WO2024105833A1 - 放電電極、放電電極の製造方法、及び電子デバイスの製造方法 - Google Patents

放電電極、放電電極の製造方法、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2024105833A1
WO2024105833A1 PCT/JP2022/042632 JP2022042632W WO2024105833A1 WO 2024105833 A1 WO2024105833 A1 WO 2024105833A1 JP 2022042632 W JP2022042632 W JP 2022042632W WO 2024105833 A1 WO2024105833 A1 WO 2024105833A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
cathode
anode
discharge surface
discharge electrode
Prior art date
Application number
PCT/JP2022/042632
Other languages
English (en)
French (fr)
Inventor
怜 竹中
陽一 佐々木
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2022/042632 priority Critical patent/WO2024105833A1/ja
Publication of WO2024105833A1 publication Critical patent/WO2024105833A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Definitions

  • This disclosure relates to a discharge electrode, a method for manufacturing a discharge electrode, and a method for manufacturing an electronic device.
  • gas laser devices used for exposure include KrF excimer laser devices that output laser light with a wavelength of approximately 248 nm, and ArF excimer laser devices that output laser light with a wavelength of approximately 193 nm.
  • the spectral linewidth of the natural oscillation light of KrF excimer laser devices and ArF excimer laser devices is wide, at 350 to 400 pm. Therefore, if a projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolution may decrease. Therefore, it is necessary to narrow the spectral linewidth of the laser light output from the gas laser device to a level where chromatic aberration can be ignored. For this reason, a line narrowing module (LNM) containing a narrowing element (such as an etalon or grating) may be provided in the laser resonator of the gas laser device to narrow the spectral linewidth.
  • LNM line narrowing module
  • a narrowing element such as an etalon or grating
  • the discharge electrode according to one aspect of the present disclosure is a discharge electrode used in a gas laser device that excites a fluorine-containing laser gas by discharge, and includes a cathode having an elongated cathode discharge surface, and an anode having an elongated anode discharge surface that is disposed in such a manner that the anode discharge surface faces the cathode discharge surface, and in the initial state, the cathode discharge surface has many recesses formed thereon, and in the initial state, the anode discharge surface does not have many recesses formed thereon.
  • the discharge electrode according to one aspect of the present disclosure is a discharge electrode used in a gas laser device that excites a fluorine-containing laser gas by discharge, and includes a cathode having an elongated cathode discharge surface, and an anode having an elongated anode discharge surface that is disposed in such a manner that the anode discharge surface faces the cathode discharge surface, and in the initial state, the cathode discharge surface has a number of depressions formed thereon, and further, a coating layer is formed on the depressions.
  • a method for manufacturing a discharge electrode is a method for manufacturing a discharge electrode used in a gas laser device that excites a fluorine-containing laser gas by discharge, the method comprising a cathode having an elongated cathode discharge surface and an anode having an elongated anode discharge surface that is disposed in such a manner that the anode discharge surface faces the cathode discharge surface, the method including a first step of forming a large number of recesses on the cathode discharge surface and a second step of forming a coating layer on the inner peripheral surface of the recesses.
  • a method for manufacturing an electronic device includes a cathode having an elongated cathode discharge surface, and an anode having an elongated anode discharge surface, the anode being disposed in a position in which the anode discharge surface faces the cathode discharge surface, the cathode discharge surface having a number of recesses formed thereon in an initial state, and the anode discharge surface having no number of recesses formed thereon in an initial state, the method including generating laser light using a gas laser device that excites a laser gas containing fluorine by discharge using a discharge electrode, outputting the laser light to an exposure device, and exposing a photosensitive substrate to the laser light in the exposure device to manufacture an electronic device.
  • a method for manufacturing an electronic device includes a cathode having an elongated cathode discharge surface, and an anode having an elongated anode discharge surface, the anode being disposed in a position in which the anode discharge surface faces the cathode discharge surface, the cathode discharge surface having a number of depressions formed thereon in an initial state, and a coating layer being formed in the depressions, the method including generating laser light using a gas laser device that excites a laser gas containing fluorine by discharge using a discharge electrode, outputting the laser light to an exposure device, and exposing a photosensitive substrate to the laser light in the exposure device to manufacture an electronic device.
  • FIG. 1 is a side view showing a schematic configuration of a gas laser device according to a comparative example.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a gas laser device according to a comparative example.
  • FIG. 3 is a schematic diagram of a discharge electrode according to a comparative example.
  • FIG. 4 is a graph showing the change over time in the amount of fluorine consumed in the laser gas.
  • FIG. 5 is a schematic diagram of a discharge electrode according to the first embodiment.
  • FIG. 6 is a diagram showing depressions on the cathode discharge surface of the discharge electrode according to the first embodiment.
  • FIG. 1 is a side view showing a schematic configuration of a gas laser device according to a comparative example.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a gas laser device according to a comparative example.
  • FIG. 3 is a schematic diagram of a discharge electrode according to a comparative example.
  • FIG. 4 is a graph showing
  • FIG. 7 is a cross-sectional view of the cathode discharge surface.
  • FIG. 8 is a schematic diagram of a manufacturing process for a gas laser device.
  • FIG. 9 is a diagram showing a procedure for forming a recess on the cathode discharge surface.
  • FIG. 10 is a diagram showing the change over time in the state of the cathode discharge surface.
  • FIG. 11 is a diagram showing the overall surface shape of the cathode discharge surface and the anode discharge surface.
  • FIG. 12 is a diagram showing the coating layer in the recesses of the cathode discharge surface.
  • FIG. 13 is a diagram showing the procedure of the coating process.
  • FIG. 14 is a diagram showing an example of a discharge electrode according to the second embodiment.
  • FIG. 15 is a diagram showing another example of the discharge electrode according to the second embodiment.
  • FIG. 16 is a diagram illustrating an example of the configuration of an exposure apparatus.
  • the comparative example of the present disclosure is a form that the applicant recognizes as being known only by the applicant, and is not a publicly known example that the applicant acknowledges.
  • FIG. 1 shows the configuration of the gas laser device 2 generally.
  • Figure 2 is a cross-sectional view of the gas laser device 2 shown in Figure 1 as viewed from the Z direction.
  • the gas laser device 2 is a discharge excitation type gas laser device that excites laser gas by discharging, such as an excimer laser device.
  • the traveling direction of the pulsed laser light PL output from the gas laser device 2 is the Z direction.
  • the discharge direction which will be described later, is the Y direction.
  • the direction perpendicular to the Z direction and the Y direction is the X direction.
  • the gas laser device 2 includes a laser chamber 10, a charger 11, a pulse power module (PPM) 12, a pulse energy measurement unit 13, a control unit 14, a pressure sensor 17, and a laser resonator.
  • the laser resonator is composed of a line narrowing module 15 and an output coupling mirror (OC) 16.
  • the laser chamber 10 is a metal container made of, for example, aluminum metal with a nickel-plated surface. As shown in Figures 1 and 2, within the laser chamber 10, a discharge electrode 20, a ground plate 21, wiring 22, a fan 23, a heat exchanger 24, a pre-ionization discharge section 19, an electrical insulation guide 32, and a metal damper 33 are provided.
  • the pre-ionization discharge section 19 includes a pre-ionization outer electrode 19a, a dielectric pipe 19b, and a pre-ionization inner electrode 19c.
  • the laser chamber 10 is filled with laser gas as a laser medium.
  • the laser gas includes, for example, rare gases such as argon, krypton, and xenon, buffer gases such as neon and helium, and halogen gas such as fluorine.
  • an opening is formed in the laser chamber 10.
  • An electrical insulating plate 26 is provided to cover this opening.
  • a plurality of feedthroughs 25 are embedded in the electrical insulating plate 26.
  • the PPM 12 is disposed on the electrical insulating plate 26.
  • the laser chamber 10 is connected to ground.
  • the discharge electrode 20 is composed of a pair of electrodes, a cathode 27 and an anode 28.
  • the cathode 27 has a discharge surface 27A on one surface
  • the anode 28 has a discharge surface 28A on one surface.
  • the cathode 27 and the anode 28 are arranged in the laser chamber 10 so that the discharge surfaces 27A and 28A face each other.
  • the space between the discharge surface 27A of the cathode 27 and the discharge surface 28A of the anode 28 is called the discharge space 30.
  • the surface of the cathode 27 opposite the discharge surface 27A is supported by an electrically insulating plate 26.
  • the surface of the anode 28 opposite the discharge surface 28A is supported by a ground plate 21.
  • the discharge surface 27A of the cathode 27 is called the cathode discharge surface 27A and the discharge surface 28A is called the anode discharge surface 28A.
  • the feedthrough 25 is connected to the cathode 27.
  • the feedthrough 25 is also connected to the PPM 12.
  • the ground plate 21 is connected to the laser chamber 10 via wiring 22.
  • the laser chamber 10 is grounded to the ground.
  • the ground plate 21 is grounded to the ground via wiring 22.
  • the end of the ground plate 21 in the Z direction is fixed to the laser chamber 10.
  • the fan 23 is a cross-flow fan for circulating the laser gas within the laser chamber 10, and is disposed on the opposite side of the discharge space 30 from the ground plate 21.
  • a motor 23a that drives and rotates the fan 23 is connected to the laser chamber 10.
  • the laser gas blown out from the fan 23 flows into the discharge space 30.
  • the flow direction of the laser gas flowing into the discharge space 30 is approximately parallel to the X direction.
  • the laser gas flowing out from the discharge space 30 can be sucked into the fan 23 via the heat exchanger 24.
  • the heat exchanger 24 exchanges heat between the refrigerant supplied inside the heat exchanger 24 and the laser gas.
  • the electrical insulating guide 32 is disposed on the surface of the electrical insulating plate 26 facing the discharge space 30 so as to sandwich the cathode 27.
  • the electrical insulating guide 32 is formed in a shape that guides the flow of the laser gas so that the laser gas from the fan 23 flows efficiently between the cathode 27 and the anode 28.
  • the electrical insulating guide 32 and the electrical insulating plate 26 are formed of a ceramic such as alumina (Al 2 O 3 ) that has low reactivity with fluorine gas.
  • the metal damper 33 is disposed on the surface of the ground plate 21 facing the discharge space 30, sandwiching the anode 28.
  • the metal damper 33 is formed, for example, from porous nickel metal that has low reactivity with fluorine gas.
  • the laser chamber 10 is provided with a laser gas supply device and a laser gas exhaust device, not shown.
  • the laser gas supply device includes a valve and a flow control valve, and is connected to a gas cylinder that contains laser gas.
  • the laser gas exhaust device includes a valve and an exhaust pump.
  • Windows 10a and 10b are provided at the ends of the laser chamber 10 to emit the light generated within the laser chamber 10 to the outside.
  • the laser chamber 10 is arranged so that the optical path of the optical resonator passes through the discharge space 30 and the windows 10a and 10b.
  • the line-narrowing module 15 includes a prism 15a and a grating 15b.
  • the prism 15a expands the beam width of the light emitted from the laser chamber 10 through the window 10a and transmits it to the grating 15b side.
  • Grating 15b is arranged in a Littrow configuration in which the angle of incidence and the angle of diffraction are the same.
  • Grating 15b is a wavelength selection element that selectively extracts light near a specific wavelength depending on the diffraction angle. The spectral width of the light returning from grating 15b to laser chamber 10 via prism 15a is narrowed.
  • the output coupling mirror 16 transmits a portion of the light emitted from the laser chamber 10 through the window 10b and reflects the other portion back to the laser chamber 10.
  • the surface of the output coupling mirror 16 is coated with a partially reflective film.
  • the light emitted from the laser chamber 10 travels back and forth between the line narrowing module 15 and the output coupling mirror 16, and is amplified each time it passes through the discharge space 30. A portion of the amplified light is output as pulsed laser light PL via the output coupling mirror 16.
  • the pulsed laser light PL is an example of the "laser light” according to the technology disclosed herein.
  • the pulse energy measuring unit 13 is disposed in the optical path of the pulsed laser light PL outputted via the output coupling mirror 16.
  • the pulse energy measuring unit 13 includes a beam splitter 13a, a focusing optical system 13b, and an optical sensor 13c.
  • the beam splitter 13a transmits the pulsed laser light PL with high transmittance and reflects a portion of the pulsed laser light PL toward the focusing optical system 13b.
  • the focusing optical system 13b focuses the light reflected by the beam splitter 13a on the light receiving surface of the optical sensor 13c.
  • the optical sensor 13c measures the pulse energy of the light focused on the light receiving surface and outputs the measurement value to the control unit 14.
  • the pressure sensor 17 detects the gas pressure in the laser chamber 10 and outputs the detected value to the control unit 14.
  • the control unit 14 determines the gas pressure of the laser gas in the laser chamber 10 based on the detected gas pressure value and the charging voltage of the charger 11.
  • the charger 11 is a high-voltage power supply that supplies a charging voltage to the charging capacitor included in the PPM 12.
  • the PPM 12 includes a solid-state switch SW that is controlled by the control unit 14. When the solid-state switch SW changes from OFF to ON, the PPM 12 generates a high-voltage pulse from the electrical energy stored in the charging capacitor and applies it to the discharge electrode 20.
  • the control unit 14 is a processor that transmits and receives various signals to and from an exposure apparatus control unit 110 provided in the exposure apparatus 100. For example, signals related to the target pulse energy and target oscillation timing of the pulsed laser light PL output to the exposure apparatus 100 are transmitted to the control unit 14 from the exposure apparatus control unit 110.
  • the control unit 14 comprehensively controls the operation of each component of the gas laser device 2 based on various signals sent from the exposure device control unit 110, the measured pulse energy value, the detected gas pressure value, etc.
  • Figure 3 shows the configuration of the discharge electrode 20.
  • the preliminary ionization discharge section 19 the electrical insulation guide 32, the metal damper 33, etc. are omitted from the illustration.
  • the cathode 27 and anode 28 are elongated, approximately rectangular parallelepiped shapes with the Z direction as their longitudinal direction.
  • the cathode discharge surface 27A and anode discharge surface 28A are also elongated, with the Z direction as their longitudinal direction.
  • the cathode discharge surface 27A and anode discharge surface 28A are each opposed to each other in the Y direction, with the X direction perpendicular to the longitudinal direction being their width direction.
  • the cathode 27 and anode 28 are formed, for example, from a metal such as copper.
  • the surface shape of the cathode discharge surface 27A is flat or curved. When the cathode discharge surface 27A is curved, it is a convex curved surface facing the opposing anode discharge surface 28A.
  • the cross-sectional shape in the width direction of the cathode discharge surface 27A i.e., the cross-sectional shape in the XY plane, is a straight line when the cathode discharge surface 27A is flat, and is a curve such as an ellipse when the cathode discharge surface 27A is curved.
  • the cathode discharge surface 27A is formed as a smooth surface without any irregularities.
  • the initial state refers to the state before assembly in the device manufacturing process of the gas laser device 2, in which the laser chamber 10 is assembled using parts such as the discharge electrode 20. The pre-assembly stage will be described in detail later.
  • the anode discharge surface 28A is similar to the cathode discharge surface 27A. That is, the surface shape of the anode discharge surface 28A is a flat surface or a curved surface that is convex toward the cathode discharge surface 27A, and the cross-sectional shape is also composed of a straight line or a curved line such as an ellipse. Furthermore, in the initial state, the anode discharge surface 28A is also formed as a smooth surface without any irregularities.
  • the control unit 14 controls the laser gas supply device to supply laser gas into the laser chamber 10, and drives the motor 23a to rotate the fan 23. This causes the laser gas in the laser chamber 10 to circulate.
  • the control unit 14 receives signals regarding the target pulse energy Et and the target oscillation timing sent from the exposure device control unit 110.
  • the control unit 14 sets the charging voltage Vhv corresponding to the target pulse energy Et in the charger 11.
  • the control unit 14 stores the value of the charging voltage Vhv set in the charger 11.
  • the control unit 14 operates the solid-state switch SW of the PPM 12 in synchronization with the target oscillation timing.
  • the discharge space 30 After that, when the voltage between the cathode 27 and the anode 28 reaches the breakdown voltage, a main discharge occurs in the discharge space 30. If the discharge direction of the main discharge is the direction in which electrons flow, then the discharge direction is the direction from the cathode 27 toward the anode 28. When the main discharge occurs, the laser gas in the discharge space 30 is excited and emits light.
  • the main discharge is an arc discharge, and will be simply referred to as discharge below.
  • the metal damper 33 prevents the acoustic waves generated by the discharge from being reflected and returning to the discharge space 30.
  • the laser gas circulates within the laser chamber 10, causing the discharge products generated in the discharge space 30 to move downstream.
  • the light emitted from the laser gas is reflected by the line narrowing module 15 and the output coupling mirror 16 and travels back and forth within the laser resonator, resulting in laser oscillation.
  • the light narrowed by the line narrowing module 15 is output from the output coupling mirror 16 as pulsed laser light PL.
  • a portion of the pulsed laser light PL output from the output coupling mirror 16 is incident on the pulse energy measuring unit 13.
  • the pulse energy measuring unit 13 measures the pulse energy E of the incident pulsed laser light PL and outputs the measurement value to the control unit 14.
  • the control unit 14 stores the measured value of the pulse energy E measured by the pulse energy measuring unit 13.
  • the control unit 14 calculates the difference ⁇ E between the measured value of the pulse energy E and the target pulse energy Et. Based on the difference ⁇ E, the control unit 14 feedback controls the charging voltage Vhv so that the measured value of the pulse energy E becomes the target pulse energy Et.
  • the control unit 14 controls the laser gas supply device to supply laser gas into the laser chamber 10 until the specified pressure is reached. Also, when the charging voltage Vhv becomes lower than the minimum value of the allowable range, the control unit 14 controls the laser gas exhaust device to exhaust laser gas from the laser chamber 10 until the specified pressure is reached.
  • the cause of wear of the cathode 27 is presumed to be as follows: When discharge begins, ionized particles in the laser gas collide with the cathode discharge surface 27A, causing copper, the material of the cathode 27, to be ejected from the cathode discharge surface 27A. It is believed that the cathode 27 is worn down by the cathode discharge surface 27A being physically scraped away by such a phenomenon similar to sputtering of the cathode discharge surface 27A.
  • Figure 4 is a graph showing the change over time in the consumption of fluorine (indicated as F2 in Figure 4) in the laser gas immediately after the laser chamber 10 starts operating.
  • the horizontal axis of Figure 4 is the operating time of the laser chamber 10, and the vertical axis is the amount of fluorine consumed.
  • the amount of fluorine consumed is relatively high in the early stages of operation, including immediately after operation starts. Thereafter, the amount of fluorine consumed decreases over time, and eventually enters a stable period where the amount of fluorine consumed is low. It is presumed that there is a positive correlation between the amount of fluorine consumed and the amount of wear on the cathode 27. This is because copper that is ejected from the cathode discharge surface 27A during discharge turns into dust and bonds with the fluorine in the laser gas. This bonding with the copper dust consumes the fluorine in the laser gas.
  • a high consumption of fluorine in the laser gas means that a large amount of copper dust is generated, i.e., the cathode discharge surface 27A is largely scraped off, and the cathode 27 is rapidly worn. It is estimated from the change in fluorine consumption over time shown in Figure 4 that the amount of wear on the cathode 27 is high at the beginning of operation, but gradually decreases as operation time progresses, and is thought to stabilize at a low level compared to the beginning of operation.
  • the discharge electrode 20 according to the first embodiment of the present disclosure is used in a gas laser device 2, similar to the discharge electrode 20 according to the comparative example.
  • the gas laser device 2 in which the discharge electrode 20 according to the first embodiment is used has the same configuration as the gas laser device 2 according to the comparative example, and also operates in the same manner, except for the configuration of the discharge electrode 20.
  • FIG. 5 and 6 are schematic diagrams showing the configuration of the discharge electrode 20 according to the first embodiment.
  • the symbol AR1 indicates a partial area of the discharge surface 27A.
  • the symbol AR2 indicates a partial area of the discharge surface 28A.
  • the discharge electrode 20 according to this embodiment has a large number of recesses 29 (see FIG. 6) formed in the cathode discharge surface 27A in the initial state.
  • the large number of recesses 29 refers to recesses with a density of 100 pieces/mm2 or more .
  • the hatching on the cathode discharge surface 27A indicates the area where the recesses 29 are formed. In this embodiment, the large number of recesses 29 are formed over the entire area of the cathode discharge surface 27A.
  • the anode discharge surface 28A is a smooth surface without depressions 29 and with a surface roughness Ra of less than 25.
  • the planar shape of the recesses 29 is circular.
  • FIG. 7 shows an enlarged view of a cross section in the width direction of the cathode discharge surface 27A.
  • the diameter DM of the recesses 29 is 20 ⁇ m to 100 ⁇ m
  • the depth DP of the recesses 29 is 5 ⁇ m to 30 ⁇ m.
  • the inner surface 29a of the recesses 29 is curved.
  • the shape of the inner surface 29a is preferably spherical.
  • the multiple recesses 29 are arranged regularly. In this embodiment, the multiple recesses 29 are arranged in a square array with equal vertical and horizontal spacings PT between adjacent recesses 29.
  • the width of cathode discharge surface 27A is about several mm.
  • the number of recesses 29 per unit area on cathode discharge surface 27A is 100 dents/ mm2 or more, preferably 1000 dents/ mm2 or more, and more preferably 3000 dents/mm2 or more. Furthermore, recesses 29 are preferably formed with a uniform density over the entire area of cathode discharge surface 27A.
  • the cathode discharge surface 27A is a smooth surface before the recesses 29 are formed, the formation of numerous recesses 29 results in the surroundings of the recesses 29 becoming convex portions 31 that are relatively higher than the recesses 29. In this way, the cathode discharge surface 27A is in a state in which fine irregularities are formed, consisting of numerous recesses 29 and the convex portions 31 surrounding the recesses 29.
  • FIG. 8 shows an overview of the device manufacturing process for the gas laser device 2.
  • the device manufacturing process includes a parts manufacturing process for manufacturing parts such as the discharge electrode 20, and a device assembly process for assembling the manufactured parts.
  • a recess 29 is formed in the cathode discharge surface 27A.
  • a recess 29 is not formed in the anode discharge surface 28A.
  • the pre-assembly stage refers to the stage after the discharge electrode 20 is manufactured in the parts manufacturing process and before the laser chamber 10 is assembled in the device assembly process.
  • the state of the discharge electrode 20 at this stage is the "initial state" according to the technology of the present disclosure. That is, in the initial state, the discharge electrode 20 according to the first embodiment has multiple recesses 29 formed on the cathode discharge surface 27A and multiple recesses 29 not formed on the anode discharge surface 28A.
  • Fig. 9 shows a dent formation process for forming dents 29 on the cathode discharge surface 27A.
  • the dent formation process is performed by etching as follows, for example.
  • photoresist is uniformly applied to the cathode discharge surface 27A of the cathode 27.
  • a mask pattern having the shape, size and spacing of the numerous dents 29 is transferred to the applied photoresist by exposure to form a mask 51.
  • step S20 an etching solution 52 is sprayed onto the cathode discharge surface 27A on which the mask 51 is formed, and only the portions of the cathode discharge surface 27A that correspond to the multiple holes 51a of the mask 51 are etched. As a result, a large number of recesses 29 corresponding to the arrangement pattern of the holes 51a of the mask 51 are formed on the cathode discharge surface 27A.
  • step S30 the mask 51 is removed from the cathode discharge surface 27A in step S30. This recess formation process forms a large number of recesses 29 on the cathode discharge surface 27A.
  • Fig. 10 also shows the change over time of cathode discharge surface 27A which is smooth in the initial state as in the comparative example.
  • area AR3 shows a partial area of smooth cathode discharge surface 27A according to the comparative example, and an enlarged view of area AR3 shows the state when gas laser device 2 is actually operated.
  • the enlarged view on the left side of area AR3 shows the state at the beginning of operation when fluorine consumption is high, and the enlarged view on the right side of area AR3 shows the state in a stable period when fluorine consumption is decreasing.
  • the state of the cathode discharge surface 27A approaches a stable state in which the amount of wear of the cathode 27 is small (see the enlarged view on the right side of area AR3 in FIG. 10).
  • the cathode discharge surface 27A is in a stable state in which the amount of wear of the cathode 27 is small from the beginning of operation, and therefore the amount of wear of the cathode 27 in the early stages of operation is reduced.
  • the amount of wear of the cathode 27 is reduced, the amount of copper and the like that bonds with the fluorine in the laser gas is also reduced, and therefore a reduction in the amount of fluorine consumption in the laser gas can also be expected.
  • the anode discharge surface 28A has a different polarity from the cathode discharge surface 27A, it is considered that wear due to a phenomenon such as sputtering does not occur.
  • ionized fluorine in the laser gas is attracted due to the polarity.
  • fluorine enters the anode discharge surface 28A, and the anode discharge surface 28A is directly fluorinated. Therefore, the recess 29 for the purpose of reducing the amount of wear of the anode 28 is not necessary for the anode discharge surface 28A.
  • the recess 29 is formed on the anode discharge surface 28A, the surface area of the anode discharge surface 28A increases, and the area to be fluorinated may also increase. As the fluorination of the anode discharge surface 28A progresses, the lifespan is also reduced. Therefore, since the recess 29 is not formed on the anode discharge surface 28A, the reduction in the lifespan of the anode discharge surface 28A can be suppressed. More preferably, the anode discharge surface 28A does not have the recess 29 and is a smooth surface with a surface roughness Ra of less than 25 as in this embodiment. This further reduces the surface area of the anode discharge surface 28A compared to when the surface roughness Ra is 25 or more, further suppressing the reduction in lifespan.
  • the diameter DM ranges from 20 ⁇ m to 100 ⁇ m
  • the depth DP ranges from 5 ⁇ m to 30 ⁇ m
  • the number per unit area of 1000 dents/ mm2 or more, preferably 3000 dents/mm2 or more are close to the size and number of dents 56 in the stable state (see the enlarged view on the right side of the area AR3 in FIG. 10).
  • the recesses 29 by arranging the recesses 29 in a regular pattern, it is possible to suppress the concentration of the electric field. If the electric field becomes too concentrated, an arc discharge may occur. By suppressing the concentration of the electric field, it is possible to suppress the occurrence of an arc discharge, and the stability of the discharge is improved. Furthermore, by forming the recesses 29 over the entire area of the cathode discharge surface 27A, it is possible to further suppress the concentration of the electric field. This further improves the stability of the discharge. Furthermore, by suppressing the concentration of the electric field, it is possible to expect the effect of reducing local variations in cathode wear on the cathode discharge surface 27A.
  • the concentration of the electric field can be further suppressed compared to a shape with corners, such as a triangular cross-sectional shape. This further improves the stability of the discharge.
  • the etching method shown in FIG. 9 has been exemplified as a method for forming the recesses 29, methods other than etching may also be used.
  • the recesses 29 may be formed by methods such as sandblasting, laser processing, and electric discharge processing.
  • the inner circumferential surface 29a of the recesses 29 may not have a curved shape, and the inner circumferential surface 29a may be prone to having sharp edges. Sharp edges on the inner circumferential surface 29a may cause the discharge to become unstable. For this reason, etching is the preferred method for forming the recesses 29.
  • the example shown in Fig. 11 is an example in which the overall surface shape of cathode discharge surface 27A is a curved surface that is convex toward anode discharge surface 28A in the width direction perpendicular to the longitudinal direction. Furthermore, in this embodiment, the cross-sectional shape in the width direction of cathode discharge surface 27A is an ellipse with an aspect ratio, which is the ratio of the minor axis to the major axis, of 1/5 or less. That is, as shown in Fig.
  • the overall surface shape refers to the external shape when the cross-sectional shape is viewed macroscopically without considering minute irregularities such as the recesses 29.
  • the cathode discharge surface 27A in Modification 1 also has minute irregularities formed by the recesses 29, but the illustration of the minute irregularities is omitted in Figure 11.
  • the wear amount of the cathode 27 at the beginning of operation can be reduced by making the overall shape of the cathode discharge surface 27A closer to a flat surface from the beginning of operation. As shown in FIG. 11, the wear amount of the cathode 27 at the beginning of operation can be reduced by making the overall surface shape of the cathode discharge surface 27A a convex curved surface with a small curvature.
  • the cathode discharge surface 27A may be flat instead of curved. This also reduces the amount of wear on the cathode 27 at the beginning of operation. However, if it is flat, it is likely that sharp edges will form at both ends of the width of the cathode discharge surface 27A, which may result in a concentration of discharge at these points. For this reason, as shown in Figure 11, it is preferable that the cathode discharge surface 27A be a convex curved surface with a small curvature.
  • the overall surface shape of anode discharge surface 28A is preferably a convex curved surface that is convex toward cathode discharge surface 27A in the width direction and has an elliptical cross-sectional shape.
  • the aspect ratio of the ellipse of anode discharge surface 28A is preferably larger than the aspect ratio of the ellipse of cathode discharge surface 27A. That is, as shown in Fig. 11, when the minor radius of the ellipse of anode discharge surface 28A is SRa and the major radius is LRa, it is preferable to satisfy the condition SRa/LRa > SRk/LRk. The reason is as follows.
  • both the cathode discharge surface 27A and the anode discharge surface 28A are close to a flat surface, corners are likely to be formed at both ends in the width direction. This is thought to make it easier for the discharge to concentrate at the corners, making the discharge unstable. If the discharge becomes unstable, the beam profile of the pulsed laser light PL may become non-uniform, and the amount of wear of the discharge electrode 20 may increase. As described above, from the viewpoint of reducing the amount of wear of the cathode 27, it is preferable to make the cathode discharge surface 27A closer to a flat surface.
  • the anode discharge surface 28A used in combination with such a cathode discharge surface 27A that is close to a flat surface it is thought to be preferable from the viewpoint of ensuring the stability of the discharge to make it a convex curved surface with a larger curvature than the cathode discharge surface 27A.
  • the aspect ratio (SRk/LRk) of the ellipse of the cathode discharge surface 27A is 1/5 or less
  • the aspect ratio (SRa/LRa) of the ellipse of the anode discharge surface 28A is about 2/3.
  • a coating layer 36 may be formed on the recess 29.
  • the material of the coating layer 36 is a high resistance material or insulating material having a higher electrical resistance than the material of the cathode 27 and a material having low reactivity with fluorine.
  • fluorides such as copper fluoride (CuF 2 ) and nickel fluoride (NiF 2 ) are preferable.
  • Ceramics such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ) having low reactivity with fluorine may also be used.
  • the coating layer 36 is formed only on the inner peripheral surface 29 a of the recess 29 on the cathode discharge surface 27A, and is not formed on the protrusions 31 around the recess 29.
  • the coating layer 36 On the cathode discharge surface 27A, the coating layer 36 has a higher electrical resistance than the protrusions 31, so discharge is suppressed in the recesses 29 and discharge occurs in the protrusions 31. Because discharge in the recesses 29 is suppressed, the amount of wear on the cathode 27 can be further reduced. Furthermore, discharging in the recesses 29 can sometimes result in uneven discharge. By forming the coating layer 36 on the recesses 29 and limiting the location where discharge occurs to the protrusions 31, it is expected that the stability of the discharge will be improved.
  • Coating layer 36 is formed, for example, by the coating process shown in Fig. 13.
  • the coating process shown in Fig. 13 is an example in which fluoride is used as the material for coating layer 36.
  • the coating process includes step S100 of performing a fluoride treatment on the entire surface of cathode discharge surface 27A, and step S200 of removing coating layer 36 on protrusions 31 as unnecessary portions by polishing. This allows coating layer 36 to be formed on inner circumferential surfaces 29a of recesses 29.
  • a discharge electrode 20 according to a second embodiment shown in Figures 14 and 15 will be described.
  • the discharge electrode 20 according to the second embodiment is similar to the discharge electrode 20 according to the first embodiment in that it has recesses 29 on the cathode discharge surface 27A.
  • the size and number of the recesses 29, the shape of the inner circumferential surface 29a of the recesses 29, the overall surface shape of the cathode discharge surface 27A, etc. are also similar to the first embodiment.
  • the first difference between the discharge electrode 20 according to the first embodiment and the discharge electrode 20 according to the second embodiment is that in the discharge electrode 20 according to the first embodiment, the coating layer 36 formed in the recess 29 is an optional configuration, whereas in the discharge electrode 20 according to the second embodiment, the coating layer 36 is a required configuration.
  • the second difference is that, in the discharge electrode 20 according to the first embodiment, it is an essential requirement that the anode discharge surface 28A does not have the recesses 29 formed thereon, whereas in the discharge electrode 20 according to the second embodiment, the recesses 29 formed on the anode discharge surface 28A can be of any configuration.
  • the example shown in FIG. 14 is an example in which the anode discharge surface 28A does not have the recesses 29 formed thereon
  • the example shown in FIG. 15 is an example in which the anode discharge surface 28A has the recesses 29 formed thereon.
  • the anode discharge surface 28A may have recesses 29 formed thereon that are different in size or number from the recesses 29.
  • the surface roughness Ra of the anode discharge surface 28A may also be 25 or more. That is, in the discharge electrode 20 according to the second embodiment, the anode discharge surface 28A may have any configuration.
  • the manufacturing method of the discharge electrode 20 according to the second embodiment is similar to the manufacturing method of the discharge electrode 20 according to the first embodiment and its modified example shown in FIG. 9 and FIG. 13, for example.
  • the gas laser device 2 using the discharge electrode 20 according to the first and second embodiments is a line-narrowing laser device
  • the present invention is not limited to this and may be a gas laser device that outputs natural oscillation light.
  • a high-reflection mirror may be disposed in place of the line-narrowing module 15.
  • the gas laser device 2 is an excimer laser device, but instead of this, it may be an F2 molecular laser device that uses a laser gas containing fluorine gas and a buffer gas.
  • the gas laser device 2 according to the present disclosure may be any gas laser device that excites a laser gas containing fluorine by discharging.
  • FIG. 16 shows a schematic configuration example of an exposure apparatus 100.
  • the exposure apparatus 100 includes an illumination optical system 104 and a projection optical system 106.
  • the illumination optical system 104 illuminates a reticle pattern of a reticle (not shown) arranged on a reticle stage RT with a pulsed laser beam PL incident from, for example, a gas laser device 2.
  • the projection optical system 106 reduces and projects the pulsed laser beam PL transmitted through the reticle to form an image on a workpiece (not shown) arranged on a workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with photoresist.
  • the exposure apparatus 100 exposes the workpiece to pulsed laser light PL reflecting the reticle pattern by synchronously translating the reticle stage RT and the workpiece table WT. After the reticle pattern is transferred to the semiconductor wafer by the exposure process described above, a semiconductor device can be manufactured through multiple processes.
  • a semiconductor device is an example of an "electronic device" in this disclosure.
  • the gas laser device 2 shown in FIG. 16 uses the discharge electrode 20 according to the first or second embodiment.
  • the gas laser device 2 can be used for laser processing other than the manufacture of electronic devices, such as drilling.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本開示の一観点に係る放電電極は、フッ素を含むレーザガスを放電により励起するガスレーザ装置に使用される放電電極であって、細長形状のカソード放電面を有するカソードと、細長形状のアノード放電面を有するアノードであって、前記カソード放電面に対して前記アノード放電面が対向する姿勢で配置されたアノードと、を備え、前記カソード放電面には、初期状態において多数の凹みが形成されており、前記アノード放電面には、初期状態において多数の凹みが形成されていない。

Description

放電電極、放電電極の製造方法、及び電子デバイスの製造方法
 本開示は、放電電極、放電電極の製造方法、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrowing Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
特開2004-179599号公報 特開2004-146579号公報
概要
 本開示の1つの観点に係る放電電極は、フッ素を含むレーザガスを放電により励起するガスレーザ装置に使用される放電電極であって、細長形状のカソード放電面を有するカソードと、細長形状のアノード放電面を有するアノードであって、カソード放電面に対してアノード放電面が対向する姿勢で配置されたアノードと、を備え、カソード放電面には、初期状態において多数の凹みが形成されており、アノード放電面には、初期状態において多数の凹みが形成されていない。
 本開示の1つの観点に係る放電電極は、フッ素を含むレーザガスを放電により励起するガスレーザ装置に使用される放電電極であって、細長形状のカソード放電面を有するカソードと、細長形状のアノード放電面を有するアノードであって、カソード放電面に対してアノード放電面が対向する姿勢で配置されたアノードと、を備え、カソード放電面には、初期状態において多数の凹みが形成されており、さらに、凹みにコーティング層が形成されている。
 本開示の1つの観点に係る放電電極の製造方法は、フッ素を含むレーザガスを放電により励起するガスレーザ装置に使用される放電電極であって、細長形状のカソード放電面を有するカソードと、細長形状のアノード放電面を有するアノードであって、カソード放電面に対してアノード放電面が対向する姿勢で配置されたアノードと、を備えた放電電極の製造方法であって、カソード放電面に多数の凹みを形成する第1工程と、凹みの内周面にコーティング層を形成する第2工程と、を含む。
 本開示の1つの観点に係る電子デバイスの製造方法は、電子デバイスの製造方法であって、細長形状のカソード放電面を有するカソードと、細長形状のアノード放電面を有するアノードであって、カソード放電面に対してアノード放電面が対向する姿勢で配置されたアノードと、を備え、カソード放電面には、初期状態において多数の凹みが形成されており、アノード放電面には、初期状態において多数の凹みが形成されていない、放電電極を使用して、フッ素を含むレーザガスを放電により励起するガスレーザ装置によってレーザ光を生成し、レーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板にレーザ光を露光することを含む。
 本開示の1つの観点に係る電子デバイスの製造方法は、電子デバイスの製造方法であって、細長形状のカソード放電面を有するカソードと、細長形状のアノード放電面を有するアノードであって、カソード放電面に対してアノード放電面が対向する姿勢で配置されたアノードと、を備え、カソード放電面には、初期状態において多数の凹みが形成されており、さらに、凹みにコーティング層が形成されている、放電電極を使用して、フッ素を含むレーザガスを放電により励起するガスレーザ装置によってレーザ光を生成し、レーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板にレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係るガスレーザ装置の構成を概略的に示す側面図である。 図2は、比較例に係るガスレーザ装置の構成を概略的に示す断面図である。 図3は、比較例に係る放電電極の概略図である。 図4は、レーザガスのフッ素消費量の経時変化を示すグラフである。 図5は、第1実施形態に係る放電電極の概略図である。 図6は、第1実施形態に係る放電電極のカソード放電面の凹みを示す図である。 図7は、カソード放電面の断面図である。 図8は、ガスレーザ装置の製造工程の概略図である。 図9は、カソード放電面の凹み形成手順を示す図である。 図10は、カソード放電面の状態の経時変化を示す図である。 図11は、カソード放電面とアノード放電面の全体的な表面形状を示す図である。 図12は、カソード放電面の凹みのコーティング層を示す図である。 図13は、コーティング処理の手順を示す図である。 図14は、第2実施形態に係る放電電極の一例を示す図である。 図15は、第2実施形態に係る放電電極の別の例を示す図である。 図16は、露光装置の構成例を概略的に示す図である。
実施形態
 <内容>
 1.比較例
  1.1 構成
  1.2 動作
  1.3 課題
 2.第1実施形態
  2.1 構成及び動作
  2.2 放電電極の製造方法
  2.3 作用・効果
  2.4 第1実施形態の変形例
   2.4.1 変形例1(カソード放電面の表面形状)
    2.4.1.1 カソード放電面の表面形状とカソードの消耗量との関係
    2.4.1.2 カソード放電面の表面形状とアノード放電面の表面形状の関係
   2.4.2 変形例2(凹みのコーティング)
    2.4.2.1 コーティング層の構成及び作用・効果
    2.4.2.2 コーティング層の形成方法
 3.第2実施形態
  3.1 構成
  3.2 放電電極の製造方法
  3.3 作用・効果
 4.その他の変形例
 5.電子デバイスの製造方法
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 1.比較例
 まず、本開示の比較例について説明する。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
  1.1 構成
 図1及び図2を用いて比較例に係るガスレーザ装置2の構成を概略的に示す。図1は、ガスレーザ装置2の構成を概略的に示す。図2は、図1に示されるガスレーザ装置2をZ方向から見た断面図である。ガスレーザ装置2は、レーザガスを放電により励起する放電励起式のガスレーザ装置であり、例えば、エキシマレーザ装置である。
 図1において、ガスレーザ装置2から出力されるパルスレーザ光PLの進行方向を、Z方向とする。後述する放電方向をY方向とする。また、Z方向とY方向とに直交する方向をX方向とする。
 ガスレーザ装置2は、レーザチャンバ10と、充電器11と、パルスパワーモジュール(Pulse Power Module:PPM)12と、パルスエネルギ計測部13と、制御部14と、圧力センサ17と、レーザ共振器と、を含む。レーザ共振器は、狭帯域化モジュール15と出力結合ミラー(Output Coupler:OC)16とで構成される。
 レーザチャンバ10は、例えば、表面にニッケルのメッキが施されたアルミ金属で形成された金属容器である。図1及び図2に示すように、レーザチャンバ10内には、放電電極20と、グランドプレート21と、配線22と、ファン23と、熱交換器24と、予備電離放電部19と、電気絶縁ガイド32と、金属ダンパ33と、が設けられている。予備電離放電部19は、予備電離外電極19aと、誘電体パイプ19bと、予備電離内電極19cとが含まれる。
 レーザチャンバ10内には、レーザ媒質としてレーザガスが封入されている。レーザガスは、例えば、レアガスとしてのアルゴン、クリプトン、キセノン等を含み、バッファガスとしてのネオン、ヘリウム等を含み、ハロゲンガスとしてのフッ素を含む。
 また、レーザチャンバ10には開口部が形成されている。この開口部を塞ぐように、電気絶縁プレート26が設けられている。電気絶縁プレート26には、複数のフィードスルー25が埋め込まれている。電気絶縁プレート26上に、PPM12が配置されている。レーザチャンバ10は、グランドに接地されている。
 放電電極20は、カソード27とアノード28の一対の電極からなる。カソード27は一面に放電面27Aを有しており、アノード28は一面に放電面28Aを有している。カソード27とアノード28は、レーザチャンバ10内において互いの放電面27A及び放電面28Aが対向するように配置されている。カソード27の放電面27Aとアノード28の放電面28Aとの間の空間を、放電空間30という。カソード27は、放電面27Aとは反対側の面が、電気絶縁プレート26により支持されている。アノード28は、放電面28Aとは反対側の面が、グランドプレート21により支持されている。本明細書において、カソード27の放電面27Aとアノード28の放電面28Aを区別するために、放電面27Aをカソード放電面27Aといい、放電面28Aをアノード放電面28Aという。
 フィードスルー25は、カソード27に接続されている。また、フィードスルー25は、PPM12に接続されている。
 グランドプレート21は、配線22を介してレーザチャンバ10に接続されている。レーザチャンバ10は、グランドに接地されている。グランドプレート21は、配線22を介してグランドに接地されている。グランドプレート21のZ方向に関する端部は、レーザチャンバ10に固定されている。
 ファン23は、レーザガスをレーザチャンバ10内で循環させるためのクロスフローファンであって、グランドプレート21に対して放電空間30の反対側に配置されている。レーザチャンバ10には、ファン23を回転駆動するモータ23aが接続されている。
 ファン23から吹き出したレーザガスは、放電空間30に流入する。放電空間30に流入するレーザガスの流れ方向は、X方向にほぼ平行である。放電空間30から流出したレーザガスは、熱交換器24を介してファン23に吸い込まれ得る。熱交換器24は、熱交換器24の内部に供給された冷媒とレーザガスとの間で熱交換を行う。
 電気絶縁ガイド32は、カソード27を挟むように、電気絶縁プレート26の放電空間30側の面に配置されている。電気絶縁ガイド32は、ファン23からのレーザガスがカソード27とアノード28との間に効率よく流れるように、レーザガスの流れをガイドする形状に形成されている。電気絶縁ガイド32及び電気絶縁プレート26は、例えば、フッ素ガスとの反応性が低いアルミナ(Al)等のセラミックで形成されている。
 金属ダンパ33は、アノード28を挟むように、グランドプレート21の放電空間30側の面に配置されている。金属ダンパ33は、例えば、フッ素ガスと反応性が低い多孔質のニッケル金属で形成されている。
 レーザチャンバ10には、図示しないレーザガス供給装置とレーザガス排気装置とが設けられている。レーザガス供給装置は、バルブと流量制御弁を含み、レーザガスを収容したガスボンベと接続されている。レーザガス排気装置は、バルブと排気ポンプとを含む。
 レーザチャンバ10の端部には、レーザチャンバ10内で発生した光を外部に出射するためのウィンドウ10a,10bが設けられている。レーザチャンバ10は、放電空間30及びウィンドウ10a,10bを光共振器の光路が通過するように配置されている。
 狭帯域化モジュール15は、プリズム15aと、グレーティング15bとを含んでいる。プリズム15aは、レーザチャンバ10からウィンドウ10aを介して出射された光を、ビーム幅を拡大してグレーティング15b側へ透過させる。
 グレーティング15bは、入射角度と回折角度とが同じ角度となるリトロー配置に配置されている。グレーティング15bは、回折角度に応じて特定の波長付近の光を選択的に取り出す波長選択素子である。グレーティング15bからプリズム15aを介してレーザチャンバ10に戻る光のスペクトル幅は、狭帯域化される。
 出力結合ミラー16は、ウィンドウ10bを介してレーザチャンバ10から出射された光の一部を透過させ、他の一部を反射させてレーザチャンバ10に戻す。出力結合ミラー16の表面には、部分反射膜がコーティングされている。
 レーザチャンバ10から出射された光は、狭帯域化モジュール15と出力結合ミラー16との間で往復し、放電空間30を通過する度に増幅される。増幅された光の一部が、出力結合ミラー16を介して、パルスレーザ光PLとして出力される。パルスレーザ光PLは、本開示の技術に係る「レーザ光」の一例である。
 パルスエネルギ計測部13は、出力結合ミラー16を介して出力されたパルスレーザ光PLの光路に配置されている。パルスエネルギ計測部13は、ビームスプリッタ13aと、集光光学系13bと、光センサ13cと、を含む。
 ビームスプリッタ13aは、パルスレーザ光PLを高い透過率で透過させるとともに、パルスレーザ光PLの一部を集光光学系13bに向けて反射する。集光光学系13bは、ビームスプリッタ13aによって反射された光を、光センサ13cの受光面に集光する。光センサ13cは、受光面に集光された光のパルスエネルギを計測して、計測値を制御部14に出力する。
 圧力センサ17は、レーザチャンバ10内のガス圧を検出して、検出値を制御部14に出力する。制御部14は、ガス圧の検出値及び充電器11の充電電圧に基づいて、レーザチャンバ10内におけるレーザガスのガス圧を決定する。
 充電器11は、PPM12に含まれる充電コンデンサに充電電圧を供給する高電圧電源である。PPM12は、制御部14によって制御される固体スイッチSWを含んでいる。固体スイッチSWがOFFからONになると、PPM12は、充電コンデンサに保持されていた電気エネルギから高電圧パルスを生成して、放電電極20に印加する。
 制御部14は、露光装置100に設けられた露光装置制御部110との間で各種信号を送受信するプロセッサである。例えば、制御部14には、露光装置100に出力されるパルスレーザ光PLの目標パルスエネルギ、目標発振タイミングに関する信号等が、露光装置制御部110から送信される。
 制御部14は、露光装置制御部110から送信された各種信号、パルスエネルギの計測値、ガス圧の検出値等に基づいて、ガスレーザ装置2の各構成要素の動作を統括的に制御する。
 図3は、放電電極20の構成を示す。図3では、予備電離放電部19、電気絶縁ガイド32、金属ダンパ33等の図示は省略している。
 カソード27及びアノード28は、Z方向を長手方向とする細長の略直方体形状である。カソード放電面27A及びアノード放電面28Aも、Z方向を長手方向とする細長形状である。カソード放電面27A及びアノード放電面28Aは、それぞれ長手方向と直交するX方向が幅方向であり、Y方向において対向している。カソード27及びアノード28は、一例として銅等の金属で形成されている。
 カソード放電面27Aの表面形状は、平面又は曲面である。カソード放電面27Aが曲面の場合は、対向するアノード放電面28Aに向かって凸型の曲面である。カソード放電面27Aの幅方向の断面形状、すなわちXY平面における断面形状は、カソード放電面27Aが平面の場合は直線となり、カソード放電面27Aが曲面の場合は楕円等の曲線となる。カソード放電面27Aは、初期状態においては、凹凸の無い平滑面で形成されている。ここで、初期状態とは、ガスレーザ装置2の装置製造工程において、放電電極20等の部品を用いてレーザチャンバ10を組み立てる組み立て前の段階の状態をいう。組み立て前の段階の詳細は後述する。
 アノード放電面28Aもカソード放電面27Aと同様である。すなわち、アノード放電面28Aの表面形状は、平面、又はカソード放電面27Aに向かって凸型の曲面であり、断面形状についても直線、又は楕円等の曲線で構成される。さらに、アノード放電面28Aも初期状態においては、凹凸の無い平滑面で形成されている。
  1.2 動作
 制御部14は、レーザチャンバ10内にレーザガスを供給させるようレーザガス供給装置を制御し、モータ23aを駆動してファン23を回転させる。これにより、レーザチャンバ10内のレーザガスが循環する。
 制御部14は、露光装置制御部110から送信された目標パルスエネルギEt及び目標発振タイミングに関する信号を受信する。
 制御部14は、目標パルスエネルギEtに応じた充電電圧Vhvを充電器11に設定する。制御部14は、充電器11に設定された充電電圧Vhvの値を記憶する。制御部14は、目標発振タイミングに同期させて、PPM12の固体スイッチSWを動作させる。
 PPM12の固体スイッチSWがOFFからONになると、予備電離放電部19の予備電離内電極19cと予備電離外電極19aとの間、及び、カソード27とアノード28との間に電圧が印加される。これにより、予備電離放電部19でコロナ放電が発生し、UV(Ultraviolet)光が生成される。放電空間30のレーザガスにUV光が照射されることにより、レーザガスが予備電離される。
 その後、カソード27とアノード28との間の電圧が絶縁破壊電圧に達すると、放電空間30には、主放電が発生する。主放電の放電方向を電子が流れる方向とすると、放電方向は、カソード27からアノード28に向かう方向である。主放電が発生すると、放電空間30のレーザガスは励起されて光を放出する。主放電はアーク放電であり、以下において単に放電という。
 金属ダンパ33により、放電によって生成される音響波が反射されて再び放電空間30に戻ることが抑制される。また、レーザガスがレーザチャンバ10内を循環することによって、放電空間30において生成される放電生成物が下流側に移動する。
 レーザガスから放出された光が、狭帯域化モジュール15及び出力結合ミラー16で反射されてレーザ共振器内を往復することにより、レーザ発振する。狭帯域化モジュール15で狭帯域化された光が、パルスレーザ光PLとして出力結合ミラー16から出力される。
 出力結合ミラー16から出力されたパルスレーザ光PLの一部は、パルスエネルギ計測部13に入射する。パルスエネルギ計測部13は、入射したパルスレーザ光PLのパルスエネルギEを計測して、計測値を制御部14に出力する。
 制御部14は、パルスエネルギ計測部13によって計測されたパルスエネルギEの計測値を記憶する。制御部14は、パルスエネルギEの計測値と目標パルスエネルギEtとの差ΔEを計算する。制御部14は、差ΔEに基づき、パルスエネルギEの計測値が目標パルスエネルギEtとなるように、充電電圧Vhvをフィードバック制御する。
 制御部14は、充電電圧Vhvが許容範囲の最大値より高くなった場合には、レーザガス供給装置を制御して、所定の圧力になるまでレーザガスをレーザチャンバ10内に供給する。また、制御部14は、充電電圧Vhvが許容範囲の最小値より低くなった場合には、レーザガス排気装置を制御して、所定の圧力になるまでレーザガスをレーザチャンバ10内から排気する。
  1.3 課題
 レーザチャンバ10の耐用寿命を決める要因の1つに、カソード27の消耗がある。カソード27の消耗の原因は、次のように推測される。放電が開始すると、レーザガス中のイオン化された粒子がカソード放電面27Aに衝突することにより、カソード放電面27Aから、カソード27の材料である銅がはじき出される。こうしたカソード放電面27Aに対するスパッタリングのような現象によって、カソード放電面27Aが物理的に削れられることにより、カソード27が消耗すると考えられる。
 図4は、レーザチャンバ10の稼働開始直後からのレーザガス中のフッ素(図4においてF2で示す)の消費量の経時変化を示すグラフである。図4の横軸はレーザチャンバ10の稼働時間であり、縦軸はフッ素消費量である。図4において点線の矩形で示すように、稼働開始直後を含む稼働開始初期においては、フッ素消費量が相対的に多い。その後、時間の経過に従ってフッ素消費量が減少し、やがてフッ素消費量が少ない安定期に入る。フッ素消費量と、カソード27の消耗量との間には正の相関があると推測される。というのも、放電中にカソード放電面27Aからはじき出された銅はダスト化し、レーザガス中のフッ素と結合する。こうしたダスト化した銅との結合により、レーザガス中のフッ素が消費されるためである。
 レーザガス中のフッ素消費量が多いということは、ダスト化した銅の発生量が多い、すなわち、カソード放電面27Aの削れ量が多く、カソード27の消耗が激しいことを意味する。図4に示すフッ素の消費量の経時変化から推定すると、カソード27の消耗量は、稼働開始初期においては多いが、稼働時間の経過に伴って次第に減少し、稼働開始初期と比較して少ない状態で安定すると考えられる。
 レーザチャンバ10を長寿命化するために、稼働開始初期のカソード27の消耗量の低減が求められている。
 2.第1実施形態
  2.1 構成及び動作
 本開示の第1実施形態に係る放電電極20も、比較例に係る放電電極20と同様に、ガスレーザ装置2に使用される。第1実施形態に係る放電電極20が使用されるガスレーザ装置2は、放電電極20の構成が異なること以外は、比較例に係るガスレーザ装置2と同様の構成であり、動作も同様である。
 図5及び図6は、第1実施形態に係る放電電極20の構成を概略的に示す。また、図6において、符号AR1は、放電面27Aの一部の領域を示す。符号AR2は、放電面28Aの一部の領域を示す。領域AR1の拡大図に示すように、本実施形態に係る放電電極20は、カソード放電面27Aに、初期状態において多数の凹み29(図6参照)が形成されている。ここで、多数の凹み29とは、100個/mm以上の密度の凹みをいう。カソード放電面27Aのハッチングは、凹み29が形成されている領域を示している。本実施形態において、多数の凹み29は、カソード放電面27Aの全域に形成されている。
 一方、領域AR2の拡大図に示すように、アノード放電面28Aには、初期状態において凹み29が形成されていない。より具体的には、アノード放電面28Aは、凹み29が無く、表面粗さRaが25未満の平滑面である。
 図6に示すように、本実施形態において、凹み29の平面形状は円形である。図7は、カソード放電面27Aの幅方向の断面の拡大図を示す。本実施形態において、凹み29の直径DMは20μm~100μmであり、また、凹み29の深さDPは5μm~30μmである。また、凹み29の内周面29aは曲面形状である。内周面29aの形状は、好ましくは球面である。また、多数の凹み29は規則的に配置されている。本実施形態において、多数の凹み29の配列は、隣接する凹み29同士の縦と横の間隔PTが等間隔の正方配列である。
 カソード放電面27Aの幅は数mm程度である。カソード放電面27Aにおいて、単位面積当たりの凹み29の数は、100個/mm以上であり、1000個/mm以上が好ましく、3000個/mm以上がさらに好ましい。さらに、凹み29は、カソード放電面27Aの全域に渡って均一な密度で形成されていることが好ましい。
 カソード放電面27Aは、凹み29が形成される前の状態では平滑面であるため、多数の凹み29が形成されることにより、凹み29の周囲は凹み29よりも相対的に高い凸部31となる。このように、カソード放電面27Aは、多数の凹み29と凹み29の周囲の凸部31とで構成される微細な凹凸が形成された状態となる。
 図8は、ガスレーザ装置2の装置製造工程の概略を示す。図8に示すように、装置製造工程は、放電電極20等の部品を製造する部品製造工程と、製造された部品を組み立てる装置組み立て工程とを含む。部品製造工程において、カソード放電面27Aに対して凹み29が形成される。一方、アノード放電面28Aに対しては凹み29は形成されない。
 装置組み立て工程においては、部品製造工程において製造された放電電極20等の部品が供給され、供給された放電電極20等の部品を用いてレーザチャンバ10が組み立てられる。組み立て前の段階とは、部品製造工程において放電電極20が製造された後、装置組み立て工程においてレーザチャンバ10を組み立てる前の段階をいう。この段階の放電電極20の状態が、本開示の技術に係る「初期状態」である。すなわち、第1実施形態に係る放電電極20は、初期状態において、カソード放電面27Aには多数の凹み29が形成されており、アノード放電面28Aには多数の凹み29が形成されていない。
  2.2 放電電極の製造方法
 図9は、カソード放電面27Aに凹み29を形成する凹み形成処理を示す。本実施形態において、凹み形成処理は、一例として次のようなエッチングによって行われる。まず、ステップS10において、カソード27のカソード放電面27Aに、フォトレジストを一様に塗布する。塗布されたフォトレジストに対して、多数の凹み29の形状、サイズ及び間隔を有するマスクパターンを露光により転写し、マスク51を形成する。これにより、多数の凹み29の形状、サイズ及び間隔に対応する複数の穴51aを有するマスク51が形成される。
 ステップS20のエッチングにおいては、マスク51が形成されたカソード放電面27Aに対してエッチング液52が吹き付けられ、カソード放電面27Aにおいて、マスク51の複数の穴51aに対応する部分のみがエッチングされる。これにより、マスク51の穴51aの配列パターンに対応する多数の凹み29がカソード放電面27Aに形成される。ステップS20のエッチングが終了した後、ステップS30においてカソード放電面27Aからマスク51が除去される。こうした凹み形成処理により、カソード放電面27Aに多数の凹み29が形成される。
  2.3 作用・効果
 図10は、図4に示すフッ素消費量の経時変化を示すグラフに加えて、比較例のように初期状態において平滑なカソード放電面27Aの経時変化を示す。図10において、領域AR3は、比較例に係る平滑なカソード放電面27Aの一部の領域を示し、領域AR3の拡大図は、ガスレーザ装置2を実際に稼働させた場合の状態を示している。領域AR3の左側の拡大図は、フッ素消費量が多い稼働開始初期の状態を示し、領域AR3の右側の拡大図は、フッ素消費量が減少する安定期の状態を示す。
 図10に示すように、カソード放電面27Aは、稼働開始初期において平滑面であっても、放電によるカソード27の消耗が進み、安定期に到達すると、凹み56とその周囲の凸部57とで構成される微細な凹凸が形成された状態になる。上述したとおり、安定期においては、稼働開始初期と比較して、カソード27の消耗量も少ない。これらの結果を考察すると、カソード放電面27Aの状態と、カソード27の消耗量の多寡にも相関があり、カソード放電面27Aに凹み29による微細な凹凸が形成されている場合は、カソード27の消耗量も少なくなると考えられる。原理的には、微細な凹凸により、カソード放電面27A内において放電が分散し、カソード27の消耗量が低減していると推定される。
 以上説明したとおり、第1実施形態に係る放電電極20には、初期状態においてカソード放電面27Aに多数の凹み29が形成されている。よって、カソード放電面27Aの状態が、カソード27の消耗量が少ない安定期の状態(図10の領域AR3の右側の拡大図を参照)に近づく。こうすることで、カソード放電面27Aは、稼働開始初期から、カソード27の消耗量が少ない安定期の状態になっているため、稼働開始初期のカソード27の消耗量が低減される。また、カソード27の消耗量が低減されるため、レーザガス中のフッ素と結合する銅等の発生量も低減されるため、レーザガス中のフッ素消費量の低減も期待できる。
 一方、アノード放電面28Aは、カソード放電面27Aと極性が異なるため、スパッタリングのような現象に起因する消耗は生じないと考えられる。アノード放電面28Aにおいては、極性に起因してレーザガス中のイオン化されたフッ素が吸引される。これにより、アノード放電面28Aにフッ素が進入し、アノード放電面28Aが直接的にフッ化する。そのため、アノード放電面28Aに対しては、アノード28の消耗量の低減を目的とする凹み29は不要である。また、アノード放電面28Aに凹み29を形成した場合は、アノード放電面28Aの表面積が増加することにより、フッ化する面積も増加する可能性がある。アノード放電面28Aのフッ化が進むと、寿命も低下する。このため、アノード放電面28Aには凹み29が形成されていないことにより、アノード放電面28Aの寿命の低下を抑制できる。さらに好ましくは、アノード放電面28Aは、凹み29が無く、本実施形態のように表面粗さRaが25未満の平滑面であることが好ましい。これにより、表面粗さRaが25以上の場合と比べて、アノード放電面28Aの表面積がさらに減少するため、さらに寿命の低下を抑制できる。
 さらに、カソード放電面27Aの凹み29について、20μm~100μmという直径DMの範囲、5μm~30μmという深さDPの範囲、1000個/mm以上、好ましくは3000個/mm以上という単位面積当たりの数は、安定期の状態(図10の領域AR3の右側の拡大図を参照)の凹み56のサイズや数に近い。これにより、カソード放電面27Aの状態を、さらに安定期の状態に近づけることができるため、稼働開始初期のカソード27の消耗量のさらなる低減が期待できる。
 さらに、凹み29を規則的に配置することで、電界の集中を抑制することができる。電界の集中が進むとアーク放電が発生し得る。電界の集中を抑制することで、アーク放電の発生を抑制でき、放電の安定性が向上する。さらに、凹み29をカソード放電面27Aの全域に形成することで、電界の集中をさらに抑制することができる。これにより、放電の安定性がさらに向上する。また、電界の集中が抑制されることにより、カソード放電面27Aにおけるカソード消耗の局所的な変動を低減する効果も期待できる。
 また、凹み29の内周面29aを曲面形状とすることで、例えば断面形状が三角形のような角が付く形状と比較して、電界の集中をさらに抑制することができる。これにより、放電の安定性がさらに向上する。
 また、凹み29の形成方法として、図9に示すエッチングによる形成方法を例示したが、エッチング以外でもよい。例えば、サンドブラスト加工、レーザ加工及び放電加工等の方法で凹み29を形成してもよい。ただし、サンドブラスト加工等によって凹み29を形成すると、凹み29の内周面29aが曲面形状とならず、内周面29aに角が付きやすい場合もある。内周面29aに角が付くと放電が不安的になる原因にもなる。そのため、凹み29の形成方法としてはエッチングが好ましい。
  2.4 第1実施形態の変形例
   2.4.1 変形例1(カソード放電面の表面形状)
 図11に示す例は、カソード放電面27Aの全体的な表面形状を、長手方向と直交する幅方向においてアノード放電面28Aに向かって凸型の曲面とする例である。さらに、本実施形態では、カソード放電面27Aの幅方向の断面形状は、短半径と長半径の比である縦横比が1/5以下の楕円形である。すなわち、図11に示すように、カソード放電面27Aの楕円形の短半径をSRk、長半径をLRkとした場合において、カソード放電面27Aの全体的な表面形状は、SRk/LRk ≦ 1/5の条件を満足している。一例として、SRk/LRkは1/8程度である。
 なお、全体的な表面形状とは、凹み29等の微細な凹凸を考慮せずに断面形状を巨視的に見た場合の外形をいう。変形例1に係るカソード放電面27Aも微視的に見れば凹み29による微細な凹凸が形成されているが、図11においては微細な凹凸について図示を省略している。
    2.4.1.1 カソード放電面の表面形状とカソードの消耗量との関係
 カソード放電面27Aの全体的な表面形状は、稼働開始初期において曲率が大きな凸型の曲面であっても、カソード27の消耗量が少ない安定期においては曲率が小さな凸型の曲面となり、平面に近づく。原理的には、カソード放電面27Aを曲率が小さな凸型の曲面とした場合は、凸部に放電が集中しやすく、凸部の消耗が進み、平面に近づくと推測される。そのため、カソード放電面27Aの全体的な形状を、稼働開始初期から平面に近づけておくことで、稼働開始初期におけるカソード27の消耗量を低減することができると考えられる。図11に示したように、カソード放電面27Aの全体的な表面形状を曲率が小さな凸型の曲面にすることで、稼働開始初期におけるカソード27の消耗量を低減することができる。
 なお、カソード放電面27Aは、曲面ではなく、平面でもよい。こうしても、稼働開始初期におけるカソード27の消耗量を低減することができる。ただし、平面にした場合は、カソード放電面27Aの幅方向の両端部に角が立ちやすいため、その部分で放電の集中が生じる場合もある。そのため、図11に示したように、カソード放電面27Aは、曲率が小さな凸型の曲面であることが好ましい。
    2.4.1.2 カソード放電面の表面形状とアノード放電面の表面形状の関係
 また、図11に示すように、アノード放電面28Aの全体的な表面形状も、カソード放電面27Aと同様に、幅方向においてカソード放電面27Aに向かって凸型の曲面であって、かつ断面形状が楕円形であることが好ましい。さらに、アノード放電面28Aにおいて、楕円形の縦横比は、カソード放電面27Aの楕円形の縦横比よりも大きいことが好ましい。すなわち、図11に示すように、アノード放電面28Aの楕円形の短半径をSRa、長半径をLRaとした場合において、SRa/LRa > SRk/LRkの条件を満足することが好ましい。理由は次のとおりである。
 カソード放電面27Aとアノード放電面28Aにおいて、両方の表面形状が平面に近いと、幅方向の両端部に角が立ちやすい。そうすると、角に放電が集中しやすく、放電が不安定になりやすいと考えられる。放電が不安定になると、パルスレーザ光PLのビームプロファイルが不均一になったり、放電電極20の消耗量が増加する可能性がある。上述したとおり、カソード27の消耗量を低減する観点からは、カソード放電面27Aを平面に近づける方が好ましい。こうした平面に近いカソード放電面27Aと組み合わせて使用するアノード放電面28Aについては、カソード放電面27Aよりも曲率が大きな凸型の曲面とした方が、放電の安定性を確保する観点からは好ましいと考えられる。例えば、カソード放電面27Aの楕円形の縦横比(SRk/LRk)が1/5以下の場合には、アノード放電面28Aの楕円形の縦横比(SRa/LRa)は、2/3程度である。
   2.4.2 変形例2(凹みのコーティング)
    2.4.2.1 コーティング層の構成及び作用・効果
 図12に示す変形例のように、凹み29にコーティング層36が形成されていてもよい。コーティング層36の材料は、カソード27の材料よりも電気抵抗が大きな高抵抗材料や絶縁性材料で、かつ、フッ素との反応性が低い材料が使用される。このような材料としては、例えば、フッ化銅(CuF)やフッ化ニッケル(NiF)等のフッ化物が好ましい。また、フッ素との反応性が低いアルミナ(Al)やジルコニア(ZrO)等のセラミックでもよい。カソード放電面27Aにおいては、放電領域を確保するために、コーティング層36は凹み29の内周面29aにのみ形成されており、凹み29の周囲の凸部31には形成されていない。
 カソード放電面27Aにおいて、コーティング層36は凸部31よりも電気抵抗が大きいため、凹み29における放電が抑制され、凸部31において放電が行われる。凹み29における放電が抑制されるため、カソード27の消耗量をより低減することができる。また、凹み29で放電すると、放電が不均一になる場合もある。凹み29にコーティング層36を形成し、放電の発生個所を凸部31に限定することにより、放電の安定性の向上も期待できる。
    2.4.2.2 コーティング層の形成方法
 コーティング層36は、一例として、図13に示すコーティング処理によって形成される。図13に示すコーティング処理は、コーティング層36の材料としてフッ化物を用いる例である。図13に示すように、コーティング処理は、カソード放電面27Aの全面にフッ化処理を施すステップS100と、凸部31のコーティング層36を、研磨により不要部として除去するステップS200とを有する。これにより、凹み29の内周面29aにコーティング層36を形成することができる。
 3.第2実施形態
  3.1 構成
 次に、図14及び図15に示す第2実施形態に係る放電電極20について説明する。第2実施形態に係る放電電極20は、カソード放電面27Aに凹み29を有する点は第1実施形態に係る放電電極20と同様である。また、第2実施形態において、凹み29のサイズ及び数、凹み29の内周面29aの形状、カソード放電面27Aの全体的な表面形状等についても、第1実施形態と同様である。
 第1実施形態に係る放電電極20と第2実施形態に係る放電電極20との第1の相違点は、第1実施形態に係る放電電極20では、凹み29に形成されるコーティング層36が任意の構成であるのに対して、第2実施形態に係る放電電極20では、コーティング層36が必須の構成である点である。
 第2の相違点は、第1実施形態に係る放電電極20では、アノード放電面28Aに凹み29が形成されていないことが必須の要件であるのに対して、第2実施形態に係る放電電極20では、アノード放電面28Aに形成される凹み29は任意の構成である点である。図14に示す例は、アノード放電面28Aに凹み29が形成されていない例であり、図15に示す例は、アノード放電面28Aに凹み29が形成されている例である。もちろん、アノード放電面28Aには、凹み29とはサイズや数が異なる凹み29が形成されていてもよい。また、第2実施形態においては、アノード放電面28Aの表面粗さRaも、25以上であってもよい。すなわち、第2実施形態に係る放電電極20においては、アノード放電面28Aはどのような形態でもよい。
  3.2 放電電極の製造方法
 第2実施形態に係る放電電極20の製造方法は、一例として図9及び図13に示した第1実施形態及びその変形例に係る放電電極20の製造方法と同様である。
  3.3 作用・効果
 第2実施形態に係る放電電極20において、カソード放電面27Aに形成される多数の凹み29とコーティング層36の効果については、第1実施形態の図12に示す変形例において説明した効果と同様である。
 4.その他の変形例
 第1及び第2実施形態に係る放電電極20が使用されるガスレーザ装置2を狭帯域化レーザ装置としているが、これに限られず、自然発振光を出力するガスレーザ装置としてもよい。例えば、狭帯域化モジュール15に代えて、高反射ミラーを配置してもよい。
 また、第1及び第2実施形態では、ガスレーザ装置2をエキシマレーザ装置としているが、これに代えて、フッ素ガスとバッファガスを含むレーザガスを用いるF2分子レーザ装置としてもよい。すなわち、本開示に係るガスレーザ装置2は、フッ素を含むレーザガスを放電により励起するガスレーザ装置であればよい。
 5.電子デバイスの製造方法
 図16は、露光装置100の構成例を概略的に示す。露光装置100は、照明光学系104と投影光学系106とを含む。照明光学系104は、例えば、ガスレーザ装置2から入射したパルスレーザ光PLによって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系106は、レチクルを透過したパルスレーザ光PLを、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。
 露光装置100は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したパルスレーザ光PLをワークピースに露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで半導体デバイスを製造できる。半導体デバイスは本開示における「電子デバイス」の一例である。
 図16に示すガスレーザ装置2には、第1実施形態又は第2実施形態に係る放電電極20が使用される。
 なお、ガスレーザ装置2は、電子デバイスの製造に限られず、穴あけ加工等のレーザ加工に用いることも可能である。
 上記の説明は、制限ではなく単なる例示を意図したものである。したがって、添付の特許請求の範囲を逸脱することなく本開示の各実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきであり、さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (27)

  1.  フッ素を含むレーザガスを放電により励起するガスレーザ装置に使用される放電電極であって、
     細長形状のカソード放電面を有するカソードと、
     細長形状のアノード放電面を有するアノードであって、前記カソード放電面に対して前記アノード放電面が対向する姿勢で配置されたアノードと、
     を備え、
     前記カソード放電面には、初期状態において多数の凹みが形成されており、前記アノード放電面には、初期状態において多数の凹みが形成されていない、
     放電電極。
  2.  請求項1に記載の放電電極であって、
     前記凹みは、直径が20μm~100μmであり、深さが5μm~30μmである。
  3.  請求項1に記載の放電電極であって、
     前記凹みの数は、1000個/mm以上である。
  4.  請求項3に記載の放電電極であって、
     前記凹みの数は、3000個/mm以上である。
  5.  請求項1に記載の放電電極であって、
     前記凹みは、規則的に配置されている。
  6.  請求項1に記載の放電電極であって、
     前記凹みは、前記カソード放電面の全域に形成されている。
  7.  請求項1に記載の放電電極であって、
     前記凹みの内周面は曲面形状である。
  8.  請求項1に記載の放電電極であって、
     前記アノード放電面は、表面粗さRaが25未満の平滑面である。
  9.  請求項1に記載の放電電極であって、
     前記カソード放電面の全体的な表面形状は、長手方向と直交する幅方向において前記アノード放電面に向かって凸型の曲面であって、かつ前記幅方向の断面形状は、短半径と長半径の比である縦横比が1/5以下の楕円形である。
  10.  請求項9に記載の放電電極であって、
     前記アノード放電面の全体的な表面形状は、前記幅方向において前記カソード放電面に向かって凸型の曲面であって、かつ前記幅方向の前記断面形状が楕円形であり、
     前記アノード放電面において、前記楕円形の前記縦横比は、前記カソード放電面の前記楕円形の前記縦横比よりも大きい。
  11.  請求項1に記載の放電電極であって、
     前記カソード放電面の表面形状は、平面である。
  12.  請求項1に記載の放電電極であって、
     前記凹みにコーティング層が形成されている。
  13.  請求項12に記載の放電電極であって、
     前記コーティング層は、フッ化物である。
  14.  フッ素を含むレーザガスを放電により励起するガスレーザ装置に使用される放電電極であって、
     細長形状のカソード放電面を有するカソードと、
     細長形状のアノード放電面を有するアノードであって、前記カソード放電面に対して前記アノード放電面が対向する姿勢で配置されたアノードと、
     を備え、
     前記カソード放電面には、初期状態において多数の凹みが形成されており、
     さらに、前記凹みにコーティング層が形成されている、
     放電電極。
  15.  請求項14に記載の放電電極であって、
     前記コーティング層は、フッ化物である。
  16.  請求項14に記載の放電電極であって、
     前記凹みは、直径が20μm~100μmであり、深さが5μm~30μmである。
  17.  請求項14に記載の放電電極であって、
     前記凹みの数は、1000個/mm以上である。
  18.  請求項14に記載の放電電極であって、
     前記凹みの数は、3000個/mm以上である。
  19.  請求項14に記載の放電電極であって、
     前記凹みは、規則的に配置されている。
  20.  請求項14に記載の放電電極であって、
     前記凹みは、前記カソード放電面の全域に形成されている。
  21.  請求項14に記載の放電電極であって、
     前記凹みは、凹面が曲面形状である。
  22.  請求項14に記載の放電電極であって、
     前記カソード放電面の全体的な表面形状は、長手方向と直交する幅方向において前記アノード放電面に向かって凸型の曲面であって、かつ前記幅方向の断面形状は、短半径と長半径の比である縦横比が1/5以下の楕円形である。
  23.  請求項14に記載の放電電極であって、
     前記カソード放電面の表面形状は、平面である。
  24.  フッ素を含むレーザガスを放電により励起するガスレーザ装置に使用される放電電極であって、細長形状のカソード放電面を有するカソードと、細長形状のアノード放電面を有するアノードであって、前記カソード放電面に対して前記アノード放電面が対向する姿勢で配置されたアノードと、を備えた放電電極の製造方法であって、
     前記カソード放電面に多数の凹みを形成する第1工程と、
     前記凹みの内周面にコーティング層を形成する第2工程と、
     を含む放電電極の製造方法。
  25.  請求項24に記載の放電電極の製造方法であって、
     前記第1工程において、前記凹みをエッチングによって形成する。
  26.  電子デバイスの製造方法であって、
     細長形状のカソード放電面を有するカソードと、
     細長形状のアノード放電面を有するアノードであって、前記カソード放電面に対して前記アノード放電面が対向する姿勢で配置されたアノードと、
     を備え、
     前記カソード放電面には、初期状態において多数の凹みが形成されており、前記アノード放電面には、初期状態において多数の凹みが形成されていない、
     放電電極を使用して、フッ素を含むレーザガスを放電により励起するガスレーザ装置によってレーザ光を生成し、
     前記レーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板に前記レーザ光を露光することを含む、
     電子デバイスの製造方法。
  27.  電子デバイスの製造方法であって、
     細長形状のカソード放電面を有するカソードと、
     細長形状のアノード放電面を有するアノードであって、前記カソード放電面に対して前記アノード放電面が対向する姿勢で配置されたアノードと、
     を備え、
     前記カソード放電面には、初期状態において多数の凹みが形成されており、
     さらに、前記凹みにコーティング層が形成されている、
     放電電極を使用して、フッ素を含むレーザガスを放電により励起するガスレーザ装置によってレーザ光を生成し、
     前記レーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板に前記レーザ光を露光することを含む、
     電子デバイスの製造方法。
PCT/JP2022/042632 2022-11-16 2022-11-16 放電電極、放電電極の製造方法、及び電子デバイスの製造方法 WO2024105833A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042632 WO2024105833A1 (ja) 2022-11-16 2022-11-16 放電電極、放電電極の製造方法、及び電子デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042632 WO2024105833A1 (ja) 2022-11-16 2022-11-16 放電電極、放電電極の製造方法、及び電子デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2024105833A1 true WO2024105833A1 (ja) 2024-05-23

Family

ID=91084084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042632 WO2024105833A1 (ja) 2022-11-16 2022-11-16 放電電極、放電電極の製造方法、及び電子デバイスの製造方法

Country Status (1)

Country Link
WO (1) WO2024105833A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307350A (en) * 1979-02-16 1981-12-22 Compagnie Generale D'electricite Gas laser
JPH0685352A (ja) * 1992-09-04 1994-03-25 Sumitomo Heavy Ind Ltd レーザ装置
JPH06152011A (ja) * 1992-11-06 1994-05-31 Nissin Electric Co Ltd 放電励起型エキシマレーザ装置
JP2004146579A (ja) * 2002-10-24 2004-05-20 Gigaphoton Inc ガスレーザ装置及びその主放電電極の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307350A (en) * 1979-02-16 1981-12-22 Compagnie Generale D'electricite Gas laser
JPH0685352A (ja) * 1992-09-04 1994-03-25 Sumitomo Heavy Ind Ltd レーザ装置
JPH06152011A (ja) * 1992-11-06 1994-05-31 Nissin Electric Co Ltd 放電励起型エキシマレーザ装置
JP2004146579A (ja) * 2002-10-24 2004-05-20 Gigaphoton Inc ガスレーザ装置及びその主放電電極の製造方法

Similar Documents

Publication Publication Date Title
JP5628253B2 (ja) レーザ駆動の光源及び同光源を提供する方法
JP2024009127A (ja) レーザチャンバ内の電極の寿命を延ばす方法及び装置
WO2024105833A1 (ja) 放電電極、放電電極の製造方法、及び電子デバイスの製造方法
EP1147582A1 (en) ArF LASER WITH LOW PULSE ENERGY AND HIGH REP RATE
US11588291B2 (en) Laser chamber apparatus, gas laser apparatus, and method for manufacturing electronic device
WO2015005427A1 (ja) 予備電離放電装置及びレーザ装置
JP7369205B2 (ja) 長寿命レーザチャンバ電極
KR102471783B1 (ko) 연장된 수명을 갖는 레이저 챔버 전극 및 이러한 전극을 갖는 레이저
WO2023181416A1 (ja) 放電電極、放電電極の製造方法、及び電子デバイスの製造方法
WO2022009289A1 (ja) ガスレーザ装置、及び電子デバイスの製造方法
WO2023127286A1 (ja) ガスレーザ装置及び電子デバイスの製造方法
JP7547508B2 (ja) 放電電極、アノードの製造方法、及び電子デバイスの製造方法
WO2023218548A1 (ja) 放電電極、アノードの製造方法、及び電子デバイスの製造方法
WO2022137374A1 (ja) 放電電極、アノードの製造方法、及び電子デバイスの製造方法
JP7412562B2 (ja) ガス放電レーザチャンバのためのアンダーカット電極
CN114843868A (zh) 激光腔和电子器件的制造方法
WO2024009662A1 (ja) ガスレーザ装置のチャンバ、ガスレーザ装置、及び電子デバイスの製造方法
US20230387641A1 (en) Chamber device, and electronic device manufacturing method
JP2002076489A (ja) フッ素レーザ装置及びこれを用いた露光装置
JPH1041564A (ja) エキシマレーザー発振装置及び露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965809

Country of ref document: EP

Kind code of ref document: A1