WO2024106526A1 - 学習用データ生成方法、学習モデル生成方法、出力プログラム、学習用モデルデータ生成装置、学習用データ生成プログラム、出力装置及び出力方法 - Google Patents
学習用データ生成方法、学習モデル生成方法、出力プログラム、学習用モデルデータ生成装置、学習用データ生成プログラム、出力装置及び出力方法 Download PDFInfo
- Publication number
- WO2024106526A1 WO2024106526A1 PCT/JP2023/041388 JP2023041388W WO2024106526A1 WO 2024106526 A1 WO2024106526 A1 WO 2024106526A1 JP 2023041388 W JP2023041388 W JP 2023041388W WO 2024106526 A1 WO2024106526 A1 WO 2024106526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- measurement
- value
- target
- conversion value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000005259 measurement Methods 0.000 claims abstract description 153
- 238000006243 chemical reaction Methods 0.000 claims abstract description 101
- 239000003814 drug Substances 0.000 claims description 62
- 229940079593 drug Drugs 0.000 claims description 58
- 230000008569 process Effects 0.000 claims description 41
- 238000012549 training Methods 0.000 claims description 32
- 238000011156 evaluation Methods 0.000 claims description 23
- 230000002861 ventricular Effects 0.000 claims description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 18
- 201000010099 disease Diseases 0.000 claims description 17
- 230000035487 diastolic blood pressure Effects 0.000 claims description 13
- 230000035488 systolic blood pressure Effects 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims description 11
- 230000035485 pulse pressure Effects 0.000 claims description 10
- 230000036772 blood pressure Effects 0.000 claims description 9
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 claims description 6
- 101800002247 Brain natriuretic peptide 45 Proteins 0.000 claims description 6
- 102400001263 NT-proBNP Human genes 0.000 claims description 5
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 claims description 5
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 claims description 5
- 230000003416 augmentation Effects 0.000 claims description 5
- 238000009795 derivation Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 108010008064 pro-brain natriuretic peptide (1-76) Proteins 0.000 claims description 5
- 229940116269 uric acid Drugs 0.000 claims description 5
- 210000001367 artery Anatomy 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 46
- 230000008859 change Effects 0.000 description 36
- 238000012544 monitoring process Methods 0.000 description 33
- 238000004891 communication Methods 0.000 description 27
- 238000000691 measurement method Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 206010019280 Heart failures Diseases 0.000 description 7
- 230000004872 arterial blood pressure Effects 0.000 description 6
- 210000001147 pulmonary artery Anatomy 0.000 description 5
- 102400000667 Brain natriuretic peptide 32 Human genes 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 239000002934 diuretic Substances 0.000 description 4
- 230000001882 diuretic effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000004217 heart function Effects 0.000 description 4
- HPNRHPKXQZSDFX-OAQDCNSJSA-N nesiritide Chemical compound C([C@H]1C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CO)C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1N=CNC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 HPNRHPKXQZSDFX-OAQDCNSJSA-N 0.000 description 4
- 238000012706 support-vector machine Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 3
- 206010007556 Cardiac failure acute Diseases 0.000 description 2
- 206010007558 Cardiac failure chronic Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000009798 acute exacerbation Effects 0.000 description 2
- 230000001746 atrial effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229940124549 vasodilator Drugs 0.000 description 2
- 239000003071 vasodilator agent Substances 0.000 description 2
- 238000009528 vital sign measurement Methods 0.000 description 2
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010034567 Peripheral circulatory failure Diseases 0.000 description 1
- 206010037368 Pulmonary congestion Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 238000002555 auscultation Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000000496 cardiotonic agent Substances 0.000 description 1
- 238000011976 chest X-ray Methods 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 208000018578 heart valve disease Diseases 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
Definitions
- the present invention relates to a learning data generation method for generating learning data, a learning model generation method using the learning data, and an output program using the learning model.
- Heart disease is collectively known as one of the three major diseases, along with cancer and stroke. These three major diseases are the leading causes of death among Japanese people.
- Heart disease is a general term for illnesses caused by abnormalities in the structure or function of the heart.
- Heart disease includes heart failure, ischemic heart disease, valvular heart disease, cardiomyopathy, arrhythmia, and congenital heart disease.
- Heart failure is a condition in which the pumping function of the heart is reduced due to organic or functional disorders of the heart, leading to reduced cardiac output, peripheral circulatory failure, and congestion in the lungs and systemic venous system.
- Heart failure can be divided into acute and chronic heart failure depending on the rate of progression. After discharge from the hospital following acute treatment, patients with acute heart failure, and after a definitive diagnosis, patients with chronic heart failure, are required to have their condition assessed and their cardiac function evaluated periodically to prevent acute exacerbations. For this reason, patients visit the hospital regularly, but frequent visits to the hospital are a burden for patients and can also lead to a waste of medical resources. Therefore, there is a need to understand the condition of the heart and evaluate cardiac function using vital signs measured at home or elsewhere.
- Patent Document 1 proposes a device and method for non-invasively measuring left ventricular end-diastolic pressure (LVEDP) that allows monitoring at home.
- LVEDP left ventricular end-diastolic pressure
- Patent Document 1 does not take into account that normal ranges of vital signs vary from person to person, and it is highly likely that pathological conditions and cardiac function cannot be accurately assessed.
- the present invention has been made in consideration of these circumstances. Its purpose is to provide a learning data generation method that uses a learning model to generate learning data required to enable estimation of intracardiac pressure, including LVEDP, taking into account individual differences, a learning model generation method that uses the learning data, and an output program that uses the learning model.
- a method for generating learning data includes obtaining a first target value based on a first measurement contributing to evaluation of a disease state at a first time point and a first parameter based on a second measurement contributing to evaluation of a disease state, obtaining a second target value based on the first measurement and a second parameter based on the second measurement at a second time point, deriving a target conversion value based on the first target value and the second target value, deriving a parameter conversion value based on the first parameter and the second parameter, and generating learning data in which the target conversion value and the parameter conversion value are associated with each other for each patient.
- the first measurement is a measurement that requires the involvement of a medical professional
- the first target value and the second target value include at least one of intracardiac pressure, BNP, NT-proBNP, uric acid level, inferior arterial diameter, or ventricular ejection fraction
- the second measurement is a measurement that can be performed without the involvement of a medical professional
- the first parameter and the second parameter preferably include at least one of pre-ejection time, left ventricular ejection time, diastolic blood pressure, systolic blood pressure, maximum velocity of rise of pulse pressure waveform, blood pressure difference between the start of rise of peripheral pulse pressure waveform and dicrotic notch, pulse wave augmentation index, heart rate, isovolumic systolic time, pulse wave velocity, or systolic time.
- the first measurement is performed by a medical professional
- the second measurement is performed using a biosignal measurement device that can be operated by a person other than a medical professional.
- the target conversion value is obtained by division or subtraction using the first target value and the second target value
- the parameter conversion value is obtained by division or subtraction using the first parameter and the second parameter.
- the second point in time is a point in time several days have passed since the first point in time.
- a learning model generation method obtains, at a first time point, a first target value based on a first measurement contributing to evaluation of a disease state and a first parameter based on a second measurement contributing to evaluation of a disease state, obtains, at a second time point, a second target value based on the first measurement and a second parameter based on the second measurement, derives a target conversion value based on the first target value and the second target value, derives a parameter conversion value based on the first parameter and the second parameter, and generates a learning model that is trained to output the target conversion value when the parameter conversion value is input based on training data that associates the target conversion value and the parameter conversion value for each patient.
- the output program (7) causes a computer to execute a process of acquiring a second parameter based on a second measurement at a second time point that contributes to evaluation of a disease condition, acquiring a third parameter based on the second measurement at a third time point, deriving a parameter conversion value based on the second parameter and the third parameter, and inputting the derived parameter conversion value into a learning model that has been trained to output a target conversion value when the parameter conversion value is input, to output the target conversion value.
- the output program of (7) calculates a second target value based on a first measurement at the second time point that contributes to evaluation of the condition, and an estimate of the target value based on the first measurement at the third time point based on the target conversion value.
- the first measurement is a measurement that requires the involvement of a medical professional
- the second target value and the estimated value include at least one of intracardiac pressure, BNP, NT-proBNP, uric acid level, inferior arterial diameter, or ventricular ejection fraction
- the second measurement is a measurement that can be performed without the involvement of a medical professional
- the second parameter and the third parameter include at least one of pre-ejection time, left ventricular ejection time, diastolic blood pressure, systolic blood pressure, maximum velocity of rise of pulse pressure waveform, blood pressure difference between the start of rise of peripheral pulse pressure waveform and dicrotic notch, pulse wave augmentation index, heart rate, isovolumic systolic time, pulse wave velocity, or systolic time.
- the first measurement is a measurement performed by a medical professional
- the second measurement is a measurement performed using a biosignal measuring device that can be operated by a person other than a medical professional.
- the learning model is trained to output a target conversion value when a parameter conversion value is input based on training data in which the target conversion value and the parameter conversion value of each patient are associated, and it is preferable that the parameter conversion value is derived based on a first parameter based on the second measurement at a first time point and the second parameter based on the second measurement at the second time point, and the target conversion value is derived based on a first target value based on the first measurement at the first time point and a second target value based on the first measurement at the second time point.
- the parameter conversion value is obtained by division or subtraction using the second parameter and the third parameter, and the estimated value is calculated by multiplying or adding the second target value and the target conversion value.
- the third point in time is a point in time when several days have passed since the second point in time.
- the output program of (13) outputs a graph showing a time series of the first target value, the second target value, or the estimated value based on the first measurement on a date prior to the second time point.
- any of the output programs (8) to (13) above outputs an alarm when the estimated value exceeds a predetermined threshold value.
- the thresholds consist of a first threshold and a second threshold that is different from the first threshold, and if the user is a doctor, it is preferable to accept changes to the first threshold and the second threshold.
- any of the output programs (8) to (17) above obtain a first parameter based on the second measurement at a first time point, and output a graph showing the first parameter, the second parameter, or the third parameter in a time series.
- the output program of (15) above preferably outputs a medication record together with the first target value, the second target value, and the estimated value based on medication information transmitted from the patient's terminal device.
- a learning model data generation device includes a first acquisition unit that acquires a first target value based on a first measurement contributing to evaluation of a disease state at a first time point and a first parameter based on a second measurement contributing to evaluation of a disease state, a second acquisition unit that acquires a second target value based on the first measurement at a second time point and a second parameter based on the second measurement, a derivation unit that derives a target conversion value based on the first target value and the second target value, and a generation unit that derives a parameter conversion value based on the first parameter and the second parameter, and generates learning data in which the target conversion value and the parameter conversion value are associated with each other for each patient.
- a learning data generation program causes a computer to perform a process of acquiring, at a first time point, a first target value based on a first measurement contributing to evaluation of a disease state and a first parameter based on a second measurement contributing to evaluation of a disease state, acquiring, at a second time point, a second target value based on the first measurement and a second parameter based on the second measurement, deriving a target conversion value based on the first target value and the second target value, deriving a parameter conversion value based on the first parameter and the second parameter, and generating learning data in which the target conversion value and the parameter conversion value are associated with each other for each patient.
- the output device (23) includes a second acquisition unit that acquires a second parameter based on a second measurement at a second time point that contributes to the evaluation of a disease condition, a third acquisition unit that acquires a third parameter based on the second measurement at a third time point, a derivation unit that derives a parameter conversion value based on the second parameter and the third parameter, and an output unit that inputs the derived parameter conversion value into a learning model that has been trained to output a target conversion value when the parameter conversion value is input, and outputs the target conversion value.
- a computer executes a process of acquiring a second parameter based on a second measurement at a second time point that contributes to evaluation of a disease condition, acquiring a third parameter based on the second measurement at a third time point, deriving a parameter conversion value based on the second parameter and the third parameter, and inputting the derived parameter conversion value into a learning model that has been trained to output a target conversion value when the parameter conversion value is input, to output the target conversion value.
- FIG. 1 is an explanatory diagram illustrating an example of the configuration of a monitoring system.
- 2 is a block diagram showing an example of a hardware configuration of a monitoring server;
- FIG. 2 is a block diagram showing an example of the hardware configuration of an in-hospital terminal.
- FIG. 2 is a block diagram showing an example of a hardware configuration of a user terminal.
- FIG. 2 is an explanatory diagram showing an example of a patient DB.
- FIG. 2 is an explanatory diagram illustrating an example of a feature amount DB.
- FIG. 11 is an explanatory diagram illustrating an example of a presence-at-home feature DB.
- FIG. 11 is an explanatory diagram illustrating an example of a threshold DB.
- FIG. 13 is an explanatory diagram illustrating an example of a result DB.
- FIG. 11 is an explanatory diagram showing an example of a coefficient DB.
- FIG. 11 is an explanatory diagram illustrating an example of a point sequence DB.
- FIG. 2 is an explanatory diagram showing an example of a prescription DB.
- FIG. 13 is an explanatory diagram showing an example of a medication status DB.
- 13 is a flowchart illustrating an example of a procedure for generating an estimation model.
- 13 is a flowchart illustrating an example of a procedure for training data creation processing.
- FIG. 1 is an explanatory diagram showing an example of constructing a data set.
- 13 is a flowchart illustrating an example of a learning process procedure.
- FIG. 11 is an explanatory diagram illustrating an example of an estimation model.
- FIG. 13 is a flowchart illustrating an example of a procedure for a collection process. 13 is a flowchart illustrating an example of an estimation process procedure. FIG. 13 is an explanatory diagram showing an example of a result list screen.
- FIG. 1 is an explanatory diagram showing an example of constructing a data set.
- FIG. 11 is an explanatory diagram showing an example of a fitting model.
- 13 is a flowchart showing an example of a procedure for a result screen generation process.
- FIG. 13 is an explanatory diagram showing an example of a result screen for nurses.
- FIG. 13 is an explanatory diagram showing an example of a doctor result screen.
- FIG. 13 is an explanatory diagram showing an example of a patient result screen.
- FIG. 13 is an explanatory diagram showing an example of a patient trend display screen.
- FIG. 13 is an explanatory diagram showing an example of a patient notification screen.
- FIG. 1 is an explanatory diagram showing an example of the configuration of a monitoring system.
- the monitoring system 100 includes a monitoring server 1, an intracardiac pressure value/waveform acquisition device 2, a biosignal measurement device 3, an in-hospital terminal 4, a gateway device 5, a biosignal measurement device 6, a user terminal 7, and a WiFi router 8.
- the monitoring server 1, the intracardiac pressure value/waveform acquisition device 2, the biosignal measurement device 3, the in-hospital terminal 4, and the gateway device 5 are installed in a medical institution such as a hospital.
- the monitoring server 1, the intracardiac pressure value/waveform acquisition device 2, the biosignal measurement device 3, the in-hospital terminal 4, and the gateway device 5 are communicably connected by an in-hospital network LN.
- the biosignal measurement device 6, the user terminal 7, and the WiFi router 8 are installed in a residence such as a patient's home.
- the monitoring server 1 does not necessarily have to be installed in a medical institution. Although two in-hospital terminals 4 and two user terminals 7 (terminal devices) are described, one or three or more may be used.
- the monitoring server 1 is configured with a server computer, a workstation, a PC (Personal Computer), etc.
- the monitoring server 1 may also be configured with a multi-computer consisting of multiple computers, a virtual machine virtually constructed by software, or a quantum computer. Furthermore, the functions of the monitoring server 1 may be realized by a cloud service.
- the intracardiac pressure value/waveform acquisition device 2 is not limited to a single device, and may be a combination of multiple devices.
- the intracardiac pressure value/waveform acquisition device 2 includes, for example, a catheter examination device capable of measuring intracardiac pressure values. Catheters used include pigtail catheters, balloon catheters, Swan-Ganz catheters, wedge pressure catheters, etc.
- the cardiac pressure value/waveform acquisition device 2 also includes ultrasound diagnostic devices capable of measuring and recording cardiac echoes.
- the first measurement method performed with the involvement of a medical professional is mainly a measurement method that obtains some measured value by invasive testing, testing in which a medical professional entrusts a sample obtained from a patient to a medical testing institution for analysis, or a non-invasive test that can only be performed by a medical professional.
- the first measurement method performed with the involvement of a medical professional also includes a measurement method in which the degree of a patient's symptoms is quantified from a medical examination, including questioning, visual examination, palpation, and auscultation, by a medical professional to obtain an evaluation value of the symptoms.
- a measurement method in which the degree of a patient's symptoms is quantified from a medical examination to obtain an evaluation value of the symptoms is a method in which appropriate values are assigned to the four classifications of the Nohria-Stevenson classification, which is one of the methods for evaluating the severity of heart failure, and the classification results are quantified to obtain an evaluation value of the symptoms.
- the evaluation value is the feature and the objective variable.
- the first measurement method also includes a method in which a doctor determines which of two or more predetermined stages the degree of pulmonary congestion associated with heart failure falls into based on the results (images) obtained from a chest X-ray, CT (Computed Tomography), or MRI (Magnetic Resonance Imaging).
- each stage is indicated by a numerical value.
- the numerical value is a feature and serves as a response variable.
- Measurement using the intracardiac pressure value/waveform acquisition device 2 corresponds to the first measurement method.
- the feature obtained from the first measurement method is data that forms the basis of the response variable described below.
- Medical professionals include various types of occupations, but in this specification, doctors, nurses, licensed practical nurses, clinical radiologists, clinical laboratory technicians, medical laboratory technicians, clinical engineers, and emergency medical technicians are particularly considered.
- the first measurement can also be said to be a measurement performed by a medical professional.
- the biosignal measuring device 3 is an electrocardiograph capable of obtaining an electrocardiogram, a phonocardiograph capable of obtaining a phonocardiogram, and a mechanocardiogram testing device capable of obtaining an electrocardiogram, a phonocardiogram, and a pulse wave.
- the biosignal measuring device 3 also includes a blood pressure monitor, a pulse wave monitor, and the like.
- Measurements using the biosignal measuring device 3 include measurements that can be performed by non-medical personnel, but for convenience, measurements performed by medical personnel at medical institutions will be referred to as measurements using the first measurement method.
- Measurements using the first measurement method include measurements of BNP (Brain Natriuretic Peptide), NT-proBNP, uric acid levels, inferior arterial diameter, ventricular ejection fraction, central arterial pressure, and symptom evaluation values.
- the in-hospital terminal 4 is a terminal that is mainly used by doctors and nurses. Doctors and nurses use the in-hospital terminal 4 to check the estimated intracardiac pressure and medication status of patients who have been discharged from the hospital and are living their daily lives.
- the in-hospital terminal 4 is composed of a desktop computer, a laptop computer, a tablet computer, a smartphone, etc.
- the gateway device 5 connects the hospital network LN to a global network GN such as the Internet.
- the gateway device 5 has a firewall function to block unauthorized access to the hospital network LN.
- a firewall device separate from the gateway device 5 may also be installed.
- the biosignal measuring device 6 is an electrocardiograph, a phonocardiograph, a mechanocardiogram, a blood pressure monitor, and a pulse wave monitor.
- the biosignal measuring device 6 is used by the patient at home. Therefore, it is desirable that the biosignal measuring device 6 be a device that can be operated by the patient himself or herself or a person other than a medical professional, such as a family member.
- the second measurement method which is possible without the involvement of a medical professional during measurement, is a method of measuring a patient's biological data mainly by non-invasive means.
- the second measurement method includes a method in which a patient obtains measured values using medical equipment at a location other than a medical institution, such as their own home (e.g., at home), either by themselves or with the help of a family member.
- Measurement using the biological signal measurement device 6 is measurement by the second measurement method.
- the feature values obtained from the second measurement method are data that form the basis of the explanatory variables described below.
- the second measurement can also be said to be measurement performed using a biological signal measurement device that can be operated by a person who is not a medical professional.
- the user terminal 7 is a terminal used by the patient.
- the user terminal 7 is composed of a notebook computer, a tablet computer, a smartphone, etc.
- the WiFi router 8 connects the user terminal 7 to the global network GN.
- the user terminal 7 receives the biosignal measurement results from the biosignal measurement device 6.
- the patient inputs the medication status into the user terminal 7.
- the user terminal 7 transmits the biosignal measurement results and medication status to the monitoring server 1 via the WiFi router 8, the global network GN, etc.
- FIG. 2 is a block diagram showing an example of the hardware configuration of a monitoring server.
- the monitoring server 1 includes a control unit 11, a main memory unit 12, an auxiliary memory unit 13, a communication unit 15, and a reading unit 16.
- the control unit 11, the main memory unit 12, the auxiliary memory unit 13, the communication unit 15, and the reading unit 16 are connected by a bus B.
- the control unit 11 has one or more arithmetic processing devices such as a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), a GPU (Graphics Processing Unit), etc.
- the control unit 11 reads out and executes a control program 1P (program, program product) stored in the auxiliary storage unit 13, thereby performing various information processing, control processing, etc. related to the monitoring server 1, and realizing functional units such as a first acquisition unit, a second acquisition unit, a third acquisition unit, a derivation unit, a generation unit, and an output unit.
- a control program 1P program, program product
- the main memory unit 12 is a static random access memory (SRAM), a dynamic random access memory (DRAM), a flash memory, etc.
- SRAM static random access memory
- DRAM dynamic random access memory
- flash memory etc.
- the main memory unit 12 mainly temporarily stores data required by the control unit 11 to execute arithmetic processing.
- the auxiliary memory unit 13 is a hard disk or SSD (Solid State Drive) or the like, and stores the control program 1P and various DBs (databases) necessary for the control unit 11 to execute processing.
- the auxiliary memory unit 13 stores a patient DB 131, a feature DB 132, a home feature DB 133, a threshold DB 134, a result DB 135, a coefficient DB 136, a point sequence DB 137, a prescription DB 138, and a medication status DB 139.
- the auxiliary memory unit 13 also stores an estimation model 141 and a fitting model 142.
- the auxiliary memory unit 13 may be an external storage device that is separate from and externally connected to the monitoring server 1.
- the various DBs and the like stored in the auxiliary memory unit 13 may be stored in a database server or cloud storage different from the monitoring server 1.
- the communication unit 15 communicates with the intracardiac pressure value/waveform acquisition device 2, the vital sign measurement device 3, the in-hospital terminal 4, and the gateway device 5 via the in-hospital network LN.
- the communication unit 15 communicates with the user terminal 7 via the gateway device 5, the global network GN, and the WiFi router 8.
- the control unit 11 may also use the communication unit 15 to download the control program 1P from another computer via the global network GN, etc., and store it in the auxiliary storage unit 13.
- the reading unit 16 reads portable storage medium 1a, including CD (Compact Disc)-ROM and DVD (Digital Versatile Disc)-ROM.
- the control unit 11 may read the control program 1P from the portable storage medium 1a via the reading unit 16 and store it in the auxiliary storage unit 13.
- the control unit 11 may also read the control program 1P from the semiconductor memory 1b.
- FIG. 3 is a block diagram showing an example of the hardware configuration of an in-hospital terminal.
- the in-hospital terminal 4 includes a control unit 41, a main memory unit 42, an auxiliary memory unit 43, a communication unit 44, an input unit 45, and a display unit 46. Each component is connected by a bus B.
- the control unit 41 has one or more arithmetic processing devices such as a CPU, MPU, GPU, etc.
- the control unit 41 provides various functions by reading and executing a control program 4P (program, program product) stored in the auxiliary storage unit 43.
- the main memory unit 42 is an SRAM, DRAM, flash memory, etc.
- the main memory unit 42 mainly temporarily stores data required for the control unit 41 to execute arithmetic processing.
- the auxiliary storage unit 43 is a hard disk or SSD, etc., and stores various data necessary for the control unit 41 to execute processing.
- the auxiliary storage unit 43 may be separate from the in-hospital terminal 4 and may be an external storage device connected to an external device.
- the various DBs, etc. stored in the auxiliary storage unit 43 may be stored in a database server or cloud storage.
- the communication unit 44 communicates with the monitoring server 1 via the hospital network LN.
- the control unit 41 may also use the communication unit 44 to download the control program 4P from another computer via the hospital network LN, etc., and store it in the auxiliary storage unit 43.
- the input unit 45 is a keyboard and a mouse.
- the display unit 46 includes a liquid crystal display panel, etc.
- the display unit 46 displays the intracardiac pressure values and the like output by the monitoring server 1.
- the input unit 45 and the display unit 46 may also be integrated to form a touch panel display.
- the in-hospital terminal 4 may also display on an external display device.
- FIG. 4 is a block diagram showing an example of the hardware configuration of a user terminal.
- the user terminal 7 includes a control unit 71, a main memory unit 72, an auxiliary memory unit 73, a communication unit 74, a display panel 75, an operation unit 76, and a serial communication unit 77. Each component is connected by a bus B.
- the control unit 71 has one or more arithmetic processing devices such as a CPU, MPU, GPU, etc.
- the control unit 71 provides various functions by reading and executing a control program 7P (program, program product) stored in the auxiliary storage unit 73.
- the main memory unit 72 is an SRAM, a DRAM, a flash memory, etc.
- the main memory unit 72 mainly temporarily stores data required for the control unit 71 to execute arithmetic processing.
- the auxiliary storage unit 73 is a hard disk SSD or a memory card, etc., and stores various data necessary for the control unit 71 to execute processing.
- the auxiliary storage unit 73 may be an external storage device that is separate from and externally connected to the user terminal 7.
- the various DBs, etc. stored in the auxiliary storage unit 73 may be stored in a database server or cloud storage.
- the communication unit 74 communicates with the monitoring server 1 via a global network GN or the like.
- the control unit 71 may use the communication unit 74 to download the control program 7P from another computer via the global network GN or the like, and store it in the auxiliary storage unit 73.
- the display panel 75 can be configured with a liquid crystal panel or an organic EL (Electro Luminescence) display, etc.
- the operation unit 76 can be configured with, for example, a touch panel incorporated in the display panel 75, and allows the user to perform predetermined operations on the display panel 75.
- the operation unit 76 can also perform operations on a software keyboard displayed on the display panel 75.
- the operation unit 76 may also be a hardware keyboard, a mouse, etc.
- the serial communication unit 77 is a communication interface that performs serial communication with other devices.
- the serial communication unit 77 performs wired communication according to the USB (Universal Serial Bus) standard and wireless communication according to the Bluetooth (registered trademark) standard.
- the serial communication unit 77 receives waveform data of the biosignal acquired by the biosignal measuring device 6, etc.
- FIG. 5 is an explanatory diagram showing an example of a patient DB.
- the patient DB 131 stores patient information.
- the patient DB 131 stores a patient ID column, a name column, a gender column, and a date of birth column.
- the patient ID column stores a patient ID that can uniquely identify a patient.
- the patient ID may be a My Number (personal number) assigned to the patient.
- the name column stores the patient's name.
- the gender column stores the patient's gender. For example, M indicates male and F indicates female.
- the date of birth column stores the patient's date of birth.
- FIG. 6 is an explanatory diagram showing an example of a feature DB.
- the feature DB 132 stores patient features obtained from the intracardiac pressure/waveform acquisition device 2 and the biosignal measurement device 3, or patient features obtained from waveforms or biosignals, etc.
- the feature DB 132 includes a patient ID column, a measurement date column, an intracardiac pressure column, a PEP column, an LVET column, a time point column, and a reference column.
- the patient ID column stores the patient ID.
- the measurement date column stores the date when the feature, waveform, or biosignal, etc. was measured.
- the intracardiac pressure column stores the intracardiac pressure.
- the unit is millimeters of mercury (mmHg).
- the intracardiac pressure is the systolic pressure, diastolic pressure, or mean pressure in each part of the heart.
- intracardiac pressures include right atrial pressure (systolic pressure, diastolic pressure, mean pressure), right ventricular pressure (systolic pressure, diastolic pressure, end diastolic pressure), pulmonary artery pressure (systolic pressure, diastolic pressure, mean pressure), left atrial pressure (systolic pressure, diastolic pressure, mean pressure), left ventricular pressure (systolic pressure, diastolic pressure, end diastolic pressure), and femoral artery pressure.
- the intracardiac pressure column stores LVEDP (left ventricular end-diastolic pressure).
- the PEP column stores PEP (pre-ejection period).
- the unit is milliseconds (ms).
- the LVET column stores LVET (left ventricular ejection time).
- the time column stores the time when the feature was obtained.
- the time stores a word indicating the position of the patient in the course of the disease when the feature was obtained. For example, the time point is the time of admission, the time of discharge, etc.
- the reference column stores whether or not to use the reference value when evaluating changes in the feature.
- a feature included in a record with a 0 in the reference column indicates that it is not a reference value.
- a feature included in a record with a 1 in the reference column indicates that it is a reference value.
- FIG. 7 is an explanatory diagram showing an example of a home feature DB.
- the home feature DB 133 stores features of patients who have been discharged from the hospital and are being managed at home.
- the home feature DB 133 stores patient features obtained from the biosignal measuring device 6, or patient features obtained from waveforms or biosignals, etc.
- the home feature DB 133 includes a patient ID column, a measurement date column, a PEP column, and an LVET column.
- the patient ID column stores the patient ID.
- the measurement date column stores the date on which the feature or the waveform or biosignal on which the feature is based was measured.
- the PEP column stores the pre-ejection time.
- the LVET column stores the left ventricular ejection time.
- FIG. 8 is an explanatory diagram showing an example of a threshold DB.
- the threshold DB 134 stores, for each patient, a threshold used when determining the patient's condition from the intracardiac pressure.
- the threshold DB 134 includes a patient ID column, a caution column, and a danger column.
- the patient ID column stores the patient ID.
- the caution column stores a threshold (second threshold) for determining that the condition requires attention.
- a condition that requires attention is, for example, a congestive state that requires active intervention with a drug such as a diuretic, and a state that requires frequent monitoring by a medical professional.
- the danger column stores a threshold (first threshold) for determining that the condition is dangerous.
- a danger is, for example, an emergency state in which symptoms of worsening heart failure are appearing and immediate treatment by a doctor at a hospital is required, a state in which the patient needs to be advised to visit a hospital, a state in which a medical professional needs to visit, etc.
- FIG 9 is an explanatory diagram showing an example of a result DB.
- the result DB 135 stores the results of judging the condition of a patient at home.
- the result DB 135 includes a patient ID column, a judgment date column, an intracardiac pressure column, and a judgment column.
- the patient ID column stores the patient ID.
- the judgment date column stores the date on which the judgment was made.
- the intracardiac pressure column stores the estimated intracardiac pressure.
- the judgment column stores the judgment result.
- FIG. 10 is an explanatory diagram showing an example of a coefficient DB.
- the coefficient DB 136 stores coefficient values of a function that curve fits the waveform of intracardiac pressure.
- the model formula of the fitting function is, for example, formula (1).
- the coefficient DB 136 includes a patient ID column, a judgment date column, a k column, a column, b column, and a c column.
- the patient ID column stores the patient ID.
- the judgment date column stores the date on which the judgment was made.
- the k column, a column, b column, and c column store the values of the coefficients k, a, b, and c in formula (1), respectively.
- FIG. 11 is an explanatory diagram showing an example of a point sequence DB.
- the point sequence DB 137 stores waveform data of biosignals obtained from the biosignal measuring device 3 or the biosignal measuring device 6.
- the point sequence DB 137 includes a patient ID sequence, a measurement date sequence, an electrocardiogram sequence, a heart sound sequence, and a pulse wave sequence.
- the patient ID sequence stores the patient ID.
- the measurement date column stores the date of measurement.
- the electrocardiogram sequence stores electrocardiogram waveform data.
- the heart sound sequence stores heart sound waveform data.
- the pulse wave sequence stores pulse wave waveform data. It is desirable to store the waveform data in a general-purpose format.
- the waveform data is in a format that complies with the medical waveform standardization description convention managed by the MFER committee.
- FIG 12 is an explanatory diagram showing an example of a prescription DB.
- Prescription DB 138 stores information such as medicines prescribed by doctors to patients.
- Prescription DB 138 includes a prescription ID column, a patient ID column, a branch number column, prescription content column, a number of days column, a prescription date column, a doctor column, and a pharmacist column.
- the prescription ID column stores a prescription ID that identifies a prescription.
- the prescription ID may be an ID assigned to a prescription.
- the patient ID column stores the patient ID of a patient who has been prescribed a medicine.
- the branch number column stores a branch number that distinguishes each prescription when multiple prescriptions are included, such as when multiple medicines are prescribed in one prescription.
- the prescription content column stores the contents of the prescription.
- Prescription contents include the name of the medicine, the amount, and the usage and dosage.
- the number of days column stores the number of days of the prescription.
- the prescription date column stores the prescription date.
- the doctor column stores information about the doctor who instructed the prescription.
- the pharmacist column stores information about the pharmacist who prescribed the prescription.
- FIG 13 is an explanatory diagram showing an example of a medication status DB.
- the medication status DB 139 stores the medication status of a patient.
- the medication status DB 139 includes a patient ID column, a prescription ID column, a branch number column, a medication date column, and a result column.
- the patient ID column stores the patient ID.
- the prescription ID column stores the prescription ID.
- the branch number column stores the branch number.
- the medication date column stores the date of each day during the medication period.
- the result column stores the result of whether or not the patient took the medication. For example, the result column stores an O if the patient took the medication, and an X if the patient did not take the medication.
- FIG. 14 is a flowchart showing an example of the procedure for the estimation model generation process.
- This process is a process for generating an estimation model 141.
- the control unit 11 of the monitoring server 1 creates training data (step S1).
- the control unit 11 performs learning using the training data (learning data) (step S2).
- the control unit 11 stores the estimation model 141 obtained by learning (step S3), and ends the process.
- the training data creation process corresponds to step S1 in FIG. 14.
- the control unit 11 creates a data set (step S11).
- the data set is created from data of patients who have already been discharged from the hospital.
- the data set is a combination of catheter examination data at the time of admission (first time point) and discharge (second time point) of each patient, and multiple feature values obtained from biosignals (electrocardiogram, heart sound, pulse wave, blood pressure) obtained on the same day as the catheter examination data was obtained at each timing.
- the reason that the data at the time of admission is used as the first time point and the data at the time of discharge is used as the second time point is that the patient's condition is considered to be extremely bad at the time of admission and the patient is considered to be recovered at the time of discharge, and the difference in the patient's condition at the two time points is said to be the most significant.
- the control unit 11 acquires the feature value from the feature value DB 132.
- the feature value obtained from the catheter examination is the LVEDP.
- the feature quantities obtained from the biosignal are PEP and LVET.
- the control unit 11 selects one record included in the data set as a processing target (step S12).
- the control unit 11 acquires a first target value and a second target value from the selected record (step S13).
- the first target value is the LVEDP at the time of admission (first time point)
- the second target value is the LVEDP at the time of discharge (second time point).
- the control unit 11 calculates a target conversion value (step S14).
- the target conversion value is the value obtained by dividing the LVEDP at the time of admission (first target value) by the LVEDP at the time of discharge (second target value) based on the data at the time of discharge.
- the target conversion value may be the value obtained by subtracting the LVEDP at the time of discharge (second target value) from the LVEDP at the time of admission (first target value).
- the control unit 11 acquires a first parameter and a second parameter from the selected record (step S15).
- the first parameters are the PEP and LVET at the time of admission (first time point)
- the second target values are the PEP and LVET at the time of discharge (second time point).
- the control unit 11 calculates the parameter conversion value (step S16).
- the parameter conversion value is obtained by dividing the PEP and LVET at the time of admission (first parameter) by the PEP and LVET at the time of discharge (second parameter) based on the data at the time of discharge.
- the parameter conversion value may be obtained by subtracting the PEP and LVET at the time of discharge (second parameter) from the PEP and LVET at the time of admission (first parameter).
- the control unit 11 stores the target conversion value and the parameter conversion value as training data in the auxiliary storage unit 13 (step S17).
- the control unit 11 determines whether there is an unprocessed record (step S18). When the control unit 11 determines that there is an unprocessed record (YES in step S18), the control unit 11 returns the process to step S12 and performs processing on the unprocessed record. If the control unit 11 determines that there are no unprocessed records (NO in step S18), it returns the process to the caller.
- the reference time for calculating the target conversion value and the parameter conversion value may be the time of admission instead of the time of discharge.
- FIG. 16 is an explanatory diagram showing an example of constructing a dataset.
- the reconstructed data is the value obtained by dividing the data at admission by the data at discharge, with the data at discharge used as the reference.
- the reconstructed data may also be the value obtained by subtracting the data at discharge from the data at admission, with the data at discharge used as the reference.
- the reconstructed data may also be the value obtained by dividing the data at discharge by the data at admission, or the value obtained by subtracting the data at admission from the data at discharge.
- FIG. 17 is a flowchart showing an example of the procedure of the learning process.
- the learning process corresponds to step S2 in FIG. 14.
- the control unit 11 selects training data to be processed from among the multiple training data created in the training data creation process shown in FIG. 15 and stored in the auxiliary storage unit 13 (step S21).
- the control unit 11 performs learning using the selected training data (step S22).
- the control unit 11 inputs the parameter conversion value (explanatory variable) included in the training data to the estimation model 141, compares the value output from the estimation model 141 with the target conversion value (objective variable) included in the training data, and optimizes parameters such as weights between neurons constituting the estimation model 141 so that the output value matches the value of the target conversion value.
- the control unit 11 determines whether or not there is unprocessed training data (step S23). If the control unit 11 determines that there is unprocessed training data (YES in step S23), the process returns to step S21 and performs learning using the unprocessed training data. If the control unit 11 determines that there is no unprocessed training data (NO in step S23), it returns the process to the caller.
- FIG. 18 is an explanatory diagram showing an example of an estimation model.
- the estimation model 141 is a neural network generated by deep learning using the above-mentioned training data.
- the training data is created by the above-mentioned training data creation process and stored in the auxiliary storage unit 13.
- the estimation model 141 is trained to output a target conversion value when a parameter conversion value included in the training data is input.
- the parameter conversion value is a value obtained by dividing the first parameter (PEP and LVET at the time of admission) by the second parameter (PEP and LVET at the time of discharge), the rate of change of PEP and the rate of change of LVET.
- the target conversion value is a value obtained by dividing the first target value (LVEDP at the time of admission) by the second target value (LVEDP at the time of discharge), the rate of change of LVEDP.
- the rate of change of PEP and the rate of change of LVET contained in the training data are input to the estimation model 141.
- the estimated value of the rate of change of LVEDP from the estimation model 141 is compared with the correct value of the rate of change of LVEDP contained in the training data, and parameters such as the weights between the neurons that make up the estimation model 141 are optimized so that the output estimated value matches the correct value.
- FIG. 19 is a flowchart showing an example of the procedure of the collection process.
- the collection process is a process for collecting measurement data such as biosignals from a discharged patient.
- the discharged patient measures electrocardiogram, heart sounds, pulse waves, blood pressure, etc. at their home or other residence using the biosignal measurement device 6, and transmits the data to the user terminal 7.
- the control unit 71 of the user terminal 7 receives the measurement data from the biosignal measurement device 6 (step S31).
- Communication between the biosignal measurement device 6 and the user terminal 7 may be wireless communication such as WiFi or Bluetooth, or wired communication such as USB.
- the biosignal measurement device 6 may write the measurement data to a memory card, remove the memory card with the data written, and attach it to the user terminal 7 to read the measurement data.
- the biosignal measurement device 6 may also display the measurement data as a two-dimensional code, photograph the two-dimensional code with the camera of the user terminal 7, and analyze the two-dimensional code to obtain the measurement data.
- the control unit 71 transmits the received measurement data to the monitoring server 1 (step S32).
- the control unit 11 of the monitoring server 1 receives the measurement data (step S33).
- the control unit 11 calculates the feature from the measurement data (step S34).
- the control unit 11 stores the feature in the at-home feature DB 133 (step S35).
- the control unit 11 transmits completion to the user terminal 7 (step S36).
- the control unit 71 of the user terminal 7 receives the completion (step S37) and ends the process.
- the feature stored in the at-home feature DB 133 is an example of a third parameter.
- the time when the measurement is performed by the vital sign measuring device 6 at the residence corresponds to the third time point.
- FIG. 20 is a flowchart showing an example of the procedure of the estimation process.
- the estimation process is a process of estimating LVEDP using PEP and LVET obtained from the measurement data collected in the collection process.
- the control unit 11 of the monitoring server 1 acquires PEP and LVET (third parameter) from the at-home feature DB 133 (step S51).
- the control unit 11 corrects the acquired PEP and LVET with a reference value (second parameter) (step S52).
- the reference value is the PEP and LVET at the time of discharge.
- the control unit 11 acquires the PEP and LVET at the time of discharge for each patient from the feature DB 132, and divides the PEP and LVET from the at-home feature DB 133 by the acquired PEP and LVET at the time of discharge.
- the control unit 11 inputs the corrected PEP and LVET (parameter conversion value) to the estimation model 141 (step S53).
- the control unit 11 calculates an estimated value of LVEDP (step S54).
- the control unit 11 multiplies the above-mentioned reference value (LVET at the time of discharge) by the rate of change (target conversion value) output by the estimation model 141 to calculate an estimated value of LVEDP.
- the control unit 11 stores the calculated estimated LVEDP in the result DB 135 (step S55) and ends the process.
- the control unit 11 repeats the estimation process the number of times corresponding to the number of patients for which at-home features have been obtained.
- the result list screen d01 is a screen that displays a list of estimated intracardiac pressures.
- the result list screen d01 includes a list table d011.
- the list table d011 includes a patient ID column, a name column, a measurement date column, and an intracardiac pressure column.
- the list table d011 may also include a nurse column and a doctor column.
- the patient ID column displays the patient ID.
- the name column displays the patient's name.
- the measurement date column displays the date on which the biosignal on which the feature is based was measured.
- the intracardiac pressure column displays the estimated intracardiac pressure.
- a details button is displayed in the nurse column and the doctor column.
- a result screen for the selected patient is displayed.
- the patient's condition can be referred to on the result screen, but it is desirable to be able to check the condition of each patient on the list screen.
- the condition can be classified into three situations: danger, caution, and normal, so the order in which patients are displayed on the result list screen is danger ⁇ caution ⁇ normal.
- the background color of the row and the color and size of the intracardiac pressure value can be displayed in different ways depending on the situation, allowing the user to determine at a glance whether the condition is dangerous, caution, or normal. Using such different display modes to indicate that the patient's condition is in a dangerous or caution state is an example of an alarm.
- the following effects are achieved. It is possible to estimate intracardiac pressure based on biosignals that can be measured even when the patient is at home. This makes it possible to remotely monitor whether the patient at home has a worsening heart failure or signs of worsening.
- the training data used when generating the estimation model 141 is a reconstructed data set. This data set absorbs individual differences between patients, making it possible to generate an estimation model 141 with high accuracy.
- the estimation model 141 is not limited to a neural network.
- the estimation model 141 may be a model based on other learning algorithms, such as a linear regression model, a decision tree, a random forest, a gradient boosting method, a support vector machine (SVM), a nonlinear multiple regression method, etc.
- Embodiment 2 This embodiment relates to a form in which information other than intracardiac pressure is also displayed on the screen so that medical staff can more accurately grasp the condition of a patient at home.
- the same content as in embodiment 1 will be omitted, and differences from embodiment 1 will be mainly explained.
- the fitting model 142 which estimates a waveform showing the time change of intracardiac pressure, will be described.
- the fitting model 142 is a learning model that estimates the coefficients (k, a, b, and c) of the model formula (1) obtained by curve fitting the left ventricular pressure waveform or right ventricular pressure waveform showing the time change of the left ventricular pressure or right ventricular pressure.
- the fitting model 142 has been trained to output the rate of change of each coefficient of the model formula, which includes multiple coefficients showing the left ventricular pressure waveform or right ventricular pressure waveform, when one or more values related to heart rate or arterial pressure are input.
- FIG. 22 is an explanatory diagram showing an example of constructing a dataset.
- the reconstructed data is a value obtained by dividing the data at admission by the data at discharge, with the data at discharge as the reference.
- the reconstructed data may be a value obtained by subtracting the data at discharge from the data at admission, with the data at discharge as the reference.
- the reconstructed data may be a value obtained by dividing the data at discharge by the data at admission, or a value obtained by subtracting the data at admission from the data at discharge.
- the calculation is performed between two data, with either the data at admission or the data at discharge as the reference, in order to absorb individual differences that occur between patients. If it is possible to absorb individual differences, logarithmic transformation or the like may be used. Weighting may also be applied to each data item.
- the fitting model 142 is a neural network generated by deep learning using the data set shown in FIG. 22 as training data.
- the fitting model 142 is trained to output the rate of change of the coefficient of the model equation showing the left ventricular pressure waveform or the right ventricular pressure waveform when one or more values related to the heart rate or arterial pressure are input.
- the input is PEP and LVET.
- the control unit 11 inputs PEP and LVET to the fitting model 142.
- the control unit 11 receives the rate of change of the coefficients (k, a, b, and c) as the output of the fitting model 142.
- the control unit 11 can calculate the coefficients (k, a, b, and c) of the model equation (1) from the rate of change of the coefficients and the reference value.
- the control unit 11 stores the calculated coefficients in the coefficient DB 136.
- the fitting model 142 is not limited to a neural network, but may be a model based on other learning algorithms, such as a linear regression model, a decision tree, a random forest, a gradient boosting method, or a support vector machine (SVM) nonlinear multiple regression method.
- the result screen generation process is executed when the Details button is selected on the result list screen d01 shown in FIG. 21.
- the result screen generation process is also executed when a request is made from the user terminal 7.
- the control unit 41 of the in-hospital terminal 4 sends an output request for the result screen to the monitoring server 1.
- the output request includes a patient ID that identifies the patient to be displayed and a screen type. If the Details button in the Nurse column is selected, the screen type is set to Nurse. If the Details button in the Doctor column is selected, the screen type is set to Doctor.
- the output request sent by the user terminal 7 includes a patient ID and a screen type. The screen type is set to Patient.
- the control unit 11 of the monitoring server 1 receives the output request (step S61).
- the control unit 11 determines whether the screen type included in the output request is Doctor (step S62). If the control unit 11 determines that the screen type is Doctor (YES in step S62), it generates a screen for the doctor (step S63).
- the control unit 11 sends the generated screen to the in-hospital terminal 4 (step 64) and ends the process. If the control unit 11 determines that the screen type is not a doctor (NO in step S62), it determines whether the screen type is a nurse (step S65). If the control unit 11 determines that the screen type is a nurse (YES in step S65), it generates a screen for nursing (step S66).
- the control unit 11 sends the generated screen to the in-hospital terminal 4 (step S64) and ends the process. If the control unit 11 determines that the screen type is not a nurse (NO in step S65), it generates a screen for a patient (step S67). The control unit 11 sends the generated screen to the user terminal 7 (step S64) and ends the process.
- the screen type may be determined from the ID of the medical staff using the in-hospital terminal 4. For example, a medical staff database that associates medical staff IDs with occupations (doctor, nurse, etc.) is stored in the auxiliary storage unit 13, making it possible to determine the occupation from the ID.
- FIG. 25 is an explanatory diagram showing an example of a result screen for nurses.
- the result screen for nurses d02 includes patient attributes d021, trend graph d022, intracardiac pressure d023, medication record status d024, measurement frequency d025, notification button d026, and message button d027.
- the patient attributes d021 display the patient's attributes such as the patient's name, sex, age, etc.
- the trend graph d022 displays the intracardiac pressure trend (changes over time) in a graph.
- the trend graph d022 includes a danger line d0221 and a caution line d0222.
- the trend graph d022 may include a dosage change display d0223.
- the danger line d0221 is a line indicating a threshold (first threshold) at which the patient's condition is judged to be dangerous.
- a patient's condition being dangerous means, for example, that the patient's condition is in a congestive state that requires active intervention with a drug such as a diuretic, and that requires frequent monitoring by medical professionals.
- the caution line d0222 is a line indicating a threshold (second threshold) at which the patient's condition is judged to require caution.
- a patient's condition requiring caution means, for example, that the patient's condition is showing symptoms of worsening, and is in an emergency state in which a doctor's treatment is required immediately at a hospital, and the patient needs to be advised to visit a hospital, or a medical professional needs to visit.
- the danger line d0221 and the caution line d0222 may be displayed in different styles (e.g., different colors, different thicknesses, solid lines and dotted lines).
- the range below the danger line d0221 (intracardiac pressure 25 mmHg in FIG. 25), the range from the danger line d0221 (intracardiac pressure 25 mmHg in FIG. 25) to the caution line d0222 (18 mmHg in FIG. 25), and the range above the caution line d0222 (18 mmHg in FIG. 25) may be displayed in different styles (e.g., filled with different colors, unfilled and filled). This allows the user to easily understand whether the patient's condition is judged to be in danger or requires caution.
- Such different display formats are an example of an alarm. If the dosage of the drug is changed by the doctor during the display period, the dosage change display d0223 is displayed at the position of the change date (time of change of dosage). The dosage change display d0223 may be displayed as a symbol as shown in FIG. 25, or a scale line or a descending line may be displayed on the change date (time of change of dosage). This makes it possible to understand the effect of the treatment due to the dosage change.
- the intracardiac pressure d023 displays an estimate of the most recent intracardiac pressure value.
- the medication record status d024 displays whether or not the patient has a record of taking the medication. The control unit 11 generates the medication record status d024 from the medication status DB 139.
- the medication record status d024 makes it possible to check whether the patient has forgotten to take the medication or has forgotten to record the medication.
- the measurement frequency d025 displays the frequency with which the patient performed measurements using the vital sign measurement device 6 at home.
- the measurement frequency d025 can be used to check whether the patient has forgotten to measure.
- the measurement frequency d025 is also basic data for insurance claims. If the estimated intracardiac pressure value exceeds a predetermined threshold (danger line d0221 or caution line d0222), a warning may be output to the nurse by changing the color of the screen frame, the title bar of the trend graph d022, the intracardiac pressure d023, and the screen background.
- the notification button d026 is used to notify the patient that a prescription has been issued for a change in the dosage of a drug for treating cardiovascular disease, such as a diuretic, cardiac stimulant, or vasodilator (prescription change notification).
- the message button d027 is used to send a message to the patient. For example, a message recommending a visit to the hospital is sent when the intracardiac pressure exceeds the caution line.
- the doctor's result screen d03 includes a setting change area d031, an intracardiac pressure graph d032, a feature graph d033, an estimated waveform area d034, and a raw waveform d035 of a biological signal.
- the setting change area d031 is an area for changing settings related to the estimation and evaluation of intracardiac pressure.
- the setting change area d031 includes an intracardiac pressure reference value setting d0311, a feature reference value setting d0312, a risk threshold setting d0313, and an update button d0314.
- the intracardiac pressure reference value setting d0311 displays the reference value of intracardiac pressure.
- the feature reference value setting d0312 displays the reference values of features, in this case, PAP and LVET.
- the risk threshold setting d0313 displays the intracardiac pressure threshold (second threshold) at which the patient's condition is judged to be cautionary, and the intracardiac pressure threshold (first threshold) at which the patient's condition is judged to be dangerous.
- the update button d0314 is selected by clicking the mouse, a screen for updating the intracardiac pressure reference value, the feature quantity reference value, and the threshold value is displayed.
- the doctor can change the intracardiac pressure reference value, the feature quantity reference value, and the threshold value using the screen.
- the intracardiac pressure graph d032 is a graph displaying the trend of the intracardiac pressure (changes over time).
- the mouse pointer When the mouse is placed over the graph, the mouse pointer becomes a magnifying glass-shaped pointer d0321, and the estimated waveform of the intracardiac pressure on the day indicated by the pointer d0321 is displayed in the estimated waveform area d034.
- the doctor can grasp the cardiac function of the patient by referring to the estimated waveform of the intracardiac pressure.
- the estimated waveform of the intracardiac pressure is a waveform drawn by the model formula (1).
- the coefficients (k, a, b, and c) of the model formula (1) are estimated using the fitting model 142.
- the feature quantity graph d033 is a graph displaying the trend of the feature quantity. The doctor refers to the trend of each feature quantity as data when considering a treatment plan.
- the raw waveform of the biosignal d035 displays the raw waveform of the biosignal on the day indicated by the pointer d0321.
- the control unit 11 displays the raw waveform using point sequence data stored in the point sequence DB 137.
- the doctor can check whether there is any abnormality in each waveform that may lead to a deterioration of the patient's condition. If the estimated value of the intracardiac pressure value exceeds a predetermined threshold (first threshold or second threshold), a warning may be output to the doctor by changing the color of the screen frame, the title bar of the intracardiac pressure graph d032, and the screen background.
- a predetermined threshold first threshold or second threshold
- the patient result screen d04 includes an intracardiac pressure value d041, a judgment result d042, a medication button d043, and a medication button d044.
- the intracardiac pressure value d041 is an intracardiac pressure value estimated using the estimation model 141.
- the judgment result d042 is a judgment result of the intracardiac pressure value.
- the judgment result is one of three types: "normal", "caution", and "danger”.
- the medication button d043 and the medication button d044 are buttons for inputting a medication history. In FIG.
- the patient can input a diuretic medication history by selecting the medication button d043, and a vasodilator medication history by selecting the medication button d044. If one type of medication is prescribed, only one medication button is displayed. If three or more types of medication are prescribed, the same number of medication buttons are displayed as the number of types of medication.
- the user terminal 7 transmits the input medication history (medication information) to the monitoring server 1.
- FIG. 28 is an explanatory diagram showing an example of a trend display screen for patients.
- the trend display screen d05 includes a trend graph d051.
- the trend graph d051 is similar to the trend graph d022 shown in FIG. 25, so a description of it will be omitted.
- FIG. 29 is an explanatory diagram showing an example of a patient notification screen.
- the notification screen d08 includes a notification message d081.
- the notification message d081 is a message from the medical institution to the patient.
- the content of the message may be, for example, a change in prescription or a recommendation to visit the hospital.
- tapping the notification message d081 may display the details of the change. If the estimated intracardiac pressure value exceeds a specified threshold, the notification message d081 is output as an alarm.
- the trend graph d022 on the nurse result screen d02 displays the danger line d0221 and the caution line d0222, so it is possible to check the patient's condition at a glance.
- the dosage change display d0223 on the trend graph d022 and the change in the trend graph d022 make it possible to understand the effect of treatment due to the dosage change.
- the medication record status d024 on the nurse result screen d02 makes it possible to check whether the patient has forgotten to take the medicine or forgotten to record the medication. In addition, by referring to the medication record status d024 and the trend graph d022, it is possible to determine whether the medication is effective.
- the measurement frequency d025 on the nurse result screen d02 makes it possible to check whether the patient has forgotten to measure.
- the notification button d026 and message button d027 on the nurse result screen d02 make it possible to call up a screen for notifying the patient or creating a message.
- the setting change area d031 on the doctor's result screen d03 allows the doctor to change settings related to the estimation and evaluation of intracardiac pressure.
- the intracardiac pressure graph d032 on the doctor's result screen d03 and the estimated intracardiac pressure waveform displayed in the estimated waveform area d034 allow the doctor to accurately grasp the patient's condition.
- the doctor can consider future treatment plans.
- the doctor can check each waveform for abnormalities that could lead to a deterioration in the patient's condition.
- the intracardiac pressure value d041 and the judgment result d042 on the patient result screen d04 allow the patient to confirm that the measurement has been performed and to confirm their own condition.
- the medication button on the patient result screen d04 allows the patient to confirm that they have taken their medication and record their medication history.
- the notification screen d08 allows the medical institution to reliably transmit notifications and messages to the patient. This makes it possible to alert the patient if they forget to take their medicine. In addition, if a worsening trend in the patient's condition is detected, the patient can be advised to visit a hospital, and the patient can be examined and receive appropriate treatment, making it possible to prevent acute exacerbations.
- the feature quantity obtained by the first measurement method is LVEDP, but is not limited to this.
- Intracardiac pressure, intracardiovascular pressure, etc. other than LVEDP may also be used as the feature quantity. More specifically, intracardiovascular pressure is the pressure or average pressure of blood vessels near the heart. Intracardiovascular pressure includes, for example, PAWP (pulmonary artery wedge pressure), PAP (pulmonary artery pressure), CVP (Central Venous Pressure), etc. Pulmonary artery wedge pressure is also called PAWP (pulmonary arterial wedge pressure), PCWP (pulmonary capillary wedge pressure), or PAOP (pulmonary artery occlusion pressure).
- the feature quantities obtained by the second measurement method are PEP and LVET, but are not limited to this.
- the feature quantity may be diastolic blood pressure, systolic blood pressure, maximum speed of rise of the pulse pressure waveform, or the difference in blood pressure value between the start point of the rise of the peripheral pulse pressure waveform and the dicrotic notch, pulse wave augmentation index, heart rate, isovolumic systolic time, pulse wave velocity, or systolic time.
- Monitoring system 1 Monitoring server 11: Control unit 12: Main memory unit 13: Auxiliary memory unit 131: Patient DB 132: Feature DB 133: At-home feature DB 134: Threshold DB 135: Results DB 136: Coefficient DB 137: Point sequence DB 138: Prescription DB 139: Medication status DB 141: Estimation model 142: Fitting model 15: Communication unit 16: Reading unit 1P: Control program 1a: Portable storage medium 1b: Semiconductor memory 2: Waveform acquisition device 3: Biosignal measuring device 4: In-hospital terminal 41: Control unit 42: Main memory unit 43: Auxiliary memory unit 44: Communication unit 45: Input unit 46: Display unit 4P: Control program 5: Gateway device 6: Biosignal measuring device 7: User terminal 71: Control unit 72: Main memory unit 73: Auxiliary memory unit 74: Communication unit 75: Display panel 76: Operation unit 77: Serial communication unit 7P: Control program 8: WiFi router B: Bus GN:
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
学習用データ生成方法は、第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得し、第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得し、前記第1目的値及び前記第2目的値に基づき目的変換値を導出し、前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、各患者の前記目的変換値及び前記パラメータ変換値を対応付けた学習用のデータを生成する。
Description
本発明は、学習用データを生成する学習用データ生成方法、当該学習用データを用いた学習モデル生成方法、及び、当該学習モデルを用いた出力プログラム等に関する。
心疾患は、がん、脳卒中と並び三大疾病と総称されている。三大疾病は日本人の死因の上位を占めている。心疾患は心臓の構造や機能の異常により生じる病気の総称である。心疾患には、心不全、虚血性心疾患、心臓弁膜症、心筋症、不整脈、先天性心疾患などがある。
心不全は、心臓の器質的又は機能的障害により、心臓のポンプ機能が低下し、心拍出量の低下や末梢循環不全、肺や体静脈系のうっ血をきたす病態である。心不全は進行速度によって急性心不全と慢性心不全とに分けられる。急性心不全の患者では急性治療を終えた退院後に、慢性心不全の患者では確定診断後に、急性増悪の発生を未然に防ぐため、定期的な病態の把握、心機能の評価が求められる。そのため、患者は定期的に通院するが、頻繁な通院は患者には負担であり、また医療資源の浪費にも繋がりかねない。そこで、心不全患者が自宅等の居所で測定した生体情報により、病態の把握や心機能の評価を行うことが求められている。
特許文献1には、家庭での監視を可能とする非侵襲的な左室拡張末期圧(LVEDP:left ventricular end-diastolic pressure)測定のための装置および方法が提案されている。しかし、特許文献1においては、生体情報の正常範囲には個人差があることが考慮されておらず、病態の把握や心機能の評価を正確には行なえない可能性が高い。
本発明はこのような状況に鑑みてなされたものである。目的は、学習モデルを用いて、個人差を考慮したLVEDPを含む心内圧の推定を可能とするために必要となる学習用データを生成する学習用データ生成方法、当該学習用データを用いた学習モデル生成方法、及び、当該学習モデルを用いた出力プログラム等の提供である。
本願の一態様に係る(1)学習用データ生成方法は、第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得し、第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得し、前記第1目的値及び前記第2目的値に基づき目的変換値を導出し、前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、各患者の前記目的変換値及び前記パラメータ変換値を対応付けた学習用のデータを生成する。
(2)上記(1)の学習用データ生成方法において、前記第1の測定は医療従事者による関与を要する測定であり、前記第1目的値及び前記第2目的値は、心内圧、BNP、NT-proBNP、尿酸値、下動脈径、又は、心室駆出率の少なくとも1つを含み、前記第2の測定は医療従事者による関与を要しなくとも可能な測定であり、前記第1パラメータ及び前記第2パラメータは、前駆出時間、左心室駆出時間、拡張期血圧、収縮期血圧、脈圧波形立ち上りの最大速度、末梢脈圧波形の立ち上り開始点と重複切痕との血圧値差、脈波増大係数、心拍数、等容積性収縮期時間、脈波伝播速度、又は、収縮期時間の少なくとも1つを含むことが好ましい。
(3)上記(1)又は(2)の学習用データ生成方法において、前記第1の測定は、医療従事者が実施する測定であり、前記第2の測定は、医療従事者でない者が操作可能な生体信号測定装置を用いて実施する測定であることが好ましい。
(4)上記(1)又は(2)の学習用データ生成方法において、前記目的変換値は、前記第1目的値と前記第2目的値とを用いた除算又は減算により求め、前記パラメータ変換値は、前記第1パラメータと前記第2パラメータとを用いた除算又は減算により求めることが好ましい。
(5)上記(1)から(3)の何れかの学習用データ生成において、前記第2時点は、前記第1時点から日が経過した時点であることが好ましい。
本願の一態様に係る(6)学習モデル生成方法は、第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得し、第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得し、前記第1目的値及び前記第2目的値に基づき目的変換値を導出し、前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、各患者の目的変換値及びパラメータ変換値を対応付けた訓練データに基づき、パラメータ変換値を入力した場合に、目的変換値を出力するように学習された学習モデルを生成する。
本願の一態様に係る(7)出力プログラムは、第2時点における、病状の評価に資する第2の測定に基づく第2パラメータを取得し、第3時点における、前記第2の測定に基づく第3パラメータを取得し、前記第2パラメータ及び前記第3パラメータに基づきパラメータ変換値を導出し、パラメータ変換値を入力した場合に、目的変換値を出力するよう学習された学習モデルに、導出したパラメータ変換値を入力して目的変換値を出力する処理をコンピュータに実行させる。
(8)上記(7)の出力プログラムは、前記第2時点における、病状の評価に資する第1の測定に基づく第2目的値、及び、前記目的変換値に基づいて、前記第3時点における前記第1の測定に基づく目的値の推定値を算出することが好ましい。
(9)上記(8)の出力プログラムにおいて、前記第1の測定は医療従事者による関与を要する測定であり、前記第2目的値及び前記推定値は、心内圧、BNP、NT-proBNP、尿酸値、下動脈径、又は、心室駆出率の少なくとも1つを含み、前記第2の測定は医療従事者による関与を要しなくとも可能な測定であり、前記第2パラメータ及び前記第3パラメータは、前駆出時間、左心室駆出時間、拡張期血圧、収縮期血圧、脈圧波形立ち上りの最大速度、末梢脈圧波形の立ち上り開始点と重複切痕との血圧値差、脈波増大係数、心拍数、等容積性収縮期時間、脈波伝播速度、又は、収縮期時間の少なくとも1つを含むことが好ましい。
(10)上記(8)又は(9)の出力プログラムにおいて、前記第1の測定は、医療従事者が実施する測定であり、前記第2の測定は、医療従事者でない者が操作可能な生体信号測定装置を用いて実施する測定であることが好ましい。
(11)上記(8)から(10)の何れかの出力プログラムにおいて、学習モデルは、各患者の目的変換値及びパラメータ変換値を対応付けた訓練データに基づき、パラメータ変換値を入力した場合に、目的変換値を出力するように学習されたものであり、前記パラメータ変換値は、第1時点における前記第2の測定に基づく第1パラメータ、及び、前記第2時点における前記第2の測定に基づく前記第2パラメータ、に基づいて導出され、前記目的変換値は、前記第1時点における第1の測定に基づく第1目的値、及び、前記第2時点における、前記第1の測定に基づく第2目的値、に基づいて導出されていることが好ましい。
(12)上記(8)又は(9)の出力プログラムにおいて、前記パラメータ変換値は、前記第2パラメータと前記第3パラメータとを用いた除算又は減算により求め、前記推定値は、前記第2目的値と前記目的変換値とを乗算又は加算して算出することが好ましい。
(13)上記(7)から(10)の何れかの出力プログラムにおいて、前記第3時点は、前記第2時点から日が経過した時点であることが好ましい。
(14)上記(8)から(13)の何れかの出力プログラムは、前記推定値を出力することが好ましい。
(15)上記(13)の出力プログラムは、前記第2時点より過去の日付における前記第1の測定に基づく第1目的値、前記第2目的値、又は、前記推定値を時系列で示したグラフを出力することが好ましい。
(16)上記(8)から(13)の何れかの出力プログラムは、前記推定値が所定の閾値を超えた場合、警報を出力することが好ましい。
(17)上記(16)の出力プログラムにおいて、前記閾値は、第1閾値、及び、前記第1閾値とは異なる値の第2閾値とからなり、ユーザが医師である場合、前記第1閾値及び前記第2閾値の変更を受け付けることが好ましい。
(18)上記(8)から(17)の何れかの出力プログラムは、第1時点における、前記第2の測定に基づく第1パラメータを取得し、前記第1パラメータ、前記第2パラメータ又は前記第3パラメータを時系列で示したグラフを出力することが好ましい。
(19)上記(15)の出力プログラムは、ユーザが看護師である場合、前記グラフに、薬剤の投与変更時点を重畳して表示することが好ましい。
(20)上記(15)の出力プログラムは、ユーザが看護師である場合、患者の端末装置から送信された服薬情報に基づき、服薬記録を前記第1目的値、前記第2目的値、及び、前記推定値とともに出力することが好ましい。
本願の一態様に係る(21)学習用モデルデータ生成装置は、第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得する第1取得部と、第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得する第2取得部と、前記第1目的値及び前記第2目的値に基づき目的変換値を導出する導出部と、前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、各患者の前記目的変換値及び前記パラメータ変換値を対応付けた学習用のデータを生成する生成部とを備える。
本願の一態様に係る(22)学習用データ生成プログラムは、第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得し、第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得し、前記第1目的値及び前記第2目的値に基づき目的変換値を導出し、前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、各患者の前記目的変換値及び前記パラメータ変換値を対応付けた学習用のデータを生成する処理をコンピュータに行わせる。
本願の一態様に係る(23)出力装置は、第2時点における、病状の評価に資する第2の測定に基づく第2パラメータを取得する第2取得部と、第3時点における、前記第2の測定に基づく第3パラメータを取得する第3取得部と、前記第2パラメータ及び前記第3パラメータに基づきパラメータ変換値を導出する導出部と、パラメータ変換値を入力した場合に、目的変換値を出力するよう学習された学習モデルに、導出したパラメータ変換値を入力して目的変換値を出力する出力部とを備える。
(24)本願の一態様に係る出力方法は、コンピュータが、第2時点における、病状の評価に資する第2の測定に基づく第2パラメータを取得し、第3時点における、前記第2の測定に基づく第3パラメータを取得し、前記第2パラメータ及び前記第3パラメータに基づきパラメータ変換値を導出し、パラメータ変換値を入力した場合に、目的変換値を出力するよう学習された学習モデルに、導出したパラメータ変換値を入力して目的変換値を出力する処理を実行する。
本願の一態様にあっては、学習用データの生成、当該学習用データを用いた学習モデルの生成が可能となり、当該学習モデルを用いた心内圧の推定が可能となる。
(実施の形態1)
以下実施の形態を、図面を参照して説明する。図1は監視システムの構成例を示す説明図である。監視システム100は監視サーバ1、心内圧値・波形取得装置2、生体信号測定装置3、院内端末4、ゲートウェイ装置5、生体信号測定装置6、ユーザ端末7及びWiFiルータ8を含む。監視サーバ1、心内圧値・波形取得装置2、生体信号測定装置3、院内端末4及びゲートウェイ装置5は病院等の医療機関に設置されている。監視サーバ1、心内圧値・波形取得装置2、生体信号測定装置3、院内端末4及びゲートウェイ装置5は院内ネットワークLNにより、通信可能に接続されている。生体信号測定装置6、ユーザ端末7及びWiFiルータ8は、患者の自宅等の居住場所に設置されている。監視サーバ1は必ずしも医療機関に設置されていなくともよい。院内端末4、ユーザ端末7(端末装置)は各2台が記載されているが、1台でもよいし3台以上でもよい。
以下実施の形態を、図面を参照して説明する。図1は監視システムの構成例を示す説明図である。監視システム100は監視サーバ1、心内圧値・波形取得装置2、生体信号測定装置3、院内端末4、ゲートウェイ装置5、生体信号測定装置6、ユーザ端末7及びWiFiルータ8を含む。監視サーバ1、心内圧値・波形取得装置2、生体信号測定装置3、院内端末4及びゲートウェイ装置5は病院等の医療機関に設置されている。監視サーバ1、心内圧値・波形取得装置2、生体信号測定装置3、院内端末4及びゲートウェイ装置5は院内ネットワークLNにより、通信可能に接続されている。生体信号測定装置6、ユーザ端末7及びWiFiルータ8は、患者の自宅等の居住場所に設置されている。監視サーバ1は必ずしも医療機関に設置されていなくともよい。院内端末4、ユーザ端末7(端末装置)は各2台が記載されているが、1台でもよいし3台以上でもよい。
監視サーバ1はサーバコンピュータ、ワークステーション、PC(Personal Computer)等で構成する。また、監視サーバ1を複数のコンピュータからなるマルチコンピュータ、ソフトウェアによって仮想的に構築された仮想マシン又は量子コンピュータで構成しても良い。さらに、監視サーバ1の機能をクラウドサービスで実現してもよい。
心内圧値・波形取得装置2は単一の装置に限らず、複数装置の組み合わせでもよい。心内圧値・波形取得装置2は、例えば心内圧値を測定可能なカテーテル検査装置を含む。使用するカテーテルは、ピッグテールカテーテル、バルーン付カテーテル、スワンガンツカテーテル、又はウェッジプレッシャーカテーテル等である。また、心圧値・波形取得装置2は心エコーを測定、記録可能な超音波診断装置等を含む。
本明細書において、測定の際、医療従事者が関与して行う第1の測定方法とは、侵襲的な検査や、医療従事者が患者から取得した検体を医療検査機関に託し分析を行う検査や、非侵襲的であるが医療従事者でなくては行えない検査などにより、何らかの測定値を得る測定方法を主とする。医療従事者が関与して行う第1の測定方法は、医療従事者による問診、視診、触診、聴診を含む診察から患者の症状の程度を数値化して、症状の評価値を取得する測定方法も含む。診察から患者の症状の程度を数値化して、症状の評価値を取得する測定方法は、例えば、心不全の重症度評価法の一つであるNohria-Stevenson分類の4つの分類に適当な数値を割り振り、分類結果から数値化して症状の評価値を取得する方法がある。この場合、評価値が特徴量であり、目的変数となる。また、胸部X線検査、CT(Computed Tomography)、MRI(Magnetic Resonance Imaging)で得られた結果(画像)をもとに、心不全に伴う肺うっ血の程度を、予め定められた2つ以上の段階のいずれの段階に該当するかを、医師が判断する方法も、第1の測定方法に含む。この場合、各段階を数値で示す。当該数値が特徴量であり、目的変数となる。心内圧値・波形取得装置2を用いた測定は、第1の測定方法に該当する。第1の測定方法から得た特徴量は、以下に説明する目的変数の基になるデータである。医療従事者は種々の職種が含まれるが、本明細書では、特に、医師、看護師、准看護師、診療放射線技師、臨床検査技師、衛生検査技師、臨床工学技士、救急救命士を想定している。第1の測定は医療従事者が実施する測定とも言える。
生体信号測定装置3は心電図を取得可能な心電計、心音図を取得可能な心音計、心電図及び心音図並びに脈波を取得可能な心機図検査装置である。また、生体信号測定装置3は血圧計、脈波計なども含む。生体信号測定装置3による測定は、医療従事者でなくとも可能な測定も含むが、医療機関において医療従事者が行う測定は、便宜上、第1の測定方法による測定とする。第1の測定方法による測定には、BNP(Brain Natriuretic Peptide:脳性ナトリウム利尿ペプチド)、NT-proBNP、尿酸値、下動脈径、心室駆出率、中心動脈圧の測定、症状の評価値の測定が含まれる。
院内端末4は主として医師や看護師が利用する端末である。医師や看護師は、院内端末4を用いて、退院して日常生活を送っている患者の心内圧の推定値や服薬状況を確認する。院内端末4はデスクトップパソコン、ノートパソコン、タブレットコンピュータ、スマートフォン等で構成する。
ゲートウェイ装置5は院内ネットワークLNとインターネット等のグローバルネットワークGNとを接続する。ゲートウェイ装置5は院内ネットワークLNへの不正なアクセスを遮断するため、ファイアウォール機能を有している。ゲートウェイ装置5と別体のファイアウォール装置を設置してもよい。
生体信号測定装置6は、生体信号測定装置3と同様に、心電計、心音計、心機図検査装置、血圧計及び脈波計である。生体信号測定装置6は患者が家庭において使用する。そのため、生体信号測定装置6は、患者自身やその家族等の医療従事者ではない者が操作可能な装置であることが望ましい。
本明細書において、測定の際、医療従事者による関与を要しなくとも可能な第2の測定方法とは、主に非侵襲な手段により患者の生体データを測る方法である。第2の測定方法には、患者が自宅等の医療機関以外の居所(例えば、在宅)で、自ら又は家族の助けを得て、医療機器により測定値を得る方法を含む。生体信号測定装置6を用いた測定は、第2の測定方法による測定である。第2の測定方法から得た特徴量は、以下に説明する説明変数の基になるデータである。第2の測定は医療従事者でない者が操作可能な生体信号測定装置を用いて実施する測定とも言える。
ユーザ端末7は患者が使用する端末である。ユーザ端末7はノートパソコン、タブレットコンピュータ、スマートフォン等で構成する。WiFiルータ8はユーザ端末7をグローバルネットワークGNに接続する。ユーザ端末7は生体信号測定装置6から生体信号の測定結果を受信する。患者は服薬状況をユーザ端末7に入力する。ユーザ端末7は生体信号の測定結果や服薬状況を、WiFiルータ8、グローバルネットワークGN等を介して、監視サーバ1へ送信する。
図2は監視サーバのハードウェア構成例を示すブロック図である。監視サーバ1は制御部11、主記憶部12、補助記憶部13、通信部15及び読み取り部16を含む。制御部11、主記憶部12、補助記憶部13、通信部15及び読み取り部16はバスBにより接続されている。
制御部11は、一又は複数のCPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)等の演算処理装置を有する。制御部11は、補助記憶部13に記憶された制御プログラム1P(プログラム、プログラム製品)を読み出して実行することにより、監視サーバ1に係る種々の情報処理、制御処理等を行い、第1取得部、第2取得部、第3取得部、導出部、生成部、及び、出力部等の機能部を実現する。
主記憶部12は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等である。主記憶部12は主として制御部11が演算処理を実行するために必要なデータを一時的に記憶する。
補助記憶部13はハードディスク又はSSD(Solid State Drive)等であり、制御部11が処理を実行するために必要な制御プログラム1Pや各種DB(Database)を記憶する。補助記憶部13は、患者DB131、特徴量DB132、在宅特徴量DB133、閾値DB134、結果DB135、係数DB136、点列DB137、処方DB138及び服薬状況DB139を記憶する。また、補助記憶部13は推定モデル141及びフィッティングモデル142を記憶する。補助記憶部13は監視サーバ1と別体で外部接続された外部記憶装置であってもよい。補助記憶部13に記憶する各種DB等を、監視サーバ1とは異なるデータベースサーバやクラウドストレージに記憶してもよい。
通信部15は院内ネットワークLNを介して、心内圧値・波形取得装置2、生体信号測定装置3、院内端末4、ゲートウェイ装置5と通信を行う。通信部15はゲートウェイ装置5、グローバルネットワークGN、WiFiルータ8を介して、ユーザ端末7と通信を行う。また、制御部11が通信部15を用い、グローバルネットワークGN等を介して他のコンピュータから制御プログラム1Pをダウンロードし、補助記憶部13に記憶してもよい。
読み取り部16はCD(Compact Disc)-ROM及びDVD(Digital Versatile Disc)-ROMを含む可搬型記憶媒体1aを読み取る。制御部11が読み取り部16を介して、制御プログラム1Pを可搬型記憶媒体1aより読み取り、補助記憶部13に記憶してもよい。また、半導体メモリ1bから、制御部11が制御プログラム1Pを読み込んでもよい。
図3は院内端末のハードウェア構成例を示すブロック図である。院内端末4は制御部41、主記憶部42、補助記憶部43、通信部44、入力部45及び表示部46を含む。各構成はバスBで接続されている。
制御部41は、一又は複数のCPU、MPU、GPU等の演算処理装置を有する。制御部41は、補助記憶部43に記憶された制御プログラム4P(プログラム、プログラム製品)を読み出して実行することにより、種々の機能を提供する。
主記憶部42は、SRAM、DRAM、フラッシュメモリ等である。主記憶部42は主として制御部41が演算処理を実行するために必要なデータを一時的に記憶する。
補助記憶部43はハードディスク又はSSD等であり、制御部41が処理を実行するために必要な各種データを記憶する。補助記憶部43は院内端末4と別体であって、外部接続された外部記憶装置であってもよい。補助記憶部43に記憶する各種DB等を、データベースサーバやクラウドストレージに記憶してもよい。
通信部44は院内ネットワークLNを介して、監視サーバ1と通信を行う。また、制御部41が通信部44を用い、院内ネットワークLN等を介して他のコンピュータから制御プログラム4Pをダウンロードし、補助記憶部43に記憶してもよい。
入力部45はキーボードやマウスである。表示部46は液晶表示パネル等を含む。表示部46は監視サーバ1が出力した心内圧値などを表示する。また、入力部45と表示部46とを一体化し、タッチパネルディスプレイを構成してもよい。なお、院内端末4は外部の表示装置に表示を行ってもよい。
図4はユーザ端末のハードウェア構成例を示すブロック図である。ユーザ端末7は制御部71、主記憶部72、補助記憶部73、通信部74、表示パネル75、操作部76及びシリアル通信部77を含む。各構成はバスBで接続されている。
制御部71は、一又は複数のCPU、MPU、GPU等の演算処理装置を有する。制御部71は、補助記憶部73に記憶された制御プログラム7P(プログラム、プログラム製品)を読み出して実行することにより、種々の機能を提供する。
主記憶部72は、SRAM、DRAM、フラッシュメモリ等である。主記憶部72は主として制御部71が演算処理を実行するために必要なデータを一時的に記憶する。
補助記憶部73はハードディスクSSD又はメモリーカード等であり、制御部71が処理を実行するために必要な各種データを記憶する。補助記憶部73はユーザ端末7と別体で外部接続された外部記憶装置であってもよい。補助記憶部73に記憶する各種DB等を、データベースサーバやクラウドストレージに記憶してもよい。
通信部74はグローバルネットワークGN等を介して、監視サーバ1と通信を行う。また、制御部71が通信部74を用い、グローバルネットワークGN等を介して他のコンピュータから制御プログラム7Pをダウンロードし、補助記憶部73に記憶してもよい。
表示パネル75は、液晶パネル又は有機EL(Electro Luminescence)ディスプレイ等で構成することができる。操作部76は、例えば、表示パネル75に組み込まれたタッチパネルで構成することができ、ユーザが表示パネル75上で行う所定の操作を行うことができる。また、操作部76は、表示パネル75に表示したソフトウェアキ-ボード上の操作を行うことができる。なお、操作部76は、ハードウェアキーボード、マウスなどでもよい。
シリアル通信部77は他の機器とシリアル通信を行う通信インターフェースである。シリアル通信部77は、USB(Universal Serial Bus)規格に従った有線通信、Bluetooth(登録商標)規格等に従った無線通信を行う。シリアル通信部77は、生体信号測定装置6が取得した生体信号の波形データ等を受信する。
図5は患者DBの例を示す説明図である。患者DB131は患者の情報を記憶する。患者DB131は患者ID列、氏名列、性別列及び生年月日列を記憶する。患者ID列は患者を一意に特定可能な患者IDを記憶する。患者IDは患者に付与されたマイナンバー(個人番号)でもよい。氏名列は患者の氏名を記憶する。性別列は患者の性別を記憶する。例えばMは男性を、Fは女性を示す。生年月日列は患者の生年月日を記憶する。
図6は特徴量DBの例を示す説明図である。特徴量DB132は心内圧・波形取得装置2、生体信号測定装置3から得た患者の特徴量、又は、波形若しくは生体信号等から得た患者の特徴量を記憶する。特徴量DB132は患者ID列、測定日列、心内圧列、PEP列、LVET列、時点列及び基準列を含む。患者ID列は患者IDを記憶する。測定日列は特徴量又は波形若しくは生体信号等を測定した日付を記憶する。心内圧列は心内圧を記憶する。単位は水銀柱ミリメートル(mmHg)である。心内圧は、より具体的には、心臓の各部の収縮期圧又は拡張期圧又は平均圧である。心内圧は例えば、右心房圧(収縮期圧、拡張期圧、平均圧)、右心室圧(収縮期圧、拡張期圧、拡張末期圧)、肺動脈圧(収縮期圧、拡張期圧、平均圧)、左心房圧(収縮期圧、拡張期圧、平均圧)、左心室圧(収縮期圧、拡張期圧、拡張末期圧)および大腿動脈圧等である。本実施の形態においては、心内圧列はLVEDP(left ventricular end-diastolic pressure:左心室拡張末期圧)を記憶する。PEP列はPEP(pre-ejection period:前駆出時間)を記憶する。単位はミリ秒(ms)である。LVET列はLVET(left ventricular ejection time:左心室駆出時間)を記憶する。時点列は特徴量を得た時点を記憶する。時点は特徴量を得たときに患者が疾病の経過における位置を示す語を記憶する。例えば、時点は、入院時、退院時等である。基準列は特徴量の変化を評価する際の基準値とするか否かを記憶する。基準列が0となっているレコードに含まれる特徴量は基準値ではないことを示す。基準列が1となっているレコードに含まれる特徴量は基準値であることを示す。
図7は在宅特徴量DBの例を示す説明図である。在宅特徴量DB133は退院し在宅管理している患者の特徴量を記憶する。在宅特徴量DB133は、生体信号測定装置6から得た患者の特徴量、又は、波形若しくは生体信号等から得た患者の特徴量を記憶する。在宅特徴量DB133は患者ID列、測定日列、PEP列及びLVET列を含む。患者ID列は患者IDを記憶する。測定日列は特徴量又は特徴量の基となる波形又は生体信号を測定した日を記憶する。PEP列は前駆出時間を記憶する。LVET列は左心室駆出時間を記憶する。
図8は閾値DBの例を示す説明図である。閾値DB134は心内圧から患者の状態を判定する際に用いる閾値を患者毎に記憶する。閾値DB134は患者ID列、注意列及び危険列を含む。患者ID列は患者IDを記憶する。注意列は注意すべき状態と判定する閾値(第2閾値)を記憶する。注意すべき状態とは、例えば、利尿剤などの薬剤で積極的に介入が必要なうっ血状態で、医療従事者による頻回なモニタリングが必要な状態である。危険列は危険と判定する閾値(第1閾値)を記憶する。危険とは、例えば、心不全増悪の症状が現れつつあり、すぐに病院にて医師による処置が必要な緊急の状態、患者に対し来院の勧告を行う必要がある状態、医療従事者が訪問する必要がある状態等である。
図9は結果DBの例を示す説明図である。結果DB135は在宅の患者の状態を判定した結果を記憶する。結果DB135は患者ID列、判定日列、心内圧列及び判定列を含む。患者ID列は患者IDを記憶する。判定日列は判定を行った日を記憶する。心内圧列は推定した心内圧を記憶する。判定列は判定結果を記憶する。
図10は係数DBの例を示す説明図である。係数DB136は心内圧の波形をカーブフィッティングする関数の係数値を記憶する。フィッティング関数のモデル式は例えば式(1)である。
係数DB136は患者ID列、判定日列、k列、a列、b列及びc列を含む。患者ID列は患者IDを記憶する。判定日列は判定を行った日を記憶する。k列、a列、b列及びc列は、それぞれ式(1)の係数k、a、b及びcの値を記憶する。
図11は点列DBの例を示す説明図である。点列DB137は生体信号測定装置3又は生体信号測定装置6から得た生体信号の波形データを記憶する。点列DB137は患者ID列、測定日列、心電図列、心音列及び脈波列を含む。患者ID列は患者IDを記憶する。測定日列は測定した日を記憶する。心電図列は心電図の波形データを記憶する。心音列は心音の波形データを記憶する。脈波列は脈波の波形データを記憶する。波形データは汎用フォーマットで記憶することが望ましい。例えば、波形データはMFER委員会が管理する医用波形標準化記述規約にしたがった形式とする。
図12は処方DBの例を示す説明図である。処方DB138は医師が患者に処方した薬などの情報を記憶する。処方DB138は処方ID列、患者ID列、枝番列、処方内容列、日数列、処方日列、医師列及び薬剤師列を含む。処方ID列は処方を特定する処方IDを記憶する。処方IDは処方箋に付与されるIDでもよい。患者ID列は薬を処方された患者の患者IDを記憶する。枝番列は1回の処方で複数の薬を処方されたなど複数の処方が含まれている場合に、個々を区別する枝番を記憶する。処方内容列は処方の内容を記憶する。処方内容は、薬名、分量及び用法・用量等である。日数列は処方日数を記憶する。処方日列は処方日を記憶する。医師列は処方を指示した医師の情報を記憶する。薬剤師列は処方を行った薬剤師の情報を記憶する。
図13は服薬状況DBの例を示す説明図である。服薬状況DB139は患者の服薬状況を記憶する。服薬状況DB139は患者ID列、処方ID列、枝番列、服用日列及び結果列を含む。患者ID列は患者IDを記憶する。処方ID列は処方IDを記憶する。枝番列は枝番を記憶する。服用日列は服用期間の各日の日付を記憶する。結果列は患者が薬を服用したか否かの結果を記憶する。例えば、患者が薬を服用した場合は○を、薬を服用しなかった場合は×を、結果列は記憶する。
続いて、監視システム100が行う情報処理について説明する。
図14は推定モデル生成処理の手順例を示すフローチャートである。当該処理は推定モデル141を生成する処理である。監視サーバ1の制御部11は訓練データを作成する(ステップS1)。制御部11は訓練データ(学習用データ)を用いて学習を行う(ステップS2)。制御部11は学習して得た推定モデル141を記憶し(ステップS3)、処理を終了する。
図15は訓練データ作成処理の手順例を示すフローチャートである。訓練データ作成処理は図14のステップS1に対応する。制御部11はデータセットを作成する(ステップS11)。データセットは既に退院した患者のデータより作成する。各患者の入院時(第1時点)及び退院時(第2時点)のカテーテル検査データ、それぞれのタイミングでカテーテル検査データを取得した日と同日に取得された生体信号(心電、心音、脈波、血圧)から得た複数の特徴量を組み合わせたものがデータセットである。ここで、第1時点として入院時のデータを利用し、第2時点として退院時のデータを利用するのは、入院時は患者の状態が極めて悪い状態であると考えられ、退院時は患者が回復した状態であると考えられ、2つの時点での患者の状態の差が最も顕著になると言えるからである。このように患者の両極端な状態のデータ同士を訓練データ作成用のデータセットとして用いることにより、広い計測データ範囲をカバー可能な訓練データを得ることが出来る。制御部11は特徴量を特徴量DB132から取得する。カテーテル検査から得る特徴量はLVEDPである。生体信号から得る特徴量は、PEP及びLVETである。制御部11はデータセットに含まれる1レコードを処理対象として選択する(ステップS12)。制御部11は選択したレコードから、第1目的値と第2目的値とを取得する(ステップS13)。本実施の形態においては、第1目的値は入院時(第1時点)のLVEDPであり、第2目的値は退院時(第2時点)のLVEDPである。制御部11は目的変換値を算出する(ステップS14)。例えば、退院時のデータを基準に、入院時のLVEDP(第1目的値)を退院時のLVEDP(第2目的値)で除算した値が、目的変換値である。入院時のLVEDP(第1目的値)から退院時のLVEDP(第2目的値)を減算した値を目的変換値としてもよい。制御部11は選択したレコードから、第1パラメータと第2パラメータとを取得する(ステップS15)。本実施の形態においては、第1パラメータは入院時(第1時点)のPEP及びLVETであり、第2目的値は退院時(第2時点)のPEP及びLVETである。制御部11はパラメータ変換値を算出する(ステップS16)。例えば、退院時のデータを基準に、入院時のPEP及びLVET(第1パラメータ)それぞれを退院時のPEP及びLVET(第2パラメータ)で除算した値が、パラメータ変換値である。入院時のPEP及びLVET(第1パラメータ)それぞれから退院時のPEP及びLVET(第2パラメータ)を減算した値をパラメータ変換値としてもよい。制御部11は目的変換値、パラメータ変換値を訓練データとして、補助記憶部13に記憶する(ステップS17)。制御部11は未処理のレコードがある否かを判定する(ステップS18)。制御部11は未処理のレコードがあると判定した場合(ステップS18でYES)、処理をステップS12へ戻して、未処理のレコードに対する処理を行う。制御部11は未処理のレコードがないと判定した場合(ステップS18でNO)、処理を呼び出し元へ戻す。なお、目的変換値及びパラメータ変換値を算出する際の基準時は、退院時ではなく入院時としてもよい。
図16はデータセットの構築例を示す説明図である。図16では退院時のデータを基準として、入院時のデータを退院時のデータで除算した値を、再構築データとしている。退院時のデータを基準として、入院時のデータから退院時のデータで減算した値を、再構築データとしてもよい。入院時のデータを基準として、退院時のデータを入院時のデータで除算した値、又は、退院時のデータから入院時のデータを減算した値、を再構築データとしてもよい。
図17は学習処理の手順例を示すフローチャートである。学習処理は図14のステップS2に対応する。制御部11は、図15に示した訓練データ作成処理にて作成し、補助記憶部13に記憶している複数の訓練データの中から、処理対象とする訓練データを選択する(ステップS21)。制御部11は選択した訓練データによる学習を行う(ステップS22)。制御部11は訓練データに含まれるパラメータ変換値(説明変数)を推定モデル141に入力し、推定モデル141から出力された値と、訓練データに含まれる目的変換値(目的変数)とを対照して、出力された値が目的変換値の値と一致するように、推定モデル141を構成するニューロン間の重み等のパラメータを最適化する。制御部11は未処理の訓練データが有るか否かを判定する(ステップS23)。制御部11は未処理の訓練データが有ると判定した場合(ステップS23でYES)、処理をステップS21へ戻し、未処理の訓練データを用いた学習を行う。制御部11は未処理の訓練データがないと判定した場合(ステップS23でNO)、処理を呼び出し元へ戻す。
図18は推定モデルの例を示す説明図である。推定モデル141は、上述した訓練データを用いた深層学習により生成されるニューラルネットワークである。訓練データは上述した訓練データ作成処理にて作成され、補助記憶部13に記憶されている。推定モデル141は、訓練データに含まれるパラメータ変換値を入力した場合に、目的変換値を出力するよう学習されている。上述したように、本実施の形態において、パラメータ変換値は第1パラメータ(入院時のPEP及びLVET)を第2パラメータ(退院時のPEP及びLVET)で除算した値、PEPの変化率とLVETの変化率である。目的変換値は第1目的値(入院時のLVEDP)を第2目的値(退院時のLVEDP)で除算した値、LVEDPの変化率である。
推定モデル141の生成処理において、訓練データに含まれるPEPの変化率とLVETの変化率を推定モデル141に入力する。推定モデル141からLVEDPの変化率の推定値と、訓練データに含まれるLVEDPの変化率の正解値とを対照して、出力された推定値が正解値と一致するように、推定モデル141を構成するニューロン間の重み等のパラメータを最適化する。
図19は収集処理の手順例を示すフローチャートである。収集処理は退院した患者から生体信号等の測定データを収集する処理である。退院した患者は自宅等の居所において、生体信号測定装置6により、心電、心音、脈波、血圧等を測定し、ユーザ端末7へ送信する。ユーザ端末7の制御部71は生体信号測定装置6から測定データを受信する(ステップS31)。生体信号測定装置6とユーザ端末7との通信は、WiFiやBluetoothなどの無線通信でもよいし、USBなどの有線通信でもよい。通信が出来ない場合は、生体信号測定装置6が測定データをメモリーカードに書き込み、書き込み済みのメモリーカードを取り外し、ユーザ端末7に取り付け測定データを読み込んでもよい。また、生体信号測定装置6が測定データを2次元コードで表示し、ユーザ端末7のカメラで2次元コードを撮影して、2次元コードを解析して、測定データを得てもよい。制御部71は受信した測定データを監視サーバ1へ送信する(ステップS32)。監視サーバ1の制御部11は測定データを受信する(ステップS33)。制御部11は測定データから特徴量を算出する(ステップS34)。制御部11は特徴量を在宅特徴量DB133に記憶する(ステップS35)。制御部11は完了をユーザ端末7へ送信する(ステップS36)。ユーザ端末7の制御部71は完了を受信し(ステップS37)、処理を終了する。在宅特徴量DB133に記憶する特徴量は、第3パラメータの一例である。居所において、生体信号測定装置6による測定を行う時点は、第3時点に相当する。
図20は推定処理の手順例を示すフローチャートである。推定処理は、収集処理で収集した測定データより求めたPEP及びLVETを用いて、LVEDPを推定する処理である。監視サーバ1の制御部11は在宅特徴量DB133からPEP及びLVET(第3パラメータ)を取得する(ステップS51)。制御部11は取得したPEP及びLVETを基準値(第2パラメータ)で補正する(ステップS52)。基準値は退院時のPEP及びLVETである。例えば、制御部11は特徴量DB132から患者毎の退院時のPEP及びLVETを取得し、取得した退院時のPEP及びLVETで、在宅特徴量DB133からPEP及びLVETを除算する。制御部11は補正したPEP及びLVET(パラメータ変換値)を推定モデル141へ入力する(ステップS53)。制御部11はLVEDPの推定値を算出する(ステップS54)。制御部11は、上述した基準値(退院時のLVET)に、推定モデル141が出力した変化率(目的変換値)を乗算して、LVEDPの推定値を算出する。制御部11は算出した推定したLVEDPを結果DB135に記憶し(ステップS55)、処理を終了する。制御部11は、在宅特徴量を得られている患者数の回数、推定処理を繰り返し行う。
図21は結果一覧画面例を示す説明図である。結果一覧画面d01は推定した心内圧を一覧表示する画面である。結果一覧画面d01は一覧表d011を含む。一覧表d011は患者ID列、氏名列、測定日列、及び心内圧列を含む。一覧表d011には、看護師列及び医師列を含んでもよい。患者ID列は患者IDを表示する。氏名列は患者の氏名を表示する。測定日列は特徴量の基となる生体信号を測定した日を表示する。心内圧列は推定した心内圧を表示する。看護師列及び医師列には詳細ボタンが表示される。詳細ボタンをマウスクリック等により選択すると、選択された患者に関しての結果画面が表示される。患者の容体については当該結果画面にて参照可能であるが、一覧画面において、各患者の容体が確認できることが望ましい。患者毎に設定している閾値に基づき、容体を危険、注意、正常の3つの状況に分類できるので、結果一覧画面における患者の表示順を、危険→注意→正常の順とする。また、行の背景色や心内圧の値の色や大きさ等を状況に応じて、異なる態様として、一目で、危険、注意、正常のいずれであるか判断できるようにする。このような異なる表示態様により、患者の容体が危険状況又は注意状況にあることを示すことは、警報の一例である。
本実施の形態においては、以下の効果を奏する。患者が在宅でも測定可能な生体信号に基づいて、心内圧を推定することが可能となる。それによって、在宅患者の心不全の増悪、又は、増悪の予兆が有るか否かを遠隔で監視することが可能となる。推定モデル141を生成する際に用いる訓練データは、再構築したデータセットとしている。当該データセットは、患者間の個人差が吸収されているので、精度の良い推定モデル141を生成することが可能となる。
上述の説明において、推定モデル141はニューラルネットワークとしたそれに限らない。推定モデル141は、線形回帰モデル、決定木、ランダムフォレスト、勾配ブースティング法、SVM(Support Vector Machine)、非線形重回帰法など、他の学習アルゴリズムに基づくモデルであってもよい。
(実施の形態2)
本実施の形態は、医療従事者が在宅患者の容体をより的確に把握できるように心内圧以外の情報も画面表示する形態に関する。以下の説明においては、実施の形態1と同様な内容は省略し、主として実施の形態1と異なる点について説明する。
本実施の形態は、医療従事者が在宅患者の容体をより的確に把握できるように心内圧以外の情報も画面表示する形態に関する。以下の説明においては、実施の形態1と同様な内容は省略し、主として実施の形態1と異なる点について説明する。
心内圧の時間変化を示す波形を推定するフィッティングモデル142について説明する。フィッティングモデル142は、左心室圧又は右心室圧の時間変化を示す左心室圧波形又は右心室圧波形を、カーブフィッティングして得られるモデル式(1)の係数(k、a、b及びc)を推定する学習モデルである。フィッティングモデル142は、心拍または動脈圧に関連する一つ以上の値を入力した場合、左心室圧波形または右心室圧波形を示す複数の係数を含むモデル式のそれぞれの係数の変化率を出力するよう学習されている。
図22はデータセットの構築例を示す説明図である。図16を用いて説明したデータセットと同様に、複数患者間での個人差を吸収するように、データセットを再構築している。再構築データは、退院時のデータを基準として、入院時のデータを退院時のデータで除算した値としている。退院時のデータを基準として、入院時のデータから退院時のデータで減算した値を、再構築データとしてもよい。入院時のデータを基準として、退院時のデータを入院時のデータで除算した値、又は、退院時のデータから入院時のデータを減算した値、を再構築データとしてもよい。入院時のデータ又は退院時のデータの何れかを基準として2つのデータ間で演算を行うのは、患者間で生じる個人差を吸収するためである。個人差を吸収できるのであれば、対数変換等でもよい。また、データ項目毎に重み付けをしてもよい。
図23はフィッティングモデルの例を示す説明図である。フィッティングモデル142は、図22で示したデータセットを訓練データとした深層学習により生成されるニューラルネットワークである。フィッティングモデル142は、心拍または動脈圧に関連する一つ以上の値を入力した場合、左心室圧波形または右心室圧波形を示すモデル式の係数の変化率を出力するよう学習されている。本実施の形態においては、入力はPEPとLVETとである。制御部11は、フィッティングモデル142へPEPとLVETとを入力する。制御部11は、フィッティングモデル142の出力として、係数(k、a、b及びc)の変化率を受け取る。制御部11は、係数の変化率と基準値とから、モデル式(1)の、係数(k、a、b及びc)を算出することができる。制御部11は算出した係数を、係数DB136に記憶する。なお、フィッティングモデル142は、ニューラルネットワークに限らず、線形回帰モデル、決定木、ランダムフォレスト、勾配ブースティング法、SVM(Support Vector Machine)非線形重回帰法など、他の学習アルゴリズムに基づくモデルであってもよい。
図24は結果画面生成処理の手順例を示すフローチャートである。結果画面生成処理は図21に示した結果一覧画面d01において、詳細ボタンを選択した場合に実行される。また、結果画面生成処理はユーザ端末7から要求があった場合に実行される。院内端末4の制御部41は結果画面の出力要求を監視サーバ1へ送信する。出力要求には表示する患者を特定する患者ID、及び、画面種別が含まれている。看護師列の詳細ボタンが選択された場合、画面種別には看護師が設定されている。医師列の詳細ボタンが選択された場合、画面種別には医師が設定されている。ユーザ端末7が送信した出力要求には患者IDと、画面種別が含まれている。画面種別には患者が設定されている。監視サーバ1の制御部11は出力要求を受信する(ステップS61)。制御部11は出力要求に含まれる画面種別が医師であるか否かを判定する(ステップS62)。制御部11は画面種別が医師であると判定した場合(ステップS62でYES)、医師用の画面を生成する(ステップS63)。制御部11は生成した画面を院内端末4へ送信し(ステップ64)、処理を終了する。制御部11は画面種別が医師でないと判定した場合(ステップS62でNO)、画面種別が看護師であるか否かを判定する(ステップS65)。制御部11は画面種別が看護師であると判定した場合(ステップS65でYES)、看護用の画面を生成する(ステップS66)。制御部11は生成した画面を院内端末4へ送信し(ステップS64)、処理を終了する。制御部11は画面種別が看護師でないと判定した場合(ステップS65でNO)、患者用の画面を生成する(ステップS67)。制御部11は生成した画面をユーザ端末7へ送信し(ステップS64)、処理を終了する。なお、画面種別の判定は、院内端末4を使用している医療従事者のIDから行ってもよい。例えば、医療従事者のIDと職種(医師、看護師等)とを対応付けた医療従事者データベースを補助記憶部13に記憶し、IDより職種を判定可能とする。
図25は看護師用結果画面の例を示す説明図である。看護師用結果画面d02は、患者属性d021、トレンドグラフd022、心内圧d023、服薬記録状況d024、測定頻度d025、通知ボタンd026、及びメッセージボタンd027を含む。患者属性d021は患者の氏名、性別、年齢等の患者の属性を表示する。トレンドグラフd022は心内圧のトレンド(時系列の変化)をグラフ表示する。トレンドグラフd022は危険ラインd0221、及び注意ラインd0222を含む。トレンドグラフd022は投与量変更表示d0223を含む場合がある。危険ラインd0221は患者の容体が危険と判断する閾値(第1閾値)を示すラインである。患者の容体が危険とは、例えば、患者の容体が利尿剤などの薬剤で積極的に介入が必要なうっ血状態で、医療従事者による頻回なモニタリングが必要な状態であることを言う。注意ラインd0222は患者の容体が要注意と判断する閾値(第2閾値)を示すラインである。患者の容体が要注意とは、例えば、患者の容体が増悪の症状が現れつつあり、すぐに病院にて医師による処置が必要な緊急の状態で、患者に対し、来院の勧告を行う必要がある状態、医療従事者が訪問する必要のある状態等であることを言う。危険ラインd0221と注意ラインd0222は、異なる様式(例えば、異なる色、異なる太さ、実線と点線)で示されてよい。あるいは、危険ラインd0221(図25において心内圧25mmHg)下側の範囲と、危険ラインd0221(図25において心内圧25mmHg)から注意ラインd0222(図25において18mmHg)までの範囲と、注意ラインd0222(図25において18mmHg)より上側の範囲とをそれぞれ異なる様式(例えば、異なる色で塗りつぶす、塗りつぶしなしと塗りつぶしあり)で表示してもよい。これによって、患者の容体が要注意と判断されるのか危険と判断されるのかを容易に把握することができる。このような異なる様式の表示は、警報の一例である。投与量変更表示d0223は表示期間中に、医師により薬の投与量が変更された場合、変更日(投与変更時点)の位置に表示される。投与量変更表示d0223は図25のように記号で表示される他に、変更日(投与変更時点)に目盛線や降下線を表示してもよい。それによって、投与量変更による治療の効果を把握することが可能となる。心内圧d023は直近の心内圧値の推定値を表示する。服薬記録状況d024は、患者が服薬した記録の有無を表示する。制御部11は、服薬記録状況d024を服薬状況DB139から生成する。服薬記録状況d024により、患者が薬の飲み忘れをしていないか、又は、服薬記録忘れしていないか、を確認することが可能となる。測定頻度d025は、患者が在宅にて、生体信号測定装置6による測定を行った頻度を表示する。測定頻度d025により、患者が測定忘れをしていないかを確認することができる。また、測定頻度d025は、保険申請のための基礎データとなる。心内圧値の推定値が所定の閾値(危険ラインd0221または注意ラインd0222)を超えた場合、看護師に対して、画面の枠、トレンドグラフd022のタイトルバー、心内圧d023、画面背景の色を変更することで警報を出力してもよい。通知ボタンd026は、利尿剤または強心薬、血管拡張薬等の循環器疾患の治療薬の投与量変更のための処方箋が発行されたことを患者に通知(処方変更通知)する際に用いる。メッセージボタンd027は、患者へのメッセージを送信する際に用いる。例えば、心内圧が注意ラインを超えた場合などに通院を勧めるメッセージを送信する。
図26は医師用結果画面の例を示す説明図である。医師用結果画面d03は、設定変更領域d031、心内圧グラフd032、特徴量グラフd033、推定波形領域d034、及び生体信号の生波形d035を含む。設定変更領域d031は心内圧の推定、評価に関する設定の変更を行うための領域である。設定変更領域d031は、心内圧基準値設定d0311、特徴量基準値設定d0312、危険度閾値設定d0313、及び更新ボタンd0314を含む。心内圧基準値設定d0311は心内圧の基準値を表示する。特徴量基準値設定d0312は特徴量、ここでは、PAPとLVETとの基準値を表示する。危険度閾値設定d0313は患者の容体を注意と判定する心内圧の閾値(第2閾値)と、患者の容体を危険と判定する心内圧の閾値(第1閾値)とを表示する。更新ボタンd0314をマウスクリック等で選択すると、心内圧基準値、特徴量基準値、閾値を更新するための画面が表示される。医師は、当該画面を用いて、心内圧基準値、特徴量基準値、閾値を変更することが可能である。心内圧グラフd032は心内圧のトレンド(時系列の変化)をグラフ表示したものである。グラフにマウスオーバすると、マウスポインタが虫めがね形状のポインタd0321となり、ポインタd0321が示す日の心内圧の推定波形が、推定波形領域d034に表示される。医師は、心内圧の推定波形を参照することにより、患者の心機能を把握することができる。心内圧の推定波形は、モデル式(1)により描いた波形である。上述したように、モデル式(1)の係数(k、a、b及びc)は、フィッティングモデル142に用いて推定する。特徴量グラフd033は特徴量のトレンドをグラフ表示したものである。医師は、各特徴量のトレンドを、治療方針を検討する際のデータとして参照する。生体信号の生波形d035は、ポインタd0321が示す日の生体信号の生波形を表示する。制御部11は、点列DB137に記憶してある点列データを用いて生波形を表示する。医師は、生波形を参照することにより、各波形において、患者の容体の悪化に繋がるような異常がないかを確認することが可能となる。心内圧値の推定値が所定の閾値(第1閾値または第2閾値)を超えた場合、医師に対して、画面の枠、心内圧グラフd032のタイトルバー、画面背景の色を変更することで警報を出力してもよい。
図27は患者用結果画面の例を示す説明図である。患者用結果画面d04は心内圧値d041、判定結果d042、服薬ボタンd043及び服薬ボタンd044を含む。心内圧値d041は推定モデル141を用いて推定した心内圧値である。判定結果d042は心内圧値の判定結果である。例えば判定結果は、「正常」、「注意」、「危険」の3種類である。服薬ボタンd043及び服薬ボタンd044は服薬の履歴を入力するボタンである。図27では、患者が、服薬ボタンd043を選択すると利尿剤の服薬履歴を、服薬ボタンd044を選択すると血管拡張薬の服薬履歴を入力することが可能である。処方されている薬が1種類の場合、服薬ボタンは1つのみ表示される。処方されている薬が3種類以上の場合、服薬ボタンは薬の種類数と同じ個数が表示される。ユーザ端末7は、入力された服薬履歴(服薬情報)を監視サーバ1へ送信する。
図28は患者用トレンド表示画面の例を示す説明図である。トレンド表示画面d05はトレンドグラフd051を含む。トレンドグラフにd051は、図25で示したトレンドグラフd022と同様であるから説明を省略する。
図29は患者用通知画面の例を示す説明図である。通知画面d08は通知メッセージd081を含む。通知メッセージd081は医療機関から患者へのメッセージである。メッセージの内容は例えば処方の変更や、通院の勧告である。図29に示したように、メッセージが処方変更の通知の場合、通知メッセージd081をタップすると、変更内容を表示するようにしてもよい。心内圧値の推定値が所定の閾値を超えた場合、警報として通知メッセージd081を出力する。
本実施の形態においては、次の効果を奏する。看護師用結果画面d02のトレンドグラフd022は、危険ラインd0221、及び注意ラインd0222を表示するので、患者の状態を一目で確認することが可能である。トレンドグラフd022の投与量変更表示d0223と、トレンドグラフd022の変化より、投与量変更による治療の効果を把握することが可能となる。看護師用結果画面d02の服薬記録状況d024により、患者が薬の飲み忘れをしていないか、又は、服薬記録忘れしていないか、を確認することが可能となる。また、服薬記録状況d024と、トレンドグラフd022とを参照することにより、服薬の効果が出ているか否かの判断の参考となる。看護師用結果画面d02の測定頻度d025により、患者が測定忘れをしていないかを確認することができる。看護師用結果画面d02の通知ボタンd026及びメッセージボタンd027により、患者への通知やメッセージの作成を行う画面を呼び出すことが可能となる。
医師用結果画面d03の設定変更領域d031により、医師は、心内圧の推定、評価に関する設定の変更を行うことが可能である。医師用結果画面d03の心内圧グラフd032及び推定波形領域d034に表示される心内圧の推定波形により、医師は、患者の容体を的確に把握することが可能である。医師用結果画面d03の特徴量グラフd033を参照することにより、医師は、今後の治療方針を検討することが可能である。医師用結果画面d03の生波形d035を参照することにより、医師は、各波形において、患者の容体の悪化に繋がるような異常がないかを確認することが可能となる。
患者用結果画面d04の心内圧値d041及び判定結果d042により、患者は測定が行えたこと、自分の容体を確認することができる。患者用結果画面d04の服薬ボタンにより、患者自身が薬の服用を確認するとともに、服用した履歴を記録することが可能である。
通知画面d08により、医療機関から患者への通知やメッセージを確実に伝達可能となる。それによって、患者が薬の服用を忘れた場合の注意喚起が可能となる。また、容体の悪化傾向を感知した場合、患者の通院勧告を行い、患者が診察を受け適切な処置を受けることで、急性増悪を未然に防ぐことが可能となる。
上述の実施の形態において、第1の測定方法で得る特徴量をLVEDPとしたが、それに限らない。特徴量としてLVEDP以外の心内圧、心血管内圧等を用いてもよい。心血管内圧は、より具体的には、心臓近傍の血管の圧力や平均圧である。心血管内圧は、例えば、PAWP(pulmonary artery wedge pressure:肺動脈楔入圧)やPAP(pulmonary artery pressure:肺動脈圧)、CVP(Central Venous Pressure:中心静脈圧)等を含む。なお、肺動脈楔入圧は、PAWP(pulmonary arterial wedge pressure)、PCWP(pulmonary capillary wedge pressure)、又はPAOP(pulmonary artery occlusion pressure)とも称される。上述の実施の形態において、第2の測定方法で得る特徴量をPEPとLVETとしたが、それに限らない。特徴量として、拡張期血圧、収縮期血圧、脈圧波形立ち上りの最大速度、若しくは、末梢脈圧波形の立ち上り開始点と重複切痕との血圧値差、脈波増大係数、心拍数、等容積性収縮期時間、脈波伝播速度、又は、収縮期時間を用いてもよい。
各実施の形態で記載されている技術的特徴(構成要件)はお互いに組み合わせ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。請求の範囲に記載した独立請求項及び従属請求項は、引用形式に関わらず全てのあらゆる組み合わせにおいて、相互に組み合わせることが可能である。請求の範囲には他の2以上のクレームを引用するクレームを記載する形式(マルチクレーム形式)を用いているが、これに限るものではない。マルチクレームを少なくとも一つ引用するマルチクレーム(マルチマルチクレーム)を記載する形式を用いて記載しても良い。
100 :監視システム
1 :監視サーバ
11 :制御部
12 :主記憶部
13 :補助記憶部
131 :患者DB
132 :特徴量DB
133 :在宅特徴量DB
134 :閾値DB
135 :結果DB
136 :係数DB
137 :点列DB
138 :処方DB
139 :服薬状況DB
141 :推定モデル
142 :フィッティングモデル
15 :通信部
16 :読み取り部
1P :制御プログラム
1a :可搬型記憶媒体
1b :半導体メモリ
2 :波形取得装置
3 :生体信号測定装置
4 :院内端末
41 :制御部
42 :主記憶部
43 :補助記憶部
44 :通信部
45 :入力部
46 :表示部
4P :制御プログラム
5 :ゲートウェイ装置
6 :生体信号測定装置
7 :ユーザ端末
71 :制御部
72 :主記憶部
73 :補助記憶部
74 :通信部
75 :表示パネル
76 :操作部
77 :シリアル通信部
7P :制御プログラム
8 :WiFiルータ
B :バス
GN :グローバルネットワーク
LN :院内ネットワーク
N :ネットワーク
1 :監視サーバ
11 :制御部
12 :主記憶部
13 :補助記憶部
131 :患者DB
132 :特徴量DB
133 :在宅特徴量DB
134 :閾値DB
135 :結果DB
136 :係数DB
137 :点列DB
138 :処方DB
139 :服薬状況DB
141 :推定モデル
142 :フィッティングモデル
15 :通信部
16 :読み取り部
1P :制御プログラム
1a :可搬型記憶媒体
1b :半導体メモリ
2 :波形取得装置
3 :生体信号測定装置
4 :院内端末
41 :制御部
42 :主記憶部
43 :補助記憶部
44 :通信部
45 :入力部
46 :表示部
4P :制御プログラム
5 :ゲートウェイ装置
6 :生体信号測定装置
7 :ユーザ端末
71 :制御部
72 :主記憶部
73 :補助記憶部
74 :通信部
75 :表示パネル
76 :操作部
77 :シリアル通信部
7P :制御プログラム
8 :WiFiルータ
B :バス
GN :グローバルネットワーク
LN :院内ネットワーク
N :ネットワーク
Claims (24)
- 第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得し、
第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得し、
前記第1目的値及び前記第2目的値に基づき目的変換値を導出し、
前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、
各患者の前記目的変換値及び前記パラメータ変換値を対応付けた学習用のデータを生成する
学習用データ生成方法。 - 前記第1の測定は医療従事者による関与を要する測定であり、前記第1目的値及び前記第2目的値は、心内圧、BNP、NT-proBNP、尿酸値、下動脈径、又は、心室駆出率の少なくとも1つを含み、
前記第2の測定は医療従事者による関与を要しなくとも可能な測定であり、前記第1パラメータ及び前記第2パラメータは、前駆出時間、左心室駆出時間、拡張期血圧、収縮期血圧、脈圧波形立ち上りの最大速度、末梢脈圧波形の立ち上り開始点と重複切痕との血圧値差、脈波増大係数、心拍数、等容積性収縮期時間、脈波伝播速度、又は、収縮期時間の少なくとも1つを含む
請求項1に記載の学習用データ生成方法。 - 前記第1の測定は、医療従事者が実施する測定であり、前記第2の測定は、医療従事者でない者が操作可能な生体信号測定装置を用いて実施する測定である
請求項1又は請求項2に記載の学習用データ生成方法。 - 前記目的変換値は、前記第1目的値と前記第2目的値とを用いた除算又は減算により求め、
前記パラメータ変換値は、前記第1パラメータと前記第2パラメータとを用いた除算又は減算により求める
請求項1又は請求項2に記載の学習用データ生成方法。 - 前記第2時点は、前記第1時点から日が経過した時点である
請求項1又は請求項2に記載の学習用データ生成方法。 - 第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得し、
第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得し、
前記第1目的値及び前記第2目的値に基づき目的変換値を導出し、
前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、
各患者の目的変換値及びパラメータ変換値を対応付けた訓練データに基づき、パラメータ変換値を入力した場合に、目的変換値を出力するように学習された学習モデルを生成する
学習モデル生成方法。 - 第2時点における、病状の評価に資する第2の測定に基づく第2パラメータを取得し、
第3時点における、前記第2の測定に基づく第3パラメータを取得し、
前記第2パラメータ及び前記第3パラメータに基づきパラメータ変換値を導出し、
パラメータ変換値を入力した場合に、目的変換値を出力するよう学習された学習モデルに、導出したパラメータ変換値を入力して目的変換値を出力する
処理をコンピュータに実行させる出力プログラム。 - 前記第2時点における、病状の評価に資する第1の測定に基づく第2目的値、及び、前記目的変換値に基づいて、前記第3時点における前記第1の測定に基づく目的値の推定値を算出する
請求項7に記載の出力プログラム。 - 前記第1の測定は医療従事者による関与を要する測定であり、前記第2目的値及び前記推定値は、心内圧、BNP、NT-proBNP、尿酸値、下動脈径、又は、心室駆出率の少なくとも1つを含み、
前記第2の測定は医療従事者による関与を要しなくとも可能な測定であり、前記第2パラメータ及び前記第3パラメータは、前駆出時間、左心室駆出時間、拡張期血圧、収縮期血圧、脈圧波形立ち上りの最大速度、末梢脈圧波形の立ち上り開始点と重複切痕との血圧値差、脈波増大係数、心拍数、等容積性収縮期時間、脈波伝播速度、又は、収縮期時間の少なくとも1つを含む
請求項8に記載の出力プログラム。 - 前記第1の測定は、医療従事者が実施する測定であり、前記第2の測定は、医療従事者でない者が操作可能な生体信号測定装置を用いて実施する測定である
請求項7から請求項9の何れか一項に記載の出力プログラム。 - 前記学習モデルは、
各患者の目的変換値及びパラメータ変換値を対応付けた訓練データに基づき、パラメータ変換値を入力した場合に、目的変換値を出力するように学習されたものであり、
前記パラメータ変換値は、第1時点における前記第2の測定に基づく第1パラメータ、及び、前記第2時点における前記第2の測定に基づく前記第2パラメータ、に基づいて導出され、
前記目的変換値は、前記第1時点における第1の測定に基づく第1目的値、及び、前記第2時点における、前記第1の測定に基づく第2目的値、に基づいて導出されている
請求項7から請求項9の何れか一項に記載の出力プログラム。 - 前記パラメータ変換値は、前記第2パラメータと前記第3パラメータとを用いた除算又は減算により求め、
前記推定値は、前記第2目的値と前記目的変換値とを乗算又は加算して算出する
請求項8又は請求項9に記載の出力プログラム。 - 前記第3時点は、前記第2時点から日が経過した時点である
請求項7から請求項9の何れか一項に記載の出力プログラム。 - 前記推定値を出力する
請求項8又は請求項9に記載の出力プログラム。 - 前記第2時点より過去の日付における前記第1の測定に基づく第1目的値、前記第2目的値、又は、前記推定値を時系列で示したグラフを出力する
請求項14に記載の出力プログラム。 - 前記推定値が所定の閾値を超えた場合、警報を出力する
請求項8又は請求項9に記載の出力プログラム。 - 前記閾値は、第1閾値、及び、前記第1閾値とは異なる値の第2閾値とからなり、
ユーザが医師である場合、前記第1閾値及び前記第2閾値の変更を受け付ける
請求項16に記載の出力プログラム。 - 第1時点における、前記第2の測定に基づく第1パラメータを取得し、
前記第1パラメータ、前記第2パラメータ又は前記第3パラメータを時系列で示したグラフを出力する
請求項8に記載の出力プログラム。 - ユーザが看護師である場合、前記グラフに、薬剤の投与変更時点を重畳して表示する
請求項15に記載の出力プログラム。 - ユーザが看護師である場合、患者の端末装置から送信された服薬情報に基づき、服薬記録を前記第1目的値、前記第2目的値、及び、前記推定値とともに出力する
請求項14に記載の出力プログラム。 - 第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得する第1取得部と、
第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得する第2取得部と、
前記第1目的値及び前記第2目的値に基づき目的変換値を導出する導出部と、
前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、各患者の前記目的変換値及び前記パラメータ変換値を対応付けた学習用のデータを生成する生成部と
を備える学習用モデルデータ生成装置。 - 第1時点における、病状の評価に資する第1の測定に基づく第1目的値、及び、病状の評価に資する第2の測定に基づく第1パラメータを取得し、
第2時点における、前記第1の測定に基づく第2目的値、及び、前記第2の測定に基づく第2パラメータを取得し、
前記第1目的値及び前記第2目的値に基づき目的変換値を導出し、
前記第1パラメータ及び前記第2パラメータに基づきパラメータ変換値を導出し、
各患者の前記目的変換値及び前記パラメータ変換値を対応付けた学習用のデータを生成する
処理をコンピュータに行わせる学習用データ生成プログラム。 - 第2時点における、病状の評価に資する第2の測定に基づく第2パラメータを取得する第2取得部と、
第3時点における、前記第2の測定に基づく第3パラメータを取得する第3取得部と、
前記第2パラメータ及び前記第3パラメータに基づきパラメータ変換値を導出する導出部と、
パラメータ変換値を入力した場合に、目的変換値を出力するよう学習された学習モデルに、導出したパラメータ変換値を入力して目的変換値を出力する出力部と
を備える出力装置。 - コンピュータが、
第2時点における、病状の評価に資する第2の測定に基づく第2パラメータを取得し、
第3時点における、前記第2の測定に基づく第3パラメータを取得し、
前記第2パラメータ及び前記第3パラメータに基づきパラメータ変換値を導出し、
パラメータ変換値を入力した場合に、目的変換値を出力するよう学習された学習モデルに、導出したパラメータ変換値を入力して目的変換値を出力する
処理を実行する出力方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022185046 | 2022-11-18 | ||
JP2022-185046 | 2022-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024106526A1 true WO2024106526A1 (ja) | 2024-05-23 |
Family
ID=91084564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/041388 WO2024106526A1 (ja) | 2022-11-18 | 2023-11-17 | 学習用データ生成方法、学習モデル生成方法、出力プログラム、学習用モデルデータ生成装置、学習用データ生成プログラム、出力装置及び出力方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024106526A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022156706A (ja) * | 2021-03-31 | 2022-10-14 | 株式会社Nttドコモ | 傷病状態推定装置 |
WO2022220129A1 (ja) * | 2021-04-12 | 2022-10-20 | 重一 中津川 | 情報処理装置、情報処理方法およびプログラム |
-
2023
- 2023-11-17 WO PCT/JP2023/041388 patent/WO2024106526A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022156706A (ja) * | 2021-03-31 | 2022-10-14 | 株式会社Nttドコモ | 傷病状態推定装置 |
WO2022220129A1 (ja) * | 2021-04-12 | 2022-10-20 | 重一 中津川 | 情報処理装置、情報処理方法およびプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11854704B2 (en) | Systems and methods for anatomical modeling using information obtained from a medical procedure | |
Alazzam et al. | [Retracted] A Novel Smart Healthcare Monitoring System Using Machine Learning and the Internet of Things | |
Celler et al. | Home telemonitoring of vital signs—technical challenges and future directions | |
EP3676852B1 (en) | System, method, computer program product and apparatus for dynamic predictive monitoring in the critical health assessment and outcomes study/score/(chaos) | |
JP5584413B2 (ja) | 患者監視システム及び監視する方法 | |
JP6857612B2 (ja) | 心血管劣化の警告スコア | |
CA2599387C (en) | A system and method for improving hospital patient care by providing a continual measurement of health | |
JP6671322B2 (ja) | 医療情報提供装置および医療情報提供装置の作動方法並びに医療情報提供プログラム | |
US20210272696A1 (en) | System, method computer program product and apparatus for dynamic predictive monitoring in the critical health assessment and outcomes study (chaos) | |
RU2657384C2 (ru) | Способ и система неинвазивной скрининговой оценки физиологических параметров и патологий | |
CN112040849B (zh) | 用于确定对象血压的系统和方法 | |
Mahmud et al. | Development of a mobile application for patient's medical record and history | |
Mann et al. | Data Collection and Analysis in the ICU | |
Shuler et al. | Accuracy of an automated blood pressure device in stable inpatients: optimum vs routine use | |
WO2024106526A1 (ja) | 学習用データ生成方法、学習モデル生成方法、出力プログラム、学習用モデルデータ生成装置、学習用データ生成プログラム、出力装置及び出力方法 | |
Wong et al. | Identifying vital sign abnormality in acutely-ill patients | |
Armentano et al. | Multidisciplinary, holistic and patient specific approach to follow up elderly adults | |
Durga | Intelligent Support for Cardiovascular Diagnosis: The AI-CDSS Approach | |
WO2024024317A1 (ja) | コンピュータプログラム、情報処理装置、情報処理方法及び学習モデル生成方法 | |
Abirami | AI Clinical Decision Support System (AI-CDSS) for Cardiovascular Diseases | |
JP7537826B2 (ja) | Ecg信号に基づいて指標値を変換する方法およびシステム | |
JP7346559B2 (ja) | 医療モニタリングシステム | |
TWI640950B (zh) | 全人醫療整合評估方法、裝置、內儲程式之電腦程式產品及內儲程式之電腦可讀取紀錄媒體 | |
Pramanik et al. | Cardiovascular Diseases: Artificial Intelligence Clinical Decision Support System | |
JP2023113416A (ja) | 医用情報表示装置、医用情報表示方法、および医用情報表示プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23891671 Country of ref document: EP Kind code of ref document: A1 |