A is located within the second cross bar 315, so that part of the structure of the second cross bar 315 can cover the connection between the end cover assembly 13 and the shell 14, ensuring that the second cross bar 315 can protrude from the connection between the end cover assembly 13 and the shell 14, so as to avoid excessive bulging between the two battery cells 11 located on both sides of the second cross bar 315 squeezing the second cross bar 315, and the second cross bar 315 squeezing the shell 14 toward the side of the bracket 30, resulting in tearing at the welding point between the end cover assembly 13 and the shell 14, thereby improving the safety of the battery module 100.
  • a portion of the structure of the second crossbar 315 protrudes from the first surface 131 , and the portion of the second crossbar 315 protruding from the first surface 131 may abut against a side edge of the top patch 132 .
  • the bracket 30 is disposed between two adjacent battery cells 11 , and the second cross bar 315 protrudes from the first surface 131 of the end cap assembly 13 .
  • the second cross bar 315 can abut against the side of the end cap assembly 13 to prevent the edge of the end cap assembly 13 from warping or peeling.
  • the second cross bar 315 includes a second surface 3151, and the second surface 3151 is the surface of the second cross bar 315 facing away from the first cross bar 313.
  • the vertical distance between the second surface 3151 and the first surface 131 is H5
  • the vertical distance H5 between the second surface 3151 and the first surface 131 satisfies: 0.3mm ⁇ H5 ⁇ 0.6mm.
  • the second cross bar 315 is easily lifted up by the edge of the end cover assembly 13 that is warped or peeled off, resulting in a weakened fixing effect of the bracket 30 on the battery cell 11; if the vertical distance H5 between the second surface 3151 of the second cross bar 315 and the first surface 131 of the end cover assembly 13 is greater than 0.6 mm, the protruding distance of the second cross bar 315 is too large, which hinders the installation of other components in the battery module 100, such as the wiring harness isolation plate 90 needs to be installed on the side of the end cover assembly 13 away from the first cross bar 313.
  • the protruding distance of the second cross bar 315 is too large, it will cause the wiring harness isolation plate 90 to warp up.
  • the vertical distance H5 between the second surface 3151 of the second cross bar 315 and the first surface 131 of the end cover assembly 13 satisfies 0.3mm ⁇ H5 ⁇ 0.6mm, ensuring that the second cross bar 315 can be firmly restrained at the edge of the end cover assembly 13 to prevent the second cross bar 315 from being lifted up when the edge of the end cover assembly 13 is warped, and to avoid the second cross bar 315 protruding too far to affect the installation of other components in the battery module 100.

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

电池模组(100)包括:电芯组(10)包括多个电芯(11),每一电芯(11)包括底板(111)、两个面板(112)和两个侧板(113),两个面板(112)和两个侧板(113)均固定连接于底板(111)上,侧板(113)与面板(112)的连接处形成有第一R角(114)。支架(30)设于相邻两个电芯(11)之间,支架(30)包括框体(31),框体(31)延伸的距离小于电芯(11)延伸的距离;框体(31)包括两个竖杆(311),每一竖杆(311)形成有与第一R角(114)相对的第二R角(3111),第一R角(114)与第二R角(3111)的开口朝向同一侧,第二R角(3111)大于第一R角(114)。

Description

电池模组、储能装置及用电设备 技术领域
本申请涉及储能器件技术领域,尤其涉及一种电池模组、储能装置及用电设备。
背景技术
电池模组中通常设置多个电芯,电池模组的结构需要对电芯起到支撑、固定和保护作用,确保能够完好固定电芯位置并保护其不发生有损性能的形变。如何考虑电芯在电池模组中的固定方式,防止电池模组振动影响电池模组内的电芯晃动成为亟需解决的问题。
发明内容
本申请实施方式提供一种能够减缓或避免电池模组振动而影响电芯晃动的电池模组、储能装置及用电设备。
第一方面,本申请实施方式提供一种电池模组,所述电池模组包括电芯组及支架。电芯组包括沿第一方向排列设置的多个电芯,每一所述电芯包括设于沿第二方向一侧的底板、两个沿所述第一方向相对设置的面板和两个沿第三方向相对设置的侧板,两个所述面板和两个所述侧板均固定连接于所述底板上,所述第一方向、所述第二方向和所述第三方向互相垂直;所述侧板与所述面板的连接处形成有第一R角;支架,设于相邻两个所述电芯之间,所述支架包括框体,沿所述第三方向,所述框体延伸的宽度小于所述电芯延伸的宽度,所述框体包括沿所述第三方向相对设置的两个竖杆,每一所述竖杆靠近所述电芯的一侧形成有与所述第一R角相对的第二R角,所述第一R角与所述第二R角的开口朝向同一侧;所述第二R角大于所述第一R角。
本申请提供的电池模组中,在相邻两个电芯之间设置支架,通过支架对相邻两个电芯进行夹紧固定,减缓或避免因电池模组振动而导致电芯在电池模组内部晃动的现象,保证电芯能够完好固定在电池模组内而不会发生有损性能的形变,保证电芯的使用寿命。另外,侧板与面板的连接处形成有第一R角,每一个竖杆靠近电芯的一侧形成有与第一R角相对的第二R角,第二R角大于第一R角,使得竖杆与电芯存在间隔;且框体沿第三方向延伸的宽度小于电芯沿第三方向延伸的宽度,换言之即框体上两个竖杆的外侧面的间距小于电芯沿第三方向延伸的宽度,使得框体在第三方向上相对电芯内缩,框体与电芯存在沿第三方向的间隙,框体与电芯的沿第三方向的间隙,和竖杆与电芯的间隔连通,框体与电芯的沿第三方向的间隙以及竖杆与电芯的间隔内可填充导热胶,通过导热胶将电芯与支架粘接固定,提升支架与电芯之间的粘接强度,提升电芯与支架的结构稳定性,避免电芯在电池模组内出现晃动,避免电芯性能受损。另外,电芯充放电产生的热量还可以通过导热胶进行散热,避免电芯产生的热量导致电芯性能受损。其中,第二R角大于第一R角,是指第二R角的半径大于第一R角的半径。
在一种可能的实施方式中,所述第一R角与所述第二R角的比值为S1,所述第一R角与所述第二R角的比值S1满足:1/2≤S1≤2/3。
本申请提供的电池模组中,可以理解,R角(第一R角或第二R角)的大小取值即为R角(第一R角或第二R角)的半径取值。若第一R角与第二R角的比值S1小于1/2,框体 与电芯的沿第三方向的间隙过小,间隙内填充的导热胶的量过少,电芯与支架之间的连接强度将会降低,电芯可能会脱离支架,若电池模组出现振动,电芯容易脱离支架在电池模组内晃动,导致电芯的性能受损。若第一R角与第二R角的比值S1大于2/3,电芯内部空间减少,电芯内的能量密度相应降低。本申请中,第一R角与第二R角的比值S1满足1/2≤S1≤2/3,一方面,保证框体与电芯的沿第三方向的间隙具有足够的空间填充导热胶,提升电芯与支架之间的连接强度,避免电芯因电池模组振动而在电池模组内晃动,减小或避免电池因晃动导致性能受损的情况;另一方面,确保电芯内部具有足够的能量密度,有效提升电芯的能量密度。
在一种可能的实施方式中,所述支架形成有容置空间,每一所述竖杆具有背离所述容置空间的第一侧面,每一所述侧板具有第二侧面,在所述电芯沿所述第三方向的同一侧上,所述第一侧面与所述第二侧面之间均具有沿所述第三方向延伸的间隙,所述间隙沿所述第三方向延伸的第一宽度为W1,所述间隙的第一宽度W1满足:0.5mm≤W1≤1.0mm。
本申请提供的电池模组中,可以理解,电芯沿第三方向具有相对的两侧,在同一侧上,竖杆上的第二R角与第一侧面处的第一R角配合,在相互配合的竖杆和侧板上,第一侧面与第二侧面沿第三方向上具有间隙,框体与电芯之间的沿第三方向的间隙为两侧的间隙之和。沿第三方向上,支架的两个竖杆相对电芯内缩,并形成有间隙,可在间隙内填充导热胶,将支架与电池模组的端板固定连接,提升支架与电池模组的端板之间的连接强度,提升电池模组的结构稳定性。另外,若间隙沿第三方向延伸的第一宽度W1小于0.5mm,间隙形成的空间过小,间隙内填充的导热胶体积过小,竖杆与端板之间的连接强度降低,端板容易脱落;若间隙沿第三方向延伸的第一宽度W1大于1.0mm,沿第三方向上,框体相对于电芯过于内缩,支架无法夹紧固定电芯。间隙沿第三方向延伸的第一宽度W1取值满足:0.5mm≤W1≤1.0mm,在保证支架能够夹紧固定电芯的前提下,保证间隙内填充足够的导热胶,提升竖杆与端板之间的连接强度,提升电池模组的结构稳定性。
在一种可能的实施方式中,所述支架还包括沿所述第二方向相对设置的第一横杆和第二横杆,两个所述竖杆沿所述第三方向相对设置,所述第一横杆、其中一个所述竖杆、所述第二横杆和另一个所述竖杆依次固定连接,所述第一横杆、所述第二横杆和两个所述竖杆共同形成所述容置空间,所述电池模组还包括隔热垫,所述隔热垫设于所述容置空间。
本申请提供的电池模组中,第一横杆、其中一个竖杆、第二横杆和另一个竖杆依次固定连接形成方形的框体。支架用于对相邻两个电芯进行固定加紧,且第一横杆、第二横杆和两个竖杆共同形成容置空间。支架可以提供放置隔热垫的容置空间,以通过隔热垫对相邻两个电芯进行隔热,防止高温工作的电芯因热失控扩散而降低电池模组的安全性能,提升电池模组的使用安全性。电芯在充放电过程中回出现膨胀及膨胀后回缩的现象,设置有容置空间的支架可以为相邻的两个电芯提供膨胀空间,减小电芯间的膨胀压力,减少防爆阀的误触发,提升电池模组的使用安全性和电池模组的使用寿命。
在一种可能的实施方式中,所述支架还包括凹槽,所述凹槽靠近所述竖杆与所述第二横杆的连接处,所述凹槽在所述第二方向上的投影形状为弧形。
本申请提供的电池模组中,支架为注塑件,凹槽沿第二方向的投影形状为弧形,且凹槽靠近竖杆与第二横杆的连接处,使得第二横杆与竖杆的连接处脱模冷却后,不会出现局部位置缩水,避免因缩水导致支架扭曲变形,提升支架的结构强度。
在一种可能的实施方式中,所述支架包括第一定位卡件和第二定位卡件,所述第一定位卡件设于所述第一横杆沿所述第三方向的相对两端,所述第一定位卡件支撑所述电芯;所述 第二定位卡件设于所述第二横杆沿所述第三方向的相对两端,所述电芯包括端盖组件,所述第二定位卡件抵接于所述端盖组件。
本申请提供的电池模组中,第一定位卡件设于第一横杆沿第三方向的相对两端,即,第一定位卡件设于第一横杆分别与两个竖杆连接的连接处,且第一定位卡件的数量为两个;第二定位卡件设于第二横杆沿第三方向的相对两端,即,第二定位卡件设于第二横杆分别与两个竖杆的连接处,综上,框体的其中两个拐角设有第一定位卡件,另两个拐角设有第二定位卡件,第一定位卡件和第二定位卡件可以对电芯的四个拐角进行保护,防止端盖组件位于电芯四个拐角处出现翘曲及剥离,确保电芯连接的稳定性,进而保证电池模组的使用安全性。
在一种可能的实施方式中,所述电池模组还包括端板,所述电芯组沿所述第三方向的两侧均安装有所述端板,沿所述第二方向上,所述第一定位卡件与所述第二定位卡件之间的第一高度为H1,所述端板延伸的第二高度为H2,所述第一定位卡件与所述第二定位卡件之间的第一高度H1大于所述端板延伸的第二高度H2,且所述第一定位卡件与所述第二定位卡件之间的第一高度H1,和所述端板延伸的第二高度H2满足:1.5mm≤H1-H2≤3.0mm。
本申请提供的电池模组中,沿第二方向,第一定位卡件与第二定位卡件之间的第一高度H1大于端板延伸的第二高度H2,电池模组组装完电芯组和支架后,预留端板的装配间隙,方便端板与支架的竖杆粘接。另外,端板安装于电芯组沿第三方向的两端,在框体与电芯的沿第三方向的间隙以及竖杆与电芯的间隔共同形成的空间内填充导热胶,可以实现支架、电芯与端板两两之间的连接。沿第二方向上,H1-H2表示第一定位卡件与第二定位卡件之间的第一高度H1、和端板延伸的第二高度H2之间的差值,且H1-H2满足:1.5mm≤H1-H2≤3.0mm。若H2-H2<1.5mm,端板安装难度增大;若H1-H2>3.0mm,端板与第一定位卡件或端板与第二定位卡件之间的装配间隙过大,端板容易脱离第一定位卡件与第二定位卡件的限定。本申请中,第一定位卡件与第二定位卡件之间的第一高度H1和端板延伸的第二高度H2之间的差值满足1.5mm≤H1-H2≤3.0mm,便于端板的安装,同时确保端板被县位于第一定位卡件和第二定位卡件之间,确保端板与竖杆的外侧面贴合,保证端板与竖杆的连接强度。
在一种可能的实施方式中,所述第一定位卡件包括呈夹角设置的第一板体和第二板体,沿所述第二方向所述第一板体的投影位于所述第一横杆的投影在所述第一方向上的相对两侧,所述第一板体设于所述竖杆沿所述第二方向上背离所述第二横杆的第一端部,且设于所述第一横杆沿所述第二方向上背离所述容置空间的一侧,所述第一板体自所述第一端部沿所述第三方向朝向所述容置空间延伸,所述第一板体支撑所述电芯;沿所述第三方向所述第二板体的投影位于所述竖杆的投影在所述第一方向上的相对两侧,所述第二板体设于所述竖杆在所述第三方向上背离所述容置空间的一侧,并自所述第一板体与所述第二板体的连接处朝向所述第二横杆延伸。
本申请提供的电池模组中,第一定位卡件由呈夹角设置的第一板体和第二板体,例如,第一板体和第二板体可以互相垂直。其中,第一板体沿第二方向的投影位于第一横杆沿第二方向的投影的相对两侧(具体为第一横杆的投影沿第一方向的相对两侧),如此,第一板体能够支撑位于第一横杆沿第一方向相对两侧的两个电芯。类似地,第二板体沿第三方向的投影位于竖杆沿第三方向的投影的相对两侧(具体为竖杆沿第一方向的相对两侧),如此,第二板体可以对第一横杆两侧的两个电芯的底部实现第三方向上的限位,其中,电芯的底部为电芯背离端盖组件的一端,防止电芯脱离支架限定的范围,确保支架能够稳固地夹紧固定两个电芯。
在一种可能的实施方式中,所述面板与所述底板之间形成有第三R角,所述支架还包括 至少一个第一加强件,所述第一加强件设于所述第一板体与所述第一横杆的连接处,每个所述第一加强件具有与所述第三R角配合的第一弧面,所述第一弧面为所述第一加强件朝向所述电芯的曲面。
本申请提供的电池模组中,可以理解,在第一板体和第一横杆的连接处设置至少一个第一加强件,增加第一板体和第一横杆连接的拐角处的结构强度,避免第一板体出现下凹现象,导致多个电芯之间凹凸不平,影响多个电芯组成时与巴片之间的电连接,易出现因高度不一导致的巴片与极柱之间的漏焊、虚焊等情况。另外,每个第一加强件均设有朝向电芯的第一弧面,第一弧面与的第三R角适配,第三R角与第一弧面抵接,第一弧面的设置为电芯装配预留装配空间,避免第一加强件妨碍电芯与第一定位卡件的装配。
在一种可能的实施方式中,所述第一加强件包括多个,多个所述第一加强件沿所述第二方向间隔设于所述第一板体与所述第一横杆的连接处。
本申请提供的电池模组中,设置第一加强件处的支架的壁厚会增大,注塑过程中因壁厚的冷却不均匀容易出现较厚区域的缩水情况,导致支架结构变形,影响整个支架结构的稳定性,将多个第一加强件间隔设置避免第一板体背面出现内凹缩水口导致第一板体下凹现象导致多个电芯之间凹凸不平,影响多个电芯成组时与巴片之间的电连接,易出现因高度不一致导致的巴片与极柱之间的漏焊、虚焊等情况
在一种可能的实施方式中,所述侧板与所述底板之间形成有第四R角,所述第一定位件具有与所述第四R角相对的第五R角,所述第五R角设于所述第一板体与所述第二板体的连接处,所述第五R角小于所述第四R角。
本申请提供的电池模组中,第五R角与第四R角相对,第五R角小于该第四R角,使得该第四R角的两个侧面能够贴合支架,提升电芯与支架连接的稳定性。
在一种可能的实施方式中,所述第五R角与所述第四R角的比值为S2,所述第五R角与所述第四R角的比值S2满足:1/2≤S2≤2/3。
本申请提供的电池模组中,R角(第五R角或第四R角)的大小取值即为R角(第五R角或第四R角)的半径取值。若第五R角和第四R角的比值S2小于1/2,第五R角和第四R角配合时,第五R角和第四R角的间隙过大,而第一板体需要支撑电芯,间隙过大容易导致第一板体发生形变,导致相邻两个电芯在第二方向上凹凸不平,影响电芯之间的电连接稳定性;若第五R角和第四R角的比值S2大于2/3,电芯底部抵接于第一板体上时,第四R角处的两个侧面中,将有一个侧面无法贴合第二板体,电芯与支架整体结构稳定性较差。本申请中,第五R角与第四R角的比值S2满足:1/2≤S2≤2/3,避免第五R角与第四R角的间隙过大,保证第一板体与第二板体的连接处的结构稳定性,同时,保证第四R角处的两个侧面能够贴合支架,提升电芯与支架整体的结构稳定性。
在一种可能的实施方式中,所述第二定位卡件包括呈夹角设置的第三板体和第四板体,沿所述第二方向所述第三板体的投影位于所述第二横杆的投影在所述第一方向上的相对两侧,所述第三板体设于所述竖杆沿所述第二方向上背离所述第一横杆的第二端部,并自所述第二端部沿所述第三方向朝向所述容置空间延伸,所述第三板体朝向所述第一横杆的一面抵接于所述端盖组件;沿所述第三方向所述第四板体的投影位于所述竖杆的投影在所述第一方向上的相对两侧,所述第四板体设于所述竖杆在所述第三方向上背离所述容置空间的一面,并自所述第三板体与所述第四板体的连接处朝向所述第一横杆的方向延伸。
本申请提供的电池模组中,第二定位卡件由呈夹角设置的第三板体和第四板体,例如,第三板体和第四板体可以互相垂直。其中,第三板体沿第二方向的投影位于第二横杆沿第二 方向的投影的相对两侧(具体为第二横杆的投影沿第一方向的相对两侧),如此,第三板体朝向第一横杆的一面能够抵接在第二横杆沿第一方向相对两侧的两个电芯的表面,防止电芯的端盖组件边缘出现翘曲及剥离。类似地,第四板体沿第三方向的投影位于竖杆沿第三方向的投影的相对两侧(具体为竖杆沿第一方向的相对两侧),如此,第四板体可以对第二横杆两侧的两个电芯的顶部进行第三方向上的限位,其中,电芯的顶部为电芯靠近端盖组件的一端,防止电芯脱离支架限定的范围,确保支架能够稳固地夹紧固定两个电芯。
在一种可能的实施方式中,所述第二定位卡件还包括第一卡接部,所述第一卡接部自所述第三板体在所述第三方向上远离所述第四板体的端部朝背离所述第一横杆的方向延伸,所述第一卡接部具有卡接槽和导向斜面,所述卡接槽的开口在所述第三方向上背离所述容置空间,所述电池模组还包括盖体,所述盖体设有第二卡接部,所述第二卡接部能够沿所述导向斜面伸入所述卡接槽与所述第一卡接部配合连接。
本申请提供的电池模组中,第一卡接部设于第三板体在第三方向上远离第四板体的端部,即,第一卡接部和第四板体位于第三板体沿第三方向的相对两端,且沿第三方向上,第一卡接部相较于第四板体更靠近电芯,如此,使得第一卡接部形成卡接槽和导向斜面不会凸出于电芯的侧面,如此,第一卡接部与盖体上的第二卡接部配合连接后,可以减小电池模组的盖体的尺寸大小,进一步减小电池模组的体积,提升电池模组的能量密度。
在一种可能的实施方式中,所述电池模组还包括线束隔离板,沿所述第三方向上,两个所述第一卡接部的间距大于所述线束隔离板延伸的宽度。
沿第三方向上,位于第二横杆两端的两个第一卡接部的间距大于线束隔离板延伸的宽度,使得线束隔离板位于两个第一卡接部之间,盖体上的第二卡接部与相应的第一卡接部配合连接后,盖体可以盖合线束隔离板。
在一种可能的实施方式中,沿所述第一方向,所述容置空间延伸的第一长度为L1,所述隔热垫延伸的第二长度为L2,所述容置空间延伸的第一长度L1和所述隔热垫延伸的第二长度L2满足:2.3mm≤L1-L2≤3.1mm。
本申请提供的电池模组中,第一横杆、其中一个竖杆、第二横杆和另一个竖杆依次固定连接形成方形的支架,支架用于对相邻两个电芯进行固定加紧,且第一横杆、第二横杆和两个竖杆共同形成容置空间,其中,隔热垫沿第一方向延伸的第二长度L2小于容置空间沿第一方向延伸的第一长度L1。若沿第一方向,容置空间延伸的第一长度L1与隔热垫延伸的第二长度L2之差小于2.3mm(即L1-L2<2.3mm),预留给两侧的电芯的膨胀空间过小,电芯充放电过程中在安全膨胀距离内膨胀时,膨胀的电芯容易受到隔热垫的挤压导致电芯的膨胀压力增加,进而导致电池模组的使用安全性降低。若沿第一方向L1-L2>3.1mm,隔热垫与两侧的电芯的间隔过大,电芯充放电过程中出现膨胀现象后,因隔热垫与两侧的电芯的间隔过大,电芯膨胀过程中没有受到一定的约束作用,导致电芯在安全膨胀距离内的情况下出现电芯表面过度凸出,电解液浸润效果较差,导致电芯内的极片出现析锂现象,降低电芯的使用寿命,且隔热垫与两侧的电芯的间隔过大,两侧的电芯无法与隔热垫进行换热,隔热效果差。沿第一方向,容置空间延伸的第一长度L1与隔热垫延伸的第二长度L2满足2.3mm≤L1-L2≤3.1mm,确保容置空间安装隔热垫后还预留一定空间,可通过调整隔热垫的安装位置,确保隔热垫与相邻的两个电芯均具有一定间隔,避免隔热垫对在安全膨胀距离内膨胀的电芯造成挤压,减小电芯的膨胀压力,提升电池模组的使用安全性;且隔热垫还可以起到束缚电芯充放电过程中的在安全膨胀距离内,电芯表面过度凸出,使得电芯在充放电过程中保持平整,电解液浸润效果更好,可以减少析锂,进而延长电芯的充放电循环次数。
在一种可能的实施方式中,沿所述第二方向,所述容置空间延伸的第三高度为H3,所述隔热垫延伸的第四高度为H4,所述容置空间延伸的第三高度H3与所述隔热垫延伸的第四高度H4满足1.5mm≤H3-H4≤5.0mm;沿所述第三方向,所述容置空间延伸的第二宽度为W2,所述隔热垫延伸的第三宽度为W3,所述容置空间延伸的第二宽度W2与所述隔热垫延伸的第三宽度W3满足1.5mm≤W2-W3≤5.0mm。
本申请提供的电池模组中,在第二方向和第三方向上,容置空间与隔热垫之间均预留一定的变形空间,不需要高操作精度便可将隔热垫置于容置空间中,且隔热垫是弹性可变形的,在相邻两个电芯相对膨胀时挤压隔热垫会使隔热垫变形,隔热垫沿第二方向的第四高度H4和沿第三方向的第三宽度W3会增大,需要预留一定的变形空间,若没有给隔热垫预留变形空间,会导致其变形难度大,预留给电芯的膨胀空间会缩小,影响电芯的膨胀,进而导致电芯内部气压增大影响电芯的使用寿命。本申请,在第二方向和第三方向上均预留变形空间,使得隔热垫受到电芯挤压变形更加容易,且不会影响电芯的膨胀,提高电芯的使用寿命。
进一步地,沿第二方向,容置空间的第三高度H3与隔热垫的第四高度H4之差若小于1.5mm(即H3-H4<1.5mm),隔热垫沿第二方向的变形空间过小,影响隔热垫的变形进而间接影响电芯的膨胀间隙,影响电芯的循环性能;沿第二方向,容置空间的第三高度H3与隔热垫的第四高度H4之差若大于5.0mm(即H3-H4>5.0mm),隔热垫沿第二方向的变形空间过大,隔热垫的隔热效果差;沿第二方向,容置空间的第三高度H3与隔热垫的第四高度H4满足1.5mm≤H3-H4≤5.0mm,使得隔热垫更容易变形,且具有良好的隔热效果,保证电芯的循环性能。
类似地,沿第三方向,容置空间的第二宽度W2与隔热垫的第三宽度W3之差若小于1.5mm(即W2-W3<1.5mm),隔热垫沿第三方向的变形空间过小,影响隔热垫的变形进而间接影响电芯的膨胀间隙,影响电芯的循环性能;沿第三方向,容置空间的第二宽度W2与隔热垫的第三宽度W3之差若大于5.0mm(即W2-W3>5.0mm),隔热垫沿第三方向的变形空间过大,隔热垫的隔热效果差;沿第三方向,容置空间的第二宽度W2与隔热垫的第三宽度W3满足:1.5mm≤W2-W3≤5.0mm,使得隔热垫更容易变形,且具有良好的隔热效果,保证电芯的循环性能。
在一种可能的实施方式中,所述支架还包括多个第二加强件,所述多个第二加强件设于所述第二横杆,所述第二横杆上形成有沿所述第三方向延伸的多个凹部,所述凹部自所述第二横杆靠近所述电芯的一表面朝背离所述电芯的方向凹陷,相邻两个所述凹部之间形成有一所述第二加强件。
本申请提供的电池模组中,第二横杆上设置多个第二加强件,加强第二横杆的结构强度,有效限制第二横杆两侧的两个电芯过度鼓包而造成第二横杆被顶起,确保第二横杆能够稳固地限制在端盖组件的边缘,避免端盖组件与电芯的壳体之间的焊接处出现撕裂现象,提升电池模组的使用安全性。
在一种可能的实施方式中,所述电芯包括端盖组件,所述端盖组件包括第一表面,所述第一表面为所述端盖组件背离所述第一横杆的表面,沿所述第二方向,所述第二横杆凸出于所述第一表面设置。
本申请提供的电池模组中,支架设置在相邻两个电芯之间,第二横杆凸出端盖组件的第一表面,第二横杆可以抵接在端盖组件的侧边,防止端盖组件边缘发生翘曲或剥离现象。
在一种可能的实施方式中,所述第二横杆包括第二表面,所述第二表面为所述第二横杆背离所述第一横杆的表面,沿所述第二方向,所述第二表面与所述第一表面之间的垂直距离 为H5,所述第二表面与所述第一表面之间的垂直距离H5满足:0.3mm≤H5≤0.6mm。
本申请提供的电池模组中,沿第二方向,若第二横杆的第二表面与端盖组件的第一表面之间的垂直距离H5取值小于0.3mm,第二横杆容易被发生翘曲或剥离的端盖组件边缘顶起,导致支架对电芯固定效果减弱;若第二横杆的第二表面与端盖的第一表面之间的垂直距离H5取值大于0.6mm,第二横杆凸出的距离过大,妨碍电池模组中其他部件的安装,如线束隔离板需安装在端盖背离第一横杆的一面,若第二横杆凸出的距离过大,将会导致线束隔离板翘起。沿第二方向,第二横杆的第二表面与端盖组件的第一表面之间的垂直距离H5满足:0.3mm≤H5≤0.6mm,确保第二横杆能够稳固地限制在端盖组件的边缘处,防止端盖组件边缘发生翘曲时导致第二横杆被顶起,且避免第二横杆凸出距离过大影响电池模组中其他部件的安装。
在一种可能的实施方式中,所述电芯包括端盖组件、壳体和电极组件,所述壳体形成有收容空间,所述电极组件收容于所述收容空间,所述端盖组件盖合于所述壳体,安装于同一所述支架的两个所述电芯中,所述端盖组件与所述壳体的连接处沿所述第一方向的正投影位于所述第二横杆内。
本申请提供的电池模组中,端盖组件与壳体的连接处沿第一方向的正投影位于第二横杆内,使得第二横杆的部分结构能够遮挡端盖组件与壳体的连接处,确保第二横杆能够凸出端盖组件与壳体的连接处,避免位于第二横杆两侧的两个电芯之间的过度鼓包挤压第二横杆、第二横杆挤压壳体朝向支架的侧面而导致端盖组件与壳体之间的焊接处出现撕裂现象,提升电池模组的使用安全性。
第二方面,本申请实施方式提供一种储能装置,所述储能装置包括如第一方面所述的电池模组。
本申请提供的电池模组中,在相邻两个电芯之间设置支架,通过支架对相邻两个电芯进行夹紧固定,减缓或避免因电池模组振动而导致电芯在电池模组内部晃动的现象,保证电芯能够完好固定在电池模组内而不会发生有损性能的形变,保证电芯的使用寿命。另外,侧板与面板的连接处形成有第一R角,每一个竖杆靠近电芯的一侧形成有与第一R角相对的第二R角,第二R角大于第一R角,使得竖杆与电芯存在间隔;且框体沿第三方向延伸的宽度小于电芯沿第三方向延伸的宽度,换言之即框体上两个竖杆的外侧面的间距小于电芯沿第三方向延伸的宽度,使得框体在第三方向上相对电芯内缩,框体与电芯存在沿第三方向的间隙,框体与电芯的沿第三方向的间隙,和竖杆与电芯的间隔连通,框体与电芯的沿第三方向的间隙以及竖杆与电芯的间隔内可填充导热胶,通过导热胶将电芯与支架粘接固定,提升支架与电芯之间的粘接强度,提升电芯与支架的结构稳定性,避免电芯在电池模组内出现晃动,避免电芯性能受损。另外,电芯充放电产生的热量还可以通过导热胶进行散热,避免电芯产生的热量导致电芯性能受损。其中,第二R角大于第一R角,是指第二R角的半径大于第一R角的半径。
第三方面,本申请实施方式提供一种用电设备,所述用电设备包括如第二方面所述的储能装置,所述储能装置用于对所述用电设备供电。
本申请提供的用电设备中,在相邻两个电芯之间设置支架,通过支架对相邻两个电芯进行夹紧固定,减缓或避免因电池模组振动而导致电芯在电池模组内部晃动的现象,保证电芯能够完好固定在电池模组内而不会发生有损性能的形变,保证电芯的使用寿命。另外,侧板与面板的连接处形成有第一R角,竖杆形成有与第一R角相对的第二R角,第二R角大于第一R角,使得竖杆与电芯存在间隔;且框体沿第三方向延伸的宽度小于电芯沿第三方向延 伸的宽度,换言之即框体上两个竖杆的外侧面的间距小于电芯沿第三方向延伸的宽度,使得框体在第三方向上相对电芯内缩,框体与电芯存在沿第三方向的间隙,框体与电芯之间的沿第三方向的间隙,和竖杆与电芯的间隔连通,框体与电芯的沿第三方向的间隙以及竖杆与电芯的间隔内可填充导热胶,通过导热胶将电芯与支架粘接固定,提升支架与电芯之间的粘接强度,提升电芯与支架的结构稳定性,避免电芯在电池模组内出现晃动,避免电芯性能受损。另外,电芯充放电产生的热量还可以通过导热胶进行散热,避免电芯产生的热量导致电芯性能受损。其中,第二R角大于第一R角,是指第二R角的半径大于第一R角的半径。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是本申请实施方式提供的一种用电设备的场景示意图;
图2是本申请实施方式提供的一种电池模组的立体结构示意图;
图3是图2所示的电池模组的立体分解结构示意图;
图4是图3所示的电池模组的立体分解结构示意图;
图5是本申请实施方式提供的一种电池模组中的支架的立体结构示意图;
图6是图3所示的电池模组中的支架沿IV-IV线的部分剖面结构示意图;
图7是图2所示的电池模组中VII处的放大示意图;
图8是本申请实施方式提供的一种电池模组的另一立体结构示意图;
图9是图8所示的电池模组的立体分解结构示意图;
图10是图5所示的电池模组中X处的放大示意图;
图11是图5所示的电池模组中XI处的放大示意图;
图12是图2所示的电池模组沿XII-XII线的部分剖面结构示意图;
图13是图12所述的电池模组中XIII处的放大示意图。
附图标记:
第一方向A、第二方向B、第三方向C;
第一宽度W1、第一高度H1、第二高度H2、第一长度L1、第二长度L2、第三高度H3、
第四高度H4、第二宽度W2、第三宽度W3、垂直距离H5;
电池模组100、电芯组10、电芯11、底板111、面板112、侧板113、第二侧面1131、第
一R角114、第三R角115、第四R角116、端盖组件13、第一表面131、顶贴片132、端盖133、壳体14、收容空间141、电极组件15、支架30、框体31、竖杆311、第二R角3111、第一侧面3112、第一端部3113、第二端部3114、第一投影312、第一直线段3121、第二直线段3122、弧线段3123、第一横杆313、第二横杆315、第二表面3151、凹部3152、容置空间32、凹槽33、第一定位卡件34、第一板体341、第二板体343、第五R角345、第二定位卡件35、第三板体351、第四板体353、卡接部355、卡接槽3551、导向斜面3553、第一加强件36、第一弧面361、第二加强件37、隔热垫50、端板70、盖体80、线束隔离板90;
储能装置1000;
光伏板2000;
路灯3000a;
家用电器3000b。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
以下各实施方式的说明是参考附加的图示,用以例示本申请可用以实施的特定实施方式。本中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本申请,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
由于人们所需要的能源都具有很强的时间性和空间性,为了合理利用能源并提高能量的利用率,需要通过一种介质或者设备,把一种能量形式用同一种或者转换成另外一种能量形式存储起来,基于未来应用需要再以特定能量形式释放出来。众所周知,要实现碳中和的大目标,目前绿色电能的产生主要途径是发展光伏、风电等绿色能源来替代化石能源。目前绿色电能的产生普遍依赖于光伏、风电、水势等,而风能和太阳能等普遍存在间歇性强、波动性大的问题,会造成电网不稳定,用电高峰电不够,用电低谷电太多,不稳定的电压还会对电力造成损害,因此可能因为用电需求不足或电网接纳能力不足,引发“弃风弃光”问题,要解决这些问题须依赖储能。即将电能通过物理或者化学的手段转化为其他形式的能量存储起来,在需要的时候将能量转化为电能释放出来,简单来说,储能就类似一个大型“充电宝”,在光伏、风能充足时,将电能储存起来,在需要时释放储能的电力。
以电化学储能为例,本方案提供一种储能装置1000,储能装置1000内设有化学电池,主要是利用化学电池内的化学元素做储能介质,充放电过程伴随储能介质的化学反应或者变化,简单说就是把风能和太阳能产生的电能存在化学电池中,在外部电能的使用达到高峰时再将存储的电量释放出来使用,或者转移给电量紧缺的地方再使用。
目前的储能(即能量存储)应用场景较为广泛,包括发电侧储能、电网侧储能、可再生能源并网储能以及用户侧储能等方面,对应的储能装置1000的种类包括有:
(1)应用在电网侧储能场景的大型储能集装箱,其可作为电网中优质的有功无功调节电源,实现电能在时间和空间上的负荷匹配,增强可再生能源消纳能力,并在电网系统备用、缓解高峰负荷供电压力和调峰调频方面意义重大;
(2)应用在用户侧的工商业储能场景(银行、商场等)的中小型储能电柜以及应用在用户侧的家庭储能场景的户用小型储能箱,主要运行模式为“削峰填谷”。由于根据用电量需求在峰谷位置的电费存在较大的价格差异,用户有储能设备后,为了减少成本,通常在电价低谷期,对储能柜/箱进行充电处理;电价高峰期,再将储能设备中的电放出来进行使用,以达到节省电费的目的。另外,在边远地区,以及地震、飓风等自然灾害高发的地区,家用储能装置的存在,相当于用户为自己和电网提供了备用电源,免除由于灾害或其他原因导致的频 繁断电带来的不便。
本申请实施例以用户侧储能中的家用储能场景为例进行说明,图1为本申请实施方式提供的一种储能装置1000的场景示意图,本申请储能装置1000并不限定于家用储能场景。
如图1所示,本申请提供一种户用储能系统,该户用储能系统包括电能转换装置(光伏板2000)、用户负载(路灯3000a)、用户负载(家用电器3000b)等以及储能装置1000,该储能装置1000为一小型储能箱,可通过壁挂方式安装于室外墙壁。具体的,光伏板2000可以在电价低谷时期将太阳能转换为电能,储能装置1000用于储存该电能并在电价高峰时供给路灯3000a和家用电器3000b等用电设备进行使用,或者在电网断电/停电时进行供电。
可以理解的是,储能装置1000可包括但不限于单体电池、电池模组、电池包、电池系统等。当该储能装置1000为单体电池时,其可为方形电池。
请参阅图2和图3,该储能装置1000包括本申请实施方式提供的电池模组100,该电池模组100包括电芯组10和支架30。电芯组10包括沿第一方向A排列设置的多个电芯11,每一电芯11包括设于沿第二方向B一侧的底板111、两个沿第一方向A相对设置的面板112和两个沿第三方向C相对设置的侧板113,两个面板112与两个侧板113均固定连接于底板111上,第一方向A、第二方向B和第三方向C互相垂直;侧板113与面板112的连接处形成有第一R角114。支架30设于相邻两个电芯11之间,支架30包括框体31,沿第三方向C,框体31延伸的宽度小于电芯11延伸的宽度;框体31包括沿第三方向C相对设置的两个竖杆311,每一竖杆311靠近电芯11的一侧形成有与第一R角114相对的第二R角3111,第二R角3111大于第一R角114。
需要说明的是,第一方向A为电池模组100的长度方向,如图2所示的A方向。第二方向B为电池模组100的高度方向,如图2所示的B方向。第三方向C为电池模组100的宽度方向,如图2所示的C方向,第一方向A、第二方向B和第三方向C互相垂直。
请结合图4和图5,本申请的电池模组100、储能装置1000及用电设备中,在相邻两个电芯11之间设置支架30,通过支架30对相邻两个电芯11进行夹紧固定,减缓或避免因电池模组100振动而导致电芯11在电池模组100内部晃动的现象,保证电芯11能够完好固定在电池模组100内而不会发生有损性能的形变,保证电芯11的使用寿命。另外,面板112与侧板113的连接处形成有第一R角114,每一个竖杆311靠近电芯11的一侧形成有与第一R角114相对的第二R角3111,第二R角3111大于第一R角114,使得竖杆311与电芯11之间存在间隔;且框体31沿第三方向C延伸的宽度小于电芯11沿第三方向C延伸的宽度,换言之即框体31上两个竖杆311的外侧面的间距小于电芯11沿第三方向C延伸的宽度,使得框体31相对电芯11内缩,框体31与电芯11存在沿第三方向C的间隙,框体31与电芯11沿第三方向C的间隙,和竖杆311与电芯11的间隔连通,框体31与电芯11沿第三方向C的间隙以及竖杆311与电芯11的间隔内可填充导热胶,通过导热胶将电芯11与支架30粘接固定,提升支架30与电芯11之间的粘接强度,提升电芯11与支架30的结构稳定性,避免电芯11在电池模组100内出现晃动,避免电芯11性能受损。另外,电芯11充放电产生的热量还可以通过导热胶进行散热,避免电芯11产生的热量导致电芯11性能受损。其中,第二R角3111大于第一R角114,是指第二R角3111的半径大于第一R角114的半径。
请结合图3,在一种可能的实施方式中,第一R角114与第二R角3111的比值为S1,第一R角114与第二R角3111的比值S1满足:1/2≤S1≤2/3。
可以理解,第一R角114为R角,第一R角114的大小取值即为第一R角114的半径取值,第二R角3111的大小取值即为第二R角3111的半径取值。若第一R角114与第二R角 3111的比值S1小于1/2,框体31与电芯11的沿第三方向C的间隙过小,间隙内填充的导热胶的量过少,电芯11与支架30之间的连接强度将会降低,电芯11可能会脱离支架30,若电池模组100出现振动,电芯11容易脱离支架30在电池模组100内晃动,导致电芯11的性能受损。若第一R角114与第二R角3111的比值S1大于2/3,电芯11内部空间减少,电芯11内的能量密度相应降低。本申请中,第一R角114与第二R角3111的比值S1满足1/2≤S1≤2/3,一方面,保证框体31与电芯11的沿第三方向C的间隙具有足够的空间填充导热胶,提升电芯11与支架30之间的连接强度,避免电芯11因电池模组100振动而在电池模组100内晃动,减小或避免电池因晃动导致性能受损的情况;另一方面,确保电芯11内部具有足够的能量密度,有效提升电芯11的能量密度。
请参阅图5和图6,竖杆311在第二方向B具有第一投影312,第一投影312由第一直线段3121、第二直线段3122和两个弧线段3123围合形成,第一直线段3121大于第二直线段3122,第一直线段3121与第二直线段3122位于第一投影312在第三方向C的相对两侧,两个弧线段3123位于第一投影312在第一方向A上的相对两侧,每一弧线段3123对应形成一个第二R角3111。
其中,本申请提及的沿某一方向的投影,可以是在垂直于某一方向的平面上的正投影。如,竖杆311在第二方向B的第一投影312,可以是:竖杆311在垂直于第二方向B的平面上的第一投影312。
第一直线段3121大于第二直线段3122,即,第一直线段3121所在的平面大于第二直线段3122所在的平面,其中,第一直线段3121所在的平面通过绝缘胶与端板70连接,如此,提高端板70与竖杆311的连接强度。两个弧线段3123可用于与安装于支架30相对两侧的电芯11配合,便于在电芯11与弧线段3123所在的面之间填充导热胶,实现支架30与电芯11胶粘连接,以及对电芯的散热。
请结合图5和图7,在一种可能的实施方式中,支架30形成有容置空间32,每一竖杆311具有背离容置空间32的第一侧面3112,每一侧板113具有第二侧面1131,在电芯11沿第三方向C的同一侧上,第一侧面3112与第二侧面1131具有沿第三方向C延伸的间隙,间隙第三方向C延伸的第一宽度为W1,间隙的第一宽度W1满足:0.5mm≤W1≤1.0mm。
需要说明的是,竖杆311的第一侧面3112即为竖杆311背离容置空间32的外侧面,其中,电芯11的第二侧面1131的数量为两个,分别为电芯11沿第三方向C的相对两个侧面。电芯11具有沿第三方向C的两侧,其中,电芯11沿第三方向C的相对两侧均具有间隙。其中,两侧的间隙的第一宽度W1均满足:0.5mm≤W1≤1.0mm,两侧的间隙的第一宽度W1的具体取值可以不同,也可以相同,对此不作限制。
可以理解,在同一侧上,竖杆311上的第二R角3111与第一侧面3112处的第一R角114配合,在互相配合的竖杆311和侧板113上,第一侧面3112与第二侧面1131沿第三方向C上具有间隙,框体31与电芯11的沿第三方向C的间隙为:电芯11两侧的间隙之和。沿第三方向C上,支架30的两个竖杆311相对电芯11内缩,并形成有间隙,可在间隙内填充导热胶,将支架30与电池模组100的端板70固定连接,提升支架30与电池模组100的端板70之间的连接强度,提升电池模组100的结构稳定性。另外,若间隙沿第三方向C延伸的第一宽度W1小于0.5mm,间隙形成的空间过小,间隙内填充的导热胶体积过小,竖杆311与端板70之间的连接强度降低,端板70容易脱落;若间隙沿第三方向C延伸的第一宽度W1大于1.0mm,沿第三方向C上,框体31相对于电芯11过于内缩,支架30无法夹紧固定电芯11。间隙沿第三方向C延伸的第一宽度W1取值满足0.5mm≤W1≤1.0mm,在保证支架30能 够夹紧固定电芯11的前提下,保证间隙内填充足够的导热胶,提升竖杆311与端板70之间的连接强度,提升电池模组100的结构稳定性。
请参阅图3和图5,在一种可能的实施方式中,框体31还包括沿第二方向B相对设置的第一横杆313和第二横杆315,两个竖杆311沿第三方向C相对设置,第一横杆313、其中一个竖杆311、第二横杆315和另一个竖杆311依次固定连接,第一横杆313、第二横杆315和两个竖杆311共同形成容置空间32,电池模组100还包括隔热垫50,隔热垫50设于容置空间32。
第一横杆313、其中一个竖杆311、第二横杆315和另一个竖杆311依次固定连接形成方形的框体31,支架30用于对相邻两个电芯11进行固定加紧,且第一横杆313、第二横杆315和两个竖杆311共同形成容置空间32。支架30可以提供放置隔热垫50的容置空间32,以通过隔热垫50对相邻两个电芯11进行隔热,防止高温工作的电芯11因热失控扩散而降低电池模组100的安全性能,提升电池模组100的使用安全性。电芯11在充放电过程中回出现膨胀及膨胀后回缩的现象,设置有容置空间32的支架30可以为相邻的两个电芯11提供膨胀空间,减小电芯11间的膨胀压力,减少防爆阀的误触发,提升电池模组100的使用安全性和电池模组100的使用寿命。
请结合图7,在一种可能的实施方式中,支架30还包括凹槽33,凹槽33靠近设于竖杆311与第二横杆315的连接处,凹槽33在第二方向B上的投影形状为弧形。
其中,凹槽33设于竖杆311与第二横杆315的连接处,凹槽33更靠近竖杆311。
支架30为注塑件,凹槽33在第二方向B上的投影形状为弧形,且凹槽33靠近竖杆311和第二横杆315的连接处,使得第二横杆315与竖杆311的连接处脱模冷却后,不会出现局部位置缩水,避免因缩水导致支架30扭曲变形,提升支架30的结构强度。
支架30包括第一定位卡件34和第二定位卡件35,第一定位卡件34设于第一横杆313沿第三方向C的相对两端,第一定位卡件34支撑电芯11;第二定位卡件35设于第二横杆315沿第三方向C的相对两端,电芯11包括端盖组件13,第二定位卡件35抵接于端盖组件13。
第一定位卡件34设于第一横杆313沿第三方向C的相对两端,即,第一定位卡件34设于第一横杆313分别与两个竖杆311连接的连接处,且第一定位卡件34的数量为两个;第二定位卡件35设于第二横杆315沿第三方向C的相对两端,即,第二定位卡件35设于第二横杆315分别与两个竖杆311的连接处,综上,框体31的其中两个拐角设有第一定位卡件34,另两个拐角设有第二定位卡件35,第一定位卡件34和第二定位卡件35可以对电芯11的四个拐角进行保护,防止端盖组件13位于电芯11四个拐角处出现翘曲及剥离,确保电芯11连接的稳定性,进而保证电池模组100的使用安全性。
请结合图8,在一种可能的实施方式中,电池模组100还包括端板70,多个电芯11沿第三方向C的两端均安装有端板70,端板70设于第一定位卡件34和第二定位卡件35之间,沿第二方向B上,第一定位卡件34与第二定位卡件35之间的第一高度为H1,端板70延伸的第二高度为H2,第一定位卡件34与第二定位卡件35之间的第一高度H1大于端板70延伸的第二高度H2。
请结合图9,沿第二方向B,第一定位卡件34与第二定位卡件35之间的第一高度H1大于端板延伸的第二高度H2,电池模组100组装完电芯11和支架30后,预留端板的装配间隙,方便端板70与支架30的竖杆311粘接。另外,端板安装于电芯11沿第三方向C的两端,当在框体31与电芯11的沿第三方向C的间隙以及竖杆311与电芯11的间隔共同形成的空间内填充导热胶时,可以实现支架30、电芯11与端板70两两之间的连接。
沿第二方向B上,第一定位卡件34与第二定位卡件35之间的第一高度H1,和端板70延伸的第二高度H2满足:1.5mm≤H1-H2≤3.0mm。
沿第二方向B上,H1-H2表示第一定位卡件34与第二定位卡件35之间的第一高度H1和端板70延伸的第二高度H2之间的差值,且H1-H2满足:1.5mm≤H1-H2≤3.0mm。若H1-H2小于1.5mm,端板70安装难度增大;若H1-H2大于3.0mm,端板70与第一定位卡件34或端板70与第二定位卡件35之间的装配间隙过大,端板70容易脱离第一定位卡件34与第二定位卡件35的限定。本申请中,第一定位卡件34与第二定位卡件35之间的第一高度H1和端板70延伸的第二高度H2满足:1.5mm≤H1-H2≤3.0mm,便于端板70的安装,同时确保端板70被限位于第一定位卡件34和第二定位卡件35之间,确保端板70与竖杆311的外侧面贴合,保证端板70与竖杆311的连接强度。
请结合图5和图10,在一种可能的实施方式中,第一定位卡件34包括呈夹角设置的第一板体341和第二板体343,沿第二方向B第一板体341的投影位于第一横杆313的投影在第一方向A上的相对两侧,第一板体341设于竖杆311沿第二方向B上背离第二横杆315的第一端部3113,且设于第一横杆313沿第二方向B上背离容置空间32的一侧,第一板体341自第一端部3113沿第三方向C朝向容置空间32延伸,第一板体341支撑电芯11;沿第三方向C第二板体343的投影位于竖杆311的投影在第一方向A上的相对两侧,第二板体343设于竖杆311在第三方向C上背离容置空间32的一侧,并自第一板体341与第二板体343的连接处朝向第二横杆315延伸。
第一定位卡件34由呈夹角设置的第一板体341和第二板体343,例如,第一板体341和第二板体343可以互相垂直。其中,第一板体341沿第二方向B的投影位于第一横杆313沿第二方向B的投影的相对两侧(具体为第一横杆313的投影在第一方向A上的相对两侧),如此,第一板体341能够支撑位于第一横杆313沿第一方向A相对两侧的两个电芯11。类似地,第二板体343沿第三方向C的投影位于竖杆311沿第三方向C的投影的相对两侧(具体为竖杆311在第一方向A上的相对两侧),如此,第二板体343可以对第一横杆313两侧的两个电芯11的底部实现第三方向C上的限位,其中,电芯11的底部为电芯11背离端盖组件13的一端,防止电芯11脱离支架30限定的范围,确保支架30能够稳固地夹紧固定两个电芯11。
请结合图4和图5,在一种可能的实施方式中,面板112与底板111之间形成有第三R角115。支架30还包括至少一个第一加强件36,第一加强件36设于第一板体341与第一横杆313的连接处,每个第一加强件36具有与第三R角115配合的第一弧面361,第一弧面361为第一加强件36朝向电芯11的曲面。
可以理解,在第一板体341和第一横杆313连接的连接处设置至少一个第一加强件36,增加第一板体341和第一横杆313连接的拐角处的结构强度,避免第一板体341出现下凹现象,导致多个电芯11之间凹凸不平,影响多个电芯11组成时域巴片之间的电连接,易出现因高度不一导致的巴片与极柱之间的漏焊、虚焊等情况。另外,每个第一加强件36均设有朝向电芯11的第一弧面361,第一弧面361与第三R角115适配,第三R角115与第一弧面361抵接,第一弧面361的设置为电芯11装配预留装配空间,避免第一加强件36妨碍电芯11与第一定位卡件34的装配。
在一种可能的实施方式中,第一加强件36包括多个,多个第一加强件36沿第二方向B间隔设于第一板体341与第一横杆313的连接处。
设置第一加强件36处的支架30的壁厚会增大,注塑过程中因壁厚的冷却不均匀容易出 现较厚区域的缩水情况,导致支架30结构变形,影响整个支架30结构的稳定性,将多个第一加强件36间隔设置,避免第一板体341背面出现内凹缩水口导致第一板体341下凹现象,导致多个电芯11之间凹凸不平,影响多个电芯11组成时与巴片之间的电连接,易出现因高度不一致导致的巴片与极柱之间的漏焊、虚焊等情况。
请结合图4和图5,在一种可能的实施方式中,侧板113与底板111之间形成有第四R角116,第一定位卡件34具有与第四R角116相对的第五R角345,第五R角345设于第一板体341与第二板体343的连接处,第五R角345小于第四R角116。
第五R角345与第四R角116相对,第五R角345小于该第四R角116,使得该第四R角116的两个侧面能够贴合支架30,提升电芯11与支架30连接的稳定性。
在一种可能的实施方式中,第五R角345与第四R角116的比值为S2,第五R角345与第四R角116的比值S2满足:1/2≤S2≤2/3。
可以理解,第四R角116和第五R角345均为R角,第四R角116的大小取值即为第四R角116的半径取值,第五R角345的大小取值即为第五R角345的半径取值。若第五R角345与第四R角116的比值S2小于1/2,第四R角116与第五R角345配合时,第四R角116与第五R角345的间隙过大,而第一板体341需要支撑电芯11,间隙过大容易导致第一板体341发生形变,导致相邻两个电芯11在第二方向B上凹凸不平,影响电芯11组成时与巴片之间的电连接稳定性;若第五R角345与第四R角116的比值S2大于2/3,电芯11底部抵接于第一板体341上时,第四R角116处的两个侧面中,将有一个侧面无法贴合第二板体343,电芯11与支架30整体结构稳定性较差。本申请中,第五R角345与第四R角116的比值S2满足:1/2≤S2≤2/3,避免第四R角116与第五R角345的间隙过大,保证第一板体341与第二板体343连接的连接处的结构稳定性,同时,保证第四R角116的处的两个侧面能够贴合支架30,提升电芯11与支架30整体的结构稳定性。
可选的,在电芯11中,第一R角114、第三R角115和第四R角116的大小可以相同,也可以不相同,例如,第一R角114与第三R角115的大于相同,第四R角的大小不同于第一R角114和第三R角115,或者,第一R角114、第三R角115和第四R角116的大小均不相同。
请结合图11,在一种可能的实施方式中,第二定位卡件35包括呈夹角设置的第三板体351和第四板体353,沿第二方向B第三板体351的投影位于第二横杆315的投影在第一方向A上的相对两侧,第三板体351设于竖杆311在第二方向B上背离第一横杆313的第二端部3114,并自第二端部3114沿第三方向C朝向容置空间32延伸,第三板体351朝向第一横杆313的一面抵接于端盖组件13;沿第三方向C第四板体353的投影位于竖杆311的投影在第一方向A上的相对两侧,第四板体353设于竖杆311在第三方向C上背离容置空间32的一面,并自第三板体351与第四板体353的连接处朝向第一横杆313的方向延伸。
第二定位卡件35由呈夹角设置的第三板体351和第四板体353,例如,第三板体351和第四板体353可以互相垂直。其中,第三板体351沿第二方向B的投影位于第二横杆315沿第二方向B的投影的相对两侧(具体为第二横杆315的投影沿第一方向A的相对两侧),如此,第三板体351朝向第一横杆313的一面能够抵接在第二横杆315沿第一方向A相对两侧的两个电芯11的表面,防止电芯11的端盖组件13边缘出现翘曲及剥离。类似地,第四板体353沿第三方向C的投影位于竖杆311沿第三方向C的投影的相对两侧(具体为竖杆311沿第一方向A的相对两侧),如此,第四板体353可以对第二横杆315两侧的两个电芯11的顶部进行第三方向C上的限位,其中,电芯11的顶部为电芯11靠近端盖组件13的一端,防止 电芯11脱离支架30限定的范围,确保支架30能够稳固地夹紧固定两个电芯11。
请结合图9,在一种可能的实施方式中,第二定位卡件35还包括第一卡接部355,第一卡接部355自第三板体351在第三方向C上远离第四板体353的端部朝背离第一横杆313的方向延伸,第一卡接部355具有卡接槽3551和导向斜面3553,卡接槽3551的开口在第三方向C上背离容置空间32,电池模组100还包括盖体80,盖体80设有第二卡接部81,第二卡接部81,能够沿导向斜面3553伸入卡接槽3551与第一卡接部355配合连接。
第一卡接部355设于第三板体351在第三方向C上远离第四板体353的端部,即,第一卡接部355和第四板体353位于第三板体351沿第三方向C的相对两端,且沿第三方向C上,第一卡接部355相较于第四板体353更靠近电芯11,如此,使得第一卡接部355形成卡接槽3551和导向斜面3553不会凸出于电芯11的侧面,如此,第一卡接部355与第二卡接部81配合连接后,可以减小电池模组100的盖体80的尺寸大小,进一步减小电池模组100的体积,提升电池模组100的能量密度。
示例的,第二卡接部81可以是适配第一卡接部355的通孔,卡接槽3551和导向斜面3553共同形成卡钩,卡钩卡接于通孔内并扣合于通孔的侧壁,以实现第一卡接部355与第二卡接部81的配合连接。
在一种可能的实施方式中,电池模组100还包括线束隔离板90,沿第三方向C上,两个第一卡接部355的间距大于线束隔离板90延伸的宽度。
沿第三方向C上,位于第二横杆315两端的两个第一卡接部355的间距大于线束隔离板90延伸的宽度,使得线束隔离板90位于两个第一卡接部355之间,盖体80上的第二卡接部81与相应的第一卡接部355配合连接后,盖体80可以盖合线束隔离板90。
在一种可能的实施方式中,沿第一方向A,容置空间32延伸的第一长度为L1,隔热垫50延伸的第二长度为L2,容置空间32延伸的第一长度L1与隔热垫50延伸的第二长度L2满足:2.3mm≤L1-L2≤3.1mm。
第一横杆313、其中一个竖杆311、第二横杆315和另一个竖杆311依次固定连接形成方形的支架30,支架30用于对相邻两个电芯11进行固定加紧,且第一横杆313、第二横杆315和两个竖杆311共同形成容置空间32,其中,隔热垫50沿第一方向A延伸的长度L2小于容置空间32沿第一方向A延伸的第一长度L1。若沿第一方向A,容置空间32延伸的第一长度L1与隔热垫50延伸的第二长度L2之差小于2.3mm(即L1-L2<2.3mm),预留给两侧的电芯11的膨胀空间过小,电芯11充放电过程中在安全膨胀距离内膨胀时,膨胀的电芯11容易受到隔热垫50的挤压导致电芯11的膨胀压力增加,进而导致电池模组100的使用安全性降低。若沿第一方向A上,L1-L2>3.1mm,隔热垫50与两侧的电芯11的间隔过大,电芯11充放电过程中出现膨胀现象后,因隔热垫50与两侧的电芯11的间隔过大,电芯11膨胀过程中没有受到一定的约束作用,导致电芯11在安全膨胀距离内的情况下出现电芯11表面过度凸出,电解液浸润效果较差,导致电芯11内的极片出现析锂现象,降低电芯11的使用寿命,且隔热垫50与两侧的电芯11的间隔过大,两侧的电芯11无法与隔热垫50进行换热,隔热效果差。沿第一方向A,容置空间32延伸的第一长度L1与隔热垫50延伸的第二长度L2满足2.3mm≤L1-L2≤3.1mm,确保容置空间32安装隔热垫50后还预留一定空间,可通过调整隔热垫50的安装位置,确保隔热垫50与相邻的两个电芯11均具有一定间隔,避免隔热垫50对在安全膨胀距离内膨胀的电芯11造成挤压,减小电芯11的膨胀压力,提升电池模组100的使用安全性;且隔热垫50还可以起到束缚电芯11充放电过程中的在安全膨胀距离内,电芯11表面过度凸出,使得电芯11在充放电过程中保持平整,电解液浸润效果更好,可以减少 析锂,进而延长电芯11的充放电循环次数。
请结合图3和图5,在一种可能的实施方式中,沿第二方向B,容置空间32延伸的第三高度为H3,隔热垫50延伸的第四高度为H4,容置空间32延伸的第三高度H3与隔热垫50延伸的第四高度H4满足:1.5mm≤H3-H4≤5.0mm;沿第三方向C,容置空间32延伸的第二宽度为W2,隔热垫50延伸的第三宽度为W3,容置空间32延伸的第二宽度W2与隔热垫50延伸的第三宽度W3满足1.5mm≤W2-W3≤5.0mm。
在第二方向B和第三方向C上,容置空间32与隔热垫50之间均预留一定的变形空间,不需要高操作精度便可将隔热垫50置于容置空间32中,且隔热垫50是弹性可变形的,在相邻两个电芯11相对膨胀时挤压隔热垫50会使隔热垫50变形,隔热垫50沿第二方向B的第四高度H4和沿第三方向C的第三宽度W3会增大,需要预留一定的变形空间,若没有给隔热垫50预留变形空间,会导致其变形难度大,预留给电芯11的膨胀空间会缩小,影响电芯11的膨胀,进而导致电芯11内部气压增大影响电芯11的使用寿命。本申请,在第二方向B和第三方向C上均预留变形空间,使得隔热垫50受到电芯11挤压变形更加容易,且不会影响电芯11的膨胀,提高电芯11的使用寿命。
进一步地,沿第二方向B,容置空间32的第三高度H3与隔热垫50的第四高度H4之差若小于1.5mm,隔热垫50沿第二方向B的变形空间过小,影响隔热垫50的变形进而间接影响电芯11的膨胀间隙,影响电芯11的循环性能;沿第二方向B,容置空间32的第三高度H3与隔热垫50的第四高度H4之差若大于5.0mm(即H3-H4<1.5mm),隔热垫50沿第二方向B的变形空间过大,隔热垫50的隔热效果差;沿第二方向B,容置空间32的第三高度H3与隔热垫50的第四高度H4之差大于等于1.5mm且小于等于5.0mm(即H3-H4>5.0mm),使得隔热垫50更容易变形,且具有良好的隔热效果,保证电芯11的循环性能。
类似地,沿第三方向C,容置空间32的第二宽度W2与隔热垫50的第三宽度W3之差若小于1.5mm(即W2-W3<1.5mm),隔热垫50沿第三方向C的变形空间过小,影响隔热垫50的变形进而间接影响电芯11的膨胀间隙,影响电芯11的循环性能;沿第三方向C,容置空间32的第二宽度W2与隔热垫50的第三宽度W3之差若大于5.0mm,隔热垫50沿第三方向C的变形空间过大,隔热垫50的隔热效果差;沿第三方向C,容置空间32的第二宽度W2与隔热垫50的第三宽度W3满足1.5mm≤W2-W3≤5.0mm,使得隔热垫50更容易变形,且具有良好的隔热效果,保证电芯11的循环性能。
在一种可能的实施方式中,支架30还包括多个第二加强件37,多个第二加强件37设于第二横杆315,第二横杆315上形成有沿第三方向C延伸的多个凹部3152,凹部3152自第二横杆315靠近电芯11的一表面朝背离电芯11的方向凹陷,相邻两个凹部3152之间形成有一第二加强件37。
需要说明的是,第二横杆315在第一方向A的相对两侧均设有电芯11,第二横杆315在第一方向A的相对两侧均形成有多个凹部3152,假设第二横杆315在第一方向A的相对两侧分别是左侧和右侧,第二横杆315的靠近左侧电芯11的一表面为左侧面,则左侧的多个凹部3152朝背离该左侧电芯11的方向凹陷。第二横杆315的靠近右侧电芯11的一表面为有侧面,则右侧的多个凹部3152朝背离该右侧电芯11的方向凹陷。
第二横杆315上设置多个第二加强件37,加强第二横杆315的结构强度,有效限制第二横杆315两侧的两个电芯11过度鼓包而造成第二横杆315被顶起,确保第二横杆315能够稳固地限制在端盖组件13的边缘,避免端盖组件13与电芯11的壳体之间的焊接处出现撕裂现象,提升电池模组100的使用安全性。
请结合图12和图13,在一种可能的实施方式中,电芯11包括端盖组件13,端盖组件13包括第一表面131,第一表面131为端盖组件13背离第一横杆313的表面,沿第二方向B,第二横杆315凸出于第一表面131设置。
电芯11包括壳体14和电极组件15,壳体14形成有收容空间141,电极组件15收容于收容空间141内。端盖组件13包括顶贴片132和端盖133,端盖133盖合于壳体14并密封壳体14的收容空间141,顶贴片132设于端盖133的背离电极组件15的一面,第一表面131位顶贴片132外露于端盖133的表面。其中,第二横杆315凸出于顶贴片132,以避免顶贴片132翘曲或剥离引起端盖133的金属表面裸露存在电连接短路的风险。
端盖组件13与壳体14的连接处沿第一方向A的正投影位于第二横杆315内。具体可以是顶贴片132与壳体14的连接处沿第一方向A的正投影位于第二横杆315内。
端盖组件13与壳体14的连接处沿第一方向A的正投影位于第二横杆315内,使得第二横杆315的部分结构能够遮挡端盖组件13与壳体14的连接处,确保第二横杆315能够凸出端盖组件13与壳体14的连接处,以避免位于第二横杆315两侧的两个电芯11之间的过度鼓包挤压第二横杆315、第二横杆315挤压壳体14朝向支架30的侧面导致端盖组件13与壳体14之间的焊接处出现撕裂现象,提升电池模组100的使用安全性。
示例的,第二横杆315的部分结构凸出于第一表面131,第二横杆315凸出于第一表面131的部分可抵接在顶贴片132的侧边。
支架30设置在相邻两个电芯11之间,第二横杆315凸出端盖组件13的第一表面131,第二横杆315可以抵接在端盖组件13的侧边,防止端盖组件13边缘发生翘曲或剥离现象。
请结合图13,在一种可能的实施方式中,第二横杆315包括第二表面3151,第二表面3151为第二横杆315背离第一横杆313的表面,沿第二方向B,第二表面3151与第一表面131之间的垂直距离为H5,第二表面3151与第一表面131之间的垂直距H5满足:0.3mm≤H5≤0.6mm。
沿第二方向B,若第二横杆315的第二表面3151与端盖组件13的第一表面131之间的垂直距离H5取值小于0.3mm,第二横杆315容易被发生翘曲或剥离的端盖组件13边缘顶起,导致支架30对电芯11固定效果减弱;若第二横杆315的第二表面3151与端盖组件13的第一表面131之间的垂直距离H5取值大于0.6mm,第二横杆315凸出的距离过大,妨碍电池模组100中其他部件的安装,如线束隔离板90需安装在端盖组件13背离第一横杆313的一面,若第二横杆315凸出的距离过大,将会导致线束隔离板90翘起。沿第二方向B,第二横杆315的第二表面3151与端盖组件13的第一表面131之间的垂直距离H5满足0.3mm≤H5≤0.6mm,确保第二横杆315能够稳固地限制在端盖组件13的边缘处,防止端盖组件13边缘发生翘曲时导致第二横杆315被顶起,且避免第二横杆315凸出距离过大影响电池模组100中其他部件的安装。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (24)

  1. 一种电池模组,其中,包括:
    电芯组,包括沿第一方向排列设置的多个电芯,每一所述电芯包括设于沿第二方向一侧的底板、两个沿所述第一方向相对设置的面板和两个沿第三方向相对设置的侧板,两个所述面板和两个所述侧板均固定连接于所述底板上,所述第一方向、所述第二方向和所述第三方向互相垂直;所述侧板与所述面板的连接处形成有第一R角;支架,设于相邻两个所述电芯之间,所述支架包括框体,沿所述第三方向,所述框体延伸的宽度小于所述电芯延伸的宽度,所述框体包括沿所述第三方向相对设置的两个竖杆,每一所述竖杆靠近所述电芯的一侧形成有与所述第一R角相对的第二R角,所述第一R角与所述第二R角的开口朝向同一侧;所述第二R角大于所述第一R角。
  2. 根据权利要求1所述的电池模组,其中,所述第一R角与所述第二R角的比值为S1,所述第一R角与所述第二R角的比值S1满足:1/2≤S1≤2/3。
  3. 根据权利要求1或2所述的电池模组,其中,所述竖杆在所述第二方向具有第一投影,所述第一投影由第一直线段、第二直线段和两个弧线段围合形成,所述第一直线段大于所述第二直线段,所述第一直线段与所述第二直线段位于所述第一投影在所述第三方向的相对两侧,两个所述弧线段位于所述第一投影在所述第一方向上的相对两侧,每一所述弧线段对应形成一个所述第二R角。
  4. 根据权利要求1-3任一项所述的电池模组,其中,所述支架形成有容置空间,每一所述竖杆具有背离所述容置空间的第一侧面,每一所述侧板具有第二侧面,在所述电芯沿所述第三方向的同一侧上,所述第一侧面与所述第二侧面具有沿所述第三方向延伸的间隙,所述间隙沿所述第三方向延伸的第一宽度为W1,所述间隙的第一宽度W1满足:0.5mm≤W1≤1.0mm。
  5. 根据权利要求4所述的电池模组,其中,所述框体还包括沿所述第二方向相对设置的第一横杆和第二横杆,两个所述竖杆沿所述第三方向相对设置,所述第一横杆、其中一个所述竖杆、所述第二横杆和另一个所述竖杆依次固定连接,所述第一横杆、所述第二横杆和两个所述竖杆共同形成所述容置空间,所述电池模组还包括隔热垫,所述隔热垫设于所述容置空间。
  6. 根据权利要求5所述的电池模组,其中,所述支架还包括凹槽,所述凹槽靠近所述竖杆与所述第二横杆连接处,所述凹槽在所述第二方向上的投影形状为弧形。
  7. 根据权利要求5或6所述的电池模组,其中,所述支架包括第一定位卡件和第二定位卡件,所述第一定位卡件设于所述第一横杆沿所述第三方向的相对两端,所述第一定位卡件支撑所述电芯;所述第二定位卡件设于所述第二横杆沿所述第三方向的相对两端,所述电芯包括端盖组件,所述第二定位卡件抵接于所述端盖组件。
  8. 根据权利要求7所述的电池模组,其中,所述电池模组还包括端板,所述电芯组沿所述第三方向的两侧均安装有所述端板,所述端板设于所述第一定位卡件与所述第二定位卡件之间,沿所述第二方向上,所述第一定位卡件与所述第二定位卡件之间的第一高度为H1,所述端板延伸的第二高度为H2,所述第一定位卡件与所述第二定位卡件之间第一高度H1大于所述端板延伸的第二高度H2,且所述第一定位卡件与所述第二定位卡件的第一高度H1,和所述端板延伸的第二高度H2满足:1.5mm≤H1-H2≤3.0mm。
  9. 根据权利要求7或8所述的电池模组,其中,所述第一定位卡件包括呈夹角设置的第一板体和第二板体,沿所述第二方向所述第一板体的投影位于所述第一横杆的投影在所述第一方向上的相对两侧,所述第一板体设于所述竖杆沿所述第二方向上背离所述第二横杆的第一端部,且设于所述第一横杆沿所述第二方向上背离所述容置空间的一侧,所述第一板体自所述第一端部沿所述第三方向朝向所述容置空间延伸,所述第一板体支撑所述电芯;沿所述第三方向所述第二板体的投影位于所述竖杆的投影在所述第一方向上的相对两侧,所述第二板体设于所述竖杆在所述第三方向上背离所述容置空间的一侧,并自所述第一板体与所述第二板体的连接处朝向所述第二横杆延伸。
  10. 根据权利要求9所述的电池模组,其中,所述面板与所述底板之间形成第三R角,所述支架还包括至少一个第一加强件,所述第一加强件设于所述第一板体与所述第一横杆的连接处,每个所述第一加强件具有与所述第三R角配合的第一弧面,所述第一弧面为所述第一加强件朝向所述电芯的曲面。
  11. 根据权利要求10所述的电池模组,其中,所述第一加强件包括多个,多个所述第一加强件沿所述第二方向间隔设于所述第一板体与所述第一横杆的连接处。
  12. 根据权利要求9-11任一项所述的电池模组,其中,所述侧板与所述底板之间形成有第四R角,所述第一定位件具有与所述第四R角相对的第五R角,所述第五R角设于所述第一板体与所述第二板体的连接处,所述第五R角与所述第四R角的开口朝向同一侧,所述第五R角小于所述第四R角。
  13. 根据权利要求12所述的电池模组,其中,所述第五R角与所述第四R角的比值为S2,所述第五R角与所述第四R角的比值S2满足:1/2≤S2≤2/3。
  14. 根据权利要求7-13任一项所述的电池模组,其中,所述第二定位卡件包括呈夹角设置的第三板体和第四板体,沿所述第二方向所述第三板体的投影位于所述第二横杆的投影在所述第一方向上的相对两侧,所述第三板体设于所述竖杆沿所述第二方向上背离所述第一横杆的第二端部,并自所述第二端部沿所述第三方向朝向所述容置空间延伸,所述第三板体朝向所述第一横杆的一面抵接于所述端盖组件;沿所述第三方向所述第四板体的投影位于所述竖杆的投影在所述第一方向上的相对两侧,所述第四板体设于所述竖杆在所述第三方向上背离所述容置空间的一面,并自所述第三板体与所述第四板体的连接处朝向所述第一横杆的方向延伸。
  15. 根据权利要求14所述的电池模组,其中,所述第二定位卡件还包括第一卡接部,所述第一卡接部自所述第三板体在所述第三方向上远离所述第四板体的端部朝背离所述第一横杆的方向延伸,所述第一卡接部具有卡接槽和导向斜面,所述卡接槽的开口在所述第三方向上背离所述容置空间,所述电池模组还包括盖体,所述盖体设有第二卡接部,所述第二卡接部沿所述导向斜面伸入所述卡接槽与所述第一卡接部配合连接。
  16. 根据权利要求15所述的电池模组,其中,所述电池模组还包括线束隔离板,沿所述第三方向上,两个所述第一卡接部的间距大于所述线束隔离板延伸的宽度。
  17. 根据权利要求5-16任一项所述的电池模组,其中,沿所述第一方向,所述容置空间延伸的第一长度为L1,所述隔热垫延伸的第二长度为L2,所述容置空间延伸的第一长度L1与所述隔热垫延伸的第二长度L2满足:2.3mm≤L1-L2≤3.1mm。
  18. 根据权利要求17所述的电池模组,其中,沿所述第二方向,所述容置空间延伸的第三高度为H3,所述隔热垫延伸的第四高度为H4,所述容置空间延伸的第三高度H3与所述隔热垫延伸的第四高度H4满足:1.5mm≤H3-H4≤5.0mm;沿所述第三方向,所述容置空间延伸的第二宽度为W2,所述隔热垫延伸的第三宽度为W3,所述容置空间延伸的第二宽度W2与所述隔热垫延伸的第三宽度W3满足:1.5mm≤W2-W3≤5.0mm。
  19. 根据权利要求5-18任一项所述的电池模组,其中,所述支架还包括多个第二加强件,所述多个第二加强件设于所述第二横杆,所述第二横杆上形成有沿所述第三方向延伸的多个凹部,所述凹部自所述第二横杆靠近所述电芯的一表面朝背离所述电芯的方向凹陷,相邻两个所述凹部之间形成有一所述第二加强件。
  20. 根据权利要求5-19任一项所述的电池模组,其中,所述电芯包括端盖组件,所述端盖组件包括第一表面,所述第一表面为所述端盖组件背离所述第一横杆的表面,沿所述第二方向,所述第二横杆凸出于所述第一表面设置。
  21. 根据权利要求20所述的电池模组,其中,所述第二横杆包括第二表面,所述第二表面为所述第二横杆背离所述第一横杆的表面,沿所述第二方向,所述第二表面与所述第一表面之间的垂直距离为H5,所述第二表面与所述第一表面之间的垂直距离H5满足:0.3mm≤H5≤0.6mm。
  22. 根据权利要求5-21任一项所述的电池模组,其中,所述电芯包括端盖组件、壳体和电极组件,所述壳体形成有收容空间,所述电极组件收容于所述收容空间,所述端盖组件盖合于所述壳体,安装于同一所述支架的两个所述电芯中,所述端盖组件与所述壳体的连接处沿所述第一方向的正投影位于所述第二横杆内。
  23. 一种储能装置,其中,包括权利要求1-22任一项所述的电池模组。
  24. 一种用电设备,其中,包括权利要求23所述的储能装置,所述储能装置用于对所述 用电设备供电。
PCT/CN2023/097645 2023-05-31 2023-05-31 电池模组、储能装置及用电设备 WO2024243926A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/097645 WO2024243926A1 (zh) 2023-05-31 2023-05-31 电池模组、储能装置及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/097645 WO2024243926A1 (zh) 2023-05-31 2023-05-31 电池模组、储能装置及用电设备

Publications (1)

Publication Number Publication Date
WO2024243926A1 true WO2024243926A1 (zh) 2024-12-05

Family

ID=93656330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097645 WO2024243926A1 (zh) 2023-05-31 2023-05-31 电池模组、储能装置及用电设备

Country Status (1)

Country Link
WO (1) WO2024243926A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119533735A (zh) * 2025-01-14 2025-02-28 宁德时代新能源科技股份有限公司 电池模组的膨胀检测方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145294A1 (en) * 2015-09-21 2018-05-24 Lg Chem, Ltd. Battery module and battery pack comprising same
CN209217056U (zh) * 2018-12-07 2019-08-06 北京国能电池科技股份有限公司 电池模组
CN111725449A (zh) * 2019-08-08 2020-09-29 欣旺达电动汽车电池有限公司 一种电池模组
CN211980685U (zh) * 2020-04-22 2020-11-20 湖北亿纬动力有限公司 电池模组、电池包及车辆
CN213366696U (zh) * 2020-09-08 2021-06-04 恒大新能源技术(深圳)有限公司 电芯组件、电池模组及电池系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145294A1 (en) * 2015-09-21 2018-05-24 Lg Chem, Ltd. Battery module and battery pack comprising same
CN209217056U (zh) * 2018-12-07 2019-08-06 北京国能电池科技股份有限公司 电池模组
CN111725449A (zh) * 2019-08-08 2020-09-29 欣旺达电动汽车电池有限公司 一种电池模组
CN211980685U (zh) * 2020-04-22 2020-11-20 湖北亿纬动力有限公司 电池模组、电池包及车辆
CN213366696U (zh) * 2020-09-08 2021-06-04 恒大新能源技术(深圳)有限公司 电芯组件、电池模组及电池系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119533735A (zh) * 2025-01-14 2025-02-28 宁德时代新能源科技股份有限公司 电池模组的膨胀检测方法、装置、电子设备及存储介质

Similar Documents

Publication Publication Date Title
CN116544565B (zh) 电池模组、储能装置及用电设备
CN117059979B (zh) 端盖组件、储能装置及用电设备
WO2024243926A1 (zh) 电池模组、储能装置及用电设备
WO2024255239A1 (zh) 储能装置、用电系统及储能系统
WO2024222078A1 (zh) 端盖组件、储能装置和用电设备
CN116404375A (zh) 储能模组及储能系统
CN116365125B (zh) 端盖组件、储能装置以及用电设备
WO2025001166A1 (zh) 储能装置、储能模组及用电设备
CN220086330U (zh) 储能装置及用电设备
WO2024198620A1 (zh) 端盖组件、储能装置以及用电设备
WO2024198597A1 (zh) 端盖组件、储能装置及用电设备
WO2024243932A1 (zh) 电池模组、储能装置及用电设备
CN116404315B (zh) 电池模组、储能装置及用电设备
CN116365189B (zh) 储能装置以及用电设备
CN220544118U (zh) 电池模组、储能装置及用电设备
CN117080634B (zh) 端盖组件、储能装置和用电设备
CN116799394B (zh) 储能装置及用电设备
WO2024243929A1 (zh) 储能模组及储能系统
WO2024243919A1 (zh) 储能装置以及用电设备
CN222775490U (zh) 电池箱及储能设备
CN116365148B (zh) 储能装置及用电设备
CN221978159U (zh) 储能装置和用电设备
CN214280097U (zh) 一种紧凑型高压电源总成
CN222051965U (zh) 一种电池系统及其电池模组
CN221928320U (zh) 一种端盖组件、储能装置及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23938917

Country of ref document: EP

Kind code of ref document: A1