WO2024113298A1 - 端盖组件、电池单体、电池及用电装置 - Google Patents

端盖组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024113298A1
WO2024113298A1 PCT/CN2022/135792 CN2022135792W WO2024113298A1 WO 2024113298 A1 WO2024113298 A1 WO 2024113298A1 CN 2022135792 W CN2022135792 W CN 2022135792W WO 2024113298 A1 WO2024113298 A1 WO 2024113298A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating member
end cap
cap assembly
laminated
battery
Prior art date
Application number
PCT/CN2022/135792
Other languages
English (en)
French (fr)
Inventor
苏华圣
李全坤
邢承友
卓为荣
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/135792 priority Critical patent/WO2024113298A1/zh
Publication of WO2024113298A1 publication Critical patent/WO2024113298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to an end cover assembly, a battery cell, a battery and an electrical device.
  • Rechargeable batteries have been widely used in electric vehicles, mobile devices or power tools due to their high energy density, high power density, many cycles and long storage time.
  • existing battery cells are prone to fire and explosion under reverse high voltage conditions.
  • the main technical problem solved by the present application is to provide an end cover assembly, a battery cell, a battery and an electrical device, which can reduce the probability of fire and explosion of the battery cell.
  • the present application provides an end cap assembly for covering the open end of a battery housing, the end cap assembly comprising: an electrode terminal, a transition piece and an insulating piece.
  • the transition piece is used to form an electrical connection between the electrode terminal and the battery cell in the battery housing, and comprises at least two stacking parts and at least one bending part; wherein at least two stacking parts are stacked along a first direction, and the bending part connects the adjacent edges of two adjacent stacking parts; an insulating piece is provided between at least part of two adjacent stacking parts, so that after the bending part connected to the two adjacent stacking parts is broken, the two stacking parts are electrically insulated.
  • the insulating piece By providing an insulating piece between two adjacent stacking parts of the transition piece, when the two adjacent stacking parts are disconnected, the insulating piece can keep the two adjacent stacking parts electrically insulated, thereby reducing the probability of fire and explosion of the battery cell, thereby playing a certain protective role for the battery cell.
  • the insulating member is used to increase the distance between the two laminated parts connected to the bent part in the first direction after the bent part breaks.
  • the insulating member is arranged between the two laminated parts connected to the bent part.
  • the increase in the spacing is not less than 0.1 mm when the bending portion is broken and when the bending portion is not broken. This design method can improve the insulation between the two laminated parts connected to the bending portion after the bending portion is broken.
  • the insulating member is an elastic member, and when the bending portion is not broken, the insulating member is compressed and disposed between two laminated portions connected to the bending portion. This design makes the structure of the insulating member relatively simple.
  • the insulating member in the first direction, has a first thickness in a natural state, and has a second thickness when the bending portion is not broken, and the first thickness and the second thickness satisfy the following relationship: 5% ⁇ (b-a)/a ⁇ 50%; wherein b is the first thickness and a is the second thickness.
  • the projected area of the insulating member in the direction perpendicular to the first direction is greater than 2 square millimeters and smaller than the inner diameter cross-sectional area of the battery housing.
  • Such an area design of the insulating member can make the adapter spring open, and the method of being smaller than the inner diameter cross-sectional area of the battery housing can reduce the probability of interference between the insulating member and the inner wall of the battery housing, so as to facilitate the placement of the adapter and the insulating member into the battery housing.
  • the adapter includes a first laminated portion, a second laminated portion, and a third laminated portion
  • the bending portion includes a first bending portion connecting the first laminated portion and the second laminated portion and a second bending portion connecting the second laminated portion and the third laminated portion
  • the third laminated portion is disposed adjacent to the battery cell and is electrically connected to each other
  • the electrode terminal is electrically connected to the first laminated portion and includes a first portion located between the first laminated portion and the second laminated portion and a second portion penetrating through the through hole of the first laminated portion.
  • the insulating member is connected to the end surface of the first portion of the electrode terminal facing the second laminated portion. This design can reduce the probability of the first portion overlapping the second laminated portion.
  • the number of electrode terminals is at least two, and the insulating member is bridged between at least two electrode terminals. Such a design can achieve a better insulation effect.
  • the insulating member includes a sheet-like body and an annular flange, the sheet-like body is superimposed and fixed on the end surface of the first part facing the second laminated part, and the annular flange is connected to the sheet-like body and is arranged around the peripheral side surface of the first part.
  • the electrode terminal is wrapped by the sheet-like body and the annular flange of the insulating member, so that the insulation between the electrode terminal and the second laminated part is better.
  • an insulating member is connected to the side of the third laminated part facing the second laminated part. Such a design can reduce the probability of the second laminated part and the third laminated part overlapping.
  • At least part of the bent portion is configured as a fuse, and an insulating member is disposed between two laminated portions connected to the fuse, so that after the fuse is blown, the two laminated portions connected to the fuse remain electrically insulated.
  • the insulating member is connected to the adjacent laminated parts through an adhesive layer; or, the insulating member is formed on the surface of the adjacent laminated parts. Such a design allows the insulating member to be flexibly arranged between the adjacent laminated parts.
  • the material of the insulating member includes at least one of fluororubber, EPDM, polytetrafluoroethylene, polypropylene, polyethylene terephthalate, polycarbonate, and polyphenylene sulfide.
  • the material of the insulating member can be selected according to the needs.
  • the present application proposes a battery cell, comprising a battery housing, a battery cell and an end cap assembly in the above embodiment.
  • the battery housing has at least one open end; the battery cell is located in the battery housing; the end cap assembly is covered at the open end, and the adapter of the end cap assembly is electrically connected to the battery cell.
  • the present application proposes a battery, comprising the battery cell in the above embodiment.
  • the present application proposes an electrical device, comprising the battery cell in the above embodiment.
  • FIG1 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • FIG2 is an exploded view of a battery provided in one embodiment of the present application.
  • FIG3 is an exploded view of a battery cell provided in one embodiment of the present application.
  • FIG4 is a top view of an end cap assembly according to an embodiment of the present application.
  • FIG5 is an exploded view of an embodiment of the end cover assembly in FIG4 ;
  • Fig. 6 is a cross-sectional view of an embodiment along the A-A section line in Fig. 4;
  • Fig. 7 is a cross-sectional view of an embodiment along the B-B section line in Fig. 4;
  • FIG8 is a schematic structural diagram of an embodiment of the adapter in FIG5 ;
  • FIG9 is a top view of an embodiment of the adapter in FIG8 in an unbent state
  • FIG10 is a schematic structural diagram of an embodiment of the electrode terminal in FIG5 ;
  • FIG11 is a schematic structural diagram of an embodiment of the electrode terminal and the adapter after being assembled in FIG5 ;
  • FIG12 is a schematic structural diagram of an embodiment of the electrode terminal and the insulating member in FIG11;
  • FIG13 is a schematic structural diagram of another embodiment of the insulating member in FIG5 ;
  • Fig. 14 is a cross-sectional view of another embodiment along the A-A section line in Fig. 4;
  • Fig. 15 is a cross-sectional view of another embodiment along the B-B section line in Fig. 4;
  • FIG. 16 is an exploded view of another embodiment of the end cover assembly of the present application.
  • Battery cell 20 first part 11, second part 12, box body 10, battery housing 21, battery cell 22, end cover assembly 23;
  • Riveting block 31 upper plastic 32, end cover 33, sealing ring 34, lower plastic 35, electrode terminal 36, first part 51, second part 52, insulating part 37, adapter 38;
  • Sheet-shaped body 61 Sheet-shaped body 61, annular flange 62; first direction X.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric cars, as well as military equipment and aerospace and other fields. With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
  • an adapter in a battery cell, an adapter is generally used to electrically connect the battery cell and the electrode terminal, and the adapter will be bent into a stacked structure when in use.
  • the positive and negative electrodes apply high voltage in reverse, and the adapter will try to cut off the current by fusing.
  • the battery cell will be subjected to the reverse high voltage of the system. After the fuse is blown, there will be a reverse high-voltage interface between the adjacent stacked parts of the adapter. This reverse high-voltage interface will cause the disconnected adapter layers to overlap repeatedly and remain on for a long time without disconnection, which will cause the battery cell to catch fire and explode.
  • an insulating member can be designed. Specifically, an insulating member is provided between adjacent stacked parts of the adapter. When the adapter is melted, the insulating member can separate the disconnected stacked parts through the insulating layer, so as to insulate the reverse high-voltage interfaces of adjacent stacked parts, thereby reducing the probability of fire and explosion of the battery cell after being subjected to reverse high voltage.
  • the inventors After further in-depth research, the inventors also designed an elastic insulating part. When the adapter is melted, the elastic insulating part will spring open to separate the adjacent stacked parts, so as to insulate the reverse high-voltage interfaces of the adjacent stacked parts, reduce the possibility of repeated overlap between the adapter layers, and reduce the probability of fire and explosion of the battery cell.
  • the battery cell disclosed in the embodiments of the present application can be used in electrical devices that use batteries as power sources or various energy storage systems that use batteries as energy storage elements.
  • Electrical devices can be, but are not limited to, mobile phones, tablets, laptops, electric toys, electric tools, battery cars, electric cars, ships, spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, and electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, and spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 1 provided in some embodiments of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is arranged inside the vehicle 1, and the battery 100 can be arranged at the bottom, head or tail of the vehicle 1.
  • the battery 100 can be used to power the vehicle 1.
  • the battery 100 can be used as an operating power source for the vehicle 1.
  • the vehicle 1 may also include a controller 200 and a motor 300.
  • the controller 200 is used to control the battery 100 to power the motor 300, for example, for the starting, navigation and driving power requirements of the vehicle 1.
  • the battery 100 can be used not only as an operating power source for the vehicle 1 , but also as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • FIG. 2 is an exploded view of a battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a box 10 and a battery cell 20, and the battery cell 20 is contained in the box 10.
  • the box 10 is used to provide a storage space for the battery cell 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12, and the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a storage space for accommodating the battery cell 20.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure, and the first part 11 covers the open side of the second part 12, so that the first part 11 and the second part 12 jointly define a storage space; the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 covers the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in a variety of shapes, such as a cylinder, a cuboid, etc.
  • the battery 100 there may be multiple battery cells 20, and the multiple battery cells 20 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the multiple battery cells 20 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 20 is accommodated in the box 10; of course, the battery 100 may also be a battery module formed by connecting multiple battery cells 20 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 10.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a busbar component for realizing electrical connection between the multiple battery cells 20.
  • Each battery cell 20 may be a secondary battery or a primary battery, or a lithium-sulfur battery, a sodium-ion battery, or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be cylindrical, flat, rectangular, or in other shapes.
  • FIG3 is an exploded view of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit constituting the battery 100.
  • the battery cell 20 includes an end cap assembly 23, a battery housing 21, a battery cell 22 and other functional components.
  • the end cap assembly 23 refers to a component that covers the opening of the battery housing 21 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap assembly 23 can be adapted to the shape of the battery housing 21 to match the battery housing 21.
  • the end cap assembly 23 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap assembly 23 is not easy to deform when it is squeezed and collided, so that the battery cell 20 can have a higher structural strength and the safety performance can also be improved.
  • Functional components such as electrode terminals 36 can be provided on the end cap assembly 23. The electrode terminal 36 can be used to electrically connect to the battery cell 22 for outputting or inputting electrical energy of the battery cell 20.
  • the end cap assembly 23 can also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the material of the end cap assembly 23 can also be a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • the battery housing 21 is a component used to cooperate with the end cap assembly 23 to form the internal environment of the battery cell 20, wherein the formed internal environment can be used to accommodate the battery cell 22, the electrolyte and other components.
  • the battery housing 21 and the end cap assembly 23 can be independent components, and an opening can be set in the axial direction of the battery housing 21, and the internal environment of the battery cell 20 is formed by covering the opening with the end cap assembly 23 at the opening.
  • the end cap assembly 23 and the battery housing 21 can also be integrated.
  • the end cap assembly 23 and the battery housing 21 can form a common connection surface before other components are put into the shell, and when the interior of the battery housing 21 needs to be encapsulated, the end cap assembly 23 is covered with the battery housing 21.
  • the battery housing 21 can be of various shapes and sizes, such as a rectangular parallelepiped, a cylindrical shape, a hexagonal prism, etc. Specifically, the shape of the battery housing 21 can be determined according to the specific shape and size of the battery cell 22.
  • the material of the battery housing 21 can be various, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • the battery cell 22 is a component in the battery cell 20 where electrochemical reactions occur.
  • the battery housing 21 may contain one or more battery cells 22.
  • the battery cell 22 is mainly formed by winding or stacking positive and negative electrode sheets, and a separator is usually provided between the positive and negative electrode sheets.
  • the parts of the positive and negative electrode sheets with active materials constitute the main body of the battery cell 22, and the parts of the positive and negative electrode sheets without active materials each constitute a pole ear, which is electrically connected to the electrode terminal 36 of the end cap assembly 23.
  • the positive pole ear and the negative pole ear may be located together at one end of the main body or respectively at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the pole ear connects the electrode terminal 36 to form a current loop.
  • Figure 4 is a top view of an end cap assembly 23 of an embodiment of the present application
  • Figure 5 is an exploded view of an embodiment of the end cap assembly 23 of the present application in Figure 4
  • Figure 6 is a cross-sectional view of an embodiment along the A-A section line in Figure 4
  • Figure 7 is a cross-sectional view of an embodiment along the B-B section line in Figure 4
  • Figure 8 is a structural schematic diagram of an embodiment of the adapter 38 in Figure 5.
  • the present application embodiment provides an end cap assembly 23.
  • the end cap assembly 23 is used to cover the open end of the battery housing 21.
  • the end cap assembly 23 includes an electrode terminal 36, an adapter 38 and an insulating member 37.
  • the adapter 38 is used to form an electrical connection between the electrode terminal 36 and the battery cell 22 in the battery housing 21.
  • the adapter 38 includes at least two stacking portions 41 and at least one bending portion 42; wherein, at least two stacking portions 41 are stacked along a first direction X, and the bending portion 42 connects adjacent edges of two adjacent stacking portions 41; as shown in Figures 6 and 7, an insulating member 37 is provided between at least part of two adjacent stacking portions 41, so that after the bending portion 42 connected to the two adjacent stacking portions 41 is broken, electrical insulation is maintained between the two stacking portions 41.
  • the number of electrode terminals 36 can be set according to actual conditions.
  • the number of electrode terminals 36 is two, and in other embodiments, the number of electrode terminals 36 can be one or more.
  • FIG. 9 is a top view of an embodiment of the adapter 38 in FIG. 8 in an unbent state.
  • the adapter 38 Before assembling the end cap assembly 23, the adapter 38 is in a sheet shape as a whole, and is usually made of a soft material for easy bending.
  • the adapter 38 in FIG. 9 can be bent to form at least two stacked portions 41 and one bent portion 42 in FIG. 8 .
  • the adapter 38 can be bent a certain number of times according to actual conditions. When the adapter 38 is bent once, two stacked portions 41 and one bent portion 42 can be formed. When the adapter 38 is bent multiple times, more than two stacked portions 41 and more than one bent portion 42 are formed. In one application scenario, as shown in FIG8 , the adapter 38 is bent to form three stacked portions 41 and two bent portions 42. Of course, in other application scenarios, the adapter 38 can also be bent to form more stacked portions 41 and more bent portions 42.
  • the end cap assembly 23 further includes a rivet block 31, an upper plastic 32, an end cap sheet 33, a sealing ring 34, and a lower plastic 35.
  • the end cap sheet 33 and the lower plastic 35 are mutually buckled to compress the sealing ring 34, and the sealing ring 34 is used to seal the through hole 414 to reduce the entry of external water vapor into the battery cell 20, and the rivet block 31 and the upper plastic 32 are used to fix the electrode terminal 36.
  • the electrode terminal 36 passes through the adapter 38, the lower plastic 35, the sealing ring 34, the end cap sheet 33, the upper plastic 32, and the rivet block 31 in sequence to form a complete end cap assembly 23 of the battery cell 20.
  • the purpose of the insulating member 37 is to maintain electrical insulation between the two objects on both sides thereof. As shown in FIGS. 6 and 7 , when the battery cell 20 is subjected to reverse high voltage, the two adjacent disconnected stacking portions 41 can be separated by the insulating member 37, thereby reducing the risk of short circuit of the battery cell 20.
  • the insulating member 37 can be an insulating patch, an insulating gasket, etc., which are not limited here.
  • the insulating member 37 can be made of plastic, rubber, etc., which are not limited here.
  • the insulating member 37 can maintain electrical insulation between the two adjacent stacking parts 41, thereby reducing the fire and explosion of the battery cell 20, thereby playing a certain protective role for the battery cell 20.
  • the insulating member 37 is used to increase the distance between the two stacked portions 41 connected to the bending portion 42 in the first direction X after the bending portion 42 is broken (for example, after melting).
  • the insulating member 37 may be an elastic member.
  • the elastic member When the bending portion 42 is in an unbroken state, the elastic member is compressed and disposed between the two laminated portions 41 connected to the bending portion 42, that is, the elastic member is in a compressed state at this time; when the bending portion 42 is broken, the elastic force of the elastic member may act along the first direction X, so that the distance between the two laminated portions 41 connected to the bending portion 42 is increased.
  • the structural design of the insulating member 37 is relatively simple, easy to obtain in actual use, and easy to prepare in terms of process.
  • the insulating member 37 may be a heat-expandable member.
  • the heat-expandable member When the bent portion 42 is in an unbroken state, the heat-expandable member is in a normal state; when the bent portion 42 is broken, for example, after the reverse high voltage fuse is blown, it releases a certain amount of heat, and the heat-expandable member increases in volume after being heated, especially in the first direction X, thereby increasing the distance between the two stacked portions 41 connected to the bent portion 42.
  • the structural design of the insulating member 37 is relatively simple.
  • an insulating part 37 is provided between the two stacking parts 41 connected to the bending part 42.
  • the bending part 42 is broken, for example, after the reverse high voltage fuse is blown, the distance between the two stacking parts 41 connected to the bending part 42 can be increased, thereby reducing the possibility of repeated overlap between two adjacent stacking parts 41 and reducing the probability of fire and explosion of the battery cell 20.
  • the increase in the spacing is not less than 0.1 mm, for example, the increase in the spacing is 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, etc. This arrangement can make the insulation between the two laminated portions 41 connected to the bending portion 42 better after the bending portion 42 is broken.
  • the insulating member 37 is an elastic member, in the first direction X, the insulating member 37 has a first thickness in a natural state, and the insulating member 37 has a second thickness when the bending portion 42 is not broken, and the first thickness and the second thickness satisfy the following relationship: 5% ⁇ (b-a) / a ⁇ 50%; wherein b is the first thickness (not shown in the figure), and a is the second thickness.
  • the value of (b-a) / a is 15%, 25%, 35%, 45%, etc.
  • the natural state refers to: the natural state of the insulating member 37 before it is installed in the adapter 38, that is, the state in which the insulating member 37 is not compressed.
  • the natural state refers to: the state in which the insulating member 37 is disassembled from the adapter 38 after being compressed. That is, the first thickness refers to: the thickness of the insulating member 37 before it is installed or the thickness disassembled after being compressed.
  • the second thickness refers to: the thickness of the insulating member 37 when it is compressed when it is assembled between the two stacking portions 41. In some embodiments, it is also the spacing between the two stacking portions 41 connected to the bending portion 42 when they are not disconnected.
  • the compression ratio range of the insulating member 37 is 5% ⁇ (b-a)/a ⁇ 50%.
  • the insulating member 37 in the above compression ratio range is sufficient to make the bending portion 42 in the broken state bounce open, so as to separate the two stacked portions 41 connected to the bending portion 42; and the design method with the above compression ratio less than 50% can reduce the probability of the insulating member 37 being damaged by overpressure.
  • a projection area of the insulating member 37 perpendicular to the first direction X is greater than 2 square millimeters and smaller than an inner diameter cross-sectional area of the battery housing 21 .
  • the projected area of the insulating member 37 perpendicular to the first direction X is greater than 2 square millimeters, it can be considered as the minimum area that can make the adapter 38 bounce when the insulating member 37 is compressed by 5%.
  • the projected area of the insulating member 37 perpendicular to the first direction X is smaller than the cross-sectional area of the battery housing 21, which can reduce the probability of interference between the insulating member 37 and the inner wall of the battery housing 21, and facilitate the placement of the adapter 38 and the insulating member 37 into the battery housing 21.
  • FIG. 10 is a schematic diagram of the structure of an embodiment of the electrode terminal 36 in FIG. 5
  • FIG. 11 is a schematic diagram of the structure of an embodiment of the electrode terminal 36 and the adapter 38 in FIG. 5 after being assembled.
  • the adapter 38 includes a first stacking portion 411, a second stacking portion 412 and a third stacking portion 413, and the bending portion 42 includes a first bending portion 421 connecting the first stacking portion 411 and the second stacking portion 412 and a second bending portion 422 connecting the second stacking portion 412 and the third stacking portion 413; wherein the third stacking portion 413 is disposed adjacent to the battery cell 22 and is electrically connected to each other; the electrode terminal 36 is electrically connected to the first stacking portion 411, and includes a first portion 51 located between the first stacking portion 411 and the second stacking portion 412, and a second portion 52 penetrating the through hole 414 of the first stacking portion 411.
  • a through hole 414 is provided on the first laminated portion 411 closest to the electrode terminal 36, and the third laminated portion 413 is connected to the battery cell 22 (as shown in FIG. 3 ) in the battery housing 21 (as shown in FIG. 3 ).
  • the electrode terminal 36 is placed between the two laminated portions 41 and passes through the through hole 414.
  • the adapter 38 is located between the electrode terminal 36 and the battery cell 22. The adapter 38 is used to form an electrical connection between the electrode terminal 36 and the battery cell 22 in the battery housing 21. In one application scenario, when the adapter 38 in FIG.
  • the adapter 38 is bent and placed in the end cap assembly 23. By bending the adapter 38, the space occupied by the adapter 38 can be reduced, which facilitates the connection between the end cap assembly 23 and the battery housing 21.
  • the electrode terminal 36 is a “T”-shaped column, the upper half of the “T” shape is the first part 51 of the electrode terminal 36, and the lower half of the “T” shape is the second part 52 of the electrode terminal 36.
  • the electrode terminal 36 is placed upside down when in use.
  • a through hole 414 is provided on the first laminated portion 411, and the second part 52 of the electrode terminal 36 is passed through the through hole 414 of the first laminated portion 411.
  • the first part 51 of the electrode terminal 36 is located between the first laminated portion 411 and the second laminated portion 412, and the electrode terminal 36 can move.
  • the third laminated portion 413 is electrically connected to the battery cell 22 on the side away from the first laminated portion 411.
  • the adapter 38 includes a first laminated portion 411, a second laminated portion 412, and a third laminated portion 413
  • the bent portion 42 includes a first bent portion 421 connecting the first laminated portion 411 and the second laminated portion 412, and a second bent portion 422 connecting the second laminated portion 412 and the third laminated portion 413; wherein the third laminated portion 413 is disposed adjacent to the battery cell 22 on a side away from the first laminated portion 411, and is electrically connected to each other; and the first laminated portion 411 is disposed adjacent to the electrode terminal 36 on a side away from the third laminated portion 413, and is electrically connected to each other. That is, there is no through hole 414 on the first laminated portion 411, and the surface of the first laminated portion 411 is directly welded to the electrode terminal 36.
  • An adapter 38 is provided between the electrode terminal 36 and the battery cell 22. This design allows the electrode terminal 36 and the battery cell 22 to be better connected through the adapter 38. When the current of the battery 100 is too large, the current can be cut off by disconnecting the adapter 38.
  • Figure 12 is a schematic diagram of the structure of an embodiment of the electrode terminal 36 and the insulating member 37 in Figure 11.
  • the insulating member 37 is connected to the end surface of the first portion 51 of the electrode terminal 36 facing the second stacked portion 412.
  • the insulating member 37 can be disposed between the first laminated portion 411 and the second laminated portion 412. Since the electrode terminal 36 is disposed through the first laminated portion 411, the insulating member 37 should be disposed between the bottom of the electrode terminal 36 and the second laminated portion 412.
  • the probability of the first portion 51 overlapping the second stacked portion 412 is reduced.
  • the number of electrode terminals 36 is at least two, and the insulating member 37 bridges between at least two electrode terminals 36 .
  • the insulating member 13 is in sheet form, that is, it only includes a sheet-shaped body 61, and the insulating member 37 as a whole (that is, the sheet-shaped body 61) is located at the bottom of the electrode terminal 36.
  • the insulating member 37 as a whole is located at the bottom of the two electrode terminals 36. This can make the insulation effect better.
  • the first portion 51 is located between the first laminated portion 411 and the second laminated portion 412, and the sheet-like body 61 of the insulating member 37 is fixed to the end surface of the first portion 51 facing the second laminated portion 412.
  • the convex portion of the electrode terminal 36 passing through the first laminated portion 411, that is, the second portion 52 of the electrode terminal 36 is wrapped by the annular flange 62 of the insulating member 37.
  • An insulating member 37 is connected to a side of the third stacking portion 413 facing the second stacking portion 412.
  • the insulating member 37 can be disposed between the third laminate portion 413 and the second laminate portion 412. This design can reduce the probability of the second laminate portion 412 and the third laminate portion 413 being overlapped.
  • a fuse is provided at the bent portion 42, and when a reverse high voltage occurs in the battery cell 20, the fuse can be melted by a large current. Therefore, the fuse can have an unmelted state (i.e., during normal operation) or a melted state (i.e., a state after an operation activation such as rupture or melting of the fuse).
  • At least part of the bent portion 42 is configured as a fuse portion, which may mean that the fuse portion is formed in a part of the bent portion 42 of the adapter 38.
  • the cross section of the portion of the bent portion 42 where the fuse portion is formed may be smaller than the cross section of the other portion of the bent portion 42 where the fuse portion is not formed.
  • some holes may be provided in the bent portion 42, and the bent portion 42 around the holes may form a fuse portion.
  • the fuse part having a cross section smaller than the cross section of other parts of the bent portion 42 can be fused by the current. In this way, the triggering state of the fuse part can be presented and the current flow in the battery cell 20 can be blocked.
  • the multiple bends 42 of the adapter 38 only one of the bends 42 can be configured as a fuse; or, multiple bends 42 (for example, all bends 42) can be configured as fuses, which can be set according to actual conditions.
  • a fuse can be set in the bend 42 of the adapter 38 close to the battery cell 22, or in the bend 42 of the adapter 38 close to the electrode terminal 36. It is sufficient to set an insulating member 37 in the two stacked portions 41 connected to the fuse, and there is no need to set an insulating member 37 in each bend 42.
  • the insulating member 37 is connected to the adjacent laminated portion 41 through an adhesive layer; or, the insulating member 37 is formed on the surface of the adjacent laminated portion 41 .
  • the insulating member 37 can be arranged between the two laminated parts 41 connected to the fuse layer through an adhesive layer, or the insulating member 37 can be directly formed on the surface of the two laminated parts 41 connected to the fuse layer by spraying or injection molding.
  • the insulating member 37 can be flexibly arranged between adjacent laminated parts 41.
  • Figure 14 is a cross-sectional view of another embodiment along the A-A section line in Figure 4
  • Figure 15 is a cross-sectional view of another embodiment along the B-B section line in Figure 4
  • Figure 16 is an exploded view of another embodiment of the end cap assembly 23 of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种端盖组件、电池单体、电池及用电装置。端盖组件,用于盖设于电池壳体的开口端上,端盖组件包括:电极端子、转接件和绝缘件。转接件用于在电极端子与电池壳体内的电芯之间形成电连接,包括至少两个层叠部和至少一个弯折部;其中,至少两个层叠部沿第一方向层叠设置,弯折部连接相邻两个层叠部的相邻边缘;绝缘件至少部分相邻两个层叠部之间设置有绝缘件,以使得与相邻两个层叠部相连的弯折部断裂后,两个层叠部之间保持电性绝缘。通过在转接件相邻两个层叠部之间设置绝缘件,当相邻两个层叠部断开后,绝缘件能够使相邻两个层叠部之间保持电性绝缘,降低电池单体起火爆炸的概率,从而对电池单体起到一定的保护作用。

Description

端盖组件、电池单体、电池及用电装置 【技术领域】
本申请涉及电池技术领域,特别是涉及一种端盖组件、电池单体、电池及用电装置。
【背景技术】
由于可充放电的电池具有能量密度高、功率密度高、循环使用次数多和存储时间长等优点,在电动汽车、移动设备或电动工具上面已普遍应用。但是,现有的电池单体在反高压情况下容易出现起火爆炸的现象。
【发明内容】
本申请主要解决的技术问题是提供一种端盖组件、电池单体、电池及用电装置,能够降低电池单体起火爆炸的概率。
第一方面,本申请提供了一种端盖组件,用于盖设于电池壳体的开口端上,端盖组件包括:电极端子、转接件和绝缘件。转接件用于在电极端子与电池壳体内的电芯之间形成电连接,包括至少两个层叠部和至少一个弯折部;其中,至少两个层叠部沿第一方向层叠设置,弯折部连接相邻两个层叠部的相邻边缘;绝缘件至少部分相邻两个层叠部之间设置有绝缘件,以使得与相邻两个层叠部相连的弯折部断裂后,两个层叠部之间保持电性绝缘。通过在转接件相邻两个层叠部之间设置绝缘件,当相邻两个层叠部断开后,绝缘件能够使相邻两个层叠部之间保持电性绝缘,降低电池单体起火爆炸的概率,从而对电池单体起到一定的保护作用。
在一些实施例中,绝缘件用于在弯折部断裂后,使与弯折部相连的两个层叠部在第一方向上的间距增大。在与弯折部相连的两个层叠部之间设置绝缘件,当转接件受到反向高压时,可以增大与弯折部相连的两个层叠部之间的间距,减少相邻两个层叠部反复搭接的可能,降低电池单体起火爆炸的概率。
在一些实施例中,在弯折部断裂状态下和弯折部未断裂状态下,间距的增大量不小于0.1mm。该设计方法可以使在弯折部断裂后,与弯折部相连的两个层叠部之间的绝缘性更好。
在一些实施例中,绝缘件为弹性件,且弯折部未断裂状态下绝缘件被压缩设置于与弯折部相连的两个层叠部之间。这样设计使绝缘件的结构较为简单。
在一些实施例中,在第一方向上,绝缘件在自然状态下具有第一厚度,弯折部未被断裂状态下绝缘件具有第二厚度,第一厚度和第二厚度满足如下关系:5%<(b-a)/a<50%;其中,b为第一厚度,a为第二厚度。当弯折部断裂后,弯折部在第一方向上受到压力降低,上述压缩比范围的绝缘件足以使断裂状态下的弯折部弹开,以使与弯折部连接的两个层叠部隔开。
在一些实施例中,绝缘件在垂直于第一方向上的投影面积大于2平方毫米且小于与电池壳体的内径截面积。这样绝缘件的面积设计能够使转接件弹开,且小于电池壳体的内径截面积的方法能够降低绝缘件与电池壳体内壁的干涉的概率,以便于将转接件与绝缘件放入电池壳体内。
在一些实施例中,转接件包括第一层叠部、第二层叠部以及第三层叠部,弯折部包括连接第一层叠部和第二层叠部的第一弯折部以及连接第二层叠部和第三层叠部的第二弯折部;其中,第三层叠部与电芯相邻设置,并彼此电连接;电极端子与第一层叠部电连接,并包括 位于第一层叠部和第二层叠部分之间的第一部分以及穿设于第一层叠部的通孔内的第二部分。这样设计可以通过转接件将电极端子和电芯更好的连接起来。
在一些实施例中,绝缘件连接于电极端子的第一部分面向第二层叠部的端面上。这样设计可以降低第一部分与第二层叠部搭接的概率。
在一些实施例中,电极端子的个数为至少两个,绝缘件桥接于至少两个电极端子之间。这样设计可以使绝缘效果更好。
在一些实施例中,绝缘件包括片状主体以及环形凸缘,片状主体叠合固定于第一部分面向第二层叠部的端面上,环形凸缘与片状主体连接,并环绕第一部分的周侧面设置。通过绝缘件的片状主体和环形凸缘将电极端子包裹住,使电极端子与第二层叠部之间的绝缘性更好。
在一些实施例中,第三层叠部面向第二层叠部一侧连接有绝缘件。这样设计可以降低第二层叠部与第三层叠部搭接的概率。
在一些实施例中,至少部分弯折部被构造成熔断部,绝缘件设置于与熔断部相连的两个层叠部之间,以使得熔断部熔断后,与熔断部相连的两个层叠部之间保持电性绝缘。将部分弯折部构造成熔断部,并在与熔断部相连的两个层叠部之间设置绝缘件,可以进一步保护电池单体。
在一些实施例中,绝缘件通过粘性层与相邻的层叠部连接;或者,绝缘件形成于相邻的层叠部表面。这样设计可以使绝缘件灵活设置于相邻层叠部之间。
在一些实施例中,绝缘件的材质包括氟橡胶、三元乙丙胶、聚四氟乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚苯基硫醚中至少一种。可以根据需求自行选择绝缘件的材质。
第二方面,本申请提出了一种电池单体,包括电池壳体、电芯和上述实施例中的端盖组件。电池壳体具有至少一开口端;电芯,位于电池壳体内;端盖组件盖设于开口端,且端盖组件的转接件与电芯电连接。
第三方面,本申请提出了一种电池,包括上述实施例中的电池单体。
第四方面,本申请提出了一种用电装置,包括上述实施例中的电池单体。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
【附图说明】
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例提供的车辆的结构示意图;
图2是本申请一实施例提供的电池的爆炸图;
图3是本申请一实施例提供的电池单体的爆炸图;
图4为本申请一实施例的端盖组件的俯视图;
图5为图4中端盖组件一实施方式的爆炸图;
图6为图4中沿A-A剖线的一实施方式的剖视图;
图7为图4中沿B-B剖线的一实施方式的剖视图;
图8为图5中转接件一实施方式的结构示意图;
图9为图8中转接件未弯折状态一实施方式的俯视图;
图10为图5中电极端子一实施方式的结构示意图;
图11为图5中电极端子和转接件装配后一实施方式的结构示意图;
图12为图11中电极端子与绝缘件一实施方式的结构示意图;
图13为图5中绝缘件另一实施方式的结构示意图;
图14为图4中沿A-A剖线的另一实施方式的剖视图;
图15为图4中沿B-B剖线的另一实施方式的剖视图;
图16为本申请端盖组件另一实施方式的爆炸图。
在附图中,附图并未按照实际的比例绘制。
标记说明:车辆1;
电池100,控制器200,马达300;
电池单体20,第一部分11,第二部分12,箱体10,电池壳体21,电芯22,端盖组件23;
铆接块31,上塑胶32,端盖片33,密封圈34,下塑胶35,电极端子36,第一部分51,第二部分52,绝缘件37,转接件38;
层叠部41,第一层叠部411,第二层叠部412,第三层叠部413,通孔414,弯折部42,第一弯折部421,第二弯折部422;
片状主体61、环形凸缘62;第一方向X。
【具体实施方式】
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请的发明人注意到,在电池单体中一般采用转接件将电芯和电极端子电连接,在使 用时转接件会弯折成层叠结构。当电池单体在异常情况下电流过大时,正负电极反向施加高电压,转接件会以熔断的方式试图切断电流。但是,此时电芯会承受系统的反向高压,熔断后转接件的相邻层叠部之间存在反向高压界面,该反向高压界面会使得断开的转接件层与层之间重复搭接,并长时间导通不断开,进而导致电池单体起火爆炸。
为了解决上述问题,本申请的发明人研究发现,可以设计绝缘件。具体为在转接件相邻的层叠部之间设置绝缘件,当转接件发生熔断后,绝缘件可以使断开的层叠部之间通过绝缘层间隔开,以使相邻层叠部的反向高压界面之间绝缘,降低电池单体受到反向高压后起火爆炸的概率。
发明人经过进一步深入研究,还设计了一种弹性绝缘件。当转接件熔断后,弹性绝缘件弹开将相邻的层叠部隔开,以使相邻层叠部的反向高压界面之间绝缘,减少转接件层与层之间反复搭接的可能,降低电池单体起火爆炸的概率。
本申请实施例公开的电池单体可以用于使用电池作为电源的用电装置或者使用电池作为储能元件的各种储能系统。用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1的结构示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部设置有电池100,电池100可以设置在车辆1的底部或头部或尾部。电池100可以用于车辆1的供电,例如,电池100可以作为车辆1的操作电源。车辆1还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体20的爆炸图。电池单体20是指组成电池100的最小单元。如图3,电池单体20包括有端盖组件23、电池壳体21、电芯22以及其他的功能性部件。
端盖组件23是指盖合于电池壳体21的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖组件23的形状可以与电池壳体21的形状相适应以配合电池壳体21。可选地,端盖组件23可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖组件23在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖组件23上可以设置有如电极端子36等的功能性部件。电极端子36可以用于与电芯22电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖组件23上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖组件23的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电池壳体21是用于配合端盖组件23以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电芯22、电解液以及其他部件。电池壳体21和端盖组件23可以是独立的部件,可以于电池壳体21的轴向方向上设置开口,通过在开口处使端盖组件23盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖组件23和电池壳体21一体化,具体地,端盖组件23和电池壳体21可以在其他部件入壳前先形成一个共同的连接面,当需要封装电池壳体21的内部时,再使端盖组件23盖合电池壳体21。电池壳体21可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,电池壳体21的形状可以根据电芯22的具体形状和尺寸大小来确定。电池壳体21的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电芯22是电池单体20中发生电化学反应的部件。电池壳体21内可以包含一个或更多个电芯22。电芯22主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电芯22的主体部,正极片和负极片不具有活性物质的部分各自构成极耳,极耳与端盖组件23的电极端子36电连接。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子36以形成电流回路。
根据本申请的一些实施例,请参阅图4至图8,图4为本申请一实施例的端盖组件23的俯视图;图5为图4中本申请端盖组件23一实施方式的爆炸图,图6为图4中沿A-A剖线的一实施方式的剖视图;图7为图4中沿B-B剖线的一实施方式的剖视图,图8为图5中转接件38一实施方式的结构示意图。本申请实施例提供了一种端盖组件23。端盖组件23用于盖设于电池壳体21的开口端上。端盖组件23包括电极端子36、转接件38以及绝缘件37。转接件38用于在电极端子36与电池壳体21内的电芯22之间形成电连接。如图5-图8所示,该转接件38包括至少两个层叠部41和至少一个弯折部42;其中,至少两个层叠部41沿第一方向X层叠设置,弯折部42连接相邻两个层叠部41的相邻边缘;如图6和图7所示,至少部分相邻两个层叠部41之间设置有绝缘件37,以使得与相邻两个层叠部41相连的弯折部42断裂后,两个层叠部41之间保持电性绝缘。
可选地,在本申请中,电极端子36的数量可以根据实际情况进行设定。图示实施例中,电极端子36的数量为两个,在其它实施方式中,电极端子36的数量可以是一个,也可以是多个。
另一可选地,如图9所示,图9为图8中转接件38未弯折状态一实施方式的俯视图。组装端盖组件23之前,转接件38整体为片状,通常采用质软的材料进行制作以方便弯折。在组装端盖组件23时,可以将图9中的转接件38进行折弯处理,以至少形成图8中的两个层叠部41和一个弯折部42。
转接件38可以根据实际情况选择弯折次数。当转接件38弯折一次时,可以形成两个层叠部41和一个弯折部42。当转接件38弯折多次时,形成大于两个的层叠部41和大于一个的弯折部42。在一个应用场景中,如图8所示,转接件38折弯后形成三个层叠部41和两个弯折部42。当然,在其他应用场景中,转接件38折弯后也可形成更多个层叠部41以及更多个弯折部42。
在一实施方式中,如图5所示,端盖组件23还包括铆接块31、上塑胶32、端盖片33、密封圈34、下塑胶35。端盖片33和下塑胶35是相互扣合压紧密封圈34,密封圈34用于密封通孔414减少外界水汽进入电池单体20,铆接块31和上塑胶32用于固定电极端子36。电极端子36依次穿过转接件38、下塑胶35、密封圈34、端盖片33、上塑胶32以及铆接块31,形成完整的电池单体20的端盖组件23。
上述绝缘件37的目的是为了使得其两侧的两个物体之间保持电性绝缘。如图6和图7所示,当电池单体20受到反向高压后,相邻两个断开的层叠部41可以通过绝缘件37隔开,从而降低电池单体20短路的风险。示例性的,绝缘件37可以是绝缘贴片、绝缘垫片等,在此不作限定。绝缘件37材质可以是塑料、橡胶等,在此不作限定。
总而言之,在上述技术方案中,通过在转接件38相邻两个层叠部41之间设置绝缘件37,当相邻两个层叠部41断开后,绝缘件37能够使相邻两个层叠部41之间保持电性绝缘,降低电池单体20起火爆炸,从而对电池单体20起到一定的保护作用。
根据本申请的一些实施例,如图6所示,绝缘件37用于在弯折部42断裂后(例如,熔断后),使与弯折部42相连的两个层叠部41在第一方向X上的间距增大。
在一实施方式中,绝缘件37可以是弹性件。当弯折部42处于未断裂状态下,弹性件被压缩设置于与弯折部42相连的两个层叠部41之间,即此时弹性件处于压缩状态;当弯折部42断裂后,弹性件的弹性力可沿第一方向X作用,使与弯折部42相连的两个层叠部41之间的距离增大。该绝缘件37的结构设计较为简单,在实际使用时易于获得,工艺上易于制备。
在一实施方式中,绝缘件37可以是受热膨胀件。当弯折部42处于未断裂状态下,受热膨胀件处于正常状态;当弯折部42断裂后,例如,反高压熔断后,其释放一定的热量,受热膨胀件受热后体积增大,尤其是沿第一方向X上的尺寸增大,进而使与弯折部42相连的两个层叠部41之间的距离增大。该绝缘件37的结构设计较为简单。
总之,在与弯折部42相连的两个层叠部41之间设置绝缘件37,当弯折部42断裂,例如,反高压熔断后,可以增大与弯折部42相连的两个层叠部41之间的间距,减少相邻两个层叠部41反复搭接的可能,降低电池单体20起火爆炸的概率。
根据本申请的一些实施例,可选地,在弯折部42断裂状态下和弯折部42未断裂状态下,间距的增大量不小于0.1mm,例如,间距的增大量为0.2mm、0.3mm、0.4mm、0.5mm等。这样设置可以使在弯折部42断裂后,与弯折部42相连的两个层叠部41之间的绝缘性更好。
根据本申请的一些实施例,可选地,请参阅图7。当绝缘件37为弹性件时,在第一方向X上,绝缘件37在自然状态下具有第一厚度,弯折部42未断裂状态下绝缘件37具有第二厚度,第一厚度和第二厚度满足如下关系:5%<(b-a)/a<50%;其中,b为第一厚度(图中未示出),a为第二厚度。例如,(b-a)/a的值为15%、25%、35%、45%等。具体的,自然状态是指:绝缘件37安装于转接件38内之前的自然状态,也就是绝缘件37未被压缩的状态。或者,自然状态是指:绝缘件37压缩后从转接件38上拆解出来的状态。即第一厚度是指:绝缘件37未安装前的厚度或者压缩后拆解出来的厚度。第二厚度是指:绝缘件37装配在两个层叠部41之间时被压缩时的厚度,在一些实施例中,也是与弯折部42连接的两个层叠部41未断开时的间距。
绝缘件37的压缩比范围为5%<(b-a)/a<50%,当弯折部42断裂后,弯折部42在第一方向X上受到的压力降低,上述压缩比范围的绝缘件37足以使断裂状态下的弯折部42弹开,以使与弯折部42连接的两个层叠部41隔开;且上述压缩比小于50%的设计方式可以降低绝缘件37被过压损伤的概率。
根据本申请的一些实施例,可选地,绝缘件37在垂直于第一方向X上的投影面积大于2平方毫米且小于与电池壳体21的内径截面积。
具体地,绝缘件37在垂直于第一方向X上的投影面积与绝缘件37的压缩量存在一定的关系。当绝缘件37在垂直于第一方向X上的投影面积大于2平方毫米,可以认为是绝缘件37为5%的压缩量时,能够使转接件38弹开的最小面积。绝缘件37在垂直于第一方向上X的投影面积小于电池壳体21的截面积,可以降低绝缘件37与电池壳体21内壁的干涉的概率,便于将转接件38和绝缘件37放入电池壳体21内。
根据本申请的一些实施例,可选地,请一并参阅图7、图8、图10以及图11,图10为图5中电极端子36一实施方式的结构示意图,图11为图5中电极端子36和转接件38装配后一实施方式的结构示意图。转接件38包括第一层叠部411、第二层叠部412以及第三层叠部413,弯折部42包括连接第一层叠部411和第二层叠部412的第一弯折部421以及连接第二层叠部412和第三层叠部413的第二弯折部422;其中,第三层叠部413与电芯22相邻设置,并彼此电连接;电极端子36与第一层叠部411电连接,并包括位于第一层叠部411和第二层叠部412分之间的第一部分51以及穿设于第一层叠部411的通孔414内的第二部分52。
具体地,在折弯前,转接件38大体为板状,具有较大的长度,如图9所示,第一层叠部411、第二层叠部412、第三层叠部413、第一弯折部421以及第二弯折部422为一体的薄片结构,均为转接件38的一部分。
进一步,如图8和图11所示,最靠近电极端子36的第一层叠部411上设有通孔414,第三层叠部413与电池壳体21(如图3所示)内的电芯22(如图3所示)连接。电极端子36放置在两个层叠部41之间并穿过通孔414。转接件38位于电极端子36与电芯22之间。转接件38用于在电极端子36与电池壳体21内的电芯22之间形成电连接。在一应用场景中,在将图9中的转接件38与其他元件装配形成端盖组件23时,第三层叠部413连接到电芯22后,将第二弯折部422折弯,使第二层叠部412与第三层叠部413平行;再将第一弯折部421折弯,使电极端子36的第二部分52穿过通孔414,电极端子36的第一部分51位于第一层叠部411和第二层叠部412之间,最后如图11所示,转接件38弯折置于端盖组件23内。通过折弯转接件38,可以减小转接件38占用的空间,便于端盖组件23与电池壳体21的连接。
如图10所示,电极端子36为“T”字形柱体,“T”字形的上半部分为电极端子36的第 一部分51,“T”字形的下半部分为电极端子36的第二部分52。电极端子36在使用时为倒放设置。如图11所示,在第一层叠部411上设有通孔414,电极端子36的第二部分52穿设于第一层叠部411的通孔414,电极端子36的第一部分51位于第一层叠部411与第二层叠部412之间,可以电极端子36移动。第三层叠部413背离第一层叠部411一侧与电芯22电连接。
在另一实施方式中,转接件38包括第一层叠部411、第二层叠部412以及第三层叠部413,弯折部42包括连接第一层叠部411和第二层叠部412的第一弯折部421以及连接所述第二层叠部412和第三层叠部413的第二弯折部422;其中,第三层叠部413背离第一层叠部411一侧与电芯22相邻设置,并彼此电连接;第一层叠部411背离第三层叠部413一侧与电极端子36相邻设置,并彼此电连接。即第一层叠部411上没有通孔414,第一层叠部411表面直接与电极端子36焊接。
在电极端子36与电芯22之间设置转接件38,这样设计可以通过转接件38将电极端子36和电芯22更好的连接起来。当电池100电流过大时,可以通过断开转接件38的方式切断电流。
根据本申请的一些实施例,可选地,请参阅图11和图12,图12为图11中电极端子36和绝缘件37一实施方式的结构示意图。绝缘件37连接于电极端子36的第一部分51面向第二层叠部412的端面上。
具体地,第一弯折部421断裂时,可以在第一层叠部411与第二层叠部412之间设置绝缘件37。由于电极端子36穿设于第一层叠部411,因此绝缘件37应设于电极端子36底部与第二层叠部412之间。
通过将绝缘件37设置于电极端子36的底部,降低第一部分51与第二层叠部412搭接的概率。
根据本申请的一些实施例,可选地,如图12所示,电极端子36的个数为至少两个,绝缘件37桥接于至少两个电极端子36之间。
具体地,如图12所示,绝缘件13为片状,即仅包含片状主体61,绝缘件37整体(也即片状主体61)位于电极端子36的底部。电极端子36为两个时,绝缘件37整体位于两个电极端子36底部。可以使绝缘效果更好。
根据本申请的一些实施例,可选地,请参阅图13,图13为图5中绝缘件37另一实施方式的结构示意图。绝缘件37包括片状主体61以及环形凸缘62,片状主体61叠合固定于第一部分51面向第二层叠部412的端面上,环形凸缘62与片状主体61连接,并环绕第一部分51的周侧面设置。
具体地,当电极端子36穿设第一层叠部411时,第一部分51位于第一层叠部411与第二层叠部412之间,此时绝缘件37的片状主体61固定于第一部分51面向第二层叠部412的端面上。电极端子36穿过第一层叠部411的凸部部分,也就是电极端子36的第二部分52由绝缘件37的环形凸缘62包裹。
通过绝缘件37的片状主体61和环形凸缘62将电极端子36包裹住,使电极端子36的绝缘性更好。
根据本申请的一些实施例,可选地,请参阅图7和图11。第三层叠部413面向第二层叠部412一侧连接有绝缘件37。
第二弯折部422断裂时,绝缘件37可以设置在第三层叠部413与第二层叠部412之间。 这样设计可以降低第二层叠部412与第三层叠部413搭接的概率。
当第一弯折部421断裂时,绝缘件37设置于第一层叠部411与第二层叠部412之间。当第二弯折部422断裂时,绝缘件37设置于第二层叠部412与第三层叠部413之间。也可以在第一弯折部421和第二弯折部422都断裂时,在第一层叠部411与第二层叠部412之间和第二层叠部412与第三层叠部413之间各设置绝缘件37。
根据本申请的一些实施例,可选地,请参阅图7和图11。至少部分弯折部42被构造成熔断部(图中未示出),绝缘件37设置于与熔断部相连的两个层叠部41之间,以使得熔断部熔断后,与熔断部相连的两个层叠部41之间保持电性绝缘。
具体地,在弯折部42设置熔断部,当电池单体20发生反向高压时,熔断部可被大电流熔断。因此,熔断部可具有未被熔断状态(即正常操作期间)或熔断状态(即在诸如熔断部的破裂或融化的操作激活之后的状态)。
可选地,至少部分弯折部42被构造成熔断部可以指:熔断部形成在转接件38的一部分弯折部42中。弯折部42形成有熔断部的部分的横截面可以比弯折部42中未形成有熔断部的其它部分的横截面小。或者,也可在弯折部42内设置一些孔洞,孔洞周围的弯折部42形成熔断部。
当电池单体20发生反向高压时,例如,当熔断部从未被熔断状态改变为熔断状态时,横截面小于弯折部42其它部分的横截面的熔断部可被电流熔断。这样,可呈现熔断部的触发状态并且电池单体20中的电流流动可被阻止。
在转接件38的多个弯折部42中,可以仅将其中一个弯折部42构造成熔断部即可;或者,也可将多个弯折部42(例如,所有弯折部42)构造成熔断部,具体可根据实际情况进行设定。示例性地。可以在转接件38中靠近电芯22的弯折部42设置熔断部,也可以在转接件38中靠近电极端子36的弯折部42设置熔断部。在与熔断部相连的两个层叠部41设置一个绝缘件37即可,无需在每一个弯折部42设置绝缘件37。
总而言之,将部分弯折部42构造成熔断部,并在与熔断部相连的两个层叠部41之间设置绝缘件37,可以进一步保护电池单体20。
根据本申请的一些实施例,可选地,绝缘件37通过粘性层与相邻的层叠部41连接;或者,绝缘件37形成于相邻的层叠部41表面。
具体地,可以在与熔断层相连的两个层叠部41之间通过粘性层设置绝缘件37,也可以通过喷涂或注塑的方式将绝缘件37直接形成于与熔断层相连的两个层叠部41的表面。可以使绝缘件37灵活设置于相邻层叠部41之间。
根据本申请的一些实施例,可选地,绝缘件37的材质包括氟橡胶、三元乙丙胶、聚四氟乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚苯基硫醚中至少一种。
当绝缘件37为弹性件时,绝缘件37的材质可以是橡胶、塑胶等,在此不作限定。当绝缘件37的材质为橡胶时,可以是氟橡胶(FKM或FPM)、三元乙丙胶(EPDM)等,在此不做限定。绝缘件37的材质为塑胶时,可以是聚四氟乙烯(PFA)、聚丙烯(PP)等,在此不做限定。
当绝缘件37无弹性时,绝缘件37的材质可以是聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚苯基硫醚(PPS)等,在此不做限定。在实际使用时,可以根据需求自行选择绝缘件37的材质。
此外,当绝缘件37无弹性时,为了提高绝缘效果,绝缘件37的面积至少大于相邻两个 层叠部41中的面积最小的一个。例如,如图4、图8和图9所示,当在第一层叠部411与第二层叠部412之间设置绝缘件37时,绝缘件37的外边缘与转接件38的第一层叠部411的外边缘重合;当在第二层叠部412与第三层叠部413之间设置绝缘件37时,绝缘件37的外边缘与第三层叠部413的外边缘重合。
当绝缘件37有弹性时,绝缘件37的面积不一定要大于相邻两个层叠部41中的面积最小的一个。如图14、图15和图16所示,图14为图4中沿A-A剖线的另一实施方式的剖视图,图15为图4中沿B-B剖线的另一实施方式的剖视图;图16为本申请端盖组件23另一实施方式的爆炸图。只要绝缘件37能够使得两侧的层叠部41能够在熔断部熔断时弹开即可。
最后,在一个具体的应用场景中,如图4所示,端盖组件23包括电极端子36、转接件38以及绝缘件37。转接件38折弯设置于端盖组件23内,转接件38的一个层叠部41与电芯22连接,靠近电极端子36的一个层叠部41上设有通孔414,电极端子36放置于两个层叠部41之间并穿过通孔414,使电极端子36与电芯22之间通过转接件38实现电连接。在弯折部42处构造熔断部,将绝缘件37设置于与熔断部相连的两个层叠部41之间。当熔断部被大电流熔断时,相邻两个层叠部41相连的弯折部42锻炼,绝缘件37使两个层叠部41之间保持电性绝缘。从而保护电池单体20,降低电池单体20起火爆炸的概率。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种端盖组件,用于盖设于电池壳体的开口端上,所述端盖组件包括:
    电极端子;
    转接件,用于在所述电极端子与所述电池壳体内的电芯之间形成电连接,包括至少两个层叠部和至少一个弯折部;其中,所述至少两个层叠部沿第一方向层叠设置,所述弯折部连接相邻两个所述层叠部的相邻边缘;
    绝缘件,至少部分相邻两个所述层叠部之间设置有所述绝缘件,以使得与相邻两个所述层叠部相连的所述弯折部断裂后,两个所述层叠部之间保持电性绝缘。
  2. 根据权利要求1所述的端盖组件,其中,
    所述绝缘件用于在所述弯折部断裂后,使与所述弯折部相连的两个所述层叠部在所述第一方向上的间距增大。
  3. 根据权利要求2所述的端盖组件,其中,
    在所述弯折部断裂状态下和所述弯折部未断裂状态下,所述间距的增大量不小于0.1mm。
  4. 根据权利要求2-3中任一项所述的端盖组件,其中,
    所述绝缘件为弹性件,且所述弯折部未断裂状态下所述绝缘件被压缩设置于与所述弯折部相连的两个所述层叠部之间。
  5. 根据权利要求2-4中任一项所述的端盖组件,其中,
    在所述第一方向上,所述绝缘件在自然状态下具有第一厚度,所述弯折部未被断裂状态下所述绝缘件具有第二厚度,所述第一厚度和所述第二厚度满足如下关系:
    5%<(b-a)/a<50%;其中,b为所述第一厚度,a为所述第二厚度。
  6. 根据权利要求2-5中任一项所述的端盖组件,其中,
    所述绝缘件在垂直于所述第一方向上的投影面积大于2平方毫米且小于与所述电池壳体的内径截面积。
  7. 根据权利要求2-6中任一项所述的端盖组件,其中,
    所述转接件包括第一层叠部、第二层叠部以及第三层叠部,所述弯折部包括连接所述第一层叠部和第二层叠部的第一弯折部以及连接所述第二层叠部和第三层叠部的第二弯折部;
    其中,所述第三层叠部与所述电芯相邻设置,并彼此电连接;所述电极端子与所述第一层叠部电连接,并包括位于所述第一层叠部和所述第二层叠部分之间的第一部分以及穿设于所述第一层叠部的通孔内的第二部分。
  8. 根据权利要求7所述的端盖组件,其中,
    所述绝缘件连接于所述电极端子的所述第一部分面向所述第二层叠部的端面上。
  9. 根据权利要求8所述的端盖组件,其中,
    所述电极端子的个数为至少两个,所述绝缘件桥接于所述至少两个电极端子之间。
  10. 根据权利要求7所述的端盖组件,其中,
    所述绝缘件包括片状主体以及环形凸缘,所述片状主体叠合固定于第一部分面向所述第二层叠部的端面上,所述环形凸缘与所述片状主体连接,并环绕所述第一部分的周侧面设置。
  11. 根据权利要求7所述的端盖组件,其中,
    所述第三层叠部面向所述第二层叠部一侧连接有所述绝缘件。
  12. 根据权利要求1-11任一项所述的端盖组件,其中,
    至少部分所述弯折部被构造成熔断部,所述绝缘件设置于与所述熔断部相连的两个所述层叠部之间,以使得所述熔断部熔断后,与所述熔断部相连的两个所述层叠部之间保持电性绝缘。
  13. 根据权利要求1-12任一项所述的端盖组件,其中,
    所述绝缘件通过粘性层与相邻的所述层叠部连接;或者,所述绝缘件形成于相邻的所述层叠部表面。
  14. 根据权利要求1-13中任一项所述的端盖组件,其中,
    所述绝缘件的材质包括氟橡胶、三元乙丙胶、聚四氟乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚苯基硫醚中至少一种。
  15. 一种电池单体,包括:
    电池壳体,具有至少一开口端;
    电芯,位于所述电池壳体内;
    权利要求1-14中任一项所述的端盖组件,所述端盖组件盖设于所述开口端,且所述端盖组件的转接件与所述电芯电连接。
  16. 一种电池,包括权利要求15中所述的电池单体。
  17. 一种用电装置,包括权利要求15中所述的电池单体。
PCT/CN2022/135792 2022-12-01 2022-12-01 端盖组件、电池单体、电池及用电装置 WO2024113298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135792 WO2024113298A1 (zh) 2022-12-01 2022-12-01 端盖组件、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135792 WO2024113298A1 (zh) 2022-12-01 2022-12-01 端盖组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024113298A1 true WO2024113298A1 (zh) 2024-06-06

Family

ID=91322740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135792 WO2024113298A1 (zh) 2022-12-01 2022-12-01 端盖组件、电池单体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024113298A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211929598U (zh) * 2020-09-14 2020-11-13 江苏时代新能源科技有限公司 一种电池单体、电池及用电的装置
CN112331993A (zh) * 2019-11-15 2021-02-05 宁德时代新能源科技股份有限公司 顶盖组件、电池单体、电池模块、装置以及制造方法
CN214336804U (zh) * 2021-01-25 2021-10-01 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN216750230U (zh) * 2022-01-07 2022-06-14 宁德时代新能源科技股份有限公司 一种电池单体、电池及用电装置
CN115064847A (zh) * 2022-08-05 2022-09-16 江苏时代新能源科技有限公司 转接构件、电池单体、电池以及用电装置
CN217903377U (zh) * 2022-04-18 2022-11-25 宁德时代新能源科技股份有限公司 转接组件、电池单体、电池及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331993A (zh) * 2019-11-15 2021-02-05 宁德时代新能源科技股份有限公司 顶盖组件、电池单体、电池模块、装置以及制造方法
CN211929598U (zh) * 2020-09-14 2020-11-13 江苏时代新能源科技有限公司 一种电池单体、电池及用电的装置
CN214336804U (zh) * 2021-01-25 2021-10-01 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN216750230U (zh) * 2022-01-07 2022-06-14 宁德时代新能源科技股份有限公司 一种电池单体、电池及用电装置
CN217903377U (zh) * 2022-04-18 2022-11-25 宁德时代新能源科技股份有限公司 转接组件、电池单体、电池及用电装置
CN115064847A (zh) * 2022-08-05 2022-09-16 江苏时代新能源科技有限公司 转接构件、电池单体、电池以及用电装置

Similar Documents

Publication Publication Date Title
CN114094162B (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
CN219040512U (zh) 电池单体、电池、用电设备及电池单体的制造设备
CN215497007U (zh) 电池单体、电池及用电设备
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
CN217507612U (zh) 连接组件、电池单体、电池及用电设备
CN115868074A (zh) 端盖组件、电池单体及其制造方法、电池及用电装置
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2023160389A1 (zh) 电池壳体、电池单体、电池和用电设备
CN217788704U (zh) 电池单体、电池和用电设备
WO2023159507A1 (zh) 绝缘件、端盖组件、电池单体、电池及用电设备
CN216120530U (zh) 电池和用电装置
EP4181281A1 (en) Battery, electric device, and method and device for preparing battery
CN116686157A (zh) 卷绕式电极组件、电池单体、电池及用电设备
CN115064757B (zh) 电池单体、电池及用电装置
WO2024113298A1 (zh) 端盖组件、电池单体、电池及用电装置
CN221328042U (zh) 电池单体、电池、用电设备、电池单体的制造设备
CN220527036U (zh) 端盖组件、电池单体、电池和用电装置
CN221327888U (zh) 电池单体、电池、用电装置、电池单体的制造设备
CN115917829B (zh) 电池单体、电池、用电设备及电池单体的制造设备
WO2023216253A1 (zh) 电池单体、电池及用电设备
CN218939874U (zh) 电池及用电装置
CN219017730U (zh) 电池单体、电池及用电设备
CN220672722U (zh) 电池单体、电池和用电装置
CN217468606U (zh) 端盖组件、电池单体、电池及用电设备
CN220585341U (zh) 电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966888

Country of ref document: EP

Kind code of ref document: A1