WO2024148867A1 - 一种粉煤灰筛选方法 - Google Patents

一种粉煤灰筛选方法 Download PDF

Info

Publication number
WO2024148867A1
WO2024148867A1 PCT/CN2023/121938 CN2023121938W WO2024148867A1 WO 2024148867 A1 WO2024148867 A1 WO 2024148867A1 CN 2023121938 W CN2023121938 W CN 2023121938W WO 2024148867 A1 WO2024148867 A1 WO 2024148867A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrected
control amount
airflow
powder
screening
Prior art date
Application number
PCT/CN2023/121938
Other languages
English (en)
French (fr)
Inventor
李建国
郭言亮
张志�
荆涛
张峰
郝瑞波
王泉城
史为永
Original Assignee
华能济宁运河发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能济宁运河发电有限公司 filed Critical 华能济宁运河发电有限公司
Publication of WO2024148867A1 publication Critical patent/WO2024148867A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/04Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/02Arrangement of air or material conditioning accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present application relates to the technical field of powder screening, and more specifically, to a fly ash screening method.
  • the high-efficiency eddy current powder concentrator is a product developed by our company based on the international advanced powder concentrator technology and the aerodynamic analysis method.
  • the product integrates the material and gas circuits, has a simple system configuration and low cost, and can greatly increase the output of the mill system by 40%-50%. It has a reasonable internal structure, high powder concentrator efficiency and obvious energy-saving effect. It is suitable for drying and grinding systems and wind-sweeping grinding systems, and can also be used in the classification system of non-metallic ore powders.
  • Fly ash is the fine ash collected from the flue gas after coal combustion, and is the main solid waste discharged by coal-fired power plants.
  • the earliest comprehensive utilization of fly ash in my country was used to produce building materials.
  • the main utilization methods include as cement and concrete admixtures, making fly ash sintered bricks, unburned bricks, preparing soil conditioners and fly ash synthetic flocculants, etc., which are especially suitable for preparing cement and concrete.
  • the eddy current powder classifier can perform multi-stage powder selection and eliminate the interference of coarse particles. Therefore, the classification accuracy is extremely high and the sorting efficiency is higher. However, in the prior art, the powder selection accuracy requirements are high, and the corresponding operating parameters of the eddy current powder classifier cannot be accurately controlled, resulting in poor powder selection effect.
  • the present invention provides a fly ash screening method to solve the technical problem of poor screening effect of eddy current powder separator in the prior art.
  • the method is applied to the eddy current powder separator, and the method comprises:
  • the first screening influencing quantity is obtained, and the first screening influencing quantity includes powder density, powder particle size and first airflow error.
  • the first control quantity is corrected in three dimensions according to the powder density, powder particle size and first airflow error to obtain a corrected first control quantity;
  • the second screening influencing quantity is obtained, and the second screening influencing quantity includes the guide blade area, the cage rotor volume and the second airflow error.
  • the second control quantity is corrected in three dimensions according to the guide blade area, the cage rotor volume and the second airflow error to obtain a corrected second control quantity;
  • the first airflow error is the difference between the real-time airflow velocity and the specified airflow velocity at the first stage screening position
  • the second airflow error is the difference between the real-time airflow velocity and the specified airflow velocity at the second stage screening position.
  • the first control amount and the second control amount are corrected according to the target granularity, including:
  • the target granularity includes a first target granularity and a second target granularity.
  • the first controlled quantity is corrected based on the first target granularity to obtain the second controlled quantity.
  • the second controlled quantity is corrected based on the second target granularity to obtain the second controlled quantity.
  • outputting a corrected first control amount and a corrected second control amount includes:
  • the first controlled variable includes the rotation speed of the spreading disc and the wind speed of the fan
  • the second controlled variable includes the rotation speed of the rotor and the wind speed of the fan
  • the rotor speed and the fan speed are obtained and controlled.
  • the first control amount is corrected in three dimensions according to the powder density, the powder particle size and the first airflow error, including:
  • the correction order is determined according to the influence of powder density, powder particle size and the first airflow error, and the first control amount is corrected three times in sequence according to the correction order according to the influence of powder density, powder particle size and the first airflow error.
  • the first control amount is corrected in three dimensions according to the powder density, the powder particle size and the first airflow error, and further includes:
  • the compensation value for each time is determined according to the corrected first control amount and the corresponding first preset compensation table, and the next correction is performed based on the corrected first control amount and the current compensation value.
  • the first control amount is corrected three times in sequence according to the powder density, the powder particle size and the influence of the first airflow error in the correction order, including:
  • Corresponding correction coefficients are determined according to the powder density, the powder particle size and the magnitude of the influence of the first airflow error, and the first control amount is corrected based on the correction coefficients.
  • a three-dimensional correction is performed on the second control variable according to the guide blade area, the cage rotor volume and the second airflow error, including:
  • the correction order is determined according to the guide blade area, the cage rotor volume and the magnitude of the influence of the second airflow error, and the second control quantity is corrected three times in sequence according to the correction order according to the guide blade area, the cage rotor volume and the magnitude of the influence of the second airflow error.
  • the second control amount is corrected in three dimensions according to the guide blade area, the cage rotor volume and the second airflow error, further comprising:
  • the compensation value for each time is determined according to the corrected first control amount and the corresponding second preset compensation table, and the next correction is performed based on the corrected first control amount and the current compensation value.
  • the second control amount is corrected three times in sequence according to the correction order according to the guide blade area, the cage rotor volume and the influence of the second airflow error, including:
  • Corresponding correction coefficients are determined according to the guide vane area, the cage rotor volume and the magnitude of the influence of the second airflow error, and the second control variable is corrected based on the correction coefficients.
  • the first screening influence quantity is obtained in the first stage of material screening, and the first screening influence quantity includes powder density, powder particle size and first airflow error.
  • the first control quantity is corrected in three dimensions according to the powder density, powder particle size and first airflow error to obtain a first corrected first control quantity;
  • the second screening influence quantity is obtained in the second stage of material screening, and the second screening influence quantity includes the guide blade area, cage rotor volume and second airflow error.
  • the second control quantity is corrected in three dimensions according to the guide blade area, cage rotor volume and second airflow error to obtain a second corrected second control quantity;
  • the target particle size is obtained, and the first control quantity and the second control quantity are corrected according to the target particle size, and the corrected first control quantity and the second control quantity are output.
  • the present application improves the control accuracy of the eddy current powder separator by making a three-dimensional correction to the control quantity according to multiple screening influencing parameters, that is, performing sequence and compensation value correction, thereby ensuring the powder selection effect and improving the output rate.
  • FIG. 1 shows a schematic flow chart of a fly ash screening method according to an embodiment of the present invention.
  • An embodiment of the present application provides a fly ash screening method, which is applied to a vortex current classifier.
  • a fly ash screening method which is applied to a vortex current classifier.
  • the working principle of the vortex current classifier is explained here.
  • variable speed motor drives the main shaft to rotate through the transmission device.
  • the material enters the center of the powder selection chamber through the feed port located at the upper part of the powder selection chamber, and then falls onto the scattering plate at the lower part of the powder selection chamber that rotates with the main shaft through a special drop pipe.
  • the logistics are evenly scattered all around.
  • the high-speed rotating airflow generated by the external circulating fan the high-speed scattered materials are strongly dispersed.
  • the coarse and heavy particles (d>d1 ⁇ m) in the material are thrown to the inner wall of the powder selection chamber under the action of inertial centrifugal force.
  • the dust-laden airflow is further selected by the strong and stable plane vortex formed by the rotating cage rotor, because the inertial centrifugal force generated by the coarse particles is greater than the centripetal suction of the vortex, the coarse particles are thrown to the surrounding vertical guide blades, lose kinetic energy after impact, fall into the medium coarse powder cone, and are discharged through the medium coarse powder lock valve.
  • the fine powder (d ⁇ d2mm) that meets the requirements passes through the cage and enters its interior, and enters the separator arranged around the powder selection chamber with the circulating air, and is collected to form the finished fine powder.
  • d2 is less than d1, and the specific value is set according to the actual situation.
  • the method comprises the following steps:
  • Step S1 obtaining the first screening influencing quantity in the first stage screening of materials, the first screening influencing quantity including powder density, powder particle size and first airflow error, performing three-dimensional correction on the first control quantity according to the powder density, powder particle size and first airflow error to obtain a corrected first control quantity.
  • the process of screening materials by the spreading disc and the circulating fan is set as the first stage screening
  • the process of screening materials by the cage rotor is set as the second stage screening.
  • the first control amount is corrected in three dimensions according to the powder density, powder particle size and the first airflow error.
  • the three-dimensional correction is performed in a determined order and in combination with the compensation value. Since correcting the three at the same time may result in a poor correction effect, the corrections are performed in sequence according to the determined order.
  • the first control amount is corrected in three dimensions according to the powder density, powder particle size and the first airflow error, including: obtaining corresponding weights according to the powder density, powder particle size and the first airflow error, and obtaining corresponding influence amounts according to the powder density, powder particle size, the first airflow error and the corresponding weights; determining a correction order according to the magnitude of the influence amounts of the powder density, powder particle size and the first airflow error, and performing three corrections on the first control amount in sequence according to the correction order according to the magnitude of the influence amounts of the powder density, powder particle size and the first airflow error.
  • the first control quantity is corrected in three dimensions according to the powder density, powder particle size and the first airflow error, and also includes: after each correction, determining each compensation value according to the corrected first control quantity and the corresponding first preset compensation table, and performing the next correction based on the corrected first control quantity and the current compensation value.
  • the first control quantity is corrected three times in accordance with the correction order according to the powder density, powder particle size and the magnitude of the influence of the first airflow error, including: determining corresponding correction coefficients according to the powder density, powder particle size and the magnitude of the influence of the first airflow error, and correcting the first control quantity based on the correction coefficients.
  • the first control amount is corrected in three dimensions according to the powder density, powder particle size and the first airflow error.
  • the specific process is as follows:
  • the first control quantity is the initial control quantity, which can also be understood as the specified control quantity.
  • the compensation value is obtained according to the corrected first control quantity and the first preset compensation table.
  • Each first control quantity interval value in the first preset compensation table corresponds to a compensation value. The compensation value is used to compensate the value after each correction, so as to facilitate the corresponding correction next time and reduce the error.
  • the influence of powder particle size is the largest, the influence of powder density is the second largest, and the influence of the first airflow error is the smallest. That is, the powder particle size is corrected first, then the powder density is corrected, and then the first airflow error is corrected.
  • the sum of the corrected value of the powder particle size plus the compensation value is set as the first quantity, the powder density is corrected on the basis of the first quantity, and the sum of the corrected value of the powder density plus the compensation value is set as the second quantity, and the first airflow error is corrected on the basis of the second quantity, and the sum of the corrected value of the first airflow error plus the compensation value is set as the third quantity.
  • the correction coefficient is determined by the influence of the three, which is:
  • the first preset correction coefficient F1 is determined as the correction coefficient, and the corrected first control amount is H*F1;
  • the second preset correction coefficient F2 is determined as the correction coefficient, and the corrected first control amount is H*F2;
  • the third preset correction coefficient F3 is determined as the correction coefficient, and the corrected first control amount is H*F3;
  • the fourth preset correction coefficient F4 is determined as the correction coefficient, and the corrected first control amount is H*F4.
  • the compensation value is obtained from the compensation value table according to the size of H*F0, and H*F0+compensation value is the first quantity.
  • the first quantity is set to H1, and the correction coefficient array G0 (G1, G2, G3, G4) is preset, wherein G1, G2, G3, G4 are all preset values, and 0.8 ⁇ G1 ⁇ G2 ⁇ G3 ⁇ G4 ⁇ 1.2;
  • the first preset correction coefficient G1 is determined as the correction coefficient, and the corrected control amount is H1*G1;
  • the second preset correction coefficient G2 is determined as the correction coefficient, and the corrected control amount is H1*G2;
  • the third preset correction coefficient G3 is determined as the correction coefficient, and the corrected control amount is H1*G3;
  • the fourth preset correction coefficient G4 is determined as the correction coefficient, and the corrected control amount is H1*G4.
  • the first airflow error is set to C, and a first airflow error array C0 (C1, C2, C3, C4) is preset, wherein C1, C2, C3, C4 are all preset values, and C1 ⁇ C2 ⁇ C3 ⁇ C4;
  • the second quantity is set to H2, and the correction coefficient array J0 (J1, J2, J3, J4) is preset, wherein J1, J2, J3, J4 are all preset values, and 0.8 ⁇ J1 ⁇ J2 ⁇ J3 ⁇ J4 ⁇ 1.2;
  • the first preset correction coefficient J1 is determined as the correction coefficient, and the corrected control amount is J1*H2;
  • the second preset correction coefficient J2 is determined as the correction coefficient, and the corrected control amount is J2*H2;
  • the third preset correction coefficient J3 is determined as the correction coefficient, and the corrected control amount is J3*H2;
  • the fourth preset correction coefficient J4 is determined as the correction coefficient, and the corrected control amount is J4*H2.
  • Step S2 obtaining the second screening influencing quantity in the second stage screening of the material, the second screening influencing quantity including the guide blade area, the cage rotor volume and the second airflow error, performing three-dimensional correction on the second control quantity according to the guide blade area, the cage rotor volume and the second airflow error to obtain a corrected second control quantity.
  • the guide blade area, the cage rotor volume and the second airflow error will affect the powder selection effect of the second stage screening, and need to be corrected.
  • the correction steps are the same as S1.
  • the second control quantity is corrected in three dimensions according to the guide blade area, the cage rotor volume and the second airflow error, including: obtaining corresponding weights according to the guide blade area, the cage rotor volume and the second airflow error, and obtaining corresponding influence quantities according to the guide blade area, the cage rotor volume, the second airflow error and the corresponding weights; determining a correction order according to the magnitude of the influence quantities of the guide blade area, the cage rotor volume and the second airflow error, and performing three corrections on the second control quantity in sequence according to the correction order according to the magnitude of the influence quantities of the guide blade area, the cage rotor volume and the second airflow error.
  • the second control quantity is corrected in three dimensions according to the guide blade area, the cage rotor volume and the second airflow error, and also includes: after each correction, determining each compensation value according to the corrected first control quantity and the corresponding second preset compensation table, and performing the next correction based on the corrected first control quantity and this compensation value.
  • the second control quantity is corrected three times in a correction order according to the guide blade area, the cage rotor volume, and the magnitude of the influence of the second airflow error, including: determining corresponding correction coefficients according to the guide blade area, the cage rotor volume, and the magnitude of the influence of the second airflow error, and correcting the second control quantity based on the correction coefficients.
  • Step S3 obtain the target particle size, correct the first control amount and the second control amount according to the target particle size, and output the corrected first control amount and the second control amount; wherein the first airflow error is the difference between the real-time airflow velocity at the first stage screening position and the specified airflow velocity, and the second airflow error is the difference between the real-time airflow velocity at the second stage screening position and the specified airflow velocity.
  • the first control amount and the second control amount are both composite amounts.
  • the first control amount includes the rotation speed of the spreading plate and the wind speed of the fan
  • the second control amount includes the rotor rotation speed and the wind speed of the fan.
  • the target particle size is the particle size of the required powder.
  • the relationship between the first stage screening and the second stage screening is that the powder after the first stage screening enters the second stage screening, that is, the more it is screened, the finer it is. It is necessary to modify the first control amount and the second control amount according to the screening requirements of each stage to meet the screening requirements.
  • a first control quantity and a second control quantity are corrected according to the target granularity, including: the target granularity includes a first target granularity and a second target granularity, the first control quantity is corrected based on the first target granularity to obtain the first control quantity, and the second control quantity is corrected based on the second target granularity to obtain the second control quantity.
  • the first target particle size is greater than the second target particle size.
  • the first control amount is corrected based on the first target particle size, specifically:
  • a correction coefficient array P0 (P1, P2, P3, P4) of the first control amount is preset, wherein P1, P2, P3, P4 are all preset values, and 0.8 ⁇ P1 ⁇ P2 ⁇ P3 ⁇ P4 ⁇ 1.2;
  • the first controlled variable is set as L, and a correction coefficient of the first controlled variable is determined according to the relationship between the first target particle size and each preset first target particle size, and the first controlled variable is corrected;
  • D1 ⁇ D ⁇ D2 determine the second preset correction coefficient P2 of the first control amount to be modified as the correction coefficient of the first control amount to be modified, and the second correction coefficient of the first control amount to be modified is L*P2;
  • D2 ⁇ D ⁇ D3 determine the third preset correction coefficient P3 of the first control amount to be modified as the correction coefficient of the first control amount to be modified, and the second control amount to be modified is L*P3;
  • the fourth preset correction coefficient P4 of the first controlled variable is determined as the correction coefficient of the first controlled variable, and the second controlled variable is L*P4.
  • a corrected first control quantity and a corrected second control quantity are output, including: the first control quantity includes the spreader tray speed and the fan speed, and the second control quantity includes the rotor speed and the fan speed; the spreader tray speed and the fan speed are obtained and controlled based on the second corrected first control quantity and the first preset allocation ratio; the rotor speed and the fan speed are obtained and controlled based on the second corrected second control quantity and the second preset allocation ratio.
  • the first control amount and the second control amount of the second repair need to be converted into specific control parameters
  • the first preset allocation ratio is the ratio corresponding to the rotor speed and the fan speed.
  • the second preset allocation ratio is the ratio corresponding to the rotor speed and the fan speed.
  • the first screening influence quantity is obtained in the first stage of material screening, and the first screening influence quantity includes powder density, powder particle size and first airflow error.
  • the first control quantity is corrected in three dimensions according to the powder density, powder particle size and first airflow error to obtain a first corrected first control quantity;
  • the second screening influence quantity is obtained in the second stage of material screening, and the second screening influence quantity includes the guide blade area, cage rotor volume and second airflow error.
  • the second control quantity is corrected in three dimensions according to the guide blade area, cage rotor volume and second airflow error to obtain a second corrected second control quantity;
  • the target particle size is obtained, and the first control quantity and the second control quantity are corrected according to the target particle size, and the corrected first control quantity and the second control quantity are output.
  • the present application improves the control accuracy of the eddy current powder separator by making a three-dimensional correction to the control quantity according to multiple screening influencing parameters, that is, performing sequence and compensation value correction, thereby ensuring the powder selection effect and improving the output rate.
  • the present invention can be implemented by hardware, or by software plus a necessary general hardware platform.
  • the technical solution of the present invention can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each implementation scenario of the present invention.
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computer device which can be a personal computer, a server, or a network device, etc.

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

一种粉煤灰筛选方法,涉及粉料筛选技术领域,包括在物料第一阶段筛选中获取第一筛选影响量,第一筛选影响量包括粉密度、粉粒度和第一气流误差,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,得到一修第一控制量;在物料第二阶段筛选中获取第二筛选影响量,第二筛选影响量包括导向叶片面积、笼形转子体积和第二气流误差,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,得到一修第二控制量;获取目标粒度,根据目标粒度修正一修第一控制量和一修第二控制量,并输出修正后的一修第一控制量和一修第二控制量。从而提高涡流选粉机的控制精度,保证选粉效果,提升了产出率。

Description

一种粉煤灰筛选方法 技术领域
本申请涉及粉料筛选技术领域,更具体地,涉及一种粉煤灰筛选方法。
背景技术
高效涡流选粉机是我公司在借鉴国际先进选粉技术基础上,采用航空空气动力学分析方法,自行研制开发出的产品。该产品料气路合一,系统配置简单、成本低廉,能大幅度提高磨机系统40%-50%产量。其内部结构合理,选粉效率高、节能效果明显。适用于烘干粉磨系统及风扫粉磨系统,也可用于非金属矿石粉料的分级系统。
粉煤灰是粉煤灰是从煤炭燃烧后的烟气中收捕下来的细灰,是燃煤电厂排出的主要固体废物。我国粉煤灰综合利用最早用于生产建筑材料,主要利用途径有作为水泥、混凝土掺合料,制作粉煤灰烧结砖、免烧砖,配制土壤改良剂和粉煤灰合成絮凝剂等,尤其适合配制水泥和混凝土。
涡流选粉机能进行多级选粉,排除粗颗粒的干扰,因此分级精度特高,分选效率更高,但是现有技术中,选粉精度要求较高,不能准确控制涡流选粉机的对应运行参数,导致选粉效果差。
因此,如何提高筛选粉的准确性,是目前有待解决的技术问题。
发明内容
本发明提供一种粉煤灰筛选方法,用以解决现有技术中涡流选粉机筛选效果差的技术问题。该方法应用于涡流选粉机中,该方法包括:
在物料第一阶段筛选中获取第一筛选影响量,第一筛选影响量包括粉密度、粉粒度和第一气流误差,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,得到一修第一控制量;
在物料第二阶段筛选中获取第二筛选影响量,第二筛选影响量包括导向叶片面积、笼形转子体积和第二气流误差,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,得到一修第二控制量;
获取目标粒度,根据目标粒度修正一修第一控制量和一修第二控制量,并输出修正后的一修第一控制量和一修第二控制量;
其中,第一气流误差为第一阶段筛选位置处的实时气流流速和规定气流流速之差,第二气流误差为第二阶段筛选位置处的实时气流流速和规定气流流速之差。
本申请一些实施例中,根据目标粒度修正一修第一控制量和一修第二控制量,包括:
所述目标粒度包括第一目标粒度和第二目标粒度,基于第一目标粒度修正一修第一控制量,得到二修第一控制量,基于第二目标粒度修正二修第二控制量,得到二修第二控制量。
本申请一些实施例中,输出修正后的一修第一控制量和一修第二控制量,包括:
第一控制量包括撒料盘转速和风机风速,第二控制量包括转子转速和风机风速;
基于二修第一控制量和第一预设分配比得到并控制撒料盘转速和风机风速;
基于二修第二控制量和第二预设分配比得到并控制转子转速和风机风速。
本申请一些实施例中,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,包括:
根据粉密度、粉粒度和第一气流误差得到各自对应的权重,根据粉密度、粉粒度、第一气流误差和各自对应的权重得到对应的影响量;
根据粉密度、粉粒度和第一气流误差的影响量大小确定修正顺序,按照修正顺序根据粉密度、粉粒度和第一气流误差的影响量大小依次对第一控制量进行三次修正。
本申请一些实施例中,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,还包括:
在每一次修正后,根据修正后的第一控制量和对应的第一预设补偿表确定每一次的补偿值,基于修正后的第一控制量和此次的补偿值进行下一次修正。
本申请一些实施例中,按照修正顺序根据粉密度、粉粒度和第一气流误差的影响量大小依次对第一控制量进行三次修正,包括:
根据粉密度、粉粒度和第一气流误差的影响量大小分别确定对应修正系数,基于修正系数修正第一控制量。
本申请一些实施例中,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,包括:
根据导向叶片面积、笼形转子体积和第二气流误差得到各自对应的权重,根据导向叶片面积、笼形转子体积、第二气流误差和各自对应的权重得到对应的影响量;
根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小确定修正顺序,按照修正顺序根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小依次对第二控制量进行三次修正。
本申请一些实施例中,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,还包括:
在每一次修正后,根据修正后的第一控制量和对应的第二预设补偿表确定每一次的补偿值,基于修正后的第一控制量和此次的补偿值进行下一次修正。
本申请一些实施例中,按照修正顺序根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小依次对第二控制量进行三次修正,包括:
根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小分别确定对应的修正系数,基于修正系数修正第二控制量。
通过应用以上技术方案,在物料第一阶段筛选中获取第一筛选影响量,第一筛选影响量包括粉密度、粉粒度和第一气流误差,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,得到一修第一控制量;在物料第二阶段筛选中获取第二筛选影响量,第二筛选影响量包括导向叶片面积、笼形转子体积和第二气流误差,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,得到一修第二控制量;获取目标粒度,根据目标粒度修正一修第一控制量和一修第二控制量,并输出修正后的一修第一控制量和一修第二控制量。本申请通过根据多个筛选影响参数对控制量进行三维修正,即进行顺序、补偿值修正,从而提高涡流选粉机的控制精度,保证选粉效果,提升了产出率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地 ,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例提出的一种粉煤灰筛选方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种粉煤灰筛选方法,应用于涡流选粉机中,为了更好的理解,在此说明涡流选粉机的工作原理。
高效涡流式选粉机工作时,可变速电机通过传动装置带动主轴转动,物料通过设在选粉室上部的进料口进入选粉室中心,再通过专用落料管落到选粉室下部随主轴转动的撒料盘上,物流在高速旋转撒料盘的作用下,向四周均匀撒出,在外界循环风机产生的高速旋转气流作用下对高速抛撒的物料进行强力分散,物料中的粗重颗粒(d>d1μm)受到惯性离心力的作用被甩向选粉室内壁面,碰撞后失去动能沿壁面滑下落到粗粉锥中,其余物料被旋转气流吹起继续上升,经过大风叶区时又有一部分粗颗粒被分选出落入粗粉锥中。
被撒料盘和大风叶两次分选后的物料(d<d1μm)继续上升进入分级区:平面涡流分级区。含尘气流在旋转的笼形转子形成的强烈而稳定的平面涡流作用下,使不符合成品要求的粗粉进一步被选出,因粗颗粒产生的惯性离心力要大于涡流的向心吸力,粗颗粒被抛向周围的立式导向叶片,撞击后失去动能,落到中粗粉锥中,经中粗粉锁风阀排除。符合要求的细粉(d<d2mm)穿过笼子进入其内部,随循环风进入布置在选粉室四周的分离器中,被收集形成成品细粉。其中,d2小于d1,具体值根据实际情况设定。
如图1所示,该方法包括以下步骤:
步骤S1,在物料第一阶段筛选中获取第一筛选影响量,第一筛选影响量包括粉密度、粉粒度和第一气流误差,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,得到一修第一控制量。
本实施例中,设定撒料盘和循环风机对物料进行筛选的过程为第一阶段筛选,笼形转子对物料进行筛选的过程为第二阶段筛选。第一阶段筛选中,粉密度、粉粒度和第一气流误差均会影响设备的正常筛选,需要据此进行修正。获取第一筛选影响量的手段或方式并不限定。根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,此处三维修正为按照确定顺序、并结合补偿值依次进行修正。因三者同时修正反而可能导致修正效果较差,所以按照确定顺序依次进行修正。
为了提高修正的可靠性,本申请一些实施例中,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,包括:根据粉密度、粉粒度和第一气流误差得到各自对应的权重,根据粉密度、粉粒度、第一气流误差和各自对应的权重得到对应的影响量;根据粉密度、粉粒度和第一气流误差的影响量大小确定修正顺序,按照修正顺序根据粉密度、粉粒度和第一气流误差的影响量大小依次对第一控制量进行三次修正。
本申请一些实施例中,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,还包括:在每一次修正后,根据修正后的第一控制量和对应的第一预设补偿表确定每一次的补偿值,基于修正后的第一控制量和此次的补偿值进行下一次修正。
本申请一些实施例中,按照修正顺序根据粉密度、粉粒度和第一气流误差的影响量大小依次对第一控制量进行三次修正,包括:根据粉密度、粉粒度和第一气流误差的影响量大小分别确定对应修正系数,基于修正系数修正第一控制量。
本实施例中,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,具体过程为:
(1)根据粉密度、粉粒度和第一气流误差三者大小,确定对应的权重,根据权重和密度、粉粒度、第一气流误差得到对应的影响量;
(2)根据三者对应的影响量大小确定修正顺序,此处选择从大到小,即影响力较大的先修正,影响力较小的后修正;
(3)根据三者对应的影响量大小确定修正系数,根据修正系数对第一控制量进行修正,此时的第一控制量为初始控制量也可以理解为规定的控制量。每次修正后,根据修正后的第一控制量大小和第一预设补偿表得到补偿值,第一预设补偿表(包括粉密度、粉粒度和第一气流误差的三个补偿表)中每个第一控制量区间值对应有一个补偿值,补偿值用于补偿每次修正后的值,方便下次进行对应修正,用于减少误差。
例如,粉粒度的影响量最大,粉密度的影响量次之,第一气流误差的影响量最小。即先进行粉粒度的修正,再进行粉密度的修正,再进行第一气流误差的修正。设定粉粒度修正后的值加上补偿值的和为第一量,在第一量的基础上进行粉密度的修正,粉密度修正后的值加上补偿值的和为第二量,在第二量的基础上进行第一气流误差的修正,第一气流误差修正后的值加上补偿值的和为第三量。
需要注意的是,三次修正的补偿值并不相同。
三者对应的影响量大小确定修正系数,具体为:
设定粉粒度为A,预设粉粒度数组A0(A1,A2,A3,A4),其中,A1,A2,A3,A4均为预设值,且A1<A2<A3<A4;
设定初始控制量为H,预设修正系数数组F0(F1,F2,F3,F4),其中,F1,F2,F3,F4均为预设值,且0.8<F1<F2<F3<F4<1.2;
根据粉粒度和各个预设密度之间的关系,确定修正系数,对第一控制量进行修正;
若A<A1,确定第一预设修正系数F1作为修正系数,修正后的第一控制量为H*F1;
若A1≤A<A2,确定第二预设修正系数F2作为修正系数,修正后的第一控制量为H*F2;
若A2≤A<A3,确定第三预设修正系数F3作为修正系数,修正后的第一控制量为H*F3;
若A3≤A<A4,确定第四预设修正系数F4作为修正系数,修正后的第一控制量为H*F4。
根据H*F0的大小在补偿值表中得到补偿值,H*F0+补偿值即为第一量。
设定粉密度为B,预设粉密度数组B0(B1,B2,B3,B4),其中,B1,B2,B3,B4均为预设值,且B1<B2<B3<B4;
设定第一量为H1,预设修正系数数组G0(G1,G2,G3,G4),其中,G1,G2,G3,G4均为预设值,且0.8<G1<G2<G3<G4<1.2;
根据粉密度与各个预设粉密度之间的关系,确定修正系数,对第一量进行修正;
若B<B1,确定第一预设修正系数G1作为修正系数,修正后的控制量为H1*G1;
若B1≤B<B2,确定第二预设修正系数G2作为修正系数,修正后的控制量为H1*G2;
若B2≤B<B3,确定第三预设修正系数G3作为修正系数,修正后的控制量为H1*G3;
若B3≤B<B4,确定第四预设修正系数G4作为修正系数,修正后的控制量为H1*G4。
根据H1*G0在补偿表中找到补偿值,H1*G0+补偿值即为第二量;
设定第一气流误差为C,预设第一气流误差数组C0(C1,C2,C3,C4),其中,C1,C2,C3,C4均为预设值,且C1<C2<C3<C4;
设定第二量为H2,预设修正系数数组J0(J1,J2,J3,J4),其中,J1,J2,J3,J4均为预设值,且0.8<J1<J2<J3<J4<1.2;
根据第一气流误差与各个预设第一气流误差之间的关系,确定修正系数,对第二量进行修正;
若C<C1,确定第一预设修正系数J1作为修正系数,修正后的控制量为J1*H2;
若C1≤C<C2,确定第二预设修正系数J2作为修正系数,修正后的控制量为J2*H2;
若C2≤C<C3,确定第三预设修正系数J3作为修正系数,修正后的控制量为J3*H2;
若C3≤C<C4,确定第四预设修正系数J4作为修正系数,修正后的控制量为J4*H2。
根据H2*J0在补偿表中找到补偿值,H2*J0+补偿值即为第三量,即一修第一控制量。
步骤S2,在物料第二阶段筛选中获取第二筛选影响量,第二筛选影响量包括导向叶片面积、笼形转子体积和第二气流误差,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,得到一修第二控制量。
本实施例中,导向叶片面积、笼形转子体积和第二气流误差均会影响第二阶段筛选的选粉效果,需要对其进行修正,修正步骤同S1。
为了进一步提高修正的可靠性,本申请一些实施例中,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,包括:根据导向叶片面积、笼形转子体积和第二气流误差得到各自对应的权重,根据导向叶片面积、笼形转子体积、第二气流误差和各自对应的权重得到对应的影响量;根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小确定修正顺序,按照修正顺序根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小依次对第二控制量进行三次修正。
本申请一些实施例中,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,还包括:在每一次修正后,根据修正后的第一控制量和对应的第二预设补偿表确定每一次的补偿值,基于修正后的第一控制量和此次的补偿值进行下一次修正。
本申请一些实施例中,按照修正顺序根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小依次对第二控制量进行三次修正,包括:根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小分别确定对应的修正系数,基于修正系数修正第二控制量。
本实施例中,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正的具体步骤同S1,在此不再赘述。
步骤S3,获取目标粒度,根据目标粒度修正一修第一控制量和一修第二控制量,并输出修正后的一修第一控制量和一修第二控制量;其中,第一气流误差为第一阶段筛选位置处的实时气流流速和规定气流流速之差,第二气流误差为第二阶段筛选位置处的实时气流流速和规定气流流速之差。
本实施例中,第一控制量和第二控制量均为复合量,第一控制量包括撒料盘转速和风机风速,第二控制量包括转子转速和风机风速。目标粒度为所需粉的粒度大小,第一阶段筛选和第二阶段筛选的关系为,第一阶段筛选后的粉料进入第二阶段筛选,即越筛越细。需要根据各个阶段的筛选需求对一修的第一控制量和第二控制量进行修正,以满足筛选需求。
为了满足筛选要求,本申请一些实施例中,根据目标粒度修正一修第一控制量和一修第二控制量,包括:所述目标粒度包括第一目标粒度和第二目标粒度,基于第一目标粒度修正一修第一控制量,得到二修第一控制量,基于第二目标粒度修正二修第二控制量,得到二修第二控制量。
本实施例中,第一目标粒度大于第二目标粒度。基于第一目标粒度修正一修第一控制量,具体为:
设定第一目标粒度为D,预设第一目标粒度数组D0(D1,D2,D3,D4),其中,D1,D2,D3,D4均为预设值,且D1<D2<D3<D4;
预设一修第一控制量的修正系数数组P0(P1,P2,P3,P4),其中,P1,P2,P3,P4均为预设值,且0.8<P1<P2<P3<P4<1.2;
设定一修第一控制量为L,根据第一目标粒度与各个预设第一目标粒度之间的关系,确定一修第一控制量的修正系数,对一修第一控制量进行修正;
若D<D1,确定第一预设一修第一控制量的修正系数P1作为一修第一控制量的修正系数,二修第一控制量为L*P1;
若D1≤D<D2,确定第二预设一修第一控制量的修正系数P2作为一修第一控制量的修正系数,二修第一控制量为L*P2;
若D2≤D<D3,确定第三预设一修第一控制量的修正系数P3作为一修第一控制量的修正系数,二修第一控制量为L*P3;
若D3≤D<D4,确定第四预设一修第一控制量的修正系数P4作为一修第一控制量的修正系数,二修第一控制量为L*P4。
基于第二目标粒度修正一修第二控制量的过程同理,在此不再赘述。
为了进一步满足筛选要求,本申请一些实施例中,输出修正后的一修第一控制量和一修第二控制量,包括:第一控制量包括撒料盘转速和风机风速,第二控制量包括转子转速和风机风速;基于二修第一控制量和第一预设分配比得到并控制撒料盘转速和风机风速;基于二修第二控制量和第二预设分配比得到并控制转子转速和风机风速。
本实施例中,需要将二修的第一控制量和第二控制量转换成具体的控制参数,第一预设分配比为转子转速和风机风速分别对应的比例。第二预设分配比为转子转速和风机风速分别对应的比例。
需要说明的是,上述所涉及的影响参数种类,预设值等均可根据实际情况进行增加或减少。
通过应用以上技术方案,在物料第一阶段筛选中获取第一筛选影响量,第一筛选影响量包括粉密度、粉粒度和第一气流误差,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,得到一修第一控制量;在物料第二阶段筛选中获取第二筛选影响量,第二筛选影响量包括导向叶片面积、笼形转子体积和第二气流误差,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,得到一修第二控制量;获取目标粒度,根据目标粒度修正一修第一控制量和一修第二控制量,并输出修正后的一修第一控制量和一修第二控制量。本申请通过根据多个筛选影响参数对控制量进行三维修正,即进行顺序、补偿值修正,从而提高涡流选粉机的控制精度,保证选粉效果,提升了产出率。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施场景所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (9)

  1. 一种粉煤灰筛选方法,应用于涡流选粉机中,其特征在于,所述方法包括:
    在物料第一阶段筛选中获取第一筛选影响量,第一筛选影响量包括粉密度、粉粒度和第一气流误差,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,得到一修第一控制量;
    在物料第二阶段筛选中获取第二筛选影响量,第二筛选影响量包括导向叶片面积、笼形转子体积和第二气流误差,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,得到一修第二控制量;
    获取目标粒度,根据目标粒度修正一修第一控制量和一修第二控制量,并输出修正后的一修第一控制量和一修第二控制量;
    其中,第一气流误差为第一阶段筛选位置处的实时气流流速和规定气流流速之差,第二气流误差为第二阶段筛选位置处的实时气流流速和规定气流流速之差。
  2. 如权利要求1所述的方法,其特征在于,根据目标粒度修正一修第一控制量和一修第二控制量,包括:
    所述目标粒度包括第一目标粒度和第二目标粒度,基于第一目标粒度修正一修第一控制量,得到二修第一控制量,基于第二目标粒度修正二修第二控制量,得到二修第二控制量。
  3. 如权利要求2所述的方法,其特征在于,输出修正后的一修第一控制量和一修第二控制量,包括:
    第一控制量包括撒料盘转速和风机风速,第二控制量包括转子转速和风机风速;
    基于二修第一控制量和第一预设分配比得到并控制撒料盘转速和风机风速;
    基于二修第二控制量和第二预设分配比得到并控制转子转速和风机风速。
  4. 如权利要求1所述的方法,其特征在于,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,包括:
    根据粉密度、粉粒度和第一气流误差得到各自对应的权重,根据粉密度、粉粒度、第一气流误差和各自对应的权重得到对应的影响量;
    根据粉密度、粉粒度和第一气流误差的影响量大小确定修正顺序,按照修正顺序根据粉密度、粉粒度和第一气流误差的影响量大小依次对第一控制量进行三次修正。
  5. 如权利要求4所述的方法,其特征在于,根据粉密度、粉粒度和第一气流误差对第一控制量进行三维修正,还包括:
    在每一次修正后,根据修正后的第一控制量和对应的第一预设补偿表确定每一次的补偿值,基于修正后的第一控制量和此次的补偿值进行下一次修正。
  6. 如权利要求4所述的方法,其特征在于,按照修正顺序根据粉密度、粉粒度和第一气流误差的影响量大小依次对第一控制量进行三次修正,包括:
    根据粉密度、粉粒度和第一气流误差的影响量大小分别确定对应修正系数,基于修正系数修正第一控制量。
  7. 如权利要求1所述的方法,其特征在于,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,包括:
    根据导向叶片面积、笼形转子体积和第二气流误差得到各自对应的权重,根据导向叶片面积、笼形转子体积、第二气流误差和各自对应的权重得到对应的影响量;
    根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小确定修正顺序,按照修正顺序根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小依次对第二控制量进行三次修正。
  8. 如权利要求7所述的方法,其特征在于,根据导向叶片面积、笼形转子体积和第二气流误差对第二控制量进行三维修正,还包括:
    在每一次修正后,根据修正后的第一控制量和对应的第二预设补偿表确定每一次的补偿值,基于修正后的第一控制量和此次的补偿值进行下一次修正。
  9. 如权利要求7所述的方法,其特征在于,按照修正顺序根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小依次对第二控制量进行三次修正,包括:
    根据导向叶片面积、笼形转子体积和第二气流误差的影响量大小分别确定对应的修正系数,基于修正系数修正第二控制量。
PCT/CN2023/121938 2023-01-09 2023-09-27 一种粉煤灰筛选方法 WO2024148867A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310029580.6A CN116116720A (zh) 2023-01-09 2023-01-09 一种粉煤灰筛选方法
CN202310029580.6 2023-01-09

Publications (1)

Publication Number Publication Date
WO2024148867A1 true WO2024148867A1 (zh) 2024-07-18

Family

ID=86302347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121938 WO2024148867A1 (zh) 2023-01-09 2023-09-27 一种粉煤灰筛选方法

Country Status (2)

Country Link
CN (1) CN116116720A (zh)
WO (1) WO2024148867A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116116720A (zh) * 2023-01-09 2023-05-16 华能济宁运河发电有限公司 一种粉煤灰筛选方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155698A (ja) * 1993-12-06 1995-06-20 Chichibu Onoda Cement Corp 渦流式空気分級機
CN106216245A (zh) * 2016-07-27 2016-12-14 无锡市华通电力设备有限公司 一种涡壳式粉煤灰专用分级机
CN210497245U (zh) * 2019-08-13 2020-05-12 江苏吉能达环境能源科技有限公司 高分散涡流选粉机
CN111822346A (zh) * 2020-08-13 2020-10-27 金路(唐山)智能装备有限公司 空气选粉机及其选粉方法
CN112718484A (zh) * 2021-01-28 2021-04-30 中国新型建材设计研究院有限公司 钢渣微粉的组合式高效选粉机及分选方法
CN113369140A (zh) * 2021-07-20 2021-09-10 天津水泥工业设计研究院有限公司 一种基于半成品粗细分离的超细选粉机设计方法
CN116116720A (zh) * 2023-01-09 2023-05-16 华能济宁运河发电有限公司 一种粉煤灰筛选方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155698A (ja) * 1993-12-06 1995-06-20 Chichibu Onoda Cement Corp 渦流式空気分級機
CN106216245A (zh) * 2016-07-27 2016-12-14 无锡市华通电力设备有限公司 一种涡壳式粉煤灰专用分级机
CN210497245U (zh) * 2019-08-13 2020-05-12 江苏吉能达环境能源科技有限公司 高分散涡流选粉机
CN111822346A (zh) * 2020-08-13 2020-10-27 金路(唐山)智能装备有限公司 空气选粉机及其选粉方法
CN112718484A (zh) * 2021-01-28 2021-04-30 中国新型建材设计研究院有限公司 钢渣微粉的组合式高效选粉机及分选方法
CN113369140A (zh) * 2021-07-20 2021-09-10 天津水泥工业设计研究院有限公司 一种基于半成品粗细分离的超细选粉机设计方法
CN116116720A (zh) * 2023-01-09 2023-05-16 华能济宁运河发电有限公司 一种粉煤灰筛选方法

Also Published As

Publication number Publication date
CN116116720A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2024148867A1 (zh) 一种粉煤灰筛选方法
CN104984911B (zh) 一种转子式选粉机
CN107913849B (zh) 一种向心高效选粉机及选粉机设计方法
CN205361960U (zh) V型选粉机
CN102580928A (zh) 碳化硅微粉分级方法及其分级设备
CN104984907A (zh) 一种笼型转子式空气选粉机
CN103302031B (zh) 一种采用曲面叶片的煤粉动态分离器
CN2788905Y (zh) K型内循环选粉机
CN208303240U (zh) 一种气流多级分级机
CN104984910A (zh) 高分散性涡流选粉机
WO2020048279A1 (zh) 一种多转子动态选粉机、选粉方法及辊压机终粉磨系统
CN113369140B (zh) 一种基于半成品粗细分离的超细选粉机设计方法
CN204866524U (zh) 一种笼型转子式空气选粉机
CN107855277B (zh) 一种向心高效选粉机用动叶片及设计方法
US9527112B2 (en) Dynamic separator for pulverulent materials
CN201102015Y (zh) 泻落式选粉机
CN207941711U (zh) 一种向心高效选粉机
CN210935307U (zh) 一种粒径分级装置及系统
CN2263554Y (zh) 涡轮式粉状颗粒分级器
CN112718484B (zh) 钢渣微粉的组合式高效选粉机及分选方法
CN212632056U (zh) 粉砂分离器
CN106466653A (zh) 新型立磨装置
CN214812686U (zh) 一种矿石干法分级装置
CN213687712U (zh) 一种砂石烘干脱粉复合一体机
CN2326355Y (zh) 双转子选粉机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915625

Country of ref document: EP

Kind code of ref document: A1