WO2024165079A1 - 一种井下增压射流深抽采液装置及使用方法 - Google Patents
一种井下增压射流深抽采液装置及使用方法 Download PDFInfo
- Publication number
- WO2024165079A1 WO2024165079A1 PCT/CN2024/078129 CN2024078129W WO2024165079A1 WO 2024165079 A1 WO2024165079 A1 WO 2024165079A1 CN 2024078129 W CN2024078129 W CN 2024078129W WO 2024165079 A1 WO2024165079 A1 WO 2024165079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- jet
- liquid
- electric submersible
- power
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005086 pumping Methods 0.000 title abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 138
- 238000000605 extraction Methods 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 230000015572 biosynthetic process Effects 0.000 claims description 35
- 238000009792 diffusion process Methods 0.000 claims description 24
- 230000001012 protector Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 10
- 238000004062 sedimentation Methods 0.000 claims description 10
- 238000010276 construction Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 239000013589 supplement Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 19
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000003921 oil Substances 0.000 description 55
- 238000010586 diagram Methods 0.000 description 8
- 238000005065 mining Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 5
- 239000005871 repellent Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
- E21B43/40—Separation associated with re-injection of separated materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/02—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
- F04F5/10—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
Definitions
- the invention relates to the technical field of oil and gas field exploitation engineering, and in particular to an underground pressurized jet deep extraction fluid device and a use method thereof.
- the Chinese patent number applied by our company is CN202310458258.5, and the patent name is "A gas-water relay jet production oil and gas device and use method". Its technical solution is: including a first-stage jet pump, a second-stage jet pump and a gas-liquid atomizing ejector.
- the lower end of the second-stage jet pump is connected to the first-stage jet pump through a certain length of small-diameter oil pipe and the inner tube of the jet pump, and the lower end of the gas-liquid atomizing ejector is connected to the upper end of the second-stage jet pump through a certain length of oil pipe;
- the gas-liquid atomizing ejector includes a gas-liquid atomizing body, an atomizer, a drainage pipe, a gas inlet, a gas-liquid separation hood and a gas-liquid separator.
- the invention adopts a two-stage hydraulic jet pump relay and a first-stage gas-liquid atomizing jet in series to accumulate liquid lifting, which can meet the lifting head of 5000-6000 meters, thereby meeting the needs of oil extraction and gas well drainage in deep wells and ultra-deep wells.
- its shortcomings are:
- the purpose of the present invention is to address the above-mentioned defects of the prior art and to provide a downhole pressurized jet deep extraction liquid device and a method of use.
- the present invention adopts a series combination of an electric submersible pump and a jet pump of one level or more, thereby reducing the problems of large footprint of ground equipment, high energy consumption of equipment, excessive noise, etc., and also avoids the problem of high-pressure safety risks at the wellhead, and can realize continuous mining operations in deep wells.
- the present invention mentions a downhole pressurized jet deep extraction liquid production device, and its technical solution is: it includes a liquid storage tank, a production liquid pipe and a power liquid pipe are installed on the liquid storage tank, and also includes an electric control cabinet, a guide shield, an electric submersible pump and a jet pump of one level or more.
- the electric control cabinet is installed next to the wellhead tee, and the middle and lower parts of the liquid storage tank are connected to the wellhead tee through the power liquid pipe, and are connected to the oil pipe downhole; the upper side of the liquid storage tank is connected to the wellhead tee through the production liquid pipe, and is connected to the annulus of the casing and the oil pipe; the guide shield and the electric submersible pump are connected through the oil pipe, and the jet pump of one level or more is connected through the oil pipe below the electric submersible pump; the upper end of the electric submersible pump is connected to the power supply on the ground through a power supply cable.
- the power fluid outlet, protector, motor and power fluid inlet of the above-mentioned electric submersible pump are located inside the guide shield, the protector is located on one side of the motor, a power fluid outlet is provided on the upper part of the protector, and a power fluid inlet is provided on the lower side of the motor.
- the above-mentioned electric submersible pump further includes an inverted centrifugal pump, and the inverted centrifugal pump is installed on the upper part of the flow guide shield, or installed below the flow guide shield.
- the above-mentioned jet pump adopts a group of positive circulation jet pumps.
- the above-mentioned positive circulation jet pump includes a power fluid inlet, a nozzle, a throat, a pump body, a mixed liquid outlet, a formation fluid inlet channel, and a diffusion chamber.
- the upper end of the pump body is provided with a power fluid inlet
- the nozzle is located below the power fluid inlet
- the lower end outlet of the nozzle is located in the mixing chamber
- a formation fluid inlet channel is provided inside the pump body, the upper end of the formation fluid inlet channel is connected to the mixing chamber, and the lower end is connected to the lower end joint of the pump body
- a throat is installed below the nozzle
- a diffusion chamber is provided in the pump body below the throat
- a mixed liquid outlet is provided at the lower end of the diffusion chamber.
- the above-mentioned jet pump also includes a reverse circulation jet pump, which includes a power fluid inlet, a nozzle, a throat, a pump body, a mixed liquid outlet, a formation fluid inlet channel, a diffusion chamber and a mixing chamber.
- a reverse circulation jet pump which includes a power fluid inlet, a nozzle, a throat, a pump body, a mixed liquid outlet, a formation fluid inlet channel, a diffusion chamber and a mixing chamber.
- a power fluid inlet is provided on the lower side of the pump body, and a nozzle is installed in the inner cavity of the pump body, the lower end of the nozzle is connected with the power fluid inlet, and the upper end of the nozzle is located in the mixing chamber, a throat is installed above the nozzle, a diffusion chamber is provided above the throat, and a mixed liquid outlet is provided above the diffusion chamber and is located at the upper end of the pump body; the lower end joint of the pump body is connected with the formation fluid inlet channel provided in the pump body, and the upper end of the formation fluid inlet channel is connected with the mixing chamber.
- a water distributor is connected to the upper part of the electric submersible pump, and the water distributor is connected via an oil pipe.
- the water distributor comprises a central tube, an outer sleeve, a wire-wound filter, a liquid inlet, a sliding sleeve, a hydrophilic and oleophobic filter tube, and a spring.
- the outer sleeve is mounted on the outside of the central tube, the bottom of the outer sleeve is tightly connected to the central tube, and a supplementary water channel is formed between the upper end and the central tube.
- a liquid inlet is provided in the middle of the central tube, and a hydrophilic and oleophobic filter tube and a wire-wound filter are provided on the outside of the liquid inlet, a hydrophilic and oleophobic filter tube is provided on the inner side of the wire-wound filter, a sliding sleeve is installed in the inner cavity of the central tube, and a spring and a spring seat are provided below the sliding sleeve.
- the method for using the underground pressurized jet deep extraction fluid device mentioned in the present invention comprises the following process:
- the jet pumps and electric submersible pumps above the first level are sent into the casing through the oil pipe and lowered to the designated position, and a check valve is installed at the bottom, and a packer is installed on the upper side of the oil layer, wherein the electric submersible pump is located at a potential difference distance above the jet pumps above the first level;
- the sedimentation water in the liquid storage tank on the ground enters the wellhead tee along the power fluid pipe, and continues to go down along the oil pipe to enter the inverted centrifugal pump of the electric submersible pump, enters the inner cavity of the guide shield through the power fluid outlet, and enters the power fluid inlet along the annular flow channel formed between the protector, the motor and the guide shield.
- the sedimentation water enters the power fluid inlet of the jet pump after swirling and pressurizing in the electric submersible pump, and is sprayed into the mixing chamber through the nozzle.
- the negative pressure formed by the jet drives the formation fluid along the formation fluid inlet channel into the mixing chamber.
- the formation fluid and the power fluid are mixed and enter the diffusion chamber.
- the mixed liquid goes up along the annular space formed by the casing and the oil pipe of the wellbore above the packer; until it is sent to the liquid storage tank on the ground for circulation, and the deep well liquid production process is realized.
- the method for using the downhole pressurized jet deep extraction fluid device mentioned in the present invention comprises the following process:
- the jet pumps and electric submersible pumps above the first level are sent into the casing through the oil pipe and lowered to the designated position, and a check valve is installed at the bottom, and a packer is installed on the upper side of the oil layer, wherein the electric submersible pump is located at a potential difference distance above the jet pumps above the first level;
- the sedimentation water in the liquid storage tank on the ground enters the wellhead tee along the power fluid pipe, and continues to go down along the oil pipe into the inverted centrifugal pump of the submersible pump, enters the inner cavity of the guide shield through the power fluid outlet, and enters the power fluid inlet along the annular flow channel formed between the protector, the motor and the guide shield.
- the sedimentation water enters the power fluid inlet of the jet pump and is sprayed into the mixing chamber through the nozzle.
- the negative pressure formed by the jet drives the formation fluid along the formation fluid inlet channel into the mixing chamber. After the formation fluid and the power fluid are mixed, they enter the diffusion chamber, and then are sprayed out through the mixed liquid outlet.
- the mixed liquid goes up along the annular space formed by the casing and the oil pipe of the wellbore above the packer;
- the present invention combines the booster injection of the electric submersible pump with a single-stage or double-stage jet pump to achieve lifting and liquid extraction, and realizes deep extraction and lifting under low pressure conditions in the wellhead and casing. It makes full use of the complementary advantages of the series connection of the electric submersible pump and the jet pump, and can realize continuous liquid extraction and lifting operations in deep wells, ensuring higher system pump efficiency, working safety and reliability, and the life of deep extraction equipment;
- the mixed liquid produced by the present invention can realize the underground self-replenishment of part or all of the power liquid under the action of the underground water distributor, reducing the liquid circulation volume, path and energy consumption in the circulation process, and also reducing the processing volume of the ground mixed liquid, eliminating the ground pumping system, reducing the excessive noise on the ground, saving well site space, and reducing the high-pressure safety and environmental protection risks on the ground, wellhead and casing. It is more suitable for deep extraction sites with limited ground space such as offshore platforms, residential areas and factory and mining areas;
- the present invention adopts the produced fluid of the well as the self-circulating power fluid of the jet pump.
- the fluid pressure and temperature along the wellbore are monitored in real time, ensuring the safe and reliable operation of the system. It is more suitable for application in difficult working conditions such as highly deviated deep wells, deep horizontal wells, heavy oil wells, oil-gas ratio fluctuation wells, and deep wells with wellbore scaling.
- FIG1 is a schematic diagram of the overall structure of Embodiment 1 of the present invention.
- FIG2 is a schematic structural diagram of a first embodiment of an electric submersible pump
- FIG3 is a schematic structural diagram of another embodiment of an electric submersible pump
- FIG4 is a schematic diagram of the structure of a positive circulation jet pump
- FIG5 is a schematic diagram of the structure of a reverse circulation jet pump
- FIG6 is a schematic diagram of the overall structure of Embodiment 2 of the present invention.
- FIG7 is a schematic structural diagram of the water divider in an open state
- FIG8 is a schematic structural diagram of a water divider in a closed state
- liquid storage tank 1 produced liquid pipe 2, power liquid pipe 3, electric control cabinet 4, wellhead tee 5, first flow meter 6, second flow meter 7, power supply cable 8, casing 9, oil pipe 10, water distributor 11, plug head 12, flow guide shield 13, electric submersible pump 14, jet pump 15, packer 16, check valve 17, formation fluid 18, mixed fluid 19, power supply 20;
- a downhole pressurized jet deep extraction device mentioned in the present invention comprises a liquid storage tank 1, a production liquid pipe 2 and a power liquid pipe 3 are installed on the liquid storage tank 1, and also comprises an electric control cabinet 4, a flow guide shield 13, an electric submersible pump 14 and a jet pump 15 of one level or more.
- the electric control cabinet 4 is installed next to the wellhead tee 5, and the middle and lower part of the liquid storage tank 1 is connected to the wellhead tee 5 through the power liquid pipe 3 and the first flowmeter 6, and is connected to the oil pipe 10 downhole; the upper side of the liquid storage tank 1 is connected to the wellhead tee 5 through the production liquid pipe 2 and the second flowmeter 7, and is connected to the annulus of the casing 9 and the oil pipe 10; the flow guide shield 13 and the electric submersible pump 14 are connected through the oil pipe 10, and the jet pump 15 of one level or more is connected through the oil pipe 10 below the electric submersible pump 14; the upper end of the electric submersible pump 14 is connected to the power supply 20 on the ground through the power supply cable 8.
- the power fluid outlet 14.1, the protector 14.2, the motor 14.3 and the power fluid inlet 14.7 of the electric submersible pump 14 mentioned in the present invention are located inside the flow guide shield 13, the protector 14.2 is located on one side of the motor 14.3, the power fluid outlet 14.1 is provided on the upper part of the protector 14.2, and the power fluid inlet 14.7 is provided on the lower side of the motor 14.3.
- the electric submersible pump 14 further comprises an inverted centrifugal pump 14 . 6 , which is installed on the upper part of the flow guide shield 13 or below the flow guide shield 13 .
- a temperature monitor 14.4 and a pressure sensor are installed on the upper side of the power fluid outlet 14.1 to transmit the tested pressure and temperature parameters of the power fluid to the ground for feedback; wherein, the power supply cable 8 is bundled on the outer wall of the oil pipe 10 and lowered into the casing 9, and the lower part of the power supply cable 8 passes through the guide shield 13 and is connected to the motor 14.3 through the cable sealer 14.5, and is connected through the plug head 12.
- the jet pump 15 mentioned in this embodiment adopts a group of positive circulation jet pumps.
- This embodiment adopts an electric submersible pump 14 and a single-stage jet pump 15 to form a deep oil production string, which is suitable for working conditions with a lifting head of less than 4,000 meters.
- the difference from Example 3 is that the reverse circulation jet pump at the bottom is omitted, the string structure is relatively simple, the pump is more efficient, and the management is more convenient.
- the positive circulation jet pump mentioned in the present invention comprises a power liquid pump inlet 15.1, a nozzle 15.2, a throat 15.3, a pump body 15.4, a mixed liquid outlet 15.5, a formation liquid inlet channel 15.6, and a diffusion chamber 15.7.
- the upper end of the pump body 15.4 is provided with a power liquid pump inlet 15.1, the nozzle 15.2 is located below the power liquid pump inlet 15.1, the lower end outlet of the nozzle 15.2 is located in the mixing chamber 15.8, and the inside of the pump body 15.4 is provided with a formation liquid inlet channel 15.6, the upper end of the formation liquid inlet channel 15.6 is connected to the mixing chamber 15.8, and the lower end is connected to the lower end joint of the pump body 15.4; a throat 15.3 is installed below the nozzle 15.2, a diffusion chamber 15.7 is provided in the pump body 15.4 below the throat 15.3, and a mixed liquid outlet 15.5 is provided at the lower end of the diffusion chamber 15.7.
- the method for using the underground pressurized jet deep extraction fluid device mentioned in the present invention comprises the following process:
- the jet pump 15 and the electric submersible pump 14 of the first level or more are sent into the casing 9 through the oil pipe 10 and lowered into the designated position, and a check valve 17 is installed at the bottom, and a packer 16 is installed on the upper side of the oil layer, wherein the electric submersible pump 14 is located at a potential difference distance above the jet pump 15 of the first level or more;
- the sedimentation water in the liquid storage tank 1 located on the ground enters the wellhead tee 5 along the power fluid pipe 3, and continues to go down along the oil pipe 10 to enter the inverted centrifugal pump 14.6 of the electric submersible pump 14, enters the inner cavity of the guide shield 13 through the power fluid outlet 14.1, and enters the power fluid inlet 14.7 along the annular flow channel formed between the protector 14.2, the motor 14.3 and the guide shield 13.
- the sedimentation water is swirled and pressurized in the electric submersible pump 14, it enters the power fluid inlet 15 of the jet pump 15. .1, and is sprayed into the mixing chamber 15.8 through the nozzle 15.2.
- the negative pressure formed by the jet drives the formation fluid 18 into the mixing chamber 15.8 along the formation fluid inlet channel 15.6.
- the formation fluid 18 is mixed with the power fluid and enters the diffusion chamber 15.7. Then, it is sprayed out through the mixed liquid outlet 15.5.
- the mixed liquid 19 goes up along the annular space formed by the casing 9 and the oil pipe 10 of the wellbore above the packer 16; until it is sent to the liquid storage tank 1 on the ground for circulation, and the deep well liquid production process is realized.
- Embodiment 2 mentions a downhole pressurized jet deep extraction device, comprising a liquid storage tank 1, on which a production liquid pipe 2 and a power liquid pipe 3 are installed, and also comprising an electric control cabinet 4, a flow guide shield 13, an electric submersible pump 14 and a jet pump 15 of one level or more.
- the electric control cabinet 4 is installed next to the wellhead tee 5, and the middle and lower parts of the liquid storage tank 1 are connected to the wellhead tee 5 through the power liquid pipe 3, and are connected to the oil pipe 10 downhole; the upper side of the liquid storage tank 1 is connected to the wellhead tee 5 through the production liquid pipe 2, and is connected to the annulus of the casing 9 and the oil pipe 10; the flow guide shield 13 and the electric submersible pump 14 are connected through the oil pipe 10, and the jet pump 15 of one level or more is connected through the oil pipe 10 below the electric submersible pump 14; the upper end of the electric submersible pump 14 is connected to the power supply 20 on the ground through the power supply cable 8.
- the water distributor 11 is connected to the upper portion of the electric submersible pump 14 , and the water distributor 11 is connected via an oil pipe 10 .
- the water separator 11 mentioned in this embodiment includes a central tube 11.1, an outer sleeve 11.2, a wire filter 11.3, a liquid inlet 11.4, a sliding sleeve 11.5, a hydrophilic and oleophobic filter tube 11.6, and a spring 11.7.
- the outer sleeve 11.2 is sleeved on the outside of the central tube 11.1, and the bottom of the outer sleeve 11.2 is tightly connected with the central tube 11.1 to form a sand settling chamber 11.8, and a supplementary water channel 11.9 is formed between the upper end and the central tube 11.1.
- a spring 11.7 is provided in the middle of the central tube 11.1.
- a liquid inlet 11.4 is provided on the outside of the liquid inlet 11.4 with a hydrophilic and oleophobic filter tube 11.6 and a wire-wound filter screen 11.3, a hydrophilic and oleophobic filter tube 11.6 is provided on the inside of the wire-wound filter screen 11.3, a sleeve 11.5 is installed in the inner cavity of the central tube 11.1, a spring 11.7 and a spring seat 11.10 are provided below the sleeve 11.5, this embodiment can reduce the amount of power fluid input from the ground and the length of the circulation path, and also reduce the amount of mixed liquid 19 produced on the ground to be processed, thereby achieving the purpose of reducing resistance and saving energy.
- the method for using the underground pressurized jet deep extraction fluid device mentioned in the present invention comprises the following process:
- the jet pump 15 and the electric submersible pump 14 of the first level or more are sent into the casing 9 through the oil pipe 10 and lowered into the designated position, and a check valve 17 is installed at the bottom, and a packer 16 is installed on the upper side of the oil layer, wherein the electric submersible pump 14 is located at a potential difference distance above the jet pump 15 of the first level or more;
- the sedimentation water in the liquid storage tank 1 located on the ground enters the wellhead tee 5 along the power fluid pipe 3, and continues to go down along the oil pipe 10 to enter the inverted centrifugal pump 14.6 of the submersible pump 14, and enters the inner cavity of the guide shield 13 through the power fluid outlet 14.1, and enters the power fluid inlet 14.7 along the annular flow channel formed between the protector 14.2, the motor 14.3 and the guide shield 13.
- the sedimentation water is swirled and pressurized in the submersible pump 14, it enters the power fluid inlet 15.1 of the jet pump 15, and is sprayed to the mixing chamber 15.8 through the nozzle 15.2.
- the negative pressure formed by the jet drives the formation fluid 18 along the formation fluid inlet channel 15.6 into the mixing chamber 15.8.
- the formation fluid 18 is mixed with the power fluid and enters the diffusion chamber 15.7. Then, it is sprayed out through the mixed liquid outlet 15.5.
- the mixed liquid 19 goes up along the annular space formed by the casing 9 of the wellbore above the packer 16 and the oil pipe 10.
- Embodiment 3 mentions a downhole pressurized jet deep extraction device, comprising a liquid storage tank 1, on which a production liquid pipe 2 and a power liquid pipe 3 are installed, and also comprising an electric control cabinet 4, a flow guide shield 13, an electric submersible pump 14 and a jet pump 15 of one level or more.
- the electric control cabinet 4 is installed next to the wellhead tee 5, and the middle and lower parts of the liquid storage tank 1 are connected to the wellhead tee 5 through the power liquid pipe 3, and are connected to the oil pipe 10 downhole; the upper side of the liquid storage tank 1 is connected to the wellhead tee 5 through the production liquid pipe 2, and is connected to the annulus of the casing 9 and the oil pipe 10; the flow guide shield 13 and the electric submersible pump 14 are connected through the oil pipe 10, and the jet pump 15 of one level or more is connected through the oil pipe 10 below the electric submersible pump 14; the upper end of the electric submersible pump 14 is connected to the power supply 20 on the ground through the power supply cable 8.
- Example 1 The difference from Example 1 or 2 is:
- the jet pump 15 mentioned in the present invention includes a group of positive circulation jet pumps and a group of reverse circulation jet pumps.
- the inner diameter of the nozzle of the positive circulation jet pump is larger than the inner diameter of the reverse circulation jet pump, which is suitable for well conditions with a larger lifting range of 4000 meters to 6000 meters.
- the reverse circulation jet pump mentioned in this embodiment includes a power liquid pump inlet 15.1, a nozzle 15.2, a throat 15.3, a pump body 15.4, a mixed liquid outlet 15.5, a formation liquid inlet channel 15.6, a diffusion chamber 15.7 and a mixing chamber 15.8.
- the power liquid pump inlet 15.1 is provided on the lower side of the pump body 15.4, and a nozzle 15.2 is installed in the inner cavity of the pump body 15.4.
- the lower end of the nozzle 15.2 is connected to the power liquid pump inlet 15.1.
- the upper end of the nozzle 15.2 is located in the mixing chamber 15.8.
- a throat 15.3 is installed above the nozzle 15.2.
- a diffusion chamber 15.7 is provided above the throat 15.3.
- a mixed liquid outlet 15.5 is provided above the diffusion chamber 15.7 and is located at the upper end of the pump body 15.4.
- the lower end joint of the pump body 15.4 is connected to a formation fluid inlet channel 15.6 provided in the pump body 15.4, and the upper end of the formation fluid inlet channel 15.6 is connected to the mixing chamber 15.8.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
公开了一种井下增压射流深抽采液装置,其包括储液罐(1),在储液罐上安装采出液管(2)和动力液管(3),还包括电控柜(4)、导流护罩(13)、电潜泵(14)和一级以上的射流泵(15),在井口三通(5)的旁边安装电控柜,储液罐通过动力液管连接到井口三通,储液罐的上侧通过采出液管与井口三通连接,通过油管(10)连接导流护罩和电潜泵,在电潜泵的下方连接一级以上的射流泵;电潜泵的上端通过供电电缆(8)连接到地面的电源(20)。还公开了该井下增压射流深抽采液装置的使用方法。该井下增压射流深抽采液装置采用电潜泵与一级以上的射流泵串接组合,降低了地面设备的占地面积大,设备能耗高,噪音超标等问题,也避免了井口高压安全风险的问题,实现油气深井的连续性提液排采作业。
Description
本发明涉及油气田开采工程技术领域,特别涉及一种井下增压射流深抽采液装置及使用方法。
目前,在油气田开发的工程中,在大于4500米的深井开采中,常用的杆式泵、电潜泵难以实现开采,不能满足深井石油开发需求。现有技术中有采用有杆泵与电潜泵串接来进行深井开采,也仅能达到近于4000米的抽汲深度,且管柱复杂、故障率高、管理难度大、适应工况条件要求高、生产成本高。对于需要排水采气的深井及超深井则更不适用,导致这类井缺少更为理想的提液采气工艺,对于油井动液面深度大于5000米的井,缺乏有效的提液抽油工艺设备。
本公司申请的中国专利号为CN202310458258.5,专利名称为《一种气水接力射流开采油气装置及使用方法》,其技术方案是:包括第一级射流泵、第二级射流泵和气液雾化射流器,第二级射流泵的下端通过一定长度的小直径油管和射流泵内管连接到第一级射流泵,所述气液雾化射流器的下端通过一定长度的油管连接第二级射流泵的上端;所述气液雾化射流器包括气液雾化主体、雾化器、引流管、气体进口、气液分离罩和气液分离器。该发明采用了两级水力射流泵接力和一级气液雾化射流的串联累加举液,可以满足5000‑6000米的举升扬程,从而满足深井和超深井的石油开采和气井排采需要。但是其存在的不足是:
仍然存在工艺复杂、故障率高、效率低、井口压力和套管承压安全风险大的情况。由于采用多级射流泵进行开采,且因为高压动力液存在着能耗高,地面设备占地面积大、设备噪音超标和井口高压安全风险大等因素受到应用制约。随着深井开采时间的延续,井下动液面的自然下降,套管和井筒也因腐蚀而承压能力逐步下降,井口工作压力安全风险逐渐加大,导致部分井只能间歇式生产和限压生产。
本发明的目的就是针对现有技术存在的上述缺陷,提供一种井下增压射流深抽采液装置及使用方法,本发明采用电潜泵与一级以上的射流泵串接组合,从而降低了地面设备的占地面积大,设备能耗高,噪音超标等问题,也避免了井口高压安全风险的问题,可以实现深井的连续性开采作业。
本发明提到的一种井下增压射流深抽采液装置,其技术方案是:包括储液罐,在储液罐上安装采出液管和动力液管,还包括电控柜、导流护罩、电潜泵和一级以上的射流泵,在井口三通的旁边安装电控柜,储液罐的中下部通过动力液管连接到井口三通,并与井下的油管连通;储液罐的上侧通过采出液管与井口三通连接,且与套管与油管的环空连通;通过油管连接导流护罩和电潜泵,在电潜泵的下方通过油管连接一级以上的射流泵;所述的电潜泵的上端通过供电电缆连接到地面的电源。
优选的,上述的电潜泵的动力液出口、保护器、电机和动力液进口位于导流护罩内部,保护器位于电机的一侧,在保护器的上部设有动力液出口,在电机的下侧设有动力液进口。
优选的,上述的电潜泵还包括倒置离心泵,所述倒置离心泵安装在导流护罩的上部,或者安装在导流护罩的下方。
优选的,上述的射流泵采用一组正循环射流泵。
优选的,上述的正循环射流泵包括动力液入泵口、喷嘴、喉管、泵体、混合液出口、地层液进液通道、扩散腔,所述泵体的上端设有动力液入泵口,喷嘴位于动力液入泵口的下方,所述喷嘴的下端出口位于混合腔内,且泵体的内部设有地层液进液通道,地层液进液通道的上端连通到混合腔,下端连通到泵体的下端接头;在喷嘴的下方安装喉管,喉管的下方的泵体内设有扩散腔,扩散腔的下端设有混合液出口。
优选的,上述的射流泵还包括反循环射流泵,所述的反循环射流泵包括动力液入泵口、喷嘴、喉管、泵体、混合液出口、地层液进液通道、扩散腔和混合腔,所述泵体的下侧设有动力液入泵口,并在泵体的内腔安装喷嘴,喷嘴的下端与动力液入泵口连通,喷嘴的上端位于混合腔内,所述喷嘴的上方安装喉管,喉管的上方设有扩散腔,扩散腔的上方为混合液出口,且位于泵体的上端;所述泵体的下端接头与泵体内设有的地层液进液通道连通,且地层液进液通道的上端与混合腔连通。
优选的,在电潜泵的上部连接分水器,并通过油管连接分水器。
优选的,上述分水器包括中心管、外套筒、绕丝滤网、进液孔、滑套、亲水疏油滤管、弹簧,所述中心管的外部套装有外套筒,外套筒的底部与中心管密闭连接,上端与中心管之间形成补充水通道,在中心管的中部设有进液孔,进液孔的外侧设有亲水疏油滤管和绕丝滤网,所述绕丝滤网的内侧设有亲水疏油滤管,在中心管的内腔安装滑套,滑套的下方设有弹簧和弹簧座。
本发明提到的井下增压射流深抽采液装置的使用方法,包括以下过程:
一、通过作业施工,将一级以上的射流泵和电潜泵通过油管送入到套管内并下入到指定位置,且在底部安装单流阀,并在油层上侧安装封隔器,其中,电潜泵位于一级以上的射流泵的上部一段位差距离;
二、位于地面的储液罐内的沉降水沿动力液管进入井口三通,并继续沿着油管下行进入到电潜泵的倒置离心泵,经过动力液出口进入到导流护罩内腔,并沿着保护器、电机和导流护罩之间形成的环形流道进入到动力液进口内,沉降水在电潜泵内旋流增压后进入射流泵的动力液入泵口,并通过喷嘴喷向混合腔,射流形成的负压带动地层液沿着地层液进液通道进入混合腔,地层液与动力液混合后进入到扩散腔,然后,通过混合液出口喷出,混合液沿封隔器以上的井筒的套管与油管形成的环形空间上行;直至送入到地面的储液罐中循环,并实现了深井采液的过程。
优选的,本发明提到的井下增压射流深抽采液装置的使用方法,包括以下过程:
一、通过作业施工,将一级以上的射流泵和电潜泵通过油管送入到套管内并下入到指定位置,且在底部安装单流阀,并在油层上侧安装封隔器,其中,电潜泵位于一级以上的射流泵的上部一段位差距离;
二、位于地面的储液罐内的沉降水沿动力液管进入井口三通,并继续沿着油管下行进入到电潜泵的倒置离心泵,经过动力液出口进入到导流护罩内腔,并沿着保护器、电机和导流护罩之间形成的环形流道进入到动力液进口内,沉降水在电潜泵内旋流增压后进入射流泵的动力液入泵口,并通过喷嘴喷向混合腔,射流形成的负压带动地层液沿着地层液进液通道进入混合腔,地层液与动力液混合后进入到扩散腔,然后,通过混合液出口喷出,混合液沿封隔器以上的井筒的套管与油管形成的环形空间上行;
三、套管与油管的环形空间的上行的混合液在流经分水器的外侧时,在油管的内外液体压差作用下,分水器的滑套向下移动,混合液中的一部分水沿着补充水通道,并通过绕丝滤网和亲水疏油滤管进入到油管内作为补充的动力液,为电潜泵补充给水;剩余的另一部分含油的混合液,则被分水器内的亲水疏油滤管阻挡,后沿着套管与油管的环形空间上行到地面的储液罐中循环,并实现了深井采液的过程。
与现有技术相比,本发明的有益效果具体如下:
1.本发明将电潜泵的增压注水与单级或双级射流泵组合来实现举升提液,实现了在井口及套管中低压力承压条件下的深抽举升,将电潜泵和射流泵的串接互补优势充分利用,可以实现深井的连续性提液举升作业,保障了较高的系统泵效、工作安全可靠性和深抽设备的寿命;
2.本发明产出的混合液可在井下分水器的作用下,实现了部分或全部动力液的井下自补充,减少了液流循环量、路径和循环过程中的能耗,也减轻了地面混合液的处理量,免去了地面泵注系统、降低了地面超标噪音,节省了井场空间,降低了地面及井口、套管的高压安全环保风险,更适于海洋平台、居民和厂矿区内等地面空间受限的深抽采液场所;
3.本发明采用本井的产出液作为射流泵的自循环的动力液,沿井筒的液流压力、温度受到实时监测,保障了系统的安全可靠运行,更适于大斜度深井、深层水平井、稠油井、油气比波动井、井筒结垢深井等大难度工况井的应用。
图1是本发明的实施例1的整体结构示意图;
图2是电潜泵的第一种实施例的结构示意图;
图3是电潜泵的另一种实施例的结构示意图;
图4是正循环射流泵的结构示意图;
图5是反循环射流泵的结构示意图;
图6是本发明的实施例2的整体结构示意图;
图7是分水器的开启状态的结构示意图;
图8是分水器的关闭状态的结构示意图;
上图中:储液罐1、采出液管2、动力液管3、电控柜4、井口三通5、第一流量计6、第二流量计7、供电电缆8、套管9、油管10、分水器11、插拔头12、导流护罩13、电潜泵14、射流泵15、封隔器16、单流阀17、地层液18、混合液19、电源20;
中心管11.1、外套筒11.2、绕丝滤网11.3、进液孔11.4、滑套11.5、亲水疏油滤管11.6、弹簧11.7、沉砂腔11.8、补充水通道11.9、弹簧座11.10;
动力液出口14.1、保护器14.2、电机14.3、温度监测仪14.4、电缆封隔器14.5、倒置离心泵14.6、动力液进口14.7;
动力液入泵口15.1、喷嘴15.2、喉管15.3、泵体15.4、混合液出口15.5、地层液进液通道15.6、扩散腔15.7、混合腔15.8。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1,参照图1、图2和图4,本发明提到的一种井下增压射流深抽采液装置,包括储液罐1,在储液罐1上安装采出液管2和动力液管3,还包括电控柜4、导流护罩13、电潜泵14和一级以上的射流泵15,在井口三通5的旁边安装电控柜4,储液罐1的中下部通过动力液管3和第一流量计6连接到井口三通5,并与井下的油管10连通;储液罐1的上侧通过采出液管2和第二流量计7与井口三通5连接,且与套管9与油管10的环空连通;通过油管10连接导流护罩13和电潜泵14,在电潜泵14的下方通过油管10连接一级以上的射流泵15;所述的电潜泵14的上端通过供电电缆8连接到地面的电源20。
参照图2,本发明提到的电潜泵14的动力液出口14.1、保护器14.2、电机14.3和动力液进口14.7位于导流护罩13内部,保护器14.2位于电机14.3的一侧,在保护器14.2的上部设有动力液出口14.1,在电机14.3的下侧设有动力液进口14.7。
其中,上述的电潜泵14还包括倒置离心泵14.6,所述倒置离心泵14.6安装在导流护罩13的上部,或者安装在导流护罩13的下方。
另外,动力液出口14.1的上侧安装温度监测仪14.4及压力传感器,将测试到的动力液的压力、温度参数传送反馈到地面;其中,供电电缆8捆绑在油管10的外壁下入套管9内,供电电缆8的下部穿过导流护罩13并通过电缆封隔器14.5连通到电机14.3,通过插拔头12连接。
另外,本实施例提到的射流泵15采用一组正循环射流泵,本实施例通过采用电潜泵14加单级的射流泵15组成深抽采油管柱,适于小于4000米举升扬程的工况场合。同实施例3的区别是:省掉了下部的反循环射流泵,管柱结构相对简单、其泵更效高、管理更方便。
参照图4,本发明的提到的正循环射流泵包括动力液入泵口15.1、喷嘴15.2、喉管15.3、泵体15.4、混合液出口15.5、地层液进液通道15.6、扩散腔15.7,所述泵体15.4的上端设有动力液入泵口15.1,喷嘴15.2位于动力液入泵口15.1的下方,所述喷嘴15.2的下端出口位于混合腔15.8内,且泵体15.4的内部设有地层液进液通道15.6,地层液进液通道15.6的上端连通到混合腔15.8,下端连通到泵体15.4的下端接头;在喷嘴15.2的下方安装喉管15.3,喉管15.3的下方的泵体15.4内设有扩散腔15.7,扩散腔15.7的下端设有混合液出口15.5。
本发明提到的井下增压射流深抽采液装置的使用方法,包括以下过程:
一、通过作业施工,将一级以上的射流泵15和电潜泵14通过油管10送入到套管9内并下入到指定位置,且在底部安装单流阀17,并在油层上侧安装封隔器16,其中,电潜泵14位于一级以上的射流泵15的上部一段位差距离;
二、位于地面的储液罐1内的沉降水沿动力液管3进入井口三通5,并继续沿着油管10下行进入到电潜泵14的倒置离心泵14.6,经过动力液出口14.1进入到导流护罩13内腔,并沿着保护器14.2、电机14.3和导流护罩13之间形成的环形流道进入到动力液进口14.7内,沉降水在电潜泵14内旋流增压后进入射流泵15的动力液入泵口15.1,并通过喷嘴15.2喷向混合腔15.8,射流形成的负压带动地层液18沿着地层液进液通道15.6进入混合腔15.8,地层液18与动力液混合后进入到扩散腔15.7,然后,通过混合液出口15.5喷出,混合液19沿封隔器16以上的井筒的套管9与油管10形成的环形空间上行;直至送入到地面的储液罐1中循环,并实现了深井采液的过程。
实施例2,本发明提到的一种井下增压射流深抽采液装置,包括储液罐1,在储液罐1上安装采出液管2和动力液管3,还包括电控柜4、导流护罩13、电潜泵14和一级以上的射流泵15,在井口三通5的旁边安装电控柜4,储液罐1的中下部通过动力液管3连接到井口三通5,并与井下的油管10连通;储液罐1的上侧通过采出液管2与井口三通5连接,且与套管9与油管10的环空连通;通过油管10连接导流护罩13和电潜泵14,在电潜泵14的下方通过油管10连接一级以上的射流泵15;所述的电潜泵14的上端通过供电电缆8连接到地面的电源20。
与实施例1不同之处是:
参照图6,在电潜泵14的上部连接分水器11,并通过油管10连接分水器11。
参照图7和图8,本实施例提到的分水器11包括中心管11.1、外套筒11.2、绕丝滤网11.3、进液孔11.4、滑套11.5、亲水疏油滤管11.6、弹簧11.7,所述中心管11.1的外部套装有外套筒11.2,外套筒11.2的底部与中心管11.1密闭连接并形成沉砂腔11.8,上端与中心管11.1之间形成补充水通道11.9,在中心管11.1的中部设有进液孔11.4,进液孔11.4的外侧设有亲水疏油滤管11.6和绕丝滤网11.3,所述绕丝滤网11.3的内侧设有亲水疏油滤管11.6,在中心管11.1的内腔安装滑套11.5,滑套11.5的下方设有弹簧11.7和弹簧座11.10,本实施例可以减少了地面输入的动力液的用量和循环的路径长度,也减少了产出的混合液19在地面的处理量,达到了降阻节能的目的。
本发明提到的井下增压射流深抽采液装置的使用方法,包括以下过程:
一、通过作业施工,将一级以上的射流泵15和电潜泵14通过油管10送入到套管9内并下入到指定位置,且在底部安装单流阀17,并在油层上侧安装封隔器16,其中,电潜泵14位于一级以上的射流泵15的上部一段位差距离;
二、位于地面的储液罐1内的沉降水沿动力液管3进入井口三通5,并继续沿着油管10下行进入到电潜泵14的倒置离心泵14.6,经过动力液出口14.1进入到导流护罩13内腔,并沿着保护器14.2、电机14.3和导流护罩13之间形成的环形流道进入到动力液进口14.7内,沉降水在电潜泵14内旋流增压后进入射流泵15的动力液入泵口15.1,并通过喷嘴15.2喷向混合腔15.8,射流形成的负压带动地层液18沿着地层液进液通道15.6进入混合腔15.8,地层液18与动力液混合后进入到扩散腔15.7,然后,通过混合液出口15.5喷出,混合液19沿封隔器16以上的井筒的套管9与油管10形成的环形空间上行;
三、套管9与油管10的环形空间的上行的混合液19在流经分水器11的外侧时,在油管10的内外液体压差作用下,分水器11的滑套11.5向下移动,混合液19中的一部分水沿着补充水通道11.9,并通过绕丝滤网11.3和亲水疏油滤管11.6进入到油管10内作为补充的动力液,为电潜泵14补充给水;剩余的另一部分含油的混合液19,则被分水器11内的亲水疏油滤管11.6阻挡,后沿着套管9与油管10的环形空间上行到地面的储液罐1中循环,并实现了深井采液的过程。
实施例3,本发明提到的一种井下增压射流深抽采液装置,包括储液罐1,在储液罐1上安装采出液管2和动力液管3,还包括电控柜4、导流护罩13、电潜泵14和一级以上的射流泵15,在井口三通5的旁边安装电控柜4,储液罐1的中下部通过动力液管3连接到井口三通5,并与井下的油管10连通;储液罐1的上侧通过采出液管2与井口三通5连接,且与套管9与油管10的环空连通;通过油管10连接导流护罩13和电潜泵14,在电潜泵14的下方通过油管10连接一级以上的射流泵15;所述的电潜泵14的上端通过供电电缆8连接到地面的电源20。
与实施例1或2不同之处是:
本发明提到的射流泵15包括一组正循环射流泵和一组反循环射流泵,正循环射流泵的喷嘴内通径大于反循环射流泵的内通径,适于举升场程更大的4000米-6000米的井况。
参照图5,本实施例提到的反循环射流泵包括动力液入泵口15.1、喷嘴15.2、喉管15.3、泵体15.4、混合液出口15.5、地层液进液通道15.6、扩散腔15.7和混合腔15.8,所述泵体15.4的下侧设有动力液入泵口15.1,并在泵体15.4的内腔安装喷嘴15.2,喷嘴15.2的下端与动力液入泵口15.1连通,喷嘴15.2的上端位于混合腔15.8内,所述喷嘴15.2的上方安装喉管15.3,喉管15.3的上方设有扩散腔15.7,扩散腔15.7的上方为混合液出口15.5,且位于泵体15.4的上端;所述泵体15.4的下端接头与泵体15.4内设有的地层液进液通道15.6连通,且地层液进液通道15.6的上端与混合腔15.8连通。
以上所述,仅是本发明的部分较佳实施例,任何熟悉本领域的技术人员均可能利用上述阐述的技术方案加以修改或将其修改为等同的技术方案。因此,依据本发明的技术方案所进行的相应简单修改或等同变换,尽属于本发明要求保护的范围。
Claims (7)
- 一种井下增压射流深抽采液装置,包括储液罐(1),在储液罐(1)上安装采出液管(2)和动力液管(3),其特征是:还包括电控柜(4)、导流护罩(13)、电潜泵(14)和一级以上的射流泵(15),在井口三通(5)的旁边安装电控柜(4),储液罐(1)的中下部通过动力液管(3)连接到井口三通(5),并与井下的油管(10)连通;储液罐(1)的上侧通过采出液管(2)与井口三通(5)连接,且与套管(9)与油管(10)的环空连通;通过油管(10)连接导流护罩(13)和电潜泵(14),在电潜泵(14)的下方通过油管(10)连接一级以上的射流泵(15);所述的电潜泵(14)的上端通过供电电缆(8)连接到地面的电源(20);在电潜泵(14)的上部连接分水器(11),并通过油管(10)连接分水器(11);所述分水器(11)包括中心管(11.1)、外套筒(11.2)、绕丝滤网(11.3)、进液孔(11.4)、滑套(11.5)、亲水疏油滤管(11.6)、弹簧(11.7),所述中心管(11.1)的外部套装有外套筒(11.2),外套筒(11.2)的底部与中心管(11.1)密闭连接,上端与中心管(11.1)之间形成补充水通道(11.9),在中心管(11.1)的中部设有进液孔(11.4),进液孔(11.4)的外侧设有亲水疏油滤管(11.6)和绕丝滤网(11.3),所述绕丝滤网(11.3)的内侧设有亲水疏油滤管(11.6),在中心管(11.1)的内腔安装滑套(11.5),滑套(11.5)的下方设有弹簧(11.7)和弹簧座(11.10)。
- 根据权利要求1所述的井下增压射流深抽采液装置,其特征是:所述的电潜泵(14)的动力液出口(14.1)、保护器(14.2)、电机(14.3)和动力液进口(14.7)位于导流护罩(13)内部,保护器(14.2)位于电机(14.3)的一侧,在保护器(14.2)的上部设有动力液出口(14.1),在电机(14.3)的下侧设有动力液进口(14.7)。
- 根据权利要求2所述的井下增压射流深抽采液装置,其特征是:所述的电潜泵(14)还包括倒置离心泵(14.6),所述倒置离心泵(14.6)安装在导流护罩(13)的上部。
- 根据权利要求3所述的井下增压射流深抽采液装置,其特征是:所述的射流泵(15)采用一组正循环射流泵。
- 根据权利要求4所述的井下增压射流深抽采液装置,其特征是:所述的正循环射流泵包括动力液入泵口(15.1)、喷嘴(15.2)、喉管(15.3)、泵体(15.4)、混合液出口(15.5)、地层液进液通道(15.6)、扩散腔(15.7),所述泵体(15.4)的上端设有动力液入泵口(15.1),喷嘴(15.2)位于动力液入泵口(15.1)的下方,所述喷嘴(15.2)的下端出口位于混合腔(15.8)内,且泵体(15.4)的内部设有地层液进液通道(15.6),地层液进液通道(15.6)的上端连通到混合腔(15.8),下端连通到泵体(15.4)的下端接头;在喷嘴(15.2)的下方安装喉管(15.3),喉管(15.3)的下方的泵体(15.4)内设有扩散腔(15.7),扩散腔(15.7)的下端设有混合液出口(15.5)。
- 根据权利要求5所述的井下增压射流深抽采液装置,其特征是:所述的射流泵(15)还包括反循环射流泵,所述的反循环射流泵包括动力液入泵口(15.1)、喷嘴(15.2)、喉管(15.3)、泵体(15.4)、混合液出口(15.5)、地层液进液通道(15.6)、扩散腔(15.7)和混合腔(15.8),所述泵体(15.4)的下侧设有动力液入泵口(15.1),并在泵体(15.4)的内腔安装喷嘴(15.2),喷嘴(15.2)的下端与动力液入泵口(15.1)连通,喷嘴(15.2)的上端位于混合腔(15.8)内,所述喷嘴(15.2)的上方安装喉管(15.3),喉管(15.3)的上方设有扩散腔(15.7),扩散腔(15.7)的上方为混合液出口(15.5),且位于泵体(15.4)的上端;所述泵体(15.4)的下端接头与泵体(15.4)内设有的地层液进液通道(15.6)连通,且地层液进液通道(15.6)的上端与混合腔(15.8)连通。
- 一种如权利要求5所述的井下增压射流深抽采液装置的使用方法,其特征是包括以下过程:一、通过作业施工,将一级以上的射流泵(15)和电潜泵(14)通过油管(10)送入到套管(9)内并下入到指定位置,且在底部安装单流阀(17),并在油层上侧安装封隔器(16),其中,电潜泵(14)位于一级以上的射流泵(15)的上部一段位差距离;二、位于地面的储液罐(1)内的沉降水沿动力液管(3)进入井口三通(5),并继续沿着油管(10)下行进入到电潜泵(14)的倒置离心泵(14.6),经过动力液出口(14.1)进入到导流护罩(13)内腔,并沿着保护器(14.2)、电机(14.3)和导流护罩(13)之间形成的环形流道进入到动力液进口(14.7)内,沉降水在电潜泵(14)内旋流增压后进入射流泵(15)的动力液入泵口(15.1),并通过喷嘴(15.2)喷向混合腔(15.8),射流形成的负压带动地层液(18)沿着地层液进液通道(15.6)进入混合腔(15.8),地层液(18)与动力液混合后进入到扩散腔(15.7),然后,通过混合液出口(15.5)喷出,混合液(19)沿封隔器(16)以上的井筒的套管(9)与油管(10)形成的环形空间上行;三、套管(9)与油管(10)的环形空间的上行的混合液(19)在流经分水器(11)的外侧时,在油管(10)的内外液体压差作用下,分水器(11)的滑套(11.5)向下移动,混合液(19)中的一部分水沿着补充水通道(11.9),并通过绕丝滤网(11.3)和亲水疏油滤管(11.6)进入到油管(10)内作为补充的动力液,为电潜泵(14)补充给水;剩余的另一部分含油的混合液(19),则被分水器(11)内的亲水疏油滤管(11.6)阻挡,后沿着套管(9)与油管(10)的环形空间上行到地面的储液罐(1)中循环,并实现了深井采液的过程。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311513901.6A CN117231177B (zh) | 2023-11-14 | 2023-11-14 | 一种井下增压射流深抽采液装置及使用方法 |
CN202311513901.6 | 2023-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024165079A1 true WO2024165079A1 (zh) | 2024-08-15 |
Family
ID=89089737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/078129 WO2024165079A1 (zh) | 2023-11-14 | 2024-02-22 | 一种井下增压射流深抽采液装置及使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117231177B (zh) |
WO (1) | WO2024165079A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117231177B (zh) * | 2023-11-14 | 2024-02-23 | 张广卿 | 一种井下增压射流深抽采液装置及使用方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2003784C1 (ru) * | 1992-02-25 | 1993-11-30 | Абдулин Рэшит Фаридович; Дроздов Александр Николаевич; Иванов Юрий Николаевич; Иг- ревский Виталий Иванович; Кухарш Павел Михайлович; Овс нников Сергей Молотович | Способ эксплуатации скважины и погружна насосна установка дл его осуществлени |
CN102071916A (zh) * | 2009-11-25 | 2011-05-25 | 大港油田集团有限责任公司 | 底水油藏油水分采管柱及其射流泵 |
CN107420084A (zh) * | 2017-07-18 | 2017-12-01 | 中国海洋石油总公司 | 一种可悬挂式的实时调控井下气液分离组合举升系统 |
CN207017952U (zh) * | 2017-07-18 | 2018-02-16 | 中国海洋石油总公司 | 一种新型海上可调控的井下气液分离举升工艺管柱 |
CN113790040A (zh) * | 2021-09-03 | 2021-12-14 | 韩克楚 | 一种串接式超深油井射流泵采油方法 |
CN114607289A (zh) * | 2022-03-09 | 2022-06-10 | 中海油能源发展股份有限公司 | 一种适用于高含砂的电泵与射流泵组合举升工艺管柱及其使用方法 |
CN115387761A (zh) * | 2022-10-31 | 2022-11-25 | 廊坊市华海石油技术开发有限公司 | 一种具有高扬程的油气井排液管柱装置及深抽排液方法 |
CN115977588A (zh) * | 2023-02-07 | 2023-04-18 | 中海油能源发展股份有限公司 | 一种高含气井举升管柱 |
CN117231177A (zh) * | 2023-11-14 | 2023-12-15 | 山东成林石油工程技术有限公司 | 一种井下增压射流深抽采液装置及使用方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2550613C2 (ru) * | 2014-05-15 | 2015-05-10 | Олег Сергеевич Николаев | Способ добычи флюида из двух пластов одной скважины и насосно-эжекторная установка для его осуществления |
CN116163688B (zh) * | 2023-04-26 | 2023-06-27 | 山东成林石油工程技术有限公司 | 一种气水接力射流开采油气装置及使用方法 |
-
2023
- 2023-11-14 CN CN202311513901.6A patent/CN117231177B/zh active Active
-
2024
- 2024-02-22 WO PCT/CN2024/078129 patent/WO2024165079A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2003784C1 (ru) * | 1992-02-25 | 1993-11-30 | Абдулин Рэшит Фаридович; Дроздов Александр Николаевич; Иванов Юрий Николаевич; Иг- ревский Виталий Иванович; Кухарш Павел Михайлович; Овс нников Сергей Молотович | Способ эксплуатации скважины и погружна насосна установка дл его осуществлени |
CN102071916A (zh) * | 2009-11-25 | 2011-05-25 | 大港油田集团有限责任公司 | 底水油藏油水分采管柱及其射流泵 |
CN107420084A (zh) * | 2017-07-18 | 2017-12-01 | 中国海洋石油总公司 | 一种可悬挂式的实时调控井下气液分离组合举升系统 |
CN207017952U (zh) * | 2017-07-18 | 2018-02-16 | 中国海洋石油总公司 | 一种新型海上可调控的井下气液分离举升工艺管柱 |
CN113790040A (zh) * | 2021-09-03 | 2021-12-14 | 韩克楚 | 一种串接式超深油井射流泵采油方法 |
CN114607289A (zh) * | 2022-03-09 | 2022-06-10 | 中海油能源发展股份有限公司 | 一种适用于高含砂的电泵与射流泵组合举升工艺管柱及其使用方法 |
CN115387761A (zh) * | 2022-10-31 | 2022-11-25 | 廊坊市华海石油技术开发有限公司 | 一种具有高扬程的油气井排液管柱装置及深抽排液方法 |
CN115977588A (zh) * | 2023-02-07 | 2023-04-18 | 中海油能源发展股份有限公司 | 一种高含气井举升管柱 |
CN117231177A (zh) * | 2023-11-14 | 2023-12-15 | 山东成林石油工程技术有限公司 | 一种井下增压射流深抽采液装置及使用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117231177A (zh) | 2023-12-15 |
CN117231177B (zh) | 2024-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8316938B2 (en) | Subterranean water production, transfer and injection method and apparatus | |
CN203081411U (zh) | 防腐防垢及气举一体化完井管柱 | |
WO2024165079A1 (zh) | 一种井下增压射流深抽采液装置及使用方法 | |
CN201041023Y (zh) | 气液混注法降液面诱喷施工装置 | |
RU2389869C1 (ru) | Способ приготовления и нагнетания гетерогенных смесей в пласт и установка для его осуществления | |
CN108071365A (zh) | 一种煤层气采气、排水与注水一体化管柱 | |
CN111911117B (zh) | 一种利用地层能量加热的可燃冰开采管柱及其作业方法 | |
CN206554887U (zh) | 油管内单管柱反循环喷射泵采油装置 | |
RU2296213C2 (ru) | Насосная пакерная установка для эксплуатации пластов скважины | |
CN206554888U (zh) | 油管内单管柱正循环喷射泵机组采油装置 | |
CN202926307U (zh) | 洗井保护气锚 | |
CN110529082A (zh) | 一种用于海上气井排液采气的气液分离管柱 | |
CN202417441U (zh) | 活动式油井套管气回收装置 | |
CN201835785U (zh) | 油水井自控泄压排液和把排出液体泵送到生产管道的装置 | |
CN206495664U (zh) | 液力投捞式排砂排煤粉采气装置 | |
CN113944451B (zh) | 气驱生产井气动无杆排液举升管柱及方法 | |
CN113931600B (zh) | 一种降低地面注入压力的注气管柱及方法 | |
CN112855100B (zh) | 一种井下原位固定式在线调驱装置、管柱与方法 | |
CN212250012U (zh) | 高温高压自喷地热井压井装置 | |
CN205012973U (zh) | 一种机抽排液采气装置 | |
CN100585122C (zh) | 一种双管反循环连续冲砂装置 | |
CN115977588A (zh) | 一种高含气井举升管柱 | |
RU2512150C2 (ru) | Комплексный способ вытеснения нефти из пласта водогазовым воздействием с применением устьевых эжекторов | |
CN220791211U (zh) | 一种油水分采式井下油水分离系统 | |
CN221973484U (zh) | 一种潜油电泵抽吸射流采油管柱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24752933 Country of ref document: EP Kind code of ref document: A1 |