WO2024100897A1 - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
WO2024100897A1
WO2024100897A1 PCT/JP2022/042114 JP2022042114W WO2024100897A1 WO 2024100897 A1 WO2024100897 A1 WO 2024100897A1 JP 2022042114 W JP2022042114 W JP 2022042114W WO 2024100897 A1 WO2024100897 A1 WO 2024100897A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
charged particle
particle beam
support member
beam device
Prior art date
Application number
PCT/JP2022/042114
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 石川
信裕 岡井
和之 大野
哲也 新堀
賢 山木
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/042114 priority Critical patent/WO2024100897A1/en
Publication of WO2024100897A1 publication Critical patent/WO2024100897A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • This disclosure relates to a charged particle beam device that irradiates a sample with a charged particle beam.
  • insulator wafers that have insulator substrates such as quartz or sapphire.
  • SEMs scanning electron microscopes
  • an SEM electrons are generated by applying a high voltage to an electron source, and are accelerated. The electrons are then focused by a focusing lens and irradiated onto the object to be measured. At this time, secondary electrons that are generated according to the shape of the object to be measured are observed by a detector to obtain an SEM image.
  • Electrons emitted from an electron source have various energies, and the energy spread ( ⁇ E) varies depending on the type of electron source.
  • the electrons contained in the electron beam have different energies, which causes the electron trajectory to focus at different points, resulting in a blurred image when formed (hereafter referred to as chromatic aberration).
  • is the focusing half angle for an electron beam with a certain acceleration voltage (E)
  • Cc is called the chromatic aberration coefficient of the objective lens, and is the proportional coefficient of ⁇ E/E.
  • Cc is a function of the distance (working distance, WD) between the objective lens and the sample.
  • the ratio of the energy width of the electron source to the acceleration voltage ( ⁇ E/E) becomes small, so the effects of chromatic aberration are reduced and the resolution is improved.
  • the irradiated electrons penetrate deeper and wider into the sample. This causes secondary electrons to be generated even in areas far from the electron beam irradiation point, so the obtained image contains information about the inside of the sample and the fine structure of the measurement object surface cannot be read.
  • the acceleration voltage of the electron beam is low, the ratio of the energy width of the electron source to the acceleration voltage ( ⁇ E/E) becomes large, so the effects of chromatic aberration are increased and the resolution is reduced.
  • the penetration depth of the irradiated electrons into the sample becomes shallower and narrower, allowing the sample surface to be clearly observed.
  • the sample holder and the wafer surface to which the retarding voltage is applied have a uniform potential, so images with the same resolution can be obtained across the entire wafer.
  • an insulating wafer with an insulating substrate such as quartz or sapphire
  • the wafer surface potential is affected by charging and dielectric polarization caused by electron beam irradiation.
  • the retarding voltage application part the retarding voltage application part
  • the acceleration voltage of the electron beam irradiated to the sample changes depending on the measurement position.
  • the amount of information inside the sample changes for each measurement position, resulting in differences in the measurement images. Therefore, in the measurement of insulating wafers, a method is required to eliminate the change in wafer surface potential caused by charging and the change in distance between the sample holder and the measurement object, and to make the wafer surface potential uniform.
  • Patent Document 1 describes a method of placing a sample on support pins arranged on a stage and applying a voltage to a flat electrode arranged between the stage and the sample, thereby making the potential uniform within a certain range (hereinafter referred to as the inspection area) on the sample surface where the electron beam is irradiated.
  • Patent Document 1 a flat electrode is placed on the stage of the SEM, and a voltage is applied to it to equalize the potential within the inspection area.
  • the range of the inspection area is within the range of the flat electrode, and the flat electrode is placed inside the platform that supports the sample (hereinafter referred to as the support pin), so the range in which the potential can be equalized and measured is limited relative to the size of the sample.
  • This disclosure has been made in consideration of the above problems, and aims to provide a charged particle beam device that can measure the entire surface of a sample by making the sample surface potential uniform.
  • the support member that supports the sample is formed using an insulating material, and the surface of the sample holder that contacts the support member has a first recess that increases in depth from the outside of the support member toward the support member, and the support member is disposed within the first recess.
  • the charged particle beam device can measure the entire surface of the sample by making the sample surface potential uniform.
  • FIG. 1 is a configuration diagram of a charged particle beam device 1 according to a first embodiment.
  • a front view of the sample holder 112 in which the sample 111 is supported by four support stages 201 is shown.
  • FIG. 2B is a side view of FIG. 2A.
  • FIG. 2 is a diagram showing a schematic diagram of a potential distribution in the vicinity of a sample 111.
  • 1 is a cross-sectional view of the sample 111, the sample holder 112, and the support table 201, taken along a line passing through the center 200 of the support table. Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference.
  • FIG. 1 shows a side cross-sectional view of a support base in which the material of the support base 201 is changed to an insulating material (hereinafter, referred to as an insulating support base 201a). Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference. 1 shows a side cross-sectional view of an inclined recess 202 formed around an insulating support base 201a. 5B is a side cross-sectional view in which the inclined recess 202 in FIG. 5A is changed to a stepped recess 204. FIG.
  • Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference.
  • the results of comparing the maximum change in the surface potential of the sample 111 for each material of the support table 201 and each inclination angle 203 are shown.
  • the inside of the insulating support base 201a is cylindrical, and an inclined recess 211 is disposed inside the support base.
  • FIG. 4B is a side cross-sectional view showing an example of a configuration in which the charged particle beam device 1 further includes an electrode 301 for preventing charging and dielectric polarization of the sample 111 in addition to the configuration shown in FIG. 4A.
  • FIG. 8A shows equipotential lines 124 in the case where the aperture through which the primary electron beam 121 passes is set to a size such that misalignment of the electrode 301 does not cause a problem.
  • This is a cross-sectional view showing a configuration of sample 111 and sample holder 112, insulating support base 201a, and electrode 301 with an enlarged hole diameter for the passage hole shown in Figure 8B, to which an inclined recess 202 with an inclination angle 203 has been added. Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference.
  • ⁇ First embodiment> 1 is a configuration diagram of a charged particle beam device 1 according to a first embodiment of the present disclosure.
  • the charged particle beam device 1 is configured as an electron microscope.
  • the charged particle beam device 1 includes an electron source 101, a condenser lens 102, a condenser lens 103, an aperture 104, a reflector 105, an ExB deflector 106, a detector 107, a deflector 108, a deflector 109, an objective lens 110, a sample holder 112, a stage 113, a retarding power supply 114, a display 115, and a storage device 116.
  • the stage 113 can move horizontally to measure the entire surface of the sample 111.
  • a voltage is applied to the stage 113 from a retarding power supply 114.
  • a sample holder 112 is placed on the stage 113, and the sample 111 is held by the sample holder 112. By manipulating the stage 113, it is possible to move the sample holder 112 and the sample 111 held by it horizontally.
  • the control device is a device for controlling the operation of each part, and is, for example, a computer.
  • the storage device 116 stores a control table 117 that defines the control conditions such as the voltage and current of each part.
  • the control device can also read the control table 117 from the storage device 116 and control each part based on the control conditions defined in the control table 117.
  • Electrons emitted from the electron source 101 are focused by condenser lenses 102 and 103, and are irradiated onto the sample 111 as a primary electron beam 121 (charged particle beam).
  • the aperture 104 is a member that determines the aperture angle of the primary electron beam 121 at the objective lens 110, and has a hole through which the primary electron beam 121 passes.
  • Deflectors 108 and 109 deflect the primary electron beam 121 to scan it over the sample 111.
  • the objective lens 110 is a lens that focuses the deflected primary electron beam 121, and thins the primary electron beam 121 by a magnetic field generated by a current flowing through an internal coil.
  • Signal particles 122 are emitted from the sample 111 irradiated with the primary electron beam 121.
  • signal particles emitted with an energy of 50 eV or less are called secondary electrons, and signal particles emitted with an energy of more than 50 eV and close to that of the primary electron beam 121 are called backscattered electrons.
  • the signal particles 122 collide with the reflector 105 above the sample 111.
  • tertiary electrons 123 are emitted from the reflector 105.
  • the tertiary electrons 123 are deflected by the electric field in the ExB deflector 106 and detected by the detector 107.
  • the electric field and magnetic field in the ExB deflector 106 also act on the primary electron beam 121, but the effects of the two cancel each other out on the primary electron beam 121, so the primary electron beam 121 travels straight toward the sample.
  • the tertiary electrons 123 detected by the detector 107 are A/D converted from analog data to digital data in the order of measurement.
  • the control device uses the digital data to create a measurement image of the sample 111.
  • the measurement image is output on the display 115.
  • the accuracy of the measurement image can be adjusted by the amount of landing energy of the primary electron beam 121 incident on the sample 111. Therefore, a negative voltage of several kV (hereinafter, retarding voltage) is applied to the sample 111 by the retarding power supply 114 connected to the stage 113, thereby forming an electric field between the sample 111 and the objective lens 110 that decelerates the primary electron beam 121.
  • retarding voltage a negative voltage of several kV
  • the voltage application path from the stage 113 to the sample 111 will be explained.
  • the sample holder 112 is placed on the stage 113 to which the retarding power supply 114 is connected.
  • the sample holder 112 has multiple support tables 201 (support members) on which the sample 111 is placed.
  • the support tables 201 are made of a conductive material in order to apply a retarding voltage to the sample 111.
  • the retarding voltage that forms the surface potential is applied to the sample 111 via the stage 113, the sample holder 112, and the support tables 201. This allows the acceleration voltage of the primary electron beam 121 to be adjusted as desired.
  • the surface potential also serves to accelerate the signal particles 122 generated on the sample upward.
  • the sample 111 to be measured is not limited to conductive samples; it may be insulating, such as Si, quartz, or sapphire, covered with a thin insulating film. In such cases, a uniform surface potential cannot be formed on the sample 111 due to the influence of the support table 201. This makes it impossible to control the amount of energy of the primary electron beam 121 irradiated onto the sample 111 using the retarding voltage, and an image with the desired resolution cannot be obtained. In the following description, the sample 111 is assumed to be an insulating wafer.
  • FIG. 2A shows a front view of the sample holder 112 when the sample 111 is supported by four support tables 201 as an example.
  • the holding of the sample 111 is omitted.
  • the support tables 201 are placed on the surface of the sample holder 112 and at arbitrary positions (support points) within the surface of the sample 111, and support the sample 111 at four points.
  • FIG. 2B is a side view of FIG. 2A.
  • the support table 201 is disposed between the sample 111 and the sample holder 112 to prevent damage or the generation of foreign matter caused by direct contact between the sample 111 and the sample holder 112, and is configured as a protrusion that supports the sample 111.
  • the support table 201 also serves as a passage for conducting the retarding voltage applied to the sample holder 112 to the sample 111, and forming an electric field in the sample to decelerate the primary electron beam 121.
  • Figure 2C is a schematic diagram showing the potential distribution near the sample 111.
  • the potential distribution when the primary electron beam 121 is irradiated from the objective lens 110 arranged above the sample 111 with respect to the center of the sample 111 is shown.
  • Equipotential lines 124 show the potential when the primary electron beam 121 is irradiated to the sample 111.
  • a retarding voltage is applied to the sample holder 112 and the support table 201.
  • the sample 111 which is an insulating wafer placed in an electric field, is polarized with a bias toward positive and negative.
  • the front surface of the sample 111 is negatively polarized, and the back surface is positively polarized.
  • the voltage applied to the sample 111 which is an insulator, changes depending on the distance between the retarding voltage application part (the part of the surface of the sample holder 112 or the surface of the support table 201 where the potential is set by the retarding voltage) and the sample 111.
  • the surface potential of the sample 111 differs between, for example, the upper part of the support table 201 and other parts. This is because the top surface of the sample holder 112 and the top surface of the support table 201 are at the same potential.
  • Figure 3A is a cross-sectional view of the sample 111, sample holder 112, and support table 201, passing through the support table center 200. It is assumed that the support table 201 in Figure 3A is made of a conductive material.
  • the objective lens 110 is installed above the sample 111, and the primary electron beam 121 is irradiated to the irradiation point 125 on the sample 111.
  • the equipotential lines 124 generated by the voltage applied to the sample 111 and support table 201 at this time are shown.
  • the irradiation position R0 of the primary electron beam 121 when irradiated to the support table center 200 is set as the origin, and the irradiation positions when the sample holder 112 is moved horizontally at regular intervals are R1, R2, and R3, respectively.
  • R1 to R3 in Figure 3A respectively indicate the positional relationship of the primary electron beam irradiation point 125.
  • R1 is the position on the support table 201.
  • R2 is the end face position of the support table 201.
  • R3 is a position away from the support table 201, and there is no support table 201 directly below the sample 111, only the sample holder 112.
  • the retarding voltage is applied up to the top surface of the support base 201, so that the surface potential of the sample 111 at the point in contact with the support base 201 (for example, position R0 in Figure 3A) is more strongly affected by the retarding voltage and changes in the negative direction compared to position R3 (flat portion).
  • Figure 3B shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference.
  • the vertical axis shows the surface potential difference when the surface potential of the sample 111 on the flat part (position R3) of the sample holder 112 is set to 0 V
  • the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support table center 200 as the base point.
  • the sample surface potential difference is shown with the flat part as the reference when the sample holder 112 is moved horizontally at a constant interval, such as from R0 to R3 shown in Figure 3A.
  • FIG. 4A shows a side cross-sectional view of a support table in which the material of the support table 201 has been changed to an insulator (hereinafter, insulating support table 201a).
  • insulating support table 201a an insulator
  • the primary electron beam 121 is irradiated to the irradiation point 125 on the sample 111.
  • the equipotential lines 124 formed by the voltage applied to the sample 111 and the insulating support table 201a are shown.
  • R0 to R3 are the same as in FIG. 3A.
  • the equipotential lines 124 change in the direction approaching the sample holder 112 compared to FIG. 3A. Accordingly, the surface potential of the sample 111 at the part in contact with the insulating support table 201a changes in the positive direction compared to FIG. 3A. However, due to the dielectric polarization of the insulating support table 201a, the equipotential lines are distorted near the insulating support table 201a.
  • Figure 4B shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference.
  • the vertical axis shows the surface potential difference when the surface potential of the sample 111 on the flat part of the sample holder 112 is set to 0 V
  • the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support stage center 200 as the base point.
  • the sample surface potential is shown with the flat part as the reference when the sample holder 112 is moved horizontally at regular intervals, such as from R0 to R3 shown in Figure 4A.
  • the solid line shows the surface potential when the conductive support stage 201 shown in Figure 3B is used, and the dashed dotted line shows the surface potential when the insulating support stage 201a is used.
  • the material of the support base By changing the material of the support base to an insulator, it is possible to prevent the retarding voltage from being applied to the top surface of the support base. In addition, there is no difference in the distance between the surface to which the potential is set by applying the retarding voltage and the surface of the sample 111 between the location where the insulating support base 201a is located and other locations. This is because the potential of the insulating support base 201a is not affected by the retarding voltage. As a result, the equipotential lines 124 on the insulating support base 201a change in a direction approaching the sample holder 112 compared to Figure 3A.
  • the sample surface potential changes in the negative direction at R0 to R2.
  • the amount of change in the sample 111 surface potential cannot be reduced to a negligible value.
  • Figure 5A shows a side cross-sectional view of an inclined recess 202 formed around an insulating support base 201a.
  • an inclined recess 202 (first recess) is arranged, which deepens at a certain inclination angle 203 toward the support base center 200.
  • the primary electron beam 121 is irradiated to the irradiation point 125 on the sample 111.
  • equipotential lines 124 formed by the voltage applied to the sample 111 and the insulating support base 201a are shown.
  • the surface potential of the sample 111 is affected by the dielectrically polarized insulating support base 201a and changes in the negative direction as it approaches the support base center 200.
  • a recess is formed near the insulating support base 201a, which deepens toward the support base center 200.
  • the insulating support base 201a is placed within this recess.
  • the distance between the sample 111 and the retarding voltage application unit in the vicinity of the insulating support 201a is increased. This shifts the surface potential of the sample 111 in the positive direction, and cancels the negative potential change caused by the dielectric polarization of the insulating support 201a. Therefore, the amount of change in the surface potential of the sample 111 for each position can be further reduced.
  • FIG. 5B shows a side cross-sectional view in which the inclined groove 202 in FIG. 5A has been changed to a stepped groove 204.
  • Changing the shape of the groove to a stepped shape has the same effect of reducing the amount of change in the surface potential of the sample 111 as the inclined groove.
  • the surface potential of the sample 111 changes depending on the distance between the sample 111 and the retarding voltage application section, so it is possible to adjust the surface potential of the sample 111 by changing the depth of the step and the width to the next step.
  • Figure 5C shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference.
  • the vertical axis shows the surface potential difference when the surface potential of the sample 111 on the flat part of the sample holder 112 is set to 0V
  • the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support center 200 as the base point.
  • the sample surface potential is plotted with the flat part as the reference when the sample holder 112 is moved horizontally at regular intervals, such as R0 to R3 shown in Figure 4A.
  • the dashed line shows the surface potential of the sample 111 when the insulating support 201a shown in Figure 4B is used.
  • the two-dot dashed line shows the surface potential of the sample 111 when the recess is arranged as in Figure 5A.
  • the effect of reducing the amount of change in surface potential due to the stepped digging 204 is equivalent to that of the sloping digging 202 shown in FIG. 5B, which has an inclination angle formed by the oblique side connecting the lower end of the insulating support base 201a and the surface of the sample holder 112, and the corners A and B of the stepped digging 204.
  • Figure 6 shows the results of comparing the maximum change in the surface potential of the sample 111 for each material and inclination angle 203 of the support base 201.
  • the vertical axis shows the maximum change in the surface potential of the sample 111 based on the flat part, and the horizontal axis shows the material of the support base and the inclination angle 203 to be compared.
  • the maximum change in the surface potential of the sample is less than one-third that of the conductive support base by making the support base material insulating.
  • the change in the surface potential in the positive direction due to the indentation is greater than the change in the surface potential in the negative direction due to the dielectric polarization of the sample 111 and the insulating support base 201a.
  • the change in the surface potential of the sample is smaller than when only the insulating support base 201a is placed.
  • the amount of change in surface potential can be suppressed to a fraction of that of a conductive support base. Furthermore, by forming a recess in the sample holder 112, it can be seen that the amount of change in surface potential can be further suppressed to a fraction of that of a conductive support base.
  • the amount of change in the surface potential of the sample 111 crosses zero and changes from positive to negative, by changing the inclination angle 203 of the inclined recess 202, the amount of change in the surface potential can be set to zero and the surface potential of the sample 111 can be made uniform. As a result, the potential change occurring on the surface of the sample 111 can be reduced to a negligible level, making it possible to obtain an image with the desired resolution.
  • the surface of the sample holder 112 that contacts the support base 201 is larger than the planar size of the sample 111. This makes it possible to provide a uniform surface potential over the entire surface of the sample 111. The same applies to the following embodiments.
  • Figure 7A shows an example in which the inside of the insulating support base 201a is cylindrical (hereinafter, cylindrical support base 205), and an inclined recess 211 is arranged inside the support base.
  • Figure 7A is a cross-sectional view of the sample 111, sample holder 112, and cylindrical support base 205 passing through the support base center 200.
  • the objective lens 110 is placed directly above the sample 111. It is assumed that the sample 111 is irradiated with a primary electron beam 121.
  • the bottom surface of the cylindrical support base 205 has a hole for passing a conductive fixing screw 207, and a conductive fixing part (hereinafter, inclined fixing part 206) with an inclination angle 203 at the end of the upper surface is fixed by a screw 207 inserted from the bottom of the sample holder 112.
  • the retarding voltage applied to the sample holder 112 is applied to the inclined fixing part 206 via the conductive fixing screw 207.
  • the inclined part of the inclined fixing part 206 forms an inclined recess 211 inside the inner wall of the cylindrical support base 205, thereby lowering the position of the surface of the sample holder 112.
  • the inclined recess 211 can cancel at least a part of the change in the surface potential of the sample 111.
  • Figure 7B shows an example of a configuration in which a stepped recess 212 is arranged inside the cylindrical support base 205.
  • the bottom surface of the cylindrical support base 205 has a hole for passing a conductive fixing screw 207, and a conductive fixing part (hereinafter, stepped fixing part 208) with a stepped cut at the end of the top surface is fixed by the conductive fixing screw 207 inserted from the bottom of the sample holder 112.
  • the retarding voltage applied to the sample holder 112 is applied to the stepped fixing part 208 via the conductive fixing screw 207.
  • the stepped part of the stepped fixing part 208 forms a stepped recess 212 on the inside of the cylindrical support base 205, thereby lowering the surface position of the sample holder 112.
  • the insulating support 201a is dielectrically polarized in addition to the sample 111, so the sample surface potential changes in a negative direction compared to other portions. Therefore, by making the shape of the support cylindrical, the contact area between the sample 111 and the insulating support 201a is reduced, and the potential change caused by the dielectric polarization is reduced.
  • a slanted groove 211 or a stepped groove 212 is formed on the inside of the cylindrical support 205 to increase the distance between the retarding voltage application portion and the sample 111, and the surface potential of the sample 111 is changed in a positive direction.
  • the sample surface potential change occurring at the contact portion between the cylindrical support 205 and the sample 111 is canceled by the groove arranged on the inside of the cylindrical support 205, thereby reducing the surface potential change of the sample 111 occurring near the support portion.
  • the recess on the inside of the cylindrical support base 205 can be effective to the extent that it is formed to cancel at least a portion of the change in the sample surface potential that occurs at the contact area between the cylindrical support base 205 and the sample 111. By combining this with the recess on the outer periphery of the support base described in embodiment 1, the change in the surface potential can be further suppressed.
  • ⁇ Third embodiment> In the configuration shown in Fig. 5A in which an inclined recess 202 having an inclination angle 203 is disposed near an insulating support base 201a, the surface potential of the sample 111 is uniformly shifted in the positive direction compared to the retarding voltage due to the dielectric polarization of the sample 111 and the insulating support base 201a, charging due to irradiation with the primary electron beam 121, and a change in distance from the retarding voltage application unit. Therefore, in the third embodiment of the present disclosure, a configuration for suppressing the uniform shift in the surface potential of the sample 111 will be described with reference to Figs. 8A, 8B, 9, and 10. The matters described in the first and second embodiments but not described in the third embodiment can also be applied to the third embodiment unless there are special circumstances.
  • FIG. 8A is a side cross-sectional view showing an example configuration in which the charged particle beam device 1 further includes an electrode 301 for preventing charging and dielectric polarization of the sample 111 in addition to the configuration shown in FIG. 4A.
  • the electrode 301 is placed above the sample 111, and a negative voltage of the same polarity and value as the sample holder 112 is applied to it.
  • the objective lens 110 is placed above the electrode 301, and the primary electron beam 121 is irradiated to an irradiation point 125 on the sample 111.
  • the equipotential lines 124 formed by the voltages applied to the sample 111 and the insulating support stand 201a at this time are shown.
  • R0 to R3 are the same as in FIG. 4A.
  • a hole for the primary electron beam 121 is placed at the center of the electrode 301, and a negative voltage equal to the retarding voltage is applied to the electrode 301. Therefore, no electric field is generated between the sample holder 112 and the electrode 301, and dielectric polarization of the sample 111 can be prevented.
  • the voltage (retarding voltage) applied to the electrode 301 it is possible to control the acceleration voltage of the primary electron beam 121 by the retarding voltage, and it becomes possible to obtain an image with the desired resolution.
  • this method has the problem that the primary electron beam 121 is decelerated on the surface of the electrode 301 rather than on the surface of the sample 111, so the distance the decelerated electrons travel before irradiating the sample 111 is long.
  • the ratio ( ⁇ E/E) between the energy width of the electron source and the acceleration voltage becomes large, so the effect of chromatic aberration also becomes large.
  • the diameter of the central hole of the electrode 301 must be made very small.
  • the smaller the central hole diameter the greater the decrease in resolution.
  • FIG. 8B shows equipotential lines 124 when the passage hole of the primary electron beam 121 shown in FIG. 8A is sized so that misalignment of the electrode 301 does not cause a problem.
  • the other configurations are the same as those in FIG. 8A.
  • the diameter of the passage hole arranged in the electrode 301 is increased (for example, the hole diameter is made larger than the surface size of the insulating support base 201a), the effect of misalignment of the electrode 301 is reduced.
  • potential changes occur in the surface potential of the sample 111 due to charging, dielectric polarization, and the distance between the retarding voltage application unit and the sample 111.
  • the configuration of embodiment 1 can be used in combination.
  • Figure 9 is a cross-sectional view of the sample 111, sample holder 112, insulating support 201a, and electrode 301 with a large hole diameter passing through the support center 200 shown in Figure 8B, with an inclined recess 202 with an inclination angle 203 added.
  • the equipotential lines 124 formed by the voltage applied to the sample 111 and insulating support 201a are shown.
  • the position R0 of the primary electron beam 121 when irradiated to the support center is set as the origin, and the sample holder 112 is moved horizontally at regular intervals to R1, R2, and R3, respectively.
  • R1 to R3 in Figure 9 show the positional relationship of the primary electron beam irradiation point 125.
  • R1 is the position on the insulating support 201a
  • R2 is the end face position of the insulating support 201a
  • R3 is a position away from the insulating support 201a, and there is no insulating support 201a directly below the sample 111, only the sample holder 112.
  • Figure 10 shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference.
  • the vertical axis shows the surface potential of the sample 111
  • the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support table center 200 as the base point.
  • the retarding voltage applied to the sample 111 when the sample holder 112 is moved horizontally at a constant interval, such as from R0 to R3 shown in Figures 8A, 8B, and 9, is Vr
  • the surface potential in Figures 8A, 8B, and 9 are plotted.
  • the solid line shows the surface potential of the sample 111 generated in Figure 8A
  • the dashed line shows the surface potential of the sample 111 generated in Figure 8B
  • the dashed double-dot line shows the surface potential of the sample 111 generated in Figure 9.
  • the present disclosure is not limited to the above-described embodiments, and includes various modified examples.
  • the above-described embodiments have been described in detail to clearly explain the present disclosure, and it is not necessary to include all of the configurations described.
  • a part of an embodiment can be replaced with a configuration of another embodiment.
  • a configuration of another embodiment can be added to a configuration of an embodiment.
  • a part of the configuration of each embodiment can be added to, deleted from, or replaced with a part of the configuration of another embodiment.
  • an electron microscope is given as an example of a charged particle beam device 1, but the configuration according to the present disclosure can also be applied to other devices that irradiate charged particle beams.
  • examples of the sample 111 made of an insulating material include, for example, a semiconductor wafer or a photomask that uses an insulating material as a substrate, but are not limited to these, and the present disclosure can be applied to other insulating samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The purpose of the present disclosure is to provide a charged particle beam device that can measure an overall sample by making uniform a sample surface potential. In a charged particle beam device according to the present disclosure, a support member supporting a sample is formed using an insulating material, a surface, of a sample holder, that is in contact with the support member has a first concave portion that increases in depth from the outside of the support member toward the support member, and the support member is disposed in the first concave portion (see fig. 5A).

Description

荷電粒子ビーム装置Charged Particle Beam Device
 本開示は、試料に対して荷電粒子ビームを照射する荷電粒子ビーム装置に関する。 This disclosure relates to a charged particle beam device that irradiates a sample with a charged particle beam.
 近年、ウェアラブルデバイス・ディスプレイなどAR/VR技術に関する市場が急拡大してきたことにより、石英やサファイヤなどの絶縁体を基板としたウェーハ(以下、絶縁体ウェーハ)パターンの計測要求が高まっている。そのため、半導体デバイスの検査・計測に用いられる走査型電子顕微鏡(Scanning Electron Microscope、以下SEM)では、従来のSiを代表とする半導体ウェーハ計測と同様の感度・精度で、安定的に絶縁体ウェーハを計測することが求められている。 In recent years, the market for AR/VR technology, such as wearable device displays, has expanded rapidly, increasing the demand for measuring the patterns of wafers (hereinafter referred to as "insulator wafers") that have insulator substrates such as quartz or sapphire. For this reason, scanning electron microscopes (hereinafter referred to as SEMs) used to inspect and measure semiconductor devices are required to stably measure insulator wafers with the same sensitivity and accuracy as conventional semiconductor wafer measurements, such as those for silicon.
 SEMは、電子源に高電圧を印加することにより発生した電子を加速させ、それを集束レンズにより集束して、計測対象に照射する。この時、計測対象の形状に応じて発生する2次電子を検出器で観測することにより、SEM画像を得る。  In an SEM, electrons are generated by applying a high voltage to an electron source, and are accelerated. The electrons are then focused by a focusing lens and irradiated onto the object to be measured. At this time, secondary electrons that are generated according to the shape of the object to be measured are observed by a detector to obtain an SEM image.
 電子源から放出される電子は、様々なエネルギーを持っており、そのエネルギー幅(ΔE)は電子源の種類によって異なる。電子ビームに含まれる電子が持っているエネルギーの違いにより電子の軌道の集束点が異なるので、結像の際に像がぼやける(以下、色収差)。一般的に、電子ビームの直径が小さい程、色収差の影響は小さくなる。色収差がある場合、電子ビームの最小直径dcはdc=CcαΔE/Eで与えられる。ここで、αはある加速電圧(E)の電子線に対する集束半角、Ccは対物レンズの色収差係数(chromatic aberration coefficient)と呼ばれ、ΔE/Eの比例係数である。Ccは対物レンズと試料の間の距離(working distance、WD)の関数である。 Electrons emitted from an electron source have various energies, and the energy spread (ΔE) varies depending on the type of electron source. The electrons contained in the electron beam have different energies, which causes the electron trajectory to focus at different points, resulting in a blurred image when formed (hereafter referred to as chromatic aberration). In general, the smaller the diameter of the electron beam, the smaller the effect of chromatic aberration. When chromatic aberration exists, the minimum diameter dc of the electron beam is given by dc = CcαΔE/E. Here, α is the focusing half angle for an electron beam with a certain acceleration voltage (E), and Cc is called the chromatic aberration coefficient of the objective lens, and is the proportional coefficient of ΔE/E. Cc is a function of the distance (working distance, WD) between the objective lens and the sample.
 計測対象に対して照射される電子ビームの加速電圧が高い時、電子源が持つエネルギー幅と加速電圧の比(ΔE/E)が小さくなるので、色収差の影響は小さくなり、解像度は向上する。その代わりに、照射された電子が試料に侵入する深度は深く、広範囲になる。これによって、電子ビーム照射点から離れた部位でも2次電子が生じるので、得られる画像には試料内部の情報が混在し、計測対象表面の微細な構造が読み取れなくなる。逆に、電子ビームの加速電圧が低い時は、電子源が持つエネルギー幅と加速電圧の比(ΔE/E)が大きくなるので、色収差の影響が大きくなり解像度は低下する。その代わりに、照射される電子が試料に侵入する深度が浅く狭くなるので、試料表面を鮮明に観察することができる。 When the acceleration voltage of the electron beam irradiated to the measurement object is high, the ratio of the energy width of the electron source to the acceleration voltage (ΔE/E) becomes small, so the effects of chromatic aberration are reduced and the resolution is improved. In exchange, the irradiated electrons penetrate deeper and wider into the sample. This causes secondary electrons to be generated even in areas far from the electron beam irradiation point, so the obtained image contains information about the inside of the sample and the fine structure of the measurement object surface cannot be read. Conversely, when the acceleration voltage of the electron beam is low, the ratio of the energy width of the electron source to the acceleration voltage (ΔE/E) becomes large, so the effects of chromatic aberration are increased and the resolution is reduced. In exchange, the penetration depth of the irradiated electrons into the sample becomes shallower and narrower, allowing the sample surface to be clearly observed.
 SEMによってウェーハのパターンを計測するためには、ウェーハに対して低加速電圧の電子ビームを照射して、ウェーハ最表面の画像を得る必要がある。そこで、電子のエネルギー幅と加速電圧の比が小さい高加速電圧の電子ビームを照射し、試料の直前で減速させるリターディング法を用いる。ウェーハの裏面側にあって、ウェーハを保持する台(以下、試料ホルダとする)に数kVの負電圧(以下、リターディング電圧)を印加することにより、ウェーハ表面に電位(以下、表面電位)を形成する。高加速電圧で照射された電子ビームを、ウェーハに入射する直前に表面電位によって減速することにより、色収差を抑えたまま、ウェーハ表面のパターン画像を得ることが可能となる。 In order to measure wafer patterns using an SEM, it is necessary to irradiate the wafer with an electron beam of low acceleration voltage to obtain an image of the wafer's top surface. For this reason, we use the retarding method, in which an electron beam of high acceleration voltage, with a small ratio of electron energy width to acceleration voltage, is irradiated and decelerated just before the sample. A negative voltage of several kV (hereafter, retarding voltage) is applied to the stage (hereafter, sample holder) that holds the wafer on the back side of the wafer, forming a potential (hereafter, surface potential) on the wafer surface. By decelerating the electron beam irradiated with high acceleration voltage by the surface potential just before it hits the wafer, it is possible to obtain an image of the pattern on the wafer surface while suppressing chromatic aberration.
 半導体ウェーハの場合、リターディング電圧を印加した試料ホルダとウェーハ表面が一様な電位となるので、ウェーハ全面で同様の解像度の画像を得られる。しかし、石英やサファイヤのような絶縁体を基板とする絶縁体ウェーハを計測する場合、試料ホルダからウェーハに対して直接電圧を印加することができない。ウェーハ表面電位は電子ビーム照射による帯電や誘電分極の影響を受ける。加えて、試料ホルダ表面のうちリターディング電圧が印加されることによって電位がセットされた部分(以下、リターディング電圧印加部)と計測対象との間の距離が離れるほど、計測対象の表面電位はリターディング電圧より正の方向に変化する。したがって、計測位置に応じて、試料に照射される電子ビームの加速電圧が変化する。その結果、計測位置ごとに試料内部の情報量が変化するので、計測画像に差異が生じる。そこで、絶縁体ウェーハ計測においては、帯電や試料ホルダと計測対象との間の距離の変化によって生じるウェーハ表面電位の変化をなくし、ウェーハ表面電位を一様にする手法が求められている。 In the case of semiconductor wafers, the sample holder and the wafer surface to which the retarding voltage is applied have a uniform potential, so images with the same resolution can be obtained across the entire wafer. However, when measuring an insulating wafer with an insulating substrate such as quartz or sapphire, it is not possible to apply a voltage directly from the sample holder to the wafer. The wafer surface potential is affected by charging and dielectric polarization caused by electron beam irradiation. In addition, the greater the distance between the part of the sample holder surface to which the potential is set by applying the retarding voltage (hereinafter referred to as the retarding voltage application part) and the measurement object, the more the surface potential of the measurement object changes in the positive direction compared to the retarding voltage. Therefore, the acceleration voltage of the electron beam irradiated to the sample changes depending on the measurement position. As a result, the amount of information inside the sample changes for each measurement position, resulting in differences in the measurement images. Therefore, in the measurement of insulating wafers, a method is required to eliminate the change in wafer surface potential caused by charging and the change in distance between the sample holder and the measurement object, and to make the wafer surface potential uniform.
 特許文献1は、ステージ上に配置された支持ピンに試料を載置し、ステージと試料の間に配置した平板電極に電圧を印加することにより、試料表面の電子ビームを照射する一定範囲(以下、検査領域とする)内の電位を均一にする手法を説明している。 Patent Document 1 describes a method of placing a sample on support pins arranged on a stage and applying a voltage to a flat electrode arranged between the stage and the sample, thereby making the potential uniform within a certain range (hereinafter referred to as the inspection area) on the sample surface where the electron beam is irradiated.
特開2020-085838号公報JP 2020-085838 A
 特許文献1においては、SEMのステージ上に平板電極を設置し、これに電圧を印加することにより、検査領域内の電位を均一化する。しかし同文献においては、検査領域の範囲が平板電極の範囲内となっており、平板電極は試料を支持する台(以下、支持ピンとする)よりも内側に設置されているので、試料の大きさに対して電位を均一化して計測できる範囲が限定されている。 In Patent Document 1, a flat electrode is placed on the stage of the SEM, and a voltage is applied to it to equalize the potential within the inspection area. However, in this document, the range of the inspection area is within the range of the flat electrode, and the flat electrode is placed inside the platform that supports the sample (hereinafter referred to as the support pin), so the range in which the potential can be equalized and measured is limited relative to the size of the sample.
 本開示は、以上のような課題に鑑みてなされたものであり、試料表面電位を均一化することにより、試料全面を計測することができる荷電粒子ビーム装置を提供することを目的とする。 This disclosure has been made in consideration of the above problems, and aims to provide a charged particle beam device that can measure the entire surface of a sample by making the sample surface potential uniform.
 本開示に係る荷電粒子ビーム装置において、試料を支持する支持部材は絶縁材料を用いて形成されており、試料ホルダの前記支持部材と接する側の面は、前記支持部材の外側から前記支持部材に向かって深さが増す第1凹部を有し、前記支持部材は、前記第1凹部内に配置されている。 In the charged particle beam device disclosed herein, the support member that supports the sample is formed using an insulating material, and the surface of the sample holder that contacts the support member has a first recess that increases in depth from the outside of the support member toward the support member, and the support member is disposed within the first recess.
 本開示に係る荷電粒子ビーム装置によれば、試料表面電位を均一化することにより、試料全面を計測することができる。本開示のその他の構成、利点、効果などについては、以下の実施形態の説明によって明らかとなる。 The charged particle beam device according to the present disclosure can measure the entire surface of the sample by making the sample surface potential uniform. Other configurations, advantages, and effects of the present disclosure will become clear from the description of the embodiments below.
実施形態1に係る荷電粒子ビーム装置1の構成図である。1 is a configuration diagram of a charged particle beam device 1 according to a first embodiment. 例として4点の支持台201で試料111が支持される場合の試料ホルダ112の正面図を示す。As an example, a front view of the sample holder 112 in which the sample 111 is supported by four support stages 201 is shown. 図2Aの側面図である。FIG. 2B is a side view of FIG. 2A. 試料111近傍における電位分布を模式的に示す図である。FIG. 2 is a diagram showing a schematic diagram of a potential distribution in the vicinity of a sample 111. 支持台中心200を通る、試料111、試料ホルダ112、支持台201の断面図である。1 is a cross-sectional view of the sample 111, the sample holder 112, and the support table 201, taken along a line passing through the center 200 of the support table. 位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference. 支持台201の材質を絶縁体に変更した支持台(以下、絶縁性支持台201a)の側断面図を示す。1 shows a side cross-sectional view of a support base in which the material of the support base 201 is changed to an insulating material (hereinafter, referred to as an insulating support base 201a). 位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference. 絶縁性支持台201aの周辺に構成した傾斜状堀込202の側断面図を示す。1 shows a side cross-sectional view of an inclined recess 202 formed around an insulating support base 201a. 図5Aにおける傾斜状堀込202を段差状堀込204に変更した側断面図を示す。5B is a side cross-sectional view in which the inclined recess 202 in FIG. 5A is changed to a stepped recess 204. FIG. 位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference. 支持台201の材質や傾斜角203ごとに、試料111表面電位の最大変化量を比較した結果を示す。The results of comparing the maximum change in the surface potential of the sample 111 for each material of the support table 201 and each inclination angle 203 are shown. 絶縁性支持台201aの内部を円筒状にして、傾斜状堀込211を支持台の内側に配置した例を示す。In this example, the inside of the insulating support base 201a is cylindrical, and an inclined recess 211 is disposed inside the support base. 円筒状支持台205内側に段差状堀込212を配置した構成例を示している。This shows a configuration example in which a stepped recess 212 is disposed on the inside of a cylindrical support base 205 . 図4Aで示した構成に加えて、試料111の帯電や誘電分極を防ぐための電極301を荷電粒子ビーム装置1がさらに備えた構成例を示す側断面図である。4B is a side cross-sectional view showing an example of a configuration in which the charged particle beam device 1 further includes an electrode 301 for preventing charging and dielectric polarization of the sample 111 in addition to the configuration shown in FIG. 4A. 図8Aに示した1次電子ビーム121の通過孔を、電極301の位置ずれが問題にならない大きさにした場合における等電位線124を示している。FIG. 8A shows equipotential lines 124 in the case where the aperture through which the primary electron beam 121 passes is set to a size such that misalignment of the electrode 301 does not cause a problem. 図8Bに示す支持台中心200を通る試料111と試料ホルダ112、絶縁性支持台201a、通過孔の穴径を大きくした電極301の構成に、傾斜角203を持った傾斜状堀込202を加えた断面図である。This is a cross-sectional view showing a configuration of sample 111 and sample holder 112, insulating support base 201a, and electrode 301 with an enlarged hole diameter for the passage hole shown in Figure 8B, to which an inclined recess 202 with an inclination angle 203 has been added. 位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。Illustrated is a difference in the surface potential of the sample 111 for each primary electron beam irradiation point 125 with respect to the surface potential at position R3 as a reference.
<実施の形態1>
 図1は、本開示の実施形態1に係る荷電粒子ビーム装置1の構成図である。荷電粒子ビーム装置1は、電子顕微鏡として構成されている。荷電粒子ビーム装置1は、電子源101、コンデンサレンズ102、コンデンサレンズ103、絞り104、反射板105、ExB偏向器106、検出器107、偏向器108、偏向器109、対物レンズ110、試料ホルダ112、ステージ113、リターディング電源114、ディスプレイ115、記憶装置116を備える。
<First embodiment>
1 is a configuration diagram of a charged particle beam device 1 according to a first embodiment of the present disclosure. The charged particle beam device 1 is configured as an electron microscope. The charged particle beam device 1 includes an electron source 101, a condenser lens 102, a condenser lens 103, an aperture 104, a reflector 105, an ExB deflector 106, a detector 107, a deflector 108, a deflector 109, an objective lens 110, a sample holder 112, a stage 113, a retarding power supply 114, a display 115, and a storage device 116.
 ステージ113は、試料111の全面を計測するために水平方向に移動可能である。ステージ113はリターディング電源114から電圧を印加されている。ステージ113上には試料ホルダ112が配置されており、試料111は試料ホルダ112によって保持されている。ステージ113を操作することにより、試料ホルダ112とそれに保持されている試料111を水平方向に移動することが可能となっている。制御装置は各部動作を制御するための装置であり、例えばコンピュータである。記憶装置116には、各部の電圧、電流等の制御条件を定めた制御テーブル117が格納される。制御装置によって、記憶装置116から制御テーブル117を読み出し、制御テーブル117に定められた制御条件に基づいて各部を制御することも可能である。 The stage 113 can move horizontally to measure the entire surface of the sample 111. A voltage is applied to the stage 113 from a retarding power supply 114. A sample holder 112 is placed on the stage 113, and the sample 111 is held by the sample holder 112. By manipulating the stage 113, it is possible to move the sample holder 112 and the sample 111 held by it horizontally. The control device is a device for controlling the operation of each part, and is, for example, a computer. The storage device 116 stores a control table 117 that defines the control conditions such as the voltage and current of each part. The control device can also read the control table 117 from the storage device 116 and control each part based on the control conditions defined in the control table 117.
 電子源101から放出された電子は、コンデンサレンズ102、コンデンサレンズ103によって集束され、1次電子ビーム121(荷電粒子ビーム)として試料111に照射される。絞り104は対物レンズ110における1次電子ビーム121の開き角を決定する部材であり、1次電子ビーム121が通過するための孔を有する。偏向器108および偏向器109は、1次電子ビーム121を偏向して試料111の上で走査させる。 Electrons emitted from the electron source 101 are focused by condenser lenses 102 and 103, and are irradiated onto the sample 111 as a primary electron beam 121 (charged particle beam). The aperture 104 is a member that determines the aperture angle of the primary electron beam 121 at the objective lens 110, and has a hole through which the primary electron beam 121 passes. Deflectors 108 and 109 deflect the primary electron beam 121 to scan it over the sample 111.
 対物レンズ110は、偏向された1次電子ビーム121を集束させるレンズであり、内部のコイルに電流が流れることにより発生する磁場によって1次電子ビーム121を細束化させる。 The objective lens 110 is a lens that focuses the deflected primary electron beam 121, and thins the primary electron beam 121 by a magnetic field generated by a current flowing through an internal coil.
 1次電子ビーム121が照射された試料111からは信号粒子122が放出される。一般に、50eV以下のエネルギーで放出される信号粒子は2次電子と呼ばれ、50eVより大きく、1次電子ビーム121に近いエネルギーで放出される信号粒子は後方散乱電子と呼ばれる。信号粒子122は試料111上方の反射板105に衝突する。信号粒子122が反射板105に衝突した際に、反射板105からは3次電子123が放出される。3次電子123は、ExB偏向器106内の電場によって偏向され、検出器107によって検出される。ExB偏向器106内の電場と磁場は1次電子ビーム121にも作用するが、1次電子ビーム121に対しては両者の作用が打ち消し合うので、1次電子ビーム121は試料方向に向かって直進する。 Signal particles 122 are emitted from the sample 111 irradiated with the primary electron beam 121. In general, signal particles emitted with an energy of 50 eV or less are called secondary electrons, and signal particles emitted with an energy of more than 50 eV and close to that of the primary electron beam 121 are called backscattered electrons. The signal particles 122 collide with the reflector 105 above the sample 111. When the signal particles 122 collide with the reflector 105, tertiary electrons 123 are emitted from the reflector 105. The tertiary electrons 123 are deflected by the electric field in the ExB deflector 106 and detected by the detector 107. The electric field and magnetic field in the ExB deflector 106 also act on the primary electron beam 121, but the effects of the two cancel each other out on the primary electron beam 121, so the primary electron beam 121 travels straight toward the sample.
 検出器107によって検出された3次電子123は、測定順にアナログデータからデジタルデータにA/D変換される。制御装置はそのデジタルデータを用いて試料111の測定画像を作成する。測定画像はディスプレイ115上に出力される。 The tertiary electrons 123 detected by the detector 107 are A/D converted from analog data to digital data in the order of measurement. The control device uses the digital data to create a measurement image of the sample 111. The measurement image is output on the display 115.
 測定画像の精度は、試料111に入射する1次電子ビーム121のランディングエネルギー量により調整することができる。そこで、ステージ113に接続されたリターディング電源114により、試料111に数kVの負電圧(以下、リターディング電圧)を印加し、これにより試料111と対物レンズ110との間に1次電子ビーム121を減速させる電場を形成する。 The accuracy of the measurement image can be adjusted by the amount of landing energy of the primary electron beam 121 incident on the sample 111. Therefore, a negative voltage of several kV (hereinafter, retarding voltage) is applied to the sample 111 by the retarding power supply 114 connected to the stage 113, thereby forming an electric field between the sample 111 and the objective lens 110 that decelerates the primary electron beam 121.
 ステージ113から試料111までの電圧印加の経路について説明する。リターディング電源114が接続されたステージ113上には試料ホルダ112が配置されている。試料111と試料ホルダ112が直接接触することにより生じる損傷や異物の発生を防ぐために、試料ホルダ112は、試料111を載置する支持台201(支持部材)を複数備えている。支持台201はリターディング電圧を試料111に印加するため、導電性の材質によって作製されている。表面電位を形成するリターディング電圧は、ステージ113、試料ホルダ112、支持台201を経由して、試料111に対して印加される。これにより1次電子ビーム121の加速電圧を任意に調整する。また、表面電位は試料上で発生した信号粒子122を上方へ加速させる働きも持つ。 The voltage application path from the stage 113 to the sample 111 will be explained. The sample holder 112 is placed on the stage 113 to which the retarding power supply 114 is connected. To prevent damage or the generation of foreign matter caused by direct contact between the sample 111 and the sample holder 112, the sample holder 112 has multiple support tables 201 (support members) on which the sample 111 is placed. The support tables 201 are made of a conductive material in order to apply a retarding voltage to the sample 111. The retarding voltage that forms the surface potential is applied to the sample 111 via the stage 113, the sample holder 112, and the support tables 201. This allows the acceleration voltage of the primary electron beam 121 to be adjusted as desired. The surface potential also serves to accelerate the signal particles 122 generated on the sample upward.
 しかしながら、計測対象となる試料111は、導電性のものだけでなく、例えば薄い絶縁膜で覆われたSiや石英、サファイヤのような絶縁性のもの、などがある。このような場合、支持台201の影響により、試料111に一様な表面電位を形成することができない。そうすると、試料111に対して照射される1次電子ビーム121のエネルギー量をリターディング電圧によって制御することができなくなり、望んだ解像度の画像が得られない。以下、試料111が絶縁体ウェーハであるとして説明する。 However, the sample 111 to be measured is not limited to conductive samples; it may be insulating, such as Si, quartz, or sapphire, covered with a thin insulating film. In such cases, a uniform surface potential cannot be formed on the sample 111 due to the influence of the support table 201. This makes it impossible to control the amount of energy of the primary electron beam 121 irradiated onto the sample 111 using the retarding voltage, and an image with the desired resolution cannot be obtained. In the following description, the sample 111 is assumed to be an insulating wafer.
 図2A、図2B、図2Cを用いて試料111と試料ホルダ112、支持台201の関係について説明する。 The relationship between the sample 111, sample holder 112, and support table 201 will be explained using Figures 2A, 2B, and 2C.
 図2Aは、例として4点の支持台201で試料111が支持される場合の試料ホルダ112の正面図を示す。試料111の保持については省略している。支持台201は試料ホルダ112の表面かつ試料111面内の任意の位置(支持点)に配置され、試料111を4点支持している。 FIG. 2A shows a front view of the sample holder 112 when the sample 111 is supported by four support tables 201 as an example. The holding of the sample 111 is omitted. The support tables 201 are placed on the surface of the sample holder 112 and at arbitrary positions (support points) within the surface of the sample 111, and support the sample 111 at four points.
 図2Bは、図2Aの側面図である。支持台201は、試料111と試料ホルダ112が直接接触することによって生じる損傷や異物の発生を防ぐために、試料111と試料ホルダ112の間に配置され、試料111を支持する凸部として構成されている。支持台201はさらに、試料ホルダ112に対して印加されたリターディング電圧を、試料111へと伝導し、1次電子ビーム121を減速するための電場を試料に形成するための通路としての役割を持つ。 FIG. 2B is a side view of FIG. 2A. The support table 201 is disposed between the sample 111 and the sample holder 112 to prevent damage or the generation of foreign matter caused by direct contact between the sample 111 and the sample holder 112, and is configured as a protrusion that supports the sample 111. The support table 201 also serves as a passage for conducting the retarding voltage applied to the sample holder 112 to the sample 111, and forming an electric field in the sample to decelerate the primary electron beam 121.
 図2Cは、試料111近傍における電位分布を模式的に示す図である。ここでは試料111の中心に対して、試料111の上方に配置された対物レンズ110から1次電子ビーム121を照射するときの電位分布を示した。等電位線124は、試料111に対して1次電子ビーム121を照射した時の電位を示している。試料ホルダ112と支持台201にはリターディング電圧が印加されている。電界の中に置かれた絶縁体ウェーハである試料111は、正負に偏って分極する。試料111表面は負、裏面は正に分極する。絶縁体である試料111に対して印加される電圧は、リターディング電圧印加部(試料ホルダ112の表面または支持台201の表面のうちリターディング電圧によって電位をセットされている箇所)と試料111との間の距離に依存して変化する。その結果、試料111表面電位は、例えば支持台201の上方とそれ以外の箇所との間で互いに異なる。試料ホルダ112の上面と支持台201の上面は同電位だからである。 Figure 2C is a schematic diagram showing the potential distribution near the sample 111. Here, the potential distribution when the primary electron beam 121 is irradiated from the objective lens 110 arranged above the sample 111 with respect to the center of the sample 111 is shown. Equipotential lines 124 show the potential when the primary electron beam 121 is irradiated to the sample 111. A retarding voltage is applied to the sample holder 112 and the support table 201. The sample 111, which is an insulating wafer placed in an electric field, is polarized with a bias toward positive and negative. The front surface of the sample 111 is negatively polarized, and the back surface is positively polarized. The voltage applied to the sample 111, which is an insulator, changes depending on the distance between the retarding voltage application part (the part of the surface of the sample holder 112 or the surface of the support table 201 where the potential is set by the retarding voltage) and the sample 111. As a result, the surface potential of the sample 111 differs between, for example, the upper part of the support table 201 and other parts. This is because the top surface of the sample holder 112 and the top surface of the support table 201 are at the same potential.
 図3A、図3Bを用いて、支持台201の詳細と試料表面電位の位置ごとの変化について説明する。 The details of the support stage 201 and the change in the sample surface potential for each position are explained using Figures 3A and 3B.
 図3Aは、支持台中心200を通る、試料111、試料ホルダ112、支持台201の断面図である。図3Aにおける支持台201は導電性材料を用いていると仮定する。試料111の上方には対物レンズ110が設置され、試料111上の照射点125に対して1次電子ビーム121が照射されているものとする。このとき試料111と支持台201に対して印加された電圧によって生じる等電位線124を図示した。支持台中心200に対して照射されているときの1次電子ビーム121照射位置R0を原点として、試料ホルダ112を一定間隔で水平方向に移動させたときの照射位置を、それぞれR1、R2、R3とする。図3AのR1~R3は1次電子ビーム照射点125の位置関係をそれぞれ示す。R1は支持台201上の位置である。R2は支持台201の端面位置である。R3は支持台201から離れた位置であり、試料111の真下には支持台201がなく試料ホルダ112のみである。 Figure 3A is a cross-sectional view of the sample 111, sample holder 112, and support table 201, passing through the support table center 200. It is assumed that the support table 201 in Figure 3A is made of a conductive material. The objective lens 110 is installed above the sample 111, and the primary electron beam 121 is irradiated to the irradiation point 125 on the sample 111. The equipotential lines 124 generated by the voltage applied to the sample 111 and support table 201 at this time are shown. The irradiation position R0 of the primary electron beam 121 when irradiated to the support table center 200 is set as the origin, and the irradiation positions when the sample holder 112 is moved horizontally at regular intervals are R1, R2, and R3, respectively. R1 to R3 in Figure 3A respectively indicate the positional relationship of the primary electron beam irradiation point 125. R1 is the position on the support table 201. R2 is the end face position of the support table 201. R3 is a position away from the support table 201, and there is no support table 201 directly below the sample 111, only the sample holder 112.
 支持台201が導電性の場合、支持台201の上面までリターディング電圧が印加されているので、R3の位置(平坦部)と比較して、支持台201と接している箇所(例えば図3Aにおける位置R0)の試料111表面電位はリターディング電圧の影響を強く受け、負方向に変化する。 When the support base 201 is conductive, the retarding voltage is applied up to the top surface of the support base 201, so that the surface potential of the sample 111 at the point in contact with the support base 201 (for example, position R0 in Figure 3A) is more strongly affected by the retarding voltage and changes in the negative direction compared to position R3 (flat portion).
 図3Bは、位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。縦軸は試料ホルダ112の平坦部(位置R3)上の試料111表面電位を0Vとしたときの表面電位差を示しており、横軸は支持台中心200を基点として試料ホルダ112を水平方向に移動させたときの電子ビーム照射位置Rを示している。ここでは、図3Aに示すR0からR3のように、一定の間隔で試料ホルダ112を水平に移動させたとき、平坦部を基準とした試料表面電位差を示す。試料111表面とリターディング電圧印加部との間の距離が近くなるR0~R2においては、試料111の表面電位の値がリターディング電圧の値に近くなるので、負の方向に変化する。逆に、R3では試料111とリターディング電圧印加部との間の距離が遠くなるので、試料111の表面電位の値は正の方向に変化する。 Figure 3B shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference. The vertical axis shows the surface potential difference when the surface potential of the sample 111 on the flat part (position R3) of the sample holder 112 is set to 0 V, and the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support table center 200 as the base point. Here, the sample surface potential difference is shown with the flat part as the reference when the sample holder 112 is moved horizontally at a constant interval, such as from R0 to R3 shown in Figure 3A. In R0 to R2, where the distance between the surface of the sample 111 and the retarding voltage application part is close, the value of the surface potential of the sample 111 becomes close to the value of the retarding voltage, so it changes in the negative direction. Conversely, in R3, the distance between the sample 111 and the retarding voltage application part is farther, so the value of the surface potential of the sample 111 changes in the positive direction.
 図4A、図4Bを用いて実施形態1における支持台201の形状と試料表面電位の1例について説明する。 An example of the shape of the support table 201 and the sample surface potential in embodiment 1 will be described using Figures 4A and 4B.
 図4Aは、支持台201の材質を絶縁体に変更した支持台(以下、絶縁性支持台201a)の側断面図を示す。図3Aと同様に、試料111上の照射点125に対して1次電子ビーム121が照射されているものとする。このとき試料111と絶縁性支持台201aに対して印加された電圧より形成される等電位線124を示した。R0~R3は図3Aと同様である。絶縁性支持台201aには直接リターディング電圧を印加することができず、支持台上部までリターディング電圧が導通しなくなったので、等電位線124は図3Aと比較すると試料ホルダ112に対して近づく方向に変化する。これにともない、絶縁性支持台201aと接している部位の試料111表面電位は、図3Aと比較して正の方向に変化する。ただし絶縁性支持台201aの誘電分極により、等電位線は絶縁性支持台201a近傍において歪んでいる。 FIG. 4A shows a side cross-sectional view of a support table in which the material of the support table 201 has been changed to an insulator (hereinafter, insulating support table 201a). As in FIG. 3A, the primary electron beam 121 is irradiated to the irradiation point 125 on the sample 111. At this time, the equipotential lines 124 formed by the voltage applied to the sample 111 and the insulating support table 201a are shown. R0 to R3 are the same as in FIG. 3A. Since the retarding voltage cannot be applied directly to the insulating support table 201a and the retarding voltage is no longer conducted to the upper part of the support table, the equipotential lines 124 change in the direction approaching the sample holder 112 compared to FIG. 3A. Accordingly, the surface potential of the sample 111 at the part in contact with the insulating support table 201a changes in the positive direction compared to FIG. 3A. However, due to the dielectric polarization of the insulating support table 201a, the equipotential lines are distorted near the insulating support table 201a.
 図4Bは、位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。縦軸は試料ホルダ112の平坦部上の試料111表面電位を0Vとしたときの表面電位差を示しており、横軸は支持台中心200を基点として試料ホルダ112を水平方向に移動させたときの電子ビーム照射位置Rを示している。ここでは、図4Aに示すR0からR3のように、一定の間隔で試料ホルダ112を水平に移動させたとき、平坦部を基準とした試料表面電位を示す。実線は図3Bで示した導電性の支持台201を使用したときの表面電位を示し、1点鎖線は絶縁性支持台201aを使用したときの表面電位を示している。 Figure 4B shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference. The vertical axis shows the surface potential difference when the surface potential of the sample 111 on the flat part of the sample holder 112 is set to 0 V, and the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support stage center 200 as the base point. Here, the sample surface potential is shown with the flat part as the reference when the sample holder 112 is moved horizontally at regular intervals, such as from R0 to R3 shown in Figure 4A. The solid line shows the surface potential when the conductive support stage 201 shown in Figure 3B is used, and the dashed dotted line shows the surface potential when the insulating support stage 201a is used.
 支持台の材質を絶縁体に変更することにより、支持台上面までリターディング電圧が印加されることを防ぐことができる。また、リターディング電圧が印加されることによって電位がセットされる表面と試料111表面との間の距離は、絶縁性支持台201aが配置されている箇所とそれ以外の箇所との間で差はない。絶縁性支持台201aの電位はリターディング電圧によって影響されるものではないからである。これにより、絶縁性支持台201aにおける等電位線124は、図3Aと比較すると試料ホルダ112に対して近づく方向に変化する。しかし、試料111に加えて絶縁性支持台201aが誘電分極することにより、R0~R2においては、試料表面電位が負の方向に変化する。その結果、試料111表面電位の変化量を無視できる値まで軽減できない。 By changing the material of the support base to an insulator, it is possible to prevent the retarding voltage from being applied to the top surface of the support base. In addition, there is no difference in the distance between the surface to which the potential is set by applying the retarding voltage and the surface of the sample 111 between the location where the insulating support base 201a is located and other locations. This is because the potential of the insulating support base 201a is not affected by the retarding voltage. As a result, the equipotential lines 124 on the insulating support base 201a change in a direction approaching the sample holder 112 compared to Figure 3A. However, due to the dielectric polarization of the insulating support base 201a in addition to the sample 111, the sample surface potential changes in the negative direction at R0 to R2. As a result, the amount of change in the sample 111 surface potential cannot be reduced to a negligible value.
 図5A、図5B、図5C、図6を用いて、外周に堀込を配置した試料ホルダ112の詳細と試料表面電位について説明する。 The details of the sample holder 112 with a recess on the outer periphery and the sample surface potential will be explained using Figures 5A, 5B, 5C, and 6.
 図5Aは、絶縁性支持台201aの周辺に構成した傾斜状堀込202の側断面図を示す。絶縁性支持台201aの周囲には支持台中心200に向かってある傾斜角203で深くなる傾斜状堀込202(第1凹部)が配置されている。図4Aと同様に、試料111上の照射点125に対して1次電子ビーム121が照射されているものとする。このとき試料111と絶縁性支持台201aに対して印加された電圧より形成される等電位線124を示した。試料111表面電位は誘電分極した絶縁性支持台201aの影響を受けて、支持台中心200に近づくほど負方向に変化している。そこで、絶縁性支持台201aの近傍に、支持台中心200に向かって深くなる堀込を形成する。絶縁性支持台201aは、この堀込内に配置する。絶縁性支持台201aを堀込内に配置することにより、絶縁性支持台201a近傍における試料111とリターディング電圧印加部との間の距離が大きくなる。これにより、試料111表面電位を正方向にずらし、絶縁性支持台201aが誘電分極することで生じる負方向の電位変化を打ち消すことができる。したがって、試料111表面電位の位置毎の変化量をさらに低減することができる。 Figure 5A shows a side cross-sectional view of an inclined recess 202 formed around an insulating support base 201a. Around the insulating support base 201a, an inclined recess 202 (first recess) is arranged, which deepens at a certain inclination angle 203 toward the support base center 200. As in Figure 4A, the primary electron beam 121 is irradiated to the irradiation point 125 on the sample 111. At this time, equipotential lines 124 formed by the voltage applied to the sample 111 and the insulating support base 201a are shown. The surface potential of the sample 111 is affected by the dielectrically polarized insulating support base 201a and changes in the negative direction as it approaches the support base center 200. Therefore, a recess is formed near the insulating support base 201a, which deepens toward the support base center 200. The insulating support base 201a is placed within this recess. By placing the insulating support 201a in the recess, the distance between the sample 111 and the retarding voltage application unit in the vicinity of the insulating support 201a is increased. This shifts the surface potential of the sample 111 in the positive direction, and cancels the negative potential change caused by the dielectric polarization of the insulating support 201a. Therefore, the amount of change in the surface potential of the sample 111 for each position can be further reduced.
 図5Bは、図5Aにおける傾斜状堀込202を段差状堀込204に変更した側断面図を示す。堀込の形状を段差状に変更しても、傾斜状堀込と同様の試料111表面電位変化量を低減する効果が得られる。前述のとおり、試料111表面電位は試料111とリターディング電圧印加部との間の距離によって変化するので、段差の深さと次の段差までの幅を変更することにより、試料111表面電位を調整することが可能となっている。 FIG. 5B shows a side cross-sectional view in which the inclined groove 202 in FIG. 5A has been changed to a stepped groove 204. Changing the shape of the groove to a stepped shape has the same effect of reducing the amount of change in the surface potential of the sample 111 as the inclined groove. As mentioned above, the surface potential of the sample 111 changes depending on the distance between the sample 111 and the retarding voltage application section, so it is possible to adjust the surface potential of the sample 111 by changing the depth of the step and the width to the next step.
 図5Cは、位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。縦軸は試料ホルダ112の平坦部上の試料111表面電位を0Vとしたときの表面電位差を示しており、横軸は支持台中心200を基点として試料ホルダ112を水平方向に移動させたときの電子ビーム照射位置Rを示している。ここでは、図4Aに示すR0からR3のように、一定の間隔で試料ホルダ112を水平に移動させたとき、平坦部を基準とした試料表面電位をプロットした。1点鎖線は図4Bで示した絶縁性支持台201aを使用したときの試料111表面電位を示している。2点鎖線は図5Aのように堀込を配置したときの試料111表面電位を示している。段差状堀込204による表面電位の変化量低減効果は、図5Bに示す段差状堀込204の角Aと角B、絶縁性支持台201aの下端を結んだ斜辺と試料ホルダ112表面からなる傾斜角を持った傾斜状堀込202に等しい。 Figure 5C shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference. The vertical axis shows the surface potential difference when the surface potential of the sample 111 on the flat part of the sample holder 112 is set to 0V, and the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support center 200 as the base point. Here, the sample surface potential is plotted with the flat part as the reference when the sample holder 112 is moved horizontally at regular intervals, such as R0 to R3 shown in Figure 4A. The dashed line shows the surface potential of the sample 111 when the insulating support 201a shown in Figure 4B is used. The two-dot dashed line shows the surface potential of the sample 111 when the recess is arranged as in Figure 5A. The effect of reducing the amount of change in surface potential due to the stepped digging 204 is equivalent to that of the sloping digging 202 shown in FIG. 5B, which has an inclination angle formed by the oblique side connecting the lower end of the insulating support base 201a and the surface of the sample holder 112, and the corners A and B of the stepped digging 204.
 図6は、支持台201の材質や傾斜角203ごとに、試料111表面電位の最大変化量を比較した結果を示す。縦軸は平坦部を基準とした試料111表面電位の最大変化量を示し、横軸は比較する支持台部の材質と傾斜角203の大きさを示す。堀込がない場合、支持台材質を絶縁性にすることにより、試料表面電位の最大変化量は導電性支持台の3分の1以下になる。絶縁性支持台201aの外周に配置する堀込の傾斜角203を45°以下にした場合、試料111と絶縁性支持台201aの誘電分極による負の方向への表面電位変化量よりも、堀込による正の方向への表面電位変化量が大きくなる。絶縁性支持台201aの外周に配置する堀込の傾斜角203を60°±15°にすることにより、絶縁性支持台201aのみ配置した場合よりも試料表面電位変化量は小さくなる。図6のデータ例によれば、支持台を絶縁性にすることにより、導電性支持台よりも表面電位の変化量を数分の一以下まで抑制できることが分かる。さらに試料ホルダ112の堀込を形成することにより、表面電位の変化量をさらに数分の一以下まで抑制できることが分かる。 Figure 6 shows the results of comparing the maximum change in the surface potential of the sample 111 for each material and inclination angle 203 of the support base 201. The vertical axis shows the maximum change in the surface potential of the sample 111 based on the flat part, and the horizontal axis shows the material of the support base and the inclination angle 203 to be compared. In the absence of an indentation, the maximum change in the surface potential of the sample is less than one-third that of the conductive support base by making the support base material insulating. When the inclination angle 203 of the indentation placed on the outer periphery of the insulating support base 201a is set to 45° or less, the change in the surface potential in the positive direction due to the indentation is greater than the change in the surface potential in the negative direction due to the dielectric polarization of the sample 111 and the insulating support base 201a. By setting the inclination angle 203 of the indentation placed on the outer periphery of the insulating support base 201a to 60°±15°, the change in the surface potential of the sample is smaller than when only the insulating support base 201a is placed. According to the data example in FIG. 6, it can be seen that by making the support base insulating, the amount of change in surface potential can be suppressed to a fraction of that of a conductive support base. Furthermore, by forming a recess in the sample holder 112, it can be seen that the amount of change in surface potential can be further suppressed to a fraction of that of a conductive support base.
 試料111表面電位変化量は0を横切って正負に変化するので、傾斜状堀込202が持つ傾斜角203を変化させることにより、表面電位変化量を0にして試料111表面電位を一様な値にできる。その結果、試料111表面に生じる電位変化を無視できる大きさまで低減し、望んだ解像度の画像を得ることが可能となる。 Since the amount of change in the surface potential of the sample 111 crosses zero and changes from positive to negative, by changing the inclination angle 203 of the inclined recess 202, the amount of change in the surface potential can be set to zero and the surface potential of the sample 111 can be made uniform. As a result, the potential change occurring on the surface of the sample 111 can be reduced to a negligible level, making it possible to obtain an image with the desired resolution.
 図5A~図6においては、試料111のうち、絶縁性支持台201aによって支持されている部位(例えばR0)の表面電位と、支持されていない部位(例えばR3)の表面電位との間の電位差がほぼゼロである例を説明した。この電位差はゼロであることが望ましい。ただし、堀込がある場合において、堀込がない場合よりもこの電位差を抑制することができれば、その限りにおいて本実施形態の効果を発揮できることを付言しておく。 In Figures 5A to 6, an example has been described in which the potential difference between the surface potential of the portion of sample 111 that is supported by insulating support base 201a (e.g., R0) and the surface potential of the portion that is not supported (e.g., R3) is nearly zero. It is desirable for this potential difference to be zero. However, it should be noted that the effect of this embodiment can be achieved to the extent that this potential difference can be suppressed in the presence of an indentation more than in the absence of an indentation.
 試料ホルダ112のうち支持台201と接する側の面は、試料111の平面サイズよりも大きいことが望ましい。これにより、試料111の表面全体に対して、均一な表面電位を提供することができる。以下の実施形態においても同様である。 It is desirable that the surface of the sample holder 112 that contacts the support base 201 is larger than the planar size of the sample 111. This makes it possible to provide a uniform surface potential over the entire surface of the sample 111. The same applies to the following embodiments.
<実施の形態2>
 本開示の実施形態2に係る荷電粒子ビーム装置1の構成例について図7A、図7Bを用いて説明する。実施形態1に記載されているが実施形態2において未記載の事項は、特段の事情がない限り、実施形態2においても適用できる。
<Embodiment 2>
A configuration example of the charged particle beam device 1 according to the second embodiment of the present disclosure will be described with reference to Figures 7A and 7B. The matters described in the first embodiment but not described in the second embodiment can also be applied to the second embodiment unless there are special circumstances.
 図7Aは、絶縁性支持台201aの内部を円筒状(以下、円筒状支持台205)にして、傾斜状堀込211を支持台の内側に配置した例を示す。図7Aは、支持台中心200を通過する、試料111、試料ホルダ112、円筒状支持台205の断面図である。試料111の直上には対物レンズ110が設置されている。試料111には1次電子ビーム121が照射されているものとする。円筒状支持台205の底面には導電性固定用ねじ207を通すための穴があり、上面端部に傾斜角203の傾斜が施された導電性の固定部(以下、傾斜状固定部206)を、試料ホルダ112下部から挿入したねじ207によって固定する。 Figure 7A shows an example in which the inside of the insulating support base 201a is cylindrical (hereinafter, cylindrical support base 205), and an inclined recess 211 is arranged inside the support base. Figure 7A is a cross-sectional view of the sample 111, sample holder 112, and cylindrical support base 205 passing through the support base center 200. The objective lens 110 is placed directly above the sample 111. It is assumed that the sample 111 is irradiated with a primary electron beam 121. The bottom surface of the cylindrical support base 205 has a hole for passing a conductive fixing screw 207, and a conductive fixing part (hereinafter, inclined fixing part 206) with an inclination angle 203 at the end of the upper surface is fixed by a screw 207 inserted from the bottom of the sample holder 112.
 試料ホルダ112に対して印加されたリターディング電圧は、導電性固定用ねじ207を経由して傾斜状固定部206に対して印加される。傾斜状固定部206に施された傾斜部分によって、円筒状支持台205の内壁よりも内側に傾斜状堀込211を形成し、これにより試料ホルダ112の表面の位置を低くしている。傾斜状堀込211により、後述するように、試料111の表面電位の変化分のうち少なくとも一部をキャンセルすることができる。 The retarding voltage applied to the sample holder 112 is applied to the inclined fixing part 206 via the conductive fixing screw 207. The inclined part of the inclined fixing part 206 forms an inclined recess 211 inside the inner wall of the cylindrical support base 205, thereby lowering the position of the surface of the sample holder 112. As described below, the inclined recess 211 can cancel at least a part of the change in the surface potential of the sample 111.
 図7Bは、円筒状支持台205内側に段差状堀込212を配置した構成例を示している。図7Aと同様に、円筒状支持台205の底面には導電性固定用ねじ207を通すための穴があり、上面端部に段差状の切削が施された導電性の固定部(以下、段差状固定部208)を、試料ホルダ112下部から挿入した導電性固定用ねじ207によって固定する。試料ホルダ112に対して印加されたリターディング電圧は、導電性固定用ねじ207を経由して段差状固定部208に対して印加される。段差状固定部208に施された段差部分によって、円筒状支持台205の内側に段差状堀込212を形成し、これにより試料ホルダ112の表面の位置を低くしている。 Figure 7B shows an example of a configuration in which a stepped recess 212 is arranged inside the cylindrical support base 205. As in Figure 7A, the bottom surface of the cylindrical support base 205 has a hole for passing a conductive fixing screw 207, and a conductive fixing part (hereinafter, stepped fixing part 208) with a stepped cut at the end of the top surface is fixed by the conductive fixing screw 207 inserted from the bottom of the sample holder 112. The retarding voltage applied to the sample holder 112 is applied to the stepped fixing part 208 via the conductive fixing screw 207. The stepped part of the stepped fixing part 208 forms a stepped recess 212 on the inside of the cylindrical support base 205, thereby lowering the surface position of the sample holder 112.
 図4Aと図4Bに示すように、試料111と絶縁性支持台201aとの間の接触部分では、試料111に加えて絶縁性支持台201aが誘電分極するので、試料表面電位は他の部分と比較して負の方向に変化する。そこで、支持台の形状を円筒状にすることにより、試料111と絶縁性支持台201aとの間の接触面積を減らし、誘電分極によって生じる電位変化を低減する。さらに、試料111と円筒状支持台205との間の接触部分に生じる負方向の表面電位変化については、円筒状支持台205内側に傾斜状堀込211または段差状堀込212を形成することにより、リターディング電圧印加部と試料111との間の距離を大きくし、試料111表面電位を正方向に変化させる。円筒状支持台205と試料111との間の接触部に生じる試料表面電位変化を、円筒状支持台205の内側に配置した堀込によって打ち消すことにより、支持台部近傍で生じる試料111の表面電位変化を低減する。 As shown in Figures 4A and 4B, at the contact portion between the sample 111 and the insulating support 201a, the insulating support 201a is dielectrically polarized in addition to the sample 111, so the sample surface potential changes in a negative direction compared to other portions. Therefore, by making the shape of the support cylindrical, the contact area between the sample 111 and the insulating support 201a is reduced, and the potential change caused by the dielectric polarization is reduced. Furthermore, for the negative surface potential change occurring at the contact portion between the sample 111 and the cylindrical support 205, a slanted groove 211 or a stepped groove 212 is formed on the inside of the cylindrical support 205 to increase the distance between the retarding voltage application portion and the sample 111, and the surface potential of the sample 111 is changed in a positive direction. The sample surface potential change occurring at the contact portion between the cylindrical support 205 and the sample 111 is canceled by the groove arranged on the inside of the cylindrical support 205, thereby reducing the surface potential change of the sample 111 occurring near the support portion.
 円筒状支持台205内側の堀込は、円筒状支持台205と試料111との間の接触部に生じる試料表面電位変化のうち少なくとも一部をキャンセルできる程度に形成すれば、その限りにおいて堀込の効果を発揮することができる。その上で実施形態1において説明した支持台外周の堀込を併用することにより、表面電位変化をさらに抑制することができる。 The recess on the inside of the cylindrical support base 205 can be effective to the extent that it is formed to cancel at least a portion of the change in the sample surface potential that occurs at the contact area between the cylindrical support base 205 and the sample 111. By combining this with the recess on the outer periphery of the support base described in embodiment 1, the change in the surface potential can be further suppressed.
<実施の形態3>
 図5Aに示す絶縁性支持台201a近傍に傾斜角203を持った傾斜状堀込202を配置した構成においては、試料111と絶縁性支持台201aそれぞれの誘電分極、1次電子ビーム121照射による帯電、リターディング電圧印加部からの距離の変化を原因として、試料111表面電位がリターディング電圧と比較して正の方向に均一にずれている。そこで本開示の実施形態3においては、試料111の表面電位の均一なずれを抑制する構成について、図8A、図8B、図9、図10を用いて説明する。実施形態1~2に記載され実施形態3に未記載の事項は、特段の事情がない限り、実施形態3においても適用できる。
<Third embodiment>
In the configuration shown in Fig. 5A in which an inclined recess 202 having an inclination angle 203 is disposed near an insulating support base 201a, the surface potential of the sample 111 is uniformly shifted in the positive direction compared to the retarding voltage due to the dielectric polarization of the sample 111 and the insulating support base 201a, charging due to irradiation with the primary electron beam 121, and a change in distance from the retarding voltage application unit. Therefore, in the third embodiment of the present disclosure, a configuration for suppressing the uniform shift in the surface potential of the sample 111 will be described with reference to Figs. 8A, 8B, 9, and 10. The matters described in the first and second embodiments but not described in the third embodiment can also be applied to the third embodiment unless there are special circumstances.
 図8Aは、図4Aで示した構成に加えて、試料111の帯電や誘電分極を防ぐための電極301を荷電粒子ビーム装置1がさらに備えた構成例を示す側断面図である。電極301は試料111の上方に配置され、試料ホルダ112と同極性かつ同電圧値の負電圧を印加されている。電極301の上方には対物レンズ110が設置され、試料111上の照射点125に対して1次電子ビーム121が照射されているものとする。このとき試料111と絶縁性支持台201aに印加された電圧より形成される等電位線124を示した。R0~R3は図4Aと同様である。 FIG. 8A is a side cross-sectional view showing an example configuration in which the charged particle beam device 1 further includes an electrode 301 for preventing charging and dielectric polarization of the sample 111 in addition to the configuration shown in FIG. 4A. The electrode 301 is placed above the sample 111, and a negative voltage of the same polarity and value as the sample holder 112 is applied to it. The objective lens 110 is placed above the electrode 301, and the primary electron beam 121 is irradiated to an irradiation point 125 on the sample 111. The equipotential lines 124 formed by the voltages applied to the sample 111 and the insulating support stand 201a at this time are shown. R0 to R3 are the same as in FIG. 4A.
 電極301の中心には1次電子ビーム121の通過孔が配置され、さらに電極301にはリターディング電圧と同値の負電圧が印加されている。したがって、試料ホルダ112と電極301との間に電界が生じず、試料111の誘電分極を防ぐことができる。また、1次電子ビーム121を電極301に対して印加された電圧(リターディング電圧)で減速することにより、リターディング電圧による1次電子ビーム121の加速電圧の制御を可能とし、望んだ解像度の画像を得ることが可能となる。 A hole for the primary electron beam 121 is placed at the center of the electrode 301, and a negative voltage equal to the retarding voltage is applied to the electrode 301. Therefore, no electric field is generated between the sample holder 112 and the electrode 301, and dielectric polarization of the sample 111 can be prevented. In addition, by decelerating the primary electron beam 121 with the voltage (retarding voltage) applied to the electrode 301, it is possible to control the acceleration voltage of the primary electron beam 121 by the retarding voltage, and it becomes possible to obtain an image with the desired resolution.
 しかしこの方法は、試料111の表面でなく電極301表面で1次電子ビーム121を減速するので、減速した電子が試料111に照射されるまでの距離が長くなってしまうという課題がある。前述のとおり、電子ビームの加速電圧が低いときは、電子源が持つエネルギー幅と加速電圧の比(ΔE/E)が大きくなるので、色収差の影響も大きくなる。電極301で減速された低加速電圧の電子ビームが試料111に照射されるまでの間に、色収差が大きくなることにより、解像度が低下する。 However, this method has the problem that the primary electron beam 121 is decelerated on the surface of the electrode 301 rather than on the surface of the sample 111, so the distance the decelerated electrons travel before irradiating the sample 111 is long. As mentioned above, when the acceleration voltage of the electron beam is low, the ratio (ΔE/E) between the energy width of the electron source and the acceleration voltage becomes large, so the effect of chromatic aberration also becomes large. By the time the low-acceleration-voltage electron beam decelerated by the electrode 301 is irradiated to the sample 111, chromatic aberration increases, resulting in a decrease in resolution.
 また、試料111の表面電位をリターディング電圧と同じにするためには、電極301の中心穴径を非常に小さくする必要がある。しかし、電極301の位置ずれ量が同じ場合、中心穴径が小さいほど分解能の低下は大きくなるという課題もある。 In addition, to make the surface potential of the sample 111 the same as the retarding voltage, the diameter of the central hole of the electrode 301 must be made very small. However, there is also the issue that, when the amount of positional deviation of the electrode 301 is the same, the smaller the central hole diameter, the greater the decrease in resolution.
 図8Bは、図8Aに示した1次電子ビーム121の通過孔を、電極301の位置ずれが問題にならない大きさにした場合における等電位線124を示している。その他の構成は図8Aと同様である。電極301に配置する通過孔の穴径を大きくした場合(例:穴径を絶縁性支持台201aの表面サイズよりも大きくした)、電極301の位置ずれの影響は低減される。他方で通過孔近傍では、試料111表面電位に関して、帯電と誘電分極、リターディング電圧印加部と試料111との間の距離、を原因とする電位変化が生じる。これにより、試料111表面電位が均一でなくなり、1次電子ビーム121の加速電圧をリターディング電圧によって制御することができなくなる。そこで、図8Bの構成に加えて、実施形態1の構成を併用することを考える。 FIG. 8B shows equipotential lines 124 when the passage hole of the primary electron beam 121 shown in FIG. 8A is sized so that misalignment of the electrode 301 does not cause a problem. The other configurations are the same as those in FIG. 8A. When the diameter of the passage hole arranged in the electrode 301 is increased (for example, the hole diameter is made larger than the surface size of the insulating support base 201a), the effect of misalignment of the electrode 301 is reduced. On the other hand, in the vicinity of the passage hole, potential changes occur in the surface potential of the sample 111 due to charging, dielectric polarization, and the distance between the retarding voltage application unit and the sample 111. As a result, the surface potential of the sample 111 becomes non-uniform, and it becomes impossible to control the acceleration voltage of the primary electron beam 121 by the retarding voltage. Therefore, in addition to the configuration of FIG. 8B, the configuration of embodiment 1 can be used in combination.
 図9は、図8Bに示す支持台中心200を通る試料111と試料ホルダ112、絶縁性支持台201a、通過孔の穴径を大きくした電極301の構成に、傾斜角203を持った傾斜状堀込202を加えた断面図である。この時、試料111と絶縁性支持台201aに印加された電圧より形成される等電位線124を示した。また、支持台中心に照射されているときの1次電子ビーム121照射位置R0を原点として、試料ホルダ112を一定間隔で水平方向に移動させたものを、それぞれR1、R2、R3とする。図9のR1~R3に1次電子ビーム照射点125の位置関係をそれぞれ示す。ここで、R1は絶縁性支持台201a上の位置、R2は絶縁性支持台201aの端面位置、R3は絶縁性支持台201aから離れた位置で、試料111の真下には絶縁性支持台201aがなく試料ホルダ112のみである。 Figure 9 is a cross-sectional view of the sample 111, sample holder 112, insulating support 201a, and electrode 301 with a large hole diameter passing through the support center 200 shown in Figure 8B, with an inclined recess 202 with an inclination angle 203 added. At this time, the equipotential lines 124 formed by the voltage applied to the sample 111 and insulating support 201a are shown. Also, the position R0 of the primary electron beam 121 when irradiated to the support center is set as the origin, and the sample holder 112 is moved horizontally at regular intervals to R1, R2, and R3, respectively. R1 to R3 in Figure 9 show the positional relationship of the primary electron beam irradiation point 125. Here, R1 is the position on the insulating support 201a, R2 is the end face position of the insulating support 201a, and R3 is a position away from the insulating support 201a, and there is no insulating support 201a directly below the sample 111, only the sample holder 112.
 図10は、位置R3の表面電位を基準とした、1次電子ビーム照射点125ごとの試料111の表面電位の差分を示している。縦軸は試料111の表面電位を示しており、横軸は支持台中心200を基点として試料ホルダ112を水平方向に移動させたときの電子ビーム照射位置Rを示している。ここでは、図8A、図8B、図9に示すR0からR3のように、一定の間隔で試料ホルダ112を水平に移動させたとき、試料111に印加されたリターディング電圧をVrとし、図8Aの表面電位、図8Bの表面電位、図9での表面電位をそれぞれプロットした。実線は図8A、一点鎖線は図8B、二点鎖線は図9に生じる試料111表面電位をそれぞれ示している。 Figure 10 shows the difference in surface potential of the sample 111 for each primary electron beam irradiation point 125, with the surface potential at position R3 as the reference. The vertical axis shows the surface potential of the sample 111, and the horizontal axis shows the electron beam irradiation position R when the sample holder 112 is moved horizontally with the support table center 200 as the base point. Here, the retarding voltage applied to the sample 111 when the sample holder 112 is moved horizontally at a constant interval, such as from R0 to R3 shown in Figures 8A, 8B, and 9, is Vr, and the surface potential in Figures 8A, 8B, and 9 are plotted. The solid line shows the surface potential of the sample 111 generated in Figure 8A, the dashed line shows the surface potential of the sample 111 generated in Figure 8B, and the dashed double-dot line shows the surface potential of the sample 111 generated in Figure 9.
 図8Aで述べた通り、リターディング電圧が印加された電極301を試料111上方に配置することにより、試料ホルダ112と電極301との間には電界が生じず、試料111の誘電分極を防ぐことができる。電極301に配置された1次電子ビーム121通過孔の近傍では、実施形態1の図5Aに示す絶縁性支持台201aとその周囲に配置した傾斜状堀込202によって電位変化が打ち消しあうことにより、試料111表面電位の照射位置ごとの変化量は図5Cのように低減することが可能である。加えて、電極301にはリターディング電圧が印加されるので、リターディング電圧印加部が試料111表面に近づく。これにより、試料111表面電位は負の方向に変化するので、試料111表面電位とリターディング電圧との間のずれが抑制される。 As described in FIG. 8A, by arranging the electrode 301 to which the retarding voltage is applied above the sample 111, no electric field is generated between the sample holder 112 and the electrode 301, and dielectric polarization of the sample 111 can be prevented. In the vicinity of the primary electron beam 121 passage hole arranged in the electrode 301, the insulating support 201a shown in FIG. 5A of the first embodiment and the inclined grooves 202 arranged around it cancel out potential changes, so that the amount of change in the surface potential of the sample 111 for each irradiation position can be reduced as shown in FIG. 5C. In addition, since the retarding voltage is applied to the electrode 301, the retarding voltage application portion approaches the surface of the sample 111. As a result, the surface potential of the sample 111 changes in the negative direction, and the deviation between the surface potential of the sample 111 and the retarding voltage is suppressed.
<本開示の変形例について>
 本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除または置換することもできる。
<Modifications of the present disclosure>
The present disclosure is not limited to the above-described embodiments, and includes various modified examples. For example, the above-described embodiments have been described in detail to clearly explain the present disclosure, and it is not necessary to include all of the configurations described. In addition, a part of an embodiment can be replaced with a configuration of another embodiment. In addition, a configuration of another embodiment can be added to a configuration of an embodiment. In addition, a part of the configuration of each embodiment can be added to, deleted from, or replaced with a part of the configuration of another embodiment.
 以上の実施形態において、荷電粒子ビーム装置1の例として電子顕微鏡を挙げたが、その他の荷電粒子ビームを照射する装置においても、本開示に係る構成を適用することができる。 In the above embodiment, an electron microscope is given as an example of a charged particle beam device 1, but the configuration according to the present disclosure can also be applied to other devices that irradiate charged particle beams.
 以上の実施形態において、絶縁材料によって構成された試料111の例としては、例えば絶縁材料を基板として用いた半導体ウェーハ、フォトマスク、などが挙げられるが、これに限るものではなく、そのたの 絶縁性試料について本開示を適用することができる。 In the above embodiments, examples of the sample 111 made of an insulating material include, for example, a semiconductor wafer or a photomask that uses an insulating material as a substrate, but are not limited to these, and the present disclosure can be applied to other insulating samples.
1:荷電粒子ビーム装置、101:電子源、102:コンデンサレンズ1、103:コンデンサレンズ2、104:絞り、105:反射板、106:ExB偏向器、107:検出器、108:偏向器1、109:偏向器2、110:対物レンズ、111:試料111:試料ホルダ、113:ステージ、114:リターディング電源、115:ディスプレイ、116:記憶装置、121:1次電子ビーム、122:2次電子ビーム、123:3次電子ビーム、124:等電位線、125:1次電子ビーム照射点、200:支持台中心、201:支持台、201a:絶縁性支持台、202:傾斜状堀込、203:傾斜角、204:段差状堀込、205:円筒状支持台、206:傾斜状固定部、207:固定用ねじ、208:段差状固定部、211:傾斜状堀込、212:段差状堀込、301:電極 1: Charged particle beam device, 101: Electron source, 102: Condenser lens 1, 103: Condenser lens 2, 104: Aperture, 105: Reflector, 106: ExB deflector, 107: Detector, 108: Deflector 1, 109: Deflector 2, 110: Objective lens, 111: Sample 111: Sample holder, 113: Stage, 114: Retarding power supply, 115: Display, 116: Storage device, 121: Primary electron beam beam, 122: secondary electron beam, 123: tertiary electron beam, 124: equipotential line, 125: primary electron beam irradiation point, 200: support base center, 201: support base, 201a: insulating support base, 202: inclined recess, 203: inclination angle, 204: stepped recess, 205: cylindrical support base, 206: inclined fixed portion, 207: fixing screw, 208: stepped fixed portion, 211: inclined recess, 212: stepped recess, 301: electrode

Claims (12)

  1.  試料に対して荷電粒子ビームを照射する荷電粒子ビーム装置であって、
     前記試料を載置する支持部材、
     前記支持部材を支持する試料ホルダ、
     を備え、
     前記支持部材は絶縁材料を用いて形成されており、
     前記試料ホルダの前記支持部材と接する側の面は、前記支持部材の外側から前記支持部材に向かって深さが増す第1凹部を有し、
     前記支持部材は、前記第1凹部内に配置されている
     ことを特徴とする荷電粒子ビーム装置。
    A charged particle beam device for irradiating a sample with a charged particle beam, comprising:
    A support member on which the sample is placed;
    A sample holder supporting the support member;
    Equipped with
    The support member is formed using an insulating material,
    a surface of the sample holder that contacts the support member has a first recess that increases in depth from an outer side of the support member toward the support member;
    The charged particle beam device, wherein the support member is disposed in the first recess.
  2.  前記第1凹部は、前記支持部材の外側から前記支持部材に向かって深くなる傾斜または段差によって構成されている
     ことを特徴とする請求項1記載の荷電粒子ビーム装置。
    The charged particle beam device according to claim 1 , wherein the first recess is configured by a slope or a step that becomes deeper from an outer side of the support member toward the support member.
  3.  前記傾斜は、前記試料ホルダの表面に対して、60°±15°の角度を有する
     ことを特徴とする請求項2記載の荷電粒子ビーム装置。
    3. The charged particle beam device according to claim 2, wherein the inclination has an angle of 60°±15° with respect to the surface of the sample holder.
  4.  前記試料ホルダの前記支持部材と接する側の面は、前記試料よりも広い面積を有する
     ことを特徴とする請求項1記載の荷電粒子ビーム装置。
    2. The charged particle beam apparatus according to claim 1, wherein the surface of the sample holder that comes into contact with the support member has an area larger than that of the sample.
  5.  前記荷電粒子ビーム装置はさらに、前記試料ホルダに対して電圧を印加することにより前記荷電粒子ビームを減速させる電場を発生させる電源を備え、
     前記支持部材は、前記試料を複数の支持点によって支持するように配置されており、
     前記第1凹部は、
      前記電源が前記電圧を印加しているときにおいて、前記試料のうち前記支持点によって支持されている部位の電位と前記支持点によって支持されていない部位の電位との間の電位差が、前記第1凹部の存在しない場合よりも小さくなる
     ように構成されている
     ことを特徴とする請求項1記載の荷電粒子ビーム装置。
    The charged particle beam device further includes a power supply that applies a voltage to the sample holder to generate an electric field that decelerates the charged particle beam;
    the support member is arranged to support the sample by a plurality of support points;
    The first recess is
    2. The charged particle beam device according to claim 1, wherein, when the power supply is applying the voltage, a potential difference between a potential of a portion of the sample that is supported by the support point and a potential of a portion of the sample that is not supported by the support point is smaller than a potential difference in a case where the first recess does not exist.
  6.  前記支持部材は、筒形状を有することにより、前記筒の頂部によって前記試料を支持するように構成されている
     ことを特徴とする請求項1記載の荷電粒子ビーム装置。
    2. The charged particle beam device according to claim 1, wherein the support member has a cylindrical shape and is configured to support the sample by a top portion of the cylinder.
  7.  前記試料ホルダの前記支持部材と接する側の面は、前記筒形状の内部から前記筒形状の内壁に向かって深さが増す第2凹部を有する
     ことを特徴とする請求項6記載の荷電粒子ビーム装置。
    7. The charged particle beam device according to claim 6, wherein the surface of the sample holder that comes into contact with the support member has a second recess whose depth increases from the inside of the cylindrical shape toward the inner wall of the cylindrical shape.
  8.  前記荷電粒子ビーム装置はさらに、前記試料ホルダに対して電圧を印加することにより前記荷電粒子ビームを減速させる電場を発生させる電源を備え、
     前記第2凹部は、前記試料ホルダのうち前記電圧が印加される部位と前記試料との間の距離を前記試料ホルダの他の部位よりも増やすことにより、前記支持部材と前記試料が接触する接触部位において前記支持部材の誘電分極によって生じる前記試料の表面電位の変動分のうち少なくとも一部を、キャンセルするように構成されている
     ことを特徴とする請求項7記載の荷電粒子ビーム装置。
    The charged particle beam device further includes a power supply that applies a voltage to the sample holder to generate an electric field that decelerates the charged particle beam;
    8. The charged particle beam device according to claim 7, wherein the second recess is configured to cancel at least a portion of a fluctuation in the surface potential of the sample caused by dielectric polarization of the support member at a contact portion where the support member and the sample are in contact with each other by increasing the distance between the portion of the sample holder to which the voltage is applied and the sample compared to other portions of the sample holder.
  9.  前記荷電粒子ビーム装置はさらに、前記荷電粒子ビームを出射するビーム源と前記試料との間に配置された電極を備え、
     前記荷電粒子ビーム装置はさらに、前記試料ホルダに対して電圧を印加することにより前記荷電粒子ビームを減速させる電場を発生させる電源を備え、
     前記電源は、前記電源が前記試料ホルダに対して印加する電圧と同じ極性の電圧を前記電極に対して印加することにより、前記試料の誘電分極を抑制する
     ことを特徴とする請求項1記載の荷電粒子ビーム装置。
    The charged particle beam device further includes an electrode disposed between a beam source that emits the charged particle beam and the sample;
    The charged particle beam device further includes a power supply that applies a voltage to the sample holder to generate an electric field that decelerates the charged particle beam;
    2. The charged particle beam device according to claim 1, wherein the power supply applies to the electrode a voltage having the same polarity as a voltage applied to the sample holder by the power supply, thereby suppressing dielectric polarization of the sample.
  10.  前記電源は、前記試料ホルダに対して印加する電圧値と同じ電圧値を前記電極に対して印加する
     ことを特徴とする請求項9記載の荷電粒子ビーム装置。
    10. The charged particle beam device according to claim 9, wherein the power supply applies to the electrode a voltage value that is the same as a voltage value that is applied to the sample holder.
  11.  前記電極は、前記荷電粒子ビームが通過する孔を有し、
     前記孔の開口サイズは、前記支持部材の平面サイズよりも大きい
     ことを特徴とする請求項9記載の荷電粒子ビーム装置。
    the electrode has a hole through which the charged particle beam passes;
    The charged particle beam device according to claim 9 , wherein an opening size of the hole is larger than a planar size of the support member.
  12.  前記試料は、絶縁材料を基板として用いた半導体基板である
     ことを特徴とする請求項1記載の荷電粒子ビーム装置。
    2. The charged particle beam device according to claim 1, wherein the sample is a semiconductor substrate using an insulating material as a substrate.
PCT/JP2022/042114 2022-11-11 2022-11-11 Charged particle beam device WO2024100897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042114 WO2024100897A1 (en) 2022-11-11 2022-11-11 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042114 WO2024100897A1 (en) 2022-11-11 2022-11-11 Charged particle beam device

Publications (1)

Publication Number Publication Date
WO2024100897A1 true WO2024100897A1 (en) 2024-05-16

Family

ID=91032158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042114 WO2024100897A1 (en) 2022-11-11 2022-11-11 Charged particle beam device

Country Status (1)

Country Link
WO (1) WO2024100897A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250057A (en) * 1995-03-08 1996-09-27 Jeol Ltd Sample holder for scanning electron microscope
JP2015099701A (en) * 2013-11-19 2015-05-28 株式会社日立ハイテクノロジーズ Sample measuring device
JP2015185528A (en) * 2014-03-26 2015-10-22 株式会社アドバンテスト Stage device and electron beam device
WO2017179145A1 (en) * 2016-04-13 2017-10-19 株式会社日立ハイテクノロジーズ Charged particle beam device and sample holder
WO2020188645A1 (en) * 2019-03-15 2020-09-24 株式会社ニコン Charged particle device, support device, and observation method
US20210028052A1 (en) * 2019-07-25 2021-01-28 Samsung Electronics Co., Ltd. Lift pin alignment method and alignment apparatus and substrate processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250057A (en) * 1995-03-08 1996-09-27 Jeol Ltd Sample holder for scanning electron microscope
JP2015099701A (en) * 2013-11-19 2015-05-28 株式会社日立ハイテクノロジーズ Sample measuring device
JP2015185528A (en) * 2014-03-26 2015-10-22 株式会社アドバンテスト Stage device and electron beam device
WO2017179145A1 (en) * 2016-04-13 2017-10-19 株式会社日立ハイテクノロジーズ Charged particle beam device and sample holder
WO2020188645A1 (en) * 2019-03-15 2020-09-24 株式会社ニコン Charged particle device, support device, and observation method
US20210028052A1 (en) * 2019-07-25 2021-01-28 Samsung Electronics Co., Ltd. Lift pin alignment method and alignment apparatus and substrate processing apparatus

Similar Documents

Publication Publication Date Title
US10062541B2 (en) Apparatus of plural charged-particle beams
JP4679978B2 (en) Charged particle beam application equipment
US8247782B2 (en) Apparatus and method for investigating and/or modifying a sample
JP2019537223A (en) Method for inspecting test piece and charged particle multi-beam device
US7067807B2 (en) Charged particle beam column and method of its operation
KR20190005134A (en) Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets and method of imaging or illuminating a specimen with an array of primary charged particle beamlets
KR102194561B1 (en) Charged particle beam device, charged particle beam influencing device, and method of operating a charged particle beam device
US10483080B1 (en) Charged particle beam device, multi-beam blanker for a charged particle beam device, and method for operating a charged particle beam device
US10593509B2 (en) Charged particle beam device, multi-beam blanker for a charged particle beam device, and method for operating a charged particle beam device
JP2007265931A (en) Inspection device and inspection method
US6380546B1 (en) Focusing assembly and method for a charged particle beam column
US6897442B2 (en) Objective lens arrangement for use in a charged particle beam column
EP1350259B1 (en) Sem provided with a secondary electron detector having a central electrode
WO2010140649A1 (en) Charged particle beam device and evaluation method using the charged particle beam device
JP6740448B2 (en) Charged particle beam device
US7227141B2 (en) Electron beam apparatus
US20020109089A1 (en) SEM provided with an adjustable final electrode in the electrostatic objective
US20070246651A1 (en) Charged particle beam apparatus
JP2009170150A (en) Inspection and measurement device and inspection and measurement method
KR20190102170A (en) Methods for automated critical dimension measurement of substrates for display manufacturing, methods for inspecting large area substrates for display manufacturing, apparatus for inspecting large area substrates for display manufacturing, and methods of operation thereof
WO2024100897A1 (en) Charged particle beam device
JP7192117B2 (en) Method of critical dimension measurement on substrates and apparatus for inspecting and cutting electronic devices on substrates
JP2021077458A (en) Stage mechanism
US20240006147A1 (en) Flood column and charged particle apparatus
TWI762849B (en) Apparatus for obtaining optical measurements in a charged particle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964632

Country of ref document: EP

Kind code of ref document: A1