WO2024153885A1 - Hybrid powered aircraft having an electromechanical distribution and protection junction - Google Patents
Hybrid powered aircraft having an electromechanical distribution and protection junction Download PDFInfo
- Publication number
- WO2024153885A1 WO2024153885A1 PCT/FR2024/050060 FR2024050060W WO2024153885A1 WO 2024153885 A1 WO2024153885 A1 WO 2024153885A1 FR 2024050060 W FR2024050060 W FR 2024050060W WO 2024153885 A1 WO2024153885 A1 WO 2024153885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrical
- electrical energy
- converter
- aircraft
- junction
- Prior art date
Links
- 230000000903 blocking effect Effects 0.000 claims abstract description 23
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 11
- 239000000872 buffer Substances 0.000 claims description 10
- 239000000446 fuel Substances 0.000 claims description 10
- 239000002551 biofuel Substances 0.000 claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/003—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0092—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0025—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/30—Aircraft characterised by electric power plants
- B64D27/33—Hybrid electric aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/30—Aircraft characterised by electric power plants
- B64D27/35—Arrangements for on-board electric energy production, distribution, recovery or storage
- B64D27/357—Arrangements for on-board electric energy production, distribution, recovery or storage using batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
- B64D31/16—Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants
- B64D31/18—Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants for hybrid-electric power plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/02—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
- B64D35/021—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants
- B64D35/022—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants of hybrid-electric type
- B64D35/024—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants of hybrid-electric type of series type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for DC mains or DC distribution networks
- H02J1/08—Three-wire systems; Systems having more than three wires
- H02J1/084—Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
- H02J1/086—Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load or loads and source or sources when the main path fails
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for DC mains or DC distribution networks
- H02J1/10—Parallel operation of DC sources
- H02J1/102—Parallel operation of DC sources being switching converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/10—Air crafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D2221/00—Electric power distribution systems onboard aircraft
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/44—The network being an on-board power network, i.e. within a vehicle for aircrafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
- H02J7/1423—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
- H02J7/1438—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
Definitions
- the field of the invention relates to aircraft, and more particularly to aircraft with electric motors.
- Aeronautics is currently experiencing numerous developments linked to environmental constraints, and in particular to the requirement for a gradual reduction in greenhouse gas emissions such as carbon dioxide (CO2). As such, the development of electric-powered aircraft appears to be real progress.
- CO2 carbon dioxide
- the classic architecture of an electric-powered aircraft integrates at least one electrical generation source arranged to power battery packs - or "battery packs" in English -, which provide power to drive groups according to their needs.
- battery packs - or "battery packs" in English -, which provide power to drive groups according to their needs.
- the batteries are combined with vertical drive units and horizontal drive groups.
- the multiplication of batteries makes it possible to meet safety standards requiring redundancy of components to guarantee continuity of flight and landing - or “continued safe flight and landing” in English.
- the electrical generation source comprises a fuel-fired electrical energy generator, for example a turbine engine or a fuel cell.
- the battery power circuit can be configured so that the batteries are connected to each other in parallel. Such a circuit is then provided with a separation protection system to isolate the batteries from each other in the event of failure, and in particular a short circuit. Activation of a However, such a protection system results in a significant loss of power due to the isolation of one of the batteries.
- a possible solution to avoid the propagation of a failure to all the batteries while limiting the possible loss of power consists of directly separating the batteries and organizing the power circuit accordingly.
- a principle of separation is thwarted in the case of an aircraft with a hybrid energy source.
- an aircraft with a hybrid energy source has the particularity that the batteries are generally more numerous than the electrical generation sources for reasons of redundancy, which involves connecting the batteries together via electrical generation sources. shared. Such an interconnection constitutes a common point of failure between batteries powered by the same electrical generation source.
- each battery is generally coupled to an electrical converter, for example an inverter or a rectifier.
- an electrical converter for example an inverter or a rectifier.
- the present invention improves the situation.
- the invention relates to an aircraft with a hybrid energy source comprising:
- At least one electrical generation source comprising a fuel-fired electrical generator and connected to one or more of the stored electrical energy sources
- a power supply control arranged to issue a power command to the at least one electrical generation source according to the power requirements of the drive units, the plurality of stored electrical energy sources being arranged to provide electrical energy based on the difference between the power requirements of the drive units and the power supplied by the at at least one electrical generation source based on the power control, the at least one electrical generation source further being capable of recharging the plurality of stored electrical energy sources such that each stored electrical energy source is processed passively.
- the sources of stored electrical energy are divided into several groups,
- Each electrical generation source comprises at least one electrical converter, the total number of electrical converters being equal to the number of groups, each electrical converter being respectively coupled to a group.
- Each electrical converter is connected to each stored electrical energy source of the array to which the electrical converter is coupled via a respective junction including a first electromechanical contactor or relay, a second electromechanical contactor or relay and a diode.
- the power supply control is arranged to control the operation of each junction according to a set of states consisting of: a unidirectional state in which the current flows from the electrical converter to the source of stored electrical energy, a bidirectional state in which the current flows in both directions and a blocking state in which the flow of current is blocked.
- At least one junction comprises an electrical circuit within which the first contactor or electromechanical relay is connected in series with the diode, which has a direction passing from the electrical converter towards the source of stored electrical energy, and the second electromechanical contactor or relay is connected in parallel with the first electromechanical contactor or relay and the diode.
- At least one source of stored electrical energy is a battery.
- the drive units include at least one takeoff drive unit and at least one cruise drive unit.
- At least one takeoff drive unit is a vertical takeoff/landing drive unit and at least one cruise drive unit is a horizontal drive unit.
- the fuel-fired electrical energy generator of at least one electrical generation source is a turbine engine and each electrical converter of the electrical generation source is an alternating-direct current converter.
- the turbine engine can be powered by fuel, biofuel or synthetic gasoline.
- the fuel-fired electrical power generator of at least one electrical generation source is a fuel cell and each electrical converter of the electrical generation source is a DC-DC converter.
- the aircraft is arranged to operate at least in a turbo mode in which the power requirements of the drive groups require a supply of power from the at least one electrical generation source and of the plurality of stored electrical energy sources, and wherein the power control controls each junction according to the unidirectional state.
- the aircraft is arranged to operate at least in an energy saving mode in which the power control controls each junction according to the blocking state.
- the aircraft is arranged to operate in at least one charging mode in which the power control issues a power command to the at least one electrical generation source to satisfy the power requirements drive units while charging stored electrical energy sources.
- the power supply control sequentially controls each junction in one or more charging phases, the power supply control being arranged to implement each charging phase by associating each electrical converter with a power source. stored electrical energy of the group to which the electrical converter is coupled, by controlling each junction between an electrical converter and an associated stored electrical energy source according to the unidirectional state and by controlling any other junction according to the blocking state, and this until ensures that each source of stored electrical energy is charged.
- the power supply control sequentially controls each junction in one or more charging phases, the power supply control being arranged to implement each charging phase by associating each electrical converter with several power sources. stored electrical energy of the group to which the electrical converter is coupled, by controlling each junction between an electrical converter and an associated stored electrical energy source according to the bidirectional state and by controlling any other junction according to the blocking state, and this until ensures that each source of stored electrical energy is charged.
- the aircraft is arranged to operate at least in a buffer mode in which the power control issues a power command to the at least one electrical generation source to satisfy the power requirements of the drive groups via the sources of stored electrical energy, and in which the power control sequentially controls each junction in one or more power phases, the power control being arranged to implement each power phase by associating each electrical converter with a stored electrical energy source of the array to which the electrical converter is coupled, by controlling each junction between an associated electrical converter and a stored electrical energy source according to the unidirectional state and by controlling any other junction depending on the blocking state, and this until the power requirements of the drive units are met.
- FIG. 1 represents a schematic view of the electrical architecture of an aircraft according to the invention comprising a single electrical generation source
- FIG. 2 represents a schematic view of the electrical architecture of an aircraft according to the invention comprising two electrical generation sources
- FIG. 3 illustrates a battery supply circuit by electrical converters via junctions within the electrical architecture of an aircraft according to the invention
- FIG. 4 illustrates the possible states of a junction
- FIG. 5 schematically illustrates the electrical circuit of a junction
- FIG. 6 illustrates an electrical converter and a coupled battery bank of the power circuit of [Fig. 3] in a so-called “turbo mode” operating mode of the aircraft
- FIG. 7 illustrates the turbo mode of [Fig. 6] in the event that a failure appears at the level of a battery in the group
- FIG. 8 illustrates the turbo mode of [Fig. 6] in the event that a failure appears at the level of the electrical converter coupled to the group
- FIG. 9 illustrates an electrical converter and a coupled battery bank of the power circuit of [Fig. 3] in an operating mode called “energy saving mode” of the aircraft,
- FIG. 10 illustrates an electrical converter and a coupled battery bank of the power circuit of [Fig. 3] in an operating mode called “charging mode” or in an operating mode called “buffer mode” of the aircraft, and
- FIG. 1 1 illustrates the charge mode or buffer mode in [Fig. 10] in a particular case.
- FIG. 1 illustrates an aircraft 2 comprising a power supply control 4, a plurality of drive groups 6, 8, 10, 12, 14 and 16, a plurality of sources of stored electrical energy 18, 20, 22 and 24 as well than a source of electrical generation 26.
- the two drive groups 6 and 8 are cruise drive groups used during the flight phase between takeoff and landing, while the four drive groups 10, 12, 14 and 16 are take-off drive groups used during the take-off phase.
- the aircraft 2 may be an electric vertical takeoff and landing aircraft - or eVTOL -, in which case the four takeoff drive groups 10, 12, 14 and 16 are vertical drive groups and the two cruise drive groups 6 and 8 are horizontal drive groups.
- the cruise drive unit 6 comprises a direct-alternating current converter 30, an electric motor 32 and a thruster 34.
- the cruise drive unit 8 comprises a direct-alternating current converter 38 , an electric motor 40 and a thruster 42.
- the direct-alternating current converter 30 (respectively 38) can also be called an “inverter” – or “inverter” in English literature – and is arranged to generate an alternating current from a direct current.
- the propeller 34 (respectively 42), which corresponds for example to a propeller, is arranged to allow the aircraft 2 to move in a substantially horizontal direction. In flight mode, the propeller 34 (respectively 42) consumes a power of around 150 kilowatts (kW).
- the cruise drive group 6 (respectively 8) is connected at the input to a switch 36 (respectively 44) which makes it possible to connect this input to the output of the takeoff drive group 10 (respectively 14) or to that of the group take-off drive 12 (respectively 16).
- the take-off drive group 10 (respectively 12, 14 and 16) comprises a propeller 46 (respectively 50, 54 and 58) driven by an electric motor 62 (respectively 66, 70 and 74) and a propeller 48 (respectively 52, 56 and 60) driven by an electric motor 64 (respectively 68, 72 and 76).
- propellers 46, 48, 50, 52, 54, 56, 58 and 60 are considered as thrusters, in the same way as thrusters 34 and 42.
- the electric motors 62 and 64 (respectively 66 and 68, 70 and 72, 74 and 76) are respectively powered by direct-alternating current converters 78 and 80 (respectively 82 and 84, 86 and 88, 90 and 92).
- the direct-alternating current converters 78 and 80 (respectively 82 and 84, 86 and 88, 90 and 92) are connected to an electrical bus of the take-off drive group 10 (respectively 12, 14 and 16).
- the stored electrical energy source 18 (respectively 20, 22 and 24) is arranged to store electrical energy in order to supply it to the take-off drive group 10 (respectively 12, 14 and 16) as required. in power of it. Furthermore, the stored electrical energy sources 18 and 20 (respectively 22 and 24) are also arranged to supply electrical energy to the cruise drive group 6 (respectively 8) via the switch 36 (respectively 44).
- the stored electrical energy source 18 (respectively 20, 22 and 24) is connected, by the electrical bus of the take-off drive group 10 (respectively 12, 14 and 16), to the direct current converters- alternative 78 and 80 (respectively 82 and 84, 86 and 88, 90 and 92). Furthermore, the electrical bus of each of the take-off drive groups 10 and 12 (respectively 14 and 16) is connected to a respective output of the latter to which the switch 36 (respectively 44) can be selectively connected.
- the stored electrical energy source 18 (respectively 20, 22 and 24) is typically a battery pack - or "battery packs" in English -, that is to say electric accumulator batteries each intended for the storage of 'electric energy.
- the sources of stored electrical energy 18, 20, 22 and 24 can be supercapacitors or a combination of batteries and supercapacitors.
- the stored electrical energy source 18 (respectively 20, 22 and 24) is called battery 18 (respectively 20, 22 and 24).
- batteries 18, 20, 22 and 24 together deliver a power of around 800 kilowatts (kW) at 100% of their respective capacities.
- the electrical generation source 26 is arranged to generate electrical energy and power each of the batteries 18, 20, 22 and 24. To do this, the electrical generation source 26 has several electrical distribution buses.
- the electrical generation source 26 is connected to each of the take-off drive groups 10, 12, 14 and 16 via a respective electrical distribution bus.
- the electrical distribution buses make it possible to connect each take-off drive group 10, 12, 14 and 16 to the respectively associated battery 18, 20, 22 and 24.
- the electrical generation source 26 comprises two electrical converters 94 and 96 as well as a fuel-fired electrical energy generator 98.
- the electrical converters 94 and 96 are alternating-direct current converters while the fuel-fired electrical energy generator 98 is a turbine engine, for example a turbine generator - or turbogenerator.
- the alternating-direct current converter 94 (respectively 96) is connected to the respective inputs of the take-off drive groups 10 and 12 (respectively 14 and 16).
- the alternating-direct current converter 94 defines the starting point of the electrical distribution buses connecting the electrical generation source 26 respectively to the inputs of the take-off drive groups 10 and 12
- the alternating-direct current converter 96 defines the starting point of electric distribution buses connecting the electrical generation source 26 respectively to the inputs of the take-off drive groups 14 and 16.
- the alternating-direct current converter 94 (respectively 96) can also be called a “rectifier” – or “rectifier” in English literature – and is arranged to generate a direct current from an alternating current.
- the 98 turbine engine can deliver power of around 300 kilowatts (kW) at 100% of its capacity.
- the electrical generation source 26 can operate with both direct current and alternating current, in which case the converters 94 and 96 are, depending on the case, alternating-direct current converters or direct current converters. -continuous - or “DC-to-DC converter” in English literature.
- the electrical generation source 26 can thus be based on a turbine engine powered by a tank of conventional fuel, biofuel or synthetic gasoline (also known by the English term “synthetic fuel” or “synfuel”).
- the electrical converters 94 and 96 are alternating-direct current converters.
- the electrical generation source 26 may be based on a hydrogen-based energy source, such as a fuel cell.
- the electrical converters 94 and 96 are direct-direct current converters. In the context of the invention, such energy sources are considered as fuel-fired electrical energy generators.
- the power supply control 4 is a low voltage device arranged to control, on the one hand, the electrical generation source 26 and, on the other hand, the switches 36 and 44, as well as various protection elements not shown on the [ Fig. 1 ],
- the electrical architecture of aircraft 2 allows for a real hybridization of batteries 18, 20, 22 and 24, and not a simple juxtaposition.
- the batteries 18, 20, 22 and 24 and the electrical generation source 26 can operate in concert.
- Batteries 18, 20, 22 and 24 are conventional batteries whose operation is governed by a conventional control system (better known by the English acronym BMS for “Battery Management System”).
- BMS Battery Management System
- Such a system makes it possible to perform functions such as monitoring parameters - voltage, temperature, state of charge, state of health, etc. -, the prevention of any risk of leaving the intended operating range - overvoltage, overcurrent, overheating, etc. - or even the optimization of battery capacities.
- no other intelligence, in particular software or hardware, is necessary.
- the batteries 18, 20, 22 and 24 are treated passively in the sense that their integration does not require any particular adaptation apart from the manner, detailed below, in which the batteries 18, 20, 22 and 24 are connected to the electrical converters 94 and 96. From the point of view of the rest of the electrical architecture of the aircraft 2, the batteries 18, 20, 22 and 24 are seen as simple energy buffers - in the sense here of the English term “buffer”. This goes against existing solutions in which: either an element is specifically designed to optimize the operation of the batteries and plays a control role, or an element is provided to compensate for a possible battery failure, but in exclusive alternation, c that is to say without the batteries and this element being able to operate simultaneously.
- the aircraft 2 comprises a single electrical generation source, namely the electrical generation source 26.
- the aircraft 2 can comprise a plurality of electrical generation sources.
- FIG. 2 represents an embodiment in which the aircraft 2 comprises two electrical generation sources 26 and 28.
- the electrical generation source 26 (respectively 28) comprises an electrical converter 94 (respectively 96) and a fuel-fired electrical generator 98 (respectively 96). respectively 100).
- the fuel-fired electric generator 98 (respectively 100) is a turbine engine and the electric converter 94 (respectively 96) is an alternating-direct current converter.
- the fuel-fired electric generators 98 and 100 can each deliver power of the order of 150 kilowatts (kW) at 100% of their respective capacities.
- each of the electrical generation sources 26 and 28 can be based on a turbine engine powered by a tank of conventional fuel, biofuel or synthetic gasoline.
- an energy source powered by a hydrogen tank, such as a fuel cell, can be used.
- the aircraft 2 comprises at least one electrical generation source - a single electrical generation source 26 in [Fig. 1 ], two electrical generation sources 26 and 28 in [Fig. 2] - arranged to power one or more sources of stored electrical energy - four batteries 18, 20, 22 and 24 in [Fig. 1 ] and [Fig. 2],
- Aircraft 2 is an aircraft with a hybrid energy source and as such generally includes more batteries than electrical generation sources. Furthermore, the starting point of each electrical distribution bus of each electrical generation source is defined by an electrical converter - here the alternating-direct current converters 94 and 96 - so that the number of electrical converters is reduced and that the weight of the aircraft 2 is reduced. In other words, the electrical converters are at the level of the electrical generation sources and not at the level of the batteries.
- the electrical architectures respectively represented in [Fig. 1 ] and [Fig. 2] only include two electrical converters 94 and 96 for four batteries 18, 20, 22 and 24.
- FIG. 3 illustrates a circuit for supplying several sources of stored electrical energy B1,...,BM by several electrical converters E1,...,EN.
- M is a natural number greater than or equal to 2 corresponding to the number of sources of stored electrical energy
- N is a natural number greater than or equal to 2 corresponding to the number of electrical converters.
- the power supply circuit described here is a generalization of the part of the electrical architecture in [Fig. 1] or [Fig. 2] relating to the electrical converters 94 and 96 and the batteries 18, 20, 22 and 24.
- the sources of stored electrical energy B1, B2, B3 and B4 corresponding respectively to batteries 18, 20, 22 and 24
- the electrical converters E1 and E2 corresponding respectively to the electrical converters 94 and 96.
- the stored electrical energy sources B1,...,BM are respectively called batteries B1,...,BM hereinafter.
- the batteries B1,...,BM are distributed into several groups G1,...,GN so that the number of groups G1,...,GN is equal to the number of electrical converters E1,..., IN.
- each group can include one or more batteries, and the number of batteries can also vary from one group to another.
- each electrical converter E1,...,EN is respectively coupled to a group G1,...,GN.
- the electric converter E1 is coupled to the group G1 while the electric converter EN is coupled to the group GN.
- the groups G1 and GN here include the same number P of batteries, where P is a non-zero natural number.
- the G1 group includes the batteries B1,...,BP while the GN group includes the batteries BM-P+1,...,BM.
- each electrical converter E1,...,EN is connected to each battery of the group to which it is coupled by a respective junction 102.
- the electric converter E1 is connected to each battery B1,...,BP of the group G1 via a respective junction 102 while the electric converter EN is connected to each battery BM-P+1,...,BM of the group GN via a respective junction 102.
- each group includes as many junctions as it has batteries. There are thus P junctions in the G1 group and P batteries in the GN group.
- the junction 102 is arranged to operate exclusively in three possible states: a unidirectional state, a bidirectional state and a blocking state. More specifically, the operation of each junction 102 is controlled by the power supply control 4.
- junction 102 In the unidirectional state, junction 102 allows current to flow from the electrical converter to the battery. Of course, the current cannot then flow in the opposite direction, that is to say from the battery to the electrical converter. In the bidirectional state, junction 102 allows current to flow in both directions, namely from the electrical converter to the battery but also from the battery to the electrical converter.
- junction 102 blocks the flow of current, in one direction or the other.
- junction 102 can only operate in these three states.
- the power control 4 cannot control the junction 102 to operate in a state in which current could only flow from the battery to the electrical converter.
- Junction 102 includes a first contactor, a second contactor and a diode.
- FIG. 5 illustrates an embodiment of the junction 102.
- the first contactor 104 is connected in series with the diode 106.
- the diode 106 is arranged so that the forward direction goes from the electrical converter to the battery.
- the second contactor 108 is connected in parallel with the first contactor 104 and the diode 106.
- junction 102 is in the unidirectional state when the first contactor 104 is closed and the second contactor 108 is open.
- the junction 102 is in the bidirectional state when the first contactor 104 and the second contactor 108 are closed.
- Junction 102 is in the blocking state when the first contactor 104 and the second contactor 108 are open.
- each of the contactors 104 and 108 is controlled by the power supply control 4.
- each of the contactors 104 and 108 can be replaced by an electromechanical relay.
- the proposed power circuit adapts both to the nominal operation of the aircraft 2 and in the event of failure, that is to say when at least one battery is unavailable or when at least one electrical converter is unavailable.
- FIG. 6 illustrates an operating mode of the aircraft 2 - or turbo mode - in which the power requirements of the drive units, and more precisely of their respective electric motors, are very high to the point that the batteries B1,.. .,BM and the electrical generation source(s), therefore the electrical converters E1,...,EN, are used to the maximum of their capacities.
- FIG. 6 represents the electric converter E1 coupled to the group G1 of batteries B1,...,BP.
- Power control 4 controls each junction 102 to operate in the unidirectional state.
- the electrical converter E1 supplies each battery B1,...,BP of the group G1.
- a failure for example a short circuit
- this cannot propagate to the other batteries B1,...,BP since the current generated by a short circuit is blocked by each junction 102 to which the faulty battery is connected. It is the same in the case where the failure appears at the level of the electrical converter: the current generated by a short circuit cannot flow from a battery to the faulty electrical converter.
- the power supply control 4 can then isolate the faulty element. To do this, the power supply control 4 controls the junctions 102 connected to the faulty element to make them go from the unidirectional state to the blocking state.
- the power supply control 4 isolates the battery B1 by passing the junction 102 via which the electrical converter E1 is connected to the battery B1 from the unidirectional state to the blocking state. Furthermore, given that a battery, here the battery B1 is no longer powered, the electrical energy which was originally intended for it can be distributed to the other batteries, here the batteries B2,...,BP. It is understood that the power supply circuit is sufficiently flexible to implement a dynamic allocation of power and thus provide electrical energy to a battery whose needs are higher than those of the others.
- the power supply control 4 isolates the electrical converter E1 by passing all the junctions 102 via which the electrical converter E1 is connected to the batteries B1,...,BP of the unidirectional state to the blocking state.
- the power supply control 4 isolates the electrical converter E1 by passing all the junctions 102 via which the electrical converter E1 is connected to the batteries B1,...,BP of the unidirectional state to the blocking state.
- FIG. 9 illustrates an operating mode of the aircraft 2 - or energy saving mode - in which no power is required from the electrical generation source(s), therefore electrical converters E1,..., IN.
- FIG. 9 represents the electric converter E1 coupled to the group G1 of batteries B1,...,BP.
- Power control 4 controls each junction 102 to operate in the blocking state. In the event of a failure, for example a short circuit, at the level of one of the batteries B1,...,BP or the electrical converter E1, it cannot propagate since the current generated by a short circuit is blocked by each junction 102.
- FIG. 10 illustrates a mode of operation of the aircraft 2 - or charging mode - in which the power requirements of the drive units, and more precisely of their respective electric motors, are low to the point that the electrical converters E1,. ..,EN supply the drive groups with electrical energy via the batteries B1,...,BM while charging the latter.
- FIG. 10 represents the electric converter E1 coupled to the group G1 of batteries B1,...,BP.
- Each electric converter E1,...,EN is respectively associated with a battery among the batteries of the group G1,...,GN to which it is coupled.
- the power supply control 4 controls each junction 102 so that, within each group, the junction 102 between the electrical converter coupled to the group and the battery with which it is associated is in the unidirectional state, and that the other junctions 102 - that is to say the respective junctions 102 between the electrical converter and the batteries with which it is not associated - are in the blocking state.
- the electrical converters E1,...,EN are all assigned a new battery from their respective group to charge and so on.
- the batteries B1,...,BP are thus sequentially charged one at a time per charging phase - or iteration.
- the batteries B1,...,BM are sequentially charged N at a time at most per iteration.
- an electric converter E1,...,EN is not associated with a new battery if all the batteries in the group to which it is coupled are already charged.
- FIG. 10 thus illustrates an iteration in which the electric converter E1 is associated with the battery B1.
- the number of iterations necessary to charge all the batteries B1,...,BP of the group G1 is P.
- the number of iterations necessary to charge all the batteries B1,...,BM corresponds to the number of batteries in the group comprising the largest number of batteries.
- the selection, at each iteration, of the battery to be charged at the level of each group - and therefore of the N batteries to be charged in total at the level of the power circuit - may depend on the respective charge levels of the batteries B1,..., BM, for example to give priority to the batteries with the lowest charge level or, conversely, to the batteries with the highest charge level.
- FIG. 10 also illustrates another mode of operation of the aircraft 2 - or buffer mode - in which the power requirements of the drive groups, and more precisely of their respective electric motors, are low, but in which the batteries B1, ...,BM do not need to be loaded.
- Batteries B1,...,BM are treated passively, like energy buffers. In other words, the power supplied by the electrical converters E1,...,EN simply passes through the batteries B1,...,BM to power the drive groups.
- power control 4 implements one or more power phases - or iterations. At each iteration, each electric converter E1,...,EN is respectively associated with a battery among the batteries of the group G1,...,GN to which it is coupled. The power supply control 4 then controls each junction 102 so that the junction 102 between an electrical converter and the battery with which it is associated is in the unidirectional state, and that the other junctions 102 - that is to say the respective junctions 102 between an electrical converter and the batteries with which it is not associated - are in the blocking state. Buffer mode ends when the power requirements of the drive units are satisfied.
- each electrical converter is successively associated with a battery.
- the electric converter E1 is associated with a number Q of batteries, where Q is a natural number strictly greater than 1.
- the electric converter E1 is associated with the first Q batteries of the group G1, namely the batteries B1,...,BQ.
- the power supply control 4 controls each junction 102 so that, within each group, the junction 102 between the electrical converter coupled to the group and a battery with which it is associated is in the state bidirectional, and that the other junctions 102 - that is to say the respective junctions 102 between the electric converter and the batteries with which it is not associated - are in a blocking state.
- the junction 102 between each of the batteries B1,...,BQ and the electrical converter E1 is in the bidirectional state.
- the junction 102 between each of the batteries BQ+1,...,BP and the electrical converter E1 is in the blocking state.
- the embodiment of [Fig. 1 1 ] has the advantage of reducing charging time.
- junctions 102 between an electrical converter and the Q batteries with which it is associated makes it possible to obtain a cross flow - or "crossflow" in English - between these Q batteries so that they are not seen by the electric converter to which they are associated as a single battery.
- junctions 102 illustrated in [Fig. 11 ] can also apply to buffer mode, not just charge mode.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Description Description
Titre : Aéronef à source d’énergie hybride et à jonction électromécanique de distribution et de protection Title: Aircraft with hybrid energy source and electromechanical distribution and protection junction
Le domaine de l’invention se rapporte aux aéronefs, et plus particulièrement aux aéronefs à motorisation électrique. The field of the invention relates to aircraft, and more particularly to aircraft with electric motors.
L’aéronautique connaît actuellement de nombreuses évolutions liées aux contraintes environnementales, et notamment à l’exigence de réduction progressive des émissions de gaz à effets de serre tels que le dioxyde de carbone (CO2). À ce titre, le développement d’aéronefs à motorisation électrique apparaît comme un réel progrès. Aeronautics is currently experiencing numerous developments linked to environmental constraints, and in particular to the requirement for a gradual reduction in greenhouse gas emissions such as carbon dioxide (CO2). As such, the development of electric-powered aircraft appears to be real progress.
L’architecture classique d’un aéronef à motorisation électrique intègre au moins une source de génération électrique agencée pour alimenter des blocs de batteries - ou « battery packs » en anglais -, lesquels fournissent une puissance à des groupes d’entraînement en fonction de leurs besoins. Par exemple, dans le cas d’un avion à décollage et atterrissage verticaux électrique (aussi connu sous l’acronyme anglophone eVTOL pour « electric Vertical Take-Off and Landing »), les batteries sont combinées à des groupes d’entraînement vertical et à des groupes d’entraînement horizontal. La multiplication des batteries permet notamment de répondre à des normes de sécurité imposant une redondance des composants pour garantir une continuité du vol et de l’atterrissage - ou « continued safe flight and landing » en anglais. The classic architecture of an electric-powered aircraft integrates at least one electrical generation source arranged to power battery packs - or "battery packs" in English -, which provide power to drive groups according to their needs. For example, in the case of an electric vertical take-off and landing aircraft (also known by the acronym eVTOL for “electric Vertical Take-Off and Landing”), the batteries are combined with vertical drive units and horizontal drive groups. The multiplication of batteries makes it possible to meet safety standards requiring redundancy of components to guarantee continuity of flight and landing - or “continued safe flight and landing” in English.
En particulier, dans le cas d’un aéronef à source d’énergie hybride, la source de génération électrique comprend un générateur d’énergie électrique à combustible, par exemple un turbomoteur ou une pile à combustible. In particular, in the case of an aircraft with a hybrid energy source, the electrical generation source comprises a fuel-fired electrical energy generator, for example a turbine engine or a fuel cell.
Le circuit d’alimentation des batteries peut être configuré de sorte que les batteries sont branchées les unes aux autres en parallèle. Un tel circuit est alors muni d’un système de protection par séparation pour isoler les batteries les unes des autres en cas de défaillance, et notamment de court-circuit. L’activation d’un tel système de protection entraîne toutefois une perte significative de puissance due à l’isolation d’une des batteries. The battery power circuit can be configured so that the batteries are connected to each other in parallel. Such a circuit is then provided with a separation protection system to isolate the batteries from each other in the event of failure, and in particular a short circuit. Activation of a However, such a protection system results in a significant loss of power due to the isolation of one of the batteries.
Une solution possible pour éviter la propagation d’une défaillance à l’ensemble des batteries tout en limitant l’éventuelle perte de puissance consiste à séparer directement les batteries et à organiser le circuit d’alimentation en conséquence. Cependant, un tel principe de séparation se trouve contrarié dans le cas d’un aéronef à source d’énergie hybride. En effet, un aéronef à source d’énergie hybride a ceci de particulier que les batteries sont en général plus nombreuses que les sources de génération électrique pour des raisons de redondance, ce qui implique de connecter les batteries entre elles via des sources de génération électrique partagées. Une telle interconnexion constitue un point de défaillance commun entre des batteries alimentées par une même source de génération électrique. A possible solution to avoid the propagation of a failure to all the batteries while limiting the possible loss of power consists of directly separating the batteries and organizing the power circuit accordingly. However, such a principle of separation is thwarted in the case of an aircraft with a hybrid energy source. Indeed, an aircraft with a hybrid energy source has the particularity that the batteries are generally more numerous than the electrical generation sources for reasons of redundancy, which involves connecting the batteries together via electrical generation sources. shared. Such an interconnection constitutes a common point of failure between batteries powered by the same electrical generation source.
Par ailleurs, chaque batterie est généralement couplée à un convertisseur électrique, par exemple un onduleur ou un redresseur. De ce fait, la multiplication des batteries, et donc des convertisseurs électriques, a un impact important sur le poids de l’aéronef et donc sur sa consommation d’énergie électrique lors d’un vol. Furthermore, each battery is generally coupled to an electrical converter, for example an inverter or a rectifier. As a result, the multiplication of batteries, and therefore of electrical converters, has a significant impact on the weight of the aircraft and therefore on its consumption of electrical energy during a flight.
La présente invention vient améliorer la situation. The present invention improves the situation.
À ce titre, l’invention se rapporte à un aéronef à source d’énergie hybride comprenant : As such, the invention relates to an aircraft with a hybrid energy source comprising:
- au moins deux groupes d’entraînement comprenant chacun un propulseur et un moteur électrique, - at least two drive groups each comprising a propeller and an electric motor,
- une pluralité de sources d’énergie électrique stockée agencées chacune pour fournir de l’énergie électrique à un ou plusieurs des moteurs électriques,- a plurality of sources of stored electrical energy each arranged to supply electrical energy to one or more of the electric motors,
- au moins une source de génération électrique comprenant un générateur électrique à combustible et reliée à une ou plusieurs des sources d’énergie électrique stockée, et - at least one electrical generation source comprising a fuel-fired electrical generator and connected to one or more of the stored electrical energy sources, and
- une commande d’alimentation agencée pour émettre une commande de puissance à l’au moins une source de génération électrique en fonction des besoins en puissance des groupes d’entraînement, la pluralité de sources d’énergie électrique stockée étant agencée pour fournir de l’énergie électrique en fonction de la différence entre les besoins en puissance des groupes d’entraînement et la puissance fournie par l’au moins une source de génération électrique sur la base de la commande de puissance, l’au moins une source de génération électrique étant en outre propre à recharger la pluralité de sources d’énergie électrique stockée de sorte que chaque source d’énergie électrique stockée est traitée de manière passive. - a power supply control arranged to issue a power command to the at least one electrical generation source according to the power requirements of the drive units, the plurality of stored electrical energy sources being arranged to provide electrical energy based on the difference between the power requirements of the drive units and the power supplied by the at at least one electrical generation source based on the power control, the at least one electrical generation source further being capable of recharging the plurality of stored electrical energy sources such that each stored electrical energy source is processed passively.
Les sources d’énergie électrique stockée sont réparties en plusieurs groupements, The sources of stored electrical energy are divided into several groups,
Chaque source de génération électrique comprend au moins un convertisseur électrique, le nombre total de convertisseurs électriques étant égal au nombre de groupements, chaque convertisseur électrique étant respectivement couplé à un groupement. Each electrical generation source comprises at least one electrical converter, the total number of electrical converters being equal to the number of groups, each electrical converter being respectively coupled to a group.
Chaque convertisseur électrique est relié à chaque source d’énergie électrique stockée du groupement auquel le convertisseur électrique est couplé via une jonction respective incluant un premier contacteur ou relais électromécanique, un deuxième contacteur ou relais électromécanique et une diode. Each electrical converter is connected to each stored electrical energy source of the array to which the electrical converter is coupled via a respective junction including a first electromechanical contactor or relay, a second electromechanical contactor or relay and a diode.
La commande d’alimentation est agencée pour commander le fonctionnement de chaque jonction selon un ensemble d’états constitué de : un état unidirectionnel dans lequel le courant circule du convertisseur électrique vers la source d’énergie électrique stockée, un état bidirectionnel dans lequel le courant circule dans les deux sens et un état bloquant dans lequel la circulation du courant est bloquée.The power supply control is arranged to control the operation of each junction according to a set of states consisting of: a unidirectional state in which the current flows from the electrical converter to the source of stored electrical energy, a bidirectional state in which the current flows in both directions and a blocking state in which the flow of current is blocked.
Dans un ou plusieurs modes de réalisation, au moins une jonction comprend un circuit électrique au sein duquel le premier contacteur ou relais électromécanique est branché en série avec la diode, laquelle présente un sens passant du convertisseur électrique vers la source d’énergie électrique stockée, et le deuxième contacteur ou relais électromécanique est branché en parallèle avec le premier contacteur ou relais électromécanique et la diode. In one or more embodiments, at least one junction comprises an electrical circuit within which the first contactor or electromechanical relay is connected in series with the diode, which has a direction passing from the electrical converter towards the source of stored electrical energy, and the second electromechanical contactor or relay is connected in parallel with the first electromechanical contactor or relay and the diode.
Dans un ou plusieurs modes de réalisation, au moins une source d’énergie électrique stockée est une batterie. Dans un ou plusieurs modes de réalisation, les groupes d’entraînement comprennent au moins un groupe d’entraînement de décollage et au moins un groupe d’entraînement de croisière. In one or more embodiments, at least one source of stored electrical energy is a battery. In one or more embodiments, the drive units include at least one takeoff drive unit and at least one cruise drive unit.
Par exemple, au moins un groupe d’entraînement de décollage est un groupe d’entraînement de décollage/atterrissage vertical et au moins un groupe d’entraînement de croisière est un groupe d’entraînement horizontal. For example, at least one takeoff drive unit is a vertical takeoff/landing drive unit and at least one cruise drive unit is a horizontal drive unit.
Dans un ou plusieurs modes de réalisation, le générateur d’énergie électrique à combustible d’au moins une source de génération électrique est un turbomoteur et chaque convertisseur électrique de la source de génération électrique est un convertisseur de courant alternatif-continu. In one or more embodiments, the fuel-fired electrical energy generator of at least one electrical generation source is a turbine engine and each electrical converter of the electrical generation source is an alternating-direct current converter.
Le turbomoteur peut être alimenté par du carburant, du biocarburant ou de l’essence synthétique. The turbine engine can be powered by fuel, biofuel or synthetic gasoline.
Dans un ou plusieurs modes de réalisation, le générateur d’énergie électrique à combustible d’au moins une source de génération électrique est une pile à combustible et chaque convertisseur électrique de la source de génération électrique est un convertisseur de courant continu-continu. In one or more embodiments, the fuel-fired electrical power generator of at least one electrical generation source is a fuel cell and each electrical converter of the electrical generation source is a DC-DC converter.
Dans un ou plusieurs modes de réalisation, l’aéronef est agencé pour fonctionner au moins selon un mode turbo dans lequel les besoins en puissance des groupes d’entraînement nécessitent une fourniture de puissance en provenance de l’au moins une source de génération électrique et de la pluralité de sources d’énergie électrique stockée, et dans lequel la commande d’alimentation commande chaque jonction selon l’état unidirectionnel. In one or more embodiments, the aircraft is arranged to operate at least in a turbo mode in which the power requirements of the drive groups require a supply of power from the at least one electrical generation source and of the plurality of stored electrical energy sources, and wherein the power control controls each junction according to the unidirectional state.
Dans un ou plusieurs modes de réalisation, l’aéronef est agencé pour fonctionner au moins selon un mode économie d’énergie dans lequel la commande d’alimentation commande chaque jonction selon l’état bloquant. In one or more embodiments, the aircraft is arranged to operate at least in an energy saving mode in which the power control controls each junction according to the blocking state.
Dans un ou plusieurs modes de réalisation, l’aéronef est agencé pour fonctionner au moins selon un mode de charge dans lequel la commande d’alimentation émet une commande de puissance à l’au moins une source de génération électrique pour satisfaire aux besoins en puissance des groupes d’entraînement tout en chargeant les sources d’énergie électrique stockée. Typiquement, dans le mode de charge, la commande d’alimentation commande séquentiellement chaque jonction en une ou plusieurs phases de charge, la commande d’alimentation étant agencée pour mettre en œuvre chaque phase de charge en associant chaque convertisseur électrique à une source d’énergie électrique stockée du groupement auquel le convertisseur électrique est couplé, en commandant chaque jonction entre un convertisseur électrique et une source d’énergie électrique stockée associés selon l’état unidirectionnel et en commandant toute autre jonction selon l’état bloquant, et ce jusqu’à ce que chaque source d’énergie électrique stockée soit chargée. In one or more embodiments, the aircraft is arranged to operate in at least one charging mode in which the power control issues a power command to the at least one electrical generation source to satisfy the power requirements drive units while charging stored electrical energy sources. Typically, in the charging mode, the power supply control sequentially controls each junction in one or more charging phases, the power supply control being arranged to implement each charging phase by associating each electrical converter with a power source. stored electrical energy of the group to which the electrical converter is coupled, by controlling each junction between an electrical converter and an associated stored electrical energy source according to the unidirectional state and by controlling any other junction according to the blocking state, and this until ensures that each source of stored electrical energy is charged.
Avantageusement, dans le mode de charge, la commande d’alimentation commande séquentiellement chaque jonction en une ou plusieurs phases de charge, la commande d’alimentation étant agencée pour mettre en œuvre chaque phase de charge en associant chaque convertisseur électrique à plusieurs sources d’énergie électrique stockée du groupement auquel le convertisseur électrique est couplé, en commandant chaque jonction entre un convertisseur électrique et une source d’énergie électrique stockée associés selon l’état bidirectionnel et en commandant toute autre jonction selon l’état bloquant, et ce jusqu’à ce que chaque source d’énergie électrique stockée soit chargée. Advantageously, in the charging mode, the power supply control sequentially controls each junction in one or more charging phases, the power supply control being arranged to implement each charging phase by associating each electrical converter with several power sources. stored electrical energy of the group to which the electrical converter is coupled, by controlling each junction between an electrical converter and an associated stored electrical energy source according to the bidirectional state and by controlling any other junction according to the blocking state, and this until ensures that each source of stored electrical energy is charged.
Dans un ou plusieurs modes de réalisation, l’aéronef est agencé pour fonctionner au moins selon un mode tampon dans lequel la commande d’alimentation émet une commande de puissance à l’au moins une source de génération électrique pour satisfaire aux besoins en puissance des groupes d’entraînement via les sources d’énergie électrique stockée, et dans lequel la commande d’alimentation commande séquentiellement chaque jonction en une ou plusieurs phases d’alimentation, la commande d’alimentation étant agencée pour mettre en œuvre chaque phase d’alimentation en associant chaque convertisseur électrique à une source d’énergie électrique stockée du groupement auquel le convertisseur électrique est couplé, en commandant chaque jonction entre un convertisseur électrique et une source d’énergie électrique stockée associés selon l’état unidirectionnel et en commandant toute autre jonction selon l’état bloquant, et ce jusqu’à ce que les besoins en puissance des groupes d’entraînement soient satisfaits. In one or more embodiments, the aircraft is arranged to operate at least in a buffer mode in which the power control issues a power command to the at least one electrical generation source to satisfy the power requirements of the drive groups via the sources of stored electrical energy, and in which the power control sequentially controls each junction in one or more power phases, the power control being arranged to implement each power phase by associating each electrical converter with a stored electrical energy source of the array to which the electrical converter is coupled, by controlling each junction between an associated electrical converter and a stored electrical energy source according to the unidirectional state and by controlling any other junction depending on the blocking state, and this until the power requirements of the drive units are met.
D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés sur lesquels : Other characteristics, details and advantages will appear on reading the detailed description below, and on analyzing the appended drawings in which:
[Fig. 1] représente une vue schématique de l’architecture électrique d’un aéronef selon l’invention comprenant une unique source de génération électrique,[Fig. 1] represents a schematic view of the electrical architecture of an aircraft according to the invention comprising a single electrical generation source,
[Fig. 2] représente une vue schématique de l’architecture électrique d’un aéronef selon l’invention comprenant deux sources de génération électrique, [Fig. 2] represents a schematic view of the electrical architecture of an aircraft according to the invention comprising two electrical generation sources,
[Fig. 3] illustre un circuit d’alimentation de batteries par des convertisseurs électriques via des jonctions au sein de l’architecture électrique d’un aéronef selon l’invention, [Fig. 3] illustrates a battery supply circuit by electrical converters via junctions within the electrical architecture of an aircraft according to the invention,
[Fig. 4] illustre les états possibles d’une jonction, [Fig. 4] illustrates the possible states of a junction,
[Fig. 5] illustre schématiquement le circuit électrique d’une jonction, [Fig. 5] schematically illustrates the electrical circuit of a junction,
[Fig. 6] illustre un convertisseur électrique et un groupement de batteries couplés du circuit d’alimentation de la [Fig. 3] dans un mode de fonctionnement dit « mode turbo » de l’aéronef, [Fig. 6] illustrates an electrical converter and a coupled battery bank of the power circuit of [Fig. 3] in a so-called “turbo mode” operating mode of the aircraft,
[Fig. 7] illustre le mode turbo de la [Fig. 6] dans le cas où une défaillance apparaît au niveau d’une batterie du groupement, [Fig. 7] illustrates the turbo mode of [Fig. 6] in the event that a failure appears at the level of a battery in the group,
[Fig. 8] illustre le mode turbo de la [Fig. 6] dans le cas où une défaillance apparaît au niveau du convertisseur électrique couplé au groupement, [Fig. 8] illustrates the turbo mode of [Fig. 6] in the event that a failure appears at the level of the electrical converter coupled to the group,
[Fig. 9] illustre un convertisseur électrique et un groupement de batteries couplés du circuit d’alimentation de la [Fig. 3] dans un mode de fonctionnement dit « mode économie d’énergie » de l’aéronef, [Fig. 9] illustrates an electrical converter and a coupled battery bank of the power circuit of [Fig. 3] in an operating mode called “energy saving mode” of the aircraft,
[Fig. 10] illustre un convertisseur électrique et un groupement de batteries couplés du circuit d’alimentation de la [Fig. 3] dans un mode de fonctionnement dit « mode de charge » ou dans un mode de fonctionnement dit « mode tampon » de l’aéronef, et [Fig. 10] illustrates an electrical converter and a coupled battery bank of the power circuit of [Fig. 3] in an operating mode called “charging mode” or in an operating mode called “buffer mode” of the aircraft, and
[Fig. 1 1 ] illustre le mode de charge ou le mode tampon de la [Fig. 10] dans un cas particulier. La [Fig. 1 ] illustre un aéronef 2 comprenant une commande d’alimentation 4, une pluralité de groupes d’entraînement 6, 8, 10, 12, 14 et 16, une pluralité de sources d’énergie électrique stockée 18, 20, 22 et 24 ainsi qu’une source de génération électrique 26. [Fig. 1 1 ] illustrates the charge mode or buffer mode in [Fig. 10] in a particular case. [Fig. 1] illustrates an aircraft 2 comprising a power supply control 4, a plurality of drive groups 6, 8, 10, 12, 14 and 16, a plurality of sources of stored electrical energy 18, 20, 22 and 24 as well than a source of electrical generation 26.
Typiquement, les deux groupes d’entraînement 6 et 8 sont des groupes d’entraînement de croisière sollicités lors de la phase du vol située entre le décollage et l’atterrissage, tandis que les quatre groupes d’entraînement 10, 12, 14 et 16 sont des groupes d’entraînement de décollage sollicités lors de la phase de décollage. Typically, the two drive groups 6 and 8 are cruise drive groups used during the flight phase between takeoff and landing, while the four drive groups 10, 12, 14 and 16 are take-off drive groups used during the take-off phase.
À titre d’exemple, l’aéronef 2 peut être un avion à décollage et atterrissage verticaux électrique - ou eVTOL -, auquel cas les quatre groupes d’entraînement de décollage 10, 12, 14 et 16 sont des groupes d’entraînement vertical et les deux groupes d’entraînement de croisière 6 et 8 sont des groupes d’entraînement horizontal. For example, the aircraft 2 may be an electric vertical takeoff and landing aircraft - or eVTOL -, in which case the four takeoff drive groups 10, 12, 14 and 16 are vertical drive groups and the two cruise drive groups 6 and 8 are horizontal drive groups.
Dans l’exemple illustré sur la [Fig. 1 ], le groupe d’entraînement de croisière 6 comprend un convertisseur de courant continu-alternatif 30, un moteur électrique 32 et un propulseur 34. De même, le groupe d’entraînement de croisière 8 comprend un convertisseur de courant continu-alternatif 38, un moteur électrique 40 et un propulseur 42. In the example illustrated in [Fig. 1 ], the cruise drive unit 6 comprises a direct-alternating current converter 30, an electric motor 32 and a thruster 34. Likewise, the cruise drive unit 8 comprises a direct-alternating current converter 38 , an electric motor 40 and a thruster 42.
Le convertisseur de courant continu-alternatif 30 (respectivement 38) peut aussi être appelé « onduleur » - ou « inverter » dans la littérature anglophone - et est agencé pour générer un courant alternatif à partir d’un courant continu. The direct-alternating current converter 30 (respectively 38) can also be called an “inverter” – or “inverter” in English literature – and is arranged to generate an alternating current from a direct current.
Le propulseur 34 (respectivement 42), qui correspond par exemple à une hélice, est agencé pour permettre à l’aéronef 2 de se déplacer dans une direction sensiblement horizontale. En régime de vol, le propulseur 34 (respectivement 42) consomme une puissance de l’ordre de 150 kilowatts (kW). The propeller 34 (respectively 42), which corresponds for example to a propeller, is arranged to allow the aircraft 2 to move in a substantially horizontal direction. In flight mode, the propeller 34 (respectively 42) consumes a power of around 150 kilowatts (kW).
Le groupe d’entraînement de croisière 6 (respectivement 8) est relié en entrée à un commutateur 36 (respectivement 44) qui permet de relier cette entrée à la sortie du groupe d’entraînement de décollage 10 (respectivement 14) ou à celle du groupe d’entraînement de décollage 12 (respectivement 16). Le groupe d’entraînement de décollage 10 (respectivement 12, 14 et 16) comprend une hélice 46 (respectivement 50, 54 et 58) entraînée par un moteur électrique 62 (respectivement 66, 70 et 74) et une hélice 48 (respectivement 52, 56 et 60) entraînée par un moteur électrique 64 (respectivement 68, 72 et 76).The cruise drive group 6 (respectively 8) is connected at the input to a switch 36 (respectively 44) which makes it possible to connect this input to the output of the takeoff drive group 10 (respectively 14) or to that of the group take-off drive 12 (respectively 16). The take-off drive group 10 (respectively 12, 14 and 16) comprises a propeller 46 (respectively 50, 54 and 58) driven by an electric motor 62 (respectively 66, 70 and 74) and a propeller 48 (respectively 52, 56 and 60) driven by an electric motor 64 (respectively 68, 72 and 76).
Dans le cadre de l’invention, les hélices 46, 48, 50, 52, 54, 56, 58 et 60 sont considérées comme des propulseurs, au même titre que les propulseurs 34 et 42. In the context of the invention, propellers 46, 48, 50, 52, 54, 56, 58 and 60 are considered as thrusters, in the same way as thrusters 34 and 42.
Les moteurs électriques 62 et 64 (respectivement 66 et 68, 70 et 72, 74 et 76) sont respectivement alimentés par des convertisseurs de courant continu- alternatif 78 et 80 (respectivement 82 et 84, 86 et 88, 90 et 92). Les convertisseurs de courant continu-alternatif 78 et 80 (respectivement 82 et 84, 86 et 88, 90 et 92) sont reliés à un bus électrique du groupe d’entraînement de décollage 10 (respectivement 12, 14 et 16). The electric motors 62 and 64 (respectively 66 and 68, 70 and 72, 74 and 76) are respectively powered by direct-alternating current converters 78 and 80 (respectively 82 and 84, 86 and 88, 90 and 92). The direct-alternating current converters 78 and 80 (respectively 82 and 84, 86 and 88, 90 and 92) are connected to an electrical bus of the take-off drive group 10 (respectively 12, 14 and 16).
La source d’énergie électrique stockée 18 (respectivement 20, 22 et 24) est agencée pour stocker de l’énergie électrique afin d’en fournir au groupe d’entraînement de décollage 10 (respectivement 12, 14 et 16) en fonction des besoins en puissance de celui-ci. Par ailleurs, les sources d’énergie électrique stockée 18 et 20 (respectivement 22 et 24) sont également agencées pour fournir de l’énergie électrique au groupe d’entraînement de croisière 6 (respectivement 8) via le commutateur 36 (respectivement 44). The stored electrical energy source 18 (respectively 20, 22 and 24) is arranged to store electrical energy in order to supply it to the take-off drive group 10 (respectively 12, 14 and 16) as required. in power of it. Furthermore, the stored electrical energy sources 18 and 20 (respectively 22 and 24) are also arranged to supply electrical energy to the cruise drive group 6 (respectively 8) via the switch 36 (respectively 44).
Pour ce faire, la source d’énergie électrique stockée 18 (respectivement 20, 22 et 24) est reliée, par le bus électrique du groupe d’entraînement de décollage 10 (respectivement 12, 14 et 16), aux convertisseurs de courant continu-alternatif 78 et 80 (respectivement 82 et 84, 86 et 88, 90 et 92). Par ailleurs, le bus électrique de chacun des groupes d’entraînement de décollage 10 et 12 (respectivement 14 et 16) est relié à une sortie respective de ces derniers à laquelle peut être sélectivement relié le commutateur 36 (respectivement 44).To do this, the stored electrical energy source 18 (respectively 20, 22 and 24) is connected, by the electrical bus of the take-off drive group 10 (respectively 12, 14 and 16), to the direct current converters- alternative 78 and 80 (respectively 82 and 84, 86 and 88, 90 and 92). Furthermore, the electrical bus of each of the take-off drive groups 10 and 12 (respectively 14 and 16) is connected to a respective output of the latter to which the switch 36 (respectively 44) can be selectively connected.
La source d’énergie électrique stockée 18 (respectivement 20, 22 et 24) est typiquement un bloc de batteries - ou « battery packs » en anglais -, c’est-à-dire de batteries d’accumulateurs électriques destinés chacun au stockage d’énergie électrique. En variante, les sources d’énergie électrique stockée 18, 20, 22 et 24 peuvent être des supercondensateurs ou une combinaison de batteries et de supercondensateurs. The stored electrical energy source 18 (respectively 20, 22 and 24) is typically a battery pack - or "battery packs" in English -, that is to say electric accumulator batteries each intended for the storage of 'electric energy. Alternatively, the sources of stored electrical energy 18, 20, 22 and 24 can be supercapacitors or a combination of batteries and supercapacitors.
Dans la suite de la description, par souci de concision, la source d’énergie électrique stockée 18 (respectivement 20, 22 et 24) est appelée batterie 18 (respectivement 20, 22 et 24). In the remainder of the description, for the sake of brevity, the stored electrical energy source 18 (respectively 20, 22 and 24) is called battery 18 (respectively 20, 22 and 24).
Typiquement, les batteries 18, 20, 22 et 24 délivrent ensemble une puissance de l’ordre de 800 kilowatts (kW) à 100% de leurs capacités respectives. Typically, batteries 18, 20, 22 and 24 together deliver a power of around 800 kilowatts (kW) at 100% of their respective capacities.
La source de génération électrique 26 est agencée pour générer de l’énergie électrique et alimenter chacune des batteries 18, 20, 22 et 24. Pour ce faire, la source de génération électrique 26 présente plusieurs bus électriques de distribution. The electrical generation source 26 is arranged to generate electrical energy and power each of the batteries 18, 20, 22 and 24. To do this, the electrical generation source 26 has several electrical distribution buses.
Dans l’exemple de la [Fig. 1], la source de génération électrique 26 est reliée à chacun des groupes d’entraînement de décollage 10, 12, 14 et 16 via un bus électrique de distribution respectif. Les bus électriques de distribution permettent de relier chaque groupe d’entraînement de décollage 10, 12, 14 et 16 à la batterie respectivement associée 18, 20, 22 et 24. In the example of [Fig. 1], the electrical generation source 26 is connected to each of the take-off drive groups 10, 12, 14 and 16 via a respective electrical distribution bus. The electrical distribution buses make it possible to connect each take-off drive group 10, 12, 14 and 16 to the respectively associated battery 18, 20, 22 and 24.
Dans l’exemple de la [Fig. 1 ], la source de génération électrique 26 comprend deux convertisseurs électriques 94 et 96 ainsi qu’un générateur d’énergie électrique à combustible 98. In the example of [Fig. 1 ], the electrical generation source 26 comprises two electrical converters 94 and 96 as well as a fuel-fired electrical energy generator 98.
Plus particulièrement ici, les convertisseurs électriques 94 et 96 sont des convertisseurs de courant alternatif-continu tandis que le générateur d’énergie électrique à combustible 98 est un turbomoteur, par exemple un générateur à turbine - ou turbogénérateur. More particularly here, the electrical converters 94 and 96 are alternating-direct current converters while the fuel-fired electrical energy generator 98 is a turbine engine, for example a turbine generator - or turbogenerator.
Le convertisseur de courant alternatif-continu 94 (respectivement 96) est relié aux entrées respectives des groupes d’entraînement de décollage 10 et 12 (respectivement 14 et 16). Ainsi, le convertisseur de courant alternatif-continu 94 définit le point de départ des bus électriques de distribution reliant la source de génération électrique 26 respectivement aux entrées des groupes d’entraînement de décollage 10 et 12 tandis que le convertisseur de courant alternatif-continu 96 définit le point de départ des bus électriques de distribution reliant la source de génération électrique 26 respectivement aux entrées des groupes d’entraînement de décollage 14 et 16. The alternating-direct current converter 94 (respectively 96) is connected to the respective inputs of the take-off drive groups 10 and 12 (respectively 14 and 16). Thus, the alternating-direct current converter 94 defines the starting point of the electrical distribution buses connecting the electrical generation source 26 respectively to the inputs of the take-off drive groups 10 and 12 while the alternating-direct current converter 96 defines the starting point of electric distribution buses connecting the electrical generation source 26 respectively to the inputs of the take-off drive groups 14 and 16.
Le convertisseur de courant alternatif-continu 94 (respectivement 96) peut aussi être appelé « redresseur » - ou « rectifier » dans la littérature anglophone - et est agencé pour générer un courant continu à partir d’un courant alternatif. The alternating-direct current converter 94 (respectively 96) can also be called a “rectifier” – or “rectifier” in English literature – and is arranged to generate a direct current from an alternating current.
Typiquement, le turbomoteur 98 peut délivrer une puissance de l’ordre de 300 kilowatts (kW) à 100% de sa capacité. Typically, the 98 turbine engine can deliver power of around 300 kilowatts (kW) at 100% of its capacity.
Il doit être noté que la source de génération électrique 26 peut fonctionner aussi bien à courant continu qu’à courant alternatif, auquel cas les convertisseur 94 et 96 sont, selon le cas, des convertisseurs de courant alternatif-continu ou des convertisseurs de courant continu-continu - ou « DC-to-DC converter » dans la littérature anglophone. It should be noted that the electrical generation source 26 can operate with both direct current and alternating current, in which case the converters 94 and 96 are, depending on the case, alternating-direct current converters or direct current converters. -continuous - or “DC-to-DC converter” in English literature.
La source de génération électrique 26 peut ainsi être basée sur un turbomoteur alimenté par un réservoir de carburant conventionnel, de biocarburant ou d’essence synthétique (aussi connue sous le terme anglophone « synthetic fuel » ou « synfuel >>). Dans un tel cas, les convertisseurs électriques 94 et 96 sont des convertisseurs de courant alternatif-continu. En variante, la source de génération électrique 26 peut être basée sur une source d’énergie à base d’hydrogène, comme une pile à combustible. Dans un tel cas, les convertisseurs électriques 94 et 96 sont des convertisseurs de courant continu-continu. Dans le cadre de l’invention, de telles sources d’énergie sont considérées comme des générateurs d'énergie électrique à combustible. The electrical generation source 26 can thus be based on a turbine engine powered by a tank of conventional fuel, biofuel or synthetic gasoline (also known by the English term “synthetic fuel” or “synfuel”). In such a case, the electrical converters 94 and 96 are alternating-direct current converters. Alternatively, the electrical generation source 26 may be based on a hydrogen-based energy source, such as a fuel cell. In such a case, the electrical converters 94 and 96 are direct-direct current converters. In the context of the invention, such energy sources are considered as fuel-fired electrical energy generators.
La commande d’alimentation 4 est un appareil basse tension agencé pour commander, d’une part, la source de génération électrique 26 et, d’autre part, les commutateurs 36 et 44, ainsi que divers éléments de protection non représentés sur la [Fig. 1 ], The power supply control 4 is a low voltage device arranged to control, on the one hand, the electrical generation source 26 and, on the other hand, the switches 36 and 44, as well as various protection elements not shown on the [ Fig. 1 ],
L’architecture électrique de l’aéronef 2 permet d’avoir une réelle hybridation des batteries 18, 20, 22 et 24, et non une simple juxtaposition. Ainsi, selon les besoins en puissance, les batteries 18, 20, 22 et 24 et la source de génération électrique 26 peuvent fonctionner de concert. Les batteries 18, 20, 22 et 24 sont des batteries conventionnelles dont le fonctionnement est régi par un système de contrôle classique (plus connu sous le sigle anglophone BMS pour « Battery Management System >>). Un tel système permet de réaliser des fonctions telles que la surveillance de paramètres - tension, température, état de charge, état de santé, etc. -, la prévention de tout risque de sortie de la plage de fonctionnement prévue - surtension, surintensité, surchauffe, etc. - ou encore l’optimisation des capacités de la batterie. Dans le contexte de l’invention, aucune autre intelligence, notamment logicielle ou matérielle, n’est nécessaire. Par conséquent, les batteries 18, 20, 22 et 24 sont traitées de manière passive dans le sens où leur intégration ne requiert aucune adaptation particulière en dehors de la manière, détaillée ci-après, dont les batteries 18, 20, 22 et 24 sont reliées aux convertisseurs électriques 94 et 96. Du point de vue du reste de l’architecture électrique de l’aéronef 2, les batteries 18, 20, 22 et 24 sont vues comme de simples tampons d’énergie - au sens ici du terme anglophone « buffer ». Cela va à l’encontre des solutions existantes dans lesquelles : soit un élément est spécifiquement prévu pour optimiser le fonctionnement des batteries et joue un rôle de commande, soit un élément est prévu pour compenser une éventuelle défaillance des batteries, mais en alternance exclusive, c’est-à-dire sans que les batteries et cet élément soient susceptibles de fonctionner simultanément. The electrical architecture of aircraft 2 allows for a real hybridization of batteries 18, 20, 22 and 24, and not a simple juxtaposition. Thus, depending on the power requirements, the batteries 18, 20, 22 and 24 and the electrical generation source 26 can operate in concert. Batteries 18, 20, 22 and 24 are conventional batteries whose operation is governed by a conventional control system (better known by the English acronym BMS for “Battery Management System”). Such a system makes it possible to perform functions such as monitoring parameters - voltage, temperature, state of charge, state of health, etc. -, the prevention of any risk of leaving the intended operating range - overvoltage, overcurrent, overheating, etc. - or even the optimization of battery capacities. In the context of the invention, no other intelligence, in particular software or hardware, is necessary. Consequently, the batteries 18, 20, 22 and 24 are treated passively in the sense that their integration does not require any particular adaptation apart from the manner, detailed below, in which the batteries 18, 20, 22 and 24 are connected to the electrical converters 94 and 96. From the point of view of the rest of the electrical architecture of the aircraft 2, the batteries 18, 20, 22 and 24 are seen as simple energy buffers - in the sense here of the English term “buffer”. This goes against existing solutions in which: either an element is specifically designed to optimize the operation of the batteries and plays a control role, or an element is provided to compensate for a possible battery failure, but in exclusive alternation, c that is to say without the batteries and this element being able to operate simultaneously.
Dans le mode de réalisation illustré sur la [Fig. 1], l’aéronef 2 comprend une unique source de génération électrique, à savoir la source de génération électrique 26. Toutefois, il doit être compris ici que l’aéronef 2 peut comprendre une pluralité de sources de génération électrique. In the embodiment illustrated in [Fig. 1], the aircraft 2 comprises a single electrical generation source, namely the electrical generation source 26. However, it must be understood here that the aircraft 2 can comprise a plurality of electrical generation sources.
À titre d’exemple, la [Fig. 2] représente un mode de réalisation dans lequel l’aéronef 2 comprend deux sources de génération électrique 26 et 28. La source de génération électrique 26 (respectivement 28) comprend un convertisseur électrique 94 (respectivement 96) et un générateur électrique à combustible 98 (respectivement 100). Dans l’exemple de la [Fig. 2], le générateur électrique à combustible 98 (respectivement 100) est un turbomoteur et le convertisseur électrique 94 (respectivement 96) est un convertisseur de courant alternatif-continu. As an example, [Fig. 2] represents an embodiment in which the aircraft 2 comprises two electrical generation sources 26 and 28. The electrical generation source 26 (respectively 28) comprises an electrical converter 94 (respectively 96) and a fuel-fired electrical generator 98 (respectively 96). respectively 100). In the example of [Fig. 2], the fuel-fired electric generator 98 (respectively 100) is a turbine engine and the electric converter 94 (respectively 96) is an alternating-direct current converter.
Typiquement, les générateurs électriques à combustible 98 et 100 peuvent chacun délivrer une puissance de l’ordre de 150 kilowatts (kW) à 100% de leurs capacités respectives. Là encore, chacune des sources de génération électrique 26 et 28 peut être basée sur un turbomoteur alimenté par un réservoir de carburant conventionnel, de biocarburant ou d’essence synthétique. En variante, une source d’énergie alimentée par un réservoir d’hydrogène, comme une pile à combustible, peut être utilisée. Typically, the fuel-fired electric generators 98 and 100 can each deliver power of the order of 150 kilowatts (kW) at 100% of their respective capacities. Here again, each of the electrical generation sources 26 and 28 can be based on a turbine engine powered by a tank of conventional fuel, biofuel or synthetic gasoline. Alternatively, an energy source powered by a hydrogen tank, such as a fuel cell, can be used.
L’architecture électrique globale de l’aéronef 2 a été décrite en référence à la [Fig. 1 ] et à la [Fig. 2], The overall electrical architecture of aircraft 2 has been described with reference to [Fig. 1 ] and [Fig. 2],
Comme détaillé précédemment, l’aéronef 2 comprend au moins une source de génération électrique - une unique source de génération électrique 26 sur la [Fig. 1 ], deux sources de génération électrique 26 et 28 sur la [Fig. 2] - agencée pour alimenter une ou plusieurs sources d’énergie électrique stockée - quatre batteries 18, 20, 22 et 24 sur la [Fig. 1 ] et la [Fig. 2], As detailed previously, the aircraft 2 comprises at least one electrical generation source - a single electrical generation source 26 in [Fig. 1 ], two electrical generation sources 26 and 28 in [Fig. 2] - arranged to power one or more sources of stored electrical energy - four batteries 18, 20, 22 and 24 in [Fig. 1 ] and [Fig. 2],
L’aéronef 2 est un aéronef à source d’énergie hybride et comprend généralement à ce titre plus de batteries que de sources de génération électrique. Par ailleurs, le point de départ de chaque bus électrique de distribution de chaque source de génération électrique est défini par un convertisseur électrique - ici les convertisseurs de courant alternatif-continu 94 et 96 - de sorte que le nombre de convertisseurs électriques est réduit et que le poids de l’aéronef 2 s’en trouve allégé. En d’autres termes, les convertisseurs électriques sont au niveau des sources de génération électrique et non au niveau des batteries. Aircraft 2 is an aircraft with a hybrid energy source and as such generally includes more batteries than electrical generation sources. Furthermore, the starting point of each electrical distribution bus of each electrical generation source is defined by an electrical converter - here the alternating-direct current converters 94 and 96 - so that the number of electrical converters is reduced and that the weight of the aircraft 2 is reduced. In other words, the electrical converters are at the level of the electrical generation sources and not at the level of the batteries.
À titre d’illustration, les architectures électriques respectivement représentées sur la [Fig. 1 ] et la [Fig. 2] ne comprennent que deux convertisseurs électriques 94 et 96 pour quatre batteries 18, 20, 22 et 24. As an illustration, the electrical architectures respectively represented in [Fig. 1 ] and [Fig. 2] only include two electrical converters 94 and 96 for four batteries 18, 20, 22 and 24.
Toutefois, cet avantage relatif au poids de l’aéronef 2 a une contrepartie : les batteries 18, 20, 22 et 24 sont connectées entre elles via la ou les sources de génération électrique 26 et 28. Par conséquent, tout court-circuit survenant au niveau d’une source de génération électrique ou d’une batterie est susceptible de se propager. However, this advantage relating to the weight of the aircraft 2 has a counterpart: the batteries 18, 20, 22 and 24 are connected to each other via the electrical generation source(s) 26 and 28. Consequently, any short circuit occurring at level of an electrical generation source or battery is likely to propagate.
Pour résoudre ce problème, la Demanderesse propose le circuit d’alimentation représenté sur la [Fig. 3]. Dans la suite de la description, on s’intéresse désormais à la manière dont les convertisseurs électriques sont reliés aux batteries. To solve this problem, the Applicant proposes the power supply circuit shown in [Fig. 3]. In the remainder of the description, we now focus on the way in which the electrical converters are connected to the batteries.
La [Fig. 3] illustre un circuit d’alimentation de plusieurs sources d’énergie électrique stockée B1 ,...,BM par plusieurs convertisseurs électriques E1 ,...,EN. Ici, M est un entier naturel supérieur ou égal à 2 correspondant au nombre de sources d’énergie électrique stockée tandis que N est un entier naturel supérieur ou égal 2 correspondant au nombre de convertisseurs électriques. [Fig. 3] illustrates a circuit for supplying several sources of stored electrical energy B1,...,BM by several electrical converters E1,...,EN. Here, M is a natural number greater than or equal to 2 corresponding to the number of sources of stored electrical energy while N is a natural number greater than or equal to 2 corresponding to the number of electrical converters.
On comprend que le circuit d’alimentation décrit ici est une généralisation de la partie de l’architecture électrique de la [Fig. 1] ou de la [Fig. 2] relative aux convertisseurs électriques 94 et 96 et aux batteries 18, 20, 22 et 24. Ainsi, en prenant M = 4 et N = 2, on retrouve la même configuration que celle de la [Fig. 1 ] ou de la [Fig. 2], les sources d’énergie électrique stockée B1 , B2, B3 et B4 correspondant respectivement aux batteries 18, 20, 22 et 24 ; les convertisseurs électriques E1 et E2 correspondant respectivement aux convertisseurs électriques 94 et 96. We understand that the power supply circuit described here is a generalization of the part of the electrical architecture in [Fig. 1] or [Fig. 2] relating to the electrical converters 94 and 96 and the batteries 18, 20, 22 and 24. Thus, by taking M = 4 and N = 2, we find the same configuration as that of [Fig. 1 ] or [Fig. 2], the sources of stored electrical energy B1, B2, B3 and B4 corresponding respectively to batteries 18, 20, 22 and 24; the electrical converters E1 and E2 corresponding respectively to the electrical converters 94 and 96.
Par souci de concision, les source d’énergie électrique stockée B1 ,...,BM sont respectivement appelées batteries B1 ,...,BM ci-après. For the sake of brevity, the stored electrical energy sources B1,...,BM are respectively called batteries B1,...,BM hereinafter.
Les batteries B1 ,...,BM sont réparties en plusieurs groupements G1 ,...,GN de manière à ce que le nombre de groupements G1 ,...,GN soit égal au nombre de convertisseurs électriques E1 ,...,EN. D’une manière générale, et tant que cette condition est vérifiée, chaque groupement peut comprendre une ou plusieurs batteries, et le nombre de batteries peut d’ailleurs varier d’un groupement à l’autre. The batteries B1,...,BM are distributed into several groups G1,...,GN so that the number of groups G1,...,GN is equal to the number of electrical converters E1,..., IN. Generally speaking, and as long as this condition is verified, each group can include one or more batteries, and the number of batteries can also vary from one group to another.
Étant donné que le nombre de groupements G1 ,...,GN est égal au nombre de convertisseurs électriques E1 ,...,EN, il est possible de coupler chaque convertisseur électrique à un groupement. En d’autres termes, une bijection peut être construite entre l’ensemble des convertisseurs électriques E1 ,...,EN et l’ensemble des groupements G1 ,...,GN. Given that the number of groups G1,...,GN is equal to the number of electrical converters E1,...,EN, it is possible to couple each electrical converter to a group. In other words, a bijection can be constructed between the set of electrical converters E1,...,EN and the set of groups G1,...,GN.
La répartition des batteries B1 ,...,BM en groupements permet d’obtenir une isolation efficace entre des batteries de groupements différents. The distribution of batteries B1,...,BM into groups makes it possible to obtain effective isolation between batteries in different groups.
Dans l’exemple de la [Fig. 3], chaque convertisseur électrique E1 ,...,EN est respectivement couplé à un groupement G1 ,...,GN. En particulier, le convertisseur électrique E1 est couplé au groupement G1 tandis que le convertisseur électrique EN est couplé au groupement GN. Les groupements G1 et GN comprennent ici un même nombre P de batteries, où P est un entier naturel non nul. En particulier, le groupement G1 comprend les batteries B1 ,...,BP tandis que le groupement GN comprend les batteries BM-P+1 ,...,BM. In the example of [Fig. 3], each electrical converter E1,...,EN is respectively coupled to a group G1,...,GN. In particular, the electric converter E1 is coupled to the group G1 while the electric converter EN is coupled to the group GN. The groups G1 and GN here include the same number P of batteries, where P is a non-zero natural number. In particular, the G1 group includes the batteries B1,...,BP while the GN group includes the batteries BM-P+1,...,BM.
Comme illustré sur la [Fig. 3], chaque convertisseur électrique E1 ,...,EN est relié à chaque batterie du groupement auquel il est couplé par une jonction 102 respective. Ainsi, le convertisseur électrique E1 est relié à chaque batterie B1 ,...,BP du groupement G1 via une jonction 102 respective tandis que le convertisseur électrique EN est relié à chaque batterie BM-P+1 ,...,BM du groupement GN via une jonction 102 respective. As shown in [Fig. 3], each electrical converter E1,...,EN is connected to each battery of the group to which it is coupled by a respective junction 102. Thus, the electric converter E1 is connected to each battery B1,...,BP of the group G1 via a respective junction 102 while the electric converter EN is connected to each battery BM-P+1,...,BM of the group GN via a respective junction 102.
Par conséquent, chaque groupement comprend autant de jonctions qu’il comprend de batteries. Il y a ainsi P jonctions dans le groupement G1 et P batteries dans le groupement GN. Consequently, each group includes as many junctions as it has batteries. There are thus P junctions in the G1 group and P batteries in the GN group.
Comme illustré sur la [Fig. 4], la jonction 102 est agencée pour fonctionner exclusivement selon trois états possibles : un état unidirectionnel, un état bidirectionnel et un état bloquant. Plus spécifiquement, le fonctionnement de chaque jonction 102 est piloté par la commande d’alimentation 4. As shown in [Fig. 4], the junction 102 is arranged to operate exclusively in three possible states: a unidirectional state, a bidirectional state and a blocking state. More specifically, the operation of each junction 102 is controlled by the power supply control 4.
Dans l’état unidirectionnel, la jonction 102 permet au courant de circuler du convertisseur électrique vers la batterie. Bien entendu, le courant ne peut alors pas circuler dans le sens opposé, c’est-à-dire de la batterie vers le convertisseur électrique. Dans l’état bidirectionnel, la jonction 102 permet au courant de circuler dans les deux sens, à savoir du convertisseur électrique vers la batterie mais aussi de la batterie vers le convertisseur électrique. In the unidirectional state, junction 102 allows current to flow from the electrical converter to the battery. Of course, the current cannot then flow in the opposite direction, that is to say from the battery to the electrical converter. In the bidirectional state, junction 102 allows current to flow in both directions, namely from the electrical converter to the battery but also from the battery to the electrical converter.
Enfin, dans l’état bloquant, la jonction 102 bloque la circulation du courant, dans un sens comme dans l’autre. Finally, in the blocking state, junction 102 blocks the flow of current, in one direction or the other.
Il doit être compris ici que la jonction 102 ne peut fonctionner que selon ces trois états. En particulier, la commande d’alimentation 4 ne peut pas commander la jonction 102 pour fonctionner dans un état dans lequel le courant ne pourrait circuler que de la batterie vers le convertisseur électrique. It must be understood here that junction 102 can only operate in these three states. In particular, the power control 4 cannot control the junction 102 to operate in a state in which current could only flow from the battery to the electrical converter.
La jonction 102 comprend un premier contacteur, un deuxième contacteur et une diode. Junction 102 includes a first contactor, a second contactor and a diode.
La [Fig. 5] illustre un mode de réalisation de la jonction 102. Le premier contacteur 104 est branché en série avec la diode 106. La diode 106 est disposée de sorte que le sens passant va du convertisseur électrique vers la batterie. Le deuxième contacteur 108 est branché en parallèle avec le premier contacteur 104 et la diode 106. [Fig. 5] illustrates an embodiment of the junction 102. The first contactor 104 is connected in series with the diode 106. The diode 106 is arranged so that the forward direction goes from the electrical converter to the battery. The second contactor 108 is connected in parallel with the first contactor 104 and the diode 106.
La jonction 102 est dans l’état unidirectionnel lorsque le premier contacteur 104 est fermé et que le deuxième contacteur 108 est ouvert. La jonction 102 est dans l’état bidirectionnel lorsque le premier contacteur 104 et le deuxième contacteur 108 sont fermés. La jonction 102 est dans l’état bloquant lorsque le premier contacteur 104 et le deuxième contacteur 108 sont ouverts. The junction 102 is in the unidirectional state when the first contactor 104 is closed and the second contactor 108 is open. The junction 102 is in the bidirectional state when the first contactor 104 and the second contactor 108 are closed. Junction 102 is in the blocking state when the first contactor 104 and the second contactor 108 are open.
La position - ouverte ou fermée - de chacun des contacteurs 104 et 108 est contrôlée par la commande d’alimentation 4. The position - open or closed - of each of the contactors 104 and 108 is controlled by the power supply control 4.
En variante, chacun des contacteurs 104 et 108 peut être remplacé par un relais électromécanique. Alternatively, each of the contactors 104 and 108 can be replaced by an electromechanical relay.
Comme détaillé ci-après, le circuit d’alimentation proposé, et notamment l’utilisation des jonctions 102, s’adapte aussi bien au fonctionnement nominal de l’aéronef 2 qu’en cas de défaillance, c’est-à-dire lorsqu’une batterie au moins est indisponible ou lorsqu’un convertisseur électrique au moins est indisponible. La [Fig. 6] illustre un mode de fonctionnement de l’aéronef 2 - ou mode turbo - dans lequel les besoins en puissance des groupes d’entraînement, et plus exactement de leurs moteurs électriques respectifs, sont très élevés au point que les batteries B1 ,...,BM et la ou les sources de génération électrique, donc les convertisseurs électriques E1 ,...,EN, sont sollicitées au maximum de leurs capacités. As detailed below, the proposed power circuit, and in particular the use of junctions 102, adapts both to the nominal operation of the aircraft 2 and in the event of failure, that is to say when at least one battery is unavailable or when at least one electrical converter is unavailable. [Fig. 6] illustrates an operating mode of the aircraft 2 - or turbo mode - in which the power requirements of the drive units, and more precisely of their respective electric motors, are very high to the point that the batteries B1,.. .,BM and the electrical generation source(s), therefore the electrical converters E1,...,EN, are used to the maximum of their capacities.
Plus particulièrement, la [Fig. 6] représente le convertisseur électrique E1 couplé au groupement G1 de batteries B1 ,...,BP. Bien entendu, l’homme du métier comprend que ce qui suit peut s’appliquer à n’importe quel autre groupement.More particularly, [Fig. 6] represents the electric converter E1 coupled to the group G1 of batteries B1,...,BP. Of course, those skilled in the art understand that the following can apply to any other grouping.
La commande d’alimentation 4 commande chaque jonction 102 pour fonctionner selon l’état unidirectionnel. Ainsi, le convertisseur électrique E1 alimente chaque batterie B1 ,...,BP du groupement G1 . En cas de défaillance, par exemple un court-circuit, au niveau d’une des batteries B1 ,...,BP, celle-ci ne peut se propager aux autres batteries B1 ,...,BP puisque le courant généré par un court-circuit est bloqué par chaque jonction 102 à laquelle est reliée la batterie défaillante. Il en est de même dans le cas où la défaillance apparaît au niveau du convertisseur électrique : le courant généré par un court-circuit ne peut circuler d’une batterie vers le convertisseur électrique défaillant. Power control 4 controls each junction 102 to operate in the unidirectional state. Thus, the electrical converter E1 supplies each battery B1,...,BP of the group G1. In the event of a failure, for example a short circuit, at one of the batteries B1,...,BP, this cannot propagate to the other batteries B1,...,BP since the current generated by a short circuit is blocked by each junction 102 to which the faulty battery is connected. It is the same in the case where the failure appears at the level of the electrical converter: the current generated by a short circuit cannot flow from a battery to the faulty electrical converter.
Dans un cas comme dans l’autre, la commande d’alimentation 4 peut ensuite isoler l’élément défaillant. Pour ce faire, la commande d’alimentation 4 commande les jonctions 102 reliées à l’élément défaillant pour les faire passer de l’état unidirectionnel à l’état bloquant. In either case, the power supply control 4 can then isolate the faulty element. To do this, the power supply control 4 controls the junctions 102 connected to the faulty element to make them go from the unidirectional state to the blocking state.
Ce principe est vrai aussi d’un groupement à l’autre. Étant donné que deux batteries appartenant à des groupements différents ne sont pas reliées entre elles, toute défaillance, par exemple un court-circuit, au niveau d’une des deux batteries ne peut se propager à l’autre. Il en est de même pour deux convertisseurs électriques puisqu’ils ne sont reliés à aucune batterie commune.This principle is also true from one group to another. Since two batteries belonging to different groups are not connected to each other, any failure, for example a short circuit, in one of the two batteries cannot propagate to the other. It is the same for two electric converters since they are not connected to any common battery.
Dans le cas, illustré sur la [Fig. 7], où une défaillance apparaît au niveau de la batterie B1 , la commande d’alimentation 4 isole la batterie B1 en faisant passer la jonction 102 via laquelle le convertisseur électrique E1 est relié à la batterie B1 de l’état unidirectionnel à l’état bloquant. Par ailleurs, étant donné qu’une batterie, ici la batterie B1 , n’est plus alimentée, l’énergie électrique qui lui était originellement destinée peut être distribuée aux autres batteries, ici les batteries B2,...,BP. On comprend que le circuit d’alimentation est suffisamment flexible pour mettre en œuvre une allocation dynamique de la puissance et ainsi fournir de l’énergie électrique à une batterie dont les besoins sont plus élevés que ceux des autres. In the case, illustrated in [Fig. 7], where a failure appears at the level of the battery B1, the power supply control 4 isolates the battery B1 by passing the junction 102 via which the electrical converter E1 is connected to the battery B1 from the unidirectional state to the blocking state. Furthermore, given that a battery, here the battery B1 is no longer powered, the electrical energy which was originally intended for it can be distributed to the other batteries, here the batteries B2,...,BP. It is understood that the power supply circuit is sufficiently flexible to implement a dynamic allocation of power and thus provide electrical energy to a battery whose needs are higher than those of the others.
Dans le cas, illustré sur la [Fig. 8], où une défaillance apparaît au niveau du convertisseur électrique E1 , la commande d’alimentation 4 isole le convertisseur électrique E1 en faisant passer toutes les jonctions 102 via lesquelles le convertisseur électrique E1 est relié aux batteries B1 ,...,BP de l’état unidirectionnel à l’état bloquant. Là encore, du fait de l’attribution d’un groupement différent à chaque convertisseur électrique, aucune propagation d’un groupement à l’autre n’est possible. In the case, illustrated in [Fig. 8], where a failure appears at the level of the electrical converter E1, the power supply control 4 isolates the electrical converter E1 by passing all the junctions 102 via which the electrical converter E1 is connected to the batteries B1,...,BP of the unidirectional state to the blocking state. Here again, due to the allocation of a different group to each electrical converter, no propagation from one group to another is possible.
La [Fig. 9] illustre un mode de fonctionnement de l’aéronef 2 - ou mode économie d’énergie - dans lequel aucune puissance n’est requise de la part de la ou des sources de génération électrique, donc des convertisseurs électriques E1 ,...,EN.[Fig. 9] illustrates an operating mode of the aircraft 2 - or energy saving mode - in which no power is required from the electrical generation source(s), therefore electrical converters E1,..., IN.
Plus particulièrement, la [Fig. 9] représente le convertisseur électrique E1 couplé au groupement G1 de batteries B1 ,...,BP. More particularly, [Fig. 9] represents the electric converter E1 coupled to the group G1 of batteries B1,...,BP.
La commande d’alimentation 4 commande chaque jonction 102 pour fonctionner selon l’état bloquant. En cas de défaillance, par exemple un court-circuit, au niveau d’une des batteries B1 ,...,BP ou du convertisseur électrique E1 , celle-ci ne peut se propager puisque le courant généré par un court-circuit est bloqué par chaque jonction 102. Power control 4 controls each junction 102 to operate in the blocking state. In the event of a failure, for example a short circuit, at the level of one of the batteries B1,...,BP or the electrical converter E1, it cannot propagate since the current generated by a short circuit is blocked by each junction 102.
La [Fig. 10] illustre un mode de fonctionnement de l’aéronef 2 - ou mode de charge - dans lequel les besoins en puissance des groupes d’entraînement, et plus exactement de leurs moteurs électriques respectifs, sont faibles au point que les convertisseurs électriques E1 ,...,EN alimentent les groupes d’entraînement en énergie électrique via les batteries B1 ,...,BM tout en chargeant ces dernières.[Fig. 10] illustrates a mode of operation of the aircraft 2 - or charging mode - in which the power requirements of the drive units, and more precisely of their respective electric motors, are low to the point that the electrical converters E1,. ..,EN supply the drive groups with electrical energy via the batteries B1,...,BM while charging the latter.
Plus particulièrement, la [Fig. 10] représente le convertisseur électrique E1 couplé au groupement G1 de batteries B1 ,...,BP. Chaque convertisseur électrique E1 ,...,EN est respectivement associé à une batterie parmi les batteries du groupement G1 ,...,GN auquel il est couplé. More particularly, [Fig. 10] represents the electric converter E1 coupled to the group G1 of batteries B1,...,BP. Each electric converter E1,...,EN is respectively associated with a battery among the batteries of the group G1,...,GN to which it is coupled.
La commande d’alimentation 4 commande chaque jonction 102 de sorte que, au sein de chaque groupement, la jonction 102 entre le convertisseur électrique couplé au groupement et la batterie à laquelle il est associé soit dans l’état unidirectionnel, et que les autres jonctions 102 - c’est-à-dire les jonctions 102 respectives entre le convertisseur électrique et les batteries auxquelles il n’est pas associé - soient dans l’état bloquant. The power supply control 4 controls each junction 102 so that, within each group, the junction 102 between the electrical converter coupled to the group and the battery with which it is associated is in the unidirectional state, and that the other junctions 102 - that is to say the respective junctions 102 between the electrical converter and the batteries with which it is not associated - are in the blocking state.
Lorsque les N batteries associées chacune à un convertisseur électrique sont chargées, les convertisseurs électriques E1 ,...,EN, se voient tous attribuer une nouvelle batterie de leur groupement respectif à charger et ainsi de suite. À l’échelle du groupement G1 , les batteries B1 ,...,BP sont ainsi séquentiellement chargées une à la fois par phase de charge - ou itération. À l’échelle du circuit d’alimentation, les batteries B1 ,...,BM sont séquentiellement chargées N à la fois au maximum par itération. Bien entendu, un convertisseur électrique E1 ,...,EN n’est pas associé à une nouvelle batterie si toutes les batteries du groupement auquel il est couplé sont déjà chargées. When the N batteries each associated with an electrical converter are charged, the electrical converters E1,...,EN, are all assigned a new battery from their respective group to charge and so on. On the scale of the G1 group, the batteries B1,...,BP are thus sequentially charged one at a time per charging phase - or iteration. On the scale of the power circuit, the batteries B1,...,BM are sequentially charged N at a time at most per iteration. Of course, an electric converter E1,...,EN is not associated with a new battery if all the batteries in the group to which it is coupled are already charged.
La [Fig. 10] illustre ainsi une itération dans laquelle le convertisseur électrique E1 est associé à la batterie B1 . [Fig. 10] thus illustrates an iteration in which the electric converter E1 is associated with the battery B1.
Le nombre d’itérations nécessaires pour charger l’ensemble des batteries B1 ,...,BP du groupement G1 est de P. The number of iterations necessary to charge all the batteries B1,...,BP of the group G1 is P.
À l’échelle du circuit d’alimentation, le nombre d’itérations nécessaires pour charger l’ensemble des batteries B1 ,...,BM correspond au nombre de batteries du groupement comprenant le plus grand nombre de batteries. On the scale of the power supply circuit, the number of iterations necessary to charge all the batteries B1,...,BM corresponds to the number of batteries in the group comprising the largest number of batteries.
La sélection, à chaque itération, de la batterie à charger au niveau de chaque groupement - et donc des N batteries à charger au total au niveau du circuit d’alimentation - peut dépendre des niveaux de charge respectifs des batteries B1 ,...,BM, par exemple pour donner la priorité aux batteries dont le niveau de charge est le plus faible ou, à l’inverse, aux batteries dont le niveau de charge est le plus élevé. Par ailleurs, la [Fig. 10] illustre également un autre mode de fonctionnement de l’aéronef 2 - ou mode tampon - dans lequel les besoins en puissance des groupes d’entraînement, et plus exactement de leurs moteurs électriques respectifs, sont faibles, mais dans lequel les batteries B1 ,...,BM n’ont pas besoin d’être chargées. The selection, at each iteration, of the battery to be charged at the level of each group - and therefore of the N batteries to be charged in total at the level of the power circuit - may depend on the respective charge levels of the batteries B1,..., BM, for example to give priority to the batteries with the lowest charge level or, conversely, to the batteries with the highest charge level. Furthermore, [Fig. 10] also illustrates another mode of operation of the aircraft 2 - or buffer mode - in which the power requirements of the drive groups, and more precisely of their respective electric motors, are low, but in which the batteries B1, ...,BM do not need to be loaded.
Les batteries B1 ,...,BM sont traitées de manière passive, comme des tampons d’énergie. En d’autres termes, la puissance fournie par les convertisseurs électriques E1 ,...,EN transite simplement par les batteries B1 ,...,BM pour alimenter les groupes d’entraînement. Batteries B1,...,BM are treated passively, like energy buffers. In other words, the power supplied by the electrical converters E1,...,EN simply passes through the batteries B1,...,BM to power the drive groups.
D’une manière similaire au mode de charge, la commande d’alimentation 4 met en œuvre une ou plusieurs phases d’alimentation - ou itérations. À chaque itération, chaque convertisseur électrique E1 ,...,EN est respectivement associé à une batterie parmi les batteries du groupement G1 ,...,GN auquel il est couplé. La commande d’alimentation 4 commande alors chaque jonction 102 de sorte que la jonction 102 entre un convertisseur électrique et la batterie à laquelle il est associé soit dans l’état unidirectionnel, et que les autres jonctions 102 - c’est-à- dire les jonctions 102 respectives entre un convertisseur électrique et les batteries auxquelles il n’est pas associé - soient dans l’état bloquant. Le mode tampon s’achève lorsque les besoins en puissance des groupes d’entraînement sont satisfaits. In a manner similar to charging mode, power control 4 implements one or more power phases - or iterations. At each iteration, each electric converter E1,...,EN is respectively associated with a battery among the batteries of the group G1,...,GN to which it is coupled. The power supply control 4 then controls each junction 102 so that the junction 102 between an electrical converter and the battery with which it is associated is in the unidirectional state, and that the other junctions 102 - that is to say the respective junctions 102 between an electrical converter and the batteries with which it is not associated - are in the blocking state. Buffer mode ends when the power requirements of the drive units are satisfied.
Dans l’exemple de la [Fig. 10], chaque convertisseur électrique est successivement associé à une batterie. Toutefois, il est possible aussi d’associer, à chaque itération, plusieurs batteries d’un groupement au convertisseur électrique couplé à ce groupement. In the example of [Fig. 10], each electrical converter is successively associated with a battery. However, it is also possible to associate, at each iteration, several batteries from a group with the electrical converter coupled to this group.
Ainsi, dans le cas illustré sur la [Fig. 1 1 ], le convertisseur électrique E1 est associé à un nombre Q de batteries, où Q est un entier naturel strictement supérieur à 1 . En l’occurrence, le convertisseur électrique E1 est associé aux Q premières batteries du groupement G1 , à savoir les batteries B1 ,...,BQ. Thus, in the case illustrated in [Fig. 1 1 ], the electric converter E1 is associated with a number Q of batteries, where Q is a natural number strictly greater than 1. In this case, the electric converter E1 is associated with the first Q batteries of the group G1, namely the batteries B1,...,BQ.
La commande d’alimentation 4 commande chaque jonction 102 de sorte que, au sein de chaque groupement, la jonction 102 entre le convertisseur électrique couplé au groupement et une batterie à laquelle il est associé soit dans l’état bidirectionnel, et que les autres jonctions 102 - c’est-à-dire les jonctions 102 respectives entre le convertisseur électrique et les batteries auxquelles il n’est pas associé - soient dans un état bloquant. The power supply control 4 controls each junction 102 so that, within each group, the junction 102 between the electrical converter coupled to the group and a battery with which it is associated is in the state bidirectional, and that the other junctions 102 - that is to say the respective junctions 102 between the electric converter and the batteries with which it is not associated - are in a blocking state.
Ainsi, dans l’exemple de la [Fig. 1 1 ], la jonction 102 entre chacune des batteries B1 ,...,BQ et le convertisseur électrique E1 est dans l’état bidirectionnel. En revanche, la jonction 102 entre chacune des batteries BQ+1 ,...,BP et le convertisseur électrique E1 est dans l’état bloquant. Thus, in the example of [Fig. 1 1 ], the junction 102 between each of the batteries B1,...,BQ and the electrical converter E1 is in the bidirectional state. On the other hand, the junction 102 between each of the batteries BQ+1,...,BP and the electrical converter E1 is in the blocking state.
Dans le mode de charge de l’aéronef 2, le mode de réalisation de la [Fig. 1 1 ] présente l’avantage de réduire le temps de charge. In the charging mode of the aircraft 2, the embodiment of [Fig. 1 1 ] has the advantage of reducing charging time.
L’état bidirectionnel des jonctions 102 entre un convertisseur électrique et les Q batteries auxquelles il est associé permet d’obtenir un flux croisé - ou « crossflow » en anglais - entre ces Q batteries de manière à ce qu’elles ne soient vues par le convertisseur électrique auxquelles elles sont associées que comme une seule et unique batterie. The bidirectional state of the junctions 102 between an electrical converter and the Q batteries with which it is associated makes it possible to obtain a cross flow - or "crossflow" in English - between these Q batteries so that they are not seen by the electric converter to which they are associated as a single battery.
La conséquence de la bidirectionnalité est que toute défaillance, par exemple un court-circuit, qui se produit au niveau d’une batterie se propage aux Q-1 autres batteries associées au même convertisseur électrique. Cet effet est toutefois circonscrit aux Q batteries et ne se propage pas aux autres batteries du même groupement du fait de l’état bloquant des jonctions 102 par lesquelles ces autres batteries sont reliées au convertisseur électrique. Bien entendu, il n’y a pas non plus de propagation aux batteries des autres groupements. The consequence of bidirectionality is that any failure, for example a short circuit, which occurs at one battery propagates to Q-1 other batteries associated with the same electrical converter. This effect is however limited to the Q batteries and does not propagate to the other batteries of the same group due to the blocking state of the junctions 102 by which these other batteries are connected to the electrical converter. Of course, there is no propagation to the batteries of other groups either.
La configuration des jonctions 102 illustrée sur la [Fig. 11 ] peut également s’appliquer au mode tampon, et pas seulement au mode de charge. The configuration of the junctions 102 illustrated in [Fig. 11 ] can also apply to buffer mode, not just charge mode.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2300537A FR3145145A1 (en) | 2023-01-20 | 2023-01-20 | Aircraft with hybrid energy source and electromechanical distribution and protection junction |
FRFR2300537 | 2023-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024153885A1 true WO2024153885A1 (en) | 2024-07-25 |
Family
ID=86007350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2024/050060 WO2024153885A1 (en) | 2023-01-20 | 2024-01-16 | Hybrid powered aircraft having an electromechanical distribution and protection junction |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3145145A1 (en) |
WO (1) | WO2024153885A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210075331A1 (en) * | 2019-09-06 | 2021-03-11 | Rolls-Royce Plc | Electrical power distribution |
US20210370786A1 (en) * | 2018-07-16 | 2021-12-02 | Safran Electrical & Power | Multi-rotor aircraft comprising a system for propulsion and for non-propulsive electricity generation |
FR3118622A1 (en) * | 2021-01-06 | 2022-07-08 | Ascendance Flight Technologies | Hybrid Power Source Aircraft |
FR3122642A1 (en) * | 2021-05-10 | 2022-11-11 | Ascendance Flight Technologies | Energy management system for aircraft with hybrid energy source comprising at least one rechargeable electricity source and one electricity generation source |
-
2023
- 2023-01-20 FR FR2300537A patent/FR3145145A1/en active Pending
-
2024
- 2024-01-16 WO PCT/FR2024/050060 patent/WO2024153885A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210370786A1 (en) * | 2018-07-16 | 2021-12-02 | Safran Electrical & Power | Multi-rotor aircraft comprising a system for propulsion and for non-propulsive electricity generation |
US20210075331A1 (en) * | 2019-09-06 | 2021-03-11 | Rolls-Royce Plc | Electrical power distribution |
FR3118622A1 (en) * | 2021-01-06 | 2022-07-08 | Ascendance Flight Technologies | Hybrid Power Source Aircraft |
FR3122642A1 (en) * | 2021-05-10 | 2022-11-11 | Ascendance Flight Technologies | Energy management system for aircraft with hybrid energy source comprising at least one rechargeable electricity source and one electricity generation source |
Also Published As
Publication number | Publication date |
---|---|
FR3145145A1 (en) | 2024-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3959139B1 (en) | Electric power generation network for aircraft | |
EP4274753B1 (en) | Aircraft with hybrid energy source | |
WO2018193173A1 (en) | Battery with cell group and conversion module assemblies, for supplying various voltages and carrying out various charging operations | |
EP3586423A1 (en) | Battery with groups of storage cells respectively associated with conversion modules, for supplying voltages of different types | |
WO2021099720A1 (en) | Electric architecture for a hybrid thermal/electric propulsion aircraft and twin-engined aircraft comprising such an architecture | |
EP3849908A2 (en) | Hybrid propulsion assembly for aircraft | |
CA3218594A1 (en) | System for managing power for an aircraft with a hybrid power source comprising at least one rechargeable electricity source and one electricity generating source | |
CA2943474C (en) | Turbine engine rapid reactivation method and system | |
EP3947153B1 (en) | Hybrid propulsion unit for an aircraft | |
EP3861614A1 (en) | Electric architecture for hybrid propulsion | |
WO2024153885A1 (en) | Hybrid powered aircraft having an electromechanical distribution and protection junction | |
WO2024153883A1 (en) | Hybrid powered aircraft having an electromechanical distribution and protection junction | |
WO2024153886A1 (en) | Hybrid powered aircraft having a distribution and protection transistor junction | |
WO2024153884A1 (en) | Aircraft with hybrid power source and with junction having a transistor for distribution and protection | |
EP2965398B1 (en) | Switched supply device for the on-board network of a motor vehicle | |
EP4507964A1 (en) | Aircraft having a hybrid power source | |
WO2023152439A1 (en) | Dc electrical power distribution device, and associated propulsion system and aircraft | |
FR3152498A1 (en) | In-flight charging control device for hybrid aircraft | |
WO2020002820A1 (en) | Onboard energy storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24702395 Country of ref document: EP Kind code of ref document: A1 |