WO2024192577A1 - Telecommunications system for controlling network resource allocation to user subjective requirements and method therefor - Google Patents

Telecommunications system for controlling network resource allocation to user subjective requirements and method therefor Download PDF

Info

Publication number
WO2024192577A1
WO2024192577A1 PCT/CN2023/082254 CN2023082254W WO2024192577A1 WO 2024192577 A1 WO2024192577 A1 WO 2024192577A1 CN 2023082254 W CN2023082254 W CN 2023082254W WO 2024192577 A1 WO2024192577 A1 WO 2024192577A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
qoe
level
user equipment
qrm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2023/082254
Other languages
French (fr)
Inventor
Nicola PIOVESAN
Fadhel AYED
David LOPEZ-PEREZ
Antonio De Domenico
Xing Wei
Hongqiang Bao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to PCT/CN2023/082254 priority Critical patent/WO2024192577A1/en
Publication of WO2024192577A1 publication Critical patent/WO2024192577A1/en
Anticipated expiration legal-status Critical
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the disclosure relates generally to a control network resource allocation in a telecommunication system, and more particularly, the disclosure relates to methods to control network resource allocation to meet user’s Quality of Experience, QoE in the telecommunication system.
  • QoE Quality of experience
  • ITU-T the overall acceptability of an application or service, as perceived subjectively by an end-user” .
  • QoE is thus subjective by definition and quantifies the perception of quality of each end-user.
  • the accurate quantification of the QoE may enable high customer satisfaction with minimum network resources, thus allowing to improve the network efficiency.
  • reducing the amount of energy required to operate the network can allow network operators to reduce costs, as today’s energy consumption accounts for 20%to 40%of the network operation cost.
  • Video streaming represents today the largest component/share of traffic demand, accounting for 70%of the total mobile traffic serviced in 2021. Importantly, as predicted, this share is going to raise to 80%in 2027. Moreover, when watching a video from a mobile phone connected to a fourth-generation (4G) network, most of the energy consumption (and most of the CO2 emissions) is due to the transmission of data. For example, according to a survey, an average user streams 288 hours of video in one year using the YouTube mobile app. This leads to 1.52kg CO2-eq emission due to data transmission in the case of HD streaming, and 0.48kg CO2-eq in case of SD streaming.
  • 4G fourth-generation
  • Video streaming services typically adapt the quality of their video streaming (i.e., transmission rate) according to the quality of the connection between an application server and a user equipment (UE) .
  • UE user equipment
  • Video streaming services offer the end-user the possibility of selecting a specific video quality (e.g., 480p, 720p, 4K) , which could enable some energy savings.
  • a specific video quality e.g., 480p, 720p, 4K
  • video streaming quality has become a mainstream problem during the Coronavirus disease (COVID-19) pandemic lockdown in early 2020, where many streaming services limited the quality or asked their end-users to select a lower streaming quality because of concerns about network capacity and energy consumption due to the increased demand experienced.
  • Coronavirus disease COVID-19
  • 4G and 5G base stations implement several energy efficiency features, such as carrier shutdown and channel shutdown, to reduce the network energy consumption.
  • carrier shutdown and channel shutdown To address these rising environmental concerns, 4G and 5G base stations (BSs) implement several energy efficiency features, such as carrier shutdown and channel shutdown, to reduce the network energy consumption.
  • the network is conservative when implementing such features. This results in steadily high energy consumption of the BSs, even during off-peak hours.
  • the QoS flow framework is used to reinforce an end-to-end QoS for the UE.
  • each service is mapped to a QoS flow type, which is characterized by a set of parameters, such as 5G QoS Identifier (5QI) , Allocation and Retention Priority (ARP) , Guaranteed Flow Bit (GFBR) , etc.
  • 5QI 5G QoS Identifier
  • ARP Allocation and Retention Priority
  • GFBR Guaranteed Flow Bit
  • Packets of a service are then given more or less priority, and in turn radio resources, at the scheduler of the BS to meet their QoS.
  • QoS flow parameters are reconfigurable.
  • extended 5QIs which are those for which QoS requirements are not stipulated in the 3GPP specifications, can be freely defined by operators to differentiate the UEs and services, as well as the experience of end-users accessing the same service. That is, the operators have the possibility of freely defining extended 5QIs to differentiate UEs and services.
  • this mechanism maps services to the QoS flow types, but does not allow to account for the subjective experience and in particular, the subjective needs of the user.
  • video streaming services typically deliver the highest video quality supported over the connection between the UE and the application server.
  • TCP/IP congestion control is responsible for avoiding congestion in the network and it informs the packet sender when the data is not delivered by the network.
  • the application server can react by adapting the streamed video quality to the effective quality of the connection.
  • the problem with this mechanism is that the video streaming services frequently provide the highest quality supported by the UE connection, even if the end-user could be satisfied with lower quality and most streaming services do not allow the end-user to select a lower video quality.
  • streaming high quality video regardless of the end-user perception/needs leads to a waste of resources/energy.
  • UE User Equipment
  • BS Base Station
  • the disclosure provides a telecommunication system and a method therefor.
  • a telecommunication system including a User Equipment, UE, and a Base Station, BS.
  • the UE includes a controller configured to receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS.
  • the BS includes a controller configured to receive the QRM message and allocate resources to the UE according to the QRM.
  • the telecommunication system enables the communication between the UE and the BS for communicating the needs of the end-user in real time.
  • the telecommunication system facilitates providing real-time QoE feedback of the subjective end-user experience (or the user’s subjective degree of satisfaction) to its serving BS thereby controlling network resource allocation and usage to meet the end-user QoE requirements.
  • the telecommunication system reduces network energy consumption and CO2 emissions by enabling the end-user to provide a QoE real-time feedback indicating to the BS its willingness to reduce the perceived network resources for a particular service.
  • the telecommunication system reduces network operation costs by reducing the network energy consumption.
  • the telecommunication system address rising environmental concerns due to the overuse of network resources by enabling the end-user to provide real-time feedback to the BS and network for managing the network resource allocation to the UE as per the user’s requirement, thus, in turn allowing substantial savings in terms of energy and carbon footprint.
  • the telecommunication system facilitates accurate quantification of the QoE by offering the end-user to provide real-time feedback, and thus enables high customer satisfaction with minimum network resources, thus reducing the network energy consumption and in turn the network operation costs.
  • the indication that the quality of experience, QoE, is to be set indicates that the QoE is changed from a current level to a second level.
  • the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be lowered
  • the current level requires more system resources than the second level.
  • the second level requires more system resources than the current level.
  • the QRM message is a Protocol Data Unit session modification request message, PDU message, which indicates a level of QoS to be used.
  • the PDU message indicates a 5QI parameter.
  • the PDU message indicates a Guaranteed Flow Bit Rate, GFBR, parameter.
  • the PDU message indicates an extended QoS Class Identifier, QCI, parameter indicating a change in the packet delay budget with respect to a current QCI.
  • the change in the packet delay budget with respect to the current QCI is 5, 10, 15, 20, 25, 30 ms or higher or any range therein between.
  • the PDU message includes a Quality of Experience field indicating a desired QoE.
  • the BS further includes a memory.
  • the BS controller is further configured to receive one or more QRM messages from the UE, each QRM message indicating a QoS for the UE at different times, store at least one of the indicated QoS: s, and allocate resources to the UE according to the stored QoS: s.
  • the BS controller is further configured to allocate resources to the UE according to an average of the stored QoS: s over time.
  • the BS controller is further configured to allocate resources to the UE according to a weighted average of the stored QoS: s over time.
  • the BS controller is further configured to allocate resources to the UE according to a median of the stored QoS: s over time.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • the UE controller is further configured to determine a user expected level of QoE over time, determine a current level of QoE, and determine that the current level of QoE does not correspond to the user expected level of QoE and in response thereto generate the indication that the QoE is to be set.
  • the controller is further configured to generate the indication that the QoE is to be set to the user expected level of QoE.
  • the UE further includes a User Interface, UI.
  • the indication that a quality of experience, QoE, is to be set is received at the UE from a user via the UI.
  • the UI includes a virtual component being a slider, which is slidable to indicate a QoE to be used.
  • the UI includes one or more virtual keys.
  • each key indicates a QoE to be used.
  • At least one of the one or more virtual keys is arranged in a settings view.
  • level of QoE includes video resolution, audio resolution, amount of rebuffering, number of playback failures, type of playback failures, video startup time, audio start up time, and service availability.
  • the system resources include bandwidth, downlink transmit power, Orthogonal Frequency Division Multiplexing, OFDM, symbols, and Multiple Input Multiple Output, MIMO, layers.
  • the telecommunication system further includes an application server.
  • the application server includes a controller configured to transmit content at a selected QoS level (exemplified as bitrate, packet error rate, latency) to the UE, receive an application layer report indicating a QoS level measured from the UE, determine that the application layer report indicates that the measured QoS level is worse than the current QoS level (e.g., larger packet error rate) and in response thereto transmit content at a lower QoS level (e.g., lowering the bitrate) to the UE or determine that the application layer report indicates that the measured QoS level is higher than the current QoS level (e.g., lower packet error rate) and in response thereto transmit content at a better QoS level (e.g., increasing the bitrate) to the UE.
  • a selected QoS level (exemplified as bitrate, packet error rate, latency)
  • receive an application layer report indicating a QoS level measured from the UE determine that the application layer report
  • the application layer report includes information on the current measured QoS level and reports it to the application server which then adjusts the content transmission at the desired QoS level accordingly i.e., decides whether to upgrade or downgrade (e.g., bitrate, etc. ) QoS level.
  • the selected QoS level relates to bitrate, packet error rate, and/or latency.
  • a User Equipment for use in a telecommunications system which includes a Base Station, BS.
  • the UE includes a controller configured to receive an indication (e.g., from the user through User Interface, UI) that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS.
  • an indication e.g., from the user through User Interface, UI
  • QoE Quality of experience
  • QRM Quality Resource Management
  • the UE enables establishing a communication channel/link between the end-user and the BS thereby allowing communication of the user's subjective experience/feedback to the BS for accurate and efficient network resource usage and management.
  • the UE enables providing user feedback in real-time to the BS for setting user-desired QoE levels for a particular service thereby reducing network resource usage and minimizing network energy consumption and CO2 emissions.
  • the indication to set/change the QoE at a desired level is triggered by the end-user via various means/interfaces provided on the UE, such as physical buttons, sliders, and the like.
  • the UE controller is further configured to determine a user expected level of QoE over time, determine a current level of QoE, and determine that the current level of QoE does not correspond to the user expected level of QoE and in response thereto generate the indication that the QoE is to be set.
  • the controller is further configured to generate the indication that the QoE is to be set to the user expected level of QoE.
  • the controller implements an Artificial Intelligence (AI) based scheme which manages the exchange of QRMs to meet user-based QoE expectations learned through time. That is, the controller over a period of time learns about the end-user expectations regarding the desired levels of QoE, and in absence of a trigger received from the end-user, automatically self-generates the indication that a user expected level of QoE is to be set and thereafter transmits the QRM message to the BS to set the user expected level of QoE.
  • AI Artificial Intelligence
  • the UE further includes a User Interface, UI.
  • the indication that a quality of experience, QoE, is to be set is received from a user via the UI.
  • the UI includes a virtual component being a slider, which is slidable to indicate a QoE to be used.
  • the UI includes one or more virtual keys.
  • each key indicates a QoE to be used.
  • At least one of the one or more virtual keys is arranged in a settings view.
  • the User Interface (UI) configured within the UE may be used by the end-user to establish communication therebetween to trigger the indication to set the user desired level of the QoE.
  • the UI includes virtual components such as a slider, or virtual key (s) , and like, each associated with a certain QoE level.
  • the UE of the system of the present disclosure necessarily includes at least one virtual key arranged in settings view/mode such as for example, a green mode, which is an energy saving mode, which when activated either virtually or physically by the end user, transmits the QRM message to the BS to reduce the QoE and maximize the network energy saving.
  • a green mode which is an energy saving mode, which when activated either virtually or physically by the end user, transmits the QRM message to the BS to reduce the QoE and maximize the network energy saving.
  • level of QoE includes video resolution, audio resolution, amount of rebuffering, number of playback failures, type of playback failures, video startup time, audio start up time, and service availability.
  • the system resources include bandwidth, downlink transmit power, Orthogonal Frequency Division Multiplexing, OFDM, symbols, and Multiple Input Multiple Output, MIMO, layers.
  • the indication that the quality of experience, QoE, is to be set indicates that the QoE is changed from a current level to a second level.
  • the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be lowered
  • the current level requires more system resources than the second level.
  • the second level requires more system resources than the current level.
  • the QRM message is a Protocol Data Unit session modification request message, PDU message, which indicates a level of QoS to be used.
  • the PDU message indicates a 5QI parameter.
  • the PDU message indicates a Guaranteed Flow Bit Rate, GFBR, parameter.
  • the PDU message indicates an extended QoS Class Identifier, QCI, parameter indicating a change in the packet delay budget with respect to a current QCI.
  • the change in the packet delay budget with respect to the current QCI is 5, 10, 15, 20, 25, 30 ms or higher or any range therein between.
  • the PDU message includes a Quality of Experience field indicating a desired QoE.
  • a Base Station for use in a telecommunications system that includes a User Equipment, UE.
  • the BS includes a controller configured to receive a QRM message indicating that a quality of experience, QoE, is to be set from the UE and allocate resources to the UE according to the QRM.
  • the BS interacts with the UE to understand the end-user requirements read from the QRM message, and thereafter modifies the network resource allocation accordingly, thereby facilitating a decrease in energy consumption and CO2 emission.
  • the BS thus assists in reducing the operation costs due to a reduction in the energy consumption, as it reciprocates according to the demands of the end-user.
  • the BS further includes a memory.
  • the BS controller is further configured to receive one or more QRM messages from the UE, each QRM message indicating a QoS for the UE at different times, store at least one of the indicated QoS: s, and allocate resources to the UE according to the stored QoS: s.
  • the QRM message indicates a level of the QoE desired by the end-user, and also includes information on the level of QoS to be used. These messages sent over a period of time along with the QoSs are stored for each user within the memory of the BS.
  • the BS allocates resources to the UE either based upon the QRM received, based upon the stored QoS, or both.
  • the BS controller is further configured to allocate resources to the UE according to an average of the stored QoS: s over time.
  • the BS controller is further configured to allocate resources to the UE according to a weighted average of the stored QoS: s over time.
  • the BS controller is further configured to allocate resources to the UE according to a median of the stored QoS: s over time.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • a method for a telecommunication system that includes a User Equipment, UE, and a Base Station, BS.
  • the method includes the UE receiving an indication (e.g., from the user through User Interface, UI) that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS, and the BS receiving the QRM message and allocating resources to the UE according to the QRM.
  • an indication e.g., from the user through User Interface, UI
  • QoE Quality of experience
  • QRM Quality Resource Management
  • the method facilitates establishing communication between the end-user and the BS or network.
  • the method enables sharing real-time QoE feedback of the subjective end-user experience to the BS and network, such that the demands of the user are met.
  • the method allows efficient network resource usage and management, since resources are allocated by the BS based on the end-user feedback, and hence can reduce the energy consumption of the network.
  • the method also facilitates a reduction in CO2 emissions since it allows efficient network resource usage and management, thereby decreasing the operation costs, whilst addressing the rising environmental concerns. Further, the method is versatile and requires minimum network modifications using already available tools.
  • a computer program product comprising program instructions for performing the above method, when executed by one or more processors in a telecommunications system.
  • a method for a User Equipment, UE for use in a telecommunications system including a Base Station, BS.
  • the method includes receiving an indication that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS.
  • QoE Quality of experience
  • QRM Quality Resource Management
  • the method facilitates providing real-time feedback of the user to the BS to meet the user’s expectations, thereby allowing efficient network resource usage.
  • the method facilitates the user to interact manually or virtually with the UE and offers real-time indications of the user's expected level of the QoE thereby allowing BS to either reduce/increase the level of QoS to meet the user requirements. This helps in reducing energy consumption and CO2 emissions, thereby addressing rising environmental concerns.
  • a computer program product comprising program instructions for performing the above method, when executed by one or more processors in a user equipment, UE.
  • a method for a Base Station, BS, for use in a telecommunications system including a User Equipment, UE includes receiving a QRM message indicating that a quality of experience, QoE, is to be set from the UE and allocating resources to the UE according to the QRM.
  • QoE quality of experience
  • the method enables interaction of the BS with the UE, and meets the end-user expectations about the level of QoE to be set.
  • the method enables manipulating allocated resources as per tailor-made user requirements set out within the QRM message received from the UE, thereby facilitating a reduction in energy consumption and CO2 emissions.
  • a computer program product comprising program instructions for performing the above method, when executed by one or more processors in a Base Station, BS.
  • the telecommunication system and the method facilitate real-time interaction between the end-user and the BS, to meet user-set level of QoE.
  • the telecommunication system and the method facilitate obtaining network-wide direct feedback of the user’s subjective degree of satisfaction thereby allowing substantial savings in terms of energy and carbon footprint.
  • the system telecommunication and the method reduce the network resources usage according to the user expectations/requirements, and hence decreases energy consumption and in turn the operation costs.
  • the telecommunication system and the method address environmental concerns by reducing CO2 emissions.
  • the method is versatile to be used with existing systems without requiring any major network manipulations.
  • FIG. 1 is a block diagram that illustrates a telecommunications system in accordance with an implementation of the disclosure
  • FIG. 2 is a block diagram of a User Equipment, UE, for use in a telecommunications system including a Base Station, BS in accordance with an implementation of the disclosure;
  • UE User Equipment
  • FIG. 3 illustrates a tabular representation of a User Equipment, UE requested Quality Resource Management, QRM message, in accordance with an implementation of the disclosure
  • FIG. 4 illustrates a Base Station, BS for use in a telecommunications system including a User Equipment, UE in accordance with an implementation of the disclosure
  • FIG. 5 is an interaction diagram illustrating a method for a telecommunications system for controlling network resource allocation to meet user subjective requirements, explained with an example of a video streaming service, in accordance with an example embodiment of the disclosure;
  • FIG. 6 illustrates a flow diagram of a method for a telecommunications system includes a User Equipment, UE, and a Base Station, BS, in accordance with an implementation of the disclosure;
  • FIG. 7 illustrates a flow diagram of a method for a User Equipment, UE for use in a telecommunications system including a Base station, BS, in accordance with an implementation of the disclosure
  • FIG. 8 illustrates a flow diagram of a method for a Base Station, BS for use in a telecommunications system including a User Equipment, UE, in accordance with an implementation of the disclosure
  • FIG. 9 is an illustration of a computer system (e.g., a telecommunications system) in which the various architectures and functionalities of the various previous implementations may be implemented.
  • a computer system e.g., a telecommunications system
  • Implementations of the disclosure provide a telecommunications system and methods therefor.
  • a process, a method, a system, a product, or a device that includes a series of steps or units is not necessarily limited to expressly listed steps or units but may include other steps or units that are not expressly listed or that are inherent to such process, method, product, or device.
  • FIG. 1 is a block diagram that illustrates a telecommunications system 100 in accordance with an implementation of the disclosure.
  • the telecommunications system 100 includes a User Equipment, UE 102, and a Base Station, BS 106.
  • the UE 102 includes a controller 104 configured to receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS 106.
  • the BS 106 includes a controller 108 configured to receive the QRM message and allocate resources to the UE 102 according to the QRM.
  • the telecommunication system 100 enables the communication between the UE 102 and the BS 106 for communicating the needs of the end-user in real-time. Particularly, the telecommunication system 100 facilitates providing real-time QoE feedback of the subjective end-user experience (or the user’s subjective degree of satisfaction) to its serving cell, thereby controlling upon network resource allocation and usage to meet the end-user requirements.
  • the telecommunication system 100 reduces network energy consumption and CO2 emissions by providing the end-user to give real-time feedback to the BS 106 about its willingness to reduce the network resources allocated to the UE 102 for a particular service.
  • the telecommunication system 100 reduces network operation costs by reducing network energy consumption.
  • the telecommunication system 100 addresses rising environmental concerns due to overuse of network resources by enabling the end-user to provide real-time feedback to the BS 106 and network for managing the network resource allocation to the UE 102 as per the user’s requirement, thus, in turn allowing substantial savings in terms of energy and carbon footprint.
  • the telecommunication system 100 facilitates accurate quantification of the QoE by offering the end-user to provide real-time feedback, and thus enables high customer satisfaction with minimum network resources, thereby reducing the network energy consumption and in turn the network operation costs.
  • the telecommunication system 100 further includes an application server 110.
  • the application server 110 includes a controller 112 configured to transmit content at a selected QoS level (exemplified as bitrate, packet error rate, latency) to the UE 102, receives an application layer report indicating a QoS level measured from the UE 102, and determines that the application layer report indicates that the measured QoS level is worse than the current QoS level (e.g., larger packet error rate) and in response thereto transmit content at a lower QoS level (e.g., lowering the bitrate) to the UE 102 or determines that the application layer report indicates that the measured QoS level is higher than the current QoS level (e.g., lower packet error rate) and in response thereto transmit content at a better QoS level (e.g., increasing the bitrate) to the UE 102.
  • a selected QoS level (exemplified as bitrate, packet error rate, latency)
  • the selected QoS level relates to bitrate, packet error rate, and/or latency.
  • FIG. 2 is a block diagram of a User Equipment, UE, 202 for use in a telecommunications system 200 including a Base Station, BS 206 in accordance with an implementation of the disclosure.
  • the UE 202 includes a controller 204 configured to receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS 206.
  • QoE Quality of experience
  • QRM Quality Resource Management
  • the UE 202 sets up communication between the end-user and the BS 206 in order to satisfy the real-time requirements of the user.
  • the UE 202 enables communicating user subjective experience to the BS 206, thereby improving the efficiency of resource usage, and in turn minimizing network energy consumption and CO2 emissions.
  • the UE 202 includes, but is not limited to, smartphone, mobile phone (or cellular/cell phone) , tablet computers, portable computer, laptop, PDA and like.
  • the controller 204 is further configured to determine a user expected level of QoE over time, determine a current level of QoE, and determine that the current level of QoE does not correspond to the user expected level of QoE and in response thereto generate the indication that the QoE is to be set.
  • controller 204 is further configured to generate the indication that the QoE is to be set to the user expected level of QoE
  • the controller 204 implements an Artificial Intelligence (AI) based scheme to learn about the user-based QoE expectations over time, and accordingly generates QRMs to satisfy user requirements.
  • AI Artificial Intelligence
  • the controller 204 determines the user expected level of QoE over a period of time, determines current level of QoE, and based on the comparison therebetween, self-generates the indication to set a certain level of QoE, even in the absence of such a trigger from the user.
  • the controller 204 manages the exchange of QRMs to meet user-based QoE expectations learned through time.
  • the indication to set a certain level of QoE is triggered/initiated by the user via various manual or virtual means/modes, configured/provided within the UE 202.
  • various manual or virtual means/modes configured/provided within the UE 202.
  • two physical buttons such as those used currently to adjust audio volume (+ and -) may be provided on the UE 202.
  • the UE 202 further includes a User Interface, UI.
  • the indication that a quality of experience, QoE, is to be set is received from a user via the UI.
  • the UI includes a virtual component being a slider, which is slidable to indicate a QoE to be used.
  • the slider may be provided virtually configured within the UE 202 similar to those that are currently available for adjusting screen luminosity or audio volume.
  • the UI includes one or more virtual keys.
  • each key indicates a QoE to be used.
  • only one virtual key may be provided for indicating a saving level, or two virtual keys may be provided for indicating a high and a low level of QoE, or a plurality of virtual keys may be provided for each QoE level.
  • At least one of the one or more virtual keys is arranged in a settings view.
  • a manual or virtual button is provided configured on the UE 202 to activate, for example, a green mode, which is an energy saving mode (similar to the airplane mode) .
  • a green mode which is an energy saving mode (similar to the airplane mode) .
  • the UE 202 manages transmission of the QRMs to the BS 206 to reduce the user’s QoE and maximize the network energy savings.
  • level of QoE includes video resolution, audio resolution, amount of rebuffering, number of playback failures, type of playback failures, video startup time, audio start up time, and service availability.
  • the level of QoE may include other parameters known in the art.
  • the system resources include bandwidth, downlink transmit power, Orthogonal Frequency Division Multiplexing, OFDM, symbols, Multiple Input Multiple Output, MIMO, and layers.
  • the resources may include other network resources known in the art.
  • the indication that the quality of experience, QoE, is to be set indicates that the QoE is changed from a current level to a second level.
  • the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be lowered
  • the current level requires more system resources than the second level.
  • the second level requires more system resources than the current level.
  • the indication to change level of QoE is either user-driven or controller driven (AI based logic, learnt over time) . Accordingly, the BS 206 after receiving QRMs from the UE 202, adjusts the resource allocation to either increase/decrease the network resources allocated to the UE 202 thereby meeting end-user requirements and contributing to energy consumption savings.
  • FIG. 3 illustrates a tabular representation of a User Equipment, UE requested Quality Resource Management, QRM message, in accordance with an implementation of the disclosure.
  • the tabular representation illustrates the QRM message defined in current 3GPP standard format.
  • the QRM message is a Protocol Data Unit session modification request message, PDU message, which indicates a level of QoS to be used.
  • Table No. 1 illustrates message content of the QRM message.
  • the PDU message indicates a 5QI parameter.
  • the PDU message indicates a Guaranteed Flow Bit Rate, GFBR, parameter.
  • the PDU message includes a plurality of information elements such as, not limited to, QoS flow descriptors.
  • the QoS flow descriptors include a non-limiting list of known parameters as shown in the tabular representation, such as 5QI and GFBR (Guaranteed Flow Bit Rate) , that can be configured in uplink/downlink.
  • 5QI and GFBR Guard Flow Bit Rate
  • the BS controller reduces the number of downlink physical resource blocks (PRB) scheduled to the UE, and vice versa. Since the number of transmitted downlinks PRBs is the most important factor impacting BS power consumption, the reduced PRB schedule allows for reducing the BS power consumption, and hence saves energy.
  • the QoS flow descriptors/parameters are set/configured to increase/decrease the level of QoS to meet the user desired level of QoE.
  • the UE upon receiving the indication to set the QoE at the user desired level, creates the QRM message for the BS which contains information specified on the QoS to be used/adjusted to meet the user desired level of QoE.
  • the controller either, i) selects a pre-defined 5QI parameter to increase/decrease the level of QoS of the UE, or ii) defines a new extended 5QI parameter to increase/decrease the UE Quality of Service, QoS to set at the user desired level.
  • the PDU message indicates an extended QoS Class Identifier, QCI, parameter indicating a change in the packet delay budget with respect to a current QCI.
  • the change in the packet delay budget with respect to the current QCI is 5, 10, 15, 20, 25, 30 ms or higher or any range therein between.
  • the PDU message includes a Quality of Experience field indicating a desired QoE.
  • Table No. 2 illustrates the message content of the QRM message, wherein, the QRM message includes a new field named QoE Information container.
  • the QRM (PDU) message does not reuse an existing field, but has a new field, providing real-time QoE feedback as shown in the figure.
  • 2 bits with 4 levels are used to encode the QoE.
  • FIG. 4 illustrates a Base Station, BS 406 for use in a telecommunications system 400 including a User Equipment, UE 402 in accordance with an implementation of the disclosure.
  • the BS 406 includes a BS controller 408 configured to receive a QRM message indicating that a quality of experience, QoE, is to be set from the UE 402 and allocate resources to the UE 402 according to the QRM.
  • QoE quality of experience
  • the BS 406 interacts with the UE 402 and responds to the QRM message received therefrom by adjusting the network resources accordingly to provide end-user satisfaction.
  • the BS 406 facilitates efficient utilization of the network resources as per the user’s needs, and thus allows prominent energy savings with reduction in CO2 emissions thereby decreasing the operation costs.
  • the BS controller 408 receives the QRM message from the UE 402.
  • the QRM message contains information on which QoS flow parameter is to be used/adjusted by the BS 406 to meet the user-desired level of QoE. Accordingly, upon receiving the QRM message from the UE 402, the BS 406 modifies said specified QoS flow parameter as read from the message.
  • the BS 406 either i) selects a pre-defined 5QI to increase/decrease the level of QoS of the UE 402 as specified by the UE 402 in the QRM message (or refers to last QRM messages) . That is, the QRM will either decrease the priority level to a next lower level, or increase the priority level to the next higher level; or ii) defines a new extended 5QI parameter to increase/decrease the UE 402 QoS to set at the user-desired level as specified by the UE 402 in the QRM (or referring to last QRM messages) .
  • the QRM will either define a new extended QoS Class Identifier (QCI) with an increase in packet delay budget with respect to the current QCI of 15ms; or the QRM will define a new extended QCI with a decrease in the packet delay budget with respect to the current QCI of 15 ms.
  • QCI QoS Class Identifier
  • QoS flow descriptors/parameters may be configured by the BS 406 to set the QoE to the user desired level for offering the end-user user satisfaction.
  • the BS 406 further includes a memory.
  • the BS controller 408 is further configured to receive one or more QRM messages from the UE 402, each QRM message indicating a QoS for the UE 402 at different times, store at least one of the indicated QoS: s, and allocate resources to the UE 402 according to the stored QoS: s.
  • the BS 406 includes an internal memory wherein real-time subjective feedback for every user is stored therewithin.
  • the QRM message received from the UE 402 for every service indicating the QoS levels for the UE 402 over a period of time is stored for each user within the memory of the BS 406.
  • the BS controller 408 Upon receiving a new QRM message from the UE 402 to set a level of QoS, the BS controller 408 allocates resources to the UE 402 either based on the action taken as specified within the QRM message or based upon the stored QoS for said user, or both.
  • the resources are allocated (by changing the QoS flow parameters) either by modifying the specified QoS parameter read from within the QRM message, based on the stored QRM and QoSs, or based on both the QRMs and the stored QoSs for said user.
  • the BS controller 408 uses real-time QoE feedback memory content to allocate resources i.e., to take actions on the 5QI parameters/other QoS flow parameters to meet the user desired level of QoS and QoE. For instance, average across time/users as explained below may be used.
  • the BS controller 408 is further configured to allocate resources to the UE 402 according to an average of the stored QoS: s over time.
  • the BS controller 408 is further configured to allocate resources to the UE 402 according to a weighted average of the stored QoS: s over time.
  • the BS controller 408 is further configured to allocate resources to the UE 402 according to a median of the stored QoS: s over time.
  • the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402 according to an average of the stored QoS: s and the at least one indicated QoS: sfor at least one other UE.
  • the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402 according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE 402, allocate resources to the UE 402 according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  • the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE 402, allocate resources to the UE 402 according to an average of the stored QoS: s and the at least one indicated QoS: sfor at least one other UE over time.
  • the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402 according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402 according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  • FIG. 5 is an interaction diagram illustrating a method for a telecommunications system for controlling network resource allocation to meet user subjective requirements, explained with an example of a video streaming service, in accordance with an example embodiment of the disclosure.
  • the interaction diagram includes a User Equipment, UE 502, a Base Station, BS 504, and an Application Server, AS 506.
  • the application server 506 provides a high-quality video streaming service (HD video) to the UE 502.
  • the BS 504 has allocated many resources to the UE 502 by using e.g., a baseline allocation approach.
  • the end-user triggers the UE 502 by sending an indication (for example, using physical buttons on the UE 502) to suggest the BS 504 to trade the QoS for reduced energy consumption.
  • the user may ask the BS 504 to utilize minimum resources while providing the video streaming service and to save energy.
  • the UE 502 On receiving a such indication from the user, at a step 512, the UE 502 generates and sends the QoS reconfiguration message, QRM message to the BS 504 to meet user desired expectations.
  • the BS 504 receives the QRM message and at a step 514, the BS 504 responds by configuring the QoS flow i.e., reduces the resources allocated to the UE 502.
  • the UE 502 transmits the application layer rate report to the application server 506.
  • the application server 506 upon receiving the application layer report, notices that the current flow rate of transmission of the service i.e., video streaming cannot be maintained since connection quality is decreased due to reduced resources allocated by the BS 504 to the UE 502 by rate adaptation, and in response adjusts the flow rate to new conditions and starts transmitting the video at lower resolution/quality to meet user requirements, at a step 518.
  • the application layer report generation is triggered by notification of congestion at the TCP/IP level.
  • the user transmits an indication to the UE 502 to increase the video resolution (QoS) i.e. the user triggers for an increase in number of resources.
  • QoS video resolution
  • the UE 502 sends the QRM message to the BS 504 to increase the resources allocated for meeting the user desired level of QoS.
  • the BS 504 responds accordingly with or without exceeding what is allocated by the baseline approach.
  • the application layer rate report is sent to the application server 506.
  • the Application Server, AS 506 adapts to new conditions by the rate adaptation, and transmits the video service at a higher resolution to meet the user requirements, at a step 530.
  • the method facilitates efficient energy savings and reduces CO2 emissions thereby addressing rising environmental concerns.
  • the method reduces operational costs since there is efficient utilization of network resources customized as per the user requirements.
  • the method facilitates accurate QoE assessment by considering the subjective needs of each end-user and offering the network resources accordingly. Thus, the method facilitates saving in terms of energy and carbon footprint.
  • the method is adapted to receive video quality according to the end-user subjective needs.
  • the method can be used to adapt to videogaming quality (considering other QoS metrics, e.g., delay, jitter, etc. ) .
  • the method can be used to decrease/increase the delay in an FTP transfer.
  • the method includes receiving an indication from the end-user to reduce the video quality at the UE 502.
  • the user receives the video streaming (service) from the application server 506, which streams the video in high-definition (HD) quality. Users may like to visualize the video at a lower resolution, which initiates the trigger, for example, by pressing physical buttons provided on the UE 502, to indicate to reduce the video quality/resolution i.e. QoE is the video resolution.
  • the user requests to set the QoE i.e. video resolution at a user-desired level.
  • the controller generates and transmits the QRM message to the BS 504 suggesting the BS 504 to reduce the resources allocated to the UE 502 to meet the user expectations.
  • the BS 504 upon receiving the QRM message, in reciprocation reduces the allocated resources, as per new QoS requirements.
  • the BS 504 reduces the allocated resources by reducing the number of downlink Physical Resource Blocks (PRB) scheduled to the UE 502.
  • PRB Physical Resource Block
  • the UE 502 generates the application layer report and transmits it to the Application server 506 i.e., streaming service/service provider, which adapts to the new decreased capacity/conditions i.e., decrease resources allocated by the BS 504 to the UE 502, by reducing the video quality, and starts streaming the video in low resolution.
  • the application server 506 adapts to the decreased capacity by decreasing the video quality such that the requirements of the end-user are met.
  • FIG. 6 illustrates a flow diagram of a method for a telecommunications system which includes a User Equipment, UE, and a Base Station, BS, in accordance with an implementation of the disclosure.
  • UE User Equipment
  • BS Base Station
  • an indication that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS is received at the UE.
  • QRM Quality Resource Management
  • the QRM message is received at the BS and resources are allocated to the UE according to the QRM.
  • the method facilitates establishing communication between the end-user and the BS or network.
  • the method enables sharing a real-time QoE feedback of the subjective end-user experience to the BS and network, such that demands of the user are met.
  • the method allows efficient network resource usage and management, since resources are allocated by the BS based on the end-user feedback, and hence reduces energy consumption of the network.
  • the method also facilitates reduction in CO2 emissions since it allows efficient network resource usage and management, thereby decreasing the operation costs, whilst addressing the rising environmental concerns. Further, the method is versatile and requires minimum network modifications using already available tools.
  • a computer program product including program instructions for performing the method, when executed by one or more processors in a telecommunications system.
  • FIG. 7 illustrates a flow diagram of a method for a User Equipment, UE for use in a telecommunications system including a Base station, BS, in accordance with an implementation of the disclosure.
  • a step 702 an indication that a quality of Experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM message to the BS is received at the UE.
  • QoE Quality of Experience
  • a computer program product including program instructions for performing the method, when executed by one or more processors in the User equipment, UE.
  • the method enables interaction of the BS with the UE, and meet the end-user expectations about the level to QoE to be set.
  • the method enables manipulating allocated resources as per tailor-made user requirements set out within the QRM message received from the UE, thereby facilitating reduction in energy consumption and CO2 emissions.
  • FIG. 8 illustrates a flow diagram of a method for a Base Station, BS for use in a telecommunications system including a User Equipment, UE, in accordance with an implementation of the disclosure.
  • a Quality Resource Management, QRM message indicating that a quality of Experience, QoE, is to be set from the UE is received and resources are allocated to the UE according to the QRM.
  • the method enables interaction of the BS with the UE, and meet the end-user expectations about the level to QoE to be set.
  • the method enables the BS to manipulate resources as per user requirements provided within the QRM message transmitted by the UE, thereby facilitating user satisfaction whilst reduction in energy consumption and CO2 emissions.
  • a computer program product including program instructions for performing the above method, when executed by one or more processors in a Base Station, BS.
  • FIG. 9 is an illustration of a computer system (e.g., a telecommunications system) in which the various architectures and functionalities of the various previous implementations may be implemented.
  • the computer system 900 includes at least one processor 904 that is connected to a bus 902, wherein the computer system 900 may be implemented using any suitable protocol, such as PCI (Peripheral Component Interconnect) , PCI-Express, AGP (Accelerated Graphics Port) , Hyper Transport, or any other bus or point-to-point communication protocol (s) .
  • the computer system 900 also includes a memory 906.
  • Control logic (software) and data are stored in the memory 906 which may take a form of random-access memory (RAM) .
  • RAM random-access memory
  • a single semiconductor platform may refer to a sole unitary semiconductor-based integrated circuit or chip. It should be noted that the term single semiconductor platform may also refer to multi-chip modules with increased connectivity which simulate on-chip modules with increased connectivity which simulate on-chip operation, and make substantial improvements over utilizing a conventional central processing unit (CPU) and bus implementation. Of course, the various modules may also be situated separately or in various combinations of semiconductor platforms per the desires of the user.
  • the computer system 900 may also include a secondary storage 910.
  • the secondary storage 910 includes, for example, a hard disk drive and a removable storage drive, representing a floppy disk drive, a magnetic tape drive, a compact disk drive, digital versatile disk (DVD) drive, recording device, universal serial bus (USB) flash memory.
  • the removable storage drive at least one of reads from and writes to a removable storage unit in a well-known manner.
  • Computer programs, or computer control logic algorithms may be stored in at least one of the memory 906 and the secondary storage 910. Such computer programs, when executed, enable the computer system 900 to perform various functions as described in the foregoing.
  • the memory 906, the secondary storage 910, and any other storage are possible examples of computer-readable media.
  • the architectures and functionalities depicted in the various previous figures may be implemented in the context of the processor 904, a graphics processor coupled to a communication interface 912, an integrated circuit (not shown) that is capable of at least a portion of the capabilities of both the processor 904 and a graphics processor, a chipset (namely, a group of integrated circuits designed to work and sold as a unit for performing related functions, and so forth) .
  • the architectures and functionalities depicted in the various previous-described figures may be implemented in a context of a general computer system, a circuit board system, a game console system dedicated for entertainment purposes, an application-specific system.
  • the computer system 900 may take the form of a desktop computer, a laptop computer, a server, a workstation, a game console, an embedded system.
  • the computer system 900 may take the form of various other devices including, but not limited to a personal digital assistant (PDA) device, a mobile phone device, a smart phone, a television, and so forth. Additionally, although not shown, the computer system 900 may be coupled to a network (for example, a telecommunications network, a local area network (LAN) , a wireless network, a wide area network (WAN) such as the Internet, a peer-to-peer network, a cable network, or the like) for communication purposes through an I/O interface 908.
  • a network for example, a telecommunications network, a local area network (LAN) , a wireless network, a wide area network (WAN) such as the Internet, a peer-to-peer network, a cable network, or the like
  • I/O interface 908 for example, a telecommunications network, a local area network (LAN) , a wireless network, a wide area network (WAN) such as the Internet, a peer-to-peer

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A telecommunications system (100, 200, 400) comprising a User Equipment, UE (102, 202, 402, 502), and a Base Station, BS (106, 206, 406, 504) is provided. The UE (102) comprises a controller (104, 204) configured to receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS. The BS comprises a controller (108, 408) configured to receive the QRM message and allocate resources to the UE according to the QRM.

Description

TELECOMMUNICATIONS SYSTEM FOR CONTROLLING NETWORK RESOURCE ALLOCATION TO USER SUBJECTIVE REQUIREMENTS AND METHOD THEREFOR TECHNICAL FIELD
The disclosure relates generally to a control network resource allocation in a telecommunication system, and more particularly, the disclosure relates to methods to control network resource allocation to meet user’s Quality of Experience, QoE in the telecommunication system.
BACKGROUND
Quality of experience (QoE) is defined by ITU-T as “the overall acceptability of an application or service, as perceived subjectively by an end-user” . QoE is thus subjective by definition and quantifies the perception of quality of each end-user. Importantly, the accurate quantification of the QoE may enable high customer satisfaction with minimum network resources, thus allowing to improve the network efficiency. Importantly, reducing the amount of energy required to operate the network can allow network operators to reduce costs, as today’s energy consumption accounts for 20%to 40%of the network operation cost. Such costs can even grow in the future due to: i) the rise of the energy prices (up to +50%by the end of 2022 according to the World Bank) , ii) the additional power consumption of the new fifth-generation (5G) deployments, and iii) the growth of traffic demand due to new applications (e.g., virtual/augmented reality) and increased number of devices connected to the mobile network. Besides the financial benefits, there is a growing demand from the general public to reduce energy consumption and CO2 emission for environmental concerns. The general opinion is that the current actions are insufficient. According to a survey, 72%of the citizens of high-income countries believe that there is a climate emergency (64%worldwide) . Among them, 70%believe that societies must take action urgently. 71%of the population of the 20 countries surveyed prioritizes protecting  the environment over job creation. Thus, concern about climate change has been rising over the years.
Video streaming represents today the largest component/share of traffic demand, accounting for 70%of the total mobile traffic serviced in 2021. Importantly, as predicted, this share is going to raise to 80%in 2027. Moreover, when watching a video from a mobile phone connected to a fourth-generation (4G) network, most of the energy consumption (and most of the CO2 emissions) is due to the transmission of data. For example, according to a survey, an average user streams 288 hours of video in one year using the YouTube mobile app. This leads to 1.52kg CO2-eq emission due to data transmission in the case of HD streaming, and 0.48kg CO2-eq in case of SD streaming. Video streaming services typically adapt the quality of their video streaming (i.e., transmission rate) according to the quality of the connection between an application server and a user equipment (UE) . In particular, the UE with a good connection will automatically receive the highest video streaming quality. It is worth mentioning that a few video streaming services offer the end-user the possibility of selecting a specific video quality (e.g., 480p, 720p, 4K) , which could enable some energy savings. However, most of the services do not offer such a possibility. As a final remark, video streaming quality has become a mainstream problem during the Coronavirus disease (COVID-19) pandemic lockdown in early 2020, where many streaming services limited the quality or asked their end-users to select a lower streaming quality because of concerns about network capacity and energy consumption due to the increased demand experienced.
To address these rising environmental concerns, 4G and 5G base stations (BSs) implement several energy efficiency features, such as carrier shutdown and channel shutdown, to reduce the network energy consumption. However, due to the lack of a reliable QoE metric, the network is conservative when implementing such features. This results in steadily high energy consumption of the BSs, even during off-peak hours.
Multiple metrics have been proposed to evaluate the QoE such as the Mean Opinion Score (MOS) which scales and classifies the end user's level of satisfaction from 1 to 5 (or 0 to 5) with 5 being highly satisfied. However, since a direct QoE feedback from the users is not available, substitute formulas are instead used nowadays, based on measurable quality of service (QoS) indicators such as packet delay or loss. However, the disadvantage of this approach is that the substitute formulas used to estimate the QoE from measurable QoS are typically the same for all users, and thus lose the fundamental aspect of QoE, i.e., QoE is subjective. In fact, QoE is subjective and different end-users can have different appreciations of the same connection properties. For example, a given packet delay may be acceptable for end-user 1 but not acceptable for end-user 2.
In 3GPP (the 3rd Generation Partnership Project) NR, the QoS flow framework is used to reinforce an end-to-end QoS for the UE. In detail, each service is mapped to a QoS flow type, which is characterized by a set of parameters, such as 5G QoS Identifier (5QI) , Allocation and Retention Priority (ARP) , Guaranteed Flow Bit (GFBR) , etc. Packets of a service are then given more or less priority, and in turn radio resources, at the scheduler of the BS to meet their QoS. Importantly, QoS flow parameters are reconfigurable. For example, extended 5QIs, which are those for which QoS requirements are not stipulated in the 3GPP specifications, can be freely defined by operators to differentiate the UEs and services, as well as the experience of end-users accessing the same service. That is, the operators have the possibility of freely defining extended 5QIs to differentiate UEs and services. However, this mechanism maps services to the QoS flow types, but does not allow to account for the subjective experience and in particular, the subjective needs of the user.
Currently, there is no implemented network-wide direct feedback of the end-user's subjective degree of satisfaction. Multiple reasons can be envisaged, such as i) low participation that does not justify the inconvenience of a direct feedback, ii) adversarial behavior of the end-user that can willingly report a lower QoE to ask for better service continuously.
It is worth mentioning that video streaming services typically deliver the highest video quality supported over the connection between the UE and the application server. When the quality of the connection degrades, an increased number of TCP/IP packets is expected to be dropped. TCP/IP congestion control is responsible for avoiding congestion in the network and it informs the packet sender when the data is not delivered by the network. In this way, the application server can react by adapting the streamed video quality to the effective quality of the connection. However, the problem with this mechanism is that the video streaming services frequently provide the highest quality supported by the UE connection, even if the end-user could be satisfied with lower quality and most streaming services do not allow the end-user to select a lower video quality. Thus, streaming high quality video regardless of the end-user perception/needs leads to a waste of resources/energy.
Hence, there is no mechanism implemented to obtain network-wide direct feedback on the user's subjective degree of satisfaction. The current technology does not allow the end-user to communicate to the serving BS (nor to the network) it's subjective needs, thus preventing substantial savings in terms of energy and carbon footprint.
Therefore, there arises a need to address the aforementioned technical problems/drawbacks within the telecommunication system. There is a need to provide a solution that enables communicating the end-user’s subjective needs in real-time to the serving BS/network to increase the end-user’s satisfaction whilst also obtaining valuable QoE measures for long-term network planning.
SUMMARY
It is an object of the disclosure to provide a telecommunication system for controlling network resource allocation to user subjective requirements, a User Equipment, UE, for use in the telecommunications system, a Base Station, BS, for use in the telecommunications system, and methods therefor while avoiding one or more disadvantages of prior art approaches.
This object is achieved by the features of the independent claims. Further, implementation forms are apparent from the dependent claims, the description, and the figures.
The disclosure provides a telecommunication system and a method therefor.
According to a first aspect, there is provided a telecommunication system including a User Equipment, UE, and a Base Station, BS. The UE includes a controller configured to receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS. The BS includes a controller configured to receive the QRM message and allocate resources to the UE according to the QRM.
The telecommunication system enables the communication between the UE and the BS for communicating the needs of the end-user in real time. Particularly, the telecommunication system facilitates providing real-time QoE feedback of the subjective end-user experience (or the user’s subjective degree of satisfaction) to its serving BS thereby controlling network resource allocation and usage to meet the end-user QoE requirements. The telecommunication system reduces network energy consumption and CO2 emissions by enabling the end-user to provide a QoE real-time feedback indicating to the BS its willingness to reduce the perceived network resources for a particular service. The telecommunication system reduces network operation costs by reducing the network energy consumption. The telecommunication system address rising environmental concerns due to the overuse of network resources by enabling the end-user to provide real-time feedback to the BS and network for managing the network resource allocation to the UE as per the user’s requirement, thus, in turn allowing substantial savings in terms of energy and carbon footprint. The telecommunication system facilitates accurate quantification of the QoE by offering the end-user to provide real-time feedback, and thus enables high customer satisfaction with minimum network resources, thus reducing the network energy consumption and in turn the network operation costs.
Optionally, the indication that the quality of experience, QoE, is to be set indicates that the QoE is changed from a current level to a second level.
Optionally, when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be lowered, the current level requires more system resources than the second level.
Optionally, when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be increased, the second level requires more system resources than the current level.
Optionally, the QRM message is a Protocol Data Unit session modification request message, PDU message, which indicates a level of QoS to be used.
Optionally, the PDU message indicates a 5QI parameter.
Optionally, the PDU message indicates a Guaranteed Flow Bit Rate, GFBR, parameter.
Optionally, the PDU message indicates an extended QoS Class Identifier, QCI, parameter indicating a change in the packet delay budget with respect to a current QCI.
Optionally, the change in the packet delay budget with respect to the current QCI is 5, 10, 15, 20, 25, 30 ms or higher or any range therein between.
Optionally, the PDU message includes a Quality of Experience field indicating a desired QoE.
Optionally, the BS further includes a memory. The BS controller is further configured to receive one or more QRM messages from the UE, each QRM  message indicating a QoS for the UE at different times, store at least one of the indicated QoS: s, and allocate resources to the UE according to the stored QoS: s.
Optionally, the BS controller is further configured to allocate resources to the UE according to an average of the stored QoS: s over time.
Optionally, the BS controller is further configured to allocate resources to the UE according to a weighted average of the stored QoS: s over time.
Optionally, the BS controller is further configured to allocate resources to the UE according to a median of the stored QoS: s over time.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a  weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
Optionally, the UE controller is further configured to determine a user expected level of QoE over time, determine a current level of QoE, and determine that the current level of QoE does not correspond to the user expected level of QoE and in response thereto generate the indication that the QoE is to be set.
Optionally, the controller is further configured to generate the indication that the QoE is to be set to the user expected level of QoE.
Optionally, the UE further includes a User Interface, UI. Optionally, the indication that a quality of experience, QoE, is to be set is received at the UE from a user via the UI.
Optionally, the UI includes a virtual component being a slider, which is slidable to indicate a QoE to be used.
Optionally, the UI includes one or more virtual keys. Optionally, each key indicates a QoE to be used.
Optionally, at least one of the one or more virtual keys is arranged in a settings view.
Optionally, level of QoE includes video resolution, audio resolution, amount of rebuffering, number of playback failures, type of playback failures, video startup time, audio start up time, and service availability.
Optionally, the system resources include bandwidth, downlink transmit power, Orthogonal Frequency Division Multiplexing, OFDM, symbols, and Multiple Input Multiple Output, MIMO, layers.
Optionally, the telecommunication system further includes an application server. Optionally, the application server includes a controller configured to transmit content at a selected QoS level (exemplified as bitrate, packet error rate, latency) to the UE, receive an application layer report indicating a QoS level measured from the UE, determine that the application layer report indicates that the measured QoS level is worse than the current QoS level (e.g., larger packet error rate) and in response thereto transmit content at a lower QoS level (e.g., lowering the bitrate) to the UE or determine that the application layer report indicates that the measured QoS level is higher than the current QoS level (e.g., lower packet error rate) and in response thereto transmit content at a better QoS level (e.g., increasing the bitrate) to the UE.
The application layer report includes information on the current measured QoS level and reports it to the application server which then adjusts the content transmission at the desired QoS level accordingly i.e., decides whether to upgrade or downgrade (e.g., bitrate, etc. ) QoS level.
Optionally, the selected QoS level relates to bitrate, packet error rate, and/or latency.
According to a second aspect, there is provided a User Equipment, UE, for use in a telecommunications system which includes a Base Station, BS. The UE includes a controller configured to receive an indication (e.g., from the user through User Interface, UI) that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS.
The UE enables establishing a communication channel/link between the end-user and the BS thereby allowing communication of the user's subjective experience/feedback to the BS for accurate and efficient network resource usage and  management. The UE enables providing user feedback in real-time to the BS for setting user-desired QoE levels for a particular service thereby reducing network resource usage and minimizing network energy consumption and CO2 emissions. The indication to set/change the QoE at a desired level is triggered by the end-user via various means/interfaces provided on the UE, such as physical buttons, sliders, and the like.
Optionally, the UE controller is further configured to determine a user expected level of QoE over time, determine a current level of QoE, and determine that the current level of QoE does not correspond to the user expected level of QoE and in response thereto generate the indication that the QoE is to be set.
Optionally, the controller is further configured to generate the indication that the QoE is to be set to the user expected level of QoE.
The controller implements an Artificial Intelligence (AI) based scheme which manages the exchange of QRMs to meet user-based QoE expectations learned through time. That is, the controller over a period of time learns about the end-user expectations regarding the desired levels of QoE, and in absence of a trigger received from the end-user, automatically self-generates the indication that a user expected level of QoE is to be set and thereafter transmits the QRM message to the BS to set the user expected level of QoE.
Optionally, the UE further includes a User Interface, UI. Optionally, the indication that a quality of experience, QoE, is to be set is received from a user via the UI.
Optionally, the UI includes a virtual component being a slider, which is slidable to indicate a QoE to be used.
Optionally, the UI includes one or more virtual keys. Optionally, each key indicates a QoE to be used.
Optionally, at least one of the one or more virtual keys is arranged in a settings view.
The User Interface (UI) configured within the UE may be used by the end-user to establish communication therebetween to trigger the indication to set the user desired level of the QoE. The UI includes virtual components such as a slider, or virtual key (s) , and like, each associated with a certain QoE level.
The UE of the system of the present disclosure necessarily includes at least one virtual key arranged in settings view/mode such as for example, a green mode, which is an energy saving mode, which when activated either virtually or physically by the end user, transmits the QRM message to the BS to reduce the QoE and maximize the network energy saving.
Optionally, level of QoE includes video resolution, audio resolution, amount of rebuffering, number of playback failures, type of playback failures, video startup time, audio start up time, and service availability.
Optionally, the system resources include bandwidth, downlink transmit power, Orthogonal Frequency Division Multiplexing, OFDM, symbols, and Multiple Input Multiple Output, MIMO, layers.
Optionally, the indication that the quality of experience, QoE, is to be set indicates that the QoE is changed from a current level to a second level.
Optionally, when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be lowered, the current level requires more system resources than the second level.
Optionally, when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be increased, the second level requires more system resources than the current level.
Optionally, the QRM message is a Protocol Data Unit session modification request message, PDU message, which indicates a level of QoS to be used.
Optionally, the PDU message indicates a 5QI parameter.
Optionally, the PDU message indicates a Guaranteed Flow Bit Rate, GFBR, parameter.
Optionally, the PDU message indicates an extended QoS Class Identifier, QCI, parameter indicating a change in the packet delay budget with respect to a current QCI.
Optionally, the change in the packet delay budget with respect to the current QCI is 5, 10, 15, 20, 25, 30 ms or higher or any range therein between.
Optionally, the PDU message includes a Quality of Experience field indicating a desired QoE.
According to a third aspect, there is provided a Base Station, BS, for use in a telecommunications system that includes a User Equipment, UE. The BS includes a controller configured to receive a QRM message indicating that a quality of experience, QoE, is to be set from the UE and allocate resources to the UE according to the QRM.
The BS interacts with the UE to understand the end-user requirements read from the QRM message, and thereafter modifies the network resource allocation accordingly, thereby facilitating a decrease in energy consumption and CO2 emission. The BS thus assists in reducing the operation costs due to a reduction in the energy consumption, as it reciprocates according to the demands of the end-user.
Optionally, the BS further includes a memory. The BS controller is further configured to receive one or more QRM messages from the UE, each QRM  message indicating a QoS for the UE at different times, store at least one of the indicated QoS: s, and allocate resources to the UE according to the stored QoS: s.
The QRM message indicates a level of the QoE desired by the end-user, and also includes information on the level of QoS to be used. These messages sent over a period of time along with the QoSs are stored for each user within the memory of the BS. The BS allocates resources to the UE either based upon the QRM received, based upon the stored QoS, or both.
Optionally, the BS controller is further configured to allocate resources to the UE according to an average of the stored QoS: s over time.
Optionally, the BS controller is further configured to allocate resources to the UE according to a weighted average of the stored QoS: s over time.
Optionally, the BS controller is further configured to allocate resources to the UE according to a median of the stored QoS: s over time.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
Optionally, the BS controller is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
According to a fourth aspect, there is provided a method for a telecommunication system that includes a User Equipment, UE, and a Base Station, BS. The method includes the UE receiving an indication (e.g., from the user through User Interface, UI) that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS, and the BS receiving the QRM message and allocating resources to the UE according to the QRM.
The method facilitates establishing communication between the end-user and the BS or network. The method enables sharing real-time QoE feedback of the subjective end-user experience to the BS and network, such that the demands of the user are met. The method allows efficient network resource usage and management, since resources are allocated by the BS based on the end-user feedback, and hence can reduce the energy consumption of the network. The method also facilitates a reduction in CO2 emissions since it allows efficient network resource usage and management, thereby decreasing the operation costs, whilst addressing the rising environmental concerns. Further, the method is  versatile and requires minimum network modifications using already available tools.
According to a fifth aspect, there is provided a computer program product comprising program instructions for performing the above method, when executed by one or more processors in a telecommunications system.
According to a sixth aspect, there is provided a method for a User Equipment, UE, for use in a telecommunications system including a Base Station, BS. The method includes receiving an indication that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS.
The method facilitates providing real-time feedback of the user to the BS to meet the user’s expectations, thereby allowing efficient network resource usage. The method facilitates the user to interact manually or virtually with the UE and offers real-time indications of the user's expected level of the QoE thereby allowing BS to either reduce/increase the level of QoS to meet the user requirements. This helps in reducing energy consumption and CO2 emissions, thereby addressing rising environmental concerns.
According to a seventh aspect, there is provided a computer program product comprising program instructions for performing the above method, when executed by one or more processors in a user equipment, UE.
According to an eighth aspect, there is provided a method for a Base Station, BS, for use in a telecommunications system including a User Equipment, UE. The method includes receiving a QRM message indicating that a quality of experience, QoE, is to be set from the UE and allocating resources to the UE according to the QRM.
The method enables interaction of the BS with the UE, and meets the end-user expectations about the level of QoE to be set. The method enables manipulating  allocated resources as per tailor-made user requirements set out within the QRM message received from the UE, thereby facilitating a reduction in energy consumption and CO2 emissions.
According to a ninth aspect, there is provided a computer program product comprising program instructions for performing the above method, when executed by one or more processors in a Base Station, BS.
Therefore, in contradistinction to the existing solutions/prior art, the telecommunication system and the method facilitate real-time interaction between the end-user and the BS, to meet user-set level of QoE. The telecommunication system and the method facilitate obtaining network-wide direct feedback of the user’s subjective degree of satisfaction thereby allowing substantial savings in terms of energy and carbon footprint. The system telecommunication and the method reduce the network resources usage according to the user expectations/requirements, and hence decreases energy consumption and in turn the operation costs. Hence, the telecommunication system and the method address environmental concerns by reducing CO2 emissions. Further, the method is versatile to be used with existing systems without requiring any major network manipulations. These and other aspects of the disclosure will be apparent from the implementation (s) described below.
BRIEF DESCRIPTION OF DRAWINGS
Implementations of the disclosure will now be described, by way of example only, with reference to the accompanying drawings, in which:
FIG. 1 is a block diagram that illustrates a telecommunications system in accordance with an implementation of the disclosure;
FIG. 2 is a block diagram of a User Equipment, UE, for use in a telecommunications system including a Base Station, BS in accordance with an implementation of the disclosure;
FIG. 3 illustrates a tabular representation of a User Equipment, UE requested Quality Resource Management, QRM message, in accordance with an implementation of the disclosure;
FIG. 4 illustrates a Base Station, BS for use in a telecommunications system including a User Equipment, UE in accordance with an implementation of the disclosure;
FIG. 5 is an interaction diagram illustrating a method for a telecommunications system for controlling network resource allocation to meet user subjective requirements, explained with an example of a video streaming service, in accordance with an example embodiment of the disclosure;
FIG. 6 illustrates a flow diagram of a method for a telecommunications system includes a User Equipment, UE, and a Base Station, BS, in accordance with an implementation of the disclosure;
FIG. 7 illustrates a flow diagram of a method for a User Equipment, UE for use in a telecommunications system including a Base station, BS, in accordance with an implementation of the disclosure;
FIG. 8 illustrates a flow diagram of a method for a Base Station, BS for use in a telecommunications system including a User Equipment, UE, in accordance with an implementation of the disclosure; and
FIG. 9 is an illustration of a computer system (e.g., a telecommunications system) in which the various architectures and functionalities of the various previous implementations may be implemented.
DETAILED DESCRIPTION OF THE DRAWINGS
Implementations of the disclosure provide a telecommunications system and methods therefor.
To make solutions of the disclosure more comprehensible for a person skilled in  the art, the following implementations of the disclosure are described with reference to the accompanying drawings.
Terms such as "a first" , "a second" , "a third" , and "a fourth" (if any) in the summary, claims, and foregoing accompanying drawings of the disclosure are used to distinguish between similar objects and are not necessarily used to describe a specific sequence or order. It should be understood that the terms so used are interchangeable under appropriate circumstances, so that the implementations of the disclosure described herein are, for example, capable of being implemented in sequences other than the sequences illustrated or described herein. Furthermore, the terms "include" and "have" and any variations thereof, are intended to cover a non-exclusive inclusion. For example, a process, a method, a system, a product, or a device that includes a series of steps or units, is not necessarily limited to expressly listed steps or units but may include other steps or units that are not expressly listed or that are inherent to such process, method, product, or device.
FIG. 1 is a block diagram that illustrates a telecommunications system 100 in accordance with an implementation of the disclosure. The telecommunications system 100 includes a User Equipment, UE 102, and a Base Station, BS 106. The UE 102 includes a controller 104 configured to receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS 106. The BS 106 includes a controller 108 configured to receive the QRM message and allocate resources to the UE 102 according to the QRM.
The telecommunication system 100 enables the communication between the UE 102 and the BS 106 for communicating the needs of the end-user in real-time. Particularly, the telecommunication system 100 facilitates providing real-time QoE feedback of the subjective end-user experience (or the user’s subjective degree of satisfaction) to its serving cell, thereby controlling upon network resource allocation and usage to meet the end-user requirements. The  telecommunication system 100 reduces network energy consumption and CO2 emissions by providing the end-user to give real-time feedback to the BS 106 about its willingness to reduce the network resources allocated to the UE 102 for a particular service. The telecommunication system 100 reduces network operation costs by reducing network energy consumption.
The telecommunication system 100 addresses rising environmental concerns due to overuse of network resources by enabling the end-user to provide real-time feedback to the BS 106 and network for managing the network resource allocation to the UE 102 as per the user’s requirement, thus, in turn allowing substantial savings in terms of energy and carbon footprint. The telecommunication system 100 facilitates accurate quantification of the QoE by offering the end-user to provide real-time feedback, and thus enables high customer satisfaction with minimum network resources, thereby reducing the network energy consumption and in turn the network operation costs.
Optionally, the telecommunication system 100 further includes an application server 110. Optionally, the application server 110 includes a controller 112 configured to transmit content at a selected QoS level (exemplified as bitrate, packet error rate, latency) to the UE 102, receives an application layer report indicating a QoS level measured from the UE 102, and determines that the application layer report indicates that the measured QoS level is worse than the current QoS level (e.g., larger packet error rate) and in response thereto transmit content at a lower QoS level (e.g., lowering the bitrate) to the UE 102 or determines that the application layer report indicates that the measured QoS level is higher than the current QoS level (e.g., lower packet error rate) and in response thereto transmit content at a better QoS level (e.g., increasing the bitrate) to the UE 102.
Optionally, the selected QoS level relates to bitrate, packet error rate, and/or latency.
FIG. 2 is a block diagram of a User Equipment, UE, 202 for use in a telecommunications system 200 including a Base Station, BS 206 in accordance with an implementation of the disclosure. The UE 202 includes a controller 204 configured to receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS 206.
The UE 202 sets up communication between the end-user and the BS 206 in order to satisfy the real-time requirements of the user. The UE 202 enables communicating user subjective experience to the BS 206, thereby improving the efficiency of resource usage, and in turn minimizing network energy consumption and CO2 emissions.
The UE 202 includes, but is not limited to, smartphone, mobile phone (or cellular/cell phone) , tablet computers, portable computer, laptop, PDA and like.
Optionally, the controller 204 is further configured to determine a user expected level of QoE over time, determine a current level of QoE, and determine that the current level of QoE does not correspond to the user expected level of QoE and in response thereto generate the indication that the QoE is to be set.
Optionally, the controller 204 is further configured to generate the indication that the QoE is to be set to the user expected level of QoE
Optionally, the controller 204 implements an Artificial Intelligence (AI) based scheme to learn about the user-based QoE expectations over time, and accordingly generates QRMs to satisfy user requirements. Particularly, the controller 204 determines the user expected level of QoE over a period of time, determines current level of QoE, and based on the comparison therebetween, self-generates the indication to set a certain level of QoE, even in the absence of such a trigger from the user. In short, the controller 204 manages the exchange of QRMs to meet user-based QoE expectations learned through time.
Optionally, the indication to set a certain level of QoE is triggered/initiated by the user via various manual or virtual means/modes, configured/provided within the UE 202. For example, two physical buttons such as those used currently to adjust audio volume (+ and -) may be provided on the UE 202.
Optionally, the UE 202 further includes a User Interface, UI. Optionally, the indication that a quality of experience, QoE, is to be set is received from a user via the UI.
Optionally, the UI includes a virtual component being a slider, which is slidable to indicate a QoE to be used.
For instance, the slider may be provided virtually configured within the UE 202 similar to those that are currently available for adjusting screen luminosity or audio volume.
Optionally, the UI includes one or more virtual keys. Optionally, each key indicates a QoE to be used.
For instance, only one virtual key may be provided for indicating a saving level, or two virtual keys may be provided for indicating a high and a low level of QoE, or a plurality of virtual keys may be provided for each QoE level.
Optionally, at least one of the one or more virtual keys is arranged in a settings view.
For instance, a manual or virtual button is provided configured on the UE 202 to activate, for example, a green mode, which is an energy saving mode (similar to the airplane mode) . Optionally, when the green mode is activated by the user, the UE 202 manages transmission of the QRMs to the BS 206 to reduce the user’s QoE and maximize the network energy savings.
Optionally, level of QoE includes video resolution, audio resolution, amount of rebuffering, number of playback failures, type of playback failures, video startup time, audio start up time, and service availability.
Optionally, the level of QoE may include other parameters known in the art.
Optionally, the system resources include bandwidth, downlink transmit power, Orthogonal Frequency Division Multiplexing, OFDM, symbols, Multiple Input Multiple Output, MIMO, and layers.
Optionally, the resources may include other network resources known in the art.
Optionally, the indication that the quality of experience, QoE, is to be set indicates that the QoE is changed from a current level to a second level.
Optionally, when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be lowered, the current level requires more system resources than the second level.
Optionally, when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be increased, the second level requires more system resources than the current level.
The indication to change level of QoE is either user-driven or controller driven (AI based logic, learnt over time) . Accordingly, the BS 206 after receiving QRMs from the UE 202, adjusts the resource allocation to either increase/decrease the network resources allocated to the UE 202 thereby meeting end-user requirements and contributing to energy consumption savings.
FIG. 3 illustrates a tabular representation of a User Equipment, UE requested Quality Resource Management, QRM message, in accordance with an implementation of the disclosure. The tabular representation illustrates the QRM message defined in current 3GPP standard format.
Optionally, the QRM message is a Protocol Data Unit session modification request message, PDU message, which indicates a level of QoS to be used.
Table No. 1 below illustrates message content of the QRM message.
Table No. 1
Optionally, the PDU message indicates a 5QI parameter.
Optionally, the PDU message indicates a Guaranteed Flow Bit Rate, GFBR, parameter.
The PDU message includes a plurality of information elements such as, not limited to, QoS flow descriptors. The QoS flow descriptors include a non-limiting list of known parameters as shown in the tabular representation, such as 5QI and GFBR (Guaranteed Flow Bit Rate) , that can be configured in uplink/downlink. For example, in event the controller requests to reduce the allocated resources, the BS controller reduces the number of downlink physical resource blocks (PRB) scheduled to the UE, and vice versa. Since the number of transmitted downlinks PRBs is the most important factor impacting BS power consumption, the reduced PRB schedule allows for reducing the BS power consumption, and hence saves energy. Hence, the QoS flow descriptors/parameters are set/configured to increase/decrease the level of QoS to meet the user desired level of QoE.
For example, upon receiving the indication to set the QoE at the user desired level, the UE creates the QRM message for the BS which contains information specified on the QoS to be used/adjusted to meet the user desired level of QoE.
Optionally, in process of creating the QRM message, the controller either, i) selects a pre-defined 5QI parameter to increase/decrease the level of QoS of the UE, or ii) defines a new extended 5QI parameter to increase/decrease the UE Quality of Service, QoS to set at the user desired level.
Optionally, the PDU message indicates an extended QoS Class Identifier, QCI, parameter indicating a change in the packet delay budget with respect to a current QCI.
Optionally, the change in the packet delay budget with respect to the current QCI is 5, 10, 15, 20, 25, 30 ms or higher or any range therein between.
Optionally, the PDU message includes a Quality of Experience field indicating a desired QoE.
Table No. 2 illustrates the message content of the QRM message, wherein, the QRM message includes a new field named QoE Information container.

Table No. 2
The QRM (PDU) message does not reuse an existing field, but has a new field, providing real-time QoE feedback as shown in the figure. Optionally, 2 bits with 4 levels are used to encode the QoE.
FIG. 4 illustrates a Base Station, BS 406 for use in a telecommunications system 400 including a User Equipment, UE 402 in accordance with an implementation of the disclosure. The BS 406 includes a BS controller 408 configured to receive a QRM message indicating that a quality of experience, QoE, is to be set from the UE 402 and allocate resources to the UE 402 according to the QRM.
The BS 406 interacts with the UE 402 and responds to the QRM message received therefrom by adjusting the network resources accordingly to provide end-user satisfaction. Hence, the BS 406 facilitates efficient utilization of the network resources as per the user’s needs, and thus allows prominent energy savings with reduction in CO2 emissions thereby decreasing the operation costs.
The BS controller 408 receives the QRM message from the UE 402. As discussed above, the QRM message contains information on which QoS flow parameter is to be used/adjusted by the BS 406 to meet the user-desired level of QoE. Accordingly, upon receiving the QRM message from the UE 402, the BS 406 modifies said specified QoS flow parameter as read from the message.
Optionally, to offer the user-desired experience, the BS 406 either i) selects a pre-defined 5QI to increase/decrease the level of QoS of the UE 402 as specified by the UE 402 in the QRM message (or refers to last QRM messages) . That is, the QRM will either decrease the priority level to a next lower level, or increase the priority level to the next higher level; or ii) defines a new extended 5QI parameter to increase/decrease the UE 402 QoS to set at the user-desired level as specified by the UE 402 in the QRM (or referring to last QRM messages) . For example,  referring to delay, the QRM will either define a new extended QoS Class Identifier (QCI) with an increase in packet delay budget with respect to the current QCI of 15ms; or the QRM will define a new extended QCI with a decrease in the packet delay budget with respect to the current QCI of 15 ms.
Optionally, other QoS flow descriptors/parameters may be configured by the BS 406 to set the QoE to the user desired level for offering the end-user user satisfaction.
Optionally, the BS 406 further includes a memory. The BS controller 408 is further configured to receive one or more QRM messages from the UE 402, each QRM message indicating a QoS for the UE 402 at different times, store at least one of the indicated QoS: s, and allocate resources to the UE 402 according to the stored QoS: s.
The BS 406 includes an internal memory wherein real-time subjective feedback for every user is stored therewithin. The QRM message received from the UE 402 for every service indicating the QoS levels for the UE 402 over a period of time is stored for each user within the memory of the BS 406. Upon receiving a new QRM message from the UE 402 to set a level of QoS, the BS controller 408 allocates resources to the UE 402 either based on the action taken as specified within the QRM message or based upon the stored QoS for said user, or both. That is, the resources are allocated (by changing the QoS flow parameters) either by modifying the specified QoS parameter read from within the QRM message, based on the stored QRM and QoSs, or based on both the QRMs and the stored QoSs for said user. The BS controller 408 uses real-time QoE feedback memory content to allocate resources i.e., to take actions on the 5QI parameters/other QoS flow parameters to meet the user desired level of QoS and QoE. For instance, average across time/users as explained below may be used.
Optionally, the BS controller 408 is further configured to allocate resources to the UE 402 according to an average of the stored QoS: s over time.
Optionally, the BS controller 408 is further configured to allocate resources to the UE 402 according to a weighted average of the stored QoS: s over time.
Optionally, the BS controller 408 is further configured to allocate resources to the UE 402 according to a median of the stored QoS: s over time.
Optionally, the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402 according to an average of the stored QoS: s and the at least one indicated QoS: sfor at least one other UE.
Optionally, the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402 according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE 402, allocate resources to the UE 402 according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
Optionally, the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE 402, allocate resources to the UE 402 according to an average of the stored QoS: s and the at least one indicated QoS: sfor at least one other UE over time.
Optionally, the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402 according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
Optionally, the BS controller 408 is further configured to store at least one indicated QoS: s for at least one other UE, allocate resources to the UE 402  according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
FIG. 5 is an interaction diagram illustrating a method for a telecommunications system for controlling network resource allocation to meet user subjective requirements, explained with an example of a video streaming service, in accordance with an example embodiment of the disclosure. The interaction diagram includes a User Equipment, UE 502, a Base Station, BS 504, and an Application Server, AS 506. At a step 508, the application server 506 provides a high-quality video streaming service (HD video) to the UE 502. For providing such a service, the BS 504 has allocated many resources to the UE 502 by using e.g., a baseline allocation approach. At a step 510, the end-user triggers the UE 502 by sending an indication (for example, using physical buttons on the UE 502) to suggest the BS 504 to trade the QoS for reduced energy consumption. The user may ask the BS 504 to utilize minimum resources while providing the video streaming service and to save energy. On receiving a such indication from the user, at a step 512, the UE 502 generates and sends the QoS reconfiguration message, QRM message to the BS 504 to meet user desired expectations. The BS 504 receives the QRM message and at a step 514, the BS 504 responds by configuring the QoS flow i.e., reduces the resources allocated to the UE 502. At a step 516, the UE 502 transmits the application layer rate report to the application server 506. At a step 517, the application server 506 upon receiving the application layer report, notices that the current flow rate of transmission of the service i.e., video streaming cannot be maintained since connection quality is decreased due to reduced resources allocated by the BS 504 to the UE 502 by rate adaptation, and in response adjusts the flow rate to new conditions and starts transmitting the video at lower resolution/quality to meet user requirements, at a step 518. Optionally, the application layer report generation is triggered by notification of congestion at the TCP/IP level.
Further, in event of the user is not satisfied with new conditions i.e. video streaming at low quality, at a step 520, the user transmits an indication to the UE  502 to increase the video resolution (QoS) i.e. the user triggers for an increase in number of resources. At a step 522, the UE 502 sends the QRM message to the BS 504 to increase the resources allocated for meeting the user desired level of QoS. At a step 524, the BS 504 responds accordingly with or without exceeding what is allocated by the baseline approach. At a step 526, the application layer rate report is sent to the application server 506. At a step 528, the Application Server, AS 506 adapts to new conditions by the rate adaptation, and transmits the video service at a higher resolution to meet the user requirements, at a step 530.
The method facilitates efficient energy savings and reduces CO2 emissions thereby addressing rising environmental concerns. The method reduces operational costs since there is efficient utilization of network resources customized as per the user requirements. The method facilitates accurate QoE assessment by considering the subjective needs of each end-user and offering the network resources accordingly. Thus, the method facilitates saving in terms of energy and carbon footprint.
For example, for a video streaming service, the method is adapted to receive video quality according to the end-user subjective needs. Optionally, the method can be used to adapt to videogaming quality (considering other QoS metrics, e.g., delay, jitter, etc. ) . Optionally, the method can be used to decrease/increase the delay in an FTP transfer.
Optionally, the method includes receiving an indication from the end-user to reduce the video quality at the UE 502. The user receives the video streaming (service) from the application server 506, which streams the video in high-definition (HD) quality. Users may like to visualize the video at a lower resolution, which initiates the trigger, for example, by pressing physical buttons provided on the UE 502, to indicate to reduce the video quality/resolution i.e. QoE is the video resolution. Optionally, the user requests to set the QoE i.e. video resolution at a user-desired level. In response to said indication, the controller generates and transmits the QRM message to the BS 504 suggesting the BS 504 to  reduce the resources allocated to the UE 502 to meet the user expectations. The BS 504 upon receiving the QRM message, in reciprocation reduces the allocated resources, as per new QoS requirements. Optionally, the BS 504 reduces the allocated resources by reducing the number of downlink Physical Resource Blocks (PRB) scheduled to the UE 502. As the transmitted downlink PRBs are the most important factor impacting the BS power consumption, the reduced downlink PRBs scheduled allows reducing the BS power consumption and hence saves energy. The UE 502 generates the application layer report and transmits it to the Application server 506 i.e., streaming service/service provider, which adapts to the new decreased capacity/conditions i.e., decrease resources allocated by the BS 504 to the UE 502, by reducing the video quality, and starts streaming the video in low resolution. The application server 506 adapts to the decreased capacity by decreasing the video quality such that the requirements of the end-user are met.
FIG. 6 illustrates a flow diagram of a method for a telecommunications system which includes a User Equipment, UE, and a Base Station, BS, in accordance with an implementation of the disclosure. At a step 602, an indication that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS is received at the UE. At a step 604, the QRM message is received at the BS and resources are allocated to the UE according to the QRM.
The method facilitates establishing communication between the end-user and the BS or network. The method enables sharing a real-time QoE feedback of the subjective end-user experience to the BS and network, such that demands of the user are met. The method allows efficient network resource usage and management, since resources are allocated by the BS based on the end-user feedback, and hence reduces energy consumption of the network. The method also facilitates reduction in CO2 emissions since it allows efficient network resource usage and management, thereby decreasing the operation costs, whilst  addressing the rising environmental concerns. Further, the method is versatile and requires minimum network modifications using already available tools.
In an implementation, a computer program product including program instructions for performing the method, when executed by one or more processors in a telecommunications system.
FIG. 7 illustrates a flow diagram of a method for a User Equipment, UE for use in a telecommunications system including a Base station, BS, in accordance with an implementation of the disclosure. At a step 702, an indication that a quality of Experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM message to the BS is received at the UE.
In an implementation, a computer program product including program instructions for performing the method, when executed by one or more processors in the User equipment, UE.
The method enables interaction of the BS with the UE, and meet the end-user expectations about the level to QoE to be set. The method enables manipulating allocated resources as per tailor-made user requirements set out within the QRM message received from the UE, thereby facilitating reduction in energy consumption and CO2 emissions.
FIG. 8 illustrates a flow diagram of a method for a Base Station, BS for use in a telecommunications system including a User Equipment, UE, in accordance with an implementation of the disclosure. At a step 802, a Quality Resource Management, QRM message indicating that a quality of Experience, QoE, is to be set from the UE is received and resources are allocated to the UE according to the QRM.
The method enables interaction of the BS with the UE, and meet the end-user expectations about the level to QoE to be set. The method enables the BS to manipulate resources as per user requirements provided within the QRM message  transmitted by the UE, thereby facilitating user satisfaction whilst reduction in energy consumption and CO2 emissions.
In an implementation, a computer program product including program instructions for performing the above method, when executed by one or more processors in a Base Station, BS.
FIG. 9 is an illustration of a computer system (e.g., a telecommunications system) in which the various architectures and functionalities of the various previous implementations may be implemented. As shown, the computer system 900 includes at least one processor 904 that is connected to a bus 902, wherein the computer system 900 may be implemented using any suitable protocol, such as PCI (Peripheral Component Interconnect) , PCI-Express, AGP (Accelerated Graphics Port) , Hyper Transport, or any other bus or point-to-point communication protocol (s) . The computer system 900 also includes a memory 906.
Control logic (software) and data are stored in the memory 906 which may take a form of random-access memory (RAM) . In the disclosure, a single semiconductor platform may refer to a sole unitary semiconductor-based integrated circuit or chip. It should be noted that the term single semiconductor platform may also refer to multi-chip modules with increased connectivity which simulate on-chip modules with increased connectivity which simulate on-chip operation, and make substantial improvements over utilizing a conventional central processing unit (CPU) and bus implementation. Of course, the various modules may also be situated separately or in various combinations of semiconductor platforms per the desires of the user.
The computer system 900 may also include a secondary storage 910. The secondary storage 910 includes, for example, a hard disk drive and a removable storage drive, representing a floppy disk drive, a magnetic tape drive, a compact disk drive, digital versatile disk (DVD) drive, recording device, universal serial  bus (USB) flash memory. The removable storage drive at least one of reads from and writes to a removable storage unit in a well-known manner.
Computer programs, or computer control logic algorithms, may be stored in at least one of the memory 906 and the secondary storage 910. Such computer programs, when executed, enable the computer system 900 to perform various functions as described in the foregoing. The memory 906, the secondary storage 910, and any other storage are possible examples of computer-readable media.
In an implementation, the architectures and functionalities depicted in the various previous figures may be implemented in the context of the processor 904, a graphics processor coupled to a communication interface 912, an integrated circuit (not shown) that is capable of at least a portion of the capabilities of both the processor 904 and a graphics processor, a chipset (namely, a group of integrated circuits designed to work and sold as a unit for performing related functions, and so forth) .
Furthermore, the architectures and functionalities depicted in the various previous-described figures may be implemented in a context of a general computer system, a circuit board system, a game console system dedicated for entertainment purposes, an application-specific system. For example, the computer system 900 may take the form of a desktop computer, a laptop computer, a server, a workstation, a game console, an embedded system.
Furthermore, the computer system 900 may take the form of various other devices including, but not limited to a personal digital assistant (PDA) device, a mobile phone device, a smart phone, a television, and so forth. Additionally, although not shown, the computer system 900 may be coupled to a network (for example, a telecommunications network, a local area network (LAN) , a wireless network, a wide area network (WAN) such as the Internet, a peer-to-peer network, a cable network, or the like) for communication purposes through an I/O interface 908.
It should be understood that the arrangement of components illustrated in the  figures described are exemplary and that other arrangement may be possible. It should also be understood that the various system components (and means) defined by the claims, described below, and illustrated in the various block diagrams represent components in some systems configured according to the subject matter disclosed herein. For example, one or more of these system components (and means) may be realized, in whole or in part, by at least some of the components illustrated in the arrangements illustrated in the described figures.
In addition, while at least one of these components are implemented at least partially as an electronic hardware component, and therefore constitutes a machine, the other components may be implemented in software that when included in an execution environment constitutes a machine, hardware, or a combination of software and hardware.
Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims.

Claims (38)

  1. A telecommunications system (100, 200, 400) comprising a User Equipment, UE (102, 202, 402, 502) , and a Base Station, BS (106, 206, 406, 504) , wherein the UE (102, 202, 402, 502) comprises a controller (104, 204) configured to
    receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS (106, 206, 406, 504) , wherein the BS (106, 206, 406, 504) comprises a controller (108, 408) configured to
    receive the QRM message and allocate resources to the UE (102, 202, 402, 502) according to the QRM.
  2. The telecommunications system (100, 200, 400) according to claim 1, wherein the telecommunications system (100, 200, 400) further comprises an application server (110, 506) , wherein the application server (110, 506) comprises a controller (112) configured to
    transmit content at a selected QoS level (exemplified as bitrate, packet error rate, latency) to the UE (102, 202, 402, 502) ,
    receive an application layer report indicating a QoS level measured from the UE (102, 202, 402, 502) ,
    determine that the application layer report indicates that the measured QoS level is worse than the current QoS level (e.g., larger packet error rate) and in response thereto transmit content at a lower QoS level (e.g., lowering the bitrate) to the UE (102, 202, 402, 502) or
    determine that the application layer report indicates that the measured QoS level is higher than the current QoS level (e.g., lower packet error rate) and in response thereto transmit content at a better QoS level (e.g., increasing the bitrate) to the UE (102, 202, 402, 502) .
  3. The telecommunications system (100, 200, 400) according to claim 2, wherein the selected QoS level relates to bitrate, packet error rate, and/or latency.
  4. A User Equipment, UE (102, 202, 402, 502) , for use in a telecommunications system (100, 200, 400) comprising a Base Station, BS (106, 206, 406, 504) , wherein the UE (102, 202, 402, 502) comprises a controller (104, 204) configured to
    receive an indication that a quality of experience, QoE, is to be set and in response thereto send a Quality Resource Management, QRM, message to the BS (106, 206, 406, 504) .
  5. The User Equipment, UE (102, 202, 402, 502) according to claim 4, wherein the controller (104, 204) is further configured to
    determine a user expected level of QoE over time,
    determine a current level of QoE,
    determine that the current level of QoE does not correspond to the user expected level of QoE and in response thereto generate the indication that the QoE is to be set.
  6. The User Equipment, UE (102, 202, 402, 502) according to claim 5, wherein the controller (104, 204) is further configured to generate the indication that the QoE is to be set to the user expected level of QoE.
  7. The User Equipment, UE (102, 202, 402, 502) according to any of claims 4 to 6, wherein the UE (102, 202, 402, 502) further comprises a User Interface, UI, wherein the indication that a quality of experience, QoE, is to be set is received from a user via the UI.
  8. The User Equipment, UE (102, 202, 402, 502) according to claim 7, wherein the UI includes a virtual component being a slider, which is slidable to indicate a QoE to be used.
  9. The User Equipment, UE (102, 202, 402, 502) according to any of claims 7 or 8, wherein the UI includes one or more virtual keys, wherein each key indicates a QoE to be used.
  10. The User Equipment, UE (102, 202, 402, 502) according to claim 9, wherein at least one of the one or more virtual keys is arranged in a settings view.
  11. The User Equipment, UE (102, 202, 402, 502) according to any of claims 4 to 10, wherein the level of QoE includes video resolution, audio resolution, amount of rebuffering, number of playback failures, type of playback failures, video startup time, audio start up time, service availability.
  12. The User Equipment, UE (102, 202, 402, 502) according to any of claims 4 to 11, wherein the system resources includes bandwidth, downlink transmit power, Orthogonal Frequency Division Multiplexing, OFDM, symbols, Multiple Input Multiple Output, MIMO, layers
  13. The User Equipment, UE (102, 202, 402, 502) according to any of claims 4 to 12, wherein the indication that the quality of experience, QoE, is to be set indicates that the QoE is changed from a current level to a second level.
  14. The User Equipment, UE (102, 202, 402, 502) according to any of claims 4 to 13, wherein
    when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be lowered, the current level requires more system resources than the second level.
  15. The User Equipment, UE (102, 202, 402, 502) according to any of claims 4 to 14, wherein
    when the indication that the quality of experience, QoE, is to be set indicates that the QoE is to be increased, the second level requires more system resources than the current level.
  16. The User Equipment, UE (102, 202, 402, 502) according to any of claims 4 to 15, wherein the QRM message is a Protocol Data Unit session modification request message, PDU message, which indicates a level of QoS to be used
  17. The User Equipment, UE (102, 202, 402, 502) according to claim 16, wherein the PDU message indicates a 5QI parameter.
  18. The User Equipment, UE (102, 202, 402, 502) according to any of claims 16 to 17, wherein the PDU message indicates a Guaranteed Flow Bit Rate, GFBR, parameter.
  19. The User Equipment, UE (102, 202, 402, 502) according to any of claims 16 to 18, wherein the PDU message indicates an extended QoS Class Identifier, QCI, parameter indicating a change in the packet delay budget with respect to a current QCI.
  20. The User Equipment, UE (102, 202, 402, 502) according to claim 19, wherein the change in the packet delay budget with respect to the current QCI is 5, 10, 15, 20, 25, 30 ms or higher or any range therein between.
  21. The User Equipment, UE (102, 202, 402, 502) according to any of claims 16 to 20, wherein the PDU message includes a Quality of Experience field indicating a desired QoE.
  22. A Base Station, BS (106, 206, 406, 504) , for use in a telecommunications system (100, 200, 400) comprising a User Equipment, UE (102, 202, 402, 502) ,  wherein the BS (106, 206, 406, 504) comprises a controller (108, 408) configured to
    receive a QRM message indicating that a quality of experience, QoE, is to be set from the UE and allocate resources to the UE according to the QRM.
  23. The Base Station (106, 206, 406, 504) according to claim 22, wherein the BS (106, 206, 406, 504) further comprises a memory and wherein the controller (108, 408) is further configured to
    receive one or more QRM messages from the UE, each QRM message indicating a QoS for the UE at different times,
    store at least one of the indicated QoS: s,
    allocate resources to the UE according to the stored QoS: s.
  24. The Base Station (106, 206, 406, 504) according to claim 23, wherein the controller (108, 408) is further configured to allocate resources to the UE according to an average of the stored QoS: s over time.
  25. The Base Station (106, 206, 406, 504) according to claim 23, wherein the controller (108, 408) is further configured to allocate resources to the UE according to a weighted average of the stored QoS: s over time.
  26. The Base Station (106, 206, 406, 504) according to claim 23, wherein the controller (108, 408) is further configured to allocate resources to the UE according to a median of the stored QoS: s over time.
  27. The Base Station (106, 206, 406, 504) according to any of claims 22 to 26, wherein the controller (108, 408) is further configured to
    store at least one indicated QoS: s for at least one other UE
    allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  28. The Base Station (106, 206, 406, 504) according to any of claims 22 to 26, wherein the controller (108, 408) is further configured to
    store at least one indicated QoS: s for at least one other UE
    allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  29. The telecommunications system (100, 200, 400) according to Base Station (106, 206, 406, 504) according to any of claims 22 to 26, wherein the controller (108, 408) is further configured to
    store at least one indicated QoS: s for at least one other UE
    allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE.
  30. The Base Station (106, 206, 406, 504) according to any of claims 27 to 29, wherein the controller (108, 408) is further configured to
    store at least one indicated QoS: s for at least one other UE
    allocate resources to the UE according to an average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  31. The Base Station (106, 206, 406, 504) according to any of claims 27 to 29, wherein the controller (108, 408) is further configured to
    store at least one indicated QoS: s for at least one other UE
    allocate resources to the UE according to a weighted average of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  32. The Base Station (106, 206, 406, 504) according to any of claims 27 to 29, wherein the controller (108, 408) is further configured to
    store at least one indicated QoS: s for at least one other UE
    allocate resources to the UE according to a median of the stored QoS: s and the at least one indicated QoS: s for at least one other UE over time.
  33. A method for a telecommunications system (100, 200, 400) comprising a User Equipment, UE (102, 202, 402, 502) , and a Base Station, BS (106, 206, 406, 504) , the method comprising the UE (102, 202, 402, 502)
    receiving an indication that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS (106, 206, 406, 504) ,
    and the BS (106, 206, 406, 504)
    receiving the QRM message and allocating resources to the UE (102, 202, 402, 502) according to the QRM.
  34. A computer program product comprising program instructions for performing the method according to claim 33, when executed by one or more processors in a telecommunications system (100, 200, 400) .
  35. A method for a User Equipment, UE (102, 202, 402, 502) , for use in a telecommunications system (100, 200, 400) comprising a Base Station, BS (106, 206, 406, 504) , the method comprising
    receiving an indication that a quality of experience, QoE, is to be set and in response thereto sending a Quality Resource Management, QRM, message to the BS (106, 206, 406, 504) .
  36. A computer program product comprising program instructions for performing the method according to claim 35, when executed by one or more processors in a user equipment, UE (102, 202, 402, 502) .
  37. A method for a Base Station, BS (106, 206, 406, 504) , for use in a telecommunications system (100, 200, 400) comprising a User Equipment, UE (102, 202, 402, 502) , the method comprising
    receiving a QRM message indicating that a quality of experience, QoE, is to be set from the UE and allocating resources to the UE according to the QRM.
  38. A computer program product comprising program instructions for performing the method according to claim 37, when executed by one or more processors in a Base Station, BS (106, 206, 406, 504) .
PCT/CN2023/082254 2023-03-17 2023-03-17 Telecommunications system for controlling network resource allocation to user subjective requirements and method therefor Pending WO2024192577A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/082254 WO2024192577A1 (en) 2023-03-17 2023-03-17 Telecommunications system for controlling network resource allocation to user subjective requirements and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/082254 WO2024192577A1 (en) 2023-03-17 2023-03-17 Telecommunications system for controlling network resource allocation to user subjective requirements and method therefor

Publications (1)

Publication Number Publication Date
WO2024192577A1 true WO2024192577A1 (en) 2024-09-26

Family

ID=92840714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082254 Pending WO2024192577A1 (en) 2023-03-17 2023-03-17 Telecommunications system for controlling network resource allocation to user subjective requirements and method therefor

Country Status (1)

Country Link
WO (1) WO2024192577A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074253A1 (en) * 2013-11-22 2015-05-28 华为技术有限公司 Video service scheduling method and apparatus
WO2022035693A1 (en) * 2020-08-12 2022-02-17 Qualcomm Incorporated Quality of experience measurement and reporting
WO2022164380A1 (en) * 2021-02-01 2022-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Handling of quality-of-experience (qoe) measurement status
CN115226229A (en) * 2021-04-19 2022-10-21 中国移动通信有限公司研究院 Resource scheduling and information reporting method, equipment and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074253A1 (en) * 2013-11-22 2015-05-28 华为技术有限公司 Video service scheduling method and apparatus
WO2022035693A1 (en) * 2020-08-12 2022-02-17 Qualcomm Incorporated Quality of experience measurement and reporting
WO2022164380A1 (en) * 2021-02-01 2022-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Handling of quality-of-experience (qoe) measurement status
CN115226229A (en) * 2021-04-19 2022-10-21 中国移动通信有限公司研究院 Resource scheduling and information reporting method, equipment and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on QoE measurement collection configuration in NR", 3GPP DRAFT; R2-2110099, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20211101, 21 October 2021 (2021-10-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066551 *

Similar Documents

Publication Publication Date Title
US9838893B2 (en) System and method for cooperatively controlling an application
JP5989228B2 (en) Method and apparatus for scheduling an adaptive bitrate stream
CA2982198C (en) Method and user equipment for compacting harq feedback
CA3112926A1 (en) Slice information processing method and apparatus
JP5840795B2 (en) Method and system for rate adaptive allocation of resources
CN110166377A (en) A kind of resource allocation methods and device
EP3219106B1 (en) Context-aware resource management for video streaming services
EP2849386A1 (en) Self-adaptive bandwidth distribution method and system
CN105830415B (en) Method, Wireless Telecom Equipment and base station equipment for managing Media Stream
US20160105894A1 (en) eMBMS Management Method, Multimedia Broadcast Multicast Service Coordination Entity, and Base Station
WO2016065841A1 (en) Access network congestion control method, base station device, and policy and charging rules function network element
KR20160076163A (en) Method and apparatus for providing differentiated transmitting services
US20230412873A1 (en) Streaming Media Transmission Method and Apparatus
US20150052239A1 (en) Context based spectrum management system
WO2018133802A1 (en) Resource scheduling method, and base station and terminal
WO2024192577A1 (en) Telecommunications system for controlling network resource allocation to user subjective requirements and method therefor
CN117201369A (en) Network rate determination method, device, electronic equipment and storage medium
CN103826309B (en) A kind of method and apparatus of scheduling resource
WO2023005679A1 (en) Resource allocation method, communication apparatus, and communication device
WO2019127334A1 (en) Method and device for establishing default data radio bearer
CN115843108A (en) Resource scheduling method, equipment, device and storage medium
CN112333824A (en) An uplink resource scheduling method and device
WO2016015344A1 (en) Network-side device and scheduling method
US20240205109A1 (en) Method, apparatus and computer program
CN105282847A (en) Radio resource management method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23927896

Country of ref document: EP

Kind code of ref document: A1