WO2024216808A1 - 一种永磁电动悬浮系统及磁浮列车制式结构 - Google Patents

一种永磁电动悬浮系统及磁浮列车制式结构 Download PDF

Info

Publication number
WO2024216808A1
WO2024216808A1 PCT/CN2023/115705 CN2023115705W WO2024216808A1 WO 2024216808 A1 WO2024216808 A1 WO 2024216808A1 CN 2023115705 W CN2023115705 W CN 2023115705W WO 2024216808 A1 WO2024216808 A1 WO 2024216808A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
permanent magnet
suspension
vehicle
guide device
Prior art date
Application number
PCT/CN2023/115705
Other languages
English (en)
French (fr)
Inventor
刘帅
邵南
杨晶
延娓娓
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Publication of WO2024216808A1 publication Critical patent/WO2024216808A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present invention relates to the technical field of maglev trains, and more specifically to a permanent magnet electric suspension system and a maglev train standard structure.
  • the maglev train replaces the wheel-rail friction contact force with the electromagnetic force between the on-board suspension unit and the track, thereby realizing the suspension guidance and driving of the vehicle body 100.
  • superconducting magnets have been regarded as the best magnetic source for electric suspension systems due to their strong magnetic field performance, but superconducting magnets face a series of problems such as high cost, complex structure, harsh cooling environment, and high radiation.
  • the object of the present invention is to provide a permanent magnet electric suspension system to increase the floating resistance ratio of the system and improve the suspension and guidance performance of the system;
  • Another object of the present invention is to provide a maglev train system having the above-mentioned permanent magnet electric suspension system.
  • the present invention provides the following technical solutions:
  • a permanent magnet electric suspension system comprises a vehicle body, a vehicle-mounted magnet, an additional electromagnet, a suspension guide device and a support device;
  • the support device forms a suspension space for accommodating the vehicle body, and the vehicle body is arranged in the suspension space with a gap between the vehicle body and the two side walls of the support device;
  • the suspension guide device is symmetrically arranged on the two side walls of the support device; the suspension guide device comprises an upper loop part and a lower loop part, and the additional electromagnet is arranged in the upper loop part;
  • the vehicle-mounted magnets are symmetrically arranged on both sides of the vehicle body and are located between the vehicle body and the suspension guide device; in the vertical direction, the center position of the suspension guide device is higher than the center position of the vehicle-mounted magnets.
  • the above-mentioned permanent magnet electric suspension system further includes a PLC control system, which is connected to the additional electromagnet to control the current intensity of the additional electromagnet.
  • a position monitoring device is further included, and the position monitoring device is used to monitor the position of the vehicle body in the suspension space;
  • the position monitoring device sends an adjustment signal.
  • the adjustment signal is an enhanced signal
  • the signal is adjusted to an enhanced signal
  • the adjustment signal is a weakening signal.
  • the position monitoring device is connected to a PLC control system, so that after the position monitoring device sends an adjustment signal, the PLC control system controls and adjusts the current intensity of the additional electromagnet.
  • the suspension guide device is a zero flux coil, and the current direction of the upper loop part of the zero flux coil is opposite to the current direction of the lower loop part; and/or,
  • the vehicle-mounted magnet includes a plurality of permanent magnets, and the permanent magnets are arranged in a Halbach array.
  • the zero flux coil is arranged in an "8" shape.
  • auxiliary support wheels are arranged between the vehicle body and the support device, and the support device is provided with mutually parallel sliding grooves, and when the speed of the vehicle body is lower than a preset speed, the auxiliary support wheels slide along the sliding grooves.
  • the supporting device is a U-shaped track; and/or, grooves are formed on both side walls of the supporting device, and the suspension guide device is arranged in the grooves.
  • the permanent magnet electric suspension system provided by the present invention increases the induced electromotive force in the upper loop by arranging an additional electromagnet in the upper loop part of the suspension guide device, so that the vehicle body is subjected to a larger suspension force and a smaller magnetic resistance, thereby improving the suspension performance and guiding performance of the vehicle body, and can effectively improve the running stability of the vehicle body.
  • the on-board magnet on the vehicle body runs along the support device at a preset speed, there will be a relative displacement in the forward direction between the on-board magnet and the suspension guide device under a certain working air gap, and the source magnetic field generated by the on-board magnet cuts the suspension guide device, so that the upper loop part and the lower loop part of the suspension guide device generate induced electromotive force. Since the on-board magnet is not centered with the suspension guide device in the vertical direction, a potential difference occurs between the upper loop part and the lower loop part of the suspension guide device, thereby generating an induced current and an induced magnetic field. The induced magnetic field and the source magnetic field of the on-board magnet produce mutual electromagnetic interaction and generate electromagnetic force.
  • the vertical component of the electromagnetic force is manifested as a suspension force that overcomes the deadweight of the vehicle body to achieve the suspension function; the component in the forward direction is manifested as magnetic resistance, which will hinder the forward movement of the vehicle body; at the same time, the component in the lateral direction is manifested as a guiding force, so that the vehicle body keeps running along the support device.
  • the on-board magnet When the vehicle body is in motion, along the forward direction, the on-board magnet is attracted by the additional electromagnet in the upper loop part of the suspension guide device located in the front, while the additional electromagnet located in the rear gives thrust to the on-board magnet. From a macroscopic perspective, the vehicle body is subjected to a force pulled from the front and pushed from the back, which can offset part of the magnetic resistance of the vehicle body during movement, thereby increasing the floating resistance ratio of the vehicle body and improving its operating performance.
  • the vertical component of the electromagnetic force exerted by the additional electromagnet on the vehicle-mounted magnet can also compensate for the suspension force of the vehicle body, thereby improving the suspension and guidance performance of the vehicle body during operation.
  • the attraction component between the suspension guide device and the on-board magnet is mainly the suspension force, and the attraction force is relatively small, so the entire system has the function of self-stabilizing guidance.
  • the structure of the system can be simplified. After the on-board magnet is replaced, it does not need to be cooled, eliminating the cooling and auxiliary systems, and effectively reducing the system cost.
  • a maglev train structure includes any permanent magnet electric suspension system as described above, and also includes a starter motor connected to the car body to drive the car body.
  • maglev train structure provided by the present invention has all the technical effects of the permanent magnet electric suspension system, which will not be described in detail herein.
  • FIG1 is an overall structural diagram of a permanent magnet electric suspension system disclosed in an embodiment of the present invention.
  • FIG2 is a diagram showing the positional relationship between the suspension guide device and the vehicle-mounted magnet disclosed in an embodiment of the present invention
  • FIG3 is a diagram showing the positional relationship between the suspension guide device and the vehicle-mounted magnet disclosed in an embodiment of the present invention
  • FIG4 is a force analysis diagram of a vehicle-mounted magnet disclosed in an embodiment of the present invention.
  • FIG5 is a force analysis diagram of a vehicle-mounted magnet disclosed in an embodiment of the present invention.
  • 200 is a suspension guide device
  • 300 is a vehicle-mounted magnet
  • 500 is an auxiliary support wheel
  • 600 is a supporting device.
  • the permanent magnet electric suspension system disclosed in the present invention comprises a vehicle body 100, a vehicle-mounted magnet 300, an additional electromagnet 400, a suspension guide device 200 and a support device 600;
  • the support device 600 forms a suspension space for accommodating the vehicle body 100, the vehicle body 100 is arranged in the suspension space, and there is a gap between the vehicle body 100 and the two side walls of the support device 600;
  • the suspension guide device 200 is symmetrically arranged on the two side walls of the support device 600;
  • the suspension guide device 200 comprises an upper loop part and a lower loop part, and the additional electromagnet 400 is arranged in the upper loop part;
  • the vehicle-mounted magnet 300 is symmetrically arranged on both sides of the vehicle body 100, and is located between the vehicle body 100 and the suspension guide device 200; in the vertical direction, the center position of the suspension guide device 200 is higher than the center position of the vehicle-mounted magnet 300.
  • the permanent magnet electric suspension system provided by the present invention increases the induced electromotive force in the upper loop by arranging an additional electromagnet 400 in the upper loop part of the suspension guide device 200, so that the vehicle body 100 is subjected to a larger suspension force and a smaller magnetic resistance, thereby improving the suspension performance and guiding performance of the vehicle body 100, and can effectively improve the running stability of the vehicle body 100.
  • the vehicle-mounted magnet 300 and the suspension guide device 200 will have a relative displacement in the forward direction under a certain working air gap.
  • the source magnetic field generated by the carrier magnet 300 cuts the suspension guide device 200, so that the upper loop part and the lower loop part of the suspension guide device 200 generate induced electromotive force. Since the vehicle-mounted magnet 300 is not centered with the suspension guide device 200 in the vertical direction, an electric potential difference occurs between the upper loop part and the lower loop part of the suspension guide device 200, thereby generating an induced current and an induced magnetic field.
  • the induced magnetic field and the source magnetic field of the vehicle-mounted magnet 300 produce mutual electromagnetic interaction to generate electromagnetic force.
  • the vertical component of the electromagnetic force is manifested as a suspension force that overcomes the self-weight of the vehicle body 100 to achieve the suspension function; the component in the forward direction is manifested as a magnetic resistance force, which will hinder the forward movement of the vehicle body 100; at the same time, the component in the lateral direction is manifested as a guiding force, so that the vehicle body 100 keeps running along the support device 600.
  • the vehicle-borne magnet 300 is attracted by the additional electromagnet 400 in the upper loop part of the suspension guide device 200 located in the front, represented by F iron 1 in Figure 5, and the additional electromagnet 400 located in the rear gives a thrust to the vehicle-borne magnet 300, represented by F iron 2 in Figure 5.
  • F iron 1 the additional electromagnet 400 located in the upper loop part of the suspension guide device 200 located in the front
  • F iron 2 the additional electromagnet 400 located in the rear gives a thrust to the vehicle-borne magnet 300, represented by F iron 2 in Figure 5.
  • the vehicle body 100 is subjected to a force of being pulled from the front and pushed from the back, which can offset part of the magnetic resistance of the vehicle body 100 during the movement, thereby increasing the floating resistance ratio of the vehicle body 100 and improving its operating performance.
  • the additional electromagnet 400 takes effect, and when an external current is passed, the system adds an electromagnetic force to compensate for the guiding force exerted on the vehicle body 100.
  • the vertical component of the electromagnetic force applied by the additional electromagnet 400 to the vehicle-mounted magnet 300 can also compensate for the suspension force of the vehicle body 100, thereby improving the suspension and guiding performance of the vehicle body 100 during operation.
  • the attraction component between the suspension guide device 200 and the vehicle-mounted magnet 300 is mainly the suspension force, and the attraction force is relatively small, so the entire system has the function of self-stabilizing guidance.
  • the structure of the system can be simplified. After the vehicle-mounted magnet 300 is replaced, it does not need to be cooled, eliminating the cooling and auxiliary systems, and effectively reducing the system cost.
  • the center deviation between the suspension guide device 200 and the vehicle-mounted magnet 300 is H, and the center position of the suspension guide device 200 is higher than the center position of the vehicle-mounted magnet 300, so that the magnetic flux of the upper loop part and the magnetic flux of the lower loop part of the suspension guide device 200 are inconsistent.
  • the upper loop part generates an attractive force on the vehicle-mounted magnet 300
  • the lower loop part generates a repulsive force on the vehicle-mounted magnet 300, so that the vehicle body 100 can overcome gravity and achieve suspension.
  • the buoyancy ratio is the ratio of the suspension force to the magnetic drag force. For a certain suspension system, a larger buoyancy ratio is better.
  • the additional electromagnet 400 is a conductive winding that is wound around the outside of the iron core and matches its power.
  • the coil with current flowing through it has magnetic properties like a magnet, and the intensity of the magnetic field generated can be controlled by changing the current intensity. The strength of.
  • a PLC control system is connected to the additional electromagnet 400 to control the current intensity of the additional electromagnet 400.
  • the current intensity of the additional electromagnet 400 can be controlled by the PLC control system to adjust the electromagnetic force on the vehicle body 100.
  • the control method of the PLC control system can be decoupled into two parts. First, when the suspension performance of the vehicle body 100 is reduced due to external force majeure factors, the control system energizes the additional electromagnet 400 to compensate for the suspension force of the electric suspension system at this time, so as to maintain the stable suspension of the vehicle system; secondly, when the guidance performance of the vehicle body 100 is reduced due to external force majeure factors, the control system energizes the additional electromagnet 400 to compensate for the guidance force of the electric suspension system at this time, so that the vehicle body 100 remains centered during operation.
  • a position monitoring device is provided for monitoring the position of the vehicle body 100 in the suspension space.
  • the position monitoring device can send an adjustment signal, so that the operator can make specific adjustments to the current intensity of the additional electromagnet 400 according to the adjustment signal.
  • the position monitoring device real-time monitoring of the vehicle body 100 can be achieved, ensuring the regulation of the vehicle body 100 that deviates from the preset position during operation.
  • the position monitoring device is connected to a PLC control system.
  • the PLC control system can control and adjust the current intensity of the additional electromagnet 400 after the position monitoring device sends an adjustment signal.
  • the adjustment signal is an enhanced signal, and the current intensity of the additional electromagnet 400 should be increased.
  • the adjustment signal is an enhancement signal, and the current intensity of the additional electromagnet 400 should be increased.
  • the adjustment signal at this time is a weakening signal, and the operator manually reduces the current intensity of the additional electromagnet 400, or the PLC control system controls to reduce the current intensity of the additional electromagnet 400.
  • the suspension guide device 200 is a zero flux coil, and the current direction of the upper loop portion of the zero flux coil is opposite to the current direction of the lower loop portion.
  • the zero flux coil is vertically offset downward, based on the zero flux principle, the on-board magnet 300 will be subjected to an upward thrust from the coil of the lower loop part on the on-board magnet 300, which is represented by F down in FIG. 4, and an upward pulling force from the coil of the upper loop part on the on-board magnet 300, which is represented by F up in FIG. 4.
  • the additional electromagnet 400 will also generate an additional upward pulling force on the on-board magnet 300, which is represented by F iron in FIG. 4, thereby enhancing the suspension force of the entire system.
  • the vehicle body 100 as a whole will be subjected to the upward and downward forces from a macroscopic perspective, overcoming the gravity of the vehicle body 100 to achieve suspension, and realizing the suspension function of the vehicle body 100.
  • the on-board permanent magnet will be subjected to the electromagnetic force generated by the zero flux coil on the on-board magnet 300, realizing its guiding function.
  • the zero flux coil is arranged in an "8" shape, that is, the upper loop part and the lower loop part are staggered and connected, and the copper coil shaped like an "8" is used to generate suspension force and guiding force.
  • the vehicle-mounted magnet 300 includes a plurality of permanent magnets, which are arranged in a Halbach array, that is, the permanent magnets are arranged in a magnetization direction that changes periodically at a certain angle to form an array permanent magnet, which can achieve a strong magnetic field on one side of the magnet and a weak magnetic field on the other side, thereby enhancing the magnetic field utilization of the magnet.
  • the Halbach array permanent magnets are arranged along the direction of track advancement, and the magnetic field strength of the permanent magnets is approximately sinusoidal in the direction of track advancement, and is almost uniformly distributed in the lateral direction.
  • an auxiliary support wheel 500 is arranged between the vehicle body 100 and the support device 600, and parallel sliding grooves are provided on the support device 600.
  • the auxiliary support wheel 500 slides along the sliding groove.
  • auxiliary support wheels 500 need to be added to support the vehicle body 100.
  • the vehicle body 100 is provided with a placement groove.
  • the auxiliary wheels are retracted into the placement groove of the vehicle body 100.
  • the vehicle body 100 is completely suspended by the electromagnetic force between the vehicle-mounted magnet 300 and the suspension guide device 200.
  • the supporting device 600 is a U-shaped track as shown in FIG. 1 , and the two side walls and the bottom surface of the U-shaped track form a suspended space for accommodating the vehicle body 100.
  • the vehicle body 100 does not deviate laterally, the vehicle body 100 travels along the center line of the U-shaped track.
  • grooves are provided on the two side walls of the support device 600, and the suspension guide device 200 is placed in the grooves.
  • the magnetic flux of the suspension guide device 200 located in the grooves of the two side walls of the support device 600 changes.
  • the suspension guide device 200 on the left side produces a repulsive effect on the magnet, so that the vehicle body 100 returns to the preset position to achieve guidance.
  • the present invention also discloses a maglev train structure, including a permanent magnet electric suspension system as described in any one of the above, and also including a starter motor, which is connected to the car body 100 to drive the car body 100 to accelerate to a preset speed.
  • a starter motor which is connected to the car body 100 to drive the car body 100 to accelerate to a preset speed.
  • the on-board magnet 300 and the suspension guide device 200 generate electromagnetic interaction, thereby generating the suspension force and guide force required by the car body 100, and realizing the suspension and guide performance of the car body 100.
  • maglev train system structure including the permanent magnet electric suspension system has corresponding effects, which will not be described in detail here.
  • the vehicle body 100 begins to accelerate under the action of the starter motor, and when the vehicle body 100 accelerates to a preset speed, the auxiliary support wheel 500 slides along the slide groove on the support device 600. After the vehicle body 100 reaches the preset speed, the auxiliary wheel is retracted into the placement groove of the vehicle body 100, and the vehicle body 100 is completely provided with suspension force and guiding force by the electromagnetic force between the Halbach array permanent magnet and the zero-flux "8"-shaped coil.
  • the Halbach array permanent magnets arranged on both sides of the vehicle body 100 serve as excitation sources, and the zero-flux "8"-shaped coils are located in the grooves on the two side walls of the U-shaped track.
  • the Halbach array permanent magnets and the "8"-shaped zero-flux coils produce electromagnetic interaction, thereby generating the suspension force and guiding force required for the vehicle body 100, thereby achieving the suspension and guiding performance of the vehicle body 100.
  • the Halbach array permanent magnet will be subject to the upward thrust of the coil of the lower loop part on the permanent magnet, and the upward pulling force of the coil of the upper loop part on the permanent magnet.
  • the additional electromagnet 400 since the additional electromagnet 400 is arranged in the coil of the upper loop part, the additional electromagnet 400 has an upward pulling force on the permanent magnet, thereby enhancing the suspension force of the entire system, so that the vehicle body 100 moves upward and returns to the preset position.
  • the current intensity of the additional electromagnet 400 is regulated by the PLC control system. If the current intensity of the additional electromagnet 400 controlled by the PLC control system is too large, so that the suspension force is greater than the gravity of the vehicle body 100, and the vehicle body 100 deviates upward relative to the preset position, the PLC control system controls to reduce the current intensity of the additional electromagnet 400 until the vehicle body 100 returns to the preset position.
  • the current intensity of the additional electromagnet 400 is controlled by the PLC control system so that the system adds electromagnetic force, thereby returning the vehicle body 100 to the preset position.
  • the permanent magnet electric suspension system and the maglev train standard structure provided by the present invention can be used in the field of maglev train technology or other fields.
  • Other fields are any fields other than the field of maglev train technology. The above is only an example and does not limit the application field of the permanent magnet electric suspension system and the maglev train standard structure provided by the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种永磁电动悬浮系统,包括车体(100)、车载磁体(300)、附加电磁体(400)、悬浮导向装置(200)和支撑装置(600);支撑装置形成用于容纳车体的悬浮空间,车体设置于悬浮空间内,且与支撑装置的两侧壁之间存在间隙;悬浮导向装置对称设置于支撑装置的两侧壁上;悬浮导向装置包括上环路部分和下环路部分,附加电磁体设置于上环路部分内;车载磁体对称布置于车体的两侧,位于车体与悬浮导向装置之间;在竖直方向上,悬浮导向装置的中心位置高于车载磁体的中心位置。该系统利用永磁电动悬浮系统增大了系统的浮阻比,提升了系统的悬浮和导向性能以及能够有效改善车体运行平稳性。还公开了一种磁浮列车制式结构。

Description

一种永磁电动悬浮系统及磁浮列车制式结构
本申请要求于2023年04月17日提交中国专利局、申请号为202310409265.6发明名称为“一种永磁电动悬浮系统及磁浮列车制式结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁浮列车技术领域,更具体地说,涉及一种永磁电动悬浮系统及磁浮列车制式结构。
背景技术
磁悬浮列车作为“后高铁时代”的一种新型轨道交通技术,以车载悬浮单元与轨道间的电磁力取代轮轨摩擦接触力,从而实现车体100的悬浮导向和驱动。长期以来,超导磁体由于其强大的磁场性能,一直被当作是电动悬浮系统的最佳磁源,但超导磁体面临着成本高、结构复杂、冷却环境苛刻、辐射大等一系列问题。
随着永磁体性能的提高,出现了以永磁体替代超导体的永磁电动悬浮系统。在运行过程中,车体100会由于不可抗力因素出现悬浮和导向性能减弱的情况,且永磁体在空间中形成的磁场强度相对于超导磁体形成的磁场强度较低,并且在一定范围内随着悬浮导向装置200和车载磁体300的中心偏差增加,车体100受到的悬浮力增大,同时磁阻力也随即增大,导致浮阻比较低。
因此,如何增大系统的浮阻比,提升系统的悬浮和导向性能,是本领域技术人员目前需要解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种永磁电动悬浮系统,以增大系统的浮阻比,提升系统的悬浮和导向性能;
本发明的另一目的在于提供一种具有上述永磁电动悬浮系统的磁浮列车制式结构。
为了实现上述目的,本发明提供了如下技术方案:
一种永磁电动悬浮系统,包括车体、车载磁体、附加电磁体、悬浮导向装置和支撑装置;
支撑装置形成用于容纳车体的悬浮空间,车体设置于悬浮空间内,且与支撑装置的两侧壁之间存在间隙;
悬浮导向装置对称设置于支撑装置的两侧壁上;悬浮导向装置包括上环路部分和下环路部分,附加电磁体设置于上环路部分内;
车载磁体对称布置于车体的两侧,位于车体与悬浮导向装置之间;在竖直方向上,悬浮导向装置的中心位置高于车载磁体的中心位置。
可选地,在上述的永磁电动悬浮系统中,还包括PLC控制系统,PLC控制系统与附加电磁体相连,以控制附加电磁体的电流强度。
可选地,在上述的永磁电动悬浮系统中,还包括位置监测装置,位置监测装置用于监测车体在悬浮空间的位置;
若车体偏离预设位置,位置监测装置发出调整信号。
可选地,在上述的永磁电动悬浮系统中,车体偏离预设位置为车体与支撑装置的两侧壁之间的间隙不一致时,调整信号为增强信号;
车体偏离预设位置为车体与支撑装置的垂直距离减小时,调整信号为增强信号;
车体偏离预设位置为车体与支撑装置的垂直距离增大时,调整信号为减弱信号。
可选地,在上述的永磁电动悬浮系统中,位置监测装置与PLC控制系统相连,以在位置监测装置发出调整信号后,PLC控制系统控制调整附加电磁体的电流强度。
可选地,在上述的永磁电动悬浮系统中,悬浮导向装置为零磁通线圈,零磁通线圈的上环路部分的电流方向和下环路部分的电流方向相反;和/或,
车载磁体包括多个永磁体,永磁体为Halbach阵列排布。
可选地,在上述的永磁电动悬浮系统中,零磁通线圈为“8”字形设置。
可选地,在上述的永磁电动悬浮系统中,车体与支撑装置之间设置有辅助支撑轮,支撑装置开设有相互平行的滑行槽,在车体的速度小于预设速度时,辅助支撑轮沿滑行槽滑行。
可选地,在上述的永磁电动悬浮系统中,支撑装置为U型轨道;和/或,支撑装置的两侧壁开设有凹槽,悬浮导向装置设置于凹槽内。
本发明提供的永磁电动悬浮系统,通过在悬浮导向装置的上环路部分内设置附加电磁体,来增加上环路中的感应电动势,使车体受到较大的悬浮力和较小的磁阻力,进而提高车体的悬浮性能和导向性能,以及能够有效改善车体运行平稳性。
当车体上的车载磁体以预设速度沿支撑装置运行时,车载磁体与悬浮导向装置在一定的工作气隙下会存在前进方向的相对位移,由车载磁体产生的源磁场切割悬浮导向装置,使得悬浮导向装置的上环路部分和下环路部分产生感应电动势。由于车载磁体在竖直方向上与悬浮导向装置不对中,使得悬浮导向装置的上环路部分和下环路部分出现电势差,进而产生感应电流和感应磁场,该感应磁场与车载磁体的源磁场产生相互电磁作用,产生电磁力。该电磁力在垂向上的分力表现为克服车体自重的悬浮力,以实现悬浮功能;在前进方向上的分力表现为磁阻力,将阻碍车体前进;同时在横向方向上的分力表现为导向力,使车体保持沿支撑装置运行。
车体在运行过程中,沿前进方向,车载磁体受到位于前面的悬浮导向装置的上环路部分中附加电磁体的吸力,而位于后面的附加电磁体对车载磁体给予推力,车体从宏观上表现为受到前拉后推的作用力,可抵消车体在行进过程中的部分磁阻力,从而增大车体的浮阻比,改善其运行性能。
在运行过程中,当出现横向较大偏差并且系统的固有导向力不足以使车体 回到预设位置时,此时附加电磁体起作用,在通以外部电流的情况下使系统附加电磁力,补偿车体所受的导向力。
进一步地,附加电磁体对车载磁体施加电磁力的垂向分量亦可补偿车体的悬浮力,进而改善车体在运行过程时的悬浮和导向性能。
此外,由于车载磁体与悬浮导向装置的中心偏差大,悬浮导向装置与车载磁体的吸引力分量主要是悬浮力,吸引力较小,故整个系统具有自稳定导向的功能。且利用车载磁体的双侧磁场,可简化系统的结构,车载磁体代替后不需要冷却,省去了冷却和辅助系统,有效降低了系统成本。
一种磁浮列车制式结构,磁浮列车制式结构包括如上任一项的永磁电动悬浮系统,还包括启动电机,启动电机与车体相连,以驱动车体。
本发明提供的磁浮列车制式结构,由于具有上述永磁电动悬浮系统,因此兼具上述永磁电动悬浮系统的所有技术效果,本文在此不再赘述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例公开的永磁电动悬浮系统的整体结构图;
图2为本发明实施例公开的悬浮导向装置和车载磁体的位置关系图;
图3为本发明实施例公开的悬浮导向装置和车载磁体的位置关系图;
图4为本发明实施例公开的车载磁体的受力分析图;
图5为本发明实施例公开的车载磁体的受力分析图;
其中:
100为车体;
200为悬浮导向装置;
300为车载磁体;
400为附加电磁体;
500为辅助支撑轮;
600为支撑装置。
具体实施方式
下面将结合本发明实施例中的附图1-图5,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出新颖性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶面”、“底面”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的位置或元件必须具有特定方位、以特定的方位构成和操作,因此不能理解为本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
如图1所示,本发明公开的永磁电动悬浮系统,包括车体100、车载磁体300、附加电磁体400、悬浮导向装置200和支撑装置600;支撑装置600形成用于容纳车体100的悬浮空间,车体100设置于悬浮空间内,且与支撑装置600的两侧壁之间存在间隙;悬浮导向装置200对称设置于支撑装置600的两侧壁上;悬浮导向装置200包括上环路部分和下环路部分,附加电磁体400设置于上环路部分内;车载磁体300对称布置于车体100的两侧,位于车体100与悬浮导向装置200之间;在竖直方向上,悬浮导向装置200的中心位置高于车载磁体300的中心位置。
本发明提供的永磁电动悬浮系统,通过在悬浮导向装置200的上环路部分内设置附加电磁体400,来增加上环路中的感应电动势,使车体100受到较大的悬浮力和较小的磁阻力,进而提高车体100的悬浮性能和导向性能,以及能够有效改善车体100运行平稳性。
当车体100上的车载磁体300以预设速度沿支撑装置600运行时,车载磁体300与悬浮导向装置200在一定的工作气隙下会存在前进方向的相对位移,由车 载磁体300产生的源磁场切割悬浮导向装置200,使得悬浮导向装置200的上环路部分和下环路部分产生感应电动势。由于车载磁体300在竖直方向上与悬浮导向装置200不对中,使得悬浮导向装置200的上环路部分和下环路部分出现电势差,进而产生感应电流和感应磁场,该感应磁场与车载磁体300的源磁场产生相互电磁作用,产生电磁力。该电磁力在垂向上的分力表现为克服车体100自重的悬浮力,以实现悬浮功能;在前进方向上的分力表现为磁阻力,将阻碍车体100前进;同时在横向方向上的分力表现为导向力,使车体100保持沿支撑装置600运行。
车体100在运行过程中,沿前进方向,车载磁体300受到位于前面的悬浮导向装置200的上环路部分中附加电磁体400的吸力,在图5中用F铁1表示,而位于后面的附加电磁体400对车载磁体300给予推力,在图5中用F铁2表示,车体100从宏观上表现为受到前拉后推的作用力,可抵消车体100在行进过程中的部分磁阻力,从而增大车体100的浮阻比,改善其运行性能。
在运行过程中,当出现横向较大偏差并且系统的固有导向力不足以使车体100回到预设位置时,此时附加电磁体400起作用,在通以外部电流的情况下使系统附加电磁力,补偿车体100所受的导向力。
进一步地,附加电磁体400对车载磁体300施加电磁力的垂向分量亦可补偿车体100的悬浮力,进而改善车体100在运行过程时的悬浮和导向性能。
此外,由于车载磁体300与悬浮导向装置200的中心偏差大,悬浮导向装置200与车载磁体300的吸引力分量主要是悬浮力,吸引力较小,故整个系统具有自稳定导向的功能。且利用车载磁体300的双侧磁场,可简化系统的结构,车载磁体300代替后不需要冷却,省去了冷却和辅助系统,有效降低了系统成本。
需要说明的是,如图2所示,悬浮导向装置200与车载磁体300的中心偏差为H,且悬浮导向装置200的中心位置高于车载磁体300的中心位置,使得悬浮导向装置200的上环路部分的磁通和下环路部分的磁通不一致,上环路部分对车载磁体300产生吸引力,下环路部分对车载磁体300产生排斥力,使得车体100能够克服重力实现悬浮。
浮阻比为悬浮力与磁阻力之比。对一定的悬浮系统来说,浮阻比大些为好。
附加电磁体400为在铁芯的外部缠绕与其功率相匹配的导电绕组,通有电流的线圈像磁铁一样具有磁性,可以通过改变电流强度来控制产生的磁场强度 的强弱。
为了优化上述技术方案,设置PLC控制系统与附加电磁体400相连,以控制附加电磁体400的电流强度。车体100在运行过程中会由于不可抗力因素出现悬浮和导向性能减弱的情况时,可通过PLC控制系统控制附加电磁体400的电流强度,进而调节车体100所受到的电磁力。
PLC控制系统的控制方式可解耦为两个部分,首先当车体100由于外界不可抗力因素导致悬浮性能下降时,控制系统对附加电磁体400通电,来补偿电动悬浮系统此时的悬浮力,以保持车辆系统的稳定悬浮;其次当车体100由于外界不可抗力因素导致导向性能下降时,控制系统对附加电磁体400通电,来补偿电动悬浮系统此时的导向力,使车体100在运行过程中保持对中。
进一步的,设置用于监测车体100在悬浮空间位置的位置监测装置,当车体100偏离预设位置时,位置监测装置能够发出调整信号,使操作人员根据调整信号对附加电磁体400的电流强度进行具体调整。通过位置监测装置,可以实现对车体100的实时监控,保证了在运行过程中,对偏离预设位置的车体100的调控。
或者,将位置监测装置与PLC控制系统相连,当车体100偏离预设位置时,在位置监测装置发出调整信号后,PLC控制系统能够控制调整附加电磁体400的电流强度。
具体的,在车体100偏离预设位置为车体100与支撑装置600的两侧壁之间的间隙不一致时,即车体100的导向性能下降,调整信号为增强信号,此时应增强附加电磁体400的电流强度。
若车体100偏离预设位置为车体100与支撑装置600的垂直距离减小时,即车体100的悬浮性能下降,调整信号为增强信号,此时应增强附加电磁体400的电流强度。
或者,车体100偏离预设位置为车体100与支撑装置600的垂直距离增大时,即过于增大附加电磁体400的电流强度,此时的调整信号为减弱信号,操作人员手动减小附加电磁体400的电流强度,或者PLC控制系统控制减小附加电磁体400的电流强度。
在本发明的一实施例中,悬浮导向装置200为零磁通线圈,零磁通线圈的上环路部分的电流方向和下环路部分的电流方向相反。如图4所示,当车体100 与零磁通线圈向下发生垂向偏移时,基于零磁通原理,车载磁体300会受到来自下环路部分的线圈对车载磁体300产生向上趋势的推力,在图4上用F表示,以及上环路部分的线圈对车载磁体300产生向上趋势的拉力,在图4上用F表示。且基于电磁感应定律,附加电磁体400也会对车载磁体300额外产生一个向上的拉力,在图4上用F表示,进而提升整个系统的悬浮力。最终车体100整体从宏观上会受到上拉下推的作用力,克服车体100的重力实现悬浮,实现车体100的悬浮功能。当车体100与零磁通线圈发生横向偏移时,车载永磁体会受到来自零磁通线圈对车载磁体300产生的电磁力,实现其导向功能。
进一步的,零磁通线圈为“8”字形设置,即上环路部分和下环路部分交错连接,形如“8”字的铜质线圈,用于产生悬浮力和导向力。
在本发明的一实施例中,车载磁体300包括多个永磁体,永磁体为Halbach阵列排布,即永磁体按一定角度周期变化的磁化方向进行排列形成阵列永磁体,可以实现磁体的一侧磁场强,另一侧磁场弱,能够强化磁体的磁场利用率。Halbach阵列永磁体沿轨道前进方向排列,永磁体的磁场强度在轨道前进方向上近似于正弦分布,在横向上几乎呈均匀分布。
为优化上述技术方案,在车体100与支撑装置600之间设置辅助支撑轮500,在支撑装置600上开设相互平行的滑行槽。当车体100的速度小于预设速度时,辅助支撑轮500沿滑行槽滑行。
在车体100加速至预设速度的过程中,因车体100的速度小于预设速度,悬浮导向装置200对车体100的悬浮力不足以克服车体100的重力使车体100悬浮,故需要添加辅助支撑轮500对车体100进行支撑。
车体100上开设有放置槽,当车体100的运行速度足够大时,辅助轮收起至车体100的放置槽内,此时,车体100完全由车载磁体300和悬浮导向装置200之间的电磁力悬浮。
在本发明的一实施例中,支撑装置600为如图1所示的U型轨道,U型轨道的两侧壁和底面形成用于容纳车体100的悬浮空间,在车体100未发生横向偏移时,车体100沿U型轨道的中心线行驶。
为固定悬浮导向装置200的位置,在支撑装置600的两侧壁开设凹槽,将悬浮导向装置200设置于凹槽内。当车体100发生横向偏移时,位于支撑装置600的两侧壁的凹槽内的悬浮导向装置200的磁通发生变化。如车体100向左偏移 时,左侧的悬浮导向装置200对磁体产生排斥作用,使车体100回到预设位置,实现导向。
本发明还公开了一种磁浮列车制式结构,包括如上述中任一项所述的永磁电动悬浮系统,还包括启动电机,启动电机与车体100相连,以驱动车体100加速至预设速度。当车体100加速至预设速度的过程中,车载磁体300与悬浮导向装置200产生电磁相互作用,以此产生车体100所需的悬浮力和导向力,实现车体100的悬浮和导向性能。
由于上述永磁电动悬浮系统具有以上效果,包括该永磁电动悬浮系统的磁浮列车制式结构具有相应效果,此处不再赘述。
以下结合具体应用场景对本发明的原理进行详细描述:
首先,车体100在启动电机的作用下开始加速,在车体100加速至预设速度的过程中,辅助支撑轮500沿支撑装置600上的滑行槽滑行。在车体100到达预设速度后,辅助轮收起至车体100的放置槽内,车体100完全由Halbach阵列永磁体和零磁通“8”字形线圈之间的电磁力提供悬浮力和导向力。
布置于车体100两侧的Halbach阵列永磁体作为励磁源,零磁通“8”字形线圈位于U型轨道的两侧壁的凹槽内,Halbach阵列的永磁体与“8”字形零磁通线圈产生电磁相互作用,以此产生车体100所需的悬浮力和导向力,实现车体100的悬浮和导向性能。
若车体100由于不可抗力因素出现悬浮性能减弱的情况,即车体100相对于零磁通“8”字形线圈向下发生垂向偏移,Halbach阵列永磁体会受到来自下环路部分的线圈对永磁体的向上趋势的推力,以及上环路部分的线圈对永磁体产生的向上趋势的拉力。且,由于上环路部分的线圈内设置有附加电磁体400,附加电磁体400对永磁体有向上趋势的拉力,进而提升整个系统的悬浮力,使得车体100向上运动回到预设位置。
附加电磁体400的电流强度PLC控制系统调控。由若PLC控制系统控制增加的附加电磁体400的电流强度过大,使得悬浮力大于车体100的重力,车体100相对于预设位置向上偏移,此时PLC控制系统控制减小附加电磁体400的电流强度,直至车体100回到预设位置。
若车体100由于不可抗力因素出现导向性能减弱的情况,即车体100相对于零磁通“8”字形线圈向下发生横向偏移,且系统的固有导向力不足以使车体 100回到预设位置时,通过PLC控制系统控制附加电磁体400的电流强度,使系统附加电磁力,从而使车体100回到预设位置。
需要说明的是,本发明提供的永磁电动悬浮系统及磁浮列车制式结构可用于磁浮列车技术领域或其他领域。其他领域为除磁浮列车技术领域之外的任意领域。上述仅为示例,并不对本发明提供的永磁电动悬浮系统及磁浮列车制式结构的应用领域进行限定。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

  1. 一种永磁电动悬浮系统,其特征在于,包括车体(100)、车载磁体(300)、附加电磁体(400)、悬浮导向装置(200)和支撑装置(600);
    所述支撑装置(600)形成用于容纳所述车体(100)的悬浮空间,所述车体(100)设置于所述悬浮空间内,且与所述支撑装置(600)的两侧壁之间存在间隙;
    所述悬浮导向装置(200)对称设置于所述支撑装置(600)的两侧壁上;所述悬浮导向装置(200)包括上环路部分和下环路部分,所述附加电磁体(400)设置于所述上环路部分内;
    所述车载磁体(300)对称布置于所述车体(100)的两侧,位于所述车体(100)与所述悬浮导向装置(200)之间;在竖直方向上,所述悬浮导向装置(200)的中心位置高于所述车载磁体(300)的中心位置。
  2. 如权利要求1所述的永磁电动悬浮系统,其特征在于,还包括PLC控制系统,所述PLC控制系统与所述附加电磁体(400)相连,以控制所述附加电磁体(400)的电流强度。
  3. 如权利要求2所述的永磁电动悬浮系统,其特征在于,还包括位置监测装置,所述位置监测装置用于监测所述车体(100)在所述悬浮空间的位置;
    若所述车体(100)偏离预设位置,所述位置监测装置发出调整信号。
  4. 如权利要求3所述的永磁电动悬浮系统,其特征在于,所述车体(100)偏离所述预设位置为所述车体(100)与所述支撑装置(600)的两侧壁之间的间隙不一致时,所述调整信号为增强信号;
    所述车体(100)偏离所述预设位置为所述车体(100)与所述支撑装置(600)的垂直距离减小时,所述调整信号为增强信号;
    所述车体(100)偏离所述预设位置为所述车体(100)与所述支撑装置(600)的垂直距离增大时,所述调整信号为减弱信号。
  5. 如权利要求3所述的永磁电动悬浮系统,其特征在于,所述位置监测装置与所述PLC控制系统相连,以在所述位置监测装置发出调整信号后,所述PLC控制系统控制调整所述附加电磁体(400)的电流强度。
  6. 如权利要求1-5任一项所述的永磁电动悬浮系统,其特征在于,所述悬浮导向装置(200)为零磁通线圈,所述零磁通线圈的上环路部分的电流方向和所述下环路部分的电流方向相反;和/或,
    所述车载磁体(300)包括多个永磁体,所述永磁体为Halbach阵列排布。
  7. 如权利要求6所述的永磁电动悬浮系统,其特征在于,所述零磁通线圈为“8”字形设置。
  8. 如权利要求1所述的永磁电动悬浮系统,其特征在于,所述车体(100)与所述支撑装置(600)之间设置有辅助支撑轮(500),所述支撑装置(600)开设有相互平行的滑行槽,在所述车体(100)的速度小于预设速度时,所述辅助支撑轮(500)沿所述滑行槽滑行。
  9. 如权利要求8所述的永磁电动悬浮系统,其特征在于,所述支撑装置(600)为U型轨道;和/或,
    所述支撑装置(600)的两侧壁开设有凹槽,所述悬浮导向装置(200)设置于所述凹槽内。
  10. 一种磁浮列车制式结构,所述磁浮列车制式结构包括如权利要求1-9任一项所述的永磁电动悬浮系统,其特征在于,还包括启动电机,所述启动电机与所述车体(100)相连,以驱动所述车体(100)。
PCT/CN2023/115705 2023-04-17 2023-08-30 一种永磁电动悬浮系统及磁浮列车制式结构 WO2024216808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310409265.6 2023-04-17
CN202310409265.6A CN116394770A (zh) 2023-04-17 2023-04-17 一种永磁电动悬浮系统及磁浮列车制式结构

Publications (1)

Publication Number Publication Date
WO2024216808A1 true WO2024216808A1 (zh) 2024-10-24

Family

ID=87012173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115705 WO2024216808A1 (zh) 2023-04-17 2023-08-30 一种永磁电动悬浮系统及磁浮列车制式结构

Country Status (2)

Country Link
CN (1) CN116394770A (zh)
WO (1) WO2024216808A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116394770A (zh) * 2023-04-17 2023-07-07 中车长春轨道客车股份有限公司 一种永磁电动悬浮系统及磁浮列车制式结构
CN116572752B (zh) * 2023-07-10 2023-09-08 西南交通大学 一种永磁电动悬浮对中导向系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224617A1 (en) * 1985-10-25 1987-06-10 Fuji Electric Co., Ltd. Rail for use in magnetic propulsive levitation apparatus
JPH01218306A (ja) * 1988-02-25 1989-08-31 Railway Technical Res Inst 磁気浮上機構
DE4402373A1 (de) * 1994-01-27 1995-08-03 Volker Prof Dr Christoph Permanentmagnetisches Schwebesystem
US5628252A (en) * 1993-06-17 1997-05-13 Power Superconductor Applications Co. Method and apparatus for combined levitation and guidance along guideway curvature in electrodynamic magnetically levitated high speed vehicle
JP2008253126A (ja) * 2007-03-07 2008-10-16 Railway Technical Res Inst 磁気浮上機構
CN101481893A (zh) * 2008-01-08 2009-07-15 李葛亮 轮轨磁悬浮通用技术
CN111942165A (zh) * 2020-07-30 2020-11-17 西南交通大学 一种用于磁浮列车的线圈式永磁电动悬浮驱动装置
CN116394770A (zh) * 2023-04-17 2023-07-07 中车长春轨道客车股份有限公司 一种永磁电动悬浮系统及磁浮列车制式结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224617A1 (en) * 1985-10-25 1987-06-10 Fuji Electric Co., Ltd. Rail for use in magnetic propulsive levitation apparatus
JPH01218306A (ja) * 1988-02-25 1989-08-31 Railway Technical Res Inst 磁気浮上機構
US5628252A (en) * 1993-06-17 1997-05-13 Power Superconductor Applications Co. Method and apparatus for combined levitation and guidance along guideway curvature in electrodynamic magnetically levitated high speed vehicle
DE4402373A1 (de) * 1994-01-27 1995-08-03 Volker Prof Dr Christoph Permanentmagnetisches Schwebesystem
JP2008253126A (ja) * 2007-03-07 2008-10-16 Railway Technical Res Inst 磁気浮上機構
CN101481893A (zh) * 2008-01-08 2009-07-15 李葛亮 轮轨磁悬浮通用技术
CN111942165A (zh) * 2020-07-30 2020-11-17 西南交通大学 一种用于磁浮列车的线圈式永磁电动悬浮驱动装置
CN116394770A (zh) * 2023-04-17 2023-07-07 中车长春轨道客车股份有限公司 一种永磁电动悬浮系统及磁浮列车制式结构

Also Published As

Publication number Publication date
CN116394770A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2024216808A1 (zh) 一种永磁电动悬浮系统及磁浮列车制式结构
CN114734826B (zh) 一种永磁电动悬浮系统及其导向方法
JP4846237B2 (ja) 磁気浮遊システム
KR101137968B1 (ko) 초전도부재를 이용한 자기부상시스템 및 자기부상열차시스템
CN111373097B (zh) 采用无源低频电磁稳定化的永磁磁悬浮列车
CN106828184A (zh) 无齿槽永磁同步直线电机驱动的高温超导磁悬浮车
KR101009465B1 (ko) 할바흐 배열을 이용한 자기 부상 시스템 및 자기 부상 방법
CN111284330B (zh) 一种高温超导电动磁悬浮列车
CN206690908U (zh) 无齿槽永磁同步直线电机驱动的高温超导磁悬浮车
CN108306477A (zh) 高速磁悬浮直线电磁推进系统
CN111942166B (zh) 一种双边磁体及线圈式永磁电动悬浮驱动装置及驱动方法
JP2002503437A (ja) 磁気浮上車両の走行システム
CN110549863B (zh) 一种悬浮式电磁推进装置及磁浮列车
CN1317811C (zh) 永磁和电磁混合励磁的长定子直线同步电机
WO2023077573A1 (zh) 一种磁浮系统与一种悬浮列车
CN112072885A (zh) 超导长定子直线电机及其控制方法
US3850108A (en) Armature assembly and magnetically suspended vehicle
JP2010252413A (ja) 磁気浮上移動システム
CN115534687B (zh) 一种超导磁悬浮车及悬浮方法
CN206841206U (zh) 涡流阻尼器及磁悬浮车
CN202163328U (zh) 集成悬浮导向牵引功能的磁浮机构
CN102350956B (zh) 集成悬浮导向牵引功能的磁浮机构
CN114954026A (zh) 一种悬挂式永磁电动磁悬浮列车系统
CN115189546A (zh) 牵引与悬浮导向一体化的横向磁通直线同步电机
CN215850774U (zh) 一种磁悬浮车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23933680

Country of ref document: EP

Kind code of ref document: A1