WO2024114036A1 - 光学防抖装置、摄像模组及电子设备 - Google Patents

光学防抖装置、摄像模组及电子设备 Download PDF

Info

Publication number
WO2024114036A1
WO2024114036A1 PCT/CN2023/118300 CN2023118300W WO2024114036A1 WO 2024114036 A1 WO2024114036 A1 WO 2024114036A1 CN 2023118300 W CN2023118300 W CN 2023118300W WO 2024114036 A1 WO2024114036 A1 WO 2024114036A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
optical image
stabilization device
image stabilization
image sensor
Prior art date
Application number
PCT/CN2023/118300
Other languages
English (en)
French (fr)
Inventor
熊国访
董富伟
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024114036A1 publication Critical patent/WO2024114036A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • the present disclosure relates to the technical field of optical image stabilization, and in particular to an optical image stabilization device, a camera module and an electronic device.
  • the optical image stabilization device in the related art has a complex manufacturing process and is relatively large in size.
  • the purpose of the present disclosure is to provide an optical image stabilization device, a camera module and an electronic device, thereby reducing the process complexity and volume of the optical image stabilization device at least to a certain extent.
  • an optical image stabilization device method comprising: a substrate; a wiring layer, comprising a first fixed portion and a first movable portion that are electrically connected, wherein a gap exists between the first fixed portion and the first movable portion; an image sensor, fixed to the first movable portion, the image sensor being electrically connected to the first movable portion; an electromagnetic coil, fixed to the movable portion; and a permanent magnetic mechanism, for providing a permanent magnetic field to the electromagnetic coil, so that the electromagnetic coil drives the first movable portion to move in a direction parallel to the wiring layer when powered on.
  • a limiting structure is provided between the image sensor and the permanent magnetic mechanism, and is used to The image sensor is used to limit the position in a direction perpendicular to the wiring layer.
  • a camera module comprising: a lens; and the optical image stabilization device described above.
  • an electronic device characterized in that it comprises: the above-mentioned camera module.
  • an electronic device characterized in that it includes: one or more processors; and a memory for storing one or more programs, which enables the one or more processors to implement the above method when the one or more programs are executed by the one or more processors.
  • An optical image stabilization device may include a substrate, a semi-wiring layer, an image sensor, an electromagnetic coil, a permanent magnetic mechanism, and a limiting structure, wherein the wiring layer includes an electrically connected first fixed portion and a first movable portion, wherein a gap is provided between the first fixed portion and the first movable portion; the image sensor is fixed to the first movable portion, and the image sensor is electrically connected to the first movable portion; the electromagnetic coil is fixed to the movable portion; the permanent magnetic mechanism is used to provide a permanent magnetic field for the electromagnetic coil, so that the electromagnetic coil drives the first movable portion to move in a direction parallel to the wiring layer when energized.
  • the limiting structure is provided between the image sensor and the permanent magnetic mechanism, and is used to limit the image sensor in a direction perpendicular to the wiring layer.
  • the wiring layer is divided into a first fixed portion and a first movable portion, and the image sensor is fixed to the first movable portion to achieve optical image stabilization, and the image sensor is limited by the limiting structure, and the limiting function of the first movable portion is achieved at the same time, which simplifies the process complexity of the optical image stabilization device, and no additional wires need to be provided.
  • the volume of the optical image stabilization device is reduced.
  • FIG1 schematically shows a structural diagram of an optical image stabilization device in an exemplary embodiment of the present disclosure
  • FIG2 schematically shows a structural diagram of a wiring layer and a semiconductor layer in an exemplary embodiment of the present disclosure
  • FIG3 schematically shows a structure diagram of another wiring layer and a semiconductor layer in an exemplary embodiment of the present disclosure
  • FIG4 schematically shows a structure diagram of a semiconductor layer in an exemplary embodiment of the present disclosure
  • FIG5 schematically shows a structural diagram of another semiconductor layer in an exemplary embodiment of the present disclosure
  • FIG6 schematically shows a position structure diagram of an electromagnetic coil and a silicon wire in an exemplary embodiment of the present disclosure
  • FIG7 schematically shows a structural diagram of a camera module in an exemplary embodiment of the present disclosure
  • FIG8 schematically shows a partial enlarged view of portion A in FIG7 in an exemplary embodiment of the present disclosure
  • FIG9 schematically shows another partial enlarged view of portion A in FIG7 in an exemplary embodiment of the present disclosure
  • FIG10 schematically shows an exploded view of a camera module in an exemplary embodiment of the present disclosure
  • FIG11 schematically shows a structural diagram of another camera module in an exemplary embodiment of the present disclosure
  • FIG12 schematically shows an exploded view of another camera module in an exemplary embodiment of the present disclosure
  • FIG. 13 is a schematic diagram showing an electronic device to which an embodiment of the present disclosure can be applied.
  • the existing mobile phone cameras mainly include lens optical image stabilization and sensor optical image stabilization when optical image stabilization.
  • Sensor optical image stabilization is sensor offset, thereby realizing the anti-shake function.
  • TSA structure that is, the "wire suspension system” is used to achieve the balance control of chip movement and wire lead-out.
  • the manufacturing process is very complicated, very difficult, and expensive. The most fatal problem is that the volume is too large, resulting in the length and width of the module being much larger than the ordinary module size.
  • the optical image stabilization device may include a substrate 4, a wiring layer, an image sensor 3, an electromagnetic coil 5, a permanent magnetic mechanism 6 and a limiting structure 7, wherein the wiring layer includes an electrically connected first fixed portion 11 and a first movable portion 12, wherein there is a gap between the first fixed portion 11 and the first movable portion 12; the image sensor 3 is fixed to the first movable portion 12, and the image sensor 3 is electrically connected to the first movable portion 12; the electromagnetic coil 5 is fixed to the movable portion; the permanent magnetic mechanism 6 is used to provide a permanent magnetic field for the electromagnetic coil 5, so that the electromagnetic coil 5 drives the first movable portion 12 to move in a direction parallel to the wiring layer when powered on.
  • the limiting structure 7 is provided between the image sensor 3 and the permanent magnetic mechanism 6, and is used to limit the image sensor 3 in a direction perpendicular to the wiring layer.
  • the wiring layer is divided into a first fixed part 11 and a first movable part 12, and the image sensor 3 is fixed on the first movable part to achieve optical image stabilization, and the image sensor 3 is limited by a limiting structure 7.
  • the limiting function of the first movable part 12 is realized, which simplifies the process complexity of the optical image stabilization device and eliminates the need to set up additional wires.
  • the volume of the optical image stabilization device is reduced.
  • substrate 4 may be made of a magnetic metal material and may serve as a second magnetic conductive plate.
  • Other optical image stabilization devices may be arranged on substrate 4.
  • the shape of substrate 4 may be a rectangular plate structure, a square plate structure, a pentagonal plate structure, etc., and may be customized according to user needs, which is not specifically limited in this example implementation.
  • the material of the substrate 4 may include iron, stainless steel or nickel, or other magnetic technical materials, which is not specifically limited in this exemplary embodiment.
  • the wiring layer may be a printed circuit board.
  • a variety of devices are provided to provide circuit support for the optical image stabilization device.
  • the specific circuit can be customized according to user needs and is not specifically limited in this example implementation.
  • the wiring layer may include a first movable portion 12 and a first fixed portion 11, wherein the first fixed portion 11 is electrically connected to the first fixed portion 11, and there is a gap between the first fixed portion 11 and the first movable portion 12, the first fixed portion 11 may include a first via hole, the first movable portion 12 is disposed inside the first via hole, and there is a gap between the outer wall of the first movable portion 12 and the inner wall of the first via hole, so that the first movable portion 12 can move inside the first via hole.
  • the first fixing portion 11 is fixed to the substrate 4 , ie, the second magnetic conductive plate.
  • the first fixed portion 11 may be a rectangular plate-shaped structure
  • the cross-section of the first via hole may also be a rectangular shape
  • the first movable portion 12 may also be a rectangular plate-shaped structure.
  • the first movable portion 12 and the first fixed portion 11 are arranged on the same plane and can move in the first via hole.
  • the shape of the first fixed portion 11 , the shape of the first via cross section and the shape of the first movable portion 12 can all be customized according to user requirements and are not specifically limited in this exemplary embodiment.
  • the optical image stabilization device may further include a semiconductor layer, and the semiconductor layer may include a second fixed portion 21 and a second movable portion 22 that are electrically connected, wherein the second fixed portion 21 is fixed to the first fixed portion 11, and the second movable portion 22 is fixed to the first movable portion 12.
  • the second fixed portion 21 is connected to the second movable portion 22, the first fixed portion 11 is electrically connected to the second fixed portion 21, and the first movable portion 12 is electrically connected to the second movable portion 22, so as to realize the electrical connection between the first movable portion 12 and the first fixed portion 11.
  • the second fixed portion 21 and the second movable portion 22 are both silicon wafers, wherein the second fixed portion 21 and the second movable portion 22 can be connected by a silicon wire, and the second fixed portion 21 is integrally formed with the second movable portion 22 and the silicon wire.
  • the silicon wire can ensure the connection while also ensuring that the second movable portion 22 can move in a direction parallel to the substrate.
  • the image sensor 3 may be fixed to the first movable portion 12, the image sensor 3 may be fixed to a side of the first movable portion 12 away from the substrate 4, the image sensor 3 is connected to the second movable portion 22, the second movable portion 22 is connected to the second fixed portion 21, the second fixed portion 21 is connected to the first fixed portion 11, and may be connected specifically through a flexible connection line, wherein the flexible connection line may include gold wire, silicon wire, etc., which is not specifically limited in this example embodiment.
  • the image sensor 3 may be connected to the second movable portion 22 via a gold wire
  • the second movable portion 22 may be connected to the second fixed portion 21 via a silicon wire
  • the second fixed portion 21 may be connected to the first fixed portion 11 via a gold wire.
  • a connection hole 211 may be provided on the second fixing portion 21 , and the silicon wire is connected to the first fixing portion 11 through the connection hole 211 .
  • the image sensor 3 may be a rectangular structure
  • the electromagnetic coil 5 may be fixed to the second movable portion 22 and disposed around the image sensor 3
  • the electromagnetic coil 5 is fixed to a side of the second movable portion 22 away from the substrate 4 .
  • the electromagnetic coil 5 may include a first coil and a second coil, wherein the first coil and the second coil are both fixed to the first movable part 12, the first coil and the second coil may be vertically arranged, and the first coil and the second coil do not intersect, and the vertical arrangement enables the first movable part 12 to be driven to move in two vertical directions when the electromagnetic coil 5 is energized.
  • the electromagnetic coil 5 may further include a third coil, wherein the third coil is arranged opposite to the first coil, and the orthographic projections of the third coil and the first coil in a direction perpendicular to the first coil do not overlap, and the movable part can be driven to rotate when the current directions of the first coil and the third coil in the same magnetic field are opposite.
  • first coil, the second coil and the third coil are all long coils, and the first coil is arranged perpendicularly to the second coil, which means that the long axis of the first coil is perpendicular to the long axis of the second coil.
  • first coil and the third coil are arranged oppositely, that is, the long axis of the first coil is arranged parallel to the long axis of the third coil.
  • the optical image stabilization device may further include an electromagnetic coil support 51 disposed on the second movable portion 22 , the electromagnetic coil 5 is fixed to the electromagnetic coil support 51 , and a light-transmitting hole is provided on the electromagnetic coil support 51 so that light can be transmitted to the image sensor 3 through the light-transmitting hole.
  • the electromagnetic coil 5 may include a plurality of groups of relatively arranged sub-electromagnetic coils 5. The more groups there are, the wider the deflection angle of the first movable portion 12 can be driven, which can improve the anti-shake effect.
  • the electromagnetic coil 5 and the silicon filaments between the second movable portion 22 and the second fixed portion 21 may be in an overlapping relationship in a direction perpendicular to the substrate 4.
  • the electromagnetic coil 5 and the silicon filaments between the second movable portion 22 and the second fixed portion 21 may be in a side-by-side relationship in a direction perpendicular to the substrate 4. This is not specifically limited in the present example embodiment.
  • the permanent magnet mechanism 6 includes a plurality of permanent magnets, each of the permanent magnets has an electromagnetic coil 5 corresponding thereto, and the corresponding permanent magnets and the electromagnetic coil 5 are coaxially arranged in a direction perpendicular to the substrate 4 .
  • the permanent magnet may be disposed on a side of the electromagnetic coil 5 that is away from the image sensor 3 .
  • the optical image stabilization device may further include a magnetic field detection device, which is disposed in the electromagnetic coil 5 and is used to detect the magnetic field strength of the permanent magnet mechanism 6.
  • the magnetic field detection device may be a Hall element, which is disposed inside the electromagnetic coil 5.
  • the above-mentioned optical image stabilization device may also include a controller, connected to the above-mentioned electromagnetic coil 5, for receiving the offset calculated by the camera module, and determining the current signal of the above-mentioned electromagnetic coil 5 according to the above-mentioned offset and the above-mentioned magnetic field strength. Specifically, the larger the current signal and the greater the magnetic field strength, the greater the driving force generated on the coil, which can drive the above-mentioned first movable part 12 to move, thereby realizing the movement of the image sensor 3, thereby realizing optical image stabilization.
  • the limiting structure 7 may include the fixing bracket 73 , the first magnetic conductive plate 71 and a ball 72 .
  • the first magnetic conductive plate 71 is disposed at a position away from the image sensor 3 of the permanent magnetic mechanism 6. On one side, the first magnetic conductive plate 71 may be provided with a first through hole so that the image sensor 3 can capture images through the first through hole.
  • the size and shape of the above-mentioned first through hole can be the same as the projection of the above-mentioned image sensor 3 in the direction of the optical path, that is, if the shape of the above-mentioned image sensor 3 is a rectangle, the shape of the above-mentioned first through hole can also be a rectangle, and the length and width of the first through hole are the same as the length and width of the image sensor 3.
  • the permanent magnet mechanism 6 can be fixed to the first magnetic conductive plate 71
  • the optical image stabilization device can also include a fixed bracket 73
  • the first conductor sheet can be fixed to the fixed bracket 73
  • the fixed bracket 73 can be a rectangular structure
  • a second through hole is provided on the side away from the wiring layer
  • the second through hole is coaxially arranged with the first through hole, and the size and shape can be the same
  • the bracket can be a hollow structure
  • a third through hole is provided on the side close to the wiring layer
  • the first magnetic conductive plate 71 can be provided inside the fixed bracket 73 through the third through hole.
  • the ball 72 is provided on the first magnetic conductive plate 71 and the fixed bracket 73, and is used to limit the first movable part 12 in a direction perpendicular to the substrate 4, but also enables relative movement between the first movable part 12 and the first fixed part 11.
  • the use of the ball 72 can reduce the friction force during movement and reduce the error caused by friction.
  • a groove may be provided on the first magnetic conductive plate 71 , and the ball bearings 72 are disposed in the groove, so that the position of the ball bearings 72 is fixed.
  • the number of the balls 72 may be four, which are respectively disposed at the four corners of the first magnetic conductive plate 71.
  • the number of the balls 72 may also be customized according to user needs and is not specifically limited in this example embodiment.
  • the ball 72 in the above-mentioned limiting structure 7 can be replaced by a slider, and the slider is arranged between the above-mentioned first magnetic conductive plate 71 and the above-mentioned fixed bracket 73.
  • the first movable part 12 can be limited in a direction perpendicular to the substrate 4, but it will not affect the movement of the first movable part 12 in a direction parallel to the substrate 4.
  • the sliders may also be disposed at the four corners of the first magnetic conductive plate 71.
  • the specific positions of the sliders may also be customized according to user needs.
  • the implementation method is not specifically limited.
  • the optical image stabilization device may further include a filter assembly.
  • the backlight assembly is fixed to the first movable portion 12 and is disposed on a side of the image sensor 3 away from the wiring layer.
  • the filter assembly may include a filter lens 81 and a filter bracket 82 .
  • the filter bracket 82 is fixed to the first movable portion 12
  • the filter lens 81 is fixed to the filter lens 81 .
  • the filter assembly may be disposed between the electronic coil support and the image sensor 3.
  • the filter assembly is also disposed inside the fixing support 73 through the third through hole.
  • the wiring layer is divided into the first fixed part 11 and the first movable part 12, and the image sensor 3 is fixed to the first movable part to achieve optical image stabilization, and the image sensor 3 is limited by the limiting structure 7, and the limiting function of the first movable part 12 is realized at the same time, which simplifies the process complexity of the optical image stabilization device, and no additional wires are required.
  • the volume of the optical image stabilization device is reduced.
  • the ball bearing 72 is provided on the first magnetic conductive plate 71 and the fixed bracket 73 to limit the first movable part 12 in a direction perpendicular to the substrate 4, but it can also make the first movable part 12 and the first fixed part 11 move relative to each other.
  • the use of the ball bearing 72 can reduce the friction during movement and reduce the error caused by friction.
  • the fixed bracket 73 is used to protect the above-mentioned various components, which can enhance the dustproof effect of the optical image stabilization device and improve the service life of the above-mentioned optical image stabilization device.
  • the present disclosure also provides a camera module, which includes the above-mentioned optical image stabilization device and a lens 9.
  • the lens 9 can be arranged on the side of the image sensor 3 away from the wiring layer.
  • the lens 9 is arranged on the side of the fixed bracket 73 away from the image sensor 3.
  • the lens 9 is used to collect optical signals and transmit the optical signals to the image sensor 3.
  • the optical filter may be disposed between the lens 9 and the image sensor 3.
  • the optical filter may be disposed between the lens 9 and the fixing bracket 73, or the optical filter may be disposed inside the fixing bracket 73.
  • the film is protected and is not specifically limited in this exemplary embodiment.
  • the camera module may further include a voice coil motor 10, which is used to drive the lens 9 to move in the direction of the optical path.
  • optical image stabilization device S The specific details of the optical image stabilization device S have been introduced in detail above, so they will not be repeated here.
  • An exemplary embodiment of the present disclosure also provides an electronic device equipped with the above-mentioned camera module.
  • the mobile terminal 1300 may specifically include: a processor 1301, a memory 1302, a bus 1303, a mobile communication module 1304, an antenna 1, a wireless communication module 1305, an antenna 2, a display screen 1306, a camera module 1307, an audio module 1308, a power module 1309 and a sensor module 1310.
  • the processor 1301 may be connected to the memory 1302 or other components via a bus 1303 .
  • the memory 1302 may be used to store computer executable program codes, which include instructions.
  • the processor 1301 executes various functional applications and data processing of the mobile terminal 1300 by running the instructions stored in the memory 1302.
  • the memory 1302 may also store application data, such as images, videos and other files.
  • the communication function of the mobile terminal 1300 can be implemented by the mobile communication module 1304, antenna 1, wireless communication module 1305, antenna 2, modem processor and baseband processor. Antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • the mobile communication module 1304 can provide 2G, 3G, 4G, 5G and other mobile communication solutions applied to the mobile terminal 1300.
  • the wireless communication module 1305 can provide wireless communication solutions such as wireless LAN, Bluetooth, near field communication, etc. applied to the mobile terminal 1300.
  • the display screen 1306 is used to implement display functions, such as displaying user interfaces, images, and videos.
  • the camera module 1307 is used to implement shooting functions, such as shooting images and videos.
  • the audio module 208 is used to implement audio functions, such as playing audio and collecting voice.
  • the power module 209 is used to implement power management functions, such as charging the battery, powering the device, and monitoring the battery status.
  • Sensors The module 1310 may include a depth sensor 13101, a pressure sensor 13102, a gyroscope sensor 13103, an air pressure sensor 13104, etc., to realize corresponding sensing detection functions.
  • the camera module 1307 may include the camera module mentioned above, the camera module includes the optical image stabilization device mentioned above, the optical image stabilization device may include a substrate, a semi-wiring layer, an image sensor, an electromagnetic coil, a permanent magnetic mechanism and a limiting structure, wherein the wiring layer includes an electrically connected first fixed portion and a first movable portion, wherein there is a gap between the first fixed portion and the first movable portion; the image sensor is fixed to the first movable portion, and the image sensor is electrically connected to the first movable portion; the electromagnetic coil is fixed to the movable portion; the permanent magnetic mechanism is used to provide a permanent magnetic field for the electromagnetic coil, so that the electromagnetic coil drives the first movable portion to move in a direction parallel to the wiring layer when powered on.
  • the limiting structure is arranged between the image sensor and the permanent magnetic mechanism, and is used to limit the image sensor in a direction perpendicular to the wiring layer.
  • the terms “a”, “an”, “the”, “said” and “at least one” are used to indicate the presence of one or more elements/components/etc.; the terms “comprising”, “including” and “having” are used to express an open-ended inclusion and mean that additional elements/components/etc. may exist in addition to the listed elements/components/etc.; the terms “first”, “second” and “third” etc. are used only as labels and are not intended to limit the quantity of their objects.
  • the present invention is not limited in its application to the detailed structure and arrangement of the components proposed in this specification.
  • the present invention can have other embodiments and can be implemented and executed in a variety of ways.
  • the aforementioned variations and modifications fall within the scope of the present invention.
  • the present invention disclosed and defined in this specification extends to all alternative combinations of two or more individual features mentioned or evident in the text and/or the drawings. All these different combinations constitute multiple alternative aspects of the present invention.
  • the embodiments described in this specification illustrate the best mode known for implementing the present invention and will enable those skilled in the art to utilize the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本公开涉及光学防抖技术领域,具体涉及一种光学防抖装置、摄像模组及电子设备,光学防抖装置,可以包括基板、半布线层、图像传感器、电磁线圈、永磁机构以及限位结构,其中,布线层包括电连接的第一固定部与第一可移动部,其中,第一固定部与第一可移动部之间具有间隙;图像传感器固定于第一可移动部,图像传感器与第一可移动部电连接;电磁线圈固定于可移动部;永磁机构用于为电磁线圈提供永磁场,以使得电磁线圈在通电时驱动第一可移动部在平行于半导体层的方向上移动。限位结构设于图像传感器与永磁机构之间,用于对图像传感器在垂直于布线层的方向上进行限位。本公开实施例的技术方案降低了光学防抖装置的工艺复杂度和体积。

Description

光学防抖装置、摄像模组及电子设备
相关申请的交叉引用
本申请要求于2022年11月28日提交中国专利局的申请号为CN202211512756.5、名称为“光学防抖装置、摄像模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光学防抖技术领域,具体而言,涉及一种光学防抖装置、摄像模组及电子设备。
背景技术
随着用户拍照质量的要求越来越高,为了防止因为抖动导致得到图像质量的降低,光学防抖技术的应用也越来越广泛。
相关技术中的光学防抖装置制作工艺复杂,且体积较大。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种光学防抖装置、摄像模组和电子设备,进而至少在一定程度上降低了光学防抖装置的工艺复杂度和体积。
根据本公开的第一方面,提供一种光学防抖装置方法,包括:基板;布线层,包括电连接的第一固定部与第一可移动部,其中,所述第一固定部与所述第一可移动部之间具有间隙;图像传感器,固定于所述第一可移动部,所述图像传感器与所述第一可移动部电连接;电磁线圈,固定于所述可移动部;永磁机构,用于为所述电磁线圈提供永磁场,以使得所述电磁线圈在通电时驱动所述第一可移动部在平行于所述布线层的方向上移动。限位结构,设于所述图像传感器与所述永磁机构之间,用 于对图像传感器在垂直于所述布线层的方向上进行限位。
根据本公开的第二方面,提供一种摄像模组,包括:镜头;以及上述所述的光学防抖装置。
根据本公开的第三方面,提供一种电子设备,其特征在于,包括:上述摄像模组。
根据本公开的第四方面,提供一种电子设备,其特征在于,包括:一个或多个处理器;以及存储器,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行时,使得一个或多个处理器实现上述的方法。
本公开的一种实施例所提供的光学防抖装置,可以包括基板、半布线层、图像传感器、电磁线圈、永磁机构以及限位结构,其中,布线层包括电连接的第一固定部与第一可移动部,其中,第一固定部与第一可移动部之间具有间隙;图像传感器固定于第一可移动部,图像传感器与第一可移动部电连接;电磁线圈固定于可移动部;永磁机构用于为电磁线圈提供永磁场,以使得电磁线圈在通电时驱动第一可移动部在平行于布线层的方向上移动。限位结构设于图像传感器与永磁机构之间,用于对图像传感器在垂直于布线层的方向上进行限位。相较于现有技术,将布线层划分为第一固定部和第一可移动部,并将图像传感器固定在第一可以移动部,来实现光学防抖,并用过限位结构对图像传感器进行限位,同时实现了对第一可移动部的限位功能,简化了光学防抖装置的工艺复杂度,无需再设置另外的导线,相较于相关技术中的金属丝悬挂系统,降低了光学防抖装置的体积。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示意性示出本公开示例性实施例中一种光学防抖装置的结构图;
图2示意性示出本公开示例性实施例中一种布线层和半导体层的结构图;
图3示意性示出本公开示例性实施例中另一种布线层和半导体层的结构图;
图4示意性示出本公开示例性实施例中一种半导体层的结构图;
图5示意性示出本公开示例性实施例中另一种半导体层的结构图;
图6示意性示出本公开示例性实施例中电磁线圈和硅丝的位置结构图;
图7示意性示出本公开示例性实施例中一种摄像模组的结构图;
图8示意性示出本公开示例性实施例中一种图7中A部分的局部放大图;
图9示意性示出本公开示例性实施例中另一种图7中A部分的局部放大图;
图10示意性示出本公开示例性实施例中一种摄像模组的爆炸图;
图11示意性示出本公开示例性实施例中另一种摄像模组的结构图;
图12示意性示出本公开示例性实施例中另一种摄像模组的爆炸图;
图13示出了可以应用本公开实施例的一种电子设备的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处 理器装置和/或微控制器装置中实现这些功能实体。
在相关技术中,现有的手机摄像头,在光学防抖时主要包括镜头光学防抖和传感器光学防抖,传感器光学防抖也就是传感器偏移,从而实现防抖功能。其使用的是TSA结构,即利用“金属丝悬挂系统”实现芯片移动的平衡控制及导线引出。但是制作工艺十分复杂,难度非常之高,且成本高昂,最致命的问题是体积过大,导致模组长宽尺寸会比普通的模组尺寸大很多。
基于上述缺点,本公开提供一种光学防抖装置,参照图1所示,光学防抖装置,可以包括基板4、布线层、图像传感器3、电磁线圈5、永磁机构6以及限位结构7,其中,布线层包括电连接的第一固定部11与第一可移动部12,其中,所述第一固定部11与所述第一可移动部12之间具有间隙;图像传感器3固定于所述第一可移动部12,所述图像传感器3与所述第一可移动部12电连接;电磁线圈5固定于所述可移动部;永磁机构6用于为所述电磁线圈5提供永磁场,以使得所述电磁线圈5在通电时驱动所述第一可移动部12在平行于所述布线层的方向上移动。限位结构7设于所述图像传感器3与所述永磁机构6之间,用于对图像传感器3在垂直于所述布线层的方向上进行限位。
相较于现有技术,将布线层划分为第一固定部11和第一可移动部12,并将图像传感器3固定在第一可以移动部,来实现光学防抖,并用过限位结构7对图像传感器3进行限位,同时实现了对第一可移动部12的限位功能,简化了光学防抖装置的工艺复杂度,无需再设置另外的导线,相较于相关技术中的金属丝悬挂系统,降低了光学防抖装置的体积。
在本公开的一种示例实施方式中,基板4可以是磁性金属材质,可以作为第二导磁板,可以在基板4上设置其他光学防抖装置的器件,其中,基板4的形状可以是长方形板状结构,也可以是正方形板状结构、五边形板状结构等,还可以根据用户需求进行自定义,在本示例实施方式中不做具体限定。
在本示例实施方式中,上述基板4的材质可以包括铁、不锈钢或镍,也可以是其他磁性技术材质,在本示例实施方式中不做具体限定。
在本示例实施方式中,上述布线层可以是印刷电路板,布线层上可 以设置多种器件,为上述光学防抖装置提供电路支持,具体的电路可以根据用户需求进行自定义,在本示例实施方式中不做具体限定。
在本示例实施方式中,参照图2和图3所示,上述布线层可以包括第一可移动部12和第一固定部11,其中,上述第一固定部11上述第一固定部11电连接,且上述第一固定部11与上述第一可移动部12之间具有间隙,上述第一固定部11可以包括第一过孔,上述第一可移动部12设于上述第一过孔内部,上述第一可移动部12的外壁与上述第一过孔的内壁之间具有间隙,以使得上述第一可移动部12能够在上述第一过孔内部移动。
在本示例实施方式中,上述第一固定部11固定于上述基板4,即上述第二导磁板。
在本示例实施方式中,上述第一固定部11可以是长方形板状结构,第一过孔的截面的形状也可以是长方形,上述第一可移动部12也可以是长方形板状结构。上述第一可移动部12与上述第一固定部11设于同一平面,且能够在上述第一过孔内进行移动。
需要说明的是,上述第一固定部11的形状,第一过孔截面的形状以及上述第一可移动部12的形状均可以根据用户需求进行自定义,在本示例实施方式中不做具体限定。
在本公开的一种示例实施方式中,参照图4和图5所示,上述光学防抖装置还可以包括半导体层,上述半导体层可以包括电连接的第二固定部21与第二可移动部22,其中,上述第二固定部21固定于上述第一固定部11,第二可移动部22固定于上述第一可移动部12。第二固定部21与上述第二可移动部22连接,第一固定部11与上述第二固定部21电连接,第一可移动部12与上述第二可移动部22电连接,以实现上述第一可移动部12与上述第一固定部11的电连接。
在本示例实施方式中,上述第二固定部21与上述第二可移动部22均为硅片,其中上述第二固定部21与上述第二可移动之间可以通过硅丝连接,且上述第二固定部21与上第二可移动部22以及硅丝一体成型。硅丝能够保证连接的同时没还可以保证第二可移动部22能够在平行于基板的方向上移动。
在本示例实施方式中,上述图像传感器3可以固定于上述第一可移动部12,图像传感器3可以固定于上述第一可移动部12远离基板4的一侧,上述图像传感器3与上述第二可移动部22连接,上述第二可移动部22与上述第二固定部21连接,上述第二固定部21与上述第一固定部11连接,具体可以通过柔性连接线路连接,其中,上述柔性连接线路可以包括金线、硅丝等,在本示例实施方式中不作具体限定。
举例而言,参照图7和图8所示,上述图像传感器3可以与上述第二可移动部22通过金线连接,上述第二可移动部22与上述第二固定部21通过硅丝连接,上述第二固定部21与上述第一固定部11可以通过金线连接。
在一种示例实施方式中,参照图9所示,在上述第二固定部21上可以设置有连接孔211,上述硅丝通过上述连接孔211与上述第一固定部11连接。
在本示例实施方式中,上述图像传感器3可以是长方形结构,上述电磁线圈5可以固定于上述第二可移动部22,且设置于上述图像传感器3的周边,上述电磁线圈5固定于上述第二可移动部22远离上述基板4的一侧。
在本公开的一种示例实施方式中,上述电磁线圈5可以包括第一线圈和第二线圈,其中,第一线圈和第二线圈均固定于上述第一可移动部12,上述第一线圈与第二线圈可以垂直设置,且上述的第一线圈与第二线圈不相交,垂直设置能够使得在上述电磁线圈5通电时能够驱动上述第一可移动部12沿两个垂直的方向移动。
在示例实施方式中,上述电磁线圈5还可以包括第三线圈,其中,第三线圈与上述第一线圈相对设置,且第三线圈与第一线圈在垂直于上述第一线圈的方向上的正投影不重合,能够在上述第一线圈和第三线圈在相同磁场中的电流方向相反时,驱动上述可移动部旋转。
需要说明的是,上述第一线圈、第二线圈以及上述第三线圈均为长条线圈,上述第一线圈与上述第二线圈垂直设置,指代上述第一线圈的长轴与第二线圈的长轴垂直。同理,上述第一线圈与第三线圈相对设置,即第一线圈的长轴与上述第三线圈的长轴平行设置。
在本公开的一种示例实施方式中,参照图10所示,上述光学防抖装置还可以包括电磁线圈支架51,设置于上述第二可移动部22上,上述电磁线圈5固定于上述电磁线圈支架51,上述电磁线圈支架51上设置有透光孔,以使得光线能够通过上述透光孔传输至上述图像传感器3。
在本公开的另一种示例实施方式中,上述电磁线圈5可以包括多组相对设置的子电磁线圈5,组数越多,能够驱动第一可移动部12的可偏移角度越广,即能够提升防抖效果。
在本公开的一种示例实施方式中,参照图6所示,上述电磁线圈5与上述第二可移动部22与第二固定部21之间的硅丝可以在垂直于上述基板4上方向上是处于重叠关系,在另一种示例实施方式中,上述电磁线圈5与上述第二可移动部22与第二固定部21之间的硅丝可以在垂直于上述基板4上方向上可以是并排关系,在本示例实施方式中不做具体限定。
在本公开的一种示例实施方式中,所述永磁机构6包括多个永磁铁,各所述永磁铁均具有与其对应的电磁线圈5,且相对应的永磁铁和所述电磁线圈5沿垂直于所述基板4的方向上同轴设置。
在本示例实施方式中,上述永磁铁可以设置于上述电磁线圈5远离图像传感器3的一侧。
在本公开的一种示例实施方式中,上述光学防抖装置还可以包括磁场检测装置,设于上述电磁线圈5,用于检测上述永磁机构6的磁场强度,具体的,上述磁场检测装置可以是霍尔元件,设于上述电磁线圈5内部。
上述光学防抖装置还可以包括控制器,连接于上述电磁线圈5,用于接收摄像模组计算的偏移量,并根据上述偏移量和上述磁场强度确定上述电磁线圈5的电流信号,具体的,电流信号越大,磁场强度越大,线圈上产生的驱动力就越大,就能够驱动上述第一可移动部12进行移动,进而实现对图像传感器3的移动,从而实现光学防抖。
在一种示例实施方式中,上述限位结构7可以包括上述固定支架73、上述第一导磁板71以及滚珠72。
上述第一导磁板71设于上述永磁机构6远离上述图像传感器3的 一侧,其中,上述第一导磁板71上述可以设置有第一通孔,以使得上述图像传感器3能够通过上述第一通孔采集图像。
在本示例实施方式中,上述第一通孔的大小和形状均可以与上述图像传感器3光路方向上的投影相同,即若上述图像传感器3的形状为长方形,则上述第一通孔的形状也可以是长方形,且第一通孔的长和宽与图像传感器3的长和宽均相同。
在本实施方式中,上述永磁机构6可以固定于上述第一导磁板71,上述光学防抖装置还可以包括固定支架73,上述第一导体片能够固定于上述固定支架73,上述固定支架73可以为长方体结构,在远离上述布线层的一侧设置有第二通孔,第二通孔与上述第一通孔同轴设置,且大小形状均可以相同,上述支架可以为空心结构,在靠近上述布线层的一侧设置有第三通孔,上述第一导磁板71可以通过上述第三通孔设置于上述固定支架73内部。
在本示例实施方式中,上述滚珠72设于上述第一导磁板71与上述固定支架73,用于对上述第一可移动部12在垂直于上述基板4的方向上进行限位,但是还能够使得上述第一可移动部12与第一固定部11之间相对移动,采用滚珠72能够减小移动时的摩擦力,减低了由于摩擦造成的误差。
在本示例实施方式中,在上述第一导磁板71上可以设置有凹槽,上述滚珠72设置于上述凹槽,使得上述滚珠72位置固定。
在本示例实施方式中,上述滚珠72的数量可以是四个,分别设置在上述第一导磁板71的四个角,滚珠72的数量还可以根据用户需求进行自定义,在本示例实施方式中不做具体限定。
在本公开的另一种示例实施方式中,上述限位结构7中的滚珠72可以采用滑块替换,滑块设置于上述第一导磁板71与上述固定支架73之间,在上述第一可移动部12移动时,能够对第一可移动部12在垂直于基板4的方向上进行限位,但是不会影响第一可移动部12在平行于基板4的方向上的移动。
在本示例实施方式中,上述滑块也可以设置于上述第一导磁板71的四个角,滑块的具体位置还可以根据用户需求进行自定义,在本示例实 施方式中不做具体限定。
在本公开的一种示例实施方式中,上述光学防抖装置还可以包括滤光组件,上述了背光组件固定于上述第一可移动部12,且设置于上述图像传感器3远离上述布线层的一侧。
在本示例实施方式中,滤光组件可以包括滤光镜片81和滤光支架82,上述滤光支架82固定于上述第一可移动部12,上述滤光镜片81固定于上述滤光镜片81。
在本示例实施方式中,上述滤光组件可以设置于上述电子线圈支架与上述图像传感器3之间。上述滤光组件也通过上述第三通孔设于上述固定支架73内部。
综上所述,本示例性实施方式中,将布线层划分为第一固定部11和第一可移动部12,并将图像传感器3固定在第一可以移动部,来实现光学防抖,并用过限位结构7对图像传感器3进行限位,同时实现了对第一可移动部12的限位功能,简化了光学防抖装置的工艺复杂度,无需再设置另外的导线,相较于相关技术中的金属丝悬挂系统,降低了光学防抖装置的体积。将滚珠72设于上述第一导磁板71与上述固定支架73,用于对上述第一可移动部12在垂直于上述基板4的方向上进行限位,但是还能够使得上述第一可移动部12与第一固定部11之间相对移动,采用滚珠72能够减小移动时的摩擦力,减低了用于摩擦造成的误差。利用固定支架73对上述各个器件进行保护,能够增强光学防抖装置的防尘效果,还能够提升上述光学防抖装置的使用寿命。
本公开还提供一种摄像模组,摄像模组包括上述光学防抖装置、镜头9。
具体的,参照图11和图12所示,上述镜头9可以设置于上述图像传感器3远离上述布线层的一侧,优选的,上述镜头9设置于上述固定支架73远离图像传感器3的一侧,镜头9用于采集光信号,并将光信号传输至上述图像传感器3。
在本示例实施方式中,上述了滤光片可以设置于上述镜头9与图像传感器3之间,具体的,上述滤光片可以设置于上述镜头9与上述固定支架73之间,也可以将滤光片设置于上述固定支架73内部,对了滤光 片进行保护,在本示例实施方式中不做具体限定。
在本示例实施方式中,上述摄像模组还可以包括音圈马达10,音圈马达用于驱动上述镜头9在光路方向上移动。
其中,上述光学防抖装置S的具体细节上述已经进行了详细介绍,因此,此处不在赘述。
本公开的示例性实施方式还提供一种安装有上述摄像模组的的电子设备。
下面以图13中的移动终端1300为例,对该电子设备的构造进行示例性说明。本领域技术人员应当理解,除了特别用于移动目的的部件之外,图13中的构造也能够应用于固定类型的设备。
如图13所示,移动终端1300具体可以包括:处理器1301、存储器1302、总线1303、移动通信模块1304、天线1、无线通信模块1305、天线2、显示屏1306、摄像模块1307、音频模块1308、电源模块1309与传感器模块1310。
处理器1301可以通过总线1303与存储器1302或其他部件形成连接。
存储器1302可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器1301通过运行存储在存储器1302的指令,执行移动终端1300的各种功能应用以及数据处理。存储器1302还可以存储应用数据,例如存储图像,视频等文件。
移动终端1300的通信功能可以通过移动通信模块1304、天线1、无线通信模块1305、天线2、调制解调处理器以及基带处理器等实现。天线1和天线2用于发射和接收电磁波信号。移动通信模块1304可以提供应用在移动终端1300上2G、3G、4G、5G等移动通信解决方案。无线通信模块1305可以提供应用在移动终端1300上的无线局域网、蓝牙、近场通信等无线通信解决方案。
显示屏1306用于实现显示功能,如显示用户界面、图像、视频等。摄像模块1307用于实现拍摄功能,如拍摄图像、视频等。音频模块208用于实现音频功能,如播放音频,采集语音等。电源模块209用于实现电源管理功能,如为电池充电、为设备供电、监测电池状态等。传感器 模块1310可以包括深度传感器13101、压力传感器13102、陀螺仪传感器13103、气压传感器13104等,以实现相应的感应检测功能。
摄像模块1307可以包括上述摄像模组,摄像模组包括上述光学防抖装置,光学防抖装置可以包括基板、半布线层、图像传感器、电磁线圈、永磁机构以及限位结构,其中,布线层包括电连接的第一固定部与第一可移动部,其中,所述第一固定部与所述第一可移动部之间具有间隙;图像传感器固定于所述第一可移动部,所述图像传感器与所述第一可移动部电连接;电磁线圈固定于所述可移动部;永磁机构用于为所述电磁线圈提供永磁场,以使得所述电磁线圈在通电时驱动所述第一可移动部在平行于所述布线层的方向上移动。限位结构设于所述图像传感器与所述永磁机构之间,用于对图像传感器在垂直于所述布线层的方向上进行限位。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。其他相对性的用语,例如“高”“低”“顶”“底”“前”“后”“左”“右”等也作具有类似含义。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
本说明书中,用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包含”、“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
应可理解的是,本发明不将其应用限制到本说明书提出的部件的详细结构和布置方式。本发明能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本发明的范围内。应可理解的是,本说明书公开和限定的本发明延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本发明的多个可替代方面。本说明书所述的实施方式说明了已知用于实现本发明的最佳方式,并且将使本领域技术人员能够利用本发明。

Claims (20)

  1. 一种光学防抖装置,其特征在于,包括:
    基板;
    布线层,包括电连接的第一固定部与第一可移动部,其中,所述第一固定部固定于所述基板,所述第一可移动部设于所述第一固定部内部,且所述第一固定部与所述第一可移动部之间具有间隙;
    图像传感器,固定于所述第一可移动部,所述图像传感器与所述第一可移动部电连接;
    电磁线圈,固定于所述可移动部;
    永磁机构,用于为所述电磁线圈提供永磁场,以使得所述电磁线圈在通电时驱动所述第一可移动部在平行于所述布线层的方向上移动;
    限位结构,设于所述图像传感器与所述永磁机构之间,用于对图像传感器在垂直于所述布线层的方向上进行限位。
  2. 根据权利要求1所述的光学防抖装置,其特征在于,所述第一固定部包括第一过孔,所述第一可移动部设于所述第一过孔内部,所述第一可移动部的外壁与所述第一过孔的内壁之间具有所述间隙。
  3. 根据权利要求1所述的光学防抖装置,其特征在于,所述光学防抖装置还包括:
    半导体层,包括电连接的第二固定部和第二可移动部,所述第二固定部固定于所述第一固定部,所述第二可移动部固定于所述第一可移动部。
  4. 根据权利要求3所述的光学防抖装置,其特征在于,所述图像传感器固定于所述第一可移动部远离基板的一侧,所述图像传感器与所述第二可移动部连接。
  5. 根据权利要求1所述的光学防抖装置,其特征在于,所述限位结构包括:
    固定支架,所述永磁机构固定于所述固定支架;
    第一导磁板,设于所述图像传感器与所述固定支架之间,且固定于所述第一可移动部,所述永磁机构设于所述第一导磁板与所述固定支架之间;
    滚珠,设于所述第一导磁板与所述固定支架之间;
    其中,所述第一导磁板包括第一通孔,以使得所述图像传感器能够通过所述第一通孔采集图像。
  6. 根据权利要求5所述的光学防抖装置,其特征在于,所述第一导磁板设置有凹槽,所述滚珠设置于所述凹槽内。
  7. 根据权利要求5所述的光学防抖装置,其特征在于,所述滚珠为4个,4个所述滚珠分别设置于所述第一导磁板的四个角。
  8. 根据权利要求1所述的光学防抖装置,其特征在于,所述限位结构包括:
    固定支架,所述永磁机构固定于所述固定支架;
    第一导磁板,设于所述图像传感器与所述固定支架之间,且固定于所述第一可移动部,所述永磁机构设于所述第一导磁板与所述固定支架之间;
    滑块,设于所述第一导磁板与所述固定支架之间;
    其中,所述第一导磁板包括第一通孔,以使得所述图像传感器能够通过所述第一通孔采集图像。
  9. 根据权利要求8所述的光学防抖装置,其特征在于,所述滑块为4个,4个所述滑块分别设置于所述第一导磁板的四个角。
  10. 根据权利要求1所述的光学防抖装置,其特征在于,所述电磁线圈包括:
    第一线圈,固定于所述可移动部;
    第二线圈,固定于所述可移动部,与所述第一线圈垂直设置,且不与所述第一线圈相交。
  11. 根据权利要求10所述的光学防抖装置,其特征在于,所述电磁线圈还包括:
    第三线圈,与所述第一线圈相对设置,所述第一线圈与第三线圈垂直于所述第一线圈的方向上的正投影不重合。
  12. 根据权利要求1所述的光学防抖装置,其特征在于,所述电磁线圈包括多组相对设置的子电磁线圈。
  13. 根据权利要求1所述的光学防抖装置,其特征在于,所述永磁机构包括多个永磁铁,各所述永磁铁均包括与其对应的电磁线圈,且相 对应的永磁铁和所述电磁线圈沿垂直于所述半导体层的方向同轴设置。
  14. 根据权利要求13所述的光学防抖装置,其特征在于,所述永磁铁设置于对应的所述电磁线圈的远离所述图像传感器的一侧。
  15. 根据权利要求1所述的光学防抖装置,其特征在于,所述光学防抖装置还包括:
    磁场检测装置,用于检测所述永磁机构的磁场强度;
    控制器,连接与所述电磁线圈,用于接收偏移量,并根据所述偏移量和所述磁场强度确定电磁线圈的电流信号。
  16. 根据权利要求1所述的光学防抖装置,其特征在于,所述基板包括:
    第二导磁板,设于所述布线层远离所述图像传感器的一侧,所述第一固定部固定于所述第二导磁板。
  17. 根据权利要求1所述的光学防抖装置,其特征在于,所述光学防抖装置还包括:
    滤光组件,所述滤光组件固定于所述第一可移动部,且设于所述图像传感器远离所述布线层的一侧。
  18. 一种摄像模组,其特征在于,包括:
    镜头;以及
    权利要求1至17任一项所述的光学防抖装置。
  19. 根据权利要求18所述的摄像模组,其特征在于,所述摄像模组还包括:
    音圈马达,用于驱动所镜头沿光路方向移动。
  20. 一种电子设备,其特征在于,包括:
    权利要求18或19所述的摄像模组。
PCT/CN2023/118300 2022-11-28 2023-09-12 光学防抖装置、摄像模组及电子设备 WO2024114036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211512756.5A CN118102096A (zh) 2022-11-28 2022-11-28 光学防抖装置、摄像模组及电子设备
CN202211512756.5 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024114036A1 true WO2024114036A1 (zh) 2024-06-06

Family

ID=91153806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118300 WO2024114036A1 (zh) 2022-11-28 2023-09-12 光学防抖装置、摄像模组及电子设备

Country Status (2)

Country Link
CN (1) CN118102096A (zh)
WO (1) WO2024114036A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193720A (zh) * 2021-03-15 2021-07-30 北京可利尔福科技有限公司 微型光学防抖马达及微型摄像模组
CN113542579A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 图像传感器防抖组件、摄像装置及电子设备
CN114422700A (zh) * 2022-01-25 2022-04-29 Oppo广东移动通信有限公司 防抖组件、摄像模组及电子设备
WO2022122008A1 (zh) * 2020-12-11 2022-06-16 宁波舜宇光电信息有限公司 驱动装置和摄像模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542579A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 图像传感器防抖组件、摄像装置及电子设备
WO2022122008A1 (zh) * 2020-12-11 2022-06-16 宁波舜宇光电信息有限公司 驱动装置和摄像模组
CN113193720A (zh) * 2021-03-15 2021-07-30 北京可利尔福科技有限公司 微型光学防抖马达及微型摄像模组
CN114422700A (zh) * 2022-01-25 2022-04-29 Oppo广东移动通信有限公司 防抖组件、摄像模组及电子设备

Also Published As

Publication number Publication date
CN118102096A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US10904455B2 (en) Lens moving apparatus and camera module and portable terminal including the same
US11994693B2 (en) Lens moving apparatus, camera module and optical appliance including the same
TWI830903B (zh) 感光元件驅動機構
US20230393369A1 (en) Lens driving device, and camera module and optical device including same
KR20210026659A (ko) 센서 구동 장치
WO2023011173A1 (zh) 防抖机构、拍摄装置以及电子设备
CN113079302B (zh) 摄像模组和电子设备
WO2023142721A1 (zh) 防抖组件、摄像模组及电子设备
WO2023216475A1 (zh) 防抖马达、摄像模组及电子设备
US20230164409A1 (en) Voice coil motor, camera module, and electronic device
WO2022100580A1 (zh) 音圈马达、摄像模组及电子设备
WO2024114036A1 (zh) 光学防抖装置、摄像模组及电子设备
KR20200106312A (ko) 이미지 센서용 기판, 이미지 센서용 기판 모듈, 이를 포함하는 이미지 센서 액츄에이터 및 카메라 장치
WO2022088343A1 (zh) 镜头驱动装置
WO2024114019A1 (zh) 光学防抖装置、摄像模组及电子设备
KR20220092109A (ko) 센서 구동 장치
US20210396950A1 (en) Lens driving apparatus, and camera module and optical device comprising same
CN214252704U (zh) 镜头模组
US20230038190A1 (en) Lens driving device, and camera module and optical device including same
CN112612102A (zh) 光学元件驱动机构
KR20200079056A (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2024169571A1 (zh) 马达、摄像模组以及电子设备
CN216253000U (zh) 摄像头模组及电子设备
US20240219674A1 (en) Optical element driving mechanism
CN114143428A (zh) 光学元件驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896193

Country of ref document: EP

Kind code of ref document: A1