WO2024103859A1 - 矿用伸缩式测风机器人 - Google Patents

矿用伸缩式测风机器人 Download PDF

Info

Publication number
WO2024103859A1
WO2024103859A1 PCT/CN2023/112196 CN2023112196W WO2024103859A1 WO 2024103859 A1 WO2024103859 A1 WO 2024103859A1 CN 2023112196 W CN2023112196 W CN 2023112196W WO 2024103859 A1 WO2024103859 A1 WO 2024103859A1
Authority
WO
WIPO (PCT)
Prior art keywords
telescopic
driving member
section
mining
measuring
Prior art date
Application number
PCT/CN2023/112196
Other languages
English (en)
French (fr)
Inventor
迟海波
张健强
周李兵
黄小明
姜振南
高飞
徐铭
卞俊
张一波
何敏
Original Assignee
天地(常州)自动化股份有限公司
中煤科工集团常州研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天地(常州)自动化股份有限公司, 中煤科工集团常州研究院有限公司 filed Critical 天地(常州)自动化股份有限公司
Publication of WO2024103859A1 publication Critical patent/WO2024103859A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of detection instruments, and in particular to a telescopic wind measuring robot for mining.
  • the wind speed measurement in existing mines is still mainly done manually.
  • the advantages are that the wind measuring device used is simple and the method is mature.
  • the disadvantages are that the labor is large and the efficiency is low.
  • the wind measurement accuracy is greatly affected by human factors.
  • the data transmission is delayed, which makes it impossible for the control center to formulate a reasonable ventilation strategy in time.
  • the existing automatic wind measuring device is a multi-point mobile wind measuring device.
  • the screw is used as a transmission device to control the precise movement of the wind speed sensor to measure the average wind speed in the tunnel. This device has the disadvantages of large underground installation workload and large space size.
  • the technical problem to be solved by the present invention is: in order to solve the technical problems of large installation workload and large space occupied by mine wind speed measuring devices in the prior art, the present invention provides a telescopic wind measuring robot for mining, which can replace manual work to realize intelligent and automatic wind measurement.
  • the designed telescopic variable amplitude mechanism has a compact structure and is easy to install underground. It can adapt to a variety of tunnel sizes and can measure different positions on the tunnel section, further improving the accuracy and intelligence level of tunnel wind measurement.
  • a telescopic wind measuring robot for mining It includes a base, which is arranged on the side wall of the mine tunnel; a telescopic mechanism, which is hinged to the base; a telescopic drive, which has one end hinged to the rotary mechanism and the other end hinged to the base; a measuring mechanism, which is arranged on the moving end of the telescopic mechanism; the telescopic drive cooperates with the telescopic mechanism to enable the measuring mechanism to move on the plane, so as to measure the parameters required to be measured at different positions on the plane.
  • the mine telescopic wind measuring robot of the present invention drives the measuring mechanism to move on the tunnel section through the cooperation of the telescopic mechanism and the telescopic drive, which is convenient for measuring the conditions at different positions on the tunnel section, and compared with the general multi-point mobile measuring device, the present solution changes the amplitude through the telescopic drive, which can reduce the volume of the overall structure, reduce the occupied tunnel space, facilitate storage, and is more convenient to produce and install.
  • a rotating mechanism is provided on the base, the telescopic mechanism is provided on the rotating mechanism, and one end of the telescopic driving member away from the telescopic mechanism is hinged to the rotating mechanism.
  • the telescopic mechanism is provided with a translation mechanism
  • the measuring mechanism is provided on the translation mechanism
  • the translation mechanism drives the measuring mechanism to move along the telescopic direction of the telescopic mechanism.
  • the rotating mechanism includes a first rotating driving member, which is arranged on the base; a support plate, which is connected to the output end of the first rotating driving member, and the support plate is hinged to the fixed end of the telescopic mechanism and the end of the telescopic driving member away from the telescopic mechanism.
  • the telescopic mechanism includes a fixed section, which is hinged to the base; a first movable section, which is slidably connected to the fixed section; a first driving assembly, wherein the first driving member is arranged between the first movable section and the fixed section, and the first driving member is used to drive the first movable section to move relative to the fixed section; a second movable section, which is slidably connected to the first movable section; and a second driving member, which is arranged between the fixed section and the second movable section, and the first driving member is used to drive the second movable section to move relative to the first movable section.
  • the first driving member includes a second rotating driving member, the second rotating driving member is arranged on the fixed section; a ball screw, the ball screw is connected to the output end of the second rotating driving member, the ball screw is connected to the output end of the second rotating driving member,
  • the ball screw is rotatably connected to the fixed section; the ball nut seat slides on the fixed section, the ball nut seat is threadedly connected to the ball screw, and the ball nut seat is connected to the second movable section.
  • a power rod is connected to the ball nut seat, and one end of the power rod away from the ball nut seat is connected to the first moving section.
  • the second driving member includes an extending guide wheel, which is arranged at an end of the first movable section away from the base; a retracting guide wheel, which is arranged at an end of the first movable section close to the base; an extending cable, one end of which is connected to the fixed section, and the other end of which is connected to the second movable section after passing around the extending guide wheel; and a retracting cable, one end of which is connected to the fixed section, and the other end of which is connected to the second movable section after passing around the retracting guide wheel.
  • the translation mechanism includes a third rotation driving member, which is slidingly connected to the fixed section and connected to the measuring mechanism; a gear, which is connected to the output end of the third rotation driving member; and a rack, which is arranged on the fixed section and meshes with the gear.
  • an adjustment component is provided between the measuring mechanism and the translation mechanism, and the adjustment component includes a first connecting plate, which is connected to the moving end of the translation mechanism; a second connecting plate, which is connected to the measuring mechanism, and the second connecting plate is hinged to the first connecting plate, and the first connecting plate and the second connecting plate are locked by a locking bolt.
  • the measuring mechanism By setting up the telescopic mechanism and the telescopic driving member, the measuring mechanism is driven to move on the tunnel section, so that the measuring mechanism can move in a straight line or curve in any direction of the tunnel section, thereby adapting to different measurement trajectories and facilitating the measurement of different positions on the tunnel section.
  • this solution changes the amplitude by telescopic driving members, which can reduce the volume of the overall structure, reduce the occupied tunnel space, facilitate storage, and is more convenient to produce and install;
  • the translation mechanism can drive the measuring mechanism to move relative to the telescopic mechanism, which is convenient for measuring various measuring positions on the telescopic mechanism.
  • the measuring range of the measuring mechanism can be further improved, so that the measuring mechanism can measure any position of the tunnel section, eliminating the measurement blind spot.
  • the dual same-direction adjustment of the telescopic mechanism and the translation mechanism can compensate for the excessive displacement of the telescopic mechanism, improve the measurement accuracy of the measuring mechanism, and improve the measurement flexibility;
  • the extending cable and the retracting cable can not only drive the second moving section to move, but also interact with each other to improve the stability of the movement of the second moving section, reduce the possibility of excessive movement of the second moving section due to inertia, and also improve the displacement accuracy of the second moving section.
  • FIG1 is a schematic diagram showing the overall structure of a telescopic wind measuring robot for mining in the present invention.
  • FIG. 2 is a schematic structural diagram of the first driving member in the present invention.
  • FIG. 3 is a schematic structural diagram of a second driving member in the present invention.
  • FIG. 4 is a schematic structural diagram of a translation mechanism in the present invention.
  • FIG. 5 is a schematic diagram showing the structure of the sliding groove in the present invention.
  • FIG. 6 is a schematic diagram of the initial posture of the extended wind measurement operation in the present invention.
  • FIG. 7 is a schematic diagram showing the posture of the extended wind measurement operation process in the present invention.
  • FIG8 is a schematic diagram showing the final posture of the extended wind measurement operation in the present invention.
  • This embodiment discloses a telescopic wind measuring robot for mining.
  • a telescopic wind measuring robot for mining includes a base 1, which is fixedly connected to the side wall of the bottom surface of the mine tunnel, a slewing mechanism 2 is provided on the base 1, a telescopic mechanism 3 and a telescopic driving member 4 are hinged on the slewing mechanism 2 at the same time, the telescopic driving member 4 is hinged to the fixed end of the telescopic mechanism 3 at one end away from the slewing mechanism 2, a translation mechanism 5 is provided on the mobile end of the telescopic mechanism 3, and a measuring mechanism 7 is provided on the translation mechanism 5.
  • the telescopic mechanism 3, the telescopic driving member 4 and the translation mechanism 5 cooperate with each other to drive the measuring mechanism 7 to move on the plane to measure different positions, especially to move along the set trajectory to improve the accuracy of measurement, and the slewing mechanism 2 is convenient for adjusting the overall angle of the telescopic mechanism 3, improving the accuracy of measurement of the measuring mechanism 7, and at the same time, it is convenient to store the telescopic mechanism 3, the telescopic driving member 4, the translation mechanism 5 and the measuring mechanism 7 as a whole.
  • the plane mentioned above is any plane that needs to be measured, which can be the cross section of a pipeline or the cross section of a corridor.
  • the plane in this embodiment is the cross section of a mine tunnel.
  • the slewing mechanism 2 includes a first rotatable driving member 21 and a support plate 22.
  • the first rotatable driving member 21 is fixedly connected to the base 1.
  • a rotating shaft 221 is fixedly connected to the support plate 22.
  • the rotating shaft 221 is hinged to the base 1.
  • the rotating shaft 221 is coaxially fixed to the output end of the first rotatable driving member 21.
  • the driving member 21 can be in the form of a servo motor and a reducer linkage, that is, the output end of the servo motor is connected to the input end of the reducer, and the output end of the reducer is coaxially fixed to the rotating shaft 221.
  • the telescopic mechanism 3 includes a fixed section 31, a first movable section 32 and a second movable section 33.
  • the fixed section 31 is hinged to the support plate 22.
  • One end of the telescopic drive member 4 is hinged to the support plate 22, and the other end is hinged to the side wall of the fixed section 31.
  • the fixed end of the telescopic mechanism 3 mentioned above is the fixed section 31.
  • the telescopic drive member 4 can be an electric cylinder. When working, the telescopic end of the telescopic drive member 4 telescopes and drives the fixed section 31 to rotate around the support plate 22, and the rotation angle is not less than 90 degrees, so that when the base 1 is installed in the corner of the tunnel, the rotation range of the fixed section 31 covers the entire tunnel section.
  • the first movable section 32 is inserted into the fixed section 31 and is slidably connected to the fixed section 31.
  • the fixed section 31 is provided with a first driving member 34, which includes a second rotating driving member 341, a ball screw 342 and a ball nut seat 343.
  • the second rotating driving member 341 is fixedly connected to the fixed section 31, and the ball screw 342 is rotatably connected to the fixed section 31.
  • the output end of the second rotating driving member 341 is connected to the ball screw 342 to facilitate driving the ball screw 342 to rotate.
  • the ball nut seat 343 is threadedly connected to the ball screw 342 and is located in the fixed section 31.
  • a power rod 344 is hinged on the side wall of the ball nut seat 343, and one end of the power rod 344 away from the ball nut seat 343 extends out of the fixed section 31 and is hinged to the top surface of the first movable section 32.
  • the second rotary drive member 341 is started, driving the ball screw 342 to rotate, the ball screw 342 drives the ball nut seat 343 to move, and the ball nut seat 343 drives the power rod 344 to move, thereby driving the first movable section 32 to perform telescopic movement relative to the fixed section 31.
  • the second rotary drive member 341 can adopt a transmission method combining a servo motor and a synchronous belt, that is, a synchronous belt pulley is coaxially fixed on the output end of the servo motor, and another synchronous belt pulley is coaxially fixed on the ball screw 342, and the transmission between the two synchronous belt pulleys is realized through the synchronous belt.
  • the second moving section 33 is inserted into the first moving section 32 and is slidably connected to the first moving section 32.
  • a second driving member 35 is provided between the second moving section 33 and the fixed section 31.
  • the second driving member 35 includes an extending guide wheel 353, a retracting guide wheel 354, an extending cable 351, a retracting cable 352, and an extending guide wheel 353.
  • the guide wheel 353 is arranged at one end of the fixed section 31 away from the base 1, and the extended guide wheel 353 is rotatably connected to the fixed section 31.
  • the retracted guide wheel 354 is arranged at one end of the fixed section 31 close to the base 1, and the retracted guide wheel 354 is rotatably connected to the fixed section 31.
  • One end of the extended cable 351 is fixedly connected to one end of the fixed section 31 away from the base 1, and the other end bypasses the extended guide wheel 353 and is fixedly connected to one end of the second movable section 33 close to the base 1.
  • One end of the retracted cable 352 is fixedly connected to one end of the fixed section 31 away from the base 1, and the other end bypasses the retracted guide wheel 354 and is fixedly connected to one end of the second movable section 33 close to the base 1.
  • a plurality of guide blocks 321 are fixedly connected in the first movable section 32 along its own circumference.
  • the plurality of guide blocks 321 surround the second movable section 33 and are all in contact with the second movable section 33, so as to guide the second movable section 33 and improve the stability of the second movable section 33 when moving.
  • a plurality of guide blocks 321 are provided along the length direction of the first moving section 32 to further enhance the stability of the movement of the second moving section 33.
  • the extension cable 351 and the retraction cable 352 can be made of a flexible material, such as a steel wire rope.
  • a fixing plate 331 is fixedly connected to the bottom surface of the second moving section 33
  • a protective cover 332 is fixedly connected to the fixing plate 331
  • the translation mechanism 5 is arranged in the protective cover 332.
  • the protective cover 332 is convenient for protecting the translation mechanism 5, reducing damage to the translation mechanism 5, and reducing the entry of impurities such as dust.
  • the translation mechanism 5 includes a slide rail 51, a sliding seat 52, a third rotating driving member 53, a gear 54 and a rack 55, the slide rail 51 is arranged along the length direction of the fixed plate 331 and is fixedly connected to the fixed plate 331.
  • the sliding seat 52 is adapted to the slide rail 51, and the sliding seat 52 is slidably connected to the slide rail 51, and the third rotating driving member 53 is fixedly connected to the sliding seat 52.
  • the rack 55 is fixedly connected to the fixed plate 331 along the length direction of the fixed plate 331, and the output end of the third rotating driving member 53 is connected to the gear 54, and the gear 54 is meshed with the rack 55.
  • the third rotating driving member 53 is started to drive the gear 54 to rotate, and the gear 54 drives the sliding seat 52 to move along the length direction of the fixed plate 331 by meshing with the rack 55.
  • the third rotating driving member 53 can adopt a transmission mode combining a servo motor and a reducer, that is, the output end of the servo motor is connected to the input end of the reducer, and the output end of the reducer is coaxially fixed with the gear 54.
  • the sliding seat 52 is provided with an adjustment assembly 6, which includes a first connecting plate 61, a second connecting plate 62 and a locking bolt 63.
  • the first connecting plate 61 is fixedly connected to the sliding seat 52.
  • a sliding groove 3321 is provided on the protective cover 332 along the length direction of the fixed plate 331, and the first connecting plate 61 is located in the sliding groove 3321.
  • the first connecting plate 61 is hinged to the second connecting plate 62, so that the first connecting plate 61 and the second connecting plate 62 can rotate relative to each other, and the first connecting plate 61 and the second connecting plate 62 can be locked by the locking bolt 63.
  • the measuring mechanism 7 is fixedly connected to the second connecting plate 62, and the measuring mechanism 7 can be a wind meter to facilitate the measurement of wind speed.
  • FIG 6, 7, and 8 are simulations of a commonly used wind measurement track 8, wherein FIG6 is the initial position of the measurement, FIG7 is an intermediate position of the measurement, and FIG8 is the final position of the measurement.
  • the advantage of this solution is that it can adapt to tunnels of various cross-sections, such as circular, rectangular, elliptical, and special shapes of a combination of rectangular and semicircular.
  • the first rotating drive member 21 is started, driving the support plate 22 to rotate, so that the axis of the fan on the wind meter assembly is parallel to the length direction of the tunnel.
  • the second rotating drive member 341 drives the first moving section 32 and the second moving section 33 to move telescopically, and the telescopic drive member 4 drives the fixed section 31 to rotate along the cross section of the tunnel.
  • the two cooperate with the third rotating drive member 53 to drive the measuring mechanism 7 to move along the set trajectory on the tunnel section to measure the overall wind speed of the tunnel section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)

Abstract

一种矿用伸缩式测风机器人包括底座(1),底座(1)设于矿井巷道侧壁上;伸缩机构(3),伸缩机构(3)与底座(1)铰接;伸缩驱动件(4),伸缩驱动件(4)的一端与回转机构(2)铰接,另一端与伸缩机构(3)铰接;测量机构(7),测量机构(7)设于伸缩机构(3)的移动端上;伸缩驱动件(4)与伸缩机构(3)配合使得测量机构(7)在平面上移动,以便测量平面上不同位置所需测量的参数。矿用伸缩式测风机器人通过伸缩机构(3)与伸缩驱动件(4)的配合,带动测量机构(7)在巷道断面上移动,便于测量巷道断面上不同位置的情况,且相比于一般的多点移动式测量装置而言,通过伸缩驱动件(4)来改变幅度,可减少整体结构的体积,降低占据的巷道空间,便于收纳,且生产和安装均更为方便。

Description

矿用伸缩式测风机器人 技术领域
本发明涉及探测仪器技术领域,尤其涉及一种矿用伸缩式测风机器人。
背景技术
目前我国煤矿开采大多都是在深井下进行,工作环境相对比较恶劣,需要时刻谨防空气中瓦斯与有害物质浓度过高,因此矿井通风工作显得尤为重要。矿井通风系统需要根据采掘工作面的变化情况,监测巷道的总进风量、总回风量及各用风点的风量与风速等情况,及时调节风量大小,以保证各用风地点新鲜空气充足,保证安全正常生产。
现有矿井中对于风速的测量还是主要通过人工方式,优点是采用的测风装置简单,方法成熟,缺点是劳动量大,效率低,测风精度受人为因素影响较大,数据传输滞后,导致控制中心无法及时制定合理的通风策略。现有自动化测风装置有多点移动式测风装置,由丝杆作为传动装置,控制风速传感器精确运动,进行巷道平均风速测量,此装置存在井下安装工作量大,占用空间尺寸大的缺点。
发明内容
本发明要解决的技术问题是:为了解决现有技术中矿井风速测量装置安装工作量大、占用空间尺寸大的技术问题,本发明提供矿用伸缩式测风机器人,能够代替人工实现智能自动化测风工作,设计的伸缩变幅机构结构紧凑,井下安装方便,可适应多种巷道尺寸,并可对巷道断面上的不同位置进行测量,进一步提高了巷道测风精度与智能化水平。
本发明解决其技术问题所采用的技术方案是:一种矿用伸缩式测风机器人, 包括底座,所述底座设于矿井巷道侧壁上;伸缩机构,所述伸缩机构与底座铰接;伸缩驱动件,所述伸缩驱动件的一端与回转机构铰接,另一端与底座铰接;测量机构,所述测量机构设于伸缩机构的移动端上;所述伸缩驱动件与伸缩机构配合使得测量机构在平面上移动,以便测量平面上不同位置所需测量的参数。本发明的矿用伸缩式测风机器人,通过伸缩机构与伸缩驱动件的配合,带动测量机构在巷道断面上移动,便于测量巷道断面上不同位置的情况,且相比于一般的多点移动式测量装置而言,本方案通过伸缩驱动件来改变幅度,可减少整体结构的体积,降低占据的巷道空间,便于收纳,且生产和安装均更为方便。
进一步,具体地,所述底座上设有回转机构,所述伸缩机构设于回转机构上,所述伸缩驱动件远离伸缩机构的一端与回转机构铰接。
进一步,所述伸缩机构上设有平移机构,所述测量机构设于平移机构上,所述平移机构带动测量机构沿伸缩机构的伸缩方向移动。
进一步,所述回转机构包括第一旋转驱动件,所述第一旋转驱动件设于底座上;支撑板,所述支撑板与第一旋转驱动件的输出端连接,所述支撑板与伸缩机构的固定端、伸缩驱动件远离伸缩机构的一端均铰接。
进一步,所述伸缩机构包括固定段,所述固定段与底座铰接;第一移动段,所述第一移动段与固定段滑动连接;第一驱动组件,所述第一驱动件设于第一移动段与固定段之间,所述第一驱动件用于驱动第一移动段相对固定段移动;第二移动段,所述第二移动段与第一移动段滑动连接;第二驱动件,所述第二驱动件设于固定段与第二移动段之间,所述第一驱动件用于驱动第二移动段相对第一移动段移动。
进一步,所述第一驱动件包括第二旋转驱动件,所述第二旋转驱动件设于固定段上;滚珠丝杠,所述滚珠丝杠与第二旋转驱动件的输出端连接,所述滚 珠丝杠与固定段转动连接;滚珠螺母座,所述滚珠螺母座滑动于固定段上,所述滚珠螺母座与滚珠丝杠螺纹连接,所述滚珠螺母座与第二移动段连接。
进一步,所述滚珠螺母座上连接有动力杆,所述动力杆远离滚珠螺母座的一端与第一移动段连接。
进一步,所述第二驱动件包括伸出导向轮,所述伸出导向轮设于第一移动段远离底座的一端;缩回导向轮,所述缩回导向轮设于第一移动段靠近底座的一端;伸出拉索,所述伸出拉索的一端与固定段连接,另一端自伸出导向轮上绕过后与第二移动段连接;缩回拉索,所述缩回拉索的一端与固定段连接,另一端自缩回导向轮绕过后与第二移动段连接。
进一步,所述平移机构包括第三旋转驱动件,所述第三旋转驱动件与固定段滑动连接,所述第三旋转驱动件与测量机构连接;齿轮,所述齿轮与第三旋转驱动件的输出端连接;齿条,所述齿条设于固定段上,所述齿条与齿轮啮合。
进一步,所述测量机构与平移机构之间设有调节组件,所述调节组件包括第一连接板,所述第一连接板与平移机构的移动端连接;第二连接板,所述第二连接板与测量机构连接,所述第二连接板与第一连接板铰接,所述第一连接板与第二连接板通过锁紧螺栓实现锁紧。
本发明的有益效果是,
1、通过伸缩机构与伸缩驱动件的设置,带动测量机构在巷道断面上移动,可以使得测量机构在巷道断面的任意方向上均可以进行直线或曲线移动,进而适应不同的测量轨迹,便于测量巷道断面上不同位置的情况,且相比于一般的多点移动式测量装置而言,本方案通过伸缩驱动件来改变幅度,可减少整体结构的体积,降低占据的巷道空间,便于收纳,且生产和安装均更为方便;
2、通过回转机构的设置,便于调整伸缩机构与伸缩驱动件的整体的角度, 进而提升测量的准确性,同时也便于在不测量时,将伸缩机构与伸缩驱动件整体收纳到巷道的一侧;
3、通过伸缩机构与平移机构的设置,平移机构可带动测量机构相对伸缩机构移动,便于测量伸缩机构上的各个测量位置,而与伸缩机构配合后,可进一步提升测量机构的测量范围,使得测量机构可以对巷道断面的任意位置进行测量,消除了测量死角,此外,伸缩机构与平移机构双重的同向调整,可以补偿伸缩机构的过度位移,提升测量机构的测量精度,提升测量的灵活性;
4、通过伸出拉索与缩回拉索的设置,伸出拉索和缩回拉索除了可以带动第二移动段移动外,还可以相互作用,提升第二移动段移动的稳定性,减少第二移动段因惯性而过度移动的可能,此外也可提升第二移动段的位移精度。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明中体现矿用伸缩式测风机器人整体的结构示意图。
图2是本发明中体现第一驱动件的结构示意图。
图3是本发明中体现第二驱动件的结构示意图。
图4是本发明中体现平移机构的结构示意图。
图5是本发明中体现滑动槽的结构示意图。
图6是本发明中体现伸测风运行初始姿态示意图。
图7是本发明中体现伸测风运行过程姿态示意图。
图8是本发明中体现伸测风运行最终姿态示意图。
图中:1、底座;2、回转机构;21、第一旋转驱动件;22、支撑板;221、转动轴;3、伸缩机构;31、固定段;32、第一移动段;321、导向块;33、第二移动段;331、固定板;332、防护罩;3321、滑动槽;34、第一驱动件;341、 第二旋转驱动件;342、滚珠丝杠;343、滚珠螺母座;344、动力杆;35、第二驱动件;351、伸出拉索;352、缩回拉索;353、伸出导向轮;354、缩回导向轮;4、伸缩驱动件;5、平移机构;51、滑轨;52、滑动座;53、第三旋转驱动件;54、齿轮;55、齿条;6、调节组件;61、第一连接板;62、第二连接板;63、锁紧螺栓;7、测量机构;8、测风轨迹。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
本实施例公开一种矿用伸缩式测风机器人。
参照图1,一种矿用伸缩式测风机器人包括底座1,底座1固定连接于矿井巷道底面的侧壁上,底座1上设有回转机构2,回转机构2上同时铰接有伸缩机构3和伸缩驱动件4,伸缩驱动件4远离回转机构2的一端与伸缩机构3的固定端铰接,伸缩机构3的移动端上则设有平移机构5,平移机构5上则设有测量机构7。工作时,伸缩机构3、伸缩驱动件4与平移机构5相互配合,带动测量机构7在平面上移动,测量不同的位置,尤其便于沿设定的轨迹移动,提升测量的准确性,回转机构2则便于调整伸缩机构3整体的角度,提升测量机构7测量的准确性,同时便于将伸缩机构3、伸缩驱动件4、平移机构5和测量机构7整体收纳。前文所述平面为任一需要测量的平面,可以是管道的截面,也可以是走廊的断面,本实施例中的平面为矿井巷道的断面。
回转机构2包括第一旋转驱动件21和支撑板22,第一旋转驱动件21固定连接于底座1上,支撑板22上固定连接有转动轴221,转动轴221与底座1铰接,转动轴221与第一旋转驱动件21的输出端同轴固定。第一旋转驱动件21启动时,可带动转动轴221转动,转动轴221再带动支撑板22转动。第一旋转 驱动件21可采用伺服电机与减速机联动的形式,即伺服电机的输出端与减速机的输入端连接,减速机的输出端再与转动轴221同轴固定。
参照图1和图2,伸缩机构3包括固定段31、第一移动段32和第二移动段33,固定段31与支撑板22铰接,伸缩驱动件4的一端与支撑板22铰接,另一端则与固定段31的侧壁铰接,前文所说伸缩机构3的固定端即固定段31。伸缩驱动件4可采用电缸。工作时,伸缩驱动件4的伸缩端伸缩运动,带动固定段31绕支撑板22转动,转动角度不小于90度,以便底座1安装于巷道角落时,固定段31的转动范围将整个巷道断面覆盖。
第一移动段32插于固定段31内,且与固定段31滑动连接。固定段31上设有第一驱动件34,第一驱动件34包括第二旋转驱动件341、滚珠丝杠342和滚珠螺母座343,第二旋转驱动件341固定连接于固定段31上,滚珠丝杠342则转动连接于固定段31上,第二旋转驱动件341的输出端与滚珠丝杠342连接,便于带动滚珠丝杠342转动。滚珠螺母座343与滚珠丝杠342螺纹连接,且位于固定段31内。滚珠螺母座343的侧壁上铰接有动力杆344,动力杆344远离滚珠螺母座343的一端伸出固定段31并与第一移动段32的顶面铰接。工作时,第二旋转驱动件341启动,带动滚珠丝杠342转动,滚珠丝杠342驱动滚珠螺母座343移动,滚珠螺母座343再驱使动力杆344移动,进而带动第一移动段32相对固定段31做伸缩运动。第二旋转驱动件341可采用伺服电机与同步带结合的传动的方式,即伺服电机的输出端同轴固定一个同步带轮,滚珠丝杠342上则同轴固定另一个同步带轮,两个同步带轮之间通过同步带实现传动。
参照图2和图3,第二移动段33插于第一移动段32内,且与第一移动段32滑动连接。第二移动段33与固定段31之间设有第二驱动件35,第二驱动件35包括伸出导向轮353、缩回导向轮354、伸出拉索351、缩回拉索352,伸出 导向轮353设于固定段31远离底座1的一端,且伸出导向轮353与固定段31转动连接,缩回导向轮354设于固定段31靠近底座1的一端,且缩回导向轮354与固定段31转动连接。伸出拉索351的一端与固定段31远离底座1的一端固定连接,另一端则绕过伸出导向轮353与第二移动段33靠近底座1的一端固定连接。缩回拉索352的一端与固定段31远离底座1的一端固定连接,另一端则绕过缩回导向轮354并与第二移动段33靠近底座1的一端固定连接。第一移动段32内沿自身周向固定连接有多个导向块321,多个导向块321将第二移动段33环绕,且均与第二移动段33抵接,便于给第二移动段33导向,提升第二移动段33移动时的稳定性。导向块321沿第一移动段32的长度方向设有多组,以进一步提升第二移动段33移动的稳定性。伸出拉索351和缩回拉索352可采用柔性材料制成,如钢丝绳。
当第一移动段32伸出时,由于伸出拉索351本身的长度固定不变,而伸出拉索351在固定段31与伸出导向轮353之间的长度变长,使得伸出拉索351在伸出导向轮353与第二移动段33之间的长度变短,进而使得第二移动段33跟随第一移动段32伸出,且第二移动段33与第一移动段32移动距离相同,实现同步伸出。当第一移动段32缩回时,由于缩回拉索352长度固定不变,缩回拉索352在固定段31与缩回导向轮354之间的长度变长,导致缩回拉索352在第二移动段33与缩回导向轮354之间的长度变短,进而带动第二移动段33缩回,同时第一移动段32与第二移动段33的缩回长度相同,即实现同步缩回。
参照图4和图5,第二移动段33的底面上固定连接有固定板331,固定板331上固定连接有防护罩332,平移机构5设于防护罩332内,防护罩332便于对平移机构5进行保护,减少平移机构5出现损坏,同时减少灰尘等杂质的进入。平移机构5包括滑轨51、滑动座52、第三旋转驱动件53、齿轮54和齿条 55,滑轨51沿固定板331的长度方向设置,且与固定板331固定连接。滑动座52与滑轨51相适配,且滑动座52与滑轨51滑动连接,第三旋转驱动件53则固定连接于滑动座52上。齿条55沿固定板331的长度方向固定连接于固定板331上,第三旋转驱动件53的输出端与齿轮54连接,齿轮54则与齿条55啮合。工作时,第三旋转驱动件53启动,带动齿轮54转动,齿轮54凭借与齿条55的啮合,带动滑动座52沿固定板331的长度方向移动。第三旋转驱动件53可采用伺服电机与减速机结合的传动方式,即伺服电机的输出端与减速机的输入端连接,减速机的输出端则与齿轮54同轴固定。
滑动座52上设有调节组件6,调节组件6包括第一连接板61、第二连接板62和锁紧螺栓63,第一连接板61与滑动座52固定连接,防护罩332上沿固定板331的长度方向开设有滑动槽3321,第一连接板61位于滑动槽3321内。第一连接板61与第二连接板62铰接,使得第一连接板61与第二连接板62可相对转动,且第一连接板61和第二连接板62可通过锁紧螺栓63实现锁紧。测量机构7固定连接于第二连接板62上,测量机构7可以是风表,便于测量风速。
参照图6、7、8,为一种常用的测风轨迹8的模拟,图6中为测量的初始位置,图7中为测量中的一个中间位置,图8则为测量的最终位置。本方案的优势还在于可以适应多种截面的巷道,如圆形、矩形、椭圆形、矩形与半圆形组合的异形等。
工作原理:需要测量风速时,第一旋转驱动件21启动,带动支撑板22转动,使得风表总成上的风机的轴线与巷道的长度方向平行。随后第二旋转驱动件341带动第一移动段32和第二移动段33做伸缩移动,伸缩驱动件4则带动固定段31沿巷道的断面转动,二者与第三旋转驱动件53配合,带动测量机构7在巷口断面上按照设定的轨迹移动,对巷道断面的整体风速进行测量。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种矿用伸缩式测风机器人,其特征在于:包括
    底座(1),所述底座(1)设于矿井巷道侧壁上;
    伸缩机构(3),所述伸缩机构(3)与底座(1)铰接;
    伸缩驱动件(4),所述伸缩驱动件(4)的一端与回转机构(2)铰接,另一端与底座(1)铰接;
    测量机构(7),所述测量机构(7)设于伸缩机构(3)的移动端上;
    所述伸缩驱动件(4)与伸缩机构(3)配合使得测量机构(7)在平面上移动,以便测量平面上不同位置所需测量的参数。
  2. 如权利要求1所述的矿用伸缩式测风机器人,其特征在于:所述底座(1)上设有回转机构(2),所述伸缩机构(3)设于回转机构(2)上,所述伸缩驱动件(4)远离伸缩机构(3)的一端与回转机构(2)铰接。
  3. 如权利要求1所述的矿用伸缩式测风机器人,其特征在于:所述伸缩机构(3)上设有平移机构(5),所述测量机构(7)设于平移机构(5)上,所述平移机构(5)带动测量机构(7)沿伸缩机构(3)的伸缩方向移动。
  4. 如权利要求2所述的矿用伸缩式测风机器人,其特征在于:所述回转机构(2)包括
    第一旋转驱动件(21),所述第一旋转驱动件(21)设于底座(1)上;
    支撑板(22),所述支撑板(22)与第一旋转驱动件(21)的输出端连接,所述支撑板(22)与伸缩机构(3)的固定端、伸缩驱动件(4)远离伸缩机构(3)的一端均铰接。
  5. 如权利要求1所述的矿用伸缩式测风机器人,其特征在于:所述伸缩机构(3)包括
    固定段(31),所述固定段(31)与底座(1)铰接;
    第一移动段(32),所述第一移动段(32)与固定段(31)滑动连接;
    第一驱动组件,所述第一驱动件(34)设于第一移动段(32)与固定段(31)之间,所述第一驱动件(34)用于驱动第一移动段(32)相对固定段(31)移动;
    第二移动段(33),所述第二移动段(33)与第一移动段(32)滑动连接;
    第二驱动件(35),所述第二驱动件(35)设于固定段(31)与第二移动段(33)之间,所述第一驱动件(34)用于驱动第二移动段(33)相对第一移动段(32)移动。
  6. 如权利要求5所述的矿用伸缩式测风机器人,其特征在于:所述第一驱动件(34)包括
    第二旋转驱动件(341),所述第二旋转驱动件(341)设于固定段(31)上;
    滚珠丝杠(342),所述滚珠丝杠(342)与第二旋转驱动件(341)的输出端连接,所述滚珠丝杠(342)与固定段(31)转动连接;
    滚珠螺母座(343),所述滚珠螺母座(343)滑动于固定段(31)上,所述滚珠螺母座(343)与滚珠丝杠(342)螺纹连接,所述滚珠螺母座(343)与第二移动段(33)连接。
  7. 如权利要求6所述的矿用伸缩式测风机器人,其特征在于:所述滚珠螺母座(343)上连接有动力杆(344),所述动力杆(344)远离滚珠螺母座(343)的一端与第一移动段(32)连接。
  8. 如权利要求5所述的矿用伸缩式测风机器人,其特征在于:所述第二驱动件(35)包括
    伸出导向轮(353),所述伸出导向轮(353)设于第一移动段(32)远离底座(1)的一端;
    缩回导向轮(354),所述缩回导向轮(354)设于第一移动段(32)靠近底座(1)的一端;
    伸出拉索(351),所述伸出拉索(351)的一端与固定段(31)连接,另一端自伸出导向轮(353)上绕过后与第二移动段(33)连接;
    缩回拉索(352),所述缩回拉索(352)的一端与固定段(31)连接,另一端自缩回导向轮(354)绕过后与第二移动段(33)连接。
  9. 如权利要求3所述的矿用伸缩式测风机器人,其特征在于:所述平移机构(5)包括
    第三旋转驱动件(53),所述第三旋转驱动件(53)与固定段(31)滑动连接,所述第三旋转驱动件(53)与测量机构(7)连接;
    齿轮(54),所述齿轮(54)与第三旋转驱动件(53)的输出端连接;
    齿条(55),所述齿条(55)设于固定段(31)上,所述齿条(55)与齿轮(54)啮合。
  10. 如权利要求3所述的矿用伸缩式测风机器人,其特征在于:所述测量机构(7)与平移机构(5)之间设有调节组件(6),所述调节组件(6)包括
    第一连接板(61),所述第一连接板(61)与平移机构(5)的移动端连接;
    第二连接板(62),所述第二连接板(62)与测量机构(7)连接,所述第二连接板(62)与第一连接板(61)铰接,所述第一连接板(61)与第二连接板(62)通过锁紧螺栓(63)实现锁紧。
PCT/CN2023/112196 2022-11-16 2023-08-10 矿用伸缩式测风机器人 WO2024103859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211459570.8 2022-11-16
CN202211459570.8A CN115723151A (zh) 2022-11-16 2022-11-16 矿用伸缩式测风机器人

Publications (1)

Publication Number Publication Date
WO2024103859A1 true WO2024103859A1 (zh) 2024-05-23

Family

ID=85297001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112196 WO2024103859A1 (zh) 2022-11-16 2023-08-10 矿用伸缩式测风机器人

Country Status (2)

Country Link
CN (1) CN115723151A (zh)
WO (1) WO2024103859A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115723151A (zh) * 2022-11-16 2023-03-03 天地(常州)自动化股份有限公司 矿用伸缩式测风机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542699B1 (ko) * 2014-10-23 2015-08-06 주식회사 이음엔지니어링 터널 내 환기 설비의 tab를 위한 환기력 측정 시스템 및 방법
JP2016044974A (ja) * 2014-08-19 2016-04-04 パナソニックIpマネジメント株式会社 トンネル内風向・風速測定方法およびそのシステム
CN205333674U (zh) * 2015-12-28 2016-06-22 山西工程技术学院 一种矿用便携式风速测定装置
CN205820754U (zh) * 2016-07-11 2016-12-21 徐州重型机械有限公司 伸缩机构及臂式结构
CN111878175A (zh) * 2020-08-28 2020-11-03 河南神火煤电股份有限公司 一种矿井通风监测装置
CN113899914A (zh) * 2021-09-24 2022-01-07 煤炭科学技术研究院有限公司 折叠式全断面测风仪
CN115723151A (zh) * 2022-11-16 2023-03-03 天地(常州)自动化股份有限公司 矿用伸缩式测风机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044974A (ja) * 2014-08-19 2016-04-04 パナソニックIpマネジメント株式会社 トンネル内風向・風速測定方法およびそのシステム
KR101542699B1 (ko) * 2014-10-23 2015-08-06 주식회사 이음엔지니어링 터널 내 환기 설비의 tab를 위한 환기력 측정 시스템 및 방법
CN205333674U (zh) * 2015-12-28 2016-06-22 山西工程技术学院 一种矿用便携式风速测定装置
CN205820754U (zh) * 2016-07-11 2016-12-21 徐州重型机械有限公司 伸缩机构及臂式结构
CN111878175A (zh) * 2020-08-28 2020-11-03 河南神火煤电股份有限公司 一种矿井通风监测装置
CN113899914A (zh) * 2021-09-24 2022-01-07 煤炭科学技术研究院有限公司 折叠式全断面测风仪
CN115723151A (zh) * 2022-11-16 2023-03-03 天地(常州)自动化股份有限公司 矿用伸缩式测风机器人

Also Published As

Publication number Publication date
CN115723151A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2024103859A1 (zh) 矿用伸缩式测风机器人
CN209604989U (zh) 一种建筑工程施工现场用照明装置
CN105736021A (zh) 一种隧道自动防水板台车
AU2012289819A1 (en) A retractable louvre system
CN111706379A (zh) 一种煤矿巷道用地下内壁支护装置
CN208350757U (zh) 一种高效的气体检测器
CN109677188A (zh) 一种墙纸铺贴机器人
CN108556948A (zh) 一种适用于恶劣天气的安全可靠的智能型安防机器人
CN209040764U (zh) 一种动力头式钻机的角度调节装置及动力头式钻机
CN208631746U (zh) 一种小型转塔式双工位自动收放卷装置
CN207239851U (zh) 磨顶机
CN108298431A (zh) 一种天然气管道安置用吊装设备
CN207523818U (zh) 一种履带底盘轨距调节机构
CN116335747A (zh) 一种煤矿掘进面的通风除尘装置
CN215443969U (zh) 一种全液压锚固钻机自动上杆机械手
CN213421045U (zh) 一种带有照明机构的隧道工程测量设备
CN206055905U (zh) 空调器风口板调节机构及具有其的空调器
CN213683364U (zh) 一种勘测工程用双向翻盖遮阳结构的全站仪
CN207080164U (zh) 气动门帘系统
CN208196367U (zh) 一种一体式三维智能检测装置
CN209411618U (zh) 一种横梁移动防卡死机构
CN210422510U (zh) 一种用于石油自动化修井的油管滑道装置
CN109004522A (zh) 一种自动化避雷器
CN217783299U (zh) 一种门扇高度可伸缩装置
CN220398559U (zh) 一种可移动式监测棱镜保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890298

Country of ref document: EP

Kind code of ref document: A1