WO2024223996A1 - Three-dimensional photovoltaic module - Google Patents

Three-dimensional photovoltaic module Download PDF

Info

Publication number
WO2024223996A1
WO2024223996A1 PCT/FR2023/051330 FR2023051330W WO2024223996A1 WO 2024223996 A1 WO2024223996 A1 WO 2024223996A1 FR 2023051330 W FR2023051330 W FR 2023051330W WO 2024223996 A1 WO2024223996 A1 WO 2024223996A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
dimensional
central axis
photovoltaic module
support
Prior art date
Application number
PCT/FR2023/051330
Other languages
French (fr)
Inventor
Sylvain Gauthier
Original Assignee
Sylvain Gauthier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sylvain Gauthier filed Critical Sylvain Gauthier
Publication of WO2024223996A1 publication Critical patent/WO2024223996A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • H10F77/147Shapes of bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures

Definitions

  • TITLE Three-dimensional photovoltaic module
  • the present invention relates generally to the field of photovoltaic solar energy. More specifically, it relates to a three-dimensional photovoltaic module.
  • the major disadvantage of this type of photovoltaic panel is the low amount of energy produced per m2 .
  • the amount of energy produced per m2 is not optimized.
  • this type of photovoltaic panel does not have a homogeneous energy production during the day. Indeed, this production follows a Gaussian law, maximum when the Sun is at its peak, and lower the rest of the day and in particular at the beginning and end of the day.
  • the classic solution requires the photovoltaic panel to be optimally oriented in relation to solar radiation, which is not always easy depending on the configuration of the building receiving such a photovoltaic panel.
  • each photovoltaic covering is disposed on a respective support face and extending substantially parallel to the respective support face, each photovoltaic covering comprising at least one photovoltaic cell and at least partially covering the respective support face.
  • Such a configuration of the three-dimensional photovoltaic module makes it possible to increase the developed surface covered with active photovoltaic material, and therefore to produce, when the Sun is at its culminating point and the three-dimensional photovoltaic module is arranged on a horizontal surface, more energy per unit of surface than a conventional photovoltaic panel.
  • the amount of energy produced annually by such a three-dimensional photovoltaic module is not optimal.
  • some of the photovoltaic coatings are not insolated and generate resistive loads that oppose the energy provided by the insolated photovoltaic coatings, which further limits the amount of energy produced annually by such a three-dimensional photovoltaic module.
  • each three-dimensional support structure when a plurality of three-dimensional photovoltaic modules of the aforementioned type are assembled together to form a photovoltaic device, each three-dimensional support structure generates, during the movement path of the Sun, shadows, or even darkness, on the photovoltaic coatings of the adjacent three-dimensional photovoltaic modules, which therefore considerably limits the amount of energy produced annually by such a photovoltaic device.
  • the present invention aims to remedy the drawbacks mentioned above.
  • the technical problem underlying the invention therefore consists of providing a three-dimensional photovoltaic module capable of producing more energy per unit area annually than a conventional three-dimensional photovoltaic module.
  • the present invention relates to a three-dimensional photovoltaic module having a central axis and comprising:
  • each photovoltaic covering being arranged on a support face respective and at least partially covering the respective support face, each photovoltaic covering extending substantially along a respective extension plane and comprising at least one photovoltaic cell, the photovoltaic coverings comprising a plurality of subsets of photovoltaic coverings which are distributed around the central axis and which each comprise two adjacent photovoltaic coverings, the extension planes of the two photovoltaic coverings belonging to the same subset converging upwards and intersecting along a respective intersection line which is inclined relative to the central axis and which extends upwards away from the central axis.
  • Such an orientation of the different photovoltaic coatings makes it possible to maximize the exposed surface area of the three-dimensional photovoltaic module at each instant of the Sun's travel path, and therefore to capture a significant quantity of energy coming from the Sun, without requiring any displacement mechanism configured to modify the orientation of the three-dimensional photovoltaic module depending on the position of the Sun.
  • the arrangement of the different photovoltaic coatings limits the phenomenon of shadows generated by each photovoltaic coating on the other photovoltaic coatings, while allowing good light penetration within the three-dimensional photovoltaic module.
  • all the photovoltaic coatings are at least partly simultaneously insolated during a significant part of the Sun's travel path, which ensures better regularity of energy production during the course of a day (and in particular during the ascending and descending phases of the Sun) and therefore also during the course of the year.
  • the arrangement of the photovoltaic coatings also makes it possible to produce electricity earlier in the day and until later in the day compared to the three-dimensional photovoltaic modules of the prior art.
  • the three-dimensional photovoltaic module makes it possible to produce, not only instantly, but above all annually, more energy per unit of surface area. than a classic photovoltaic panel and also than a classic three-dimensional photovoltaic module.
  • the three-dimensional photovoltaic module may further have one or more of the following characteristics, taken alone or in combination.
  • the ratio of the developed surface area of the photovoltaic coatings to the ground surface area occupied by the three-dimensional photovoltaic module is greater than 3, and for example between 4 and 6, and advantageously between 4.5 and 5.5.
  • intersection lines are regularly distributed around the central axis of the three-dimensional photovoltaic module.
  • each photovoltaic coating comprises an active face configured to capture photons of incident light rays, and a passive face configured to be oriented towards the respective support face and provided with a negative terminal and a positive terminal.
  • the three-dimensional photovoltaic module comprises electrical connection devices each configured to be electrically connected to the negative and positive terminals of a respective photovoltaic covering, each support face being perforated and comprising at least one through opening configured to allow an electrical connection between the negative and positive terminals of the respective photovoltaic covering and the respective electrical connection device.
  • each electrical connection device comprises two electrical connection wires which extend through the respective through opening and which are respectively connected to the negative and positive terminals of the respective photovoltaic coating.
  • each photovoltaic coating extends substantially parallel to the respective support face.
  • each intersection line intersects with the central axis of the three-dimensional photovoltaic module.
  • intersection lines intersect at an intersection point located substantially on the central axis of the three-dimensional photovoltaic module.
  • all the extension planes of the photovoltaic coverings have different orientations.
  • the two photovoltaic coatings of each subassembly define a vertex zone, said vertex zones being distributed, and for example regularly distributed, around the central axis.
  • the vertex zones defined by the photovoltaic coatings are equidistant from the central axis.
  • the central axis of the three-dimensional photovoltaic module is configured to extend substantially vertically when the three-dimensional photovoltaic module is arranged on a horizontal surface.
  • the photovoltaic coatings of said plurality of photovoltaic coatings are distinct from one another and are connected in series and/or in parallel.
  • At least one photovoltaic coating and for example each of the photovoltaic coatings, is flexible.
  • At least one photovoltaic coating and for example each of the photovoltaic coatings, is rigid.
  • each photovoltaic covering comprises a plurality of photovoltaic cells connected in parallel and/or in series.
  • each of the photovoltaic coatings has a generally triangular shape.
  • each photovoltaic covering comprises a first edge extending near and along the respective intersection line, a second edge located opposite the central axis and a third edge connecting the respective first and second edges.
  • the first edges of two photovoltaic coatings belonging to the same subassembly extend close to and along one another.
  • the second edge of each photovoltaic covering is inclined relative to the central axis, such that the lower end of said second edge is closer to the central axis than the upper end of said second edge.
  • each photovoltaic covering is inclined, relative to a respective reference plane which is parallel to the central axis and which passes through the third edge of said photovoltaic covering, by an angle of inclination of between 5 and 10°, and for example of approximately 7°.
  • the first edge of each photovoltaic covering has a length of between 35 and 55 mm, and advantageously between 40 and 50 mm, and for example approximately 44 mm.
  • the second edge of each photovoltaic covering has a length of between 55 and 75 mm, and advantageously between 60 and 70 mm, and for example approximately 65 mm.
  • the third edge of each photovoltaic covering has a length of between 25 and 45 mm, and advantageously between 30 and 40 mm, and for example approximately 34 mm.
  • each of the intersection lines is inclined relative to the central axis by an angle of inclination of between 10 and 40°, advantageously between 20 and 30°, and for example approximately 26°.
  • the number of support faces, and therefore of photovoltaic coatings is between 6 and 12.
  • the two photovoltaic coatings of each subassembly are substantially symmetrical with respect to a respective plane of symmetry passing through the respective line of intersection.
  • the planes of symmetry of the different subassemblies intersect along a line of intersection which is substantially the same as the central axis.
  • the adjacent photovoltaic coverings belonging to two adjacent subassemblies are located opposite each other.
  • the two photovoltaic coatings of each subassembly define, seen from above, a triangular shape, and for example an equilateral triangular shape.
  • an orthogonal projection of all the points of the two photovoltaic coatings belonging to the same subassembly on a reference plane perpendicular to the central axis defines a surface of triangular shape, and preferably of equilateral triangular shape.
  • a ratio of the first edge of each photovoltaic coating to a side of the equilateral triangular shape is between 1.7 and 2.2, advantageously between 1.8 and 2, and for example between 1.90 and 1.95.
  • a ratio of the second edge of each photovoltaic coating to a side of the equilateral triangular shape is between 2.7 and 3, advantageously between 2.8 and 2.9, and for example approximately 2.86.
  • a ratio of the third edge of each photovoltaic coating to a side of the equilateral triangular shape is between 1.2 and 1.8, advantageously between 1.3 and 1.7, and still advantageously between 1.4 and 1.6.
  • a ratio of the height of the three-dimensional photovoltaic module to one side of the equilateral triangular shape is between 2.5 and 3.5, advantageously between 2.8 and 3.3, and for example between 3 and 3.1.
  • the three-dimensional support structure comprises a plurality of support elements distributed around the central axis, each support element comprising a vertex and two support faces which are substantially planar and which are connected to each other along a crest zone, the crest zone of each of the support elements being inclined relative to the central axis and extending to the vertex of the respective support element away from the central axis.
  • the first edge of each photovoltaic coating extends near and along a respective ridge area.
  • the two photovoltaic coatings belonging to the same subassembly are arranged respectively on the support faces provided on the same support element.
  • the adjacent support faces of the two adjacent support elements are located opposite each other.
  • the adjacent support faces of the two adjacent support elements are connected to each other along a connection zone which is inclined relative to the central axis of the three-dimensional photovoltaic module and which extends downward away from the central axis.
  • each ridge zone forms a ridge line.
  • each ridge line is straight.
  • each ridge zone forms a ridge surface having a width of between 1 mm and 1 cm, and for example between 1 mm and 5 mm.
  • each ridge surface is substantially flat.
  • each support element is pointed.
  • the top of each support element is truncated.
  • the two photovoltaic coverings belonging to the same subassembly protrude beyond the top of the respective support element.
  • all the support faces belonging to the three-dimensional support structure have different orientations.
  • the vertices of the support elements are distributed, and for example regularly distributed, around the central axis.
  • the vertices of the support elements are equidistant from the central axis.
  • the vertices of the support elements are arranged on a circle centered on the central axis.
  • the ridge lines intersect at a crossing point located substantially on the central axis.
  • each of the crest zones is inclined relative to the central axis by an angle of inclination of between 10 and 40°, advantageously between 20 and 30°, and for example approximately 26°.
  • each of the support faces has a generally triangular shape or a truncated triangular shape.
  • the number of support elements is between 3 and 6.
  • the two support faces of each support element are symmetrical with respect to a respective plane of symmetry passing through the respective crest zone.
  • the planes of symmetry of the support elements intersect along a line of intersection which is substantially the same as the central axis.
  • the three-dimensional photovoltaic module further comprises a base which is located below the three-dimensional support structure and which defines, at least in part, an internal housing in which are housed at least in part the electrical connection devices, and for example the electrical connection wires connected to the photovoltaic coatings.
  • the base has a polygonal shape, and for example generally hexagonal.
  • the three-dimensional support structure is in one piece.
  • the support elements of the three-dimensional support structure are distinct from each other, and the three-dimensional support structure is formed by an assembly of the support elements.
  • the three-dimensional photovoltaic module comprises a protective cover, also called an encapsulation cover, which covers the photovoltaic coatings, the protective cover being made of a material transparent to light radiation.
  • the protective cap is configured to at least partially fill an internal space located between the photovoltaic coatings.
  • the protective cap is formed by hardening a transparent resin.
  • the three-dimensional photovoltaic module comprises an anti-reflective surface coating arranged on an upper face of the protective cover.
  • the upper face of the protective cover extends substantially perpendicular to the central axis of the three-dimensional photovoltaic module.
  • the upper face of the protective cap extends beyond the three-dimensional support structure, and for example beyond the tops of the support elements.
  • the three-dimensional photovoltaic module has a polygonal, for example hexagonal, cross-section.
  • the three-dimensional photovoltaic module has a height of between 3 and 6 cm, and for example approximately 4 cm. Such a height of three-dimensional photovoltaic module is particularly chosen when the three-dimensional photovoltaic module is intended to be installed on inclined or horizontal roofs.
  • the three-dimensional photovoltaic module could however have a height much greater than 6 cm for other applications, for example when the three-dimensional photovoltaic module is intended to be installed in a substantially vertical orientation.
  • the three-dimensional photovoltaic module comprises a positive main terminal to which the positive terminals of all the photovoltaic coatings are electrically connected, and a negative main terminal to which the negative terminals of all the photovoltaic coatings are electrically connected.
  • the present invention further comprises a photovoltaic device comprising a plurality of three-dimensional photovoltaic modules according to the present invention, said three-dimensional photovoltaic modules being arranged adjacently.
  • the photovoltaic device extends along an extension plane.
  • the bases of the two adjacent three-dimensional photovoltaic modules are juxtaposed, i.e. are in contact with each other.
  • one side of a base of a three-dimensional photovoltaic module is configured to extend along and to be in contact with one side of a base of an adjacent three-dimensional photovoltaic module.
  • Figure 1 is an exploded schematic view of a three-dimensional photovoltaic module according to the present invention.
  • Figure 2 is a top perspective view of a three-dimensional support structure belonging to the three-dimensional photovoltaic module of Figure 1, showing the attachment of photovoltaic coverings to the three-dimensional support structure.
  • Figure 3 is a top view of the three-dimensional support structure of Figure 2 equipped with photovoltaic coatings.
  • Figure 4 is a schematic side perspective view of the three-dimensional support structure of Figure 2 equipped with photovoltaic coatings.
  • photovoltaic coating means a photovoltaic element comprising at least one or more photovoltaic cell(s) supported or not by a base substrate layer which may for example be flexible or rigid.
  • Figures 1 to 4 show a three-dimensional photovoltaic module 2 according to an embodiment of the invention.
  • the three-dimensional photovoltaic module 2 has a central axis A which is configured to extend vertically. when the three-dimensional photovoltaic module 2 is arranged on a horizontal surface, and a cross-section of polygonal shape, and for example hexagonal.
  • the three-dimensional photovoltaic module 2 comprises a three-dimensional support structure 3 comprising a plurality of support elements 4 distributed around the central axis A.
  • the number of support elements 4 is between 3 and 6. According to the embodiment shown in the figures, the number of support elements 4 is equal to 6. However, in an alternative embodiment of the invention, the number of support elements
  • 4 could be equal to 3, 4 or 5.
  • the three-dimensional support structure 3 may for example be in one piece, and be obtained for example by 3D printing. However, the three-dimensional support structure 3 could also be obtained by assembling a plurality of support elements 4 distinct from each other, that is to say formed independently of each other, for example by 3D printing.
  • Each support element 4 comprises a vertex 5 and two support faces 6 which are substantially planar. As also shown in FIG. 3, the vertices 5 of the support elements 4 are regularly distributed around the central axis A, and are equidistant from the central axis A. In other words, the vertices 5 of the support elements 4 are arranged on a circle centered on the central axis A. According to the embodiment shown in the figures, the vertex 5 of each support element 4 is pointed. However, according to an alternative embodiment of the invention, the vertex 5 of each support element 4 could be truncated.
  • each crest area is a crest line Le which is rectilinear.
  • the crest line Le of each of the support elements 4 is inclined relative to the central axis A, and extends to the top
  • the ridge lines Le intersect at a crossing point located on the central axis A, and are regularly distributed around the central axis A.
  • Each of the ridge lines Le is more particularly inclined relative to the central axis A by an angle of inclination of between 10 and 40°, advantageously between 20 and 30°, and for example of approximately 26°.
  • each ridge area could be a ridge surface which is substantially flat and which has a width of between 1 mm and 1 cm, and for example of between 1 mm and 5 mm.
  • each of the support faces 6 of the support elements 4 has different orientations, and each of the support faces 6 has a generally triangular shape.
  • each of the support faces 6 could have a truncated triangular shape, i.e. a shape triangular with at least one corner truncated, for example the corner located on the side of the respective vertex 5.
  • the adjacent support faces 6 of the two adjacent support elements 4 are located opposite each other.
  • the adjacent support faces 6 of the two adjacent support elements 4 are connected to each other along a connection zone Z which is inclined relative to the central axis A and which extends downwards away from the central axis A.
  • each support element 4 has a plane of symmetry P passing through the respective crest line Le, and the planes of symmetry P of the support elements 4 are intersecting along a straight line of intersection which coincides with the central axis A.
  • the three-dimensional photovoltaic module 2 further comprises photovoltaic coverings 7 fixed to the three-dimensional support structure 3.
  • the photovoltaic coverings 7 are distinct from one another and connected in series and/or in parallel.
  • At least one photovoltaic covering 7, and for example each of the photovoltaic coverings 7, can be flexible or rigid.
  • Each photovoltaic covering 7 is arranged on a respective support face 6, and extends parallel to the respective support face 6.
  • Each photovoltaic covering 7 extends more particularly substantially along a respective extension plane, and all the extension planes of the photovoltaic coverings 7 have different orientations.
  • Each photovoltaic coating 7 advantageously comprises several photovoltaic cells connected in parallel and/or in series, and partially or completely covers the respective support face 6.
  • the photovoltaic cells of each photovoltaic coating 7 may for example be supported by a base substrate layer.
  • Each photovoltaic coating 7 comprises an active face 7.1 configured to capture photons of incident light rays, and a passive face 7.2 which is configured to be oriented towards the respective support face 6 and which is provided with a negative terminal and a positive terminal.
  • the three-dimensional photovoltaic module 2 more particularly comprises electrical connection devices 8 each configured to be electrically connected to the negative and positive terminals of a respective photovoltaic covering 7.
  • each support face 6 is advantageously perforated and comprises a through opening 6.1 (such as a window or a notch) configured to allow an electrical connection between the negative and positive terminals of the respective photovoltaic covering 7 and the connection device.
  • respective electrical connection device 8 comprises two electrical connection wires 8.1 which extend through the respective through opening 6.1 and which are connected respectively to the negative and positive terminals of the respective photovoltaic covering 7.
  • each electrical connection device 8 could for example comprise a printed circuit board fixed to the three-dimensional support structure 3 and provided with conductive tracks configured to be electrically connected to the negative and positive terminals of the respective photovoltaic coating 7, or could also comprise conductive tracks directly provided on the three-dimensional support structure 3 (the conductive tracks can for example be etched and/or printed on the three-dimensional support structure 3).
  • each photovoltaic covering 7 is of a generally triangular shape, and has dimensions substantially identical to those of each support face 6. According to one embodiment of the invention, each photovoltaic covering 7 has a thickness of approximately 1 mm.
  • the photovoltaic coatings 7 comprise a plurality of subassemblies of photovoltaic coatings which are distributed around the central axis A and which each comprise two adjacent photovoltaic coatings 7.
  • the two photovoltaic coatings 7 belonging to the same subassembly are arranged respectively on the support faces 6 provided on the same support element 4, and the adjacent photovoltaic coatings 7 belonging to two adjacent subassemblies are located opposite each other.
  • intersection lines Li which is inclined relative to the central axis A and which extends upwards away from the central axis A.
  • Each of the intersection lines Li is inclined relative to the central axis A by an inclination angle a of between 10 and 40°, advantageously between 20 and 30°, and for example approximately 26°.
  • the intersection lines Li are regularly distributed around the central axis A of the three-dimensional photovoltaic module 2, and intersect at an intersection point located substantially on the central axis A of the three-dimensional photovoltaic module 2.
  • the two photovoltaic coatings 7 of each subassembly define a vertex zone 12, and the vertex zones 12 defined by the photovoltaic coatings 7 are regularly distributed around the central axis A and are equidistant from the central axis A.
  • Each of the photovoltaic coatings 7 comprises a first edge B1 extending near and along the respective intersection line Li, a second edge B2 located opposite the central axis A and extending to the respective vertex area 12 and a third edge B3 connecting the respective first and second edges.
  • the first edges B1 of two photovoltaic coatings 7 belonging to the same subset extend close to and along each other.
  • the second edge B2 of each photovoltaic covering 7 is inclined relative to the central axis A, such that the lower end of said second edge B2 is closer to the central axis A than the upper end of said second edge B2.
  • the two photovoltaic coatings 7 of each subassembly define, seen from above, a triangular shape, and for example an equilateral triangular shape.
  • an orthogonal projection of all the points of the two photovoltaic coatings 7 belonging to the same subassembly on a reference plane perpendicular to the central axis A defines a surface of triangular shape, and preferably of equilateral triangular shape.
  • the ratio of the developed surface area of the photovoltaic coverings 7 to the ground surface area occupied by the three-dimensional photovoltaic module 2 is greater than 3, and for example between 4 and 6, and advantageously between 4.5 and 5.5.
  • a ratio of the first edge B1 of each photovoltaic covering 7 to a side C of the equilateral triangular shape is between 1.7 and 2.2, advantageously between 1.8 and 2, still advantageously between 1.90 and 1.95, and for example equal to approximately 1.94 or approximately 1.92,
  • a ratio of the second edge B2 of each photovoltaic coating 7 to a side C of the aforementioned equilateral triangular shape is between 2.7 and 3, advantageously between 2.8 and 2.9, and for example approximately 2.86,
  • a ratio of the third edge B3 of each photovoltaic coating 7 to a side C of the aforementioned equilateral triangular shape is between 1.2 and 1.8, advantageously between 1.3 and 1.7, and still advantageously between 1.4 and 1.6, and for example equal to approximately 1.47 or approximately 1.58,
  • a ratio of the height of the three-dimensional photovoltaic module 2 to a side C of the aforementioned equilateral triangular shape is between 2.5 and 3.5, advantageously between 2.8 and 3.3, and still advantageously between 3 and 3.1, and for example equal to approximately 3.06.
  • each photovoltaic coating 7 is inclined, relative to a respective reference plane which is parallel to the central axis A and which passes through the third edge B3 of said photovoltaic coating 7, with an inclination angle of between 5 and 10°, and for example of approximately 7°.
  • the three-dimensional photovoltaic module 2 also comprises a base 9 which is located below the three-dimensional support structure 3 and which has a polygonal shape, and for example generally hexagonal.
  • the base 9 delimits, at least in part, an internal housing 10 in which are housed at least in part the electrical connection wires 8.1 connected to the photovoltaic coatings 7.
  • the three-dimensional photovoltaic module 2 further comprises a positive main terminal to which the positive terminals of all the photovoltaic coverings 7 are electrically connected, and a negative main terminal to which the negative terminals of all the photovoltaic coverings 7 are electrically connected.
  • the three-dimensional photovoltaic module 2 further comprises a protective cap 14, also called an encapsulation cap, which covers and protects the photovoltaic coatings 7.
  • the protective cap 14 is made of a material transparent to light radiation, and is for example formed by hardening a transparent resin.
  • the protective cap 14 is more particularly configured to fill an internal space located between the photovoltaic coatings 7.
  • the protective cap 14 comprises an upper face which extends beyond the vertices 5 of the support elements 4, and which extends perpendicular to the central axis A.
  • the protective cap 14 is configured such that the three-dimensional photovoltaic module 2 has a general prism shape, each of the bases of which has a generally hexagonal shape.
  • the three-dimensional photovoltaic module 2 also comprises an anti-reflective surface coating 15 arranged on the upper face of the protective cover 14. However, if the protective cover 14 is made of a material having anti-reflective properties, the three-dimensional photovoltaic module 2 could be devoid of the anti-reflective surface coating 15.
  • each support element 4 could be truncated, and the two photovoltaic coverings 7 belonging to the same subassembly could protrude beyond the top 5 of the respective support element 4.
  • three-dimensional photovoltaic modules 2 could be assembled so as to form a photovoltaic device extending along an extension plane, and therefore having an external shape similar to that of a conventional photovoltaic panel.
  • the three-dimensional photovoltaic modules 2 are arranged adjacently, and are connected in series and/or in parallel by connecting their positive and negative main terminals.
  • the bases 9 of the two adjacent three-dimensional photovoltaic modules 2 are juxtaposed, that is to say are in contact with each other, at their adjacent sides.
  • Such a photovoltaic device advantageously comprises a support or support frame delimiting a compartment in which the different three-dimensional photovoltaic modules 2 are arranged.
  • each three-dimensional photovoltaic module 2 has a hexagonal shape advantageously makes it possible to obtain an optimized network arrangement of the different three-dimensional photovoltaic modules 2 of said photovoltaic device.
  • a photovoltaic device according to the present invention can be installed in a greater number of locations than a photovoltaic device formed from three-dimensional photovoltaic modules of the prior art, and this with fewer orientation and inclination constraints.
  • a photovoltaic device according to the present invention can in particular be installed on sloping roofs facing East, South or West, on horizontal roofs or on the ground without additional support, on facades facing East, South or West (and therefore in a substantially vertical orientation), or even as a replacement for all existing photovoltaic devices coated with photovoltaic material with identical technical characteristics with at least three times more annual electricity production for the same surface area.
  • a photovoltaic device according to the present invention can also be installed on all means of locomotion currently existing and in the future, due to the fact that such a photovoltaic device has an annual energy production at least three times greater than that of photovoltaic devices of the prior art coated with photovoltaic material with identical technical characteristics and is free from most orientation constraints.

Landscapes

  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

The invention relates to a three-dimensional photovoltaic module (2) provided with a central axis and comprising a three-dimensional support structure (3) having a plurality of support faces (6) distributed around the central axis; and photovoltaic coatings (7) attached to the three-dimensional support structure (3), each photovoltaic coating (7) being arranged on a respective support face and at least partially covering the respective support face (6), each photovoltaic coating (7) extending substantially along a respective extension plane. The photovoltaic coatings (7) comprise a plurality of photovoltaic coating subsets (7) distributed around the central axis that each comprise two adjacent photovoltaic coatings (7), the extension planes of the two photovoltaic coatings (7) belonging to the same subset intersecting along a respective intersection line that is inclined with respect to the central axis and upwardly extends away from the central axis.

Description

DESCRIPTION DESCRIPTION

TITRE : Module photovoltaïque tridimensionnel TITLE: Three-dimensional photovoltaic module

Domaine technique Technical field

La présente invention concerne de manière générale le domaine de l’énergie solaire photovoltaïque. Elle vise plus précisément un module photovoltaïque tridimensionnel. The present invention relates generally to the field of photovoltaic solar energy. More specifically, it relates to a three-dimensional photovoltaic module.

Etat de la technique State of the art

Dans le domaine de l’énergie solaire photovoltaïque, il est connu d’utiliser, de manière générale, des panneaux photovoltaïques en deux dimensions constitués par la superposition de plusieurs couches consistant généralement de haut en bas en : In the field of photovoltaic solar energy, it is known to use, in general, two-dimensional photovoltaic panels made up of the superposition of several layers generally consisting from top to bottom of:

- un revêtement antireflet pour limiter la réflexion des rayons solaires sur les couches semi-conductrices sous-jacentes ; - an anti-reflective coating to limit the reflection of solar rays on the underlying semiconductor layers;

- une couche de verre protectrice pour protéger les couches semi-conductrices sous-jacentes ; - a protective glass layer to protect the underlying semiconductor layers;

- une grille conductrice ; - a conductive grid;

- une couche de semi-conducteur dopé N ou P ; - a layer of N or P doped semiconductor;

- une couche de semi-conducteur dopé P ou N ; et - a layer of P or N doped semiconductor; and

- une couche de base. - a base layer.

L’inconvénient majeur de ce type de panneaux photovoltaïques réside dans la faible quantité d’énergie produite par m2. En effet, avec un panneau photovoltaïque bidimensionnel, la quantité d’énergie produite par m2 n’est pas optimisée. The major disadvantage of this type of photovoltaic panel is the low amount of energy produced per m2 . In fact, with a two-dimensional photovoltaic panel, the amount of energy produced per m2 is not optimized.

De plus, ce type de panneau photovoltaïque n’a pas une production d’énergie homogène au cours de la journée. En effet, cette production suit une loi gaussienne, maximale lorsque le Soleil est à son point de culmination, et plus faible le reste de la journée et en particulier en début et en fin de journée. In addition, this type of photovoltaic panel does not have a homogeneous energy production during the day. Indeed, this production follows a Gaussian law, maximum when the Sun is at its peak, and lower the rest of the day and in particular at the beginning and end of the day.

Par ailleurs, la solution classique nécessite d’orienter le panneau photovoltaïque de façon optimale par rapport au rayonnement solaire, ce qui n’est pas toujours aisé selon la configuration de l’édifice recevant un tel panneau photovoltaïque. Furthermore, the classic solution requires the photovoltaic panel to be optimally oriented in relation to solar radiation, which is not always easy depending on the configuration of the building receiving such a photovoltaic panel.

Pour pallier de tels inconvénients, il est connu de réaliser un module photovoltaïque tridimensionnel comportant: To overcome such drawbacks, it is known to produce a three-dimensional photovoltaic module comprising:

- une structure de support tridimensionnelle ayant une forme pyramidale à base carrée, et comprenant quatre faces de support ayant chacune une forme triangulaire ; et - une pluralité de revêtements photovoltaïques fixés à la structure de support tridimensionnelle, chaque revêtement photovoltaïque étant disposé sur une face de support respective et s’étendant sensiblement parallèlement à la face de support respective, chaque revêtement photovoltaïque comprenant au moins une cellule photovoltaïque et recouvrant au moins en partie la face de support respective. - a three-dimensional support structure having a square-based pyramid shape, and comprising four support faces each having a triangular shape; and - a plurality of photovoltaic coverings attached to the three-dimensional support structure, each photovoltaic covering being disposed on a respective support face and extending substantially parallel to the respective support face, each photovoltaic covering comprising at least one photovoltaic cell and at least partially covering the respective support face.

Une telle configuration du module photovoltaïque tridimensionnel permet d’augmenter la surface développée recouverte de matière photovoltaïque active, et donc de produire, lorsque le Soleil est à son point de culmination et que le module photovoltaïque tridimensionnel est disposé sur une surface horizontale, plus d’énergie par unité de surface qu’un panneau photovoltaïque classique. Such a configuration of the three-dimensional photovoltaic module makes it possible to increase the developed surface covered with active photovoltaic material, and therefore to produce, when the Sun is at its culminating point and the three-dimensional photovoltaic module is arranged on a horizontal surface, more energy per unit of surface than a conventional photovoltaic panel.

Cependant, en raison des ombres portées générées par la structure de support tridimensionnelle durant la course de déplacement du Soleil au cours d’une journée, la quantité d’énergie produite annuellement par un tel module photovoltaïque tridimensionnel n’est pas optimale. De plus, à certains instants de la course de déplacement du Soleil, certains des revêtements photovoltaïques ne sont pas insolés et génèrent des charges résistives qui s’opposent à l’énergie fournie par les revêtements photovoltaïques insolés, ce qui limite encore la quantité d’énergie produite annuellement par un tel module photovoltaïque tridimensionnel. However, due to the shadows generated by the three-dimensional support structure during the movement path of the Sun during a day, the amount of energy produced annually by such a three-dimensional photovoltaic module is not optimal. In addition, at certain times during the movement path of the Sun, some of the photovoltaic coatings are not insolated and generate resistive loads that oppose the energy provided by the insolated photovoltaic coatings, which further limits the amount of energy produced annually by such a three-dimensional photovoltaic module.

En outre, lorsqu’une pluralité de modules photovoltaïques tridimensionnels du type précité sont assemblés les uns aux autres pour former un dispositif photovoltaïque, chaque structure de support tridimensionnelle génère, lors de la course de déplacement du Soleil, des ombres, voire de l’obscurité, sur les revêtements photovoltaïques des modules photovoltaïques tridimensionnels adjacents, ce qui limite donc considérablement la quantité d’énergie produite annuellement par un tel dispositif photovoltaïque. Furthermore, when a plurality of three-dimensional photovoltaic modules of the aforementioned type are assembled together to form a photovoltaic device, each three-dimensional support structure generates, during the movement path of the Sun, shadows, or even darkness, on the photovoltaic coatings of the adjacent three-dimensional photovoltaic modules, which therefore considerably limits the amount of energy produced annually by such a photovoltaic device.

Résumé de l’invention Summary of the invention

La présente invention vise à remédier aux inconvénients précédemment cités.The present invention aims to remedy the drawbacks mentioned above.

Le problème technique à la base de l’invention consiste donc à fournir un module photovoltaïque tridimensionnel permettant de produire annuellement plus d’énergie par unité de surface qu’un module photovoltaïque tridimensionnel classique. The technical problem underlying the invention therefore consists of providing a three-dimensional photovoltaic module capable of producing more energy per unit area annually than a conventional three-dimensional photovoltaic module.

A cet effet, la présente invention concerne un module photovoltaïque tridimensionnel présentant un axe central et comportant : For this purpose, the present invention relates to a three-dimensional photovoltaic module having a central axis and comprising:

- une structure de support tridimensionnelle comprenant une pluralité de faces de support réparties autour de l’axe central, - a three-dimensional support structure comprising a plurality of support faces distributed around the central axis,

- des revêtements photovoltaïques fixés à la structure de support tridimensionnelle, chaque revêtement photovoltaïque étant disposé sur une face de support respective et recouvrant au moins en partie la face de support respective, chaque revêtement photovoltaïque s’étendant sensiblement selon un plan d’extension respectif et comprenant au moins une cellule photovoltaïque, les revêtements photovoltaïques comprenant une pluralité de sous-ensembles de revêtements photovoltaïques qui sont répartis autour de l’axe central et qui comportent chacun deux revêtements photovoltaïques adjacents, les plans d’extension des deux revêtements photovoltaïques appartenant à un même sous-ensemble convergeant vers le haut et s’intersectant le long d’une ligne d’intersection respective qui est inclinée par rapport à l’axe central et qui s’étend vers le haut en s’éloignant de l’axe central. - photovoltaic coverings fixed to the three-dimensional support structure, each photovoltaic covering being arranged on a support face respective and at least partially covering the respective support face, each photovoltaic covering extending substantially along a respective extension plane and comprising at least one photovoltaic cell, the photovoltaic coverings comprising a plurality of subsets of photovoltaic coverings which are distributed around the central axis and which each comprise two adjacent photovoltaic coverings, the extension planes of the two photovoltaic coverings belonging to the same subset converging upwards and intersecting along a respective intersection line which is inclined relative to the central axis and which extends upwards away from the central axis.

Une telle orientation des différents revêtements photovoltaïques permet de maximiser la surface insolée du module photovoltaïque tridimensionnel à chaque instant de la course de déplacement du Soleil, et donc de capter une quantité d’énergie importante provenant du Soleil, et ce sans requérir à un quelconque mécanisme de déplacement configuré pour modifier l’orientation du module photovoltaïque tridimensionnel en fonction de la position du Soleil. Such an orientation of the different photovoltaic coatings makes it possible to maximize the exposed surface area of the three-dimensional photovoltaic module at each instant of the Sun's travel path, and therefore to capture a significant quantity of energy coming from the Sun, without requiring any displacement mechanism configured to modify the orientation of the three-dimensional photovoltaic module depending on the position of the Sun.

En particulier, la disposition des différents revêtements photovoltaïques limite le phénomène d’ombres portées généré par chaque revêtement photovoltaïque sur les autres revêtements photovoltaïques, tout en permettant une bonne pénétration lumineuse au sein du module photovoltaïque tridimensionnel. In particular, the arrangement of the different photovoltaic coatings limits the phenomenon of shadows generated by each photovoltaic coating on the other photovoltaic coatings, while allowing good light penetration within the three-dimensional photovoltaic module.

De plus, compte tenu de la disposition des revêtements photovoltaïques, tous les revêtements photovoltaïques sont au moins en partie simultanément insolés durant une partie importante de la course de déplacement du Soleil, ce qui assure une meilleure régularité de la production d’énergie au cours d’une journée (et notamment durant les phases ascendante et descendante du Soleil) et donc également au cours de l’année. La disposition des revêtements photovoltaïques permet également de produire de l’électricité plus tôt dans la journée et jusque plus tard dans la journée comparativement aux modules photovoltaïques tridimensionnels de l’art antérieur. Furthermore, given the arrangement of the photovoltaic coatings, all the photovoltaic coatings are at least partly simultaneously insolated during a significant part of the Sun's travel path, which ensures better regularity of energy production during the course of a day (and in particular during the ascending and descending phases of the Sun) and therefore also during the course of the year. The arrangement of the photovoltaic coatings also makes it possible to produce electricity earlier in the day and until later in the day compared to the three-dimensional photovoltaic modules of the prior art.

En outre, lorsqu’un revêtement photovoltaïque n’est pas directement insolé, il est néanmoins apte à capter au moins une partie de la lumière réfléchie par d’autres revêtements photovoltaïques du module photovoltaïque tridimensionnel. Enfin, même lorsqu’un revêtement photovoltaïque n’est ni directement, ni indirectement insolé, cela ne représente qu’une partie mimine des revêtements photovoltaïques appartenant au module photovoltaïque tridimensionnel qui n’est pas insolée. Furthermore, when a photovoltaic coating is not directly exposed, it is nevertheless capable of capturing at least part of the light reflected by other photovoltaic coatings of the three-dimensional photovoltaic module. Finally, even when a photovoltaic coating is neither directly nor indirectly exposed, this represents only a minimal part of the photovoltaic coatings belonging to the three-dimensional photovoltaic module that is not exposed.

Par conséquent, le module photovoltaïque tridimensionnel permet de produire, non seulement en instantanée, mais surtout annuellement, plus d’énergie par unité de surface qu’un panneau photovoltaïque classique et également qu’un module photovoltaïque tridimensionnel classique. Therefore, the three-dimensional photovoltaic module makes it possible to produce, not only instantly, but above all annually, more energy per unit of surface area. than a classic photovoltaic panel and also than a classic three-dimensional photovoltaic module.

Le module photovoltaïque tridimensionnel peut en outre présenter une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison. The three-dimensional photovoltaic module may further have one or more of the following characteristics, taken alone or in combination.

Selon un mode de réalisation de l’invention, le rapport de la surface développée des revêtements photovoltaïques sur la surface au sol occupée par le module photovoltaïque tridimensionnel est supérieur à 3, et par exemple compris entre 4 et 6, et avantageusement entre 4,5 et 5,5. Ces dispositions assurent une production d’énergie, par unité de surface, relativement élevée comparativement à l’énergie produite, par unité de surface, par un module photovoltaïque tridimensionnel de l’art antérieur. According to one embodiment of the invention, the ratio of the developed surface area of the photovoltaic coatings to the ground surface area occupied by the three-dimensional photovoltaic module is greater than 3, and for example between 4 and 6, and advantageously between 4.5 and 5.5. These arrangements ensure a relatively high production of energy, per unit area, compared to the energy produced, per unit area, by a three-dimensional photovoltaic module of the prior art.

Selon un mode de réalisation de l’invention, les lignes d’intersection sont régulièrement réparties autour de l’axe central du module photovoltaïque tridimensionnel. According to one embodiment of the invention, the intersection lines are regularly distributed around the central axis of the three-dimensional photovoltaic module.

Selon un mode de réalisation de l’invention, chaque revêtement photovoltaïque comporte une face active configurée pour capter des photons de rayons lumineux incidents, et une face passive configurée pour être orientée vers la face de support respective et pourvue d’une borne négative et d’une borne positive. According to one embodiment of the invention, each photovoltaic coating comprises an active face configured to capture photons of incident light rays, and a passive face configured to be oriented towards the respective support face and provided with a negative terminal and a positive terminal.

Selon un mode de réalisation de l’invention, le module photovoltaïque tridimensionnel comporte des dispositifs de connexion électrique configurés chacun pour être reliés électriquement aux bornes négative et positive d’un revêtement photovoltaïque respectif, chaque face de support étant ajourée et comportant au moins une ouverture traversante configurée pour permettre une connexion électrique entre les bornes négative et positive du revêtement photovoltaïque respectif et le dispositif de connexion électrique respectif. According to one embodiment of the invention, the three-dimensional photovoltaic module comprises electrical connection devices each configured to be electrically connected to the negative and positive terminals of a respective photovoltaic covering, each support face being perforated and comprising at least one through opening configured to allow an electrical connection between the negative and positive terminals of the respective photovoltaic covering and the respective electrical connection device.

Selon un mode de réalisation de l’invention, chaque dispositif de connexion électrique comporte deux fils de connexion électrique qui s’étendent à travers l’ouverture traversante respective et qui sont reliés respectivement aux bornes négative et positive du revêtement photovoltaïque respectif. According to one embodiment of the invention, each electrical connection device comprises two electrical connection wires which extend through the respective through opening and which are respectively connected to the negative and positive terminals of the respective photovoltaic coating.

Selon un mode de réalisation de l’invention, chaque revêtement photovoltaïque s’étend sensiblement parallèlement à la face de support respective. According to one embodiment of the invention, each photovoltaic coating extends substantially parallel to the respective support face.

Selon un mode de réalisation de l’invention, chaque ligne d’intersection est sécante avec l’axe central du module photovoltaïque tridimensionnel. According to one embodiment of the invention, each intersection line intersects with the central axis of the three-dimensional photovoltaic module.

Selon un mode de réalisation de l’invention, les lignes d’intersection sont sécantes en un point d’intersection situé sensiblement sur l’axe central du module photovoltaïque tridimensionnel. According to one embodiment of the invention, the intersection lines intersect at an intersection point located substantially on the central axis of the three-dimensional photovoltaic module.

Selon un mode de réalisation de l’invention, tous les plans d’extension des revêtements photovoltaïques présentent des orientations différentes. Selon un mode de réalisation de l’invention, les deux revêtements photovoltaïques de chaque sous-ensemble définissent une zone de sommet, lesdites zones de sommet étant réparties, et par exemple régulièrement réparties, autour de l’axe central. According to one embodiment of the invention, all the extension planes of the photovoltaic coverings have different orientations. According to one embodiment of the invention, the two photovoltaic coatings of each subassembly define a vertex zone, said vertex zones being distributed, and for example regularly distributed, around the central axis.

Selon un mode de réalisation de l’invention, les zones de sommet définies par les revêtements photovoltaïques sont équidistantes de l’axe central. According to one embodiment of the invention, the vertex zones defined by the photovoltaic coatings are equidistant from the central axis.

Selon un mode de réalisation de l’invention, l’axe central du module photovoltaïque tridimensionnel est configuré pour s’étendre sensiblement verticalement lorsque le module photovoltaïque tridimensionnel est disposé sur une surface horizontale. According to one embodiment of the invention, the central axis of the three-dimensional photovoltaic module is configured to extend substantially vertically when the three-dimensional photovoltaic module is arranged on a horizontal surface.

Selon un mode de réalisation de l’invention, les revêtements photovoltaïques de ladite pluralité de revêtements photovoltaïques sont distincts les uns des autres et sont reliés en série et/ou en parallèle. According to one embodiment of the invention, the photovoltaic coatings of said plurality of photovoltaic coatings are distinct from one another and are connected in series and/or in parallel.

Selon un mode de réalisation de l’invention, au moins un revêtement photovoltaïque, et par exemple chacun des revêtements photovoltaïques, est flexible. According to one embodiment of the invention, at least one photovoltaic coating, and for example each of the photovoltaic coatings, is flexible.

Selon un autre mode de réalisation de l’invention, au moins un revêtement photovoltaïque, et par exemple chacun des revêtements photovoltaïques, est rigide. According to another embodiment of the invention, at least one photovoltaic coating, and for example each of the photovoltaic coatings, is rigid.

Selon un mode de réalisation de l’invention, chaque revêtement photovoltaïque comprend une pluralité de cellules photovoltaïques reliées en parallèle et/ou en série. According to one embodiment of the invention, each photovoltaic covering comprises a plurality of photovoltaic cells connected in parallel and/or in series.

Selon un mode de réalisation de l’invention, chacun des revêtements photovoltaïques présente une forme globalement triangulaire. According to one embodiment of the invention, each of the photovoltaic coatings has a generally triangular shape.

Selon un mode de réalisation de l’invention, chaque revêtement photovoltaïque comporte un premier bord s’étendant à proximité et le long de la ligne d’intersection respective, un deuxième bord situé à l’opposé de l’axe central et un troisième bord reliant les premier et deuxième bords respectifs. According to one embodiment of the invention, each photovoltaic covering comprises a first edge extending near and along the respective intersection line, a second edge located opposite the central axis and a third edge connecting the respective first and second edges.

Selon un mode de réalisation de l’invention, les premiers bords de deux revêtements photovoltaïques appartenant à un même sous-ensemble s’étendent à proximité et le long l’un de l’autre. According to one embodiment of the invention, the first edges of two photovoltaic coatings belonging to the same subassembly extend close to and along one another.

Selon un mode de réalisation de l’invention, le deuxième bord de chaque revêtement photovoltaïque est incliné par rapport à l’axe central, de telle sorte que l’extrémité inférieure dudit deuxième bord est plus proche de l’axe central que l’extrémité supérieure dudit deuxième bord. According to one embodiment of the invention, the second edge of each photovoltaic covering is inclined relative to the central axis, such that the lower end of said second edge is closer to the central axis than the upper end of said second edge.

Selon un mode de réalisation de l’invention, chaque revêtement photovoltaïque est incliné, par rapport à un plan de référence respectif qui est parallèle à l’axe central et qui passe par le troisième bord dudit revêtement photovoltaïque, d’un angle d’inclinaison compris entre 5 et 10°, et par exemple d’environ 7°. Selon un mode de réalisation de l’invention, le premier bord de chaque revêtement photovoltaïque présente une longueur comprise entre 35 et 55 mm, et avantageusement entre 40 et 50 mm, et par exemple d’environ 44 mm. According to one embodiment of the invention, each photovoltaic covering is inclined, relative to a respective reference plane which is parallel to the central axis and which passes through the third edge of said photovoltaic covering, by an angle of inclination of between 5 and 10°, and for example of approximately 7°. According to one embodiment of the invention, the first edge of each photovoltaic covering has a length of between 35 and 55 mm, and advantageously between 40 and 50 mm, and for example approximately 44 mm.

Selon un mode de réalisation de l’invention, le deuxième bord de chaque revêtement photovoltaïque présente une longueur comprise entre 55 et 75 mm, et avantageusement entre 60 et 70 mm, et par exemple d’environ 65 mm. According to one embodiment of the invention, the second edge of each photovoltaic covering has a length of between 55 and 75 mm, and advantageously between 60 and 70 mm, and for example approximately 65 mm.

Selon un mode de réalisation de l’invention, le troisième bord de chaque revêtement photovoltaïque présente une longueur comprise entre 25 et 45 mm, et avantageusement entre 30 et 40 mm, et par exemple d’environ 34 mm. According to one embodiment of the invention, the third edge of each photovoltaic covering has a length of between 25 and 45 mm, and advantageously between 30 and 40 mm, and for example approximately 34 mm.

Selon un mode de réalisation de l’invention, chacune des lignes d’intersection est inclinée par rapport à l’axe central d’un angle d’inclinaison compris entre 10 et 40°, avantageusement entre 20 et 30°, et par exemple d’environ 26°. According to one embodiment of the invention, each of the intersection lines is inclined relative to the central axis by an angle of inclination of between 10 and 40°, advantageously between 20 and 30°, and for example approximately 26°.

Selon un mode de réalisation de l’invention, le nombre de faces de support, et donc de revêtements photovoltaïques, est compris entre 6 et 12. According to one embodiment of the invention, the number of support faces, and therefore of photovoltaic coatings, is between 6 and 12.

Selon un mode de réalisation de l’invention, les deux revêtements photovoltaïques de chaque sous-ensemble sont sensiblement symétriques par rapport à un plan de symétrie respectif passant par la ligne d’intersection respective. According to one embodiment of the invention, the two photovoltaic coatings of each subassembly are substantially symmetrical with respect to a respective plane of symmetry passing through the respective line of intersection.

Selon un mode de réalisation de l’invention, les plans de symétrie des différents sous-ensembles sont sécants selon une droite d’intersection qui est sensiblement confondue avec l’axe central. According to one embodiment of the invention, the planes of symmetry of the different subassemblies intersect along a line of intersection which is substantially the same as the central axis.

Selon un mode de réalisation de l’invention, les revêtements photovoltaïques adjacents appartenant à deux sous-ensembles adjacents sont situés en regard l’un de l’autre. According to one embodiment of the invention, the adjacent photovoltaic coverings belonging to two adjacent subassemblies are located opposite each other.

Selon un mode de réalisation de l’invention, les deux revêtements photovoltaïques de chaque sous-ensemble définissent, vue de dessus, une forme triangulaire, et par exemple une forme triangulaire équilatérale. En d’autres termes, une projection orthogonale de l’ensemble des points des deux revêtements photovoltaïques appartenant à un même sous-ensemble sur un plan de référence perpendiculaire à l’axe central définit une surface de forme triangulaire, et de préférence de forme triangulaire équilatérale. According to one embodiment of the invention, the two photovoltaic coatings of each subassembly define, seen from above, a triangular shape, and for example an equilateral triangular shape. In other words, an orthogonal projection of all the points of the two photovoltaic coatings belonging to the same subassembly on a reference plane perpendicular to the central axis defines a surface of triangular shape, and preferably of equilateral triangular shape.

Selon un mode de réalisation de l’invention, un rapport du premier bord de chaque revêtement photovoltaïque sur un côté de la forme triangulaire équilatérale est compris entre 1 ,7 et 2,2, avantageusement entre 1 ,8 et 2, et par exemple entre 1 ,90 et 1 ,95. According to one embodiment of the invention, a ratio of the first edge of each photovoltaic coating to a side of the equilateral triangular shape is between 1.7 and 2.2, advantageously between 1.8 and 2, and for example between 1.90 and 1.95.

Selon un mode de réalisation de l’invention, un rapport du deuxième bord de chaque revêtement photovoltaïque sur un côté de la forme triangulaire équilatérale est compris entre 2,7 et 3, avantageusement entre 2,8 et 2,9, et par exemple d’environ 2,86. Selon un mode de réalisation de l’invention, un rapport du troisième bord de chaque revêtement photovoltaïque sur un côté de la forme triangulaire équilatérale est compris entre 1 ,2 et 1 ,8, avantageusement entre 1 ,3 et 1 ,7, et encore avantageusement entre 1 ,4 et 1 ,6. According to one embodiment of the invention, a ratio of the second edge of each photovoltaic coating to a side of the equilateral triangular shape is between 2.7 and 3, advantageously between 2.8 and 2.9, and for example approximately 2.86. According to one embodiment of the invention, a ratio of the third edge of each photovoltaic coating to a side of the equilateral triangular shape is between 1.2 and 1.8, advantageously between 1.3 and 1.7, and still advantageously between 1.4 and 1.6.

Selon un mode de réalisation de l’invention, un rapport de la hauteur du module photovoltaïque tridimensionnel sur un côté de la forme triangulaire équilatérale est compris entre 2,5 et 3,5, avantageusement entre 2,8 et 3,3, et par exemple entre 3 et 3,1. According to one embodiment of the invention, a ratio of the height of the three-dimensional photovoltaic module to one side of the equilateral triangular shape is between 2.5 and 3.5, advantageously between 2.8 and 3.3, and for example between 3 and 3.1.

Selon un mode de réalisation de l’invention, la structure de support tridimensionnelle comporte une pluralité d’éléments de support répartis autour de l’axe central, chaque élément de support comportant un sommet et deux faces de support qui sont sensiblement planes et qui sont reliées l’une à l’autre le long d’une zone de crête, la zone de crête de chacun des éléments de support étant inclinée par rapport à l’axe central et s’étendant jusqu’au sommet de l’élément de support respectif en s’éloignant de l’axe central. According to one embodiment of the invention, the three-dimensional support structure comprises a plurality of support elements distributed around the central axis, each support element comprising a vertex and two support faces which are substantially planar and which are connected to each other along a crest zone, the crest zone of each of the support elements being inclined relative to the central axis and extending to the vertex of the respective support element away from the central axis.

Selon un mode de réalisation de l’invention, le premier bord de chaque revêtement photovoltaïque s’étend à proximité et le long d’une zone de crête respective. According to one embodiment of the invention, the first edge of each photovoltaic coating extends near and along a respective ridge area.

Selon un mode de réalisation de l’invention, les deux revêtements photovoltaïques appartenant à un même sous-ensemble sont disposés respectivement sur les faces de support prévues sur un même élément de support. According to one embodiment of the invention, the two photovoltaic coatings belonging to the same subassembly are arranged respectively on the support faces provided on the same support element.

Selon un mode de réalisation de l’invention, pour chaque paire d’éléments de support adjacents de la structure de support tridimensionnelle, les faces de support adjacentes des deux éléments de support adjacents sont situées en regard l’une de l’autre. According to one embodiment of the invention, for each pair of adjacent support elements of the three-dimensional support structure, the adjacent support faces of the two adjacent support elements are located opposite each other.

Selon un mode de réalisation de l’invention, pour chaque paire d’éléments de support adjacents de la structure de support tridimensionnelle, les faces de support adjacentes des deux éléments de support adjacents sont reliées l’une à l’autre le long d’une zone de liaison qui est inclinée par rapport à l’axe central du module photovoltaïque tridimensionnel et qui s’étend vers le bas en s’éloignant de l’axe central. According to one embodiment of the invention, for each pair of adjacent support elements of the three-dimensional support structure, the adjacent support faces of the two adjacent support elements are connected to each other along a connection zone which is inclined relative to the central axis of the three-dimensional photovoltaic module and which extends downward away from the central axis.

Selon un mode de réalisation de l’invention, chaque zone de crête forme une ligne de crête. De façon avantageuse, chaque ligne de crête est rectiligne. According to one embodiment of the invention, each ridge zone forms a ridge line. Advantageously, each ridge line is straight.

Selon un autre mode de réalisation de l’invention, chaque zone de crête forme une surface de crête présentant une largeur comprise entre 1 mm et 1 cm, et par exemple comprise entre 1 mm et 5 mm. De façon avantageuse, chaque surface de crête est sensiblement plane. According to another embodiment of the invention, each ridge zone forms a ridge surface having a width of between 1 mm and 1 cm, and for example between 1 mm and 5 mm. Advantageously, each ridge surface is substantially flat.

Selon un mode de réalisation de l’invention, le sommet de chaque élément de support est pointu. According to one embodiment of the invention, the top of each support element is pointed.

Selon un autre mode de réalisation de l’invention, le sommet de chaque élément de support est tronqué. Selon un autre mode de réalisation de l’invention, les deux revêtements photovoltaïques appartenant à un même sous-ensemble font saillie au-delà du sommet de l’élément de support respectif. According to another embodiment of the invention, the top of each support element is truncated. According to another embodiment of the invention, the two photovoltaic coverings belonging to the same subassembly protrude beyond the top of the respective support element.

Selon un mode de réalisation de l’invention, toutes les faces de support appartenant à la structure de support tridimensionnelle présentent des orientations différentes. According to one embodiment of the invention, all the support faces belonging to the three-dimensional support structure have different orientations.

Selon un mode de réalisation de l’invention, les sommets des éléments de support sont répartis, et par exemple régulièrement répartis, autour de l’axe central. According to one embodiment of the invention, the vertices of the support elements are distributed, and for example regularly distributed, around the central axis.

Selon un mode de réalisation de l’invention, les sommets des éléments de support sont équidistants de l’axe central. En d’autres termes, les sommets des éléments de support sont disposés sur un cercle centré sur l’axe central. According to one embodiment of the invention, the vertices of the support elements are equidistant from the central axis. In other words, the vertices of the support elements are arranged on a circle centered on the central axis.

Selon un mode de réalisation de l’invention, les lignes de crête sont sécantes en un point de croisement situé sensiblement sur l’axe central. According to one embodiment of the invention, the ridge lines intersect at a crossing point located substantially on the central axis.

Selon un mode de réalisation de l’invention, chacune des zones de crête est inclinée par rapport à l’axe central d’un angle d’inclinaison compris entre 10 et 40°, avantageusement entre 20 et 30°, et par exemple d’environ 26°. According to one embodiment of the invention, each of the crest zones is inclined relative to the central axis by an angle of inclination of between 10 and 40°, advantageously between 20 and 30°, and for example approximately 26°.

Selon un mode de réalisation de l’invention, chacune des faces de support présente une forme globalement triangulaire ou une forme triangulaire tronquée. According to one embodiment of the invention, each of the support faces has a generally triangular shape or a truncated triangular shape.

Selon un mode de réalisation de l’invention, le nombre d’éléments de support est compris entre 3 et 6. According to one embodiment of the invention, the number of support elements is between 3 and 6.

Selon un mode de réalisation de l’invention, les deux faces de support de chaque élément de support sont symétriques par rapport à un plan de symétrie respectif passant par la zone de crête respective. According to one embodiment of the invention, the two support faces of each support element are symmetrical with respect to a respective plane of symmetry passing through the respective crest zone.

Selon un mode de réalisation de l’invention, les plans de symétrie des éléments de support sont sécants selon une droite d’intersection qui est sensiblement confondue avec l’axe central. According to one embodiment of the invention, the planes of symmetry of the support elements intersect along a line of intersection which is substantially the same as the central axis.

Selon un mode de réalisation de l’invention, le module photovoltaïque tridimensionnel comporte en outre une embase qui est située en dessous de la structure de support tridimensionnelle et qui définit, au moins en partie, un logement interne dans lequel sont logés au moins en partie les dispositifs de connexion électrique, et par exemple les fils de connexion électrique reliés aux revêtements photovoltaïques. According to one embodiment of the invention, the three-dimensional photovoltaic module further comprises a base which is located below the three-dimensional support structure and which defines, at least in part, an internal housing in which are housed at least in part the electrical connection devices, and for example the electrical connection wires connected to the photovoltaic coatings.

Selon un mode de réalisation de l’invention, l’embase présente une forme polygonale, et par exemple globalement hexagonale. According to one embodiment of the invention, the base has a polygonal shape, and for example generally hexagonal.

Selon un mode de réalisation de l’invention, la structure de support tridimensionnelle est monobloc. Selon un autre mode de réalisation de l’invention, les éléments de support de la structure de support tridimensionnelle sont distincts les uns des autres, et la structure de support tridimensionnelle est formée par un assemblage des éléments de support. According to one embodiment of the invention, the three-dimensional support structure is in one piece. According to another embodiment of the invention, the support elements of the three-dimensional support structure are distinct from each other, and the three-dimensional support structure is formed by an assembly of the support elements.

Selon un mode de réalisation de l’invention, le module photovoltaïque tridimensionnel comporte une coiffe de protection, également nommée coiffe d’encapsulation, qui recouvre les revêtements photovoltaïques, la coiffe de protection étant en matériau transparent au rayonnement lumineux. According to one embodiment of the invention, the three-dimensional photovoltaic module comprises a protective cover, also called an encapsulation cover, which covers the photovoltaic coatings, the protective cover being made of a material transparent to light radiation.

Selon un mode de réalisation de l’invention, la coiffe de protection est configurée pour combler au moins en partie un espace interne situé entre les revêtements photovoltaïques. According to one embodiment of the invention, the protective cap is configured to at least partially fill an internal space located between the photovoltaic coatings.

Selon un mode de réalisation de l’invention, la coiffe de protection est formée par durcissement d’une résine transparente. According to one embodiment of the invention, the protective cap is formed by hardening a transparent resin.

Selon un mode de réalisation de l’invention, le module photovoltaïque tridimensionnel comporte un revêtement de surface antireflet disposé sur une face supérieure de la coiffe de protection. According to one embodiment of the invention, the three-dimensional photovoltaic module comprises an anti-reflective surface coating arranged on an upper face of the protective cover.

Selon un mode de réalisation de l’invention, la face supérieure de la coiffe de protection s’étend sensiblement perpendiculairement à l’axe central du module photovoltaïque tridimensionnel. According to one embodiment of the invention, the upper face of the protective cover extends substantially perpendicular to the central axis of the three-dimensional photovoltaic module.

Selon un mode de réalisation de l’invention, la face supérieure de la coiffe de protection s’étend au-delà de la structure de support tridimensionnelle, et par exemple au-delà des sommets des éléments de support. According to one embodiment of the invention, the upper face of the protective cap extends beyond the three-dimensional support structure, and for example beyond the tops of the support elements.

Selon un mode de réalisation de l’invention, le module photovoltaïque tridimensionnel présente une section transversale de forme polygonale, et par exemple hexagonale. According to one embodiment of the invention, the three-dimensional photovoltaic module has a polygonal, for example hexagonal, cross-section.

Selon un mode de réalisation de l’invention, le module photovoltaïque tridimensionnel présente une hauteur comprise entre 3 et 6 cm, et par exemple d’environ 4 cm. Une telle hauteur de module photovoltaïque tridimensionnel est notamment retenue lorsque le module photovoltaïque tridimensionnel est destiné à être installé sur des toits inclinés ou horizontaux. Le module photovoltaïque tridimensionnel pourrait cependant présenter une hauteur bien supérieure à 6 cm pour d’autres applications, par exemple lorsque le module photovoltaïque tridimensionnel est destiné à être installé selon une orientation sensiblement verticale. According to one embodiment of the invention, the three-dimensional photovoltaic module has a height of between 3 and 6 cm, and for example approximately 4 cm. Such a height of three-dimensional photovoltaic module is particularly chosen when the three-dimensional photovoltaic module is intended to be installed on inclined or horizontal roofs. The three-dimensional photovoltaic module could however have a height much greater than 6 cm for other applications, for example when the three-dimensional photovoltaic module is intended to be installed in a substantially vertical orientation.

Selon un mode de réalisation de l’invention, le module photovoltaïque tridimensionnel comprend une borne principale positive à laquelle sont reliées électriquement les bornes positives de tous les revêtements photovoltaïques, et une borne principale négative à laquelle sont reliées électriquement les bornes négatives de tous les revêtements photovoltaïques. La présente invention comporte en outre un dispositif photovoltaïque comportant une pluralité de modules photovoltaïques tridimensionnels selon la présente invention, lesdits modules photovoltaïques tridimensionnels étant disposés de manière adjacente. De façon avantageuse, le dispositif photovoltaïque s’étend selon un plan d’extension. According to one embodiment of the invention, the three-dimensional photovoltaic module comprises a positive main terminal to which the positive terminals of all the photovoltaic coatings are electrically connected, and a negative main terminal to which the negative terminals of all the photovoltaic coatings are electrically connected. The present invention further comprises a photovoltaic device comprising a plurality of three-dimensional photovoltaic modules according to the present invention, said three-dimensional photovoltaic modules being arranged adjacently. Advantageously, the photovoltaic device extends along an extension plane.

Selon un mode de réalisation de l’invention, pour chaque paire de modules photovoltaïques tridimensionnels adjacents du dispositif photovoltaïque, les embases des deux modules photovoltaïques tridimensionnels adjacents sont juxtaposées, c’est-à-dire sont au contact l’une de l’autre. De façon avantageuse, un côté d’une embase d’un module photovoltaïque tridimensionnel est configuré pour s’étendre le long et pour être en contact avec un côté d’une embase d’un module photovoltaïque tridimensionnel adjacent. According to one embodiment of the invention, for each pair of adjacent three-dimensional photovoltaic modules of the photovoltaic device, the bases of the two adjacent three-dimensional photovoltaic modules are juxtaposed, i.e. are in contact with each other. Advantageously, one side of a base of a three-dimensional photovoltaic module is configured to extend along and to be in contact with one side of a base of an adjacent three-dimensional photovoltaic module.

Brève description des figures Brief description of the figures

La présente invention sera bien comprise à l’aide de la description qui suit en référence aux figures annexées, dans lesquelles des signes de références identiques correspondent à des éléments structurellement et/ou fonctionnellement identiques ou similaires. The present invention will be better understood with the aid of the description which follows with reference to the appended figures, in which identical reference signs correspond to structurally and/or functionally identical or similar elements.

Figure 1 est une vue schématique éclatée d’un module photovoltaïque tridimensionnel selon la présente invention. Figure 1 is an exploded schematic view of a three-dimensional photovoltaic module according to the present invention.

Figure 2 est une vue en perspective de dessus d’une structure de support tridimensionnelle appartenant au module photovoltaïque tridimensionnel de la figure 1 , montrant la fixation de revêtements photovoltaïques sur la structure de support tridimensionnelle. Figure 2 is a top perspective view of a three-dimensional support structure belonging to the three-dimensional photovoltaic module of Figure 1, showing the attachment of photovoltaic coverings to the three-dimensional support structure.

Figure 3 est une vue de dessus de la structure de support tridimensionnelle de la figure 2 équipée de revêtements photovoltaïques. Figure 3 is a top view of the three-dimensional support structure of Figure 2 equipped with photovoltaic coatings.

Figure 4 est une vue schématique en perspective de côté de la structure de support tridimensionnelle de la figure 2 équipée de revêtements photovoltaïques. Figure 4 is a schematic side perspective view of the three-dimensional support structure of Figure 2 equipped with photovoltaic coatings.

Description détaillée Detailed description

Dans le présent document, on entend par « revêtement photovoltaïque » un élément photovoltaïque comprenant au moins une ou plusieurs cellule(s) photovoltaïque(s) supportée(s) ou non par une couche de substrat de base qui peut par exemple être flexible ou rigide. In this document, the term "photovoltaic coating" means a photovoltaic element comprising at least one or more photovoltaic cell(s) supported or not by a base substrate layer which may for example be flexible or rigid.

Les figures 1 à 4 représentent un module photovoltaïque tridimensionnel 2 selon un mode de réalisation de l’invention. De façon avantageuse, le module photovoltaïque tridimensionnel 2 présente un axe central A qui est configuré pour s’étendre verticalement lorsque le module photovoltaïque tridimensionnel 2 est disposé sur une surface horizontale, et une section transversale de forme polygonale, et par exemple hexagonale. Figures 1 to 4 show a three-dimensional photovoltaic module 2 according to an embodiment of the invention. Advantageously, the three-dimensional photovoltaic module 2 has a central axis A which is configured to extend vertically. when the three-dimensional photovoltaic module 2 is arranged on a horizontal surface, and a cross-section of polygonal shape, and for example hexagonal.

Le module photovoltaïque tridimensionnel 2 comporte une structure de support tridimensionnelle 3 comportant une pluralité d’éléments de support 4 répartis autour de l’axe central A. De façon avantageuse, le nombre d’éléments de support 4 est compris entre 3 et 6. Selon le mode de réalisation représenté sur les figures, le nombre d’éléments de support 4 est égal à 6. Cependant, une variante de réalisation de l’invention, le nombre d’éléments de supportThe three-dimensional photovoltaic module 2 comprises a three-dimensional support structure 3 comprising a plurality of support elements 4 distributed around the central axis A. Advantageously, the number of support elements 4 is between 3 and 6. According to the embodiment shown in the figures, the number of support elements 4 is equal to 6. However, in an alternative embodiment of the invention, the number of support elements

4 pourrait être égal à 3, 4 ou 5. 4 could be equal to 3, 4 or 5.

La structure de support tridimensionnelle 3 peut par exemple être monobloc, et être obtenue par exemple par impression 3D. Cependant, la structure de support tridimensionnelle 3 pourrait également être obtenue par l’assemblage d’une pluralité d’éléments de support 4 distincts les uns des autres, c’est-à-dire formés indépendamment les uns des autres, par exemple par impression 3D. The three-dimensional support structure 3 may for example be in one piece, and be obtained for example by 3D printing. However, the three-dimensional support structure 3 could also be obtained by assembling a plurality of support elements 4 distinct from each other, that is to say formed independently of each other, for example by 3D printing.

Chaque élément de support 4 comporte un sommet 5 et deux faces de support 6 qui sont sensiblement planes. Comme montré également sur la figure 3, les sommets 5 des éléments de support 4 sont régulièrement répartis autour de l’axe central A, et sont équidistants de l’axe central A. En d’autres termes, les sommets 5 des éléments de support 4 sont disposés sur un cercle centré sur l’axe central A. Selon le mode de réalisation représenté sur les figures, le sommet 5 de chaque élément de support 4 est pointu. Cependant, selon une variante de réalisation de l’invention, le sommet 5 de chaque élément de support 4 pourrait être tronqué. Each support element 4 comprises a vertex 5 and two support faces 6 which are substantially planar. As also shown in FIG. 3, the vertices 5 of the support elements 4 are regularly distributed around the central axis A, and are equidistant from the central axis A. In other words, the vertices 5 of the support elements 4 are arranged on a circle centered on the central axis A. According to the embodiment shown in the figures, the vertex 5 of each support element 4 is pointed. However, according to an alternative embodiment of the invention, the vertex 5 of each support element 4 could be truncated.

Les deux faces de support 6 de chaque élément de support 4 sont reliées l’une à l’autre le long d’une zone de crête. Selon le mode de réalisation représenté sur les figures, chaque zone de crête est une ligne de crête Le qui est rectiligne. La ligne de crête Le de chacun des éléments de support 4 est inclinée par rapport à l’axe central A, et s’étend jusqu’au sommetThe two support faces 6 of each support element 4 are connected to each other along a crest area. According to the embodiment shown in the figures, each crest area is a crest line Le which is rectilinear. The crest line Le of each of the support elements 4 is inclined relative to the central axis A, and extends to the top

5 de l’élément de support 4 respectif en s’éloignant de l’axe central A. De façon avantageuse, les lignes de crête Le sont sécantes en un point de croisement situé sur l’axe central A, et sont régulièrement réparties autour de l’axe central A. Chacune des lignes de crête Le est plus particulièrement inclinée par rapport à l’axe central A d’un angle d’inclinaison compris entre 10 et 40°, avantageusement entre 20 et 30°, et par exemple d’environ 26°. 5 of the respective support element 4 away from the central axis A. Advantageously, the ridge lines Le intersect at a crossing point located on the central axis A, and are regularly distributed around the central axis A. Each of the ridge lines Le is more particularly inclined relative to the central axis A by an angle of inclination of between 10 and 40°, advantageously between 20 and 30°, and for example of approximately 26°.

Toutefois, selon une variante de réalisation de l’invention, chaque zone de crête pourrait être une surface de crête qui est sensiblement plane et qui présente une largeur comprise entre 1 mm et 1 cm, et par exemple comprise entre 1 mm et 5 mm. However, according to an alternative embodiment of the invention, each ridge area could be a ridge surface which is substantially flat and which has a width of between 1 mm and 1 cm, and for example of between 1 mm and 5 mm.

De façon avantageuse, toutes les faces de support 6 des éléments de support 4 présentent des orientations différentes, et chacune des faces de support 6 présente une forme globalement triangulaire. Toutefois, selon une variante de réalisation de l’invention, chacune des faces de support 6 pourrait présenter une forme triangulaire tronquée, c’est-à-dire une forme triangulaire dont au moins l’un des coins serait tronqué, et par exemple le coin situé du côté du sommet 5 respectif. Advantageously, all the support faces 6 of the support elements 4 have different orientations, and each of the support faces 6 has a generally triangular shape. However, according to an alternative embodiment of the invention, each of the support faces 6 could have a truncated triangular shape, i.e. a shape triangular with at least one corner truncated, for example the corner located on the side of the respective vertex 5.

Comme montré plus particulièrement sur la figure 2, pour chaque paire d’éléments de support 4 adjacents de la structure de support tridimensionnelle 3, les faces de support 6 adjacentes des deux éléments de support 4 adjacents sont situées en regard l’une de l’autre. De façon avantageuse, pour chaque paire d’éléments de support 4 adjacents de la structure de support tridimensionnelle 3, les faces de support 6 adjacentes des deux éléments de support 4 adjacents sont reliées l’une à l’autre le long d’une zone de liaison Z qui est inclinée par rapport à l’axe central A et qui s’étend vers le bas en s’éloignant de l’axe central A. As shown more particularly in FIG. 2, for each pair of adjacent support elements 4 of the three-dimensional support structure 3, the adjacent support faces 6 of the two adjacent support elements 4 are located opposite each other. Advantageously, for each pair of adjacent support elements 4 of the three-dimensional support structure 3, the adjacent support faces 6 of the two adjacent support elements 4 are connected to each other along a connection zone Z which is inclined relative to the central axis A and which extends downwards away from the central axis A.

Selon le mode de réalisation représenté sur les figures, chaque élément de support 4 présente un plan de symétrie P passant par la ligne de crête Le respective, et les plans de symétrie P des éléments de support 4 sont sécants selon une droite d’intersection qui est confondue avec l’axe central A. According to the embodiment shown in the figures, each support element 4 has a plane of symmetry P passing through the respective crest line Le, and the planes of symmetry P of the support elements 4 are intersecting along a straight line of intersection which coincides with the central axis A.

Le module photovoltaïque tridimensionnel 2 comporte en outre des revêtements photovoltaïques 7 fixés à la structure de support tridimensionnelle 3. Selon le mode de réalisation représenté sur les figures, les revêtements photovoltaïques 7 sont distincts les uns des autres et reliés en série et/ou en parallèle. Au moins un revêtement photovoltaïque 7, et par exemple chacun des revêtements photovoltaïques 7, peut être flexible ou rigide. Chaque revêtement photovoltaïque 7 est disposé sur une face de support 6 respective, et s’étend parallèlement à la face de support 6 respective. Chaque revêtement photovoltaïque 7 s’étend plus particulièrement sensiblement selon un plan d’extension respectif, et tous les plans d’extension des revêtements photovoltaïques 7 présentent des orientations différentes. The three-dimensional photovoltaic module 2 further comprises photovoltaic coverings 7 fixed to the three-dimensional support structure 3. According to the embodiment shown in the figures, the photovoltaic coverings 7 are distinct from one another and connected in series and/or in parallel. At least one photovoltaic covering 7, and for example each of the photovoltaic coverings 7, can be flexible or rigid. Each photovoltaic covering 7 is arranged on a respective support face 6, and extends parallel to the respective support face 6. Each photovoltaic covering 7 extends more particularly substantially along a respective extension plane, and all the extension planes of the photovoltaic coverings 7 have different orientations.

Chaque revêtement photovoltaïque 7 comprend avantageusement plusieurs cellules photovoltaïques reliées en parallèle et/ou en série, et recouvre partiellement ou entièrement la face de support 6 respective. Les cellules photovoltaïques de chaque revêtement photovoltaïque 7 peuvent par exemple être supportées par une couche de substrat de base. Each photovoltaic coating 7 advantageously comprises several photovoltaic cells connected in parallel and/or in series, and partially or completely covers the respective support face 6. The photovoltaic cells of each photovoltaic coating 7 may for example be supported by a base substrate layer.

Chaque revêtement photovoltaïque 7 comporte une face active 7.1 configurée pour capter des photons de rayons lumineux incidents, et une face passive 7.2 qui est configurée pour être orientée vers la face de support 6 respective et qui est pourvue d’une borne négative et d’une borne positive. Each photovoltaic coating 7 comprises an active face 7.1 configured to capture photons of incident light rays, and a passive face 7.2 which is configured to be oriented towards the respective support face 6 and which is provided with a negative terminal and a positive terminal.

Le module photovoltaïque tridimensionnel 2 comporte plus particulièrement des dispositifs de connexion électrique 8 configurés chacun pour être reliés électriquement aux bornes négative et positive d’un revêtement photovoltaïque 7 respectif. A cet effet, chaque face de support 6 est avantageusement ajourée et comporte une ouverture traversante 6.1 (telle qu’une fenêtre ou une encoche) configurée pour permettre une connexion électrique entre les bornes négative et positive du revêtement photovoltaïque 7 respectif et le dispositif de connexion électrique 8 respectif. Selon le mode de réalisation représenté sur les figures, chaque dispositif de connexion électrique 8 comporte deux fils de connexion électrique 8.1 qui s’étendent à travers l’ouverture traversante 6.1 respective et qui sont reliés respectivement aux bornes négative et positive du revêtement photovoltaïque 7 respectif. The three-dimensional photovoltaic module 2 more particularly comprises electrical connection devices 8 each configured to be electrically connected to the negative and positive terminals of a respective photovoltaic covering 7. For this purpose, each support face 6 is advantageously perforated and comprises a through opening 6.1 (such as a window or a notch) configured to allow an electrical connection between the negative and positive terminals of the respective photovoltaic covering 7 and the connection device. respective electrical connection device 8. According to the embodiment shown in the figures, each electrical connection device 8 comprises two electrical connection wires 8.1 which extend through the respective through opening 6.1 and which are connected respectively to the negative and positive terminals of the respective photovoltaic covering 7.

Toutefois, selon une variante de réalisation de l’invention, chaque dispositif de connexion électrique 8 pourrait par exemple comporter une carte de circuit imprimée fixée à la structure de support tridimensionnelle 3 et pourvue de pistes conductrices configurées pour être reliées électriquement aux bornes négative et positive du revêtement photovoltaïque 7 respectif, ou pourrait encore comporter des pistes conductrices directement prévues sur la structure de support tridimensionnelle 3 (les pistes conductrices peuvent par exemple être gravées et/ou imprimée sur la structure de support tridimensionnelle 3). However, according to an alternative embodiment of the invention, each electrical connection device 8 could for example comprise a printed circuit board fixed to the three-dimensional support structure 3 and provided with conductive tracks configured to be electrically connected to the negative and positive terminals of the respective photovoltaic coating 7, or could also comprise conductive tracks directly provided on the three-dimensional support structure 3 (the conductive tracks can for example be etched and/or printed on the three-dimensional support structure 3).

De façon avantageuse, chaque revêtement photovoltaïque 7 est de forme globalement triangulaire, et présente des dimensions sensiblement identiques à celles de chaque face de support 6. Selon un mode de réalisation de l’invention, chaque revêtement photovoltaïque 7 présente une épaisseur d’environ 1 mm. Advantageously, each photovoltaic covering 7 is of a generally triangular shape, and has dimensions substantially identical to those of each support face 6. According to one embodiment of the invention, each photovoltaic covering 7 has a thickness of approximately 1 mm.

Les revêtements photovoltaïques 7 comprennent une pluralité de sous-ensembles de revêtements photovoltaïques qui sont répartis autour de l’axe central A et qui comportent chacun deux revêtements photovoltaïques 7 adjacents. Les deux revêtements photovoltaïques 7 appartenant à un même sous-ensemble sont disposés respectivement sur les faces de support 6 prévues sur un même élément de support 4, et les revêtements photovoltaïques 7 adjacents appartenant à deux sous-ensembles adjacents sont situés en regard l’un de l’autre. The photovoltaic coatings 7 comprise a plurality of subassemblies of photovoltaic coatings which are distributed around the central axis A and which each comprise two adjacent photovoltaic coatings 7. The two photovoltaic coatings 7 belonging to the same subassembly are arranged respectively on the support faces 6 provided on the same support element 4, and the adjacent photovoltaic coatings 7 belonging to two adjacent subassemblies are located opposite each other.

Les plans d’extension des deux revêtements photovoltaïques 7 appartenant à un même sous-ensemble s’intersectent le long d’une ligne d’intersection Li respective qui est inclinée par rapport à l’axe central A et qui s’étend vers le haut en s’éloignant de l’axe central A. Chacune des lignes d’intersection Li est inclinée par rapport à l’axe central A d’un angle d’inclinaison a compris entre 10 et 40°, avantageusement entre 20 et 30°, et par exemple d’environ 26°. De façon avantageuse, les lignes d’intersection Li sont régulièrement réparties autour de l’axe central A du module photovoltaïque tridimensionnel 2, et sont sécantes en un point d’intersection situé sensiblement sur l’axe central A du module photovoltaïque tridimensionnel 2. The extension planes of the two photovoltaic coatings 7 belonging to the same subassembly intersect along a respective intersection line Li which is inclined relative to the central axis A and which extends upwards away from the central axis A. Each of the intersection lines Li is inclined relative to the central axis A by an inclination angle a of between 10 and 40°, advantageously between 20 and 30°, and for example approximately 26°. Advantageously, the intersection lines Li are regularly distributed around the central axis A of the three-dimensional photovoltaic module 2, and intersect at an intersection point located substantially on the central axis A of the three-dimensional photovoltaic module 2.

Selon le mode de réalisation représenté sur les figures, les deux revêtements photovoltaïques 7 de chaque sous-ensemble définissent une zone de sommet 12, et les zones de sommet 12 définies par les revêtements photovoltaïques 7 sont régulièrement réparties autour de l’axe central A et sont équidistantes de l’axe central A. According to the embodiment shown in the figures, the two photovoltaic coatings 7 of each subassembly define a vertex zone 12, and the vertex zones 12 defined by the photovoltaic coatings 7 are regularly distributed around the central axis A and are equidistant from the central axis A.

Chacun des revêtements photovoltaïques 7 comporte un premier bord B1 s’étendant à proximité et le long de la ligne d’intersection Li respective, un deuxième bord B2 situé à l’opposé de l’axe central A et s’étendant jusqu’à la zone de sommet 12 respective et un troisième bord B3 reliant les premier et deuxième bords respectifs. Ainsi, les premiers bords B1 de deux revêtements photovoltaïques 7 appartenant à un même sous-ensemble s’étendent à proximité et le long l’un de l’autre. Each of the photovoltaic coatings 7 comprises a first edge B1 extending near and along the respective intersection line Li, a second edge B2 located opposite the central axis A and extending to the respective vertex area 12 and a third edge B3 connecting the respective first and second edges. Thus, the first edges B1 of two photovoltaic coatings 7 belonging to the same subset extend close to and along each other.

De façon avantageuse, le deuxième bord B2 de chaque revêtement photovoltaïque 7 est incliné par rapport à l’axe central A, de telle sorte que l’extrémité inférieure dudit deuxième bord B2 est plus proche de l’axe central A que l’extrémité supérieure dudit deuxième bord B2. Advantageously, the second edge B2 of each photovoltaic covering 7 is inclined relative to the central axis A, such that the lower end of said second edge B2 is closer to the central axis A than the upper end of said second edge B2.

Selon le mode de réalisation représenté sur les figures, les deux revêtements photovoltaïques 7 de chaque sous-ensemble définissent, vue de dessus, une forme triangulaire, et par exemple une forme triangulaire équilatérale. En d’autres termes, une projection orthogonale de l’ensemble des points des deux revêtements photovoltaïques 7 appartenant à un même sous-ensemble sur un plan de référence perpendiculaire à l’axe central A définit une surface de forme triangulaire, et de préférence de forme triangulaire équilatérale. According to the embodiment shown in the figures, the two photovoltaic coatings 7 of each subassembly define, seen from above, a triangular shape, and for example an equilateral triangular shape. In other words, an orthogonal projection of all the points of the two photovoltaic coatings 7 belonging to the same subassembly on a reference plane perpendicular to the central axis A defines a surface of triangular shape, and preferably of equilateral triangular shape.

Selon un mode de réalisation de l’invention, le rapport de la surface développée des revêtements photovoltaïques 7 sur la surface au sol occupée par le module photovoltaïque tridimensionnel 2 est supérieur à 3, et par exemple compris entre 4 et 6, et avantageusement entre 4,5 et 5,5. According to one embodiment of the invention, the ratio of the developed surface area of the photovoltaic coverings 7 to the ground surface area occupied by the three-dimensional photovoltaic module 2 is greater than 3, and for example between 4 and 6, and advantageously between 4.5 and 5.5.

Selon un mode de réalisation de l’invention : According to one embodiment of the invention:

- un rapport du premier bord B1 de chaque revêtement photovoltaïque 7 sur un côté C de la forme triangulaire équilatérale (définie par chaque élément de support 4 vue de dessus) est compris entre 1 ,7 et 2,2, avantageusement entre 1 ,8 et 2, encore avantageusement entre 1 ,90 et 1 ,95, et par exemple égal à environ 1 ,94 ou environ 1 ,92, - a ratio of the first edge B1 of each photovoltaic covering 7 to a side C of the equilateral triangular shape (defined by each support element 4 seen from above) is between 1.7 and 2.2, advantageously between 1.8 and 2, still advantageously between 1.90 and 1.95, and for example equal to approximately 1.94 or approximately 1.92,

- un rapport du deuxième bord B2 de chaque revêtement photovoltaïque 7 sur un côté C de la forme triangulaire équilatérale précitée est compris entre 2,7 et 3, avantageusement entre 2,8 et 2,9, et par exemple d’environ 2,86, - a ratio of the second edge B2 of each photovoltaic coating 7 to a side C of the aforementioned equilateral triangular shape is between 2.7 and 3, advantageously between 2.8 and 2.9, and for example approximately 2.86,

- un rapport du troisième bord B3 de chaque revêtement photovoltaïque 7 sur un côté C de la forme triangulaire équilatérale précitée est compris entre 1 ,2 et 1 ,8, avantageusement entre 1 ,3 et 1 ,7, et encore avantageusement entre 1 ,4 et 1 ,6, et par exemple égal à environ 1 ,47 ou environ 1 ,58, - a ratio of the third edge B3 of each photovoltaic coating 7 to a side C of the aforementioned equilateral triangular shape is between 1.2 and 1.8, advantageously between 1.3 and 1.7, and still advantageously between 1.4 and 1.6, and for example equal to approximately 1.47 or approximately 1.58,

- un rapport de la hauteur du module photovoltaïque tridimensionnel 2 sur un côté C de la forme triangulaire équilatérale précitée est compris entre 2,5 et 3,5, avantageusement entre 2,8 et 3,3, et encore avantageusement entre 3 et 3,1 , et par exemple égal à environ 3,06. - a ratio of the height of the three-dimensional photovoltaic module 2 to a side C of the aforementioned equilateral triangular shape is between 2.5 and 3.5, advantageously between 2.8 and 3.3, and still advantageously between 3 and 3.1, and for example equal to approximately 3.06.

De façon avantageuse, chaque revêtement photovoltaïque 7 est inclinée, par rapport à un plan de référence respectif qui est parallèle à l’axe central A et qui passe par le troisième bord B3 dudit revêtement photovoltaïque 7, d’un angle d’inclinaison compris entre 5 et 10°, et par exemple d’environ 7°. Advantageously, each photovoltaic coating 7 is inclined, relative to a respective reference plane which is parallel to the central axis A and which passes through the third edge B3 of said photovoltaic coating 7, with an inclination angle of between 5 and 10°, and for example of approximately 7°.

Le module photovoltaïque tridimensionnel 2 comporte également une embase 9 qui est située en dessous de la structure de support tridimensionnelle 3 et qui présente une forme polygonale, et par exemple globalement hexagonale. L’embase 9 délimite, au moins en partie, un logement interne 10 dans lequel sont logés au moins en partie les fils de connexion électrique 8.1 reliés aux revêtements photovoltaïques 7. The three-dimensional photovoltaic module 2 also comprises a base 9 which is located below the three-dimensional support structure 3 and which has a polygonal shape, and for example generally hexagonal. The base 9 delimits, at least in part, an internal housing 10 in which are housed at least in part the electrical connection wires 8.1 connected to the photovoltaic coatings 7.

Le module photovoltaïque tridimensionnel 2 comprend en outre une borne principale positive à laquelle sont reliées électriquement les bornes positives de tous les revêtements photovoltaïques 7, et une borne principale négative à laquelle sont reliées électriquement les bornes négatives de tous les revêtements photovoltaïques 7. The three-dimensional photovoltaic module 2 further comprises a positive main terminal to which the positive terminals of all the photovoltaic coverings 7 are electrically connected, and a negative main terminal to which the negative terminals of all the photovoltaic coverings 7 are electrically connected.

Comme montré sur la figure 1 , le module photovoltaïque tridimensionnel 2 comporte en outre une coiffe de protection 14, également nommée coiffe d’encapsulation, qui recouvre et protège les revêtements photovoltaïques 7. La coiffe de protection 14 est réalisée en matériau transparent au rayonnement lumineux, et est par exemple formée par durcissement d’une résine transparente. La coiffe de protection 14 est plus particulièrement configurée pour combler un espace interne situé entre les revêtements photovoltaïques 7. As shown in FIG. 1 , the three-dimensional photovoltaic module 2 further comprises a protective cap 14, also called an encapsulation cap, which covers and protects the photovoltaic coatings 7. The protective cap 14 is made of a material transparent to light radiation, and is for example formed by hardening a transparent resin. The protective cap 14 is more particularly configured to fill an internal space located between the photovoltaic coatings 7.

Selon le mode de réalisation représenté sur les figures, la coiffe de protection 14 comporte une face supérieure qui s’étend au-delà des sommets 5 des éléments de support 4, et qui s’étend perpendiculairement à l’axe central A. De façon avantageuse, la coiffe de protection 14 est configurée de telle sorte que le module photovoltaïque tridimensionnel 2 présente une forme générale de prisme dont chacune des bases présente une forme globalement hexagonale. According to the embodiment shown in the figures, the protective cap 14 comprises an upper face which extends beyond the vertices 5 of the support elements 4, and which extends perpendicular to the central axis A. Advantageously, the protective cap 14 is configured such that the three-dimensional photovoltaic module 2 has a general prism shape, each of the bases of which has a generally hexagonal shape.

Le module photovoltaïque tridimensionnel 2 comporte également un revêtement de surface antireflet 15 disposé sur la face supérieure de la coiffe de protection 14. Néanmoins, si la coiffe de protection 14 est réalisée en un matériau ayant des propriétés antireflets, le module photovoltaïque tridimensionnel 2 pourrait être dépourvu du revêtement de surface antireflet 15. The three-dimensional photovoltaic module 2 also comprises an anti-reflective surface coating 15 arranged on the upper face of the protective cover 14. However, if the protective cover 14 is made of a material having anti-reflective properties, the three-dimensional photovoltaic module 2 could be devoid of the anti-reflective surface coating 15.

Selon un mode de réalisation de l’invention non représenté sur les figures, le sommet 5 de chaque élément de support 4 pourrait être tronqué, et les deux revêtements photovoltaïques 7 appartenant à un même sous-ensemble pourrait faire saillie au-delà du sommet 5 de l’élément de support 4 respectif. According to an embodiment of the invention not shown in the figures, the top 5 of each support element 4 could be truncated, and the two photovoltaic coverings 7 belonging to the same subassembly could protrude beyond the top 5 of the respective support element 4.

Plusieurs modules photovoltaïques tridimensionnels 2 selon la présente invention pourraient être assemblés de manière à former un dispositif photovoltaïque s’étendant selon un plan d’extension, et présentant donc une forme externe similaire à celle d’un panneau photovoltaïque classique. A cet effet, les modules photovoltaïques tridimensionnels 2 sont disposés de manière adjacente, et sont reliés en série et/ou en parallèle par connexion de leurs bornes principales positives et négatives. De façon avantageuse, pour chaque paire de modules photovoltaïques tridimensionnels 2 adjacents du dispositif photovoltaïque, les embases 9 des deux modules photovoltaïques tridimensionnels 2 adjacents sont juxtaposées, c’est-à-dire sont au contact l’une de l’autre, au niveau de leurs côtés adjacents. Un tel dispositif photovoltaïque comporte avantageusement un support ou cadre de support délimitant un compartiment dans lequel sont disposés les différents modules photovoltaïques tridimensionnels 2. Several three-dimensional photovoltaic modules 2 according to the present invention could be assembled so as to form a photovoltaic device extending along an extension plane, and therefore having an external shape similar to that of a conventional photovoltaic panel. For this purpose, the three-dimensional photovoltaic modules 2 are arranged adjacently, and are connected in series and/or in parallel by connecting their positive and negative main terminals. Advantageously, for each pair of modules three-dimensional photovoltaic modules 2 adjacent to the photovoltaic device, the bases 9 of the two adjacent three-dimensional photovoltaic modules 2 are juxtaposed, that is to say are in contact with each other, at their adjacent sides. Such a photovoltaic device advantageously comprises a support or support frame delimiting a compartment in which the different three-dimensional photovoltaic modules 2 are arranged.

Le fait que l’embase 9 de chaque module photovoltaïque tridimensionnel 2 présente une forme hexagonale permet avantageusement d’obtenir un agencement en réseau optimisé des différents modules photovoltaïques tridimensionnels 2 dudit dispositif photovoltaïque. The fact that the base 9 of each three-dimensional photovoltaic module 2 has a hexagonal shape advantageously makes it possible to obtain an optimized network arrangement of the different three-dimensional photovoltaic modules 2 of said photovoltaic device.

Un dispositif photovoltaïque selon la présente invention peut être installé dans un nombre d’emplacements plus importants qu’un dispositif photovoltaïque formé de modules photovoltaïques tridimensionnels de l’art antérieur, et ce avec moins de contraintes d’orientation et d’inclinaison. Un dispositif photovoltaïque selon la présente invention peut notamment être installé sur des toits inclinés orientés Est, Sud ou Ouest, sur des toits horizontaux ou au sol sans support additionnel, sur des façades orientées Est, Sud ou Ouest (et donc selon une orientation sensiblement verticale), ou encore en remplacement de tous dispositifs photovoltaïques existants revêtus de matière photovoltaïque avec des caractéristiques techniques identiques avec au moins trois fois plus de production annuelle d’électricité pour la même surface. A photovoltaic device according to the present invention can be installed in a greater number of locations than a photovoltaic device formed from three-dimensional photovoltaic modules of the prior art, and this with fewer orientation and inclination constraints. A photovoltaic device according to the present invention can in particular be installed on sloping roofs facing East, South or West, on horizontal roofs or on the ground without additional support, on facades facing East, South or West (and therefore in a substantially vertical orientation), or even as a replacement for all existing photovoltaic devices coated with photovoltaic material with identical technical characteristics with at least three times more annual electricity production for the same surface area.

Un dispositif photovoltaïque selon la présente invention peut également être installé sur tous les moyens de locomotion existants à ce jour et à venir, et ce du fait qu’un tel dispositif photovoltaïque présente une production annuelle d’énergie au moins trois fois plus importante que celle de dispositifs photovoltaïques de l’art antérieur revêtus de matière photovoltaïque avec des caractéristiques techniques identiques et s’affranchit de la plupart des contraintes d’orientation. A photovoltaic device according to the present invention can also be installed on all means of locomotion currently existing and in the future, due to the fact that such a photovoltaic device has an annual energy production at least three times greater than that of photovoltaic devices of the prior art coated with photovoltaic material with identical technical characteristics and is free from most orientation constraints.

Bien entendu, la présente invention n’est nullement limitée au mode de réalisation décrit et illustré qui n’a été donné qu’à titre d’exemple. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d’équivalents techniques, sans sortir pour autant du domaine de protection de l'invention. Of course, the present invention is in no way limited to the embodiment described and illustrated which has been given only as an example. Modifications remain possible, in particular from the point of view of the constitution of the various elements or by substitution of technical equivalents, without departing from the scope of protection of the invention.

Claims

REVENDICATIONS 1. Module photovoltaïque tridimensionnel (2) pourvu d’un axe central (A) et comportant : 1. Three-dimensional photovoltaic module (2) provided with a central axis (A) and comprising: - une structure de support tridimensionnelle (3) comprenant une pluralité de faces de support (6) réparties autour de l’axe central (A), - a three-dimensional support structure (3) comprising a plurality of support faces (6) distributed around the central axis (A), - des revêtements photovoltaïques (7) fixés à la structure de support tridimensionnelle (3), chaque revêtement photovoltaïque (7) étant disposé sur une face de support (6) respective et recouvrant au moins en partie la face de support (6) respective, chaque revêtement photovoltaïque (7) s’étendant sensiblement selon un plan d’extension respectif et comprenant au moins une cellule photovoltaïque, les revêtements photovoltaïques (7) comprenant une pluralité de sous-ensembles de revêtements photovoltaïques (7) qui sont répartis autour de l’axe central (A) et qui comportent chacun deux revêtements photovoltaïques (7) adjacents, les plans d’extension des deux revêtements photovoltaïques (7) appartenant à un même sous-ensemble convergeant vers le haut et s’intersectant le long d’une ligne d’intersection (Li) respective qui est inclinée par rapport à l’axe central (A) et qui s’étend vers le haut en s’éloignant de l’axe central (A). - photovoltaic coverings (7) attached to the three-dimensional support structure (3), each photovoltaic covering (7) being arranged on a respective support face (6) and at least partially covering the respective support face (6), each photovoltaic covering (7) extending substantially along a respective extension plane and comprising at least one photovoltaic cell, the photovoltaic coverings (7) comprising a plurality of subsets of photovoltaic coverings (7) which are distributed around the central axis (A) and which each comprise two adjacent photovoltaic coverings (7), the extension planes of the two photovoltaic coverings (7) belonging to the same subset converging upwards and intersecting along a respective intersection line (Li) which is inclined relative to the central axis (A) and which extends upwards away from the central axis (A). 2. Module photovoltaïque tridimensionnel (2) selon la revendication 1 , dans lequel chaque revêtement photovoltaïque (7) comporte une face active (7.1 ) configurée pour capter des photons de rayons lumineux incidents, et une face passive (7.2) configurée pour être orientée vers la face de support (6) respective et pourvue d’une borne négative et d’une borne positive. 2. Three-dimensional photovoltaic module (2) according to claim 1, in which each photovoltaic coating (7) comprises an active face (7.1) configured to capture photons of incident light rays, and a passive face (7.2) configured to be oriented towards the respective support face (6) and provided with a negative terminal and a positive terminal. 3. Module photovoltaïque tridimensionnel (2) selon la revendication 2, lequel comporte des dispositifs de connexion électrique (8) configurés chacun pour être reliés électriquement aux bornes négative et positive d’un revêtement photovoltaïque (7) respectif, chaque face de support (6) étant ajourée et comportant au moins une ouverture traversante (6.1 ) configurée pour permettre une connexion électrique entre les bornes négative et positive du revêtement photovoltaïque (7) respectif et le dispositif de connexion électrique (8) respectif. 3. Three-dimensional photovoltaic module (2) according to claim 2, which comprises electrical connection devices (8) each configured to be electrically connected to the negative and positive terminals of a respective photovoltaic covering (7), each support face (6) being perforated and comprising at least one through opening (6.1) configured to allow an electrical connection between the negative and positive terminals of the respective photovoltaic covering (7) and the respective electrical connection device (8). 4. Module photovoltaïque tridimensionnel (2) selon la revendication 3, dans lequel chaque dispositif de connexion électrique (8) comporte deux fils de connexion électrique (8.1 ) qui s’étendent à travers l’ouverture traversante (6.1 ) respective et qui sont reliés respectivement aux bornes négative et positive du revêtement photovoltaïque (7) respectif. 4. Three-dimensional photovoltaic module (2) according to claim 3, wherein each electrical connection device (8) comprises two electrical connection wires (8.1) which extend through the respective through opening (6.1) and which are connected respectively to the negative and positive terminals of the respective photovoltaic covering (7). 5. Module photovoltaïque tridimensionnel (2) selon la revendication 3 ou 4, lequel comporte en outre une embase (9) qui est située en dessous de la structure de support tridimensionnelle (3) et qui définit, au moins en partie, un logement interne (10) dans lequel sont logés au moins en partie les dispositifs de connexion électrique (8). 5. Three-dimensional photovoltaic module (2) according to claim 3 or 4, which further comprises a base (9) which is located below the three-dimensional support structure (3) and which defines, at least in part, an internal housing (10) in which the electrical connection devices (8) are housed at least in part. 6. Module photovoltaïque tridimensionnel (2) selon la revendication 5, dans lequel l’embase (9) présente une forme polygonale. 6. Three-dimensional photovoltaic module (2) according to claim 5, in which the base (9) has a polygonal shape. 7. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 6, dans lequel les lignes d’intersection (Li) sont sécantes en un point d’intersection situé sensiblement sur l’axe central (A) du module photovoltaïque tridimensionnel (2). 7. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 6, in which the intersection lines (Li) intersect at a point of intersection located substantially on the central axis (A) of the three-dimensional photovoltaic module (2). 8. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 7, dans lequel tous les plans d’extension des revêtements photovoltaïques (7) présentent des orientations différentes. 8. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 7, in which all the extension planes of the photovoltaic coatings (7) have different orientations. 9. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 8, dans lequel les deux revêtements photovoltaïques (7) de chaque sous- ensemble définissent une zone de sommet (12), lesdites zones de sommet (12) étant réparties autour de l’axe central (A). 9. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 8, in which the two photovoltaic coatings (7) of each subassembly define a vertex zone (12), said vertex zones (12) being distributed around the central axis (A). 10. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 9, dans lequel chacun des revêtements photovoltaïques (7) présente une forme globalement triangulaire. 10. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 9, in which each of the photovoltaic coatings (7) has a generally triangular shape. 11. Module photovoltaïque tridimensionnel (2) selon la revendication 10, dans lequel chaque revêtement photovoltaïque (7) comporte un premier bord (B1 ) s’étendant à proximité et le long de la ligne d’intersection (Li) respective, un deuxième bord (B2) situé à l’opposé de l’axe central (A) et un troisième bord (B3) reliant les premier et deuxième bords (B1 , B2) respectifs. 11. Three-dimensional photovoltaic module (2) according to claim 10, wherein each photovoltaic covering (7) comprises a first edge (B1) extending near and along the respective intersection line (Li), a second edge (B2) located opposite the central axis (A) and a third edge (B3) connecting the respective first and second edges (B1, B2). 12. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 11 , dans lequel chacune des lignes d’intersection (Li) est inclinée par rapport à l’axe central (A) d’un angle d’inclinaison compris entre 10 et 40°. 12. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 11, in which each of the intersection lines (Li) is inclined relative to the central axis (A) by an inclination angle of between 10 and 40°. 13. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 12, dans lequel le nombre de faces de support (6) est compris entre 6 et 12. 13. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 12, in which the number of support faces (6) is between 6 and 12. 14. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 13, dans lequel les deux revêtements photovoltaïques (7) de chaque sous- ensemble sont sensiblement symétriques par rapport à un plan de symétrie respectif passant par la ligne d’intersection (Li) respective. 14. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 13, in which the two photovoltaic coatings (7) of each subassembly are substantially symmetrical with respect to a respective plane of symmetry passing through the respective line of intersection (Li). 15. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 14, dans lequel les revêtements photovoltaïques (7) adjacents appartenant à deux sous-ensembles adjacents sont situés en regard l’un de l’autre. 15. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 14, in which the adjacent photovoltaic coverings (7) belonging to two adjacent sub-assemblies are located opposite one another. 16. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 15, dans lequel la structure de support tridimensionnelle (3) comporte une pluralité d’éléments de support (4) répartis autour de l’axe central (A), chaque élément de support (4) comportant un sommet (5) et deux faces de support (6) qui sont sensiblement planes et qui sont reliées l’une à l’autre le long d’une zone de crête, la zone de crête de chacun des éléments de support (4) étant inclinée par rapport à l’axe central (A) et s’étendant jusqu’au sommet (5) de l’élément de support (4) respectif en s’éloignant de l’axe central (A). 16. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 15, wherein the three-dimensional support structure (3) comprises a plurality of support elements (4) distributed around the central axis (A), each support element (4) comprising a vertex (5) and two support faces (6) which are substantially planar and which are connected to each other along a crest zone, the crest zone of each of the support elements (4) being inclined relative to the central axis (A) and extending to the vertex (5) of the respective support element (4) away from the central axis (A). 17. Module photovoltaïque tridimensionnel (2) selon l’une quelconque des revendications 1 à 16, lequel comporte une coiffe de protection qui recouvre les revêtements photovoltaïques (7), la coiffe de protection étant en matériau transparent au rayonnement lumineux. 17. Three-dimensional photovoltaic module (2) according to any one of claims 1 to 16, which comprises a protective cap which covers the photovoltaic coatings (7), the protective cap being made of a material transparent to light radiation. 18. Module photovoltaïque tridimensionnel (2) selon la revendication 17, lequel comporte un revêtement de surface antireflet disposé sur une face supérieure de la coiffe de protection. 18. Three-dimensional photovoltaic module (2) according to claim 17, which comprises an anti-reflective surface coating arranged on an upper face of the protective cover. 19. Dispositif photovoltaïque comportant une pluralité de modules photovoltaïques tridimensionnels selon l’une quelconque des revendications précédentes, lesdits modules photovoltaïques tridimensionnels étant disposés de manière adjacente. 19. Photovoltaic device comprising a plurality of three-dimensional photovoltaic modules according to any one of the preceding claims, said three-dimensional photovoltaic modules being arranged adjacently.
PCT/FR2023/051330 2023-04-27 2023-09-04 Three-dimensional photovoltaic module WO2024223996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2304293A FR3148334A1 (en) 2023-04-27 2023-04-27 Three-dimensional photovoltaic module
FRFR23/04293 2023-04-27

Publications (1)

Publication Number Publication Date
WO2024223996A1 true WO2024223996A1 (en) 2024-10-31

Family

ID=87035924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051330 WO2024223996A1 (en) 2023-04-27 2023-09-04 Three-dimensional photovoltaic module

Country Status (2)

Country Link
FR (1) FR3148334A1 (en)
WO (1) WO2024223996A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022200A (en) * 2012-12-28 2013-04-03 中国科学院物理研究所嘉兴工程中心 Efficient photovoltaic module in 3D (three-dimensional) regular trihedral-cone package
CN203165924U (en) * 2013-03-20 2013-08-28 嘉兴乾和新能源科技有限公司 3D packaged high-efficiency photovoltaic assembly with box structure
US20150000726A1 (en) * 2013-06-26 2015-01-01 Hsuan-Yeh Huang Solar panel structure
WO2023126611A1 (en) * 2021-12-30 2023-07-06 Sylvain Gauthier Three-dimensional photovoltaic module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022200A (en) * 2012-12-28 2013-04-03 中国科学院物理研究所嘉兴工程中心 Efficient photovoltaic module in 3D (three-dimensional) regular trihedral-cone package
CN203165924U (en) * 2013-03-20 2013-08-28 嘉兴乾和新能源科技有限公司 3D packaged high-efficiency photovoltaic assembly with box structure
US20150000726A1 (en) * 2013-06-26 2015-01-01 Hsuan-Yeh Huang Solar panel structure
WO2023126611A1 (en) * 2021-12-30 2023-07-06 Sylvain Gauthier Three-dimensional photovoltaic module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUN MIN JU ET AL: "Honeycomb-Structured 3D Concave Photovoltaic Modules Supported by 3D Mechanical Metamaterials for Enhanced Light Recapture", ADVANCED MATERIALS TECHNOLOGIES, vol. 8, no. 2, 2201360, 11 November 2022 (2022-11-11), DE, pages 1 - 6, XP093089546, ISSN: 2365-709X, DOI: 10.1002/admt.202201360 *

Also Published As

Publication number Publication date
FR3148334A1 (en) 2024-11-01

Similar Documents

Publication Publication Date Title
FR3131668A1 (en) Three-dimensional photovoltaic module
CA2704449C (en) Photovoltaic device
US20010008144A1 (en) Photovoltalic device, photovoltaic module and establishing method of photovoltaic system
JP2002513210A (en) Solar cell module having reflector between solar cells
JPH08204220A (en) Solar cell, solar cell module, and solar cell module group
US20140311570A1 (en) Multi-layered waveguide for capturing solar energy
FR2922366A1 (en) IMPROVEMENTS ON ELEMENTS CAPABLE OF COLLECTING LIGHT
CN102113126A (en) Daylighting solar cell module
WO2011070240A1 (en) Photovoltaic cell, method for assembling plurality of cells, and assembly of a plurality of photovoltaic cells
EP3655997A1 (en) Photovoltaic module
WO2024223996A1 (en) Three-dimensional photovoltaic module
WO2024223995A1 (en) Method for manufacturing a three-dimensional photovoltaic module
CN116802817A (en) Spatial structure of photovoltaic modules or solar radiation concentrators
WO2025008578A1 (en) Three-dimensional photovoltaic module
FR3088139A1 (en) PHOTOVOLTAIC DEVICE
EP2943730A1 (en) Positioning of modules of a solar power plant
FR3088140A1 (en) PHOTOVOLTAIC DEVICE
EP3691120A1 (en) Three-dimensional solar cell and photovoltaic solar module
US20250126928A1 (en) Light trapping device for thin film space photovoltaics
EP4505596A1 (en) Device for converting solar energy into electrical energy
EP4557605A1 (en) Solar panel
FR3079349A1 (en) SOLAR PANEL
EP2943983B1 (en) Assembly of modules of a solar power plant
WO2024165558A1 (en) Photovoltaic module with a recessed space incorporating a bypass diode
FR3088142A1 (en) PHOTOVOLTAIC DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777323

Country of ref document: EP

Kind code of ref document: A1