WO2024096035A1 - 有機電界発光素子、有機電界発光素子を製造する方法、有機elディスプレイパネル、有機elディスプレイパネルを製造する方法、有機電界発光素子の膜厚構成の設計方法及び有機elディスプレイパネルの膜厚構成の設計方法 - Google Patents

有機電界発光素子、有機電界発光素子を製造する方法、有機elディスプレイパネル、有機elディスプレイパネルを製造する方法、有機電界発光素子の膜厚構成の設計方法及び有機elディスプレイパネルの膜厚構成の設計方法 Download PDF

Info

Publication number
WO2024096035A1
WO2024096035A1 PCT/JP2023/039357 JP2023039357W WO2024096035A1 WO 2024096035 A1 WO2024096035 A1 WO 2024096035A1 JP 2023039357 W JP2023039357 W JP 2023039357W WO 2024096035 A1 WO2024096035 A1 WO 2024096035A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional
film
functional layer
organic
partitioned
Prior art date
Application number
PCT/JP2023/039357
Other languages
English (en)
French (fr)
Inventor
学 櫻井
優記 大嶋
祥匡 坂東
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024096035A1 publication Critical patent/WO2024096035A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers

Definitions

  • the present invention relates to an organic electroluminescent device, a method for manufacturing an organic electroluminescent device, an organic EL display panel, a method for manufacturing an organic EL display panel, a method for designing the film thickness configuration of an organic electroluminescent device, and a method for designing the film thickness configuration of an organic EL display panel.
  • the chromaticity of the light-emitting region in an organic electroluminescent device is sensitive to the film thickness of the functional layer, so when forming the functional layer using a wet method, it is necessary to eliminate film thickness variations within each device and form the functional layer flat.
  • the light-emitting region where carrier recombination occurs occurs near the interface due to the energy barrier of the heterointerface, so the shape of the organic functional layer at the light-emitting layer interface determines the light-emitting characteristics of the device.
  • each pixel is divided by a partition (bank) made of polyimide or the like, and the wettability of each bank surface is controlled by plasma treatment or the like.
  • a partition made of polyimide or the like
  • plasma treatment or the like When a liquid is injected into a minute space such as a capillary, the surface of the liquid rises or falls along the wall compared to the center due to the interfacial tension, forming a curved surface called a meniscus.
  • the injected liquid wets the wall, the meniscus is concave with respect to the horizontal plane, and when the injected liquid repels the wall, the meniscus is convex with respect to the horizontal plane.
  • Patent Document 1 describes how mixing two solvents with different properties improves the flatness of the film and improves the light-emitting properties.
  • Patent Document 2 describes how adjusting the angle of the partition walls reduces the width of the meniscus of the functional layer and improves the light-emitting area.
  • patents and research on the shape of organic thin films after wet film formation in organic electroluminescent devices aim to form flat films using various techniques, such as selecting the material used for the partition walls, functional ink materials, and functional ink solvents, and controlling the reduced pressure drying process, to make the light-emitting characteristics of the organic electroluminescent devices uniform.
  • patents and research on the shape of organic thin films after wet film formation in organic electroluminescent devices aim to simplify the design of film thickness configurations to make the light-emitting characteristics of the organic electroluminescent devices uniform, by forming flat films using various techniques, such as selecting the material used for the partition walls, functional ink materials, and functional ink solvents, and controlling the reduced pressure drying process.
  • each functional layer is to be flattened with a single layer film
  • the film thickness configuration and pixel size are different for each color. Therefore, even if an ink that becomes flat after drying under specific conditions is developed, the flatness decreases when the material used for the partition wall and the film thickness width change in size, and it was necessary to design a new functional ink, or to design a new functional ink and film thickness configuration.
  • the present invention aims to provide an organic electroluminescent device or an organic EL display panel with excellent optical properties that is not dependent on various conditions such as the thickness of the organic film, the partition material, the size of the pixel, the reduced pressure drying process, and the ink composition. Furthermore, the present invention aims to provide a method for easily designing the film thickness configuration of an organic electroluminescent device or an organic EL display panel with excellent optical properties.
  • the inventors have newly discovered that when forming a functional film constituting an organic electroluminescent element in a partitioned area surrounded by a partition wall by wet film formation, laminating multiple functional layers with non-flat shapes in a specific combination makes the film shape in the partitioned area surrounded by the partition wall uniform, thereby making the unevenness of the light-emitting surface of the organic electroluminescent element uniform.
  • They have also discovered that by using one type of functional ink exhibiting the same functionality, it is possible to create an organic EL display panel including an organic electroluminescent element with an even unevenness of the light-emitting surface, and have completed the present invention.
  • the inventors discovered that when a functional film constituting an organic electroluminescent element or an organic EL display panel is formed in a partitioned area surrounded by partition walls by wet film formation, the film thickness profile obtained by adding the film thickness profile of the film formed in the partitioned area by numerical calculation processing becomes the same as the laminated film thickness profile, which led to the completion of the present invention.
  • the gist of the present invention is as follows:
  • Aspect 1 of the present invention is An organic electroluminescence device having a functional film in which at least a functional layer 1 and a functional layer 2 are laminated,
  • the organic electroluminescent device is provided in a partitioned region partitioned by a partition wall,
  • the functional film 1 has an average film thickness in the center of the partitioned region that is thicker than the average film thickness in the partitioned region on the sides of the partition wall
  • the functional film 2 has an average film thickness on the partition wall side in the partitioned region that is thicker than the average film thickness in the central portion of the partitioned region, the central portion means an inside of an area whose boundary is a closed curve defined
  • Aspect 2 of the present invention is an organic electroluminescent device according to aspect 1,
  • the functional film 1 is a film whose thickest part is located in the center of the partitioned region
  • the functional film 2 relates to an organic electroluminescent device, which is a film whose thickest part is located in an area other than the center of the partitioned area.
  • a third aspect of the present invention is an organic electroluminescent device according to the first or second aspect,
  • the organic electroluminescent device relates to an organic electroluminescent device in which the average thickness of the functional film 1 is smaller than the average thickness of the functional film 2.
  • a fourth aspect of the present invention is an organic electroluminescent device according to any one of the first to third aspects,
  • the organic electroluminescent device relates to the functional layer 1 and the functional layer 2, which are hole injection layers or hole transport layers.
  • a fifth aspect of the present invention is an organic electroluminescent device according to any one of the first to fourth aspects,
  • the present invention relates to an organic electroluminescent device, in which the functional layer 1 and the functional layer 2 each contain a polymer compound.
  • Aspect 6 of the present invention is The present invention relates to a method for producing an organic electroluminescent device according to any one of Aspects 1 to 5, comprising the following step group (ii) after the following step group (i), or the following step group (ii) after the following step group (i): Step group (i): A step including, in this order, a step of printing a functional ink for forming the functional layer 1 onto the partitioned region by an inkjet method, a step of drying the printed partitioned region under reduced pressure in a vacuum chamber, and a step of baking the dried partitioned region.
  • a seventh aspect of the present invention relates to the method of the sixth aspect, At least one of the functional ink for forming the functional layer 1 and the functional ink for forming the functional layer 2 contains two or more types of organic solvents,
  • the present invention relates to a method, which is included in the step group using a functional ink containing the two or more organic solvents among the step group (i) and the step group (ii), and in the step of drying the partitioned region under reduced pressure in a vacuum chamber, the time required for the pressure to reach a pressure lower than the vapor pressure of the organic solvent having the lowest vapor pressure among the two or more organic solvents is 60 seconds or more and 1,800 seconds or less after the start of reduced pressure drying.
  • Aspect 8 of the present invention is An organic EL display panel having a plurality of partitioned regions separated by partition walls, and an organic electroluminescent device formed in each of the partitioned regions,
  • the plurality of partitioned regions include at least a first partitioned region and a second partitioned region, the organic electroluminescent element in the first partitioned region and the organic electroluminescent element in the second partitioned region have opening areas different from each other, the first partitioned region and the second partitioned region each independently have a functional film in which at least a functional layer 1 and a functional layer 2 are laminated; a functional material forming the functional layer 1 in the first divided region and a functional material forming the functional layer 1 in the second divided region are the same; a functional material forming the functional layer 2 in the first divided region is the same as a functional material forming the functional layer 2 in the second divided region;
  • the present invention relates to an organic EL display panel in which either the first divided region or the second divided region satisfies at
  • the functional film 1 has an average film thickness in the center of the partitioned region that is greater than the average film thickness in the partition wall side portions
  • the functional film 2 has an average film thickness in the central portion of the partitioned region that is thinner than the average film thickness in the partition wall side portions
  • the central portion refers to the inside of an area bounded by a closed curve defined as a locus of points 60% of the way from the center of gravity of the partition wall when the entire periphery of the partition wall is scanned with a straight line passing through the center of gravity of the partition wall.
  • the partition wall side portion refers to the outside of an area bounded by the closed curve
  • a ninth aspect of the present invention is the organic EL display panel of the eighth aspect, the flatness F of the film in which the functional layer 1 and the functional layer 2 are laminated is greater than either the flatness F of the functional film 1 or the flatness F of the functional film 2;
  • the flatness F is expressed by the following formula and relates to an organic EL display panel.
  • F M / Ap x 100 (%) (In the formula, Ap represents the length of the minor axis or major axis in the partitioned region, and M represents the length of a profile portion having a film thickness smaller than 1.05 and larger than 0.95 when the film thickness profile measured along the minor axis or major axis in the partitioned region is divided by the film thickness h at the center of the partitioned region.)
  • a tenth aspect of the present invention is the organic EL display panel of the eighth or ninth aspect
  • the functional film 1 is a film whose thickest part is located in the center of the partitioned region
  • the functional film 2 relates to an organic EL display panel, and is a film whose thickest portion is located in an area other than the center of the partitioned area.
  • An eleventh aspect of the present invention is an organic EL display panel according to any one of the eighth to tenth aspects,
  • the functional film 1 has a thickest portion located in the center of the partitioned region, and the average thickness of the functional film 1 is thinner than the average thickness of the functional film 2 in the organic EL display panel.
  • a twelfth aspect of the present invention is an organic EL display panel according to any one of the eighth to eleventh aspects,
  • the present invention relates to an organic EL display panel, wherein the functional layer 1 and the functional layer 2 are a hole injection layer or a hole transport layer.
  • a thirteenth aspect of the present invention is an organic EL display panel according to any one of the eighth to twelfth aspects,
  • the present invention relates to an organic EL display panel, in which the functional layer 1 and the functional layer 2 each contain a polymer compound.
  • Aspect 14 of the present invention is The present invention relates to a method for producing an organic EL display panel according to any one of Aspects 8 to 13, comprising the following steps (ii) after the following steps (i), or comprising the following steps (i) after the following steps (ii): Step group (i): A step including, in this order, a step of printing a functional ink for forming the functional layer 1 onto the partitioned region by an inkjet method, a step of drying the printed partitioned region under reduced pressure in a vacuum chamber, and a step of baking the dried partitioned region.
  • a fifteenth aspect of the present invention relates to the method of the fourteenth aspect, At least one of the functional ink for forming the functional layer 1 and the functional ink for forming the functional layer 2 contains two or more types of organic solvents,
  • the present invention relates to a method, which is included in the step group using a functional ink containing the two or more organic solvents among the step group (i) and the step group (ii), and in the step of drying the partitioned region under reduced pressure in a vacuum chamber, the time required for the pressure to reach a pressure lower than the vapor pressure of the organic solvent having the lowest vapor pressure among the two or more organic solvents is 60 seconds or more and 1,800 seconds or less after the start of reduced pressure drying.
  • Aspect 16 of the present invention is A method for designing a film thickness configuration of an organic electroluminescence device having a functional film formed by laminating at least a functional layer 1 and a functional layer 2, the functional film being provided in a partitioned region partitioned by a partition wall, the method comprising the steps of: A film (functional film 1) formed by filling a necessary amount of functional ink for forming the functional layer 1 into the partitioned region and then drying under reduced pressure, and a film (functional film 2) formed by filling a necessary amount of functional ink for forming the functional layer 2 into the partitioned region and then drying under reduced pressure, when the two films are laminated, the film thickness of each film is a film thickness profile of the functional film 1 and a film thickness profile of the functional film 2 are combined to obtain a film flatness F of 75% or more, the film flatness F being calculated by a numerical calculation process;
  • the flatness F is expressed by the following formula, and relates to a method for designing the film thickness configuration of an organic electroluminescent
  • a seventeenth aspect of the present invention is a method for designing a film thickness configuration of an organic electroluminescent device according to the sixteenth aspect, comprising the steps of: The flatness F of the film in which the functional layer 1 and the functional layer 2 are laminated is The present invention relates to a method for designing a film thickness configuration of an organic electroluminescent element that exhibits a value larger than either the flatness F of the functional film 1 or the flatness F of the functional film 2.
  • Aspect 18 of the present invention is a method for designing a film thickness configuration of an organic electroluminescent device according to aspect 16 or 17, comprising:
  • the functional film 1 is a film whose thickest part is located in the center of the partitioned region,
  • the functional film 2 is a film whose thickest portion is located in an area other than the center of the partitioned area, and the present invention relates to a method for designing a film thickness configuration of an organic electroluminescent device.
  • a nineteenth aspect of the present invention is a method for designing a film thickness configuration of an organic electroluminescent device according to any one of the sixteenth to eighteenth aspects, comprising:
  • the present invention relates to a method for designing a film thickness configuration of an organic electroluminescence device in which the average film thickness of the functional film 1 is thinner than the average film thickness of the functional film 2.
  • a twentieth aspect of the present invention is a method for designing a film thickness configuration of an organic electroluminescent device according to any one of the sixteenth to nineteenth aspects, comprising:
  • the present invention relates to a method for designing a film thickness configuration of an organic electroluminescence device, in which the functional layer 1 and the functional layer 2 are a hole injection layer or a hole transport layer.
  • a twenty-first aspect of the present invention is a method for designing a film thickness configuration of an organic electroluminescent device according to any one of the sixteenth to twenty aspects, comprising:
  • the present invention relates to a method for designing a film thickness configuration of an organic electroluminescence device in which the functional layer 1 and the functional layer 2 contain a polymer compound.
  • Aspect 22 of the present invention is An organic EL display panel having a plurality of partitioned regions separated by partition walls, and organic electroluminescent elements formed in the partitioned regions,
  • the plurality of partitioned regions include at least a first partitioned region and a second partitioned region
  • Each of the partitioned regions independently has a functional film in which at least a functional layer 1 and a functional layer 2 are laminated, a functional material forming the functional layer 1 in the first divided region is the same as a functional material forming the functional layer 1 in the second divided region; a functional material forming the functional layer 2 in the first divided region is the same as a functional material forming the functional layer 2 in the second divided region;
  • the first partitioned region and the second partitioned region are each independently formed of
  • each film when laminated is a film thickness profile of the functional film 1 and a film thickness profile of the functional film 2 formed on the functional film 1 are combined to obtain a film flatness of 75% or more obtained by adding the film thickness profile of the functional film 1 and the film thickness profile of the functional film 2 formed on the functional film 2 through a numerical calculation process;
  • the flatness F is expressed by the following formula, and relates to a method for designing the film thickness configuration of an organic EL display panel.
  • a twenty-third aspect of the present invention is the method for designing a film thickness configuration of an organic EL display panel according to the twenty-second aspect,
  • the flatness F of the film in which the functional layer 1 and the functional layer 2 are laminated is The present invention relates to a method for designing a film thickness configuration of an organic EL display panel that exhibits a value larger than either the flatness F of the functional film 1 or the flatness F of the functional film 2.
  • a twenty-fourth aspect of the present invention is the method for designing a film thickness configuration of an organic EL display panel according to the twenty-second or twenty-third aspect,
  • the functional film 1 is a film whose thickest part is located in the center of the partitioned region
  • the present invention relates to a method for designing a film thickness configuration of an organic EL display panel, in which the functional film 2 is a film whose thickest portion is located in an area other than the center of the partitioned area.
  • a twenty-fifth aspect of the present invention is a method for designing a film thickness configuration of an organic EL display panel according to any one of the twenty-second to twenty-fourth aspects, comprising:
  • the present invention relates to a method for designing a film thickness configuration of an organic EL display panel, in which the average film thickness of the functional film 1 is thinner than the average film thickness of the functional film 2.
  • a twenty-sixth aspect of the present invention is a method for designing a film thickness configuration of an organic EL display panel according to any one of the twenty-second to twenty-fifth aspects, comprising:
  • the present invention relates to a method for designing a film thickness configuration of an organic EL display panel, in which the functional layer 1 and the functional layer 2 are a hole injection layer or a hole transport layer.
  • a twenty-seventh aspect of the present invention is a method for designing a film thickness configuration of an organic EL display panel according to any one of the twenty-second to twenty-sixth aspects, comprising:
  • the present invention relates to a method for designing a film thickness configuration of an organic EL display panel, in which the functional layer 1 and the functional layer 2 contain a polymer compound.
  • Aspect 28 of the present invention is An organic electroluminescence device having a functional film in which at least a functional layer 1 and a functional layer 2 are laminated, the organic electroluminescent device is provided in a partitioned region partitioned by a partition wall,
  • the functional layer 1 is a layer in which the value of the following formula is the largest among the layers constituting the functional film in a layer thickness profile measured along the minor axis or the major axis of the partitioned region, (Average thickness of the central part of the partitioned region) - (Average thickness of the partition wall side part of the partitioned region)
  • the functional layer 2 is a layer in which the value of the following formula is the largest among the layers constituting the functional film in a layer thickness profile measured along the minor axis or the major axis of the partitioned region, (Average thickness of the partition wall side portion in the partition region) - (Average thickness of the partition wall center portion in the partition region)
  • the central portion refers to the inside
  • the present invention can provide an organic electroluminescent device with excellent optical properties that is not dependent on various conditions such as the thickness of the organic film, the partition material, the size of the pixel, the reduced pressure drying process, and the ink composition.
  • the present invention can also provide an organic EL display panel with excellent optical properties using a single type of functional ink that exhibits the same functionality, without depending on various conditions such as the thickness of the organic film, the partition material, the size of the pixel, the reduced pressure drying process, and the ink composition.
  • the functional film constituting the organic electroluminescent element when the functional film constituting the organic electroluminescent element is formed by wet film formation, even if various conditions such as the thickness of the organic film, the partition material, the size of the pixel, the reduced pressure drying process, and the ink composition change, it is possible to manufacture an organic electroluminescent element without degrading the optical properties.
  • the functional film constituting the organic electroluminescent element when the functional film constituting the organic electroluminescent element is formed by wet film formation, even if various conditions such as the thickness of the organic film, the partition material, the size of the pixel, the reduced pressure drying process, and the ink composition change, it is possible to manufacture an organic EL display panel by using one type of functional ink that exhibits the same functionality without degrading the optical properties.
  • the present invention can provide a method for designing a film thickness configuration of an organic electroluminescence element or an organic EL display panel having excellent optical characteristics, which is not dependent on various conditions such as the film thickness of the organic film, the partition wall material, the size of the pixel, the reduced pressure drying process, and the ink composition. Furthermore, according to the present invention, in the case where a functional film constituting an organic electroluminescent device or an organic EL display panel is formed by wet film formation, even if various conditions such as the film thickness of the organic film, the partition wall material, the size of the pixel, the reduced pressure drying process, and the ink composition are changed, the film thickness configuration of an organic electroluminescent device or an organic EL display panel having excellent optical characteristics can be easily designed.
  • FIG. 1 is a cross-sectional view that illustrates an example of an organic electroluminescent device of the present invention.
  • FIG. 2 is a diagram showing a film thickness profile in Reference Example 1-1.
  • FIG. 3 is a diagram showing a film thickness profile in Reference Example 1-2.
  • FIG. 4 is a diagram showing a film thickness profile in Reference Example 1-3.
  • FIG. 5 is a diagram showing a film thickness profile in Example 1.
  • FIG. 6 is a diagram showing a film thickness profile in Example 2.
  • FIG. 7 is a diagram showing a film thickness profile in Example 3.
  • FIG. 8 is a diagram showing a film thickness profile in Example 4.
  • FIG. 9 is a diagram showing a film thickness profile in Example 5.
  • FIG. 10 is a diagram showing a film thickness profile in Reference Example 2.
  • FIG. 10 is a diagram showing a film thickness profile in Reference Example 2.
  • FIG. 11 is a diagram showing the distribution of CIE x of the minor axis in Reference Example 2.
  • FIG. 12 is a diagram showing the distribution of CIEy of the minor axis in Reference Example 2.
  • FIG. 13 is a diagram showing a film thickness profile in Reference Example 3-1.
  • FIG. 14 is a diagram showing a film thickness profile in Reference Example 3-2.
  • FIG. 15 is a diagram showing a film thickness profile in Reference Example 3-3.
  • FIG. 16 is a diagram showing a film thickness profile in Reference Example 3-4.
  • FIG. 17 is a diagram showing a film thickness profile in Reference Example 3-5.
  • FIG. 18 is a diagram showing a film thickness profile in Reference Example 3-6.
  • FIG. 19 is a diagram showing a film thickness profile in Reference Example 51-1.
  • FIG. 20 is a diagram showing a film thickness profile in Reference Example 51-2.
  • FIG. 21 is a diagram showing a film thickness profile in Reference Example 51-3.
  • FIG. 22 is a view showing a film thickness profile in Reference Example 52.
  • FIG. 23 is a diagram showing the distribution of CIE x of the minor axis in Reference Example 52.
  • FIG. 24 is a diagram showing the distribution of CIEy of the minor axis in Reference Example 52.
  • FIG. 25 is a diagram showing a film thickness profile in Reference Example 53-1.
  • FIG. 26 is a diagram showing a film thickness profile in Reference Example 53-1.
  • FIG. 27 is a diagram showing a film thickness profile in Reference Example 53-1.
  • FIG. 28 is a diagram showing a film thickness profile in Reference Example 53-2.
  • FIG. 29 is a diagram showing a film thickness profile in Reference Example 53-2.
  • FIG. 30 is a diagram showing a film thickness profile in Reference Example 53-2.
  • FIG. 31 is a diagram showing a film thickness profile in Reference Example 53-3.
  • FIG. 32 is a diagram showing a film thickness profile in Reference Example 53-3.
  • FIG. 33 is a diagram showing a film thickness profile in Reference Example 53-3.
  • composition of the present invention when used as ink to be ejected from a nozzle of an inkjet or the like, it may be referred to as a functional ink or simply as an ink.
  • the composition of the present invention when used as ink to be ejected from a nozzle of an inkjet or the like and ejected from the nozzle to apply to an area surrounded by a partition layer, the ink in the area surrounded by the partition layer may be referred to as a liquid or liquid film, and the ink ejected from the nozzle may be referred to as a droplet.
  • the liquid film in the area surrounded by the partition layer (bank) may be dried, and the solvent composition ratio of the liquid film may change due to the evaporation of the solvent, which may also be referred to as a liquid or liquid film.
  • a film containing a functional material obtained by applying the functional ink of the present invention and drying it by evaporating the organic solvent is referred to as a functional film or functional layer.
  • a film containing an organic compound that does not contain a solvent or that has been dried by substantially evaporating the solvent is referred to as an organic film.
  • a functional film is a type of organic film.
  • a bank refers to a structure in which a film made from a photosensitive composition is patterned by a general photolithography method to form a film with partitioned micro-areas (also called pixels).
  • the partitioned micro-areas of this structure are surrounded by the walls of the bank, which have a certain height, and the entire area of these walls is referred to as the bank side.
  • a photosensitive composition manufactured for the above-mentioned purpose may simply be referred to as a resist.
  • this bank has liquid repellency and functions to prevent the overflow of the applied functional ink.
  • the resist used to manufacture such a liquid repellent bank is sometimes called a liquid repellent resist.
  • a film made using this liquid repellent resist and produced by exposure and development without using a mask for patterning is called a liquid repellent resist film.
  • the present invention is an organic electroluminescent device having a functional film in which at least functional layer 1 and functional layer 2 are laminated, the organic electroluminescent device being provided in a partitioned region partitioned by a partition wall, wherein when a functional ink for forming the functional layer 1 is filled into the partitioned region in an amount necessary to form the functional layer 1, and then dried under reduced pressure to form a film called functional film 1, the average film thickness of the central part of the partitioned region of the functional film 1 is thicker than the average film thickness of the partition wall side part of the partitioned region, and a film formed by filling a functional ink for forming the functional layer 2 into the partitioned region in an amount necessary to form the functional layer 2, and then dried under reduced pressure to form functional film 2, is called functional film 2.
  • the average thickness of the functional film 2 on the side of the partition wall in the partitioned region becomes thicker than the average thickness of the central portion of the partitioned region
  • the central portion means the inside of the region bounded by a closed curve defined as the locus of points 60% of the way from the center of gravity of the partition wall when the entire periphery of the partitioned region is scanned with a straight line passing through the center of gravity of the partitioned region
  • the partition wall side portion means the outside of the region bounded by the closed curve within the partitioned region
  • the closed curve may include straight portions and corner portions
  • the flatness F of the film in which the functional layer 1 and the functional layer 2 are laminated is greater than both the flatness F of the functional film 1 and the flatness F of the functional film 2, and the flatness F is expressed by the following formula.
  • This relates to an organic electroluminescent device.
  • the film thickness profile means the distribution of the film thickness in the divided region along the measurement axis direction.
  • the "center" of the divided region means a portion that corresponds to a central length of 5 when the length of the divided region in which the film thickness profile is measured is taken as 100.
  • the length of the profile portion means the length of the partitioned area where the film thickness profile is measured.
  • the present invention relates to an organic EL display panel having a plurality of partitioned regions separated by partition walls, in which organic electroluminescent elements are formed, the plurality of partitioned regions having at least a first partitioned region and a second partitioned region, the organic electroluminescent elements of the first partitioned region and the organic electroluminescent elements of the second partitioned region have opening areas different from each other, the first partitioned region and the second partitioned region each have a functional film in which at least a functional layer 1 and a functional layer 2 are laminated independently, the functional material forming the functional layer 1 of the first partitioned region is the same as the functional material forming the functional layer 1 of the second partitioned region, the functional material forming the functional layer 2 of the first partitioned region is the same as the functional material forming the functional layer 2 of the second partitioned region, and either the first partitioned region or the second partitioned region satisfies at least the following condition:
  • the average thickness of the functional film 1 at the center of the partitioned region is thicker than that at the partition side
  • a functional film 2 is formed by filling the functional ink for forming the functional layer 2 in the partitioned region in an amount necessary for forming the functional layer 2 and then drying under reduced pressure
  • the average thickness of the functional film 2 at the center of the partitioned region is thinner than that at the partition side
  • the central portion refers to the inside of an area bounded by a closed curve defined as a locus of points at 60% of the distance from the center of gravity to the partition when the entire outer periphery of the partitioned region is scanned with a straight line passing through the center of gravity of the partitioned region.
  • the partition side refers to the outside of the area bounded by the closed curve within the partitioned region.
  • the present invention relates to a method for designing the film thickness configuration of an organic electroluminescent device having a functional film formed by stacking at least functional layers 1 and 2 and disposed in a partitioned region partitioned by a partition wall, in which a film (functional film 1) formed by filling a functional ink for forming the functional layer 1 in the partitioned region in an amount necessary to form the functional layer 1 and then drying under reduced pressure, and a film (functional film 2) formed by filling a functional ink for forming the functional layer 2 in the partitioned region in an amount necessary to form the functional layer 2 and then drying under reduced pressure, the film thicknesses of the respective films when stacked are combined such that the film flatness F of the film obtained by adding the film thickness profile of the functional film 1 and the film thickness profile of the functional film 2 by numerical calculation processing is 75% or more, preferably 85% or more, where the flatness F is expressed by the following formula.
  • the present invention relates to a method for designing a film thickness configuration of an organic EL display panel having a plurality of partitioned regions separated by partition walls, in which organic electroluminescent elements are formed, the plurality of partitioned regions having at least a first partitioned region and a second partitioned region, the organic electroluminescent elements of the first partitioned region and the organic electroluminescent elements of the second partitioned region having different light emission colors, each of the partitioned regions having a functional film in which at least a functional layer 1 and a functional layer 2 are laminated independently, the functional material forming the functional layer 1 of the first partitioned region is the same as the functional material forming the functional layer 1 of the second partitioned region, the functional material forming the functional layer 2 of the first partitioned region is the same as the functional material forming the functional layer 2 of the second partitioned region,
  • the first partitioned region and the second partitioned region are each independently formed by filling a functional ink for forming the functional layer 1 in the pluralit
  • the film thickness of each film formed by filling a functional ink for forming the functional layer 2 in the partitioned region in an amount necessary for forming the functional layer 2, followed by drying under reduced pressure is a combination in which the film thickness profile of the functional film 1 and the film thickness profile of the film formed by forming the functional film 2 are added together by numerical calculation processing to obtain a film flatness of 75% or more, preferably 85% or more, where the flatness F is expressed by the following formula.
  • This relates to a method for designing a film thickness configuration for an organic EL display panel.
  • the present invention provides an organic electroluminescence device having a functional film in which at least a functional layer 1 and a functional layer 2 are laminated, the organic electroluminescence device being provided in a partitioned region partitioned by a partition wall, the functional layer 1 being a layer that, in a layer thickness profile measured along a minor axis or a major axis of the partitioned region, exhibits the largest value of the following formula among the layers constituting the functional film: (Average thickness of the central part of the partitioned region) - (Average thickness of the partition wall side part of the partitioned region)
  • the functional layer 2 is a layer in which the value of the following formula is the largest among the layers constituting the functional film in a layer thickness profile measured along the minor axis or the major axis of the partitioned region, (Average thickness of the partition wall side portion in the partition region) - (Average thickness of the partition wall center portion in the partition region)
  • the central portion refers to the inside of an
  • the layer thickness profile refers to the distribution of the thickness of the layer portion in the partitioned region along the measurement axis direction.
  • a flat functional film is produced by combining functional layers with shapes that are relatively easy to form in this way, so there is no need to make detailed adjustments for differences in various conditions such as the thickness of the organic film, the partition material, the size of the pixels, and the reduced pressure drying process, and it is relatively easy to create an organic electroluminescent device or an organic EL display panel with a uniform total film thickness. Also, for the same reason, the film thickness configuration of an organic electroluminescent device or an organic EL display panel with excellent optical properties can be easily designed.
  • Organic electroluminescent device of the present invention usually has a functional film having at least two laminated layers, which is provided in a partitioned region partitioned by a partition wall.
  • the organic EL display panel in the present invention generally has an organic electroluminescent element having a plurality of partitioned regions separated by partition walls and a functional film having at least two laminated layers provided in the partitioned regions.
  • Organic electroluminescent element and organic EL display panel in the method for designing film thickness configuration usually has a plurality of partitioned regions separated by partition walls, and a functional film provided in the partitioned regions and having at least two laminated layers.
  • the organic EL display panel has a plurality of partitioned regions.
  • the partition layer (bank) is a partition formed, for example, by applying a liquid-repellent resist onto a glass substrate having a conductive electrode pattern, and forming a plurality of minute openings by photolithography.
  • the liquid repellent resist in the present invention may be either a positive type or a negative type, but is preferably a negative type from the viewpoint of liquid repellency.
  • a photosensitive composition containing (A) a photopolymerization initiator, (B) an alkali-soluble resin, (C) a photopolymerizable compound, and (D) a liquid repellent agent is preferred.
  • Photopolymerization initiator (A) is contained in order to absorb ultraviolet light and promote the polymerization reaction of the photopolymerizable compound (C).
  • the photopolymerization initiator used in the present application is not particularly limited, but an oxime ester photopolymerization initiator is preferred because it appropriately absorbs ultraviolet light (i-line) having a wavelength of 350 to 400 nm from the light source of the exposure machine, promotes the polymerization reaction, and improves liquid repellency.
  • photopolymerization initiators described in Japanese Patent No. 4454067, International Publication No. 2002/100903, International Publication No. 2012/45736, International Publication No. 2015/36910, International Publication No. 2006/18973, International Publication No. 2008/78678, Japanese Patent No. 4818458, International Publication No. 2005/80338, International Publication No. 2008/75564, International Publication No. 2009/131189, International Publication No. 2009/131189, International Publication No. 2010/133077, International Publication No. 2010/102502, and International Publication No. 2012/68879 can be used.
  • the content of the photopolymerization initiator is not particularly limited, but is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 3% by mass or more, of the total solid content of the liquid-repellent resist, and is usually 15% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably 5% by mass or less.
  • the content of the photopolymerization initiator is not particularly limited, but is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 3% by mass or more, of the total solid content of the liquid-repellent resist, and is usually 15% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably 5% by mass or less.
  • Alkali-soluble resin (B) is not particularly limited as long as it can be developed with an alkaline developer.
  • the alkali-soluble resin include various resins having a carboxyl group or a hydroxyl group, but from the viewpoint of excellent developability, those having a carboxyl group are preferred.
  • an alkali-soluble resin having an ethylenically unsaturated group is preferred because it improves the verticality of the bank side surface, suppresses the outflow of the repellent agent due to the thermal melting of the bank, and makes it easy to maintain the repellency.
  • the specific structure of the alkali-soluble resin (B) is not particularly limited, but is preferably an epoxy (meth)acrylate resin (B1) and/or an acrylic copolymer resin (B2).
  • the epoxy (meth)acrylate resin (B1) is a resin obtained by adding an acid or ester compound having an ethylenically unsaturated bond (ethylenic double bond) to an epoxy resin having an aromatic ring in the main chain, and further adding a polybasic acid or its anhydride.
  • the epoxy (meth)acrylate resin (B1) also includes a resin obtained by reacting a compound having a functional group capable of further reacting with the carboxyl group of the resin obtained by the above reaction.
  • alkali-soluble resins described in WO 2004/81621, WO 2008/129986, WO 2008/153000, WO 2018/43746, WO 2018/101314, and WO 2021/90836 can be used.
  • the content of the alkali-soluble resin (B) in the liquid-repellent resist that can be used in the present invention is not particularly limited, but is usually 5% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, even more preferably 40% by mass or more, particularly preferably 50% by mass or more, and is usually 90% by mass or less, preferably 80% by mass or less, more preferably 70% by mass or less, based on the total solid content.
  • (C) photopolymerizable compound (C) photopolymerizable compound
  • (C) photopolymerizable compound is considered to increase the hardening property of resist film and improve liquid repellency.
  • the photopolymerizable compound used here is not particularly limited to the following, but means a compound having one or more ethylenic unsaturated bonds in the molecule, but from the viewpoint of polymerizability, crosslinking property, and the associated difference in the developer solubility between exposed part and non-exposed part can be enlarged, it is preferable that the compound has two or more ethylenic unsaturated bonds in the molecule, and the unsaturated bond is more preferably derived from (meth)acryloyloxy group, that is, (meth)acrylate compound.
  • photopolymerizable compounds examples include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids; esters of aromatic polyhydroxy compounds and unsaturated carboxylic acids; and esters obtained by esterification of polyhydric hydroxy compounds such as aliphatic polyhydroxy compounds and aromatic polyhydroxy compounds with unsaturated carboxylic acids and polybasic carboxylic acids; however, from the viewpoint of liquid repellency, esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids are preferred.
  • dipentaerythritol hexa(meth)acrylate dipentaerythritol penta(meth)acrylate, 2-tris(meth)acryloyloxymethylethylphthalate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, etc. are more preferred.
  • the content of the photopolymerizable compound (C) in the liquid repellent resist that can be used in the present invention is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and usually 80% by mass or less, preferably 60% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less, based on the total solid content.
  • the liquid-repellent agent (D) preferably contains a fluorine-containing resin, more preferably a fluorine-containing resin having a crosslinking group.
  • the liquid-repellent resist contains a fluorine-containing resin or a fluorine-containing resin having a crosslinking group, and as a result, the surface of the bank can be given liquid repellency, and therefore, when a functional ink is applied, the inks in adjacent micro-areas can be prevented from mixing with each other.
  • the crosslinking group examples include an epoxy group or an ethylenically unsaturated group, and from the viewpoint of suppressing the outflow of the liquid-repellent component of the developer, an ethylenically unsaturated group is preferred.
  • a liquid-repellent agent having a crosslinking group By using a liquid-repellent agent having a crosslinking group, the crosslinking reaction on the surface of the formed resist film can be accelerated when the film is exposed to light, making it difficult for the liquid-repellent agent to flow out during development processing, and as a result, the resulting bank can also exhibit high liquid repellency.
  • a fluorine atom-containing resin the fluorine atom-containing resin tends to orient on the surface of the partition wall, preventing bleeding and mixing of functional inks.
  • Fluorine atoms can be contained, for example, in the form of a fluoroalkyl group, a fluoroalkenyl group, a fluoroalkylene group, etc. Of these, from the viewpoint of liquid repellency and preventing bleeding and mixing of functional inks, fluoroalkyl groups and fluoroalkylene groups are preferred, with fluoroalkyl groups being more preferred.
  • the repellent be an acrylic copolymer, which tends to prevent bleeding and mixing of functional inks.
  • the content of the liquid repellent (D) is not particularly limited, but is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the total solid content, and is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less.
  • component additives In addition to the ethylenically unsaturated compound of component (A), the photopolymerization initiator of component (B), the alkali-soluble binder of component (C), and the liquid repellent of component (D), surfactants, colorants, ultraviolet absorbers, polymerization inhibitors, antioxidants, development improvers, silane coupling agents, epoxy compounds, and other resins may be appropriately blended.
  • the liquid repellent resist is used in a state where each component is dissolved or dispersed in a solvent.
  • the solvent is not particularly limited, but examples thereof include the organic solvents described below.
  • Glycol monoalkyl ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether
  • Glycol dialkyl ethers such as diethylene glycol ethyl methyl ether and diethylene glycol diethyl ether
  • Glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, and 3-methoxybutyl acetate
  • Glycol diacetates such as 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, and 1,6-hexanol diacetate
  • the functional film of the present invention is formed by laminating at least two layers provided in regions (also referred to as partitioned regions in this specification) partitioned by partition walls (banks).
  • Layers that make up the functional film include, for example, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • Each layer can be formed, for example, by filling a functional ink containing at least one functional material and a solvent into an area partitioned by partitions (banks) using an inkjet method, and drying it under reduced pressure.
  • the organic electroluminescent device of the present invention or the organic electroluminescent device included in the organic EL display panel of the present invention, has a functional film having at least two laminated layers, and the functional film includes functional layer 1 and functional layer 2.
  • the organic electroluminescent device or organic EL display panel in the design method of the present invention has a functional film having at least two laminated layers, and the functional film includes functional layer 1 and functional layer 2.
  • functional layer 1 is a layer contained in the functional film, and when a film is formed by filling a partitioned area with only the functional ink for forming functional layer 1 and then drying under reduced pressure, the average film thickness in the center of the partitioned area is thicker than the average film thickness on the side of the partition wall in the partitioned area.
  • functional layer 2 is a layer contained in the functional film, and when a film is formed by filling a partitioned area with only the functional ink for forming functional layer 2 and then drying under reduced pressure, the average film thickness of the side of the partition wall in the partitioned area is thicker than the average film thickness of the central part in the partitioned area.
  • the functional layer 1 and the functional layer 2 are preferably hole injection layers or hole transport layers.
  • the functional layer 1 and the functional layer 2 preferably contain a polymer compound. In this specification, functional layer 1 and functional layer 2 may be collectively referred to simply as functional layer.
  • the central part refers to the inside of the area bounded by a closed curve defined as the locus of points 60% of the way from the center of gravity to the partition when the entire periphery of the partition is scanned with a straight line passing through the center of gravity of the partition.
  • the side of the partition refers to the outside of the area bounded by the closed curve within the partition.
  • the closed curve here may include straight line portions and corner portions.
  • the functional layer 1 and the functional layer 2 include, for example, the following combinations.
  • the partition side and central portions are as defined above.
  • the average film thickness of the partition side portions is thicker than the average film thickness of the central portion, which is not limited to the meaning that the film thickness is thicker the closer it is to the partition. Therefore, the concave shape does not necessarily have to have the top surface of the center of gravity of the partitioned area located at the lowest position, and it may be a concave shape in which the top surface of the part sandwiched between the center of gravity of the partitioned area and one of the partitions is located at the lowest position. Furthermore, the concave shape does not necessarily have to gradually slope downward from the partition to the center of gravity of the partitioned area, and it may temporarily slope upward in the part sandwiched between the center of gravity of the partitioned area and the partition. In other words, the top surface does not necessarily have to slope gently from the partition to the center of gravity of the partitioned area, and the top surface may have some unevenness.
  • the shape of the partitioned area is not limited to rectangular shapes such as squares and rectangles, but may be any shape such as polygons or ellipses. If the shape of the partitioned area has a long axis and a short axis, the concave and convex shapes of the functional layer are evaluated by dividing the long axis and the short axis.
  • the long axis means the longer axis in the combination of axes that maximizes the aspect ratio of the shape of the partitioned area.
  • the short axis means the shorter axis in the combination of axes that maximizes the aspect ratio of the shape of the partitioned area.
  • the concave and convex shapes of the functional layer may have the following combinations.
  • concave concave
  • the following describes a method for determining whether the two functional layers formed by filling a partitioned area with only the functional ink for forming the functional layers and then drying under reduced pressure correspond to functional layer 1 or functional layer 2 that constitutes the functional film.
  • Functional layer 1 (long axis: convex shape, short axis: convex shape), functional layer 2 (long axis: convex shape, short axis: concave shape)
  • Functional layer 1 (long axis: convex shape, short axis: convex shape), functional layer 2 (long axis: concave shape, short axis: convex shape)
  • Functional layer 1 (long axis: convex shape, short axis: convex shape), functional layer 2 (long axis: concave shape, short axis: concave shape)
  • Functional layer 1 (long axis: convex shape, short axis: concave shape), functional layer 2 (long axis: concave shape, short axis: concave shape)
  • Functional layer 1 (long axis: concave shape, short axis: concave shape), functional layer 2 (long axis: concave shape, short axis: concave shape)
  • Functional layer 1 (
  • adjacent partitioned regions may be connected in the long or short axis direction via a lyophilic region or the like in order to reduce fluctuations in the amount of functional ink ejected by each nozzle.
  • functional layer 1 and functional layer 2 are determined from the film shape of the axis in the partitioned region perpendicular to the connection direction.
  • the flatness F of the film is preferably greater than either the flatness F of the film (functional film 1) formed by filling only the functional ink for forming functional layer 1 in the partitioned area and then drying under reduced pressure, or the flatness F of the film (functional film 2) formed by filling only the functional ink for forming functional layer 2 in the partitioned area and then drying under reduced pressure.
  • the flatness F of the film in which functional layer 1 and functional layer 2 are laminated is greater than either the flatness F of functional film 1 or the flatness F of functional film 2.
  • the flatness F is expressed by the following formula.
  • F M / Ap x 100 (%)
  • Ap represents the length of the minor or major axis in the partitioned region
  • M represents the length of the profile portion having a film thickness smaller than 1.05 and greater than 0.95 when the film thickness profile measured along the minor or major axis in the partitioned region is divided by the film thickness h at the center of the partitioned region.
  • the film thickness profile for determining M can be measured, for example, by a non-contact instrument such as a stylus step gauge or a white light interferometer. Furthermore, the film thickness profile for determining M is measured along the short axis when functional layer 1 and functional layer 2 are determined based on the layer shapes on the short axis of the two functional layers, and is measured along the long axis when functional layer 1 and functional layer 2 are determined based on the layer shapes on the long axis of the two functional layers.
  • the flatness F of the film hardly depends on the positional relationship between the film formed only with ink for functional layer 1 and the film formed only with ink for functional layer 2.
  • functional layer 1 is a layer whose thickest part is located in the center of the partitioned region when a film is formed by filling the partitioned region with only the functional ink for forming functional layer 1 and then drying under reduced pressure
  • functional layer 2 is a layer whose thickest part is located in an area other than the center of the partitioned region when a film is formed by filling the partitioned region with only the functional ink for forming functional layer 2 and then drying under reduced pressure.
  • functional film 1 is a film whose thickest part is located in the center of the partitioned region
  • functional film 2 is a film whose thickest part is located in an area other than the center of the partitioned region.
  • the thickness of the region formed by the aggregate of the remaining 70% of the straight line connecting the partition wall in the partitioned region to the partition wall closest to it by the shortest distance, minus 15% of the length of each of the partition walls, is greater than the average thickness of the other regions, and it is even more preferable that the thickness of the region formed by the aggregate of the remaining 80% of the straight line connecting the partition wall in the partitioned region to the partition wall closest to it, minus 10% of the length of each of the partition walls, is greater than the average thickness of the other regions.
  • the slope of the tangent at the opening edge in the shape of the obtained film is preferably -1.0 x 10-3 or less, more preferably -5.0 x 10-3 or less.
  • the difference in film thickness between the thinnest part in the center and the opening edge is 30 nm or less, more preferably 20 nm or less.
  • the opening edge refers to the interface where the positive electrode material and the partition wall material are in contact.
  • the functional layer 2 has a concave shape as described later, the slope of the tangent line is negative.
  • the film shape of the functional layer is governed by multiple factors such as the material of the partition wall, the size of the pixel, the film thickness of the organic film, the solvent of the functional ink, the solute of the functional ink, the drying process, temperature, etc. If one condition is changed, the film shape of the functional layer also changes, but by fixing other conditions, it is also possible to selectively create a convex film shape or a concave film shape.
  • the edge of the ink may not be able to retreat down the side of the bank due to differences in wettability of the bank side or the self-pinning phenomenon, in which the ink stops midway down the side of the bank due to changes in the shape of the side of the bank.
  • the resulting functional layer will have a shape that wets up along the bank side. In other words, functional layer 2 is likely to be formed.
  • the self-pinning phenomenon does not occur at an early stage of drying and the bank side is pinned at a position equal to or lower than the height that will be the average film thickness in the center when dried, the resulting functional layer will have a shape with a thick average film thickness in the center and a thin film near the partition wall. In other words, functional layer 1 is likely to be formed.
  • One of the factors that causes the self-pinning phenomenon is the inhibition of fluidity caused by thickening due to an increase in ink concentration during the drying process near the partition wall.
  • functional layer 2 is likely to be formed because self-pithing due to thickening is likely to occur during the drying process.
  • functional layer 1 is likely to be formed when an ink containing a low molecule that is unlikely to thicken during the drying process is used.
  • the solute of the functional ink for forming the functional layer 1 preferably contains low molecules having a molecular weight of 2000 or less, more preferably 5% by weight or more.
  • the solute of the functional ink for forming the functional layer 2 preferably contains low molecules having a molecular weight of 2000 or less, 95% by weight or less, more preferably 90% by weight or less, and even more preferably 85% by weight or less.
  • functional layer 1 preferably contains low molecules having a molecular weight of 2000 or less, more preferably 5% by weight or more.
  • functional layer 2 preferably contains 95% by weight or less, more preferably 90% by weight or less, and even more preferably 85% by weight or less of low molecules having a molecular weight of 2000 or less.
  • the A value represented by the following formula can be used to predict the self-pinning position of functional inks containing multiple solvents.
  • A ⁇ 1 ⁇ ⁇ 1 / (T1 - T2)
  • ⁇ 1 represents the surface tension (mN/m) of the first solvent
  • ⁇ 1 represents the viscosity (mPa ⁇ s) of the first solvent
  • T1 represents the boiling point (° C.) of the first solvent under atmospheric pressure
  • T2 represents the boiling point (° C.) of the second solvent under atmospheric pressure.
  • the surface tension, viscosity, and boiling point are mass averages.
  • ⁇ ave represents the mass average of the viscosity
  • n is an integer ranging from 1 to the number of the multiple solvents
  • ⁇ n represents the viscosity of the nth solvent among the multiple solvents
  • W n represents the content (mass %) of the nth solvent among the multiple solvents
  • ⁇ n means that the following formula in parentheses is added up the number of times corresponding to the number of solvents.
  • the combined mixed solvent is considered to be the first solvent, and the surface tension, viscosity, and boiling point are considered to be the mass averages. If there are multiple solvents with a boiling point of less than 270°C and a content of less than 30% by mass, and if the sum of their contents exceeds 30% by mass, the combined mixed solvent is considered to be the second solvent, and the surface tension, viscosity, and boiling point are considered to be the mass averages.
  • the A value of the functional ink forming functional layer 1 is smaller than the A value of the functional ink forming functional layer 2.
  • the average thickness of the film formed by filling the partitioned area with only the functional ink for forming functional layer 1 and then drying under reduced pressure is thinner than the average thickness of the film formed by filling the partitioned area with only the functional ink for forming functional layer 2 and then drying under reduced pressure.
  • the average thickness of functional film 1 is thinner than the average thickness of functional film 2.
  • Marangoni convection and film shape The causes of the flow inside the droplet during the drying process include flows due to non-uniform evaporation rate distribution, flows due to changes in contact angle, and flows due to the distribution of surface tension. Marangoni convection, one of these factors, plays an important role (H.Ishizuka, J.Fukai, Experiments in Fluids, 59, 4, 1-11, 2018) (J.Fukai, T.Harada, H. Ishizuka, Journal of Chemical Engineering of Japan, 52, 6, 484-492, 2019) (J.Fukai, J.Jpn.Colour Mater.,94, 4, 112-116,2021).
  • the flow due to non-uniform evaporation rate distribution is caused by the difference in evaporation rate distribution at the contact line part and the top of the droplet on the droplet surface.
  • the contact angle is 90° or less
  • the evaporation rate is large at the contact line part, so fluid movement occurs from the top of the droplet to the contact line part.
  • the contact angle is 90° or less
  • the evaporation rate distribution is reversed, and fluid movement occurs from the contact line to the droplet top.
  • the flow resulting from the change in contact angle is caused by the change in the evaporation rate of the contact line on the droplet surface over time.
  • the contact angle and the evaporation rate are correlated, so for example, in the case of a change over time in which the contact angle becomes smaller, fluid movement occurs from the droplet top to the contact line.
  • the flow resulting from the surface tension distribution is caused by the fluid being pulled from the part with low surface tension to the part with high surface tension.
  • the surface tension of the contact line is higher than that of the top, fluid movement occurs from the droplet top to the contact line.
  • the internal fluid also starts to move due to viscous forces, generating a circulating flow.
  • This is the Marangoni convection.
  • Marangoni convection plays an important role in controlling the film shape. For example, by changing the surface tension of the droplet by adding a surfactant or using a functional ink that combines two or more solvents, the film shape can be manipulated to some extent by controlling the Marangoni convection.
  • the ⁇ of the solvent used in the functional ink for creating functional layer 1 is smaller than the ⁇ of the solvent used in the functional ink for creating functional layer 2.
  • ⁇ Dummy functional layer> In the organic electroluminescent device or organic EL display panel of the present invention, and in the organic electroluminescent device or organic EL display panel in the design method of the present invention, in order to select the functional layer 1 and the functional layer 2 contained in the functional film of the organic electroluminescent device, it is preferable to provisionally fabricate a film formed only with the ink for functional layer 1 and a film formed only with the ink for functional layer 2, and confirm the shape of each film.
  • the provisional fabrication here refers to creating a film formed only with the ink for functional layer 1, a film formed only with the ink for functional layer 2, and/or a film in which a film formed only with the ink for functional layer 1 and a film formed only with the ink for functional layer 2 are laminated in a partitioned region included in the organic electroluminescent device or organic EL display panel in order to confirm the shape of the film.
  • the functional ink used to create a trial film made only with ink for functional layer 1 is of the same composition and in the same amount as the functional ink used to actually create functional layer 1 in the functional film.
  • the functional ink used to create a trial film made only with ink for functional layer 2 is of the same composition and in the same amount as the functional ink used to actually create functional layer 2 in the functional film.
  • the provisionally prepared film can be used only to confirm the shape of the film.
  • a further film may be laminated on the provisionally prepared film to create a functional film for use in an organic electroluminescent device or an organic EL display panel.
  • a mock-up of the functional layer may be made using a separate mock-up partitioned area created in a similar manner.
  • the conditions of the amount of functional ink dropped per partitioned area and the size of the partitioned area used for evaluation should be the same as those for creating the partitioned areas included in the organic electroluminescent element or organic EL display panel.
  • the conditions of the number of partitioned areas on the mock-up substrate, the area to which the functional ink is applied, the number of ink drops per partitioned area, and the size of adjacent partitioned areas do not necessarily have to be the same.
  • the functional film may include layers other than the functional layer 1 and the functional layer 2.
  • layers include a functional layer that is flat and not convex or concave when formed as a single layer, and a functional layer formed by vapor deposition.
  • organic solvents that can be used in the present invention will be described with reference to examples.
  • the organic solvent may be simply referred to as “solvent” or “solvent”.
  • aromatic organic solvents There are no particular limitations on the organic solvent that can be used in the present invention, but in order to effectively dissolve the functional material, aromatic organic solvents, chain aliphatic organic solvents, and cyclic aliphatic organic solvents are preferred, aromatic organic solvents and cyclic aliphatic organic solvents are more preferred, and aromatic organic solvents are even more preferred.
  • Aromatic organic solvents that can be used in the present invention are not particularly limited, but preferred examples include non-water-soluble aromatic solvents such as aromatic hydrocarbon solvents, aromatic ester solvents, aromatic ether solvents, and aromatic ketone solvents.
  • Preferred aromatic hydrocarbon solvents are benzene derivatives, naphthalene derivatives, hydrogenated naphthalene derivatives, biphenyl derivatives, and diphenylmethane derivatives.
  • the benzene derivative is not particularly limited, but is preferably a benzene derivative having a total carbon number of 2 to 12 inclusive in the substituents and a linear, branched or cyclic alkyl group as a substituent, such as n-ethylbenzene, 1,3,5-trimethylbenzene, n-propylbenzene, isopropylbenzene, 1,3-diisopropylbenzene, 1,3,5-triisopropylbenzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, n-pentylbenzene, n-hexylbenzene, n-heptylbenzene, n-octylbenzene, n-nonylbenzene, n-decylbenzene, dodecylbenzene, cyclohexylbenzene, etc.
  • Naphthalene derivatives are not particularly limited, but are preferably those in which the total number of carbon atoms in the substituents is 2 to 6 and which have a linear, branched or cyclic alkyl group as a substituent, such as 1-methylnaphthalene, 2-methylnaphthalene, 1-ethylnaphthalene, 2-ethylnaphthalene, 2-isopropylnaphthalene, 2,6-dimethylnaphthalene, 2,7-diisopropylnaphthalene, 1-butylnaphthalene, 2-cyclohexylnaphthalene, 1-phenylnaphthalene, etc.
  • Hydrogenated naphthalene derivatives include, but are not limited to, tetralin, 1,2-dihydronaphthalene, 1,4-dihydronaphthalene, etc., which may be substituted with an alkyl group having 1 to 6 carbon atoms.
  • the biphenyl derivative is not particularly limited, but is preferably a biphenyl derivative substituted with an alkyl group having 1 to 6 carbon atoms, such as 3-ethylbiphenyl, 4-isopropylbiphenyl, and 4-butylbiphenyl.
  • Diphenylmethane derivatives are not particularly limited, but are preferably diphenylmethane derivatives substituted with alkyl groups having 1 to 6 carbon atoms, such as 1,1-diphenylethane, 1,1-diphenylpentane, 1,1-diphenylhexane, 1,1-bis(3,4-dimethylphenyl)ethane, and benzyltoluene.
  • Aromatic ester solvents include benzoate ester solvents, phenylacetate ester solvents, and phthalate ester solvents.
  • Benzoic acid ester solvents are compounds having an ester bond with benzoic acid, and compounds in which benzoic acid, which may have a substituent, is ester-bonded to an alcohol having 1 to 12 carbon atoms can be used.
  • the optional substituents are preferably linear, branched, or cyclic alkyl groups having 1 to 12 carbon atoms, linear, branched, or cyclic alkoxy groups having 1 to 12 carbon atoms, and aromatic substituents having 6 to 12 carbon atoms. There may be multiple of these substituents, and when there are multiple substituents, the total number of carbon atoms as the substituents is preferably 2 to 12.
  • benzoate ester solvents examples include ethyl benzoate, n-butyl benzoate, n-pentyl benzoate, isoamyl benzoate, n-hexyl benzoate, 2-ethylhexyl benzoate, benzyl benzoate, methyl 4-methylbenzoate, methyl 3-methylbenzoate, methyl 2-methylbenzoate, ethyl 4-methylbenzoate, ethyl 3-methylbenzoate, ethyl 2-methylbenzoate, and ethyl 4-methoxybenzoate.
  • Phenyl acetate ester solvents include, but are not limited to, ethyl phenylacetate and the like.
  • Phthalate ester solvents include, but are not limited to, dimethyl phthalate, diethyl phthalate, and dibutyl phthalate.
  • aromatic ester solvents include 2-phenoxyethyl acetate, 2-phenoxyethyl isobutyrate, etc.
  • the aromatic ether solvent is a compound having an aromatic ring and an ether bond, and includes, but is not limited to, the following:
  • Examples of benzene derivatives having a linear, branched or cyclic alkyl group having from 1 to 12 carbon atoms and one ether bond include anisole, 4-methylanisole, butylphenyl ether, hexylphenyl ether, diphenyl ether, benzylphenyl ether, and dibenzyl ether;
  • diphenyl ether derivatives substituted with a linear or branched alkyl group having from 1 to 6 carbon atoms include 2-phenoxytoluene, 3-phenoxytoluene, and 4-phenoxytoluene;
  • Examples of benzene derivatives having two ether bonds with a linear or branched alkyl group having from 1 to 6 carbon atoms include 1,4-diethoxybenzene and 1-ethoxy-4-hexyloxybenzene;
  • Aromatic ketone solvents are compounds that have an aromatic ring and a ketone structure, such as 1-acetylnaphthalene, propiophenone, and 4'-ethylpropiophenone.
  • the solvent may contain a surface modifier to control the surface tension.
  • a surface modifier to control the surface tension.
  • By adding a small amount of a surface modifier to a liquid it is possible to impart functionality to the liquid surface after the liquid is applied, or to the solid surface obtained by applying the liquid.
  • Examples of the functions imparted here include liquid repellency, non-adhesiveness, wettability, smoothness, dispersibility, and antifoaming properties.
  • Materials that can be used as surface modifiers are preferably materials that easily segregate to the liquid surface, and specific examples include materials containing silicon or fluorine (polymers, oligomers, low molecular weight materials), paraffin, surfactants, etc.
  • the surfactant referred to here is a substance having an amphiphilic chemical structure having a hydrophilic portion (group) and a hydrophobic portion (group), and is used in a wide range of applications such as dispersants, foaming agents, antifoaming agents, emulsifiers, food additives, moisturizing agents, antistatic agents, wettability improvers, lubricants, rust inhibitors, etc.
  • Such surfactants are broadly classified into those in which the hydrophilic portion is cationic, anionic, amphoteric, and nonionic, and in the present invention, nonionic surfactants are preferred so as not to interfere with the passage of electricity in the organic electroluminescent element or organic EL display panel.
  • the organic solvent used in the present invention is not particularly limited, but is preferably an organic solvent having a boiling point of 200° C. or higher, more preferably an organic solvent having a boiling point of 230° C. or higher, even more preferably an organic solvent having a boiling point of 250° C. or higher, and most preferably an organic solvent having a boiling point of 270° C. or higher.
  • it is preferably an organic solvent having a boiling point of 350° C. or lower, more preferably a boiling point of 340° C. or lower, and even more preferably a boiling point of 330° C. or lower.
  • the ink filled in the inkjet head starts drying from the tip of the nozzle, so the solids concentration at the nozzle tip is likely to be high. If this state is maintained, the solids will precipitate at the nozzle tip, eventually clogging the nozzle and causing fatal damage to the inkjet device.
  • organic solvents with a boiling point of 200°C or higher are preferred, organic solvents with a boiling point of 230°C or higher are more preferred, organic solvents with a boiling point of 250°C or higher are even more preferred, and organic solvents with a boiling point of 270°C or higher are most preferred.
  • the manufacturing process of an organic electroluminescent device or an organic EL display panel includes a step of volatilizing an organic solvent to obtain a functional film
  • an organic solvent with a boiling point range that can be dried using reduced pressure drying equipment.
  • the boiling point of the first solvent is preferably 350°C or less, more preferably 340°C or less, and even more preferably 330°C or less.
  • Vapor pressure refers to the pressure of the gas phase at which the liquid and gas phases of a solvent are in a layer equilibrium state
  • the boiling point of a solvent refers to the temperature at which the partial pressure of the vapor pressure of the solvent is equal to the vapor pressure.
  • Vapor pressure can be determined by experimental methods such as the static method, the boiling point method, the isoteniscope, and the gas flow method, but the vapor pressure in the present invention refers to the vapor pressure calculated by Advanced Chemistry Development (ACD/Labs) Software V11.02 (Copyright 1994-2021 ACD/Labs) at 25 ° C.
  • the organic solvent used in the present invention may be one type of single solvent or a mixed solvent of two or more types per type of functional ink.
  • two organic solvents with different boiling points may be used in order to achieve both the inhibition of drying at the nozzle tip of the inkjet head and the ease of drying during film formation, as described above. It is preferable to include an organic solvent with a boiling point of 270°C or higher so that the ink dries at the tip of the inkjet head nozzle and does not cause nozzle clogging.
  • the organic solvent with a boiling point of 270°C or higher may be one type or two or more types.
  • the organic solvent with a boiling point of 270°C or higher is preferably contained in an amount of 10% by weight or more of the entire composition, more preferably 15% by weight or more, and even more preferably 25% by weight or more.
  • an organic solvent with a low boiling point may be included in the remaining solvent.
  • the organic solvent with a low boiling point preferably has a boiling point of 265°C or less, and more preferably 250°C or less.
  • the organic solvent is evaporated using a method such as drying under reduced pressure to obtain the functional film, so the organic solvents evaporate roughly in order of lowest boiling point.
  • the organic solvent that remains until the end during the evaporation process tends to have a large effect on the shape of the functional film.
  • the solvent with the highest boiling point tends to have a large effect on the shape of the functional film.
  • the organic solvents may form an azeotrope during the drying process, which may prevent the organic solvent with the highest boiling point from fully functioning.
  • the difference between the boiling point of the organic solvent with the highest boiling point and the boiling point of the organic solvent with the lowest boiling point among all the organic solvents contained in the functional ink is 20°C or more.
  • the content of the organic solvent with the highest boiling point mentioned above is preferably 5% by weight or more, more preferably 10% by weight or more, even more preferably 15% by weight or more, and most preferably 20% by weight or more, of all the organic solvents contained in the functional ink.
  • the content of the organic solvent with the highest boiling point as described above is preferably less than 90% by weight, more preferably less than 80% by weight, even more preferably less than 70% by weight, and most preferably less than 50% by weight, relative to all organic solvents contained in the functional ink. Furthermore, it is preferably 5% by weight or more and less than 90% by weight, more preferably 10% by weight or more and less than 80% by weight, even more preferably 15% by weight or more and less than 70% by weight, and most preferably 20% by weight or more and less than 50% by weight. Being within the above ranges provides sufficient function for determining the flatness of the film, and also allows other solvents to be included in appropriate amounts taking into account solubility, etc.
  • the boiling points of the solvents in this specification are values measured under atmospheric pressure.
  • an organic solvent having a high boiling point and an organic solvent having a low boiling point is preferably any one of benzene which may have a substituent, naphthalene which may have a substituent, diphenylmethane which may have a substituent, biphenyl which may have a substituent, benzoic acid ester, aromatic ether, and aromatic ketone.
  • the organic solvent having a high boiling point is one or more of octylbenzene, nonylbenzene, decylbenzene, dodecylbenzene, hexyl benzoate, 2-ethylhexyl benzoate, benzyl benzoate, acetylnaphthalene, methyl naphthalene acetate, ethyl naphthalene acetate, isopropylnaphthalene, diisopropylnaphthalene, butylnaphthalene, pentylnaphthalene, methoxynaphthalene, dimethyl phthalate, diethyl phthalate, ethylbiphenyl, isopropylbiphenyl, diisopropylbiphenyl, triisopropylbiphenyl, butylbiphenyl, 1,1-diphenylethane, 1,1-diphen
  • organic solvents having a low boiling point include one or more of methylnaphthalene, ethylnaphthalene, isopropylnaphthalene, ethyl benzoate, propyl benzoate, butyl benzoate, isobutyl benzoate, pentyl benzoate, isopentyl benzoate, methyl toluate, and ethyl toluate.
  • the viscosity at 23° C. is preferably 1 mPa ⁇ s or more and 20 mPa ⁇ s or less.
  • an inkjet head using a piezoelectric element pushes out a composition filled in an ink chamber in the head by the deformation pressure of the piezoelectric element, so if the composition has a viscosity of more than 20 mPa ⁇ s, the pressure of the piezoelectric element becomes insufficient and the composition cannot be ejected.
  • the viscosity of the composition is preferably 1 mPa ⁇ s or more.
  • the viscosity of the organic solvent can be measured using an E-type viscometer RE85L (manufactured by Toki Sangyo Co., Ltd.) at a cone plate rotation speed of 20 rpm to 100 rpm in a 23°C environment.
  • the surface tension of the functional ink of the present invention is preferably 25 mN/m or more, and preferably 45 mN/m or less. It is considered that the surface tension of the functional ink in this range enables stable ejection in an inkjet device and stable film formation. In the case of a functional ink with a low surface tension, it spreads very well on the nozzle plate of the inkjet head, causing the ejection to become unstable and the flight to bend. In addition, when the surface tension is low, the ejected composition tends to extend long without being cut off at the appropriate point, which is likely to cause satellites and the like. On the other hand, if the surface tension is too high, convection due to Laplace pressure is likely to occur during drying after application to the pixel part of the substrate, and the film shape is likely to become unstable.
  • the surface tension of the organic solvent and functional ink in the present invention can be measured in an environment of 23.0°C by the plate lifting method using a platinum plate, or the pendant drop method using a contact angle meter DMO-501 (manufactured by Kyowa Interface Science).
  • the functional ink may contain components other than the functional material and the organic solvent, such as an antioxidant, an additive that changes the physical properties of the functional ink, etc.
  • these components may be important factors that determine the storage stability and ejection stability from the inkjet head of the functional ink, it is not preferable that they have a large effect on the inherent performance of the functional ink, and therefore the content of these components is preferably 1% by weight or less, more preferably 0.1% by weight or less, and even more preferably 0.05% by weight or less with respect to the entire functional ink.
  • the functional material is a material that has a function such as charge transport or charge injection, or improves these functions.
  • the charge transport is preferably hole transport, and the charge injection is preferably hole injection.
  • the material having the function of improving the charge transport is a material having the function of improving the charge transport of another material having charge transport.
  • the material having the function of improving the charge injection is a material having the function of improving the charge injection of another material having charge injection. For example, by doping an electron accepting material into a hole transport material, the electron accepting material oxidizes the hole transport material to generate a cation radical, and the hole transport property and/or hole injection property of the hole transport material are improved. In this case, the electron accepting material is a material that improves the hole transport property and/or hole injection property of the hole transport material.
  • a material for a hole injection layer or a material for a hole transport layer which will be described later, can be preferably used, and a material for a hole injection layer is particularly preferred.
  • the functional materials that can be used in the present invention will be described in detail with reference to specific examples, but the scope of the present invention is not limited to the functional materials described below.
  • the charge transporting compound in the present invention may be either a high molecular weight compound or a low molecular weight compound, but is preferably a high molecular weight compound.
  • Charge-transporting polymer compounds generally have a large charge transporting ability in the main chain direction of the polymer compound, so the larger the average molecular weight, the more stable the charge transport can be achieved.
  • the weight-average molecular weight is usually 10,000 or more, preferably 12,000 or more, and more preferably 15,000 or more.
  • polymer compounds with a large weight-average molecular weight are characterized by high viscosity when made into ink, so in order to achieve the preferred viscosity range as described above, it is preferable for the weight-average molecular weight to be somewhat small.
  • the weight-average molecular weight of the polymer compound is usually 1,000,000 or less, preferably 500,000 or less, more preferably 100,000 or less, even more preferably 70,000 or less, and particularly preferably 50,000 or less.
  • the molecular weight of the charge transporting low molecular weight compound is generally 5,000 or less, preferably 4,000 or less, more preferably 3,000 or less, even more preferably 2,500 or less, and particularly preferably 2,000 or less.
  • the molecular weight of the charge transporting low molecular weight compound is preferably 500 or more, more preferably 650 or more, and even more preferably 800 or more.
  • the functional ink of the present invention preferably contains an electron accepting compound to improve charge transport performance. Furthermore, the functional ink of the present invention preferably contains at least one hole transport compound and at least one electron accepting compound as functional materials.
  • the weight-average molecular weight and number-average molecular weight of the charge-transporting polymer compound in the present invention are determined by SEC (size exclusion chromatography) measurement.
  • SEC size exclusion chromatography
  • the weight-average molecular weight and number-average molecular weight are calculated by converting the elution time of the sample into molecular weight using a calibration curve calculated from the elution time of polystyrene (standard sample) with a known molecular weight.
  • the charge transporting low molecular weight compound in order to prevent the charge transporting low molecular weight compound from dissolving in the solvent of the composition further applied to the upper layer of the functional film, preferably has a crosslinking group.
  • the number of crosslinking groups contained in one molecule of the charge transporting low molecular weight compound is preferably 2 or more.
  • the number of crosslinking groups contained in one repeating unit is preferably 2 or more.
  • the crosslinking group is preferably a substituent that undergoes a chemical reaction due to an external force such as light or heat
  • the preferred examples of the crosslinking group are not limited to the following, but are preferably a thermal crosslinking group that undergoes a crosslinking reaction due to heat.
  • a group derived from a benzocyclobutene ring, a naphthocyclobutene ring or an oxetane ring, a vinyl group, an acryl group, a styryl group, etc. may be mentioned. Any crosslinking group may have a substituent, and a methyl group, a methoxy group, etc. are preferred.
  • the functional ink of the present invention preferably contains a functional material having a crosslinking group, and more preferably, all of the functional materials contained in the functional ink of the present invention have a crosslinking group.
  • the content of the functional material in the functional ink of the present invention is not particularly limited, but in order to obtain a functional film having a thickness suitable for an organic electroluminescent device or an organic EL display panel, it is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and even more preferably 1.0% by weight or more. From the viewpoint of suppressing precipitation in the functional ink, it is preferably 20% by weight or less, more preferably 15% by weight or less, and even more preferably 10% by weight or less.
  • the content of the organic solvent in the functional ink of the present invention is preferably 99.9% by weight or less, more preferably 99.5% by weight or less, even more preferably 99.0% by weight or less, and is preferably 80% by weight or more, more preferably 85% by weight or more, even more preferably 90% by weight or more.
  • the charge transporting low molecular weight compound is a material used to improve the film thickness uniformity of the functional film within the area partitioned by the bank, and is preferably 10% by weight or more, more preferably 15% by weight or more, and even more preferably 20% by weight or more, based on the total functional material.
  • the content of the charge transporting low molecular weight compound increases, there will be problems in terms of heat resistance, and therefore it is preferably 75% by weight or less, more preferably 60% by weight or less, and even more preferably 50% by weight or less, based on the total functional material.
  • the charge transporting polymer compound is a material mainly used for charge transport, and is preferably 20% by weight or more, more preferably 25% by weight or more, and even more preferably 30% by weight or more, based on the total functional materials.
  • the content of the charge transporting polymer compound increases, it becomes difficult to form a flat film due to the effect of increased viscosity during drying, so that the content is preferably 90% by weight or less, more preferably 85% by weight or less, and even more preferably 80% by weight or less, based on the total functional materials.
  • the electron accepting compound is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 5% by weight or more, based on the total functional material.
  • the electron accepting compound is preferably 50% by weight or less, more preferably 30% by weight or less, and even more preferably 20% by weight or less, based on the total functional material.
  • the functional ink of the present invention can be prepared by mixing a functional material with an organic solvent and heating for a certain period of time to dissolve or disperse the mixture.
  • the heating temperature is preferably 80° C. or higher, more preferably 90° C. or higher, and even more preferably 100° C. or higher, for example, 100 to 115° C.
  • the heating time is preferably 30 minutes or longer, more preferably 45 minutes or longer, and even more preferably 60 minutes or longer, for example, 60 to 180 minutes.
  • the functional ink is filtered using a membrane filter or depth filter to remove coarse particles before use.
  • the filter pore size is preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the functional ink of the present invention is suitably used for forming a functional film of an organic electroluminescent device or an organic EL display panel, the configuration of which will be described later.
  • the organic electroluminescent element or organic EL display panel of the present invention and the organic electroluminescent element or organic EL display panel in the design method of the present invention, typically have light-emitting pixels in minute regions partitioned by liquid-repellent partition layers (banks) on a substrate provided with electrodes.
  • a functional film is formed by ejecting the functional ink of the present invention into the minute regions partitioned by the partition layers, drying, and appropriately heating.
  • the ejection method is a method of ejecting droplets smaller than the micro-areas partitioned by the partition layer from a micro-nozzle, and it is preferable to eject multiple droplets to fill the micro-areas partitioned by the partition layer with the functional ink of the present invention.
  • the ejection method is preferably an inkjet method.
  • the microscopic areas partitioned by the bank are filled with functional ink, and then the solvent is evaporated and dried by appropriate means to obtain a functional film.
  • Methods for evaporating and drying the solvent include, but are not limited to, heat drying and reduced pressure drying.
  • reduced pressure drying involves placing a substrate coated with a composition in an openable and closable vacuum chamber made of metal or glass, and then volatilizing the solvent by reducing the pressure inside the chamber using a vacuum pump or similar.
  • a vacuum pump or similar.
  • a rotary oil pump, mechanical booster pump, dry scroll pump, dry roots pump, turbo molecular pump, cryopump, or similar is used as the vacuum pump.
  • the pressure in reduced pressure drying is preferably 1 ⁇ 10 1 Pa or less, more preferably 1 ⁇ 10 0 Pa or less, and even more preferably 1 ⁇ 10 ⁇ 1 Pa or less.
  • the reduced pressure drying can also be performed with heating.
  • the temperature is preferably 10°C or higher, more preferably 15°C or higher, and even more preferably 20°C or higher.
  • the temperature during reduced pressure drying is preferably 200°C or lower, more preferably 190°C or lower, and even more preferably 180°C or lower.
  • the time for drying under reduced pressure is preferably 1 minute or more and less than 15 minutes, more preferably 2 minutes or more and less than 12 minutes, and even more preferably 3 minutes or more and less than 10 minutes, in order to lower the pin position of the functional ink over a moderately long period of time and to prevent the organic solvent from remaining in contact with the bank for too long.
  • heating and drying may be performed next. Furthermore, heating is performed to crosslink the crosslinking groups of the functional materials, such as the charge transporting polymer compound, the low molecular weight compound, and the electron accepting compound, if present, according to the present invention.
  • the heating step can also serve as heating for crosslinking together with drying. It is also preferable from the viewpoint of reducing the number of steps that the heating and drying serve as heating for crosslinking, that is, drying and crosslinking are performed by heating. It is preferable that the heating temperature and time are set at a temperature and time at which the functional film does not crystallize or aggregate. In this specification, such a heating step is also referred to as a "baking step.”
  • the heating temperature in the heating step is usually 80°C or higher, preferably 100°C or higher, more preferably 150°C or higher, and more preferably 200°C or higher, and usually 300°C or lower, preferably 270°C or lower, and more preferably 240°C or lower.
  • the heating time is usually 1 minute or longer, preferably 3 minutes or longer, and more preferably 5 minutes or longer, and usually 120 minutes or shorter, preferably 90 minutes or shorter, and more preferably 60 minutes or shorter.
  • the heating step can be carried out using a hot plate, an oven, infrared irradiation, etc.
  • infrared irradiation which directly imparts molecular vibrations
  • a heating time close to the lower limit above is sufficient
  • hot plate heating where the substrate is in direct contact with the heat source or the heat source and substrate are placed very close to each other
  • a longer heating time is required than with infrared irradiation.
  • oven heating i.e., heating with the gas in the oven, usually air or an inert gas such as nitrogen or argon, it takes time for the temperature to rise, so a heating time close to the upper limit of the heating time above is preferable.
  • the heating time is adjusted appropriately depending on the heating method.
  • the heating step is carried out under conditions that allow the crosslinking groups of the functional materials, such as the charge transporting polymer compound and low molecular weight compound of the present invention, to undergo a crosslinking reaction.
  • the heating temperature is preferably equal to or higher than the crosslinking initiation temperature of the crosslinking groups of the charge transporting polymer compound and low molecular weight compound of the present invention, and the electron accepting compound, if present.
  • the pin position of the functional ink on the bank side lowers.
  • the drying is too fast, there is not enough time to lower the pin position, and the effect is not achieved. Therefore, there is no particular limit to the time until the pressure of the atmosphere in the vacuum chamber where the reduced pressure drying is performed becomes lower than the vapor pressure of the organic solvent with the lowest vapor pressure among the organic solvents contained in the functional ink of the present invention, but it is preferably 60 seconds or more.
  • the functional ink continues to contact the bank side, a problem occurs in which the material forming the bank gradually dissolves from the bank into the organic solvent of the functional ink.
  • the functional film formed by the functional ink of the present invention is preferably a film in which crosslinking groups possessed by the charge transporting polymer compound and the low molecular compound, which are the functional materials, are crosslinked with each other.
  • the functional material contained in the functional film is usually 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and particularly preferably 95% by weight or more, and most preferably substantially 100% by weight, with the upper limit being 100% by weight.
  • Substantially 100% by weight means that the functional film may contain trace amounts of additives, residual solvents, and impurities.
  • An organic electroluminescent element manufactured using the functional ink of the present invention (hereinafter, may be referred to as the "organic electroluminescent element of the present invention.”
  • an organic EL display panel having a plurality of organic electroluminescent elements manufactured using the method for designing a film thickness configuration of the present invention may be referred to as the "organic EL display panel of the present invention.”
  • a preferred example of an embodiment of a layer configuration of an organic electroluminescent element manufactured using the method for designing a film thickness configuration of the present invention and a method for forming the same will be described with reference to FIG. 1.
  • Figure 1 is a schematic cross-sectional view showing an example of the structure of an organic electroluminescent device 110 of the present invention.
  • 101 represents a substrate
  • 102 represents an anode
  • 103 represents a hole injection layer
  • 104 represents a hole transport layer
  • 105 represents a light-emitting layer
  • 106 represents a hole blocking layer
  • 107 represents an electron transport layer
  • 108 represents an electron injection layer
  • 109 represents a cathode.
  • the organic electroluminescent device of the present invention has an anode, a light-emitting layer, and a cathode as essential constituent layers, but may have other functional layers between the anode 102 and the light-emitting layer 105, and between the cathode 109 and the light-emitting layer 105, as shown in FIG. 1, if necessary.
  • the substrate 101 is a support for the organic electroluminescent element.
  • a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like is used as the substrate 101.
  • a glass plate; a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • the gas barrier property of the substrate is large, since the organic electroluminescent element is less likely to be deteriorated by the outside air passing through the substrate. For this reason, a method of ensuring the gas barrier property by providing a dense silicon oxide film or the like on at least one side of the synthetic resin substrate is one of the preferable methods.
  • the anode 102 is an electrode that plays a role of injecting holes into the layers on the light-emitting layer 105 side.
  • the anode 102 is typically made of a metal such as aluminum, gold, silver, nickel, palladium, or platinum, or an alloy of any of these metals with indium, copper, tellurium, palladium, or aluminum, a metal oxide such as an oxide of indium and/or tin, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly(3-methylthiophene), polypyrrole, or polyaniline.
  • a metal such as aluminum, gold, silver, nickel, palladium, or platinum, or an alloy of any of these metals with indium, copper, tellurium, palladium, or aluminum
  • a metal oxide such as an oxide of indium and/or tin
  • a metal halide such as copper iodide, carbon black
  • a conductive polymer such as poly(3
  • the anode 102 is usually formed by a method such as sputtering or vacuum deposition.
  • the anode 102 can also be formed by dispersing these particles in an appropriate binder resin solution and applying the solution onto the substrate 101.
  • a conductive polymer a thin film can be formed directly on the substrate 101 by electrolytic polymerization.
  • the anode 102 can also be formed by coating a conductive polymer on the substrate 101 (Appl. Phys. Lett., Vol. 60, p. 2711, 1992).
  • the anode 102 is usually a single-layer structure, but can also be a laminated structure made of multiple materials if desired.
  • the thickness of the anode 102 may be appropriately selected depending on the required transparency. When transparency is required, it is preferable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode 102 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. When opaqueness is sufficient, the thickness of the anode 102 is arbitrary.
  • a substrate 101 that also functions as the anode 102 may be used. It is also possible to laminate a different conductive material on the above-mentioned anode 102.
  • UV ultraviolet
  • oxygen plasma oxygen plasma
  • argon plasma treatment it is preferable to subject the surface of the anode 102 to ultraviolet (UV)/ozone treatment, oxygen plasma, or argon plasma treatment.
  • the present invention includes a step of applying a liquid-repellent resist onto a glass substrate having a conductive electrode pattern, and forming a plurality of minute openings by a photolithography method.
  • a method for applying the liquid-repellent resist onto the substrate include a method using a coating device such as a roll coater, a reverse coater, a bar coater, a spinner (a rotary coating device), a die coater, an inkjet, etc. If necessary, the solvent is removed by drying to form a liquid-repellent resist layer.
  • the liquid-repellent resist is irradiated with active energy rays such as ultraviolet light and excimer laser light using a mask, and the liquid-repellent resist is partially exposed according to the pattern of the pixel division layer.
  • active energy rays such as ultraviolet light and excimer laser light using a mask
  • a light source that emits ultraviolet light such as a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, or a carbon arc lamp can be used.
  • the amount of exposure varies depending on the composition of the photosensitive resin composition, but is preferably about 10 to 400 mJ/ cm2 .
  • a mask having 10 to 500 ⁇ m light-shielding portions arranged in a line or rectangular shape can be used to provide a pattern having multiple openings of minute areas of 10 to 500 ⁇ m.
  • the liquid-repellent resist exposed according to the pattern of the pixel division layer is developed to form a pattern.
  • the development method is not particularly limited, and a dipping method, a spray method, or the like can be used.
  • Specific examples of the developer include organic ones such as dimethylbenzylamine, monoethanolamine, diethanolamine, and triethanolamine, and aqueous solutions of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia, and quaternary ammonium salts.
  • a defoamer or a surfactant can be added to the developer.
  • the developed liquid repellent resist is then post-baked and heat-cured to obtain a pixel dividing layer, preferably at 150 to 250° C. for 15 to 60 minutes.
  • the liquid-repellent resist used for producing the pixel dividing layer in the present invention is such that, as described above, a liquid-repellent resist film formed using the liquid-repellent resist has a contact angle of at least one type of organic solvent contained in the functional ink of 26° or more and less than 50° on the film from which the liquid-repellent agent on the outermost surface of the liquid-repellent resist film has been peeled off.
  • the substrate surface is treated using external energy to remove any residues from the resist coating and photolithography.
  • Preferred external energy sources include ultraviolet (UV) light/ozone, oxygen plasma, plasma, etc.
  • the hole injection layer 103 is a layer that transports holes from the anode 102 to the light emitting layer 105. When the hole injection layer 103 is provided, the hole injection layer 103 is usually formed on the anode 102.
  • the method for forming the hole injection layer 103 is not particularly limited and may be a vacuum deposition method or a wet film formation method. From the viewpoint of reducing dark spots, the hole injection layer 103 is preferably formed by a wet film formation method.
  • the thickness of the hole injection layer 103 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the composition for forming the hole injection layer usually contains a hole transport material and a solvent as the constituent materials of the hole injection layer 103 .
  • the hole transport material is generally used in the hole injection layer 103 of an organic electroluminescent device, and may be a high molecular compound such as a polymer or a low molecular compound such as a monomer, as long as it has hole transport properties, but is preferably a high molecular compound.
  • the composition is characterized by including at least one type of hole transporting high molecular material having a crosslinking group with a weight average molecular weight of 10,000 or more, at least one type of hole transporting low molecular material having a crosslinking group with a molecular weight of 5,000 or less, and at least one type of aromatic organic solvent.
  • hole transport material a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable in terms of the charge injection barrier from the anode 102 to the hole injection layer 103.
  • hole transport materials include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which a tertiary amine is linked with a fluorene group, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylenevinylene derivatives, polythienylenevinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
  • the derivative includes, for example, aromatic amine derivatives, aromatic amines themselves and compounds having an aromatic amine as the main skeleton, and may be either polymers or monomers.
  • the hole transport material used as the material for the hole injection layer 103 may contain any one of these compounds alone, or may contain two or more of them. When two or more hole transport materials are contained, the combination is arbitrary, but it is preferable to use one or more aromatic tertiary amine polymer compounds in combination with one or more other hole transport materials.
  • aromatic amine compounds are preferred as hole transport materials in terms of their amorphous nature and visible light transmittance, and aromatic tertiary amine compounds are particularly preferred.
  • An aromatic tertiary amine compound is a compound that has an aromatic tertiary amine structure, and also includes compounds that have a group derived from an aromatic tertiary amine.
  • the type of aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound (polymerized compound with a series of repeating units) with a weight average molecular weight of 1000 or more and 1,000,000 or less is more preferable.
  • a preferred example of an aromatic tertiary amine polymer compound is a polymer compound having a repeating unit represented by the following formula (1) or the following formula (11).
  • Ar3 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group which may have a substituent
  • Ar4 represents a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group which may have a substituent, or a divalent group in which a plurality of the aromatic hydrocarbon ring groups and aromatic heterocyclic groups are linked together directly or via a linking group.
  • Ar4 in formula (1) is an aromatic hydrocarbon ring group or an aromatic heterocyclic group, the plurality of which are linked via a linking group represented by the following formula (2), in terms of excellent hole injection into the light-emitting layer.
  • y1 represents an integer from 1 to 10;
  • R8 and R9 each independently represent a hydrogen atom or an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, each of which may have a substituent.
  • R 8 and R 9 may be the same or different.
  • x1, x2, x3, x4, x5, and x6 each independently represent an integer of 0 or more, provided that x3+x4 ⁇ 1.
  • Ar 11 , Ar 12 , and Ar 14 each independently represent a divalent aromatic ring group having 30 or less carbon atoms which may have a substituent.
  • Ar 13 represents a divalent aromatic ring group having 30 or less carbon atoms which may have a substituent or a divalent group represented by the following formula (12)
  • Q 11 and Q 12 each independently represent an oxygen atom, a sulfur atom, or a hydrocarbon chain having 6 or less carbon atoms which may have a substituent
  • S 1 to S 4 each independently represent a group represented by the following formula (13).
  • the aromatic ring group referred to here means an aromatic hydrocarbon ring group and an aromatic heterocyclic group.
  • Examples of the aromatic ring group of Ar 11 , Ar 12 , and Ar 14 include a monocyclic ring, a group having 2 to 6 condensed rings, or a group in which two or more of these aromatic rings are linked together.
  • Specific examples of the aromatic ring group having a monocyclic ring or 2 to 6 condensed rings include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, a fluorene ring, a biphenyl group, a terphenyl group, a quaterphenyl group, a furan ring, a benzofuran
  • a divalent group derived from a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring or a carbazole ring or a biphenyl group is preferred because it efficiently delocalizes the negative charge and is excellent in stability and heat resistance.
  • the aromatic ring group for Ar 13 are the same as those for Ar 11 , Ar 12 and Ar 14 .
  • R 11 represents an alkyl group, an aromatic ring group, or a trivalent group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group, which may have a substituent.
  • R 12 represents an alkyl group, an aromatic ring group, or a divalent group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group, which may have a substituent.
  • Ar 31 represents a monovalent aromatic ring group or a monovalent bridging group, which may have a substituent.
  • x7 represents 1 to 4. When x7 is 2 or more, multiple R 12 may be the same or different, and multiple Ar 31 may be the same or different.
  • An asterisk (*) indicates the bonding position with the nitrogen atom in formula (11).
  • the aromatic ring group for R 11 is preferably one aromatic ring group which is a monocyclic or condensed ring having from 3 to 30 carbon atoms, or a group in which 2 to 6 of these are linked together.
  • Specific examples include a benzene ring, a fluorene ring, a naphthalene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, and a trivalent group derived from a group in which 2 to 6 of these are linked together.
  • the alkyl group for R 11 is preferably a linear, branched, or cyclic alkyl group having from 1 to 12 carbon atoms, and specific examples include groups derived from methane, ethane, propane, isopropane, butane, isobutane, pentane, hexane, and octane.
  • the group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group for R 11 preferably includes a group in which a linear, branched, or cyclic alkyl group having from 1 to 12 carbon atoms is linked to one or a group in which 2 to 6 aromatic ring groups are linked, each of which is a monocyclic or condensed ring having from 3 to 30 carbon atoms.
  • aromatic ring group of R 12 examples include a divalent group derived from a benzene ring, a fluorene ring, a naphthalene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, and a connecting ring having 30 or less carbon atoms formed by connecting these rings.
  • alkyl group of R 12 include divalent groups derived from methane, ethane, propane, isopropane, butane, isobutane, pentane, hexane, and octane.
  • aromatic ring group of Ar 31 examples include a benzene ring, a fluorene ring, a naphthalene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, and a monovalent group derived from a connecting ring having 30 or less carbon atoms formed by connecting these rings.
  • Preferred examples of the structure of formula (12) include the following structures, and the benzene ring or fluorene ring in the main chain in the following structure, which is a partial structure of R 11 , may further have a substituent.
  • Examples of the bridging group of Ar 31 include groups derived from a benzocyclobutene ring, a naphthocyclobutene ring, or an oxetane ring, a vinyl group, an acryl group, etc. From the viewpoint of the stability of the compound, a group derived from a benzocyclobutene ring or a naphthocyclobutene ring is preferred.
  • x and y represent integers of 0 or more.
  • Ar 21 and Ar 23 each independently represent a divalent aromatic ring group, and these groups may have a substituent.
  • Ar 22 represents a monovalent aromatic ring group that may have a substituent, and R 13 represents an alkyl group, an aromatic ring group, or a divalent group consisting of an alkyl group and an aromatic ring group, and these may have a substituent.
  • Ar 32 represents a monovalent aromatic ring group or a monovalent crosslinking group, and these groups may have a substituent.
  • the asterisk (*) indicates the bonding position with the nitrogen atom of formula (11).
  • Examples of the aromatic ring group for Ar 21 and Ar 23 are the same as those for Ar 11 , Ar 12 and Ar 14 .
  • Examples of the aromatic ring group of Ar 22 and Ar 32 include a single ring, 2 to 6 condensed rings, or a group in which two or more of these aromatic rings are linked together. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, a fluorene ring, a biphenyl group, a terphenyl group, a quaterphenyl group, a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyr
  • Examples of the monovalent group include a pyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, a thienothiophene ring, a furopyrrole ring, a furofuran ring, a thienofuran ring, a benzisoxazole ring, a benzisothiazole ring, a benzimidazole ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a cinnoline ring, a quinoxaline ring, a phenanthridine ring, a benzimidazole ring, a perimidine ring, a quinazoline ring, a quinazolinone ring or an
  • a monovalent group derived from a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring or a carbazole ring or a biphenyl group is preferable because it efficiently delocalizes negative charges and has excellent stability and heat resistance.
  • Examples of the alkyl group or aromatic ring group for R 13 are the same as those for R 12 .
  • the bridging group of Ar 32 is not particularly limited, but preferred examples include groups derived from a benzocyclobutene ring, a naphthocyclobutene ring, or an oxetane ring, a vinyl group, an acryl group, and the like.
  • the above Ar 11 to Ar 14 , R 11 to R 13 , Ar 21 to Ar 23 , Ar 31 to Ar 32 , Q 11 and Q 12 may further have a substituent, provided that it is not contrary to the spirit of the present invention.
  • the molecular weight of the substituent is preferably 400 or less, and more preferably 250 or less.
  • the type of the substituent is not particularly limited, and examples include one or more types selected from the following substituent group W.
  • arylalkylamino groups having 7 or less carbon atoms; acyl groups having 2 or more carbon atoms, preferably 10 or less, and more preferably 7 or less, such as an acetyl group or a benzoyl group; halogen atoms such as a fluorine atom or a chlorine atom; haloalkyl groups having 1 or more carbon atoms, preferably 8 or less, and more preferably 4 or less, such as a trifluoromethyl group; alkylthio groups having 1 or more carbon atoms, preferably 10 or less, and more preferably 6 or less, such as a methylthio group or an ethylthio group; arylthio groups having 4 or more carbon atoms, preferably 5 or more, preferably 25 or less, and more preferably 14 or less, such as a phenylthio group, a naphthylthio group or a pyridylthio group.
  • an alkyl group or an alkoxy group is preferred from the viewpoint of improving solubility, and an aromatic hydrocarbon ring group or an aromatic heterocyclic group is preferred from the viewpoint of charge transportability and stability.
  • a polymer compound having a repeating unit represented by the following formula (14) is preferred because it has extremely high hole injection and transport properties.
  • R 21 to R 25 each independently represent an arbitrary substituent. Specific examples of the substituents R 21 to R 25 are the same as the substituents described in the above-mentioned [Substituent group W]. Each of s and t independently represents an integer of 0 to 5. Each of u, v and w independently represents an integer of 0 to 4.
  • aromatic tertiary amine polymer compounds include polymer compounds containing repeating units represented by the following formula (15) and/or formula (16).
  • Ar 45 , Ar 47 and Ar 48 each independently represent a monovalent aromatic hydrocarbon ring group which may have a substituent or a monovalent aromatic heterocyclic group which may have a substituent.
  • Ar 44 and Ar 46 each independently represent a divalent aromatic hydrocarbon ring group which may have a substituent or a divalent aromatic heterocyclic group which may have a substituent.
  • R 41 to R 43 each independently represent a hydrogen atom or any substituent.
  • R 41 to R 43 are preferably a hydrogen atom or a substituent described in the above-mentioned [Substituent group W], and more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group.
  • the composition for forming the hole injection layer preferably contains an electron accepting compound as a constituent material of the hole injection layer 103 .
  • the electron-accepting compound is preferably a compound that has an oxidizing power and is capable of accepting one electron from the hole-transporting material described above.
  • the electron-accepting compound is preferably a compound with an electron affinity of 4.0 eV or more, and more preferably a compound with an electron affinity of 5.0 eV or more.
  • electron-accepting compounds include one or more compounds selected from the group consisting of triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • electron-accepting compounds include onium salts substituted with organic groups, such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate and triphenylsulfonium tetrafluoroborate (WO 2005/089024, WO 2017/164268); high-valence inorganic compounds, such as iron(III) chloride (JP 11-251067 A) and ammonium peroxodisulfate; cyano compounds, such as tetracyanoethylene, and aromatic boron compounds, such as tris(pentafluorophenyl)borane (JP 2003-31365 A); fullerene derivatives; iodine; and sulfonate ions, such as polystyrene sulfonate ions, alkylbenzene sulfonate ions, and camphorsulfonate ions.
  • organic groups such as 4-isopropyl
  • the electron accepting compound can improve the conductivity of the hole injection layer 103 by oxidizing the hole transport material.
  • the material of the hole injection layer 103 may further contain other components in addition to the above-mentioned hole transport material and electron accepting compound, so long as the effect of the present invention is not significantly impaired.
  • At least one of the solvents of the composition for forming the hole injection layer used in the wet film formation method is preferably a compound capable of dissolving the above-mentioned constituent materials of the hole injection layer 103 .
  • solvents examples include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, and amide-based solvents.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); and aromatic ethers such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, 3-phenoxytoluene, diphenyl ether, and dibenzyl ether.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA)
  • aromatic ethers such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole,
  • ester-based solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate, isobutyl benzoate, pentyl benzoate, isopentyl benzoate, methyl toluate, ethyl toluate, methyl anisate, ethyl anisate, dimethyl phthalate, diethyl phthalate, phenoxyethyl acetate, and phenoxyethyl butyrate.
  • aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate, isobutyl benzoate, pentyl benzoate, isopentyl benzoate, methyl toluate, ethyl toluate, methyl anisate, eth
  • Aromatic hydrocarbon solvents include, for example, toluene, xylene, cyclohexylbenzene, trimethylbenzene, tetramethylbenzene, diisopropylbenzene, triisopropylbenzene, methylnaphthalene, ethylnaphthalene, isopropylnaphthalene, diisopropylnaphthalene, ethylbiphenyl, isopropylbiphenyl, butylbiphenyl, diisopropylbiphenyl, triisopropylbiphenyl, tetralin, 1,1-diphenylethane, 1,1-diphenylpropane, 1,1-diphenylbutane, 1,1-diphenylpentane, 1,1-diphenylhexane, etc.
  • amide solvent examples include N,N-dimethylformamide and N,N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used.
  • aromatic esters and aromatic ethers are preferred.
  • solvents may be used alone or in any combination and ratio of two or more.
  • the concentration of the hole transport material in the composition for forming a hole injection layer is arbitrary as long as it does not significantly impair the effects of the present invention. From the viewpoint of uniformity of the film thickness, the concentration of the hole transport material in the composition for forming a hole injection layer is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and even more preferably 0.5% by weight or more.
  • the concentration of the hole transport material in the composition for forming a hole injection layer is preferably 70% by weight or less, more preferably 60% by weight or less, and even more preferably 50% by weight or less. This concentration is preferably low in terms of preventing unevenness in the film thickness. Also, this concentration is preferably high in terms of preventing defects from occurring in the formed hole injection layer.
  • a material constituting the hole injection layer 103 is mixed with an appropriate solvent (solvent for the hole injection layer) to prepare a composition for film formation (composition for forming the hole injection layer), and this composition for forming the hole injection layer 103 is applied by an appropriate method onto a layer corresponding to the lower layer of the hole injection layer (usually the anode 102) to form a film, and then dried to form the hole injection layer 103.
  • solvent solvent for the hole injection layer
  • the hole transport layer 104 is a layer that transports holes from the anode 102 to the light emitting layer 105.
  • the hole transport layer 104 is not an essential layer for the organic electroluminescent device of the present invention. However, when the hole transport layer 104 is provided, the hole transport layer 104 is usually formed on the hole injection layer 103 when the hole injection layer 103 is present, or on the anode 102 when the hole injection layer 103 is not present.
  • the method for forming the hole transport layer 104 may be a vacuum deposition method or a wet film formation method, and there is no particular limitation. From the viewpoint of reducing dark spots, it is preferable to form the hole transport layer 104 by a wet film formation method.
  • the material forming the hole transport layer 104 is preferably one that has high hole transport properties and can efficiently transport injected holes. For this reason, the material forming the hole transport layer 104 preferably has a small ionization potential, is highly transparent to visible light, has a large hole mobility, is highly stable, and is unlikely to generate impurities that can become traps during manufacture or use. In many cases, since the hole transport layer 104 contacts the light-emitting layer 105, it is preferable that the hole transport layer 104 does not quench the light emitted from the light-emitting layer 105 or form exciplexes between the hole transport layer 104 and the light-emitting layer 105, thereby reducing efficiency.
  • the material of the hole transport layer 104 may be any material that has been conventionally used as a constituent material of the hole transport layer 104.
  • materials for the hole transport layer 104 include arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatic derivatives, and metal complexes.
  • Materials for the hole transport layer 104 include, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophene derivatives, poly(p-phenylene vinylene) derivatives, etc. These may be alternating copolymers, random polymers, block polymers, or graft copolymers. They may also be polymers with branches in the main chain and three or more terminals, or so-called dendrimers.
  • the material for the hole transport layer 104 is preferably a polyarylamine derivative or a polyarylene derivative.
  • the polyarylamine derivatives and polyarylene derivatives include those described in JP-A-2008-98619.
  • the polyarylamine derivative it is preferable to use the aromatic tertiary amine polymer compound.
  • a composition for forming the hole transport layer is prepared in the same manner as in the formation of the hole injection layer 103, and then the composition is wet-formed and dried.
  • the composition for forming the hole transport layer contains a solvent in addition to the above-mentioned hole transport material.
  • the solvent used is the same as that used in the composition for forming the hole injection layer.
  • the film forming conditions, drying conditions, etc. are also the same as those in the case of forming the hole injection layer 103.
  • the solvent is the first solvent and the second solvent of the present invention.
  • the film formation conditions are the same as those for the hole injection layer 103 .
  • the thickness of the hole transport layer 104 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 200 nm or less, taking into consideration factors such as the penetration of the low molecular weight material in the light emitting layer and the swelling of the hole transport material.
  • the light-emitting layer 105 is a layer that becomes a main light-emitting source by being excited by recombination of holes injected from the anode 102 and electrons injected from the cathode 109 between the electrodes to which an electric field is applied.
  • the light-emitting layer 105 is usually formed on the hole-transport layer 104 when the hole-transport layer 104 is present, on the hole-injection layer 103 when the hole-transport layer 104 is not present and the hole-injection layer 103 is present, and on the anode 102 when neither the hole-transport layer 104 nor the hole-injection layer 103 is present.
  • the materials for the light-emitting layer usually include a light-emitting material and a host charge-transporting material.
  • the luminescent material any known material that is usually used as a luminescent material for organic electroluminescent elements can be applied, and there is no particular limitation, as long as a substance that emits light at a desired emission wavelength and has good luminous efficiency is used.
  • the luminescent material may be a fluorescent material or a phosphorescent material, but is preferably a phosphorescent material from the viewpoint of internal quantum efficiency. More preferably, the red luminescent material and the green luminescent material are phosphorescent materials, and the blue luminescent material is a fluorescent material.
  • composition of the present invention is a composition for forming a light-emitting layer
  • the phosphorescent material is a material that emits light from an excited triplet state.
  • Representative examples of the phosphorescent material include metal complex compounds containing Ir, Pt, Eu, etc., and the material preferably has a structure containing a metal complex.
  • examples of phosphorescent organometallic complexes that emit light via a triplet state include Werner-type complexes or organometallic complex compounds that contain a metal selected from Groups 7 to 11 of the long-form periodic table (hereinafter, unless otherwise noted, the term "periodic table" refers to the long-form periodic table) as the central metal.
  • examples of such phosphorescent materials include the phosphorescent materials described in WO 2014/024889, WO 2015/087961, WO 2016/194784, and JP 2014-074000.
  • the compound represented by the following formula (201) or the compound represented by the following formula (205) is used, and more preferably, the compound represented by the following formula (201).
  • ring A1 represents an aromatic hydrocarbon ring structure which may have a substituent or an aromatic heterocyclic structure which may have a substituent.
  • Ring A2 represents an aromatic heterocyclic structure which may have a substituent.
  • R 101 and R 102 each independently represent a structure represented by formula (202), and "*" represents a bonding position with ring A1 or ring A2.
  • R 101 and R 102 may be the same or different, and when a plurality of R 101 and R 102 are present, they may be the same or different.
  • Ar 201 and Ar 203 each independently represent an aromatic hydrocarbon ring structure which may have a substituent, or an aromatic heterocyclic structure which may have a substituent.
  • Ar 202 represents an aromatic hydrocarbon ring structure which may have a substituent, an aromatic heterocyclic structure which may have a substituent, or an aliphatic hydrocarbon structure which may have a substituent.
  • the substituents bonded to ring A1 may be bonded to each other, the substituents bonded to ring A2 may be bonded to each other, or the substituents bonded to ring A1 and the substituents bonded to ring A2 may be bonded to each other to form a ring.
  • B 201 -L 200 -B 202 represents an anionic bidentate ligand.
  • B 201 and B 202 each independently represent a carbon atom, an oxygen atom, or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • L 200 represents a single bond, or an atomic group constituting a bidentate ligand together with B 201 and B 202.
  • B 201 -L 200 -B 202 When a plurality of B 201 -L 200 -B 202 are present, they may be the same or different.
  • i1 and i2 each independently represent an integer of 0 to 12
  • i3 represents an integer of 0 or more, the upper limit of which is the number that can be substituted for Ar 202
  • i4 represents an integer of 0 or more, the upper limit of which is the number that can be substituted on Ar 201
  • k1 and k2 each independently represent an integer of 0 or more, the upper limit of which is the number of groups that can be substituted on ring A1 and ring A2
  • z represents an integer of 1 to 3.
  • substituent is preferably a group selected from the following substituent group S.
  • Substituent Group S An alkyl group, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably an alkyl group having 1 to 8 carbon atoms, and particularly preferably an alkyl group having 1 to 6 carbon atoms.
  • An alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and even more preferably an alkoxy group having 1 to 6 carbon atoms.
  • An aryloxy group preferably an aryloxy group having 6 to 20 carbon atoms, more preferably an aryloxy group having 6 to 14 carbon atoms, even more preferably an aryloxy group having 6 to 12 carbon atoms, and particularly preferably an aryloxy group having 6 carbon atoms.
  • a heteroaryloxy group preferably a heteroaryloxy group having 3 to 20 carbon atoms, more preferably a heteroaryloxy group having 3 to 12 carbon atoms.
  • An alkylamino group preferably an alkylamino group having 1 to 20 carbon atoms, more preferably an alkylamino group having 1 to 12 carbon atoms.
  • An arylamino group preferably an arylamino group having 6 to 36 carbon atoms, more preferably an arylamino group having 6 to 24 carbon atoms.
  • An aralkyl group preferably an aralkyl group having 7 to 40 carbon atoms, more preferably an aralkyl group having 7 to 18 carbon atoms, and even more preferably an aralkyl group having 7 to 12 carbon atoms.
  • a heteroaralkyl group preferably a heteroaralkyl group having 7 to 40 carbon atoms, more preferably a heteroaralkyl group having 7 to 18 carbon atoms;
  • An alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms, more preferably an alkenyl group having 2 to 12 carbon atoms, even more preferably an alkenyl group having 2 to 8 carbon atoms, and particularly preferably an alkenyl group having 2 to 6 carbon atoms.
  • An alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, more preferably an alkynyl group having 2 to 12 carbon atoms.
  • An aryl group preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 24 carbon atoms, still more preferably an aryl group having 6 to 18 carbon atoms, and particularly preferably an aryl group having 6 to 14 carbon atoms.
  • a heteroaryl group preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 24 carbon atoms, still more preferably a heteroaryl group having 3 to 18 carbon atoms, and particularly preferably a heteroaryl group having 3 to 14 carbon atoms.
  • An alkylsilyl group preferably an alkylsilyl group having an alkyl group with 1 to 20 carbon atoms, and more preferably an alkylsilyl group having an alkyl group with 1 to 12 carbon atoms.
  • An arylsilyl group preferably an arylsilyl group having an aryl group with 6 to 20 carbon atoms, and more preferably an arylsilyl group having an aryl group with 6 to 14 carbon atoms.
  • An alkylcarbonyl group preferably an alkylcarbonyl group having 2 to 20 carbon atoms.
  • An arylcarbonyl group preferably an arylcarbonyl group having 7 to 20 carbon atoms.
  • one or more hydrogen atoms may be replaced by fluorine atoms, or one or more hydrogen atoms may be replaced by deuterium atoms.
  • aryl is an aromatic hydrocarbon ring and heteroaryl is an aromatic heterocyclic ring.
  • substituent group S preferred are an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and groups in which one or more hydrogen atoms of these groups are replaced by fluorine atoms, a fluorine atom, a cyano group, or -SF5 .
  • it is an alkyl group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, a group in which one or more hydrogen atoms of these groups are replaced with fluorine atoms, a fluorine atom, a cyano group, or -SF5 . More preferred are an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, and an arylsilyl group.
  • an alkyl group particularly preferred are an alkyl group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, and a heteroaryl group.
  • an alkyl group, an arylamino group, an aralkyl group, an aryl group and a heteroaryl group are particularly preferred.
  • substituents S may further have a substituent selected from the substituents S as a substituent.
  • the preferred groups, more preferred groups, even more preferred groups, particularly preferred groups, and most preferred groups of the substituents that may be had are the same as the preferred groups in the substituents S.
  • Ring A1 represents an aromatic hydrocarbon ring structure which may have a substituent or an aromatic heterocyclic structure which may have a substituent.
  • the aromatic hydrocarbon ring is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms. Specifically, a benzene ring, a naphthalene ring, an anthracene ring, a triphenylyl ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring are preferred.
  • the aromatic heterocycle is preferably an aromatic heterocycle having 3 to 30 carbon atoms and containing a nitrogen atom, oxygen atom, or sulfur atom as a heteroatom, more preferably a furan ring, a benzofuran ring, a thiophene ring, or a benzothiophene ring.
  • Ring A1 is more preferably a benzene ring, a naphthalene ring, or a fluorene ring, particularly preferably a benzene ring or a fluorene ring, and most preferably a benzene ring.
  • Ring A2 represents an aromatic heterocyclic structure which may have a substituent.
  • the aromatic heterocycle is preferably an aromatic heterocycle having 3 to 30 carbon atoms and containing a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom.
  • a pyridine ring examples thereof include a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, an oxazole ring, a thiazole ring, a benzothiazole ring, a benzoxazole ring, a benzimidazole ring, a quinoline ring, an isoquinoline ring, a quinoxaline ring, a quinazoline ring, a naphthyridine ring, and a phenanthridine ring.
  • a pyridine ring, a pyrazine ring, a pyrimidine ring, an imidazole ring, a benzothiazole ring, a benzoxazole ring, a quinoline ring, an isoquinoline ring, a quinoxaline ring, and a quinazoline ring are preferred
  • a pyridine ring, an imidazole ring, a benzothiazole ring, a quinoline ring, an isoquinoline ring, a quinoxaline ring, and a quinazoline ring are more preferred
  • a pyridine ring, an imidazole ring, a benzothiazole ring, a quinoline ring, an isoquinoline ring, a quinoxaline ring, and a quinazoline ring are most preferred.
  • Ring A1 and Ring A2 Preferred combinations of ring A1 and ring A2, expressed as (ring A1-ring A2), include (benzene ring-pyridine ring), (benzene ring-quinoline ring), (benzene ring-quinoxaline ring), (benzene ring-quinazoline ring), (benzene ring-benzothiazole ring), (benzene ring-imidazole ring), (benzene ring-pyrrole ring), (benzene ring-diazole ring), and (benzene ring-thiophene ring).
  • the substituents which the ring A1 and the ring A2 may have can be arbitrarily selected, but are preferably one or more kinds of substituents selected from the above-mentioned group S of substituents.
  • Ar 201 and Ar 203 each independently represent an aromatic hydrocarbon ring structure which may have a substituent, or an aromatic heterocyclic structure which may have a substituent.
  • Ar 202 represents an aromatic hydrocarbon ring structure which may have a substituent, an aromatic heterocyclic structure which may have a substituent, or an aliphatic hydrocarbon structure which may have a substituent.
  • the aromatic hydrocarbon ring structure is preferably an aromatic hydrocarbon ring having a carbon number of 6 to 30.
  • a benzene ring, a naphthalene ring, an anthracene ring, a triphenylyl ring, an acenaphthene ring, a fluoranthene ring, or a fluorene ring is preferred, a benzene ring, a naphthalene ring, or a fluorene ring is more preferred, and a benzene ring is most preferred.
  • Ar 201 or Ar 202 is a benzene ring which may have a substituent
  • Ar 201 , Ar 202 and Ar 203 is a fluorene ring which may have a substituent
  • the 9- and 9'-positions of the fluorene ring preferably have a substituent or are bonded to an adjacent structure.
  • the aromatic heterocyclic structure is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing a nitrogen atom, an oxygen atom or a sulfur atom as a heteroatom, and specific examples thereof include a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, an oxazole ring, a thiazole ring, a benzothiazole ring, a benzoxazole ring, a benzimidazole ring, a quinoline ring, an isoquinoline ring, a quinoxaline ring, a quinazoline ring, a naphthyridine ring, a phenanthridine ring, a carbazole ring, a dibenzofuran ring and a dibenzo
  • Ar 201 , Ar 202 and Ar 203 is a carbazole ring which may have a substituent
  • the N-position of the carbazole ring preferably has a substituent or is bonded to an adjacent structure.
  • Ar 202 is an aliphatic hydrocarbon structure which may have a substituent, it is an aliphatic hydrocarbon structure having a straight chain, branched chain, or cyclic structure, and preferably has 1 or more and 24 or less carbon atoms, more preferably has 1 or more and 12 or less carbon atoms, and still more preferably has 1 or more and 8 or less carbon atoms.
  • i1 and i2 independently represents an integer of 0 to 12, preferably 1 to 12, more preferably 1 to 8, and even more preferably 1 to 6. When the number is within this range, improvement in solubility and charge transportability can be expected.
  • i3 preferably represents an integer of 0 to 5, more preferably 0 to 2, and even more preferably 0 or 1.
  • i4 preferably represents an integer of 0 to 2, and more preferably 0 or 1.
  • k1 and k2 each independently represent an integer of preferably 0 to 3, more preferably 1 to 3, even more preferably 1 or 2, and particularly preferably 1.
  • the substituents that Ar 201 , Ar 202 , and Ar 203 may have can be selected arbitrarily, but are preferably one or more substituents selected from the above-mentioned substituent group S, and the preferred groups are also the same as those in the above-mentioned substituent group S, but are more preferably unsubstituted (hydrogen atom), an alkyl group, or an aryl group, particularly preferably unsubstituted (hydrogen atom) or an alkyl group, and most preferably unsubstituted (hydrogen atom) or a tertiary butyl group, and it is preferable that the tertiary butyl group is substituted on Ar 203 when Ar 203 is present, on Ar 202 when Ar 203 is not present, and on Ar 201 when Ar 202 and Ar 203 are not present.
  • the compound represented by the formula (201) is preferably a compound that satisfies any one or more of the following (I) to (IV):
  • the structure represented by formula (202) is preferably a structure having a group linked to a benzene ring, i.e., a benzene ring structure, i1 being 1 to 6, and at least one of the benzene rings being bonded to an adjacent structure at the ortho position or meta position. Such a structure is expected to improve the solubility and the charge transport property.
  • (II) (phenylene)-aralkyl(alkyl)
  • Ar 201 and Ar 202 are benzene ring structures
  • Ar 203 is a biphenyl or terphenyl structure
  • i1 and i2 are 1 to 6
  • i3 is 2
  • j is 2.
  • Such a structure is expected to improve the solubility and the charge transport property.
  • B201 - L200 - B202 The structure represented by B 201 -L 200 -B 202 is preferably a structure represented by the following formula (203) or (204).
  • R 211 , R 212 and R 213 each independently represent a substituent.
  • ring B3 represents an aromatic heterocyclic structure containing a nitrogen atom which may have a substituent. Ring B3 is preferably a pyridine ring.
  • the phosphorescent material represented by the formula (201) is not particularly limited, but preferred examples include the following.
  • a phosphorescent material represented by the following formula (205):
  • M2 represents a metal
  • T represents a carbon atom or a nitrogen atom
  • R92 to R95 each independently represent a substituent. However, when T is a nitrogen atom, R94 and R95 do not exist.
  • M2 include metals selected from Groups 7 to 11 of the periodic table. Among them, preferred are ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold, and particularly preferred are divalent metals such as platinum and palladium.
  • R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group.
  • R 94 and R 95 each independently represent a substituent represented by the same examples as R 92 and R 93.
  • R 94 or R 95 does not exist that is directly bonded to T.
  • R 92 to R 95 may further have a substituent.
  • the substituent may be the above-mentioned substituent.
  • any two or more groups among R 92 to R 95 may be bonded to each other to form a ring.
  • the molecular weight of the phosphorescent material is preferably 5000 or less, more preferably 4000 or less, and particularly preferably 3000 or less.
  • the molecular weight of the phosphorescent material is preferably 800 or more, more preferably 1000 or more, and even more preferably 1200 or more. It is believed that by having the molecular weight within this range, the phosphorescent material does not aggregate with itself, and can be uniformly mixed with the charge transport material, thereby making it possible to obtain a light-emitting layer with high luminous efficiency.
  • the molecular weight of the phosphorescent material is preferably large in that it has a high Tg, melting point, decomposition temperature, etc., and the heat resistance of the phosphorescent material and the formed light-emitting layer is excellent, and degradation of film quality due to gas generation, recrystallization, molecular migration, etc., and an increase in impurity concentration due to thermal decomposition of the material are unlikely to occur.
  • the molecular weight of the phosphorescent material is preferably small in that it is easy to purify the organic compound.
  • the charge transport material used in the light emitting layer is a material having a skeleton with excellent charge transport properties, and is preferably selected from electron transport materials, hole transport materials, and bipolar materials capable of transporting both electrons and holes.
  • skeletons with excellent charge transport properties include aromatic structures, aromatic amine structures, triarylamine structures, dibenzofuran structures, naphthalene structures, phenanthrene structures, phthalocyanine structures, porphyrin structures, thiophene structures, benzylphenyl structures, fluorene structures, quinacridone structures, triphenylene structures, carbazole structures, pyrene structures, anthracene structures, phenanthroline structures, quinoline structures, pyridine structures, pyrimidine structures, triazine structures, oxadiazole structures, and imidazole structures.
  • electron transport materials from the viewpoint of materials with excellent electron transport properties and a relatively stable structure, compounds having a pyridine structure, a pyrimidine structure, or a triazine structure are more preferable, and compounds having a pyrimidine structure or a triazine structure are even more preferable.
  • the hole transport material is a compound having a structure with excellent hole transport properties, and among the central skeletons with excellent charge transport properties, a carbazole structure, a dibenzofuran structure, a triarylamine structure, a naphthalene structure, a phenanthrene structure, or a pyrene structure is preferred as a structure with excellent hole transport properties, and a carbazole structure, a dibenzofuran structure, or a triarylamine structure is even more preferred.
  • the charge transport material used in the light-emitting layer preferably has a fused ring structure of three or more rings, and more preferably is a compound having two or more fused ring structures of three or more rings, or a compound having at least one fused ring of five or more rings. These compounds increase the rigidity of the molecule, making it easier to achieve the effect of suppressing the degree of molecular motion in response to heat. Furthermore, in terms of charge transport properties and material durability, it is preferable that the fused rings of three or more rings and the fused rings of five or more rings have an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • condensed ring structures having three or more rings include anthracene structure, phenanthrene structure, pyrene structure, chrysene structure, naphthacene structure, triphenylene structure, fluorene structure, benzofluorene structure, indenofluorene structure, indolofluorene structure, carbazole structure, indenocarbazole structure, indolocarbazole structure, dibenzofuran structure, dibenzothiophene structure, etc.
  • At least one selected from the group consisting of phenanthrene structure, fluorene structure, indenofluorene structure, carbazole structure, indenocarbazole structure, indolocarbazole structure, dibenzofuran structure, and dibenzothiophene structure is preferred, and from the viewpoint of durability against charge, a carbazole structure or indolocarbazole structure is even more preferred.
  • At least one of the charge transport materials in the light-emitting layer is a material having a pyrimidine skeleton or a triazine skeleton.
  • the charge transport material of the light-emitting layer is preferably a polymeric material from the viewpoint of excellent flexibility.
  • a light-emitting layer formed using a material with excellent flexibility is preferable as the light-emitting layer of an organic electroluminescent element formed on a flexible substrate.
  • the charge transport material contained in the light-emitting layer is a polymeric material, the molecular weight is preferably 5,000 or more and 1,000,000 or less, more preferably 10,000 or more and 500,000 or less, and even more preferably 10,000 or more and 100,000 or less.
  • the charge transport material of the light-emitting layer is preferably a low molecular weight material from the viewpoints of ease of synthesis and purification, ease of designing the electron transport performance and hole transport performance, and ease of adjusting the viscosity when dissolved in a solvent.
  • the charge transport material contained in the light-emitting layer is a low molecular weight material
  • the molecular weight is preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, most preferably 2,000 or less, and is preferably 300 or more, more preferably 350 or more, and even more preferably 400 or more.
  • the fluorescent material is not particularly limited, but a compound represented by the following formula (211) is preferable.
  • Ar 241 represents an aromatic hydrocarbon condensed ring structure which may have a substituent
  • Ar 242 and Ar 243 each independently represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic hetero group, or a group formed by combining these which may have a substituent
  • n41 is an integer of 1 to 4.
  • Ar 241 preferably represents an aromatic hydrocarbon condensed ring structure having 10 to 30 carbon atoms, and specific ring structures include naphthalene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, tetracene, chrysene, and perylene.
  • Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 12 to 20 carbon atoms, and specific ring structures include acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, tetracene, chrysene, and perylene.
  • Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 16 to 18 carbon atoms, and specific examples of the ring structure include fluoranthene, pyrene, and chrysene.
  • n41 is 1 to 4, preferably 1 to 3, more preferably 1 to 2, and most preferably 2.
  • the alkyl group of Ar 242 and Ar 243 is preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • the aromatic hydrocarbon ring group for Ar 242 and Ar 243 is preferably an aromatic hydrocarbon ring group having 6 to 30 carbon atoms, more preferably an aromatic hydrocarbon ring group having 6 to 24 carbon atoms, and most preferably a phenyl group or a naphthyl group.
  • the aromatic hetero group of Ar 242 and Ar 243 is preferably an aromatic hetero group having 3 to 30 carbon atoms, more preferably an aromatic hydrocarbon ring group having 5 to 24 carbon atoms, specifically preferably a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, more preferably a dibenzofuranyl group.
  • the substituents that Ar 241 , Ar 242 , and Ar 243 may have are preferably groups selected from the aforementioned substituent group S, more preferably hydrocarbon groups included in the substituent group S, and even more preferably hydrocarbon groups among the groups preferred as the substituent group S.
  • the charge transport material to be used together with the fluorescent material is not particularly limited, but is preferably one represented by the following formula (212):
  • R 251 and R 252 each independently represent a structure represented by formula (213), R 253 represents a substituent, and when there are a plurality of R 253 , they may be the same or different, and n43 represents an integer of 0 to 8.
  • Ar 254 and Ar 255 each independently represent an aromatic hydrocarbon ring structure which may have a substituent, or a heteroaromatic ring structure which may have a substituent, Ar 254 and Ar 255 , when present multiple times, may be the same or different, n44 is an integer of 1 to 5, and n45 is an integer of 0 to 5.
  • Ar 254 is preferably an aromatic hydrocarbon ring structure which is a monocyclic or fused ring having 6 to 30 carbon atoms and which may have a substituent, and more preferably an aromatic hydrocarbon ring structure which is a monocyclic or fused ring having 6 to 12 carbon atoms and which may have a substituent.
  • Ar 255 is preferably an aromatic hydrocarbon ring structure which is a monocyclic or fused ring having 6 to 30 carbon atoms which may have a substituent, or an aromatic heterocyclic structure which is a fused ring having 6 to 30 carbon atoms which may have a substituent.
  • Ar 255 is more preferably an aromatic hydrocarbon ring structure which is a monocyclic or fused ring having 6 to 12 carbon atoms which may have a substituent, or an aromatic heterocyclic structure which is a fused ring having 12 carbon atoms which may have a substituent.
  • n44 is preferably an integer of 1 to 3, and more preferably 1 or 2.
  • n45 is preferably an integer of 0 to 3, and more preferably 0 to 2.
  • R 253 , Ar 254 and Ar 255 may have are preferably groups selected from the above-mentioned Substituent Group S. More preferably, they are hydrocarbon groups included in the Substituent Group S, and even more preferably, they are hydrocarbon groups among the groups preferred as the Substituent Group S.
  • the molecular weight of the fluorescent material and the charge transport material is preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, and most preferably 2,000 or less. It is also preferably 300 or more, more preferably 350 or more, and even more preferably 400 or more.
  • a hole blocking layer 106 may be provided between the light emitting layer 105 and an electron injection layer 108 described below.
  • the hole blocking layer 106 is a layer of the electron transport layer that also plays a role of blocking holes moving from the anode 102 from reaching the cathode 109.
  • the hole blocking layer 106 is a layer laminated on the light emitting layer 105 so as to be in contact with the interface of the light emitting layer 105 on the cathode 109 side.
  • the hole blocking layer 106 has the role of preventing holes moving from the anode 102 from reaching the cathode 109, and the role of efficiently transporting electrons injected from the cathode 109 in the direction of the light-emitting layer 105.
  • the physical properties required for the material constituting the hole blocking layer 106 include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and a high excited triplet energy level (T1).
  • materials for the hole blocking layer 106 that satisfy these conditions include mixed ligand complexes such as bis(2-methyl-8-quinolinolato)(phenolato)aluminum and bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum; metal complexes such as bis(2-methyl-8-quinolinolato)aluminum- ⁇ -oxo-bis-(2-methyl-8-quinolinolato)aluminum binuclear metal complex; styryl compounds such as distyrylbiphenyl derivatives (Japanese Patent Laid-Open No.
  • the hole blocking layer 106 can be formed by a wet film forming method, a vapor deposition method, or other methods.
  • the thickness of the hole blocking layer 106 is arbitrary as long as it does not significantly impair the effects of the present invention.
  • the thickness of the hole blocking layer 106 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 107 is a layer provided between the light emitting layer 105 and the cathode 109 for transporting electrons.
  • the electron transport material for the electron transport layer 107 a compound is typically used that has a high efficiency of electron injection from the cathode 109 or an adjacent layer on the cathode 109 side, and has high electron mobility so that the injected electrons can be efficiently transported.
  • Examples of compounds that satisfy these conditions include metal complexes such as aluminum complexes and lithium complexes of 8-hydroxyquinoline (JP Patent Publication 59-194393), metal complexes of 10-hydroxybenzo[h]quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Patent Publication 5,645,948), quinoxaline compounds (JP Patent Publication 6-207169), phenanthroline derivatives (JP Patent Publication 5-331459), 2-t-butyl-9,10-N,N'-dicyanoanthraquinone diimine, triazine compound derivatives, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, and n-type zinc selenide.
  • the electron transport material used in the electron transport layer 107 is preferably an electron transporting organic compound, such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline, doped with an alkali metal such as sodium, potassium, cesium, lithium, or rubidium (as described in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.), which makes it possible to achieve both electron injection and transport properties and excellent film quality. It is also effective to dope the above-mentioned electron transporting organic compound with an inorganic salt such as lithium fluoride or cesium carbonate.
  • an inorganic salt such as lithium fluoride or cesium carbonate.
  • the electron transport layer 107 can be formed by a wet film forming method, a vapor deposition method, or other methods.
  • the thickness of the electron transport layer 107 is arbitrary as long as it does not significantly impair the effects of the present invention.
  • the thickness of the electron transport layer 107 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • an electron injection layer 108 may be provided between the electron transport layer 107 and the cathode 109 described below.
  • the electron injection layer 108 is made of an inorganic salt or the like.
  • Examples of materials for the electron injection layer 108 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), lithium oxide (Li 2 O), and cesium (II) carbonate (CsCO 3 ) (see Applied Physics Letters, 1997, Vol. 70, pp. 152; Japanese Patent Publication No. 10-74586; IEEE Transactions on Electron Devices, 1997, Vol. 44, pp. 1245; SID 04 Digest, pp. 154, etc.).
  • LiF lithium fluoride
  • MgF 2 magnesium fluoride
  • Li 2 O lithium oxide
  • CsCO 3 cesium carbonate
  • the electron injection layer 108 since the electron injection layer 108 often does not have charge transport properties, it is preferable to use it as an extremely thin film in order to efficiently inject electrons, and the film thickness is usually 0.1 nm or more, and preferably 5 nm or less.
  • the cathode 109 is an electrode that serves to inject electrons into the layer on the light-emitting layer 105 side.
  • Materials for the cathode 109 typically include metals such as aluminum, gold, silver, nickel, palladium, and platinum; metal oxides such as indium and/or tin oxide; metal halides such as copper iodide; carbon black; and conductive polymers such as poly(3-methylthiophene), polypyrrole, and polyaniline.
  • metals with low work functions are preferred for efficient electron injection, and suitable metals such as tin, magnesium, indium, calcium, aluminum, and silver, or alloys thereof, are used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloys, magnesium-indium alloys, and aluminum-lithium alloys.
  • the cathode 109 may be made of one material or two or more materials in any combination and ratio.
  • the thickness of the cathode 109 varies depending on the transparency required. When transparency is required, it is preferable that the visible light transmittance is usually 60% or more, and preferably 80% or more. In this case, the thickness of the cathode 109 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. When opacity is sufficient, the thickness of the cathode 109 is arbitrary, and the cathode may be the same thickness as the substrate.
  • a different conductive material on top of the cathode 109 .
  • a metal layer having a high work function and stability against the atmosphere is preferably laminated thereon, since this increases the stability of the element.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum, etc. may be used. These materials may be used alone or in any combination and ratio of two or more.
  • the organic electroluminescent device of the present invention may have another configuration without departing from the spirit of the device.
  • any layer may be present between the anode 102 and the cathode 109 in addition to the layers described above, and any layer not essential among the layers described above may be omitted, so long as the performance is not impaired.
  • the cathode 109 there may be another organic layer, or two or more layers, as a protective layer for the cathode.
  • the other components may be provided on the substrate 101 in the following order: cathode 109, electron injection layer 108, electron transport layer 107, hole blocking layer 106, light-emitting layer 105, hole transport layer 104, hole injection layer 103, and anode 102.
  • the organic electroluminescent element or organic EL display panel of the present invention may be configured as a single organic electroluminescent element, may be applied to a configuration in which multiple organic electroluminescent elements are arranged in an array, or may be applied to a configuration in which anodes and cathodes are arranged in an XY matrix.
  • Each of the layers described above may contain ingredients other than those described as materials, as long as they do not significantly impair the effects of the present invention.
  • Organic electroluminescent device By using two or more organic electroluminescent elements that emit light of different colors, or by using an organic EL display panel that includes two or more organic electroluminescent elements that emit light of different colors, an organic electroluminescent device such as an organic EL display device or an organic EL lighting device can be produced.
  • an organic electroluminescent element of the present invention as at least one, preferably all, of the organic electroluminescent elements in this organic electroluminescent device, or by using an organic EL display panel of the present invention that includes the above-mentioned organic electroluminescent element as at least one, preferably all, of the organic electroluminescent elements, a high-quality organic electroluminescent device can be provided.
  • Organic EL display device The type and structure of an organic EL display device using the organic electroluminescent device or organic EL display panel of the present invention are not particularly limited, and the device can be assembled in accordance with a conventional method using the organic electroluminescent device or organic EL display panel of the present invention.
  • an organic EL display device can be formed by a method such as that described in "Organic EL Display” (Ohmsha, published on August 20, 2004, by Tokito Shizuo, Adachi Chinaya, and Murata Hideyuki).
  • Organic EL lighting using the organic electroluminescent element of the present invention are not particularly limited, and the organic EL lighting can be assembled according to a conventional method using the organic electroluminescent element of the present invention or the organic EL display panel of the present invention including the above-mentioned organic electroluminescent element.
  • the organic electroluminescent device or organic EL display panel of the present invention can be manufactured by a method including the following step group (i) followed by the following step group (ii), or the following step group (ii) followed by the following step group (i), or by a method using the above-mentioned design method including the above-mentioned steps:
  • the lower limit of the pressure in reduced pressure drying is preferably 1 ⁇ 10 1 Pa or less, more preferably 1 ⁇ 10 0 Pa or less, and even more preferably 1 ⁇ 10 ⁇ 1 Pa or less.
  • the reduced pressure drying can also be performed with heating.
  • the temperature is preferably 10°C or higher, more preferably 15°C or higher, and even more preferably 20°C or higher.
  • the temperature during reduced pressure drying is preferably 200°C or lower, more preferably 190°C or lower, and even more preferably 180°C or lower.
  • the time for drying under reduced pressure is preferably 1 minute or more and less than 15 minutes, more preferably 2 minutes or more and less than 12 minutes, and even more preferably 3 minutes or more and less than 10 minutes, in order to lower the pin position of the functional ink over a moderately long period of time and to prevent the organic solvent from remaining in contact with the bank for too long.
  • the step of drying the partitioned area under reduced pressure in a vacuum chamber which is included in the step group using a functional ink containing two or more organic solvents, is not particularly limited in the time until a pressure lower than the vapor pressure of the organic solvent with the lowest vapor pressure of the two or more organic solvents is reached, but it is preferably 60 seconds or more after the start of reduced pressure drying.
  • the time until a pressure lower than the vapor pressure of the organic solvent with the lowest vapor pressure of the two or more organic solvents is reached but it is preferably 1800 seconds or less.
  • both the functional ink for forming functional layer 1 and the functional ink for forming functional layer 2 contain two or more organic solvents
  • the time required to reach a pressure lower than the vapor pressure of the organic solvent with the lowest vapor pressure among the two or more organic solvents satisfies the above-mentioned range.
  • the hole injection material 2 was mixed with the mixed solvent 1 in a screw vial to give a concentration of 2.3% by weight, and then the screw vial was placed in a vacuum chamber, and the gas portion in the screw vial was replaced with nitrogen by repeating evacuation and nitrogen purging three times. Then, the mixture was heated at a hot plate temperature of 110°C for 3 hours while stirring at 420 rpm using a magnetic stirrer. The obtained composition was cooled to about room temperature, and then filtered using a membrane filter with a pore size of 0.2 ⁇ m, and functional ink 5 was obtained.
  • the hole injection material 3 was mixed with the mixed solvent 3 in a screw vial to a concentration of 2.3% by weight, and then the screw vial was placed in a vacuum chamber, and evacuation and nitrogen purging were repeated three times to replace the gas portion in the screw vial with nitrogen. Then, the mixture was heated at a hot plate temperature of 110°C for 3 hours while stirring at 420 rpm using a magnetic stirrer. The resulting composition was cooled to about room temperature and then filtered using a membrane filter having a pore size of 0.2 ⁇ m to obtain Functional Ink 7.
  • Polymer compound (P-3) (average molecular weight: about 40,000) was mixed in a screw vial with a mixed solvent 4 prepared by adjusting the weight ratio of 2-ethylnaphthalene (boiling point: about 252°C), 2-ethylhexyl benzoate (boiling point: about 296.5°C) and benzyl benzoate (boiling point: about 324°C) to 70:15:15, so as to be 2.0% by weight, and then the screw vial was placed in a vacuum chamber, and the gas portion in the screw vial was replaced with nitrogen by repeating evacuation and nitrogen purging three times.
  • a mixed solvent 4 prepared by adjusting the weight ratio of 2-ethylnaphthalene (boiling point: about 252°C), 2-ethylhexyl benzoate (boiling point: about 296.5°C) and benzyl benzoate (boiling point: about 324°C) to 70:15:15,
  • the mixture was heated at a hot plate temperature of 110°C for 3 hours while stirring at 420 rpm using a magnetic stirrer.
  • the obtained composition was cooled to about room temperature and then filtered using a membrane filter with a pore size of 0.2 ⁇ m to obtain functional ink 10.
  • the hole injection material 1 was mixed in a screw vial with a mixed solvent 5 of ethyl-4-methylbenzoate (boiling point: about 232°C, vapor pressure: about 6.6 Pa) and diethyl sebacate (boiling point: about 309°C) in a weight ratio of 70:30, so that the hole injection material 1 was 2.3% by weight, and then the screw vial was placed in a vacuum chamber, and the gas portion in the screw vial was replaced with nitrogen by repeating evacuation and nitrogen purging three times. Thereafter, the mixture was heated at a hot plate temperature of 110°C for three hours while stirring at 420 rpm using a magnetic stirrer. The obtained composition was cooled to about room temperature and then filtered using a membrane filter with a pore size of 0.2 ⁇ m to obtain a functional ink 11.
  • a mixed solvent 5 of ethyl-4-methylbenzoate (boiling point: about 232°C, vapor pressure: about 6.6 Pa) and dieth
  • n-butyl benzoate (boiling point: about 250° C.), 2-ethylhexyl benzoate (boiling point: about 296.5° C.), and benzyl benzoate (boiling point: about 324° C.) were mixed to a weight ratio of 70:20:10 to prepare a mixed solvent 51.
  • the hole injection material 51 was mixed with the mixed solvent 51 in a screw vial to a concentration of 2.3% by weight, and then the screw vial was placed in a vacuum chamber, and evacuation and nitrogen purging were repeated three times to replace the gas portion in the screw vial with nitrogen. Thereafter, while stirring at 420 rpm using a magnetic stirrer, the mixture was heated for 3 hours at a hot plate temperature of 110° C. The resulting composition was cooled to about room temperature and then filtered using a membrane filter having a pore size of 0.2 ⁇ m to obtain functional ink 51.
  • a polymer compound (P-53) represented by the following structural formula and an electron-accepting compound (HI-51) were weighed out so that the weight ratio of (P-53):(HI-51) was 89:11, and used as a hole injection material 52.
  • the hole injection material 52 was mixed with the mixed solvent 51 in a screw vial so that the weight ratio was 2.3% by weight, and then the screw vial was placed in a vacuum chamber, and evacuation and nitrogen purging were repeated three times to replace the gas portion in the screw vial with nitrogen. Thereafter, the mixture was heated at a hot plate temperature of 110° C. for three hours while stirring at 420 rpm using a magnetic stirrer.
  • the obtained composition was cooled to about room temperature, and then filtered using a membrane filter with a pore size of 0.2 ⁇ m to obtain a functional ink 53.
  • Polymer compound (P-52) (average molecular weight: about 18000) was mixed in a screw vial to a concentration of 2.0% by weight with a mixed solvent 52 in which 2-ethylnaphthalene (boiling point: about 252°C), 2-ethylhexyl benzoate (boiling point: about 296.5°C) and benzyl benzoate (boiling point: about 324°C) were mixed in a weight ratio of 70:15:15, and then the screw vial was placed in a vacuum chamber, and the gas portion in the screw vial was replaced with nitrogen by repeating evacuation and nitrogen purging three times.
  • a mixed solvent 52 in which 2-ethylnaphthalene (boiling point: about 252°C), 2-ethylhexyl benzoate (boiling point: about 296.5°C) and benzyl benzoate (boiling point: about 324°C) were mixed in a weight ratio of 70:15:
  • the mixture was heated at a hot plate temperature of 110°C for 3 hours while stirring at 420 rpm using a magnetic stirrer.
  • the obtained composition was cooled to about room temperature and then filtered using a membrane filter with a pore size of 0.2 ⁇ m to obtain a functional ink 54.
  • Substrate A1 An indium tin oxide (ITO) film, a silver-indium compound film, and an indium tin oxide film were formed in this order on a glass substrate with a thickness of 0.7 mm by sputtering, and an electrode pattern was formed by a general photolithography method.
  • a liquid-repellent photosensitive resist was applied to the substrate to a thickness of 1.4 ⁇ m, and an opening was created by a general photolithography method. The size of the opening was about 202 ⁇ m on the major axis and about 82 ⁇ m on the minor axis.
  • Substrate B1 An indium tin oxide (ITO) film, a silver-indium compound film, and an indium tin oxide film were formed in this order on a glass substrate with a thickness of 0.7 mm by a sputtering method, and an electrode pattern was formed by a general photolithography method.
  • a liquid-repellent photosensitive resist was applied to the substrate to a thickness of 1.3 ⁇ m, and an opening was created by a general photolithography method. The size of the opening was about 202 ⁇ m on the major axis and about 78 ⁇ m on the minor axis.
  • Substrate C1 An indium tin oxide (ITO) film, a silver-indium compound film, and an indium tin oxide film were formed in this order on a glass substrate with a thickness of 0.7 mm by a sputtering method, and an electrode pattern was formed by a general photolithography method.
  • a liquid-repellent photosensitive resist was applied to the substrate to a thickness of 1.3 ⁇ m, and an opening was created by a general photolithography method. The size of the opening was about 210 ⁇ m on the major axis and about 86 ⁇ m on the minor axis.
  • Substrate A2 An indium tin oxide (ITO) film, a silver-indium compound film, and an indium tin oxide film were formed in this order on a glass substrate with a thickness of 0.7 mm by sputtering, and an electrode pattern was formed by a general photolithography method.
  • a liquid-repellent photosensitive resist was applied to the substrate to a thickness of 1.3 ⁇ m, and an opening was created by a general photolithography method. The size of each opening was about 202 ⁇ m on the major axis and about 49, 75, and 102 ⁇ m on the minor axis, respectively.
  • Substrate B2 An indium tin oxide (ITO) film, a silver-indium compound film, and an indium tin oxide film were formed in this order on a glass substrate with a thickness of 0.7 mm by a sputtering method, and an electrode pattern was formed by a general photolithography method.
  • a liquid-repellent photosensitive resist was applied to the substrate to a thickness of 1.3 ⁇ m, and an opening was created by a general photolithography method. The size of the opening was about 210 ⁇ m on the major axis and about 86 ⁇ m on the minor axis.
  • Substrate C2 An indium tin oxide (ITO) film, a silver-indium compound film, and an indium tin oxide film were formed in this order on a glass substrate with a thickness of 0.7 mm by a sputtering method, and an electrode pattern was formed by a general photolithography method.
  • a liquid-repellent photosensitive resist was applied to the substrate to a thickness of 1.3 ⁇ m, and an opening was created by a general photolithography method. The size of the opening was about 202 ⁇ m on the major axis and about 78 ⁇ m on the minor axis.
  • the obtained substrate was placed in ultrapure water and ultrasonically cleaned for 15 minutes, and then dried for 10 minutes in a clean oven preheated to 130°C. Immediately before applying the functional ink, the substrate was baked for 10 minutes on a hot plate heated to 230°C to remove any moisture adhering to the surface.
  • Each functional ink was filled into an inkjet printer cartridge (FUJIFILM Corporation, DMCLCP-11610) using a micropipette, and applied to the opening of the substrate using an inkjet printer (FUJIFILM Corporation, DMP-2831).
  • the ejection voltage of the inkjet printer was adjusted so that the amount of one drop of the functional ink ejected from the nozzle of the inkjet head was 10 pL.
  • Functional ink 1 was applied to 54 openings in the short axis direction and 32 openings in the long axis direction of substrate A1, totaling 1,728 openings, and then the following drying and baking processes were carried out to create functional film 1. Note that functional ink 1 was applied so that 15 drops fit into one opening of substrate A1.
  • Functional ink 2 was applied to a total of 1,728 openings, 54 in the short axis direction and 32 in the long axis direction, in substrate A1, and then the following drying and baking processes were carried out to create functional film 2. Note that functional ink 2 was applied so that 15 drops fit into one opening of substrate A1.
  • the functional ink 3 was applied to 54 openings in the short axis direction and 32 openings in the long axis direction of the substrate A1, totaling 1,728 openings, and then the following drying and baking processes were carried out to create the functional film 3.
  • the functional ink 3 was applied so that 7 drops fit into each opening of the substrate A1.
  • the functional ink 4 was applied to a total of 1,728 openings, 54 in the short axis direction and 32 in the long axis direction, in the substrate A1, and then the following drying and baking processes were carried out to create the functional film 4.
  • the functional ink 4 was applied so that 7 drops fit into one opening of the substrate A1.
  • the functional ink 5 was applied to a total of 1728 openings, 54 in the short axis direction and 32 in the long axis direction, in the substrate A1, and then the following drying and baking processes were carried out to produce the functional film 5.
  • the functional ink 5 was applied so that 9 drops were applied to each opening of the substrate A1.
  • the functional ink 6 was applied to a total of 1,728 openings, 54 in the short axis direction and 32 in the long axis direction, in the substrate A1, and then the following drying and baking processes were carried out to create the functional film 6.
  • the functional ink 6 was applied so that 15 drops were applied to each opening of the substrate A1.
  • the functional ink 7 was applied to a total of 1,440 openings, 45 in the short axis direction and 32 in the long axis direction, in the substrate B1, and then the following drying and baking processes were carried out to create the functional film 7.
  • the functional ink 7 was applied so that 19 drops fit into one opening of the substrate B1.
  • the functional ink 8 was applied to a total of 1,440 openings, 45 in the short axis direction and 32 in the long axis direction, in the substrate B1, and then the following drying and baking processes were carried out to create the functional film 8.
  • the functional ink 8 was applied so that 18 drops were placed in each opening of the substrate B1.
  • the functional ink 9 was applied to a total of 1,440 openings, 45 in the short axis direction and 32 in the long axis direction, in the substrate B1, and then the following drying and baking processes were carried out to create the functional film 9.
  • the functional ink 9 was applied so that 10 drops were applied to each opening of the substrate B1.
  • the functional ink 8 was applied to a total of 1,440 openings, 45 in the short axis direction and 32 in the long axis direction, in the substrate B1, and then the following drying and baking processes were carried out to create the functional film 10.
  • the functional ink 8 was applied so that 30 drops were applied to each opening of the substrate B1.
  • the functional ink 8 was applied to 45 openings in the short axis direction and 32 openings in the long axis direction of the substrate B1 on which the functional film 7 was formed as described above, totaling 1,440 openings, and then the following drying and baking processes were performed to create the functional film 11.
  • the functional ink 8 was applied so that 18 drops fit into one opening of the substrate B1 on which the functional film 7 was formed as described above.
  • the functional ink 7 was applied to 45 openings in the short axis direction and 32 openings in the long axis direction of the substrate B1 on which the functional film 8 was formed as described above, totaling 1,440 openings, and then the following drying and baking processes were carried out to create the functional film 12.
  • the functional ink 7 was applied so that 19 drops fit into one opening of the substrate B1 on which the functional film 8 was formed as described above.
  • the functional ink 9 was applied to a total of 154 openings, 22 in the short axis direction and 7 in the long axis direction, in the substrate C1, and then the following drying and baking processes were carried out to create the functional film 13.
  • the functional ink 9 was applied so that 4 drops were applied to each opening of the substrate C1.
  • the functional ink 10 was applied to a total of 154 openings, 22 in the short axis direction and 7 in the long axis direction, in the substrate C1, and then the following drying and baking processes were carried out to create the functional film 14.
  • the functional ink 10 was applied so that 15 drops were placed in each opening of the substrate C1.
  • the functional ink 10 was applied to 22 openings in the short axis direction and 7 openings in the long axis direction of the substrate C1 on which the functional film 13 was formed as described above, totaling 154 openings, and then the following drying and baking processes were carried out to create the functional film 15.
  • the functional ink 10 was applied so that 15 drops were placed in each opening of the substrate C1 on which the functional film 13 was formed as described above.
  • the functional ink 11 was applied to a total of 1728 openings, 54 in the short axis direction and 32 in the long axis direction, in the substrate A1, and then the following drying and baking processes were carried out to create the functional film 16.
  • the functional ink 11 was applied so that 7 drops fit into one opening of the substrate A1.
  • the functional ink 2 was applied to a total of 1,728 openings, 54 in the short axis direction and 32 in the long axis direction, in the substrate A1, and then the following drying and baking processes were carried out to create the functional film 17.
  • the functional ink 2 was applied so that 14 drops were applied to each opening of the substrate A1.
  • the functional ink 2 was applied to a total of 1,728 openings, 54 in the short axis direction and 32 in the long axis direction, of the substrate A1 on which the functional film 16 was formed as described above, and then the following drying and baking processes were carried out to create the functional film 18.
  • the functional ink 2 was applied so that 14 drops fit into one opening of the substrate A1 on which the functional film 16 was formed as described above.
  • the functional ink 11 was applied to a total of 1728 openings, 54 in the short axis direction and 32 in the long axis direction, in the substrate A1, and then the following drying and baking processes were carried out to create the functional film 19.
  • the functional ink 11 was applied so that 9 drops fit into one opening of the substrate A1.
  • the functional ink 2 was applied to 54 openings in the short axis direction and 32 openings in the long axis direction of the substrate A1 on which the functional film 19 was formed as described above, totaling 1,728 openings, and then the following drying and baking processes were carried out to create the functional film 20.
  • the functional ink 2 was applied so that 14 drops were applied to each opening of the substrate A1 on which the functional film 19 was formed as described above.
  • the functional ink 11 was applied to a total of 1,728 openings, 54 in the short axis direction and 32 in the long axis direction, in the substrate A1, and then the following drying and baking processes were carried out to create the functional film 21.
  • the functional ink 11 was applied so that 15 drops were applied to each opening of the substrate A1.
  • the functional ink 2 was applied to a total of 1,728 openings, 54 in the short axis direction and 32 in the long axis direction, of the substrate A1 on which the functional film 21 was formed as described above, and then the following drying and baking processes were carried out to create the functional film 22.
  • the functional ink 2 was applied so that 14 drops fit into one opening of the substrate A1 on which the functional film 21 was formed as described above.
  • the area to be applied was 54 in the short axis direction and 15 for each drop number in the long axis direction, for a total of 29,160 openings, and then the following drying and sintering processes were performed to create functional films R1-1, R1-2, R1-3, R1-4, R1-5, R1-6, G1-1, G1-2, G1-3, G1-4, G1-5, G1-6, B1-1, B1-2, B1-3, B1-4, B1-5, and B1-6.
  • the functional ink 52 is applied to one opening of the substrate A2 so that 4, 8, 12, 16, and 20 drops are applied to one partitioned area with an opening width of 49 ⁇ m, 5, 10, 15, 20, 25, and 30 drops are applied to one partitioned area with an opening width of 75 ⁇ m, and 6, 12, 18, 24, 30, and 36 drops are applied to one partitioned area with an opening width of 102 ⁇ m.
  • the area to be applied is 54 in the short axis direction and 15 drops in each of several sheets in the long axis direction, for a total of 28,350 openings, and then the following drying and sintering processes are performed to create functional films R2-1, R2-2, R2-3, R2-4, R2-5, G2-1, G2-2, G2-3, G2-4, G2-5, G2-6, B2-1, B2-2, B2-3, B2-4, B2-5, and B2-6.
  • the functional ink 53 is applied to one opening of the substrate A2 so that 4, 8, 12, 16, 20, 24 drops are applied to one partitioned area with an opening width of 49 ⁇ m, 5, 10, 15, 20, 25, 30 drops are applied to one partitioned area with an opening width of 75 ⁇ m, and 6, 12, 18, 24, 30, 36 drops are applied to one partitioned area with an opening width of 102 ⁇ m.
  • the area to be applied is 54 openings in the short axis direction and 15 openings in the long axis direction for each drop number, for a total of 29,160 openings, and then the following drying and sintering processes are performed to create functional films R3-1, R3-2, R3-3, R3-4, R3-5, R3-6, G3-1, G3-2, G3-3, G3-4, G3-5, G3-6, B3-1, B3-2, B3-3, B3-4, B3-5, B3-6.
  • the functional ink 51 was applied to 22 openings in the short axis direction and 7 openings in the long axis direction of the substrate B2, totaling 154 openings, and then the following drying and baking processes were carried out to create the functional film 51.
  • the functional ink 51 was applied so that 4 drops were applied to each opening of the substrate B2.
  • the functional ink 54 was applied to a total of 154 openings, 22 in the short axis direction and 7 in the long axis direction, in the substrate B2, and then the following drying and baking processes were carried out to create the functional film 52.
  • the functional ink 54 was applied so that 15 drops were placed in each opening of the substrate B2.
  • the functional ink 54 was applied to 22 openings in the short axis direction and 7 openings in the long axis direction of the substrate B2 on which the functional film 51 was formed as described above, totaling 154 openings, and then the following drying and baking processes were performed to create the functional film 53.
  • the functional ink 54 was applied so that 15 drops fit into one opening of the substrate B2 on which the functional film 51 was formed as described above.
  • the functional ink 55 was applied to a total of 1,440 openings, 45 in the short axis direction and 32 in the long axis direction, in the substrate C2, and then the following drying and baking processes were carried out to create the functional film 54.
  • the functional ink 55 was applied so that 19 drops fit into one opening of the substrate C2.
  • the functional ink 52 was applied to a total of 1,440 openings, 45 in the short axis direction and 32 in the long axis direction, in the substrate C2, and then the following drying and baking processes were carried out to create a functional film 55.
  • the functional ink 52 was applied so that 18 drops were placed in each opening of the substrate C2.
  • the functional ink 52 was applied to 45 openings in the short axis direction and 32 openings in the long axis direction of the substrate C2 on which the functional film 54 was formed as described above, totaling 1,440 openings, and then the following drying and baking processes were performed to create the functional film 56.
  • the functional ink 52 was applied so that 18 drops fit into one opening of the substrate C2 on which the functional film 54 was formed as described above.
  • the functional ink 55 was applied to 45 openings in the short axis direction and 32 openings in the long axis direction of the substrate C2 on which the functional film 55 was formed as described above, totaling 1,440 openings, and then the following drying and baking processes were performed to create the functional film 57.
  • the functional ink 55 was applied so that 19 drops fit into one opening of the substrate C2 on which the functional film 55 was formed as described above.
  • Each substrate on which the functional films 1 to 22 and 51 to 57 were formed was placed in a sealed chamber having an openable lid, and dried under reduced pressure until the pressure reached 0.1 Pa or less using a multistage pump (VMR-050, manufactured by ULVAC, Inc.) that combined a mechanical booster pump and rotary pump oil.
  • VMR-050 manufactured by ULVAC, Inc.
  • the reduced pressure drying was performed by first reducing the pressure from atmospheric pressure to 1-10 Pa over 240 seconds, and then reducing the pressure to 0.1 Pa or less over 180 seconds or more.
  • each substrate on which functional films 1 to 22 and 51 to 57 were formed was placed on a hot plate heated to 230°C and baked for 30 minutes, and the following evaluations were performed.
  • a stylus-type step gauge (ET-100, manufactured by Kosaka Laboratory Co., Ltd.) was used to measure the film thickness profile in the minor axis direction of the opening for the obtained functional films 1 to 22.
  • the flatness F was calculated using the following formula (1) to evaluate the flatness of each functional film.
  • F M / Ap ⁇ 100 (%) (1)
  • Ap represents the length of the minor or major axis in the partitioned region
  • M represents the length of the profile portion having a film thickness smaller than 1.05 and greater than 0.95 when the film thickness profile measured along the minor or major axis in the partitioned region is divided by the film thickness h at the center of the partitioned region.
  • a stylus-type step gauge (ET-100, manufactured by Kosaka Laboratory Co., Ltd.) was used to measure the film thickness profile in the minor axis and major axis directions of the opening for the obtained functional films 51 to 57.
  • the flatness F was calculated using the following formula (1) to evaluate the flatness of each functional film.
  • F M / Ap ⁇ 100 (%) (1)
  • Ap represents the length of the short axis or long axis of the bank opening
  • M represents the length (area) of the functional film having a film thickness smaller than 1.05 and larger than 0.95 when the film thickness profile measured along the short axis or long axis of the opening portion using a non-contact measuring instrument such as a stylus step gauge or white light interferometer is divided by the film thickness h of the central portion.
  • ⁇ Preparation of Organic Electroluminescent Device> (Formation of Hole Transport Layer)
  • the substrate on which the functional films 15 and 53 were formed was placed in a vacuum deposition apparatus, and the inside of the apparatus was evacuated to 2 ⁇ 10 ⁇ 4 Pa or less.
  • a compound represented by the following formula (HT-1) was deposited on the functional films 15 and 53 by vacuum deposition at a rate of 1 ⁇ /sec to form a light-emitting layer with a thickness of 20 nm.
  • the compound represented by the formula (HT-1) was deposited on the cathode by vacuum deposition at a rate of 1.3 ⁇ /sec to form a capping layer with a thickness of 70 nm, followed by sealing with an ultraviolet curing resin in a nitrogen atmosphere to obtain an organic electroluminescent device.
  • the solid line in Figure 2 represents the thickness profile (calculated) of the functional film, which is reproduced by adding the thickness profile (actual measurement) of functional film 7 shown by the dotted line and the thickness profile (actual measurement) of functional film 8 shown by the dashed line through numerical calculation processing, with functional film 7 as functional layer 1 and functional film 8 as functional layer 2.
  • the solid line in Fig. 3 represents the film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 7 and the film thickness profile (actual measurement) of the functional film 8 by numerical calculation processing, and the dotted line represents the film thickness profile (actual measurement) of the functional film 11.
  • the film thickness profile (calculated) of the functional film reproduced by numerical calculation processing almost coincides with the film thickness profile (actual measurement) of the functional film actually laminated and formed.
  • the film thickness profile of the functional film obtained by laminating a convex-shaped functional film and a concave-shaped functional film in order from the side closest to the substrate can be reproduced by adding the film thickness profiles of each of the single films of the convex-shaped functional film and the concave-shaped functional film by numerical calculation processing.
  • the solid line in Fig. 4 represents the film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 7 and the film thickness profile (actual measurement) of the functional film 8 by numerical calculation processing, and the dotted line represents the film thickness profile (actual measurement) of the functional film 12.
  • the film thickness profile (calculated) of the functional film reproduced by numerical calculation processing almost coincides with the film thickness profile (actual measurement) of the functional film actually laminated and formed.
  • the film thickness profile of the functional film obtained by laminating a concave-shaped functional film and a convex-shaped functional film in order from the side closest to the substrate can be reproduced by adding the film thickness profiles of each of the single films of the concave-shaped functional film and the convex-shaped functional film by numerical calculation processing.
  • Example 1 5 represents a film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of functional film 1 shown by the dashed line and the film thickness profile (actual measurement) of functional film 2 shown by the broken line by numerical calculation processing, and the flatness F was 77%.
  • the flatness F of a single film of functional film 1 was 30%, and the flatness F of a single film of functional film 2 was 26%, and it can be seen that the flatness was improved by laminating functional film 1 and functional film 2.
  • Example 2 6 represents a film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of functional film 3 shown by the dashed line and the film thickness profile (actual measurement) of functional film 4 shown by the dashed line by numerical calculation processing, and the flatness F was 75%.
  • the flatness F of the single film of functional film 3 was 34%
  • the flatness F of the single film of functional film 4 was 34%, and it can be seen that the flatness was improved by laminating functional film 3 and functional film 4.
  • Example 3 7 represents a film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of functional film 5 shown by the dashed line and the film thickness profile (actual measurement) of functional film 6 shown by the broken line by numerical calculation processing, and the flatness F was 76%.
  • the flatness F of the single film of functional film 5 was 40%, and the flatness F of the single film of functional film 6 was 49%, and it can be seen that the flatness was improved by stacking functional film 5 and functional film 6.
  • Example 4 8 represents a film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of functional film 7 shown by the dashed line and the film thickness profile (actual measurement) of functional film 8 shown by the broken line by numerical calculation processing, and the flatness F was 95%.
  • the flatness F of the single film of functional film 7 was 78%, and the flatness F of the single film of functional film 8 was 80%, and it can be seen that the flatness was improved by stacking functional film 7 and functional film 8.
  • Example 5 9 represents a film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 9 shown by the dashed line and the film thickness profile (actual measurement) of the functional film 10 shown by the dashed line by numerical calculation processing, and the flatness F was 87%.
  • the flatness F of the single film of the functional film 9 was 42%, and the flatness F of the single film of the functional film 10 was 67%, and it can be seen that the flatness was improved by stacking the functional films 9 and 10.
  • FIG. 10 shows the film thickness profile (actual measurement) of functional film 13 shown by the dashed line, the film thickness profile (actual measurement) of functional film 14 shown by the dotted line, and the film thickness profile (actual measurement) of functional film 15 shown by the solid line, and the flatness F of each functional film was 59%, 66%, and 86%, respectively.
  • the organic electroluminescent element prepared according to the above-mentioned method was observed for the functional film 15.
  • Figures 11 and 12 show the distribution of chromaticity coordinates CIEx and CIEy in the short axis of the organic electroluminescent element imaged using a microscope at the same position as the position where the film thickness profile was measured.
  • the area surrounded by the dashed line indicates the opening.
  • the solid line in Figure 13 represents the thickness profile (calculated) of the functional film, which is reproduced by adding the thickness profile (actual measurement) of functional film 16 shown by the dotted line and the thickness profile (actual measurement) of functional film 17 shown by the dashed line through numerical calculation processing, with functional film 16 as functional layer 1 and functional film 17 as functional layer 2.
  • the solid line in Fig. 14 represents the film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 16 and the film thickness profile (actual measurement) of the functional film 17 by numerical calculation processing, and the dotted line represents the film thickness profile (actual measurement) of the functional film 18.
  • the film thickness profile (calculated) of the functional film reproduced by numerical calculation processing almost coincides with the film thickness profile (actual measurement) of the functional film actually laminated and formed.
  • the film thickness profile of the functional film obtained by laminating a convex-shaped functional film and a concave-shaped functional film in order from the side closest to the substrate can be reproduced by adding the film thickness profiles of each of the single films of the convex-shaped functional film and the concave-shaped functional film by numerical calculation processing.
  • the solid line in Figure 15 represents the thickness profile (calculated) of the functional film, which is reproduced by adding the thickness profile (actual measurement) of functional film 19 shown by the dotted line and the thickness profile (actual measurement) of functional film 17 shown by the dashed line through numerical calculation processing, with functional film 19 as functional layer 1 and functional film 17 as functional layer 2.
  • the solid line in Fig. 16 represents the film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 19 and the film thickness profile (actual measurement) of the functional film 17 by numerical calculation processing, and the dotted line represents the film thickness profile (actual measurement) of the functional film 20.
  • the film thickness profile (calculated) of the functional film reproduced by numerical calculation processing almost coincides with the film thickness profile (actual measurement) of the functional film actually laminated and formed.
  • the film thickness profile of the functional film obtained by laminating a convex-shaped functional film and a concave-shaped functional film in order from the side closest to the substrate can be reproduced by adding the film thickness profiles of each of the single films of the convex-shaped functional film and the concave-shaped functional film by numerical calculation processing.
  • the solid line in Figure 17 represents the thickness profile (calculated) of the functional film, which is reproduced by adding the thickness profile (actual measurement) of functional film 21 shown by the dotted line and the thickness profile (actual measurement) of functional film 17 shown by the dashed line through numerical calculation processing, with functional film 21 as functional layer 1 and functional film 17 as functional layer 2.
  • the solid line in Fig. 18 represents the film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 21 and the film thickness profile (actual measurement) of the functional film 17 by numerical calculation processing, and the dotted line represents the film thickness profile (actual measurement) of the functional film 22.
  • the film thickness profile (calculated) of the functional film reproduced by numerical calculation processing almost coincides with the film thickness profile (actual measurement) of the functional film actually laminated and formed.
  • the film thickness profile of the functional film obtained by laminating a convex-shaped functional film and a concave-shaped functional film in order from the side closest to the substrate can be reproduced by adding the film thickness profiles of each of the single films of the convex-shaped functional film and the concave-shaped functional film by numerical calculation processing.
  • the solid line in Figure 19 represents the thickness profile (calculated) of the functional film, which is reproduced by adding the thickness profile (actual measurement) of functional film 54 shown by the dotted line and the thickness profile (actual measurement) of functional film 55 shown by the dashed line through numerical calculation processing, with functional film 54 as functional layer 1 and functional film 55 as functional layer 2.
  • the solid line in Fig. 20 represents the film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 54 and the film thickness profile (actual measurement) of the functional film 55 by numerical calculation processing, and the dotted line represents the film thickness profile (actual measurement) of the functional film 56.
  • the film thickness profile (calculated) of the functional film reproduced by the numerical calculation processing almost coincides with the film thickness profile (actual measurement) of the functional film actually laminated and formed.
  • the film thickness profile of the functional film obtained by laminating a convex-shaped functional film and a concave-shaped functional film in order from the side closest to the substrate can be reproduced by adding the film thickness profiles of each of the single films of the convex-shaped functional film and the concave-shaped functional film by numerical calculation processing.
  • the solid line in Fig. 21 represents the film thickness profile (calculated) obtained by adding the film thickness profile (actual measurement) of the functional film 54 and the film thickness profile (actual measurement) of the functional film 55 by numerical calculation processing, and the dotted line represents the film thickness profile (actual measurement) of the functional film 57.
  • the film thickness profile (calculated) of the functional film reproduced by numerical calculation processing almost coincides with the film thickness profile (actual measurement) of the functional film actually laminated and formed.
  • the film thickness profile of the functional film obtained by laminating a concave-shaped functional film and a convex-shaped functional film in order from the side closest to the substrate can be reproduced by adding the film thickness profiles of each of the single films of the concave-shaped functional film and the convex-shaped functional film by numerical calculation processing.
  • FIG. 22 show the film thickness profile (actual measurement) of functional film 51 shown by the dashed line, the film thickness profile (actual measurement) of functional film 52 shown by the dotted line, and the film thickness profile of functional film 53 shown by the solid line, and the flatness F of each functional film was 59%, 66%, and 86%.
  • the organic electroluminescent element prepared according to the above-mentioned method was observed for the functional film 53.
  • Figures 23 and 24 show the distribution of chromaticity coordinates CIEx and CIEy in the short axis of the organic electroluminescent element, which were photographed using a microscope at the same position as the position where the film thickness profile was measured.
  • the area surrounded by the dashed line indicates the opening.
  • each of the functional films 51 and 52 is low, the flatness of each laminated film (functional film 53) is improved, and the cavity length becomes uniform, so that the chromaticity of the opening is uniformly distributed, and it can be seen that the present method can obtain uniform light emission within the partitioned area.
  • Figure 25 shows the thickness profiles of the functional films R1-1, R1-2, R1-3, R1-4, R1-5, and R1-6.
  • Figure 26 shows the thickness profiles of the functional films G1-1, G1-2, G1-3, G1-4, G1-5, and G1-6.
  • Figure 27 shows the thickness profiles of the functional films B1-1, B1-2, B1-3, B1-4, B1-5, and B1-6.
  • Fig. 28 shows the thickness profiles of the functional films R2-1, R2-2, R2-3, R2-4, and R2-5.
  • Fig. 29 shows the thickness profiles of the functional films G2-1, G2-2, G2-3, G2-4, G2-5, and G2-6.
  • Fig. 30 shows the thickness profiles of the functional films B2-1, B2-2, B2-3, B2-4, B2-5, and B2-6.
  • the flatness F of each functional film was calculated using formula (1) described in ⁇ Functional film evaluation 2>, and the flatness F was evaluated as 0 for 85% or more and x for less than 85%.
  • the calculated flatness was evaluated as convex when the average film thickness of the center part was thicker than the average film thickness of the partition side part, and as concave when it was thinner.
  • the flatness was calculated as follows and summarized in Tables 4 to 6. It can be seen that the flatness differs if the pixel size is different even if the film thickness is the same, and similarly, the flatness differs if the film thickness is different even if the pixel size is the same. Furthermore, when an organic electroluminescence device is produced by laminating only flat films by a wet coating method, the functional films that can be used are only R2-4, G2-4, G2-5, and B2-4.
  • Figure 31 shows the film thickness profiles of the functional films R3-1, R3-2, R3-3, R3-4, R3-5, and R3-6.
  • Figure 32 shows the film thickness profiles of the functional films G3-1, G3-2, G3-3, G3-4, G3-5, and G3-6.
  • Figure 33 shows the film thickness profiles of the functional films B3-1, B3-2, B3-3, B3-4, B3-5, and B3-6.
  • the flatness F of each functional film was calculated using formula (1) described in ⁇ Evaluation of functional film 2>, and evaluation was performed by determining whether the flatness F was 85% or more as ⁇ or whether the flatness F was less than 85%, and determining whether the flatness F was a convex shape when the average film thickness at the center was thicker than that at the side of the partition wall, and determining whether the average film thickness was a concave shape when the average film thickness was thinner, as shown in Tables 7 to 9. Furthermore, when an organic electroluminescence device is produced by laminating only flat films by a wet coating method, there is no functional film that can be used.
  • Example 51 A pseudo-laminate film was created by adding each of the functional films R1-1, R1-2, R1-3, R1-4, R1-5, and R1-6 and each of the functional films R2-1, R2-2, R2-3, R2-4, and R2-5 through numerical calculation processing, and Table 11 shows the laminate films in which at least one of the functional films constituting the laminate film has a flatness F of less than 85% and the laminate film has a flatness F of 85% or more.
  • the same operations were performed on each of the functional films G1-1, G1-2, G1-3, G1-4, G1-5, and G1-6, and each of the functional films G2-1, G2-2, G2-3, G2-4, G2-5, and G2-6, and the results are summarized in Table 12.
  • the number of possible combinations is increased by approximately 121 times with the present invention. In this way, it is clear that the range of film thickness configuration options can be greatly expanded using functional inks that exhibit the same functionality, improving productivity.
  • Example 52 A pseudo-laminate film was created by adding each of the functional films R1-1, R1-2, R1-3, R1-4, R1-5, and R1-6 and each of the functional films R3-1, R3-2, R3-3, R3-4, and R3-5 through numerical calculation processing, and Table 14 shows that at least one of the functional films constituting the laminate film has a flatness F of less than 85% and the laminate film has a flatness F of 85% or more.
  • the organic electroluminescent element of the present invention or the organic electroluminescent element included in the organic EL display panel of the present invention, has a functional film with high flatness and excellent optical properties, and therefore can be applied to organic electroluminescent devices having a plurality of emission colors, such as organic EL display devices and organic EL lighting.
  • the method for designing the film thickness configuration of an organic electroluminescent element or an organic EL display panel having excellent optical characteristics can be easily designed even if various conditions such as the film thickness of the organic film, the partition wall material, the size of the pixel, the reduced pressure drying process, and the ink composition are changed, by using the method for designing the film thickness configuration of an organic electroluminescent element or an organic EL display panel according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件に依存することのない、光学的な特性に優れる有機電界発光素子又は有機ELディスプレイパネルを提供することを課題とする。本発明は、少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子であって、機能層1と機能層2とが積層されている膜の平坦度Fが、機能膜1の平坦度Fと、機能膜2の平坦度Fのいずれよりも大きな値を示す、有機電界発光素子に関する。

Description

有機電界発光素子、有機電界発光素子を製造する方法、有機ELディスプレイパネル、有機ELディスプレイパネルを製造する方法、有機電界発光素子の膜厚構成の設計方法及び有機ELディスプレイパネルの膜厚構成の設計方法
 本発明は、有機電界発光素子、有機電界発光素子を製造する方法、有機ELディスプレイパネル、有機ELディスプレイパネルを製造する方法、有機電界発光素子の膜厚構成の設計方法及び有機ELディスプレイパネルの膜厚構成の設計方法に関する。
 有機電界発光素子の製造方法としては、有機材料を真空蒸着法により成膜し、積層する製造方法が一般的であるが、近年、より材料使用効率に優れた製造方法として、溶液化した有機材料をインクジェット法等により成膜し、積層する湿式成膜による製造方法の研究が盛んになってきている。
 湿式成膜による有機電界発光素子、特に当該素子を複数含む有機ELディスプレイパネルの製造においては、各画素をバンクと呼ばれる隔壁で区画し、バンク内の微小な領域に、有機電界発光素子を構成する機能性膜を形成するための有機電界発光素子形成用組成物であるインクをインクジェット法にて吐出させて成膜する方法が検討されている。この際、インクに種々の表面改質剤を混合することにより、バンクで囲まれた領域内において、より平坦な膜を得る技術が提案されている。
 有機電界発光素子における発光領域の色度は、機能層の膜厚に敏感であるため、機能層をウェット方式で形成する際には、各素子内で機能層の膜厚バラツキをなくして、機能層を平坦に形成することが要求される。特に、キャリアの再結合が生じる発光領域は、ヘテロ界面のエネルギー障壁によって界面近傍で生じるために、発光層界面における有機機能層の形状は素子の発光特性を左右する。
 また、有機電界発光素子をディスプレイパネルに供する場合、各画素はポリイミド等からなる隔壁(バンク)で区画されており、各バンク表面はプラズマ処理等によって濡れ性の制御が行われている。一般に毛細管等の微細空間内に注入された液体の表面はその界面張力によって、壁に沿う部分が中央部に比べて上がるまたは下がり、いわゆるメニスカスと呼ばれる曲面を形成する。注入された液体が壁を濡らす場合には、メニスカスは水平面に対して凹であり、注入された液体が壁を弾く場合には、メニスカスは水平面に対して凸である。機能性インクを有機電界発光素子の各画素内に吐出した場合、機能性インクとバンクとの組み合わせにより、各画素内において凹型や凸型のメニスカスが形成されることとなる。ところが、ナノメートルオーダーで膜厚を制御している有機電界発光素子用の機能層では、その膜厚に比して曲率の大きなメニスカスが形成されてしまうと、一画素内においてバンク近傍部と中央部とで膜厚に差が生じてしまう。これにより、一画素内で輝度や色度にムラが発生してしまうという問題がある。
 これらの課題に対して、例えば特許文献1には、性質の異なる二つの溶媒を混合することで膜の平坦性を向上させ、発光特性を向上させることが記載されている。また、特許文献2には、設置する隔壁の角度を調整することで機能層のメニスカスの幅を小さくし、発光領域を向上させることが記載されている。
 このように、有機電界発光素子における湿式成膜後の有機薄膜形状の特許や研究は、隔壁に用いる材料、機能性インク材料、機能性インクの溶媒の選定、減圧乾燥工程の制御といった様々な手法で平坦な膜を形成し、有機電界発光素子の発光特性を均一にすることを目的としている。同様に、有機電界発光素子における湿式成膜後の有機薄膜形状の特許や研究は、隔壁に用いる材料、機能性インク材料、機能性インクの溶媒の選定、減圧乾燥工程の制御といった様々な手法で平坦な膜を形成することにより、有機電界発光素子の発光特性を均一にするための膜厚構成の設計の簡略化を目的としている。
日本国特許第5934961号公報 日本国特開2004-71432号公報
 しかしながら、各機能層を単層膜で平坦にしようとした場合、隔壁に用いる材料や機能性インクの溶媒の選定、減圧乾燥工程の細かい制御などを必要とする。加えて、赤、緑、青で発光する少なくとも3種の有機電界発光素子を必要とする有機ELディスプレイパネルにおいては、それぞれの色で膜厚構成や画素の大きさなどが異なっている。そのため、特定の条件で乾燥後に平坦になるインクを開発しても、隔壁に用いる材料、膜厚幅、がその大きさが変化すると平坦性は低下してしまい、新たに機能性インクを設計する必要、又は、新たに機能性インクや膜厚構成を設計する必要があった。そして、特定の膜厚構成、画素の大きさの条件で乾燥後に平坦になるインクを開発しても、隔壁に用いる材料、膜厚幅、がその大きさが変化すると平坦性は低下してしまうため、前記パネルを製造する際には、同じ機能性を示すにも関わらず、機能性インクを各条件に合わせて複数種用意する必要があった。同じ機能性インクを用いて異なる膜厚構成を作成することができたとしても、非常に限られた範囲の膜厚構成しか選択できなかった。
 また、製膜過程で有機薄膜の形状が均一になるスピンコートや蒸着といった手法で作成された有機電界発光素子でよい特性を示す材料であっても、機能性インクとして適用する際に乾燥後の平坦性が条件として加わることにより除外される材料も多く存在する。さらに、製膜過程で有機薄膜の形状が均一になるスピンコートや蒸着といった手法で作成された有機電界発光素子又は有機ELディスプレイパネルでよい特性を示す材料であっても、平坦性が条件として加わることにより膜厚構成を再度探索する場合が多く存在する。
 このように、有機電界発光素子又は有機ELディスプレイパネルを構成する機能性膜を湿式成膜により形成する場合において、平坦な形状の有機膜をとる機能性インクを設計しても、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程などの各種条件が変わると平坦ではなくなってしまい再度設計しなければならない問題があった。加えて、同様の場合において、平坦な形状の有機膜を設計しても、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程などの各種条件が変わると平坦ではなくなってしまい膜厚構成を再度設計しなければならない問題があった。また、各種条件によって使用できる材料やプロセスの幅が限定される問題があった。さらに、同じ機能にも関わらず機能性インクは平坦性に合わせたインクを複数種用意する必要があるか、仮に同じ機能性インクで複数の膜厚構成で平坦性を確保することができたとしてもその範囲は限られ、パネル製造の生産性を悪化させる問題があった。さらにまた、平坦な積層膜を探索する際に非常に多くの組み合わせを探索しなくてはならない問題があった。
 上記の問題に鑑み、本発明は、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件に依存することのない、光学的な特性に優れる有機電界発光素子又は有機ELディスプレイパネルを提供することを課題とする。さらに、本発明は、光学的な特性に優れる有機電界発光素子又は有機ELディスプレイパネルの膜厚構成を簡便に設計できる方法を提供することを課題とする。
 本発明者らは、有機電界発光素子を構成する機能性膜を湿式成膜により隔壁に囲まれた区画領域内に形成する場合において、非平坦な形状となる機能層を特定の組み合わせで複数積層することにより、隔壁に囲まれた区画領域における膜形状が均一化し、これによって有機電界発光素子の発光面のムラが均一化されることを新たに見出した。また、同じ機能性を示す機能性インク1種を用いることで、発光面のムラが均一化された有機電界発光素子を含む有機ELディスプレイパネルの作成が可能となることを見出し、本発明を完成するに至った。
 さらに、本発明者らは、有機電界発光素子又は有機ELディスプレイパネルを構成する機能性膜を湿式成膜により隔壁に囲まれた区画領域内に形成する場合において、前記区画領域内に形成した膜の膜厚プロファイルを数値計算処理によって加算した膜厚プロファイルが積層した膜厚プロファイルと同一になることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は、次のとおりである。
 本発明の態様1は、
 少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子であって、
 前記有機電界発光素子は隔壁により区画分けされた区画領域に設けられており、
 ここで、前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に、減圧乾燥することにより形成した膜を機能膜1とした場合、前記機能膜1は前記区画領域内の中央部の平均膜厚が前記区画領域内の隔壁側部の平均膜厚よりも厚くなり、
 前記機能層2を形成するための機能性インクを前記区画領域内に、前記機能層2を形成するために必要な量を充填した後に、減圧乾燥することにより形成した膜を機能膜2とした場合、前記機能膜2は前記区画領域内の隔壁側部の平均膜厚が前記区画領域内の中央部の平均膜厚よりも厚くなり、
 前記中央部とは、区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、前記重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側を意味し、
 前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側を意味し、
 さらに、前記閉曲線は直線部及び角部を含んでいてもよく、
 前記機能層1と前記機能層2とが積層されている膜の平坦度Fが、機能膜1の平坦度Fと、機能膜2の平坦度Fのいずれよりも大きな値を示し、
 ここで、平坦度Fは下記式で表される、有機電界発光素子に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本発明の態様2は、態様1の有機電界発光素子において、
 前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
 前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、有機電界発光素子に関する。
 本発明の態様3は、態様1又は2の有機電界発光素子において、
 前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、有機電界発光素子に関する。
 本発明の態様4は、態様1~3のいずれか一つの有機電界発光素子において、
 前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、有機電界発光素子に関する。
 本発明の態様5は、態様1~4のいずれか一つの有機電界発光素子において、
 前記機能層1及び前記機能層2が、高分子化合物を含む、有機電界発光素子に関する。
 本発明の態様6は、
 下記工程群(i)の後に下記工程群(ii)を含むか、又は、下記工程群(ii)の後に下記工程群(i)を含む、態様1~5のいずれか一つの有機電界発光素子を製造する方法に関する。
工程群(i):前記機能層1を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
工程群(ii):前記機能層2を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
 本発明の態様7は、態様6の方法において、
 前記機能層1を形成するための機能性インク及び前記機能層2を形成するための機能性インクの少なくとも一方が2種以上の有機溶媒を含み、
 前記工程群(i)及び工程群(ii)のうち、前記2種以上の有機溶媒を含む機能性インクを用いる工程群に含まれ、前記区画領域を真空チャンバー内で減圧乾燥する工程において、前記2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間が、減圧乾燥開始後60秒以上1800秒以下である、方法に関する。
 本発明の態様8は、
 隔壁により区画分けされた複数の区画領域を有し、前記区画領域に有機電界発光素子が形成された有機ELディスプレイパネルであって、
 前記複数の区画領域は少なくとも第1の区画領域と第2の区画領域とを有し、
 前記第1の区画領域の有機電界発光素子と前記第2の区画領域の有機電界発光素子とは互いに開口面積が異なり、
 前記第1の区画領域および前記第2の区画領域は各々独立に少なくとも機能層1と機能層2とが積層された機能性膜を有し、
 前記第1の区画領域の機能層1を形成する機能性材料と前記第2の区画領域の機能層1を形成する機能性材料とは同一であり、
 前記第1の区画領域の機能層2を形成する機能性材料と前記第2の区画領域の機能層2を形成する機能性材料とは同一であり、
 前記第1の区画領域および前記第2の区画領域のいずれかが少なくとも以下の条件を満たす有機ELディスプレイパネルに関する。
<条件>
 前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成した膜を機能膜1とした場合、前記機能膜1は前記区画領域の中央部の平均膜厚が隔壁側部の平均膜厚に比べて厚くなり、
 前記機能層2を形成するための機能性インクを前記区画領域内に、前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成した膜を機能膜2とした場合、前記機能膜2は前記区画領域の中央部の平均膜厚が隔壁側部の平均膜厚に比べて薄くなり、
 ここで、前記中央部とは、前記区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側をいう。また、前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側をいう。ここでいう前記閉曲線とは、直線部及び角部を含んでよい。
 本発明の態様9は、態様8の有機ELディスプレイパネルにおいて、
 前記機能層1と前記機能層2とが積層されている膜の平坦度Fが、前記機能膜1の平坦度Fと、前記機能膜2の平坦度Fのいずれかよりも大きな値を示し、
 ここで、平坦度Fは下記式で表される、有機ELディスプレイパネルに関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さ表す。)
 本発明の態様10は、態様8又は9の有機ELディスプレイパネルにおいて、
 前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
 前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、有機ELディスプレイパネルに関する。
 本発明の態様11は、態様8~10のいずれか一つの有機ELディスプレイパネルにおいて、
 前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜で
 前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、有機ELディスプレイパネルに関する。
 本発明の態様12は、態様8~11のいずれか一つの有機ELディスプレイパネルにおいて、
 前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、有機ELディスプレイパネルに関する。
 本発明の態様13は、態様8~12のいずれか一つの有機ELディスプレイパネルにおいて、
 前記機能層1及び前記機能層2が、高分子化合物を含む、有機ELディスプレイパネルに関する。
 本発明の態様14は、
 下記工程群(i)の後に下記工程群(ii)を含むか、又は、下記工程群(ii)の後に下記工程群(i)を含む、態様8~13のいずれか一つの有機ELディスプレイパネルを製造する方法に関する。
工程群(i):前記機能層1を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
工程群(ii):前記機能層2を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
 本発明の態様15は、態様14の方法において、
 前記機能層1を形成するための機能性インク及び前記機能層2を形成するための機能性インクの少なくとも一方が2種以上の有機溶媒を含み、
 前記工程群(i)及び工程群(ii)のうち、前記2種以上の有機溶媒を含む機能性インクを用いる工程群に含まれ、前記区画領域を真空チャンバー内で減圧乾燥する工程において、前記2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間が、減圧乾燥開始後60秒以上1800秒以下である、方法に関する。
 本発明の態様16は、
 隔壁により区画分けされた区画領域に設けられ、少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子の膜厚構成の設計方法であって、
 前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜1)と、前記機能層2を形成するための機能性インクを前記区画領域内に前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜2)と、を積層させた場合のそれぞれの膜の膜厚を、
 前記機能膜1の膜厚プロファイルと、前記機能膜2の膜厚プロファイルと、を数値計算処理によって加算した膜の平坦度Fが75%以上となる組み合わせとする、
 ここで、平坦度Fは下記式で表される、有機電界発光素子の膜厚構成の設計方法に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本発明の態様17は、態様16の有機電界発光素子の膜厚構成の設計方法において、
 前記機能層1と、前記機能層2とが積層されている膜の平坦度Fが、
 前記機能膜1の平坦度Fと、前記機能膜2の平坦度Fのいずれかよりも大きな値を示す、有機電界発光素子の膜厚構成の設計方法に関する。
 本発明の態様18は、態様16又は17の有機電界発光素子の膜厚構成の設計方法において、
 前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
 前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、有機電界発光素子の膜厚構成の設計方法に関する。
 本発明の態様19は、態様16~18のいずれか一つの有機電界発光素子の膜厚構成の設計方法において、
 前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、有機電界発光素子の膜厚構成の設計方法に関する。
 本発明の態様20は、態様16~19のいずれか一つの有機電界発光素子の膜厚構成の設計方法において、
 前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、有機電界発光素子の膜厚構成の設計方法に関する。
 本発明の態様21は、態様16~20のいずれか一つの有機電界発光素子の膜厚構成の設計方法において、
 前記機能層1及び前記機能層2が、高分子化合物を含む、有機電界発光素子の膜厚構成の設計方法に関する。
 本発明の態様22は、
 隔壁により区画分けされた複数の区画領域を有し、前記区画領域に有機電界発光素子が形成された有機ELディスプレイパネルにおいて、
 前記複数の区画領域は少なくとも第1の区画領域と第2の区画領域とを有し、
 前記第1の区画領域の有機電界発光素子と前記第2の区画領域の有機電界発光素子とは互いに発光色が異なる有機ELディスプレイパネルの膜厚構成の設計方法であって、
 前記区画領域は各々独立に少なくとも機能層1と機能層2が積層された機能性膜を有し、
 前記第1の区画領域の機能層1を形成する機能性材料と前記第2の区画領域の機能層1を形成する機能性材料とは同一であり、
 前記第1の区画領域の機能層2を形成する機能性材料と前記第2の区画領域の機能層2を形成する機能性材料とは同一であり、
 前記第1の区画領域と前記第2の区画領域は各々独立に、前記機能層1を形成するための機能性インクを前記区画領域内に前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜1)と、前記機能層2を形成するための機能性インクを前記区画領域内に前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜2)と、を積層させた場合のそれぞれの膜の膜厚を、
 前記機能膜1の膜厚プロファイルと、前記機能膜2を形成した場合の膜の膜厚プロファイルと、を数値計算処理によって加算した膜の平坦性が75%以上となる組み合わせとする、
 ここで、平坦度Fは下記式で表される、有機ELディスプレイパネルの膜厚構成の設計方法に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本発明の態様23は、態様22の有機ELディスプレイパネルの膜厚構成の設計方法において、
 前記機能層1と、前記機能層2とが積層されている膜の平坦度Fが、
 前記機能膜1の平坦度Fと、前記機能膜2の平坦度Fのいずれかよりも大きな値を示す、有機ELディスプレイパネルの膜厚構成の設計方法に関する。
 本発明の態様24は、態様22又は23の有機ELディスプレイパネルの膜厚構成の設計方法において、
 前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
 前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、有機ELディスプレイパネルの膜厚構成の設計方法に関する。
 本発明の態様25は、態様22~24のいずれか一つの有機ELディスプレイパネルの膜厚構成の設計方法において、
 前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、有機ELディスプレイパネルの膜厚構成の設計方法に関する。
 本発明の態様26は、態様22~25のいずれか一つの有機ELディスプレイパネルの膜厚構成の設計方法において、
 前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、有機ELディスプレイパネルの膜厚構成の設計方法に関する。
 本発明の態様27は、態様22~26のいずれか一つの有機ELディスプレイパネルの膜厚構成の設計方法において、
 前記機能層1及び前記機能層2が、高分子化合物を含む、有機ELディスプレイパネルの膜厚構成の設計方法に関する。
 本発明の態様28は、
 少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子であって、
 前記有機電界発光素子は、隔壁により区画分けされた区画領域に設けられており、
 前記機能層1は、前記区画領域の短軸又は長軸に沿って測定された層厚プロファイルにおいて、下記式の値が機能性膜を構成する層のなかで最も大きくなる層であり、
  (前記区画領域内の中央部の平均膜厚)-(前記区画領域内の隔壁側部の平均膜厚)
 前記機能層2は、前記区画領域の短軸又は長軸に沿って測定された層厚プロファイルにおいて、下記式の値が機能性膜を構成する層のなかで最も大きくなる層であり、
  (前記区画領域内の隔壁側部の平均膜厚)-(前記区画領域内の中央部の平均膜厚)
 ここで、前記中央部とは、区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、前記重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側を意味し、
 前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側を意味し、
 さらに、前記閉曲線は直線部及び角部を含んでいてもよく、
 前記機能層1と前記機能層2の層厚プロファイルを合算して得られる積層膜の平坦度Fが、機能層1の平坦度Fと、機能層2の平坦度Fのいずれよりも大きな値を示し、
 ここで、平坦度Fは下記式で表される、有機電界発光素子に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された層厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本発明により、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件に依存することのない、光学的な特性に優れる有機電界発光素子を提供することができる。そして、本発明により、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件に依存することなく、同じ機能性を示す機能性インク1種で光学的な特性に優れる有機ELディスプレイパネルを提供することができる。
 また、本発明により、有機電界発光素子を構成する機能性膜を湿式成膜により形成する場合において、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件が変化しても、光学的な特性を落とさずに有機電界発光素子を製造することができる。そして、本発明により、有機電界発光素子を構成する機能性膜を湿式成膜により形成する場合において、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件が変化しても、同じ機能性を示す機能性インク1種を用いることで光学的な特性を落とさずに有機ELディスプレイパネルを製造することができる。
 さらに、本発明により、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件に依存することのない、光学的な特性に優れる有機電界発光素子又は有機ELディスプレイパネルの膜厚構成の設計方法を提供することができる。
 また、本発明により、有機電界発光素子又は有機ELディスプレイパネルを構成する機能性膜を湿式成膜により形成する場合において、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件が変化しても、光学的な特性に優れる有機電界発光素子又は有機ELディスプレイパネルの膜厚構成を簡便に設計することができる。
図1は、本発明の有機電界発光素子の一例を模式的に示す断面図である。 図2は、参考例1-1における膜厚プロファイルを示す図である。 図3は、参考例1-2における膜厚プロファイルを示す図である。 図4は、参考例1-3における膜厚プロファイルを示す図である。 図5は、実施例1における膜厚プロファイルを示す図である。 図6は、実施例2における膜厚プロファイルを示す図である。 図7は、実施例3における膜厚プロファイルを示す図である。 図8は、実施例4における膜厚プロファイルを示す図である。 図9は、実施例5における膜厚プロファイルを示す図である。 図10は、参考例2における膜厚プロファイルを示す図である。 図11は、参考例2における短軸のCIExの分布を示す図である。 図12は、参考例2における短軸のCIEyの分布を示す図である。 図13は、参考例3-1における膜厚プロファイルを示す図である。 図14は、参考例3-2における膜厚プロファイルを示す図である。 図15は、参考例3-3における膜厚プロファイルを示す図である。 図16は、参考例3-4における膜厚プロファイルを示す図である。 図17は、参考例3-5における膜厚プロファイルを示す図である。 図18は、参考例3-6における膜厚プロファイルを示す図である。 図19は、参考例51-1における膜厚プロファイルを示す図である。 図20は、参考例51-2における膜厚プロファイルを示す図である。 図21は、参考例51-3における膜厚プロファイルを示す図である。 図22は、参考例52における膜厚プロファイルを示す図である。 図23は、参考例52における短軸のCIExの分布を示す図である。 図24は、参考例52における短軸のCIEyの分布を示す図である。 図25は、参考例53-1における膜厚プロファイルを示す図である。 図26は、参考例53-1における膜厚プロファイルを示す図である。 図27は、参考例53-1における膜厚プロファイルを示す図である。 図28は、参考例53-2における膜厚プロファイルを示す図である。 図29は、参考例53-2における膜厚プロファイルを示す図である。 図30は、参考例53-2における膜厚プロファイルを示す図である。 図31は、参考例53-3における膜厚プロファイルを示す図である。 図32は、参考例53-3における膜厚プロファイルを示す図である。 図33は、参考例53-3における膜厚プロファイルを示す図である。
 以下、本発明を実施するための形態を、図などを参照して説明する。以下に説明する実施形態は、本発明を説明するための一実施形態であり、本発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されているすべての構成が、本発明の課題を解決するために必須の構成であるとは限らない。
 また、本明細書においては、本発明の組成物を、インクジェットなどのノズルから吐出するインクとして用いる場合、機能性インク又は単にインクと称する場合がある。本発明の組成物をインクジェットなどのノズルから吐出するインクとして用い、ノズルから吐出して隔壁層に囲まれた領域内に塗布した場合、隔壁層に囲まれた領域内のインクを液、または液膜と称する場合があり、ノズルから吐出されたインクを液滴と称する場合がある。
 隔壁層(バンク)に囲まれた領域内の液膜を乾燥させ、溶媒が揮発することによって液膜の溶媒組成比が変化したものも液または液膜と称する場合がある。本発明の機能性インクを塗布成膜し、有機溶媒を揮発させて乾燥させて得られた、機能性材料を含む膜を機能性膜又は機能層と称する。また、有機化合物を含む膜であって、溶媒を含まないか又は実質的に溶媒を揮発させて乾燥した膜を有機膜と称する。機能性膜は有機膜の一種である。
 本明細書において、バンクとは、感光性の組成物を用いて製膜した膜を、一般的なフォトリソグラフィー法によってパターニングし、区画された微小領域(画素とも言う)を有する膜に成型した構造体を指す。本構造体の区画された微小領域内は、一定の高さを有するバンクの壁面に囲まれており、この壁面全域をバンク側面と呼称する。また、上記のような目的で製造された感光性組成物を、単にレジストと称する場合がある。
 湿式法で有機ELディスプレイパネルを製造する多くの場合、このバンクは撥液性を有しており、塗布された機能性インクが溢れることを防ぐ機能を有している。このような撥液性を有するバンクを製造するために用いるレジストを、撥液レジストと称することがある。また、本撥液レジストを用いて製膜し、特にパターニング用のマスクを用いずに露光や現像を行って製造した膜を、撥液レジスト膜と称する。
 本発明は、一態様において、少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子であって、前記有機電界発光素子は隔壁により区画分けされた区画領域に設けられており、ここで、前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に、減圧乾燥することにより形成した膜を機能膜1とした場合、前記機能膜1は前記区画領域内の中央部の平均膜厚が前記区画領域内の隔壁側部の平均膜厚よりも厚くなり、前記機能層2を形成するための機能性インクを前記区画領域内に、前記機能層2を形成するために必要な量を充填した後に、減圧乾燥することにより形成した膜を機能膜2とした場合、前記機能膜2は前記区画領域内の隔壁側部の平均膜厚が前記区画領域内の中央部の平均膜厚よりも厚くなり、前記中央部とは、区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、前記重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側を意味し、前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側を意味し、さらに、前記閉曲線は直線部及び角部を含んでいてもよく、前記機能層1と前記機能層2とが積層されている膜の平坦度Fが、機能膜1の平坦度Fと、機能膜2の平坦度Fのいずれよりも大きな値を示し、ここで、平坦度Fは下記式で表される、有機電界発光素子に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本明細書において、膜厚プロファイルとは、区画領域における膜の厚さの測定軸方向に対する分布を意味する。
 また、本明細書において、「区画領域の中央」でいう中央とは、膜厚プロファイルが測定された区画領域の長さを100としたときの、中央の長さ5に相当する部分を意味する。
 さらに、本明細書において、プロファイル部分の長さとは、膜厚プロファイルが測定された区画領域の長さを意味する。
 本発明は、一態様において、隔壁により区画分けされた複数の区画領域を有し、前記区画領域に有機電界発光素子が形成された有機ELディスプレイパネルであって、前記複数の区画領域は少なくとも第1の区画領域と第2の区画領域とを有し、前記第1の区画領域の有機電界発光素子と前記第2の区画領域の有機電界発光素子とは互いに開口面積が異なり、前記第1の区画領域および前記第2の区画領域は各々独立に少なくとも機能層1と機能層2とが積層された機能性膜を有し、前記第1の区画領域の機能層1を形成する機能性材料と前記第2の区画領域の機能層1を形成する機能性材料とは同一であり、前記第1の区画領域の機能層2を形成する機能性材料と前記第2の区画領域の機能層2を形成する機能性材料とは同一であり、前記第1の区画領域および前記第2の区画領域のいずれかが少なくとも以下の条件を満たす有機ELディスプレイパネルに関する。
<条件>
 前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成した膜を機能膜1とした場合、前記機能膜1は前記区画領域の中央部の平均膜厚が隔壁側部の平均膜厚に比べて厚くなり、前記機能層2を形成するための機能性インクを前記区画領域内に、前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成した膜を機能膜2とした場合、前記機能膜2は前記区画領域の中央部の平均膜厚が隔壁側部の平均膜厚に比べて薄くなり、ここで、前記中央部とは、前記区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側をいう。また、前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側をいう。ここでいう前記閉曲線とは、直線部及び角部を含んでよい。
 本発明は、一態様において、隔壁により区画分けされた区画領域に設けられ、少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子の膜厚構成の設計方法であって、前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜1)と、前記機能層2を形成するための機能性インクを前記区画領域内に前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜2)と、を積層させた場合のそれぞれの膜の膜厚を、前記機能膜1の膜厚プロファイルと、前記機能膜2の膜厚プロファイルと、を数値計算処理によって加算した膜の平坦度Fが75%以上、好ましくは85%以上となる組み合わせとする、ここで、平坦度Fは下記式で表される、有機電界発光素子の膜厚構成の設計方法に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本発明は、一態様において、隔壁により区画分けされた複数の区画領域を有し、前記区画領域に有機電界発光素子が形成された有機ELディスプレイパネルにおいて、前記複数の区画領域は少なくとも第1の区画領域と第2の区画領域とを有し、前記第1の区画領域の有機電界発光素子と前記第2の区画領域の有機電界発光素子とは互いに発光色が異なる有機ELディスプレイパネルの膜厚構成の設計方法であって、前記区画領域は各々独立に少なくとも機能層1と機能層2が積層された機能性膜を有し、前記第1の区画領域の機能層1を形成する機能性材料と前記第2の区画領域の機能層1を形成する機能性材料とは同一であり、前記第1の区画領域の機能層2を形成する機能性材料と前記第2の区画領域の機能層2を形成する機能性材料とは同一であり、前記第1の区画領域と前記第2の区画領域は各々独立に、前記機能層1を形成するための機能性インクを前記区画領域内に前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜1)と、前記機能層2を形成するための機能性インクを前記区画領域内に前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜2)と、を積層させた場合のそれぞれの膜の膜厚を、前記機能膜1の膜厚プロファイルと、前記機能膜2を形成した場合の膜の膜厚プロファイルと、を数値計算処理によって加算した膜の平坦性が75%以上、好ましくは85%以上となる組み合わせとする、ここで、平坦度Fは下記式で表される、有機ELディスプレイパネルの膜厚構成の設計方法に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本発明は、一態様において、少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子であって、前記有機電界発光素子は、隔壁により区画分けされた区画領域に設けられており、前記機能層1は、前記区画領域の短軸又は長軸に沿って測定された層厚プロファイルにおいて、下記式の値が機能性膜を構成する層のなかで最も大きくなる層であり、
  (前記区画領域内の中央部の平均膜厚)-(前記区画領域内の隔壁側部の平均膜厚)
 前記機能層2は、前記区画領域の短軸又は長軸に沿って測定された層厚プロファイルにおいて、下記式の値が機能性膜を構成する層のなかで最も大きくなる層であり、
  (前記区画領域内の隔壁側部の平均膜厚)-(前記区画領域内の中央部の平均膜厚)
 ここで、前記中央部とは、区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、前記重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側を意味し、前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側を意味し、さらに、前記閉曲線は直線部及び角部を含んでいてもよく、前記機能層1と前記機能層2の層厚プロファイルを合算して得られる積層膜の平坦度Fが、機能層1の平坦度Fと、機能層2の平坦度Fのいずれよりも大きな値を示し、ここで、平坦度Fは下記式で表される、有機電界発光素子に関する。
  F=M/Ap×100(%)
(式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された層厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
 本明細書において、層厚プロファイルとは、区画領域における当該層部分の厚さの測定軸方向に対する分布を意味する。
 一般的に湿式で製膜される機能層は、隔壁面に対する機能性インクの濡れ性に従って凹形状や凸形状を取りやすい。本発明では、このように比較的製膜しやすい形状の機能層を組み合わせて平坦な機能性膜を製造するため、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程などの各種条件の違いに対して詳細に調整する必要が無く、比較的容易に総膜厚が均一である有機電界発光素子又は有機ELディスプレイパネルを作成することができる。また、同様の理由により、光学的な特性に優れる有機電界発光素子又は有機ELディスプレイパネルの膜厚構成を簡便に設計することができる。
<有機電界発光素子>
 本発明における有機電界発光素子は通常、隔壁により区画分けされた区画領域に設けられ、少なくとも2層が積層された機能性膜を有する。
<有機ELディスプレイパネル>
 本発明における有機ELディスプレイパネルは通常、隔壁により区画分けされた複数の区画領域と、区画領域に設けられ、少なくとも2層が積層された機能性膜とを有する有機電界発光素子を有する。
<膜厚構成の設計方法における有機電界発光素子、有機ELディスプレイパネル>
 本発明の膜厚構成の設計方法における有機電界発光素子又は有機ELディスプレイパネルは通常、隔壁により区画分けされた複数の区画領域と、区画領域に設けられ、少なくとも2層が積層された機能性膜とを有する。有機ELディスプレイパネルは、区画領域を複数有する。
<隔壁層(バンク)>
 隔壁層(バンク)は、例えば導電性の電極パターンを有するガラス基板上に撥液レジストを塗布して、フォトリソグラフィー法によって微小領域の開口部を複数設ける工程により設けられる隔壁である。
<撥液レジスト>
 本発明における撥液レジストは、ポジ型あるいはネガ型のいずれを用いてもよいが、撥液性の観点からネガ型が好ましい。ネガ型撥液レジストにおいては、(A)光重合開始剤、(B)アルカリ可溶性樹脂、(C)光重合性化合物、及び(D)撥液剤を含有する感光性組成物が好ましい。
(A)光重合開始剤
 (A)光重合開始剤は、紫外線を吸収して(C)光重合性化合物の重合反応を促進させるために含有される。本願で使用される光重合開始剤は特に限定されるわけではないが、露光機の光源の波長350~400nmの紫外線(i線)を適度に吸収し、重合反応を促進させ、撥液性を向上させるという理由から、オキシムエステル系光重合開始剤が好ましい。
 例えば、日本国特許第4454067号公報、国際公開第2002/100903号、国際公開第2012/45736号、国際公開第2015/36910号、国際公開第2006/18973号、国際公開第2008/78678号、日本国特許第4818458号公報、国際公開第2005/80338号、国際公開第2008/75564号、国際公開第2009/131189号、国際公開第2009/131189号、国際公開第2010/133077号、国際公開第2010/102502号、国際公開第2012/68879号に記載されている光重合開始剤が使用できる。
 また、該光重合開始剤の含有割合は特に限定されないが、撥液レジストの全固形分中に、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上であり、通常15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。前記下限値以上とすることで、十分な撥液性が生じる傾向があり、また、前記上限値以下とすることで現像性が良好となる傾向がある。
(B)アルカリ可溶性樹脂
 (B)アルカリ可溶性樹脂としては、アルカリ現像液で現像可能なものであれば特に限定されない。アルカリ可溶性樹脂としては、カルボキシル基又は水酸基を有する各種樹脂が挙げられるが、現像性に優れるとの観点からはカルボキシル基を有するものが好ましい。また、バンク側面の垂直性が良好となり、バンクの熱溶融による撥液剤の流出が抑えられて撥液性を保持しやすい等の理由から、エチレン性不飽和基を有するアルカリ可溶性樹脂が好ましい。
 (B)アルカリ可溶性樹脂の具体的構造は特に限定されないが、エポキシ(メタ)アクリレート樹脂(B1)及び/又はアクリル共重合樹脂(B2)が好ましい。
 ここで、エポキシ(メタ)アクリレート樹脂(B1)は、主鎖に芳香環を有するエポキシ樹脂にエチレン性不飽和結合(エチレン性二重結合)を有する酸又はエステル化合物を付加し、さらに多塩基酸又はその無水物を付加させた樹脂である。またさらに、上記反応で得られた樹脂のカルボキシル基に、さらに反応し得る官能基を有する化合物を反応させて得られる樹脂も、エポキシ(メタ)アクリレート樹脂(B1)に含まれる。
 例えば、国際公開第2004/81621号、国際公開第2008/129986号、国際公開第2008/153000号、国際公開第2018/43746号、国際公開第2018/101314号、国際公開第2021/90836号に記載されているアルカリ可溶性樹脂を用いることができる。
 本発明で用いることができる撥液レジストにおける(B)アルカリ可溶性樹脂の含有割合は特に限定されないが、全固形分に対して、通常5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上、よりさらに好ましくは40質量%以上、特に好ましくは50質量%以上、また、通常90質量%以下、好ましくは80質量%以下、より好ましくは70質量%以下である。前記下限値以上とすることで隔壁の形状が良好となる傾向があり、また、前記上限値以下とすることで撥液性が向上する傾向がある。
(C)光重合性化合物
 (C)光重合性化合物は、レジスト膜の硬化性を上げ、撥液性を向上させると考えられる。ここで使用される光重合性化合物としては、特に以下に限定されるものではないが、エチレン性不飽和結合を分子内に1個以上有する化合物を意味するが、重合性、架橋性、およびそれに伴う露光部と非露光部の現像液溶解性の差異を拡大できる等の点から、エチレン性不飽和結合を分子内に2個以上有する化合物であることが好ましく、また、その不飽和結合は(メタ)アクリロイルオキシ基に由来するもの、つまり、(メタ)アクリレート化合物であることがさらに好ましい。
 光重合性化合物としては、例えば、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;脂肪族ポリヒドロキシ化合物、芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物と、不飽和カルボン酸及び多塩基性カルボン酸とのエステル化反応により得られるエステル;が挙げられるが、撥液性の観点から、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましい。例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、2-トリス(メタ)アクリロイロキシメチルエチルフタル酸、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等がより好ましい。
 本発明で用いることができる撥液レジストにおける(C)光重合性化合物の含有割合は、特に限定されないが、全固形分中に通常1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上、通常80質量%以下、好ましくは60質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。前記下限値以上とすることで露光時の隔壁面の垂直性が良好となる傾向があり、前記上限値以下とすることで現像性が良好となる傾向がある。
(D)撥液剤
 (D)撥液剤は、フッ素原子含有樹脂を含有することが好ましく、架橋基を有するフッ素原子含有樹脂を含有することがより好ましい。このような撥液剤を用いることにより、撥液レジストがフッ素原子含有樹脂又は架橋基を有するフッ素原子含有樹脂を含有することとなり、その結果、バンクの表面に撥液性を付与できることから、機能性インクを塗布した際に隣り合う微小領域のインク同士が混ざり合ってしまうのを防ぐことができる。
 架橋基としては、エポキシ基又はエチレン性不飽和基が挙げられ、現像液の撥液成分の流出抑制の観点から、エチレン性不飽和基が好ましい。架橋基を有する撥液剤を用いることで、形成したレジスト膜を露光する際にその表面での架橋反応を加速することができ、撥液剤が現像処理で流出しにくくなり、その結果、得られるバンクも高い撥液性を示すものとすることができる。また、フッ素原子含有樹脂であることで、該フッ素原子含有樹脂が隔壁の表面に配向して、機能性インクのにじみや混ざり合いを防止する働きをする傾向がある。
 フッ素原子は、例えばフルオロアルキル基、フルオロアルケニル基、フルオロアルキレン基等で含有させることができる。このうち、撥液性、機能性インクのにじみや混ざり合いを防止する観点から、フルオロアルキル基、フルオロアルキレン基が好ましく、フルオロアルキル基がより好ましい。
 また、撥液剤はアクリル共重合体であることが望ましい。アクリル共重合体であることで、機能性インクのにじみや混ざり合いを防止する働きをする傾向がある。
 (D)撥液剤の含有割合は特に限定されないが、全固形分に対して通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.5質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。前記下限値以上とすることで高い撥液性を示す傾向があり、また、前記上限値以下とすることで微小領域への流出を抑制できる傾向がある。
(その他の添加剤)
 前記(A)成分のエチレン性不飽和化合物、(B)成分の光重合開始剤、(C)成分のアルカリ可溶性バインダー、(D)成分の撥液剤の外に、界面活性剤、着色剤、紫外線吸収剤、重合禁止剤、酸化防止剤、現像改良剤、シランカップリング剤、エポキシ化合物、その他の樹脂などを適宜配合することができる。
 また撥液レジストは、適宜、各成分を溶剤に溶解または分散させた状態で使用される。その溶剤としては、特に制限は無いが、例えば、以下に記載する有機溶剤が挙げられる。
 プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、のようなグリコールモノアルキルエーテル類;
 ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテルのようなグリコールジアルキルエーテル類;
 プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、3-メトキシブチルアセテートのようなグリコールアルキルエーテルアセテート類;
 1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、1,6-ヘキサノールジアセテート等のグリコールジアセテート類;
 酢酸エチル、酢酸プロピル、酢酸ブチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチルのようなアルコキシカルボン酸類。
 これらのうち、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテートが好ましい。
<機能性膜>
 本発明の機能性膜は、隔壁(バンク)により区画分けされた領域(本明細書では区画領域ともいう。)内に設けられた少なくとも2層が積層されてなる。
 機能性膜を構成する層としては、例えば正孔注入層、正孔輸送層、発光層、電子輸送層が挙げられる。各層は、少なくとも一種の機能性材料と溶媒を有する機能性インクを、例えば、インクジェット法により隔壁(バンク)により区画された領域内に充填し減圧乾燥することによって形成することができる。
<機能層1、機能層2>
 本発明における有機電界発光素子、又は、本発明における有機ELディスプレイパネルに含まれる有機電界発光素子は少なくとも2層が積層された機能性膜を有し、機能性膜は機能層1と機能層2とを含む。同様に、本発明の設計方法における有機電界発光素子又は有機ELディスプレイパネルは少なくとも2層が積層された機能性膜を有し、機能性膜は機能層1と機能層2とを含む。
 ここで、機能層1とは、機能性膜に含まれる層であって、機能層1を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合に、区画領域内の中央部の平均膜厚が区画領域内の隔壁側部の平均膜厚よりも厚くなる層である。
 また、機能層2とは、機能性膜に含まれる層であって、機能層2を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合に、区画領域内の隔壁側部の平均膜厚が区画領域内の中央部の平均膜厚よりも厚くなる層である。
 機能層1と機能層2が、正孔注入層又は正孔輸送層であることが好ましい。また、機能層1及び機能層2が、高分子化合物を含むことが好ましい。
 本明細書において、機能層1及び機能層2を総称して単に機能層ということがある。
 ここで、中央部とは、区画領域の重心点を通る直線で区画領域の全外周を走査した際、重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側をいう。また、隔壁側部とは、区画領域内であって、前記閉曲線を境界とする領域の外側をいう。ここでいう閉曲線とは、直線部及び角部を含んでよい。
 機能層1及び機能層2としては、例えば以下のような組み合わせを含む。
 ・機能層1:正孔注入層、機能層2:正孔輸送層
 ・機能層1:正孔注入層、機能層2:発光層
 ・機能層1:正孔注入層、機能層2:電子輸送層
 ・機能層1:正孔輸送層、機能層2:正孔注入層
 ・機能層1:正孔輸送層、機能層2:発光層
 ・機能層1:正孔輸送層、機能層2:電子輸送層
 ・機能層1:発光層、機能層2:正孔注入層
 ・機能層1:発光層、機能層2:正孔輸送層
 ・機能層1:発光層、機能層2:電子輸送層
 ・機能層1:電子輸送層、機能層2:正孔注入層
 ・機能層1:電子輸送層、機能層2:正孔輸送層
 ・機能層1:電子輸送層、機能層2:発光層
 ここで、隔壁側部及び中央部とは、上で定義したとおりである。隔壁側部の平均膜厚が中央部の平均膜厚よりも厚いとは、隔壁に近づくほど膜厚が厚くなっているという意味に限定されるものではない。したがって、凹形状は、必ずしも区画領域の重心の上面が最下方に位置している必要はなく、区画領域の重心といずれかの隔壁とに挟まれた部分の上面が最下方に位置した凹形状であっても良い。さらに、凹形状は、隔壁から区画領域の重心へ向けて漸次下方に下がっている必要はなく、区画領域の重心と隔壁とに挟まれた部分において一時的に上方に上がっていても良い。すなわち、必ずしも隔壁から区画領域の重心へ向けて上面がなだらかに下がっている必要はなく、上面には多少の凹凸があっても良い。
 区画領域の形状は正方形、長方形といった矩形のみでなく、多角形や楕円形等の任意の形状が考えられる。区画領域の形状が長軸と短軸とを有する場合は、長軸及び短軸に分けて機能層の凹形状及び凸形状を評価する。ここで、長軸とは、区画領域の形状のアスペクト比が最も大きくなる軸の組み合わせにおける長い方の軸を意味する。また、短軸とは、区画領域の形状のアスペクト比が最も大きくなる軸の組み合わせにおける短い方の軸を意味する。
 区画領域の形状が長軸と短軸とを有する場合、機能層の凹形状と凸形状には下記の組み合わせが考えられる。
 ・長軸:凸形状、短軸:凸形状
 ・長軸:凸形状、短軸:凹形状
 ・長軸:凹形状、短軸:凹形状
 ・長軸:凹形状、短軸:凸形状
 機能層を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することによりそれぞれ形成された2つの機能層が、機能性膜を構成する機能層1及び機能層2のいずれに該当するかを判断する方法について以下説明する。
 2つの機能層の長軸又は短軸のいずれか一方の軸における層の形状が凸形状又は凹形状で共通しており、かつ、他方の軸における層の形状がそれぞれ凸形状及び凹形状であり互いに異なる場合には、当該互いに異なる層の形状に基づき機能層1及び機能層2を決定する。
 他方、2つの機能層の長軸及び短軸のいずれの軸においても、層の形状がそれぞれ凸形状と凹形状であり互いに異なる場合には、上記の方法により機能層1及び機能層2を決定することができない。ここで、測定される機能層の膜形状は、膜厚プロファイルが短いほど凸形状ないし凹形状が顕著に表れる傾向がある。この傾向より、上記方法による機能層1及び機能層2を決定することができない場合においては、2つの機能層の短軸における層の形状に基づき機能層1及び機能層2を決定する。
 上記の方法に基づき決定される、機能層1と機能層2との組み合わせの例を以下に示す。
 ・機能層1(長軸:凸形状、短軸:凸形状)、機能層2(長軸:凸形状、短軸:凹形状)
 ・機能層1(長軸:凸形状、短軸:凸形状)、機能層2(長軸:凹形状、短軸:凸形状)
 ・機能層1(長軸:凸形状、短軸:凸形状)、機能層2(長軸:凹形状、短軸:凹形状)
 ・機能層1(長軸:凸形状、短軸:凹形状)、機能層2(長軸:凹形状、短軸:凹形状)
 ・機能層1(長軸:凹形状、短軸:凸形状)、機能層2(長軸:凸形状、短軸:凹形状)
 ・機能層1(長軸:凹形状、短軸:凸形状)、機能層2(長軸:凹形状、短軸:凹形状)
 また湿式成膜において、各ノズルによる機能性インクの吐出量の振れを軽減させるために、隣接する区画領域が親液領域等を介して長軸もしくは短軸方向に連結されている場合がある。このような場合、区画領域における軸は連結方向に対して垂直方向の軸の膜形状から機能層1及び機能層2を判断する。
 機能層1を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより形成される膜と、機能層2を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより形成される膜とを積層させた場合の膜の平坦度Fが、機能層1を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合の膜(機能膜1)の平坦度Fと、機能層2を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合の膜(機能膜2)の平坦度Fのいずれよりも大きな値を示すことが好ましい。すなわち、機能層1と機能層2とが積層されている膜の平坦度Fが、機能膜1の平坦度Fと、機能膜2の平坦度Fのいずれかよりも大きな値を示すことが好ましい。
 ここで、平坦度Fは下記式で表される。
  F=M/Ap×100(%)
 式中、Apは区画領域における短軸又は長軸の長さ、Mは区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さ表す。
 上記平坦度Fを表す式において、Mを求めるための膜厚プロファイルは、例えば、触針式段差計や白色干渉計のような非接触型の計器により測定することができる。また、Mを求めるための膜厚プロファイルは、2つの機能層の短軸における層の形状に基づき機能層1及び機能層2を決定した場合は短軸に沿って測定し、2つの機能層の長軸における層の形状に基づき機能層1及び機能層2を決定した場合は長軸に沿って測定する。
 なお、機能層1を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより形成される膜(以下、「機能層1用のインクのみにより形成される膜」ともいう。)と、機能層2を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより形成される膜(以下、「機能層2用のインクのみにより形成される膜」ともいう。)とを積層させた場合の膜の平坦度Fは、機能層1用のインクのみにより形成される膜及び機能層2用のインクのみにより形成される膜の位置関係にはほとんど依存しない。すなわち、機能層1用のインクのみにより形成される膜が機能層2用のインクのみにより形成される膜よりも下方に位置しても、機能層2用のインクのみにより形成される膜が機能層1用のインクのみにより形成される膜よりも下方に位置しても、膜の平坦度Fはほとんど変化しない。この理由は定かではないが、機能層1及び機能層2の厚さが、開口部の長さスケールと比較して十分に小さいため、膜の形状を左右する乾燥過程で生じる機能性インク液滴内の対流にほとんど影響を与えないためと考えられる。
 平坦性の観点から、機能層1は、機能層1を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合に、区画領域の中央部に膜厚が最も厚い部分が位置する層であり、機能層2は、機能層2を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合に、区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する層であることが好ましい。すなわち、機能膜1は、区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、機能膜2は、区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜であることが好ましい。
 機能層1と機能層2の積層膜の平坦性の観点から、機能層1を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合に、前記区画領域内の前記隔壁と、これと最も近接する前記隔壁とを最短距離で結ぶ直線における、前記両隔壁からそれぞれ15%の長さを除いた残り70%の部分の集合により形成される領域の膜厚が、それ以外の領域の平均膜厚より大きいことが好ましく、前記両隔壁からそれぞれ10%の長さを除いた残り80%の部分の集合により形成される領域の膜厚が、それ以外の領域の平均膜厚より大きいことがより好ましい。
 機能層1と機能層2の積層膜の平坦性の観点から、機能層2を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより膜を形成した場合に、得られた膜の形状において、開口部端における接線の傾きの値が-1.0×10-3以下であることが好ましい。より好ましくは-5.0×10-3以下であることが好ましい。また、中央部の最も薄い部分と開口部端における膜厚の差が30nm以下であることが好ましい。より好ましくは20nm以下であることが好ましい。
 ここで、開口部端とは、正極材料と隔壁材料が接する界面を表している。また、後述するとおり機能層2は凹形状であることから、接線の傾きの正負は負とした。
<凸形状と凹形状>
 機能層の膜形状は、隔壁の材料、画素の大きさ、有機膜の膜厚、機能性インクの溶媒、機能性インクの溶質、乾燥工程、温度など複数の要因に支配されている。1つの条件が変化すれば機能層の膜形状も変化するが、その他条件を固定することにより、凸形状の膜形状及び凹形状の膜形状を選択的に作成することも可能である。
(低分子混合量と膜形状)
 湿式成膜法を用いてバンク(隔壁)で区画された領域にインクを塗布して成膜する場合、一般的には区画領域全域が濡れわたるように十分な量のインクを塗布してから、真空乾燥などの各種乾燥手段を用いて溶媒成分を揮発させて機能層を得る。区画領域内でインクが乾燥する際、インクの端部は徐々にバンク側面を後退していき、徐々に濃度が高まっていき、最終的に機能層になる。この時、バンク側面の濡れ性の違いや、バンク側面の形状変化によってバンク側面の途中で止まってしまうというセルフピニング現象により、インク端部がバンク側面を後退できない場合がある。
 このようにバンク側面の途中でセルフピニングしてしまうと、出来上がった機能層がバンク側面に沿って濡れあがるような形状をとる。つまり、機能層2が形成されやすい。一方で、乾燥の早い段階でセルフピニング現象が起こらずバンク側面が乾燥時の中央部の平均膜厚となる高さよりも同程度か低い位置にピニングされた場合、出来上がった機能層は中央部の平均膜厚が厚く、隔壁付近が薄い形状をとる。つまり、機能層1が形成されやすい。セルフピニング現象が生じる要因の一つとして、隔壁付近で乾燥過程にあるインク濃度の増加による増粘が引き起こす流動性の阻害が挙げられる。したがって、粘度濃度カーブを描いた場合に濃度の増加に伴い粘度上昇しやすい高分子を含むような機能性インクを用いた場合には、乾燥する過程において増粘によるセルフピイングを引き起こしやすいために機能層2が形成されやすい。一方で、乾燥過程で増粘しにくい低分子を含むインクを用いた場合には、機能層1が形成されやすい。
 このようなセルフピニング現象の観点から、機能層を作成するための機能性インクが含む材料の選択により、機能層の膜形状を一定の範囲で選択的に作り分けることも可能である。
 例えば、機能層1を形成するための機能性インクの溶質は、一態様として、分子量2000以下の低分子を含むことが好ましく、より好ましくは5重量%以上含む。また、機能層2を形成するための機能性インクの溶質は、一態様として、分子量2000以下の低分子を95重量%以下含むことが好ましく、より好ましくは90重量%以下、さらに好ましくは85重量%以下含む。
 機能性インクが含む材料の上記選択の結果として、機能層1は、一態様として、分子量2000以下の低分子を含むことが好ましく、より好ましくは5重量%以上含む。また、機能層2は、一態様として、分子量2000以下の低分子を95重量%以下含むことが好ましく、より好ましくは90重量%以下、さらに好ましくは85重量%以下含む。
(セルフピニングと膜形状)
 複数の溶媒からなる機能性インクの乾燥過程において、セルフピニングが発生しやすくなる高濃度領域では、高沸点溶媒が支配的な溶媒である。このような高沸点溶媒で粘度が低いことは、液が動きやすいことを意味し、セルフピニングの抑制が効果的に働く。また、高沸点溶媒では沸点が高いほうがゆっくりと乾燥していくため、機能性インクが隔壁を後退していく時間を稼ぐことができセルフピニングは抑制される。セルフピニングが抑制された場合の機能層の膜は凸形状となり、機能層1が形成されやすい。一方で、高濃度領域で支配的な高沸点溶媒の粘度が高く、高い蒸気圧である場合はセルフピニングがされやすくなるため、機能層の膜は凹形状となり、機能層2が形成されやすい。
 下記式で表されるA値(日本国特願2021-178216号)は、複数種の溶媒を含む機能性インクのセルフピニング位置の予測に使用することができる。
  A=γ1×η1/(T1-T2)
 ここで、γ1は第1溶媒の表面張力(mN/m)を表し、η1は第1溶媒の粘度(mPa・s)を表し、T1は第1溶媒の大気圧下における沸点(℃)を表し、T2は第2溶媒の大気圧下における沸点(℃)を表わす。第1溶媒または第2溶媒を複数有する場合、表面張力、粘度、沸点は、質量平均である。
 質量平均とは、含まれる溶媒の質量%で重みづけした相加平均のことであり、例えば粘度を例にした場合、以下の一般式で表される。
  ηave=Σ(η×W)/100
 ここで、ηaveが粘度の質量平均を表し、nは整数で1から該当する複数の溶媒の数だけ存在し、ηは該当する複数種の溶媒中n番目の溶媒の粘度を表し、Wは該当する溶媒中n番目の溶媒の含有率(質量%)を表し、Σは以降のカッコ内の式を該当する溶媒の数だけ足し合わせすることを意味している。
 沸点270℃以上で、含有量が10質量%未満の複数種の溶媒があった場合、含有量がそれらを足し合わせて10質量%を超える場合は、足し合わせた混合溶媒を第1溶媒とし、表面張力、粘度、沸点は質量平均とする。沸点270℃未満で、含有量が30質量%未満の複数種の溶媒があった場合、含有量がそれらを足し合わせて30質量%を超える場合は、足し合わせた混合溶媒を第2溶媒とし、表面張力、粘度、沸点は質量平均とする。
 前述したように、A値を低くすることでセルフピニングを抑制し、バンク側面での濡れ上りを低減することができ、このように調節された機能性インクを用いることにより、膜が凸形状の層(機能層1)を形成しやすくなる。また、A値を高くすることでセルフピニングされやすくなり、このように調節された機能性インクを用いることにより、膜が凹形状の層(機能層2)を形成しやすくなる。
 機能性膜の形状の観点から、機能層1を形成する機能性インクのA値は、機能層2を形成する機能性インクのA値よりも小さいことが好ましい。
(膜厚と膜形状)
 1つの機能性インクを使用して異なる膜厚を有する複数の機能層を作成する場合に、得ようとする機能層の膜厚が厚くなるほど必然的にインクの滴下数が増加する。隔壁の高さが同じ場合、減圧乾燥過程で液面が特定の高さまで到達したときの粘度は滴下数が多いほうが高くなる。したがって、成膜後の平均膜厚が薄ければ凸形状(機能層1)になり、厚ければ凹形状(機能層2)となる傾向がある。
 このような観点から、機能層1を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより形成される膜の平均膜厚は、機能層2を形成するための機能性インクのみを区画領域内に充填した後に減圧乾燥することにより形成される膜の平均膜厚よりも薄いことが好ましい。すなわち、機能膜1の平均膜厚が、機能膜2の平均膜厚よりも薄いことが好ましい。
(マランゴニ対流と膜形状)
 乾燥過程における液滴内部の流れの要因は、不均一蒸発速度分布に由来する流れ、接触角の変化に由来する流れ、表面張力の分布に起因する流れがあり、その因子の1つであるマランゴニ対流は重要な役割を持つ(H.Ishizuka, J.Fukai, Experiments in Fluids, 59, 4, 1-11, 2018)(J.Fukai, T.Harada, H. Ishizuka, Journal of Chemical Engineering of Japan, 52, 6, 484-492, 2019)(J.Fukai, J.Jpn.Colour Mater.,94, 4, 112-116,2021)。不均一蒸発速度分布に起因する流れは、液滴表面における接触線部分と液滴頭頂部における蒸発速度分布が異なることに起因する。例えば基板に滴下された液滴において、接触角が90°以下の場合、蒸発速度は接触線部で大きくなるために液滴頭頂部から接触線部へ向かって流体移動が生じる。接触角が90°以下の場合は蒸発速度分布が逆になるため、接触線部から液滴頭頂部へ向かって流体移動が生じる。接触角変化に由来する流れは、液滴表面における接触線部分の蒸発速度が経時変化していくことに起因する。上述したように、接触角と蒸発速度は相関を持つため、例えば接触角が小さくなるような経時変化の場合、液滴頭頂部から接触線部に向かって流体移動が生じる。表面張力分布に由来する流れは、表面張力の小さな部分から大きな部分へと流体が引っ張られることに起因する。接触線部の表面張力が頭頂部よりも高い場合、液滴頭頂部から接触線部へ流体移動が生じる。このような流れに対して、粘性力による内部流体も動きだすことで循環流が発生する。これがマランゴニ対流である。マランゴニ対流は、膜形状を制御するために重要な役割を持つ。例えば、界面活性剤の添加や溶媒を二種以上組み合わせた機能性インクを用いるなどして、液滴の表面張力を変えてマランゴニ対流を制御すれば、ある程度膜形状を操作することができる。
 例えば、日本国特許第5934961号公報に記載されている下記式で表される粘度η(mP・s)と表面張力σ(mN/m)との比であるγを用いることで、凸形状と凹形状の程度を予測することができる。
  γ=σ/η
 γが1.9より大きい溶媒を用いて60nmの機能層を仮作した場合は凹形状になる傾向があり、γが1.9より小さい溶媒を用いて60nmの機能層を仮作した場合は凸形状になる傾向がある。
 よって、機能層の形状の観点から、機能層1の作成のための機能性インクに使用された溶媒のγは、機能層2の作成のための機能性インクに使用された溶媒のγよりも小さいほうが好ましい。
<機能層の仮作>
 本発明における有機電界発光素子又は有機ELディスプレイパネル、並びに、本発明の設計方法における有機電界発光素子又は有機ELディスプレイパネルにおいて、有機電界発光素子が有する機能性膜に含まれる機能層1及び機能層2を選択するために、機能層1用のインクのみにより形成される膜、及び、機能層2用のインクのみにより形成される膜を仮作して、それぞれの膜の形状を確認することが好ましい。ここでいう仮作とは、膜の形状を確認するために、有機電界発光素子又は有機ELディスプレイパネルに含まれる区画領域に対して、機能層1用のインクのみにより形成される膜、機能層2用のインクのみにより形成される膜、及び/又は、機能層1用のインクのみにより形成される膜と機能層2用のインクのみにより形成される膜とを積層させた膜を作成することをいう。
 機能層1用のインクのみにより形成される膜を仮作するための機能性インクは、機能性膜中の機能層1を実際に作成するために用いる機能性インクと同一の配合のものを同量用いる。同様に、機能層2用のインクのみにより形成される膜を仮作するための機能性インクは、機能性膜中の機能層2を実際に作成するために用いる機能性インクと同一の配合のものを同量用いる。
 仮作された膜は、膜の形状を確認することのみに用いることができる。また、仮作された膜に対してさらなる膜を積層して、有機電界発光素子又は有機ELディスプレイパネルに用いる機能性膜を作成してもよい。
 さらに、有機電界発光素子又は有機ELディスプレイパネルに含まれる区画領域を機能層の仮作には使用せず、これと同様の方法により別途作成した仮作用の区画領域を用いて機能層の仮作を行ってもよい。仮作用の区画領域を別途作成する際には、1つの区画領域に対する機能性インクの滴下量、評価に使用する区画領域の大きさの条件が有機電界発光素子又は有機ELディスプレイパネルに含まれる区画領域の作成と同じ条件となるようにする。ただし、仮作用の基板の区画領域の数、機能性インクを塗布する面積、区画領域毎のインク滴下数、隣接する区画領域のサイズ、の条件については必ずしも同じである必要はない。
<機能性膜に含まれる機能層以外の層>
 本発明において、機能性膜は機能層1及び機能層2のほかにも層を含むことができる。このような層としては、例えば単層で成膜した際に凸形状でもなく凹形状でもなく平坦になる機能層や、蒸着によって成膜された機能層等を挙げることができる。
<溶媒>
 以下、本発明に使用できる有機溶媒について、例を示しながら説明する。なお、本明細書において、有機溶媒を単に「溶媒」又は「溶剤」と称することもある。
(有機溶媒の種類)
 本発明で使用することができる有機溶媒には特に制限がないが、機能性材料を効果的に溶解させるために、芳香族有機溶媒、鎖状脂肪族有機溶媒、環状脂肪族有機溶媒が好ましく、芳香族有機溶媒、環状脂肪族有機溶媒がより好ましく、芳香族有機溶媒がさらに好ましい。
 本発明で使用することができる芳香族有機溶媒としては、特に限定されないが、好ましくは、芳香族炭化水素系溶媒、芳香族エステル系溶媒、芳香族エーテル系溶媒、芳香族ケトン系溶媒といった非水溶性の芳香族系溶媒が挙げられる。
 芳香族炭化水素系溶媒としては、ベンゼン誘導体、ナフタレン誘導体、水素化ナフタレン誘導体、ビフェニル誘導体、ジフェニルメタン誘導体が好ましい。
 ベンゼン誘導体としては、特に限定はされないが、置換基の総炭素数が2以上12以下であって、直鎖または分岐または環状のアルキル基を置換として有するベンゼン誘導体が好ましく、n-エチルベンゼン、1,3,5-トリメチルベンゼン、n-プロピルベンゼン、イソプロピルベンゼン、1,3-ジイソプロピルベンゼン、1,3,5-トリイソプロピルベンゼン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、n-ペンチルベンゼン、n-ヘキシルベンゼン、n-ヘプチルベンゼン、n-オクチルベンゼル、n-ノニルベンゼン、n-デシルベンゼン、ドデシルベンゼン、シクロヘキシルベンゼン等が挙げられる。
 ナフタレン誘導体としては、特に限定はされないが、置換基の総炭素数が2以上6以下であって、直鎖または分岐または環状のアルキル基を置換として有するナフタレン誘導体が好ましく、1-メチルナフタレン、2-メチルナフタレン、1-エチルナフタレン、2-エチルナフタレン、2-イソプロピルナフタレン、2,6-ジメチルナフタレン、2,7-ジイソプロピルナフタレン、1-ブチルナフタレン、2-シクロヘキシルナフタレン、1-フェニルナフタレン等が挙げられる。
 水素化ナフタレン誘導体としては、特に限定はされないが、例えばテトラリン、1,2-ジヒドロナフタレン、1,4-ジヒドロナフタレン等が挙げられ、これらは炭素数1~6のアルキル基で置換されていてもよい。
 ビフェニル誘導体としては、特に限定はされないが、炭素数1~6のアルキル基で置換されたビフェニル誘導体が好ましく、例えば3-エチルビフェニル、4-イソプロピルビフェニル、4-ブチルビフェニルなどが挙げられる。
 ジフェニルメタン誘導体としては、特に限定はされないが、炭素数1~6のアルキル基で置換されたジフェニルメタン誘導体が好ましく、例えば1,1-ジフェニルエタン、1,1-ジフェニルペンタン、1,1-ジフェニルヘキサン、1,1-ビス(3,4-ジメチルフェニル)エタン、ベンジルトルエン等が挙げられる。
 芳香族エステル系溶媒としては、安息香酸エステル系溶媒、フェニル酢酸エステル系溶媒、フタル酸エステル系溶媒が挙げられる。
 安息香酸エステル系溶媒は、安息香酸とエステル結合を有する化合物であり、置換基を有していてもよい安息香酸と、炭素数1以上12以下のアルコールとがエステル結合した化合物を用いることができる。特に限定はされないが、有していてもよい置換基は、炭素数1以上12以下の、直鎖又は分岐又は環状のアルキル基、炭素数1以上12以下の、直鎖又は分岐又は環状のアルコキシ基、炭素数6以上12以下の芳香族系置換基が好ましい。これら置換基は複数であってもよく、複数の場合は置換基としての総炭素数2以上12以下が好ましい。安息香酸エステル系溶媒としては、例えば安息香酸エチル、安息香酸n-ブチル、安息香酸n-ペンチル、安息香酸イソアミル、安息香酸n-ヘキシル、安息香酸2-エチルヘキシル、安息香酸ベンジル、4-メチル安息香酸メチル、3-メチル安息香酸メチル、2-メチル安息香酸メチル、4-メチル安息香酸エチル、3-メチル安息香酸エチル、2-メチル安息香酸エチル、4-メトキシ安息香酸エチル等が挙げられる。
 フェニル酢酸エステル系溶媒としては、特に限定されないが、フェニル酢酸エチル等が挙げられる。
 フタル酸エステル系溶媒としては、特に限定されないが、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチルが挙げられる。
 他の好ましい芳香族エステル系溶媒としては、酢酸2-フェノキシエチル、イソ酪酸2-フェノキシエチル、等が挙げられる。
 芳香族エーテル系溶媒は、芳香環とエーテル結合とを有する化合物であり、特に限定されないが、以下のようなものが挙げられる。
 炭素数1以上12以下の直鎖又は分岐又は環状のアルキル基とエーテル結合を1個有するベンゼン誘導体として、例えばアニソール、4-メチルアニソール、ブチルフェニルエーテル、ヘキシルフェニルエーテル、ジフェニルエーテル、ベンジルフェニルエーテル、ジベンジルエーテル;
 炭素数1以上6以下の直鎖又は分岐のアルキル基が置換しているジフェニルエーテル誘導体として、例えば、2-フェノキシトルエン、3-フェノキシトルエン、4-フェノキシトルエン;
 炭素数1以上6以下の直鎖又は分岐のアルキル基とのエーテル結合を2個有するベンゼン誘導体として、例えば1,4-ジエトキシベンゼン、1-エトキシ-4-ヘキシルオキシベンゼン;
 その他の芳香族エーテル系溶媒として、2-フェノキシエタノール、フェノキシエトキシエタノール:
 芳香族ケトン系溶媒は、芳香環とケトン構造とを有する化合物であり、例えば1-アセチルナフタレン、プロピオフェノン、4’-エチルプロピオフェノン等が挙げられる。
 なお、溶剤には表面張力の制御のために表面改質剤が含まれていてもよい。表面改質剤は、液体に少量添加することによって、該液体を塗布した後に液体表面、若しくは塗布して得られる固体表面に対して機能性を付与することができる。ここで付与される機能としては、撥液性、非粘着性、濡れ性、平滑性、分散性、消泡性等が挙げられる。
 表面改質剤として用いることのできる材料としては、液体表面に偏析しやすい材料が好ましく、具体的には、シリコンやフッ素を含有する材料(ポリマー、オリゴマー、低分子)、パラフィン又は界面活性剤等が挙げられる。
 ここでいう界面活性剤とは、親水性を有する部分(基)と疎水性を有する部分(基)を有する両親媒性の化学構造をもつ物質であり、分散剤や起泡剤、消泡剤、乳化剤、食品添加物、保湿剤、帯電防止剤、濡れ性向上剤、滑剤、防錆剤等の幅広い用途に用いられている。このような界面活性剤は、親水性部分がカチオン性、アニオン性、両性のものと、ノニオン性のものに大別されるが、本発明においては、有機電界発光素子又は有機ELディスプレイパネル内での通電の妨げにならないように、ノニオン性の界面活性剤が好ましい。
(沸点)
 本発明で使用される有機溶媒は、特に限定されるわけではないが、沸点200℃以上の有機溶媒が好ましく、沸点230℃以上の有機溶媒がより好ましく、沸点250℃以上の有機溶媒がさらに好ましく、沸点270℃以上の有機溶媒が最も好ましい。また、沸点350℃以下が好ましく、沸点340℃以下がより好ましく、沸点330℃以下がさらに好ましい。
 例えば、インクジェットヘッドに充填されたインクは、ノズルの先端から乾燥が始まるため、ノズル先端で固形分濃度が高くなりやすい。この状態を維持してしまうと、ノズル先端で固形分が析出してきてしまい、最終的にはノズルが詰まってしまうなど、インクジェット装置に対する致命的なダメージを与えてしまう可能性がある。ノズル詰まりによるトラブルを避けるために、沸点200℃以上の有機溶媒が好ましく、沸点230℃以上の有機溶媒がより好ましく、沸点250℃以上の有機溶媒がさらに好ましく、沸点270℃以上の有機溶媒が最も好ましい。
 一方で、有機電界発光素子又は有機ELディスプレイパネルの製造過程では、有機溶媒を揮発させて機能性膜を得る工程が含まれるため、減圧乾燥設備で乾燥可能な沸点範囲の有機溶媒を用いることが好ましい。このような観点から、第1溶媒の沸点は350℃以下が好ましく、340℃以下がさらに好ましく、330℃以下がさらに好ましい。
(蒸気圧)
 蒸気圧とは、溶媒の液相と気相が層平衡状態になる気相の圧力のことであり、溶媒の沸点は、溶媒の蒸気圧の分圧が蒸気圧に等しくなる温度のことである。蒸気圧は、静止法、沸点法、アイソテニスコープ、気体流通法など実験的な手法で求めることが可能であるが、本発明における蒸気圧は25℃におけるAdvanced Chemistry Development(ACD/Labs) Software V11.02(Copyright1994-2021 ACD/Labs)により計算された蒸気圧のことを言う。
(含有する有機溶媒の種類と数)
 本発明で使用する有機溶媒は、機能性インク1種当たり、1種類の単一溶媒でもよく、2種類以上の混合溶媒でもよい。
 2種類以上の混合溶媒を用いる場合、上述したようにインクジェットヘッドのノズル先端での乾燥抑制と、成膜する際の乾燥しやすさを両立させるために、沸点の異なる2種類の有機溶媒を用いてもよい。インクジェットヘッドノズルの先端で乾燥し、ノズル詰まりが発生しないように、沸点270℃以上の有機溶媒を含むことが好ましい。また、沸点270℃以上の有機溶媒は、1種類であっても、2種類以上であってもよい。ノズル先端でインクが乾燥してノズル詰まりを発生させないために、沸点270℃以上の有機溶媒は、組成物全体に対して10重量%以上含まれることが好ましく、15重量%以上含まれることがより好ましく、25重量%以上含まれることがさらに好ましい。
 一方で、ノズル先端での乾燥を沸点の高い溶媒で抑制できるため、インクの乾燥性を確保するためには、残りの溶媒中に沸点の低い有機溶媒を含んでもよい。沸点の低い有機溶媒については、沸点265℃以下が好ましく、250℃以下がさらに好ましい。沸点の低い有機溶媒については、1種類であっても2種類以上であってもよく、組成物の乾燥性をアシストするという目的で、組成物全体に対して30重量%以上含まれることが好ましく、40重量%以上含まれることがより好ましく、50重量%以上含まれることがさらに好ましい。
 本発明では、減圧乾燥などの方法で有機溶媒を揮発させて機能性膜を得るため、有機溶媒はおおよそ沸点の低い順番で揮発していく。揮発の過程で最後まで残る有機溶媒が機能性膜の形状に対して大きな影響を与える傾向がある。すなわち、機能層1を形成するための機能性インクに含まれる有機溶媒、及び、機能層2を形成するための機能性インクに含まれる全ての有機溶媒のうち、最も沸点が高い溶媒が機能性膜の形状に対して大きな影響を与えやすい傾向がある。
 一方で、前述した最も沸点の高い有機溶媒の沸点と、それ以外の有機溶媒の沸点とが比較的近い場合、乾燥過程でそれぞれの有機溶媒が共沸してしまい、前述した最も沸点の高い有機溶媒の機能を充分に発揮できない可能性がある。このようなことを防ぐためには、前述した最も沸点の高い有機溶媒の沸点と、前記機能性インクに含まれる全ての有機溶媒のうち最も沸点の低い有機溶媒の沸点との差が20℃以上であることが好ましい。
 前述した最も沸点の高い有機溶媒の含有量は、機能性インクに含まれる全ての有機溶媒に対して5重量%以上であることが好ましく、10重量%以上であることがより好ましく、15重量%以上であることがさらに好ましく、20重量%以上であることが最も好ましい。
 前述した最も沸点の高い有機溶媒の含有量は、機能性インクに含まれる全ての有機溶媒に対して90重量%未満であることが好ましく、80重量%未満であることがより好ましく、70重量%未満であることがさらに好ましく、50重量%未満であることが最も好ましい。さらに、5重量%以上90重量%未満であることが好ましく、10重量%以上80重量%未満であることがより好ましく、15重量%以上70重量%未満であることがさらに好ましく、20重量%以上50重量%未満であることが最も好ましい。上記範囲内にあることで、十分に膜の平坦性を決定するだけの機能を有し、また溶解性などを考慮して適度にその他の溶媒を含めることができる。
 なお、本明細書における溶媒の沸点は、大気圧下で測定された値である。
(有機溶媒の組み合わせ)
 特に限定されるものではないが、沸点の高い有機溶媒と沸点の低い有機溶媒の組み合わせとしては、それぞれ置換基を有してもよいベンゼン、置換基を有していてもよいナフタレン、置換基を有してもよいジフェニルメタン、置換基を有してもよいビフェニル、安息香酸エステル、芳香族エーテル、芳香族ケトンのいずれかであることが好ましい。
 好ましくは、沸点の高い有機溶媒としてオクチルベンゼン、ノニルベンゼン、デシルベンゼン、ドデシルベンゼン、安息香酸ヘキシル、安息香酸2-エチルヘキシル、安息香酸ベンジル、アセチルナフタレン、ナフタレン酢酸メチル、ナフタレン酢酸エチル、イソプロピルナフタレン、ジイソプロピルナフタレン、ブチルナフタレン、ペンチルナフタレン、メトキシナフタレン、フタル酸ジメチル、フタル酸ジエチル、エチルビフェニル、イソプロピルビフェニル、ジイソプロピルビフェニル、トリイソプロピルビフェニル、ブチルビフェニル、1,1-ジフェニルエタン、1,1-ジフェニルプロパン、1,1-ジフェニルブタン、1,1-ジフェニルペンタン、1,1-ジフェニルヘキサン、イソ酪酸2-フェノキシエチルの1種又は2種以上が挙げられる。
 また、沸点の低い有機溶媒の好ましい例として、メチルナフタレン、エチルナフタレン、イソプロピルナフタレン、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸イソブチル、安息香酸ペンチル、安息香酸イソペンチル、トルイル酸メチル、トルイル酸エチルの1種又は2種以上が挙げられる。
<粘度>
 本発明の機能性インクは、例えばインクジェットヘッドに充填されて吐出されるような塗布方式を考慮した場合、23℃における粘度が1mPa・s以上、20mPa・s以下であることが好ましい。
 一般的にピエゾ圧電素子を利用したインクジェットヘッドは、ヘッド内のインク室に充填された組成物を、圧電素子の変形圧力で押し出すため、粘度が20mPa・sを超える組成物になると、圧電素子の圧力が足りなくなり、吐出できなくなってしまう。一方で、ノズルから液だれしないようにヘッド内にインクを保持しやすい組成物にするという観点から、組成物の粘度は1mPa・s以上が好ましい。
 本発明において、有機溶媒の粘度はE型粘度計RE85L(東機産業製)を用いて、23℃環境下にて、コーンプレート回転数20rpm~100rpmにより測定することができる。
<表面張力>
 本発明の機能性インクの表面張力は、25mN/m以上であることが好ましく、また、45mN/m以下であることが好ましい。機能性インクの表面張力がこの範囲であることで、インクジェット装置での安定した吐出や、安定した成膜が可能になると考えられる。表面張力が低い機能性インクの場合、インクジェットヘッドのノズルプレートに対して非常によく濡れ広がってしまい、吐出の不安定化や飛行曲がりの原因となってしまう。また、表面張力が低い場合は吐出された組成物が適正なところで液切れせずに長く伸びてしまいやすく、サテライトなどの要因にもなりやすい。一方で、表面張力が高すぎると、基板のピクセル部に塗布した後の乾燥中にラプラス圧による対流が発生しやすくなってしまい、膜形状が不安定になりやすい。
 本発明における有機溶媒や機能性インクの表面張力は、23.0℃の環境にて、白金プレートを用いたプレート引き上げ法、もしくは接触角計DMо-501(協和界面科学製)を用いたペンダントドロップ法により測定することができる。
[その他の成分]
 本発明においては、機能性インクは機能性材料と有機溶媒以外の成分を含んでもよく、例えば酸化防止剤や、機能性インクの物性を変化させる添加剤などを含んでもよい。これらの成分は、機能性インクに対して保存安定性や、インクジェットヘッドからの吐出安定性などを決める重要な要素であることもあるが、機能性インク本来の性能に大きな影響を与えることは好ましくないため、機能性インク全体に対して1重量%以下であることが好ましく、0.1重量%以下であることがより好ましく、0.05重量%以下であることがさらに好ましい。
[機能性材料]
 機能性材料とは、電荷輸送、電荷注入等の機能を有するか、またはこれらの機能を向上させる材料である。電荷輸送としては正孔輸送性であることが好ましく、電荷注入としては正孔注入性であることが好ましい。電荷輸送性を向上させる機能を有する材料とは、電荷輸送性を有する別の材料の電荷輸送性を向上させる機能を有する材料である。電荷注入性を向上させる機能を有する材料とは、電荷注入性を有する別の材料の電荷注入性を向上させる機能を有する材料である。例えば、正孔輸送材料に電子受容性材料をドープすることにより、電子受容性材料が正孔輸送材料を酸化してカチオンラジカルを生成させ、正孔輸送材料の正孔輸送性及び/又は正孔注入性が向上する。この場合、電子受容性材料は、正孔輸送材料の正孔輸送性及び/又は正孔注入性を向上させる材料である。
 また、本発明における機能性材料としては、好ましくは後述の正孔注入層用材料、または正孔輸送層用材料を用いることができ、特に好ましくは、正孔注入層用材料である。
 以下、本発明で使用できる機能性材料の詳細について、具体例を示しながら説明するが、本発明の範囲が以下に説明する機能性材料に限定されるものではない。
<電荷輸送性化合物の分子量>
 本発明における電荷輸送性化合物は、高分子化合物でも低分子化合物でもよいが、好ましくは高分子化合物である。
 電荷輸送性高分子化合物については、一般に高分子化合物の主鎖方向に大きな電荷輸送性能を有するため、平均分子量を大きくするほど安定的な電荷輸送が実現できる。電荷を輸送する機能を担保するために、重量平均分子量は通常10,000以上であり、12,000以上が好ましく、15,000以上がより好ましい。一方で、重量平均分子量の大きい高分子化合物は、インクにした際の粘度が高くなる特徴があり、前述したような好ましい粘度範囲にするためには、重量平均分子量がある程度小さくなることが好ましい。具体的には、高分子化合物の重量平均分子量は通常1,000,000以下であり、500,000以下が好ましく、100,000以下がより好ましく、70,000以下がさらに好ましく、50,000以下が特に好ましい。
 電荷輸送性低分子化合物については、一般的には分子量は5,000以下であり、4,000以下であることが好ましく、3,000以下であることがより好ましく、2,500以下であることがさらに好ましく、2,000以下であることが特に好ましい。一方で、一般的な機能性膜として成膜する際には、一定の温度でベークして残留している溶媒を揮発させ、不純物のない機能性膜にすることで、有機電界発光素子又は有機ELディスプレイパネルとして十分に機能する。この際に、耐熱性が低い材料になってしまうと、膜のシュリンクや膜抜けなどの現象が発生して、平坦な膜が得られなくなってしまう。膜の耐熱性を確保するという観点から、電荷輸送性低分子化合物の分子量は500以上が好ましく、650以上がより好ましく、800以上がさらに好ましい。
 また、本発明の機能性インクは、電荷輸送性能を向上させるために電子受容性化合物を含むことが好ましい。さらに、本発明の機能性インクは、機能性材料として、少なくとも1種の正孔輸送性化合物と少なくとも1種の電子受容性化合物とを含むことが好ましい。
 なお、本発明における電荷輸送性高分子化合物の重量平均分子量及び数平均分子量はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量及び数平均分子量が算出される。
<架橋基>
 本発明では、電荷輸送性低分子化合物を、機能性膜の上層にさらに塗布される組成物の溶媒に溶け出さないようにするために、該電荷輸送性低分子化合物は架橋基を有することが好ましい。この場合、電荷輸送材料のみでも連鎖的に架橋して溶けださないようにするため、電荷輸送性低分子化合物の1分子に含まれる架橋基の数は、2つ以上が好ましい。また、電荷輸送性高分子化合物についても同様に、1つの繰り返しユニットに含まれる架橋基の数は、2つ以上が好ましい。さらに、電荷輸送性高分子化合物の溶出をより確実に抑制するために、分子量10,000当たり架橋基が2つ以上あることが好ましい。
 架橋基は光や熱などの外力により化学反応する置換基が好ましく、架橋基の好ましい例は、以下に限定されるものではないが、熱により架橋反応する熱架橋基が好ましい。例えば、ベンゾシクロブテン環、ナフトシクロブテン環もしくはオキセタン環由来の基、ビニル基、アクリル基、スチリル基等が挙げられる。なお、どの架橋基においても置換基を有していてもよく、メチル基、メトキシ基等が好ましい。
 以上のように、本発明の機能性インクは架橋基を有する機能性材料を含むことが好ましい。本発明の機能性インクに含まれる機能性材料全てが架橋基を有することがより好ましい。
[有機溶媒と機能性材料の含有量]
 本発明の機能性インク中の機能性材料の含有量には特に制限はないが、有機電界発光素子又は有機ELディスプレイパネルに好ましい機能性膜の膜厚にするために、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、さらに好ましくは1.0重量%以上である。また、機能性インク中での析出を抑制する観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下である。
 従って、本発明の機能性インク中の有機溶媒の含有量は、好ましくは99.9重量%以下、より好ましくは99.5重量%以下、さらに好ましくは99.0重量%以下で、好ましくは80重量%以上、より好ましくは85重量%以上、さらに好ましくは90重量%以上である。
 本発明において、電荷輸送性低分子化合物は、バンクで区画された領域内での機能性膜の膜厚均一性をよくするために用いる材料であり、全機能性材料に対して10重量%以上であることが好ましく、15重量%以上であることがより好ましく、20重量%以上であることがさらに好ましい。一方で、電荷輸送性低分子化合物の含有率が増えると、前述したように耐熱性の観点で課題があり、全機能性材料に対して75重量%以下であることが好ましく、60重量%以下であることがより好ましく、50重量%以下であることがさらに好ましい。
 また、本発明において、電荷輸送性高分子化合物は、主に電荷輸送のために用いる材料であり、全機能性材料に対して20重量%以上であることが好ましく、25重量%以上であることがより好ましく、30重量%以上であることがさらに好ましい。一方で、電荷輸送性高分子化合物の含有率が増えると、乾燥過程の増粘の影響で平坦な膜を製膜しにくくなるため、全機能性材料に対して90重量%以下であることが好ましく、85重量%以下であることがより好ましく、80重量%以下であることがさらに好ましい。
 また、低分子化合物と高分子化合物の含有比は、重量比で低分子化合物:高分子化合物=1:0.3~3、特に1:1~2であることが上記を総合的に考慮して好ましい。
 本発明の機能性インクが電子受容性化合物を含有する場合、電荷輸送性化合物に対してキャリアを発生させ、導電性を向上させる観点から、電子受容性化合物は全機能性材料に対して1重量%以上であることが好ましく、3重量%以上であることがより好ましく、5重量%以上であることがさらに好ましい。一方、フッ素を含有する電子受容性化合物が多量に含まれ過ぎると、機能性膜の表面エネルギーが下がって積層塗布することが難しくなるため、電子受容性化合物は、全機能性材料に対して50重量%以下であることが好ましく、30重量%以下であることがより好ましく、20重量%以下であることがさらに好ましい。
 また、電荷輸送性化合物(好ましくは電荷輸送性高分子化合物と電荷輸送性低分子化合物との合計)と電子受容性化合物との含有比は、重量比で電荷輸送性化合物:電子受容性化合物=1:0.01~1、特に1:0.05~0.2であることが上記の観点から好ましい。
[機能性インクの調製]
 本発明における機能性インクは、機能性材料と有機溶媒を混合させ、一定時間加温して溶解または分散させることで調製することができる。機能性材料を溶媒内に均一に溶解または分散させるためには、加温する温度は80℃以上が好ましく、90℃以上がより好ましく、100℃以上、例えば100~115℃がさらに好ましい。また、加温時間は30分以上が好ましく45分以上がより好ましく、60分以上、例えば60~180分がさらに好ましい。
 加温後の機能性インクは、メンブレンフィルタやデプスフィルタ等を用いて濾過し、粗大な粒子を取り除いてから使用する。インクジェットヘッドのノズルから吐出して機能性インクを塗布することを考慮すると、フィルタの孔径は0.5μm以下が好ましく、0.2μm以下がより好ましく、0.1μm以下がさらに好ましい。
[湿式成膜法による成膜]
 本発明における機能性インクは、有機電界発光素子又は有機ELディスプレイパネルの機能性膜の形成に好適に用いられる。有機電界発光素子又は有機ELディスプレイパネルの構成は後述の通りである。
 本発明における有機電界発光素子又は有機ELディスプレイパネル、並びに、本発明の設計方法における有機電界発光素子又は有機ELディスプレイパネルは通常、電極が設けられた基板に、発光画素を、撥液性を有する隔壁層(バンク)と呼ばれる隔壁で区画された微小領域に有する。この隔壁層で区画された微小領域内に本発明の機能性インクを吐出し、乾燥して、適宜加熱することによって機能性膜を形成する。
 吐出方法は、微小なノズルから隔壁層で区画された微小領域よりも小さい液滴を吐出する方法であり、複数の液滴を吐出することによって隔壁層で区画された微小領域を本発明の機能性インクで満たすことが好ましい。吐出方法としては好ましくはインクジェット法である。
 湿式成膜法では、バンクで区画された微小領域を機能性インクで満たしたのち、適切な手段で溶媒を揮発・乾燥させ、機能性膜を得る。溶媒を揮発・乾燥させるために、以下に限定されるものではないが、加熱乾燥や減圧乾燥を含めることができる。
 例えば減圧乾燥とは、開閉可能な金属製やガラス製の真空チャンバー内に組成物を塗布した基板を配置し、チャンバー内の雰囲気を真空ポンプ等で減圧することにより溶媒を揮発させることである。真空ポンプは通常ロータリーオイルポンプやメカニカルブースターポンプ、ドライスクロールポンプ、ドライルーツポンプ、ターボ分子ポンプ、クライオポンプなどが用いられる。
 成膜時の溶媒が除去されやすくなることから、減圧乾燥における圧力は1×10Pa以下であることが好ましく、1×10Pa以下であることがより好ましく、1×10-1Pa以下であることがさらに好ましい。
 減圧乾燥は加熱しながら行うこともできる。この場合には、成膜時の溶媒が除去されやすくなることから、温度は10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることがさらに好ましい。また、インクに含まれる溶媒の突沸を防止する観点から、減圧乾燥における温度は200℃以下であることが好ましく、190℃以下であることがより好ましく、180℃以下であることがさらに好ましい。
 減圧乾燥する時間は、適度に長い時間をかけて機能性インクのピン位置を下げ、且つあまり長時間バンクに有機溶媒が触れ続けないようにするために、1分以上15分未満であることが好ましく、2分以上12分未満であることがより好ましく、3分以上10分未満であることがさらに好ましい。
 本発明における有機溶媒の好ましい沸点範囲であれば、上記ポンプを用いて充分揮発させることが可能であるが、さらに微量な残留溶媒を充分に乾燥させるために、次いで加熱乾燥を行う場合がある。さらに、本発明に係る電荷輸送性高分子化合物、低分子化合物、及び存在する場合は電子受容性化合物等の機能性材料が有する架橋基同士を架橋させるために加熱を行う。加熱工程は、乾燥とともに、架橋のための加熱を兼ね得る。加熱乾燥が架橋のための加熱を兼ねること、すなわち、加熱によって乾燥及び架橋を行うことが、工程数を省く観点からも好ましい。加熱温度は機能性膜が結晶化または凝集しない温度および時間とすることが好ましい。
 本明細書では、このような加熱工程を「ベークする工程」ともいう。
 加熱工程における加熱温度は通常80℃以上、好ましくは100℃以上、更に好ましくは150℃以上、より好ましくは200℃以上であり、通常300℃以下、好ましくは270℃以下、更に好ましくは240℃以下である。加熱時間は通常1分以上、好ましくは3分以上、より好ましくは5分以上であり、通常120分以下、好ましくは90分以下、より好ましくは60分以下である。
 加熱工程は、ホットプレート、オーブン、赤外線照射等により実施することができる。分子振動を直接与える赤外線照射の場合の加熱時間は上記下限に近い時間で十分であり、熱源に基板が直接接するかまたは熱源と基板が極めて近くに配置されるホットプレート加熱の場合は赤外線照射よりは長い時間が必要である。オーブン加熱の場合、即ち、オーブン内の気体、通常は空気または窒素若しくはアルゴンなどの不活性ガスによる加熱の場合は、温度上昇に時間を要するため、上記加熱時間の上限に近い加熱時間が好ましい。加熱方法によって加熱時間は適宜調整される。
 この加熱工程は、本発明に係る電荷輸送性高分子化合物及び低分子化合物等の機能性材料が有する架橋基同士を架橋反応させるような条件であることが重要であり、そのために加熱温度は、本発明に係る電荷輸送性高分子化合物、低分子化合物、及び存在する場合は電子受容性化合物等が有する架橋基の架橋開始温度以上であることが好ましい。
 本発明の機能性インクは、機能性インク中の溶媒を揮発させて乾燥する過程で、バンク側面における機能性インクのピン位置が下がる。しかしながら乾燥が早すぎるとピン位置を下げるために十分な時間が取れず、効果を発揮しない。そのため、減圧乾燥を行う真空チャンバー内雰囲気の圧力が、本発明の機能性インクに含まれる有機溶媒の中で最も蒸気圧の低い有機溶媒の蒸気圧と比べて低くなるまでの時間には特に制限がないが、60秒以上であることが好ましい。一方で、機能性インクがバンク側面と触れ続けると、バンクから該機能性インクの有機溶媒へバンクを形成している材料が徐々に溶出する問題が生じる。そのため、減圧乾燥を行う真空チャンバー内雰囲気の圧力が、本発明の機能性インクに含まれる有機溶媒の中で最も蒸気圧の低い有機溶媒の蒸気圧と比べて低い圧力に到達するまでの時間には特に制限がないが、1800秒以下であることが好ましい。
[機能性膜]
 本発明の機能性インクにより形成される機能性膜は、機能性材料である電荷輸送性高分子化合物及び低分子化合物が有する架橋基同士が架橋した膜であることが好ましい。
 機能性膜中に含まれる機能性材料は通常70重量%以上であり、好ましくは80重量%以上、さらに好ましくは90重量%以上、特に好ましくは95重量%以上であり、実質的に100重量%であることが最も好ましく、上限は100重量%である。実質的に100重量%であるとは、機能性膜に微量の添加剤、残留溶媒及び不純物が含まれる場合があるということである。機能性膜中の機能性材料の含有量がこの範囲であることにより、機能性材料の機能をより効果的に発現させることができる。
[有機電界発光素子の層構成と形成方法]
 本発明の機能性インクを用いて製造される有機電界発光素子(以下、「本発明の有機電界発光素子」と称す場合がある。同様に、本発明の膜厚構成の設計方法を用いて製造される有機電界発光素子を複数有する有機ELディスプレイパネルを、以下「本発明の有機ELディスプレイパネル」と称す場合がある。)、及び、本発明の膜厚構成の設計方法を用いて製造される有機電界発光素子の層構成及びその形成方法の実施の形態の好ましい例を、図1を参照して説明する。
 図1は本発明の有機電界発光素子110の構造例を示す断面の模式図である。図1において、101は基板、102は陽極、103は正孔注入層、104は正孔輸送層、105は発光層、106は正孔阻止層、107は電子輸送層、108は電子注入層、109は陰極を各々表す。
 本発明の有機電界発光素子は、陽極、発光層及び陰極を必須の構成層とするが、必要に応じて、図1に示すように陽極102と発光層105及び陰極109と発光層105との間に他の機能層を有していてもよい。
[基板]
 基板101は、有機電界発光素子の支持体となるものである。基板101としては、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板;ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合には、ガスバリア性に留意するのが好ましい。基板のガスバリア性は、基板を通過した外気による有機電界発光素子の劣化が起こり難いので、大きいことが好ましい。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の1つである。
[陽極]
 陽極102は、発光層105側の層への正孔注入の役割を果たす電極である。
 陽極102は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、またはこれらの金属とインジウムや、銅、テルル、パラジウム、アルミとを組み合わせた合金、インジウム及び/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
 陽極102の形成は、通常、スパッタリング法、真空蒸着法等の方法により行われることが多い。
 銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極102を形成する場合には、これらの微粒子などを適当なバインダー樹脂溶液に分散させて、基板101上に塗布することにより、陽極102を形成することもできる。
 導電性高分子の場合は、電解重合により直接基板101上に薄膜を形成することもできる。
 基板101上に導電性高分子を塗布して陽極102を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極102は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
 陽極102の厚みは、必要とする透明性などに応じて適宜選択すればよい。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極102の厚みは、通常5nm以上、好ましくは10nm以上で、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は、陽極102の厚みは任意である。陽極102の機能を兼ね備えた基板101を用いてもよい。上記の陽極102の上に異なる導電材料を積層することも可能である。
 陽極102に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極102表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることは好ましい。
[画素区分け層]
 本発明において、導電性の電極パターンを有するガラス基板上に、撥液レジストを塗布してフォトリソグラフィー法によって微小領域の開口部を複数設ける工程を有する。
 撥液レジストを塗布する方法としては、該基板上に、ロールコーター、リバースコーター、バーコーター、スピナー(回転式塗布装置)、ダイコーター、インクジェット等の塗布装置を用いる方法が挙げられる。必要に応じて、乾燥により溶媒を除去して、撥液性を有するレジスト層を形成する。
 次いで、露光工程では、マスクを利用して、撥液レジストに紫外線、エキシマレーザー光等の活性エネルギー線を照射し、撥液レジストを画素区分け層のパターンに応じて部分的に露光する。紫外線照射による露光としては、高圧水銀灯、超高圧水銀灯、キセノンランプ、カーボンアーク灯等の紫外線を発する光源を用いることができる。露光量は感光性樹脂組成物の組成によっても異なるが、例えば10~400mJ/cm2程度が好ましい。
 ネガ型撥液レジストの場合、該マスクは、10~500μmの遮光部をライン状、または長方形状に配置されたマスクを使用することで、10~500μmの微小領域の開口を複数有するパターンを設けることができる。
 次いで、現像工程では、画素区分け層のパターンに応じて露光された撥液レジストを、現像することによりパターンを形成する。現像方法は特に限定されず、浸漬法、スプレー法等を用いることができる。現像液の具体例としては、ジメチルベンジルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機系のものや、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア、4級アンモニウム塩等の水溶液が挙げられる。又、現像液には、消泡剤や界面活性剤を添加することもできる。
 その後、現像後の撥液レジストにポストベークを施して加熱硬化することで画素区分け層が得られる。ポストベークは、150~250℃で15~60分間が好ましい。
 本発明における画素区分け層を製造するために用いられる撥液レジストは、前述したように該撥液レジストを用いて製膜した撥液レジスト膜の最表面の撥液剤を剥離した膜上で、機能性インクに含まれる少なくとも1種の有機溶媒の接触角が、26°以上50°未満になることが条件となっている。
 パターン形成後の基板表面は、レジストの塗布やフォトリソグラフィーによる残渣等を除去するために、外部エネルギーを用いて処理を行う。外部エネルギーとしては、紫外線(UV)/オゾン、酸素プラズマ、プラズマなどが好ましい。
[正孔注入層]
 正孔注入層103は、陽極102から発光層105へ正孔を輸送する層である。正孔注入層103を設ける場合は、正孔注入層103は、通常、陽極102上に形成される。
 正孔注入層103の形成方法は、真空蒸着法でも、湿式成膜法でもよく、特に制限はない。正孔注入層103は、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
 正孔注入層103の膜厚は、通常5nm以上、好ましくは10nm以上で、通常1000nm以下、好ましくは500nm以下の範囲である。
<正孔輸送材料>
 正孔注入層形成用組成物は通常、正孔注入層103の構成材料として正孔輸送材料及び溶剤を含有する。
 正孔輸送材料は、通常、有機電界発光素子の正孔注入層103に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。なお、本発明の適用範囲を正孔注入層103に適用する場合は、少なくとも1種類の重量平均分子量10,000以上の架橋基を有する正孔輸送性高分子材料と、少なくとも1種類の分子量5,000以下の架橋基を有する正孔輸送性低分子材料と、少なくとも1種類の芳香族有機溶媒を含むことを特徴とする組成物である。
 正孔輸送材料としては、陽極102から正孔注入層103への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送材料の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
 本発明において誘導体とは、例えば芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
 正孔注入層103の材料として用いられる正孔輸送材料は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送材料を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送材料1種又は2種以上とを併用することが好ましい。
 正孔輸送材料としては、上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(1)又は下記式(11)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 
(式(1)中、Arは、置換基を有していてもよい、芳香族炭化水素環基又は芳香族複素環基を表し、Arは、置換基を有していてもよい、2価の芳香族炭化水素環基又は2価の芳香族複素環基、若しくは、該芳香族炭化水素環基及び芳香族複素環基が、直接又は連結基を介して、複数個連結した2価の基を表す。)
 前記式(1)において、芳香族炭化水素環基及び芳香族複素環基が、連結基を介して複数個連結したものである場合の連結基は、2価の連結基であり、例えば-O-基、-C(=O)-基及び(置換基を有していてもよい)-CH-基から選ばれる基を任意の順番で1~30個、好ましくは1~5個、更に好ましくは1~3個連結してなる基が挙げられる。
 連結基の中では、発光層への正孔注入に優れる点で、式(1)中のArが、下記式(2)で表される連結基を介して複数個連結された芳香族炭化水素環基または芳香族複素環基であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 
(式(2)中、
 y1は1~10の整数を表し、
 R及びRは、各々独立して、水素原子又は置換基を有していてもよい、アルキル基、芳香族炭化水素環基、又は芳香族複素環基を表す。
 R、Rが複数個存在する場合、同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000003
 
 上記式(11)中、x1、x2、x3、x4、x5、x6は、各々独立に、0以上の整数を表す。但し、x3+x4≧1である。Ar11、Ar12、Ar14は、それぞれ独立に、置換基を有していても良い炭素数30以下の2価の芳香環基を表す。Ar13は、置換基を有していても良い炭素数30以下の2価の芳香環基または下記式(12)で表される2価の基を表し、Q11、Q12は、各々独立に、酸素原子、硫黄原子、置換基を有していても良い炭素数6以下の炭化水素鎖を表し、S~Sは、各々独立に、下記式(13)で表される基で表される。
 なお、ここでいう芳香環基とは、芳香族炭化水素環基及び芳香族複素環基のことを言う。
 Ar11、Ar12、Ar14の芳香環基の例としては、単環、2~6縮合環又はこれらの芳香環が2つ以上連結した基が挙げられる。単環又は2~6縮合環の芳香環基の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環、ビフェニル基、ターフェニル基、クアテルフェニル基、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環もしくはアズレン環由来の2価の基が挙げられる。中でも負電荷を効率良く非局在化すること、安定性、耐熱性に優れることから、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環もしくはカルバゾール環由来の2価の基またはビフェニル基が好ましい。
 Ar13の芳香環基の例としては、Ar11、Ar12、Ar14の場合と同様である。
Figure JPOXMLDOC01-appb-C000004
 
 上記式(12)中、R11は、アルキル基、芳香環基または炭素数40以下のアルキル基と芳香環基からなる3価の基を表し、これらは置換基を有していても良い。R12は、アルキル基、芳香環基または炭素数40以下のアルキル基と芳香環基からなる2価の基を表し、これらは置換基を有していても良い。Ar31は、1価の芳香環基、又は1価の架橋基を表し、これらの基は置換基を有していても良い。x7は1~4を表す。x7が2以上の場合、複数のR12は同一であっても異なっていてもよく、複数のAr31は同一であっても異なっていてもよい。アスタリスク(*)は式(11)の窒素原子との結合位置を示す。
 R11の芳香環基としては、炭素数3以上30以下の単環又は縮合環である芳香環基1つであるか、又はそれらが2~6連結した基が好ましく、具体例としては、ベンゼン環、フルオレン環、ナフタレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環及びこれらが2~6連結した基由来の3価の基が挙げられる。
 R11のアルキル基としては、炭素数1以上12以下の直鎖、分岐、又は環を含むアルキル基が好ましく、具体例としては、メタン、エタン、プロパン、イソプロパン、ブタン、イソブタン、ペンタン、ヘキサン、オクタン由来の基等が挙げられる。
 R11の炭素数40以下のアルキル基と芳香環基からなる基としては、好ましくは炭素数1以上12以下の直鎖、分岐、又は環を含むアルキル基と、炭素数3以上30以下の単環又は縮合環である芳香環基1つ又は2~6連結した基とが連結した基が挙げられる。
 R12の芳香環基の具体例としては、ベンゼン環、フルオレン環、ナフタレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環及びこれらが連結した炭素数30以下の連結環由来の2価の基が挙げられる。
 R12のアルキル基の具体例としては、メタン、エタン、プロパン、イソプロパン、ブタン、イソブタン、ペンタン、ヘキサン、オクタン由来の2価の基等が挙げられる。
 Ar31の芳香環基の具体例としては、ベンゼン環、フルオレン環、ナフタレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環及びこれらが連結した炭素数30以下の連結環由来の1価の基が挙げられる。
 式(12)の好ましい構造の例としては以下の構造が挙げられ、R11の部分構造である下記構造における主鎖のベンゼン環またはフルオレン環はさらに置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 
 Ar31の架橋基の例としては、ベンゾシクロブテン環、ナフトシクロブテン環またはオキセタン環由来の基、ビニル基、アクリル基等が挙げられる。化合物の安定性からベンゾシクロブテン環またはナフトシクロブテン環由来の基が好ましい。
Figure JPOXMLDOC01-appb-C000006
 
 上記式(13)中、x,yは、0以上の整数を表す。Ar21、Ar23は、それぞれ独立に、2価の芳香環基を表し、これらの基は置換基を有していてもよい。Ar22は置換基を有していても良い1価の芳香環基を表し、R13は、アルキル基、芳香環基、またはアルキル基と芳香環基からなる2価の基を表し、これらは置換基を有していても良い。Ar32は1価の芳香環基又は1価の架橋基を表し、これらの基は置換基を有していても良い。アスタリスク(*)は式(11)の窒素原子との結合位置を示す。
 Ar21、Ar23の芳香環基の例としては、Ar11、Ar12、Ar14の場合と同様である。
 Ar22、Ar32の芳香環基の例としては、単環、2~6縮合環又はこれらの芳香環が2つ以上連結した基が挙げられる。具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環、ビフェニル基、ターフェニル基、クアテルフェニル基、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環もしくはアズレン環由来の1価の基が挙げられる。中でも負電荷を効率良く非局在化すること、安定性、耐熱性に優れることから、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環もしくはカルバゾール環由来の1価の基またはビフェニル基が好ましい。
 R13のアルキル基または芳香環基の例としては、R12と同様である。
 Ar32の架橋基は特に限定しないが、好ましい例としては、ベンゾシクロブテン環、ナフトシクロブテン環もしくはオキセタン環由来の基、ビニル基、アクリル基等が挙げられる。
 上記Ar11~Ar14、R11~R13、Ar21~Ar23、Ar31~Ar32、Q11、Q12はいずれも、本発明の趣旨に反しない限りにおいて、更に置換基を有していても良い。置換基の分子量としては、400以下が好ましく、中でも250以下がより好ましい。置換基の種類は特に制限されないが、例としては、下記の置換基群Wから選ばれる1種又は2種以上が挙げられる。
[置換基群W]
 メチル基、エチル基等の、炭素数が1以上、好ましくは10以下、さらに好ましくは8以下のアルキル基;ビニル基等の、炭素数が2以上、好ましくは11以下、さらに好ましくは5以下のアルケニル基;エチニル基等の、炭素数が2以上、好ましくは11以下、さらに好ましくは5以下のアルキニル基;メトキシ基、エトキシ基等の、炭素数が1以上、好ましくは10以下、さらに好ましくは6以下のアルコキシ基;フェノキシ基、ナフトキシ基、ピリジルオキシ基等の、炭素数が4以上、好ましくは5以上、好ましくは25以下、さらに好ましくは14以下のアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基等の、炭素数が2以上、好ましくは11以下、さらに好ましくは7以下のアルコキシカルボニル基;ジメチルアミノ基、ジエチルアミノ基等の、炭素数が2以上、好ましくは20以下、さらに好ましくは12以下のジアルキルアミノ基;ジフェニルアミノ基、ジトリルアミノ基、N-カルバゾリル基等の、炭素数が10以上、好ましくは12以上、好ましくは30以下、さらに好ましくは22以下のジアリールアミノ基;フェニルメチルアミノ基等の、炭素数が6以上、さらに好ましくは7以上、好ましくは25以下、さらに好ましくは17以下のアリールアルキルアミノ基;アセチル基、ベンゾイル基等の、炭素数が2以上、好ましくは10以下、さらに好ましくは7以下のアシル基;フッ素原子、塩素原子等のハロゲン原子;トリフルオロメチル基等の、炭素数が1以上、好ましくは8以下、さらに好ましくは4以下のハロアルキル基;メチルチオ基、エチルチオ基等の、炭素数が1以上、好ましくは10以下、さらに好ましくは6以下のアルキルチオ基;フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の、炭素数が4以上、好ましくは5以上、好ましくは25以下、さらに好ましくは14以下のアリールチオ基;トリメチルシリル基、トリフェニルシリル基等の、炭素数が2以上、好ましくは3以上、好ましくは33以下、さらに好ましくは26以下のシリル基;トリメチルシロキシ基、トリフェニルシロキシ基等の、炭素数が2以上、好ましくは3以上、好ましくは33以下、さらに好ましくは26以下のシロキシ基;シアノ基;フェニル基、ナフチル基等の、炭素数が6以上、好ましくは30以下、さらに好ましくは18以下の芳香族炭化水素環基;チエニル基、ピリジル基等の、炭素数が3以上、好ましくは4以上、好ましくは28以下、さらに好ましくは17以下の芳香族複素環基。
 上記置換基群Wのうち、溶解性を向上させる観点からアルキル基又はアルコキシ基が好ましく、電荷輸送性及び安定性の観点から芳香族炭化水素環基又は芳香族複素環基が好ましい。
 特に、式(11)で表される繰り返し単位を有する高分子化合物の中でも、下記式(14)で表される繰り返し単位を有する高分子化合物が、正孔注入・輸送性が非常に高くなるので好ましい。
Figure JPOXMLDOC01-appb-C000007
 
 上記式(14)中、R21~R25は各々独立に、任意の置換基を表す。R21~R25の置換基の具体例は、前述の[置換基群W]に記載されている置換基と同様である。
 s、tは各々独立に、0以上、5以下の整数を表す。
 u、v、wは各々独立に、0以上、4以下の整数を表す。
 芳香族三級アミン高分子化合物の好ましい例として、下記式(15)及び/又は式(16)で表される繰り返し単位を含む高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 
 上記式(15)、式(16)中、Ar45、Ar47及びAr48は各々独立して、置換基を有していても良い1価の芳香族炭化水素環基又は置換基を有していても良い1価の芳香族複素環基を表す。Ar44及びAr46は各々独立して、置換基を有していても良い2価の芳香族炭化水素環基、又は置換基を有していても良い2価の芳香族複素環基を表す。R41~R43は各々独立して、水素原子又は任意の置換基を表す。
 Ar45、Ar47及びAr48の具体例、好ましい例、有していても良い置換基の例及び好ましい置換基の例は、Ar22と同様であり、Ar44及びAr46の具体例、好ましい例、有していても良い置換基の例及び好ましい置換基の例は、Ar11、Ar12及びAr14と同様である。R41~R43として好ましくは、水素原子又は前述の[置換基群W]に記載されている置換基であり、更に好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、芳香族炭化水素環基または芳香族複素環基である。
 以下に、本発明において適用可能な、式(15)、式(16)で表される繰り返し単位の好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
 
<電子受容性化合物>
 正孔注入層形成用組成物は、正孔注入層103の構成材料として、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物とは、酸化力を有し、上述の正孔輸送材料から1電子受容する能力を有する化合物が好ましい。具体的には、電子受容性化合物としては、電子親和力が4.0eV以上である化合物が好ましく、5.0eV以上の化合物がさらに好ましい。
 このような電子受容性化合物としては、例えばトリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。さらに具体的には、電子受容性化合物としては、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号、国際公開第2017/164268号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
 電子受容性化合物は、正孔輸送材料を酸化することにより正孔注入層103の導電率を向上させることができる。
<その他の構成材料>
 正孔注入層103の材料としては、本発明の効果を著しく損なわない限り、上述の正孔輸送材料や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。
<溶剤>
 湿式成膜法に用いる正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層103の構成材料を溶解しうる化合物であることが好ましい。
 溶剤として例えばエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
 エーテル系溶剤としては、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、3-フェノキシトルエン、ジフェニルエーテル、ジベンジルエーテル等の芳香族エーテル等が挙げられる。
 エステル系溶剤としては、例えば酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル、安息香酸イソブチル、安息香酸ペンチル、安息香酸イソペンチル、トルイル酸メチル、トルイル酸エチル、アニス酸メチル、アニス酸エチル、フタル酸ジメチル、フタル酸ジエチル、酢酸フェノキシエチル、酪酸フェノキシエチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えばトルエン、キシレン、シクロヘキシルベンゼン、トリメチルベンゼン、テトラメチルベンゼン、ジイソプロピルベンゼン、トリイソプロピルベンゼン、メチルナフタレン、エチルナフタレン、イソプロピルナフタレン、ジイソプロピルナフタレン、エチルビフェニル、イソプロピルビフェニル、ブチルビフェニル、ジイソプロピルビフェニル、トリイソプロピルビフェニル、テトラリン、1,1-ジフェニルエタン、1,1-ジフェニルプロパン、1,1-ジフェニルブタン、1,1ジフェニルペンタン、1,1-ジフェニルヘキサン等が挙げられる。
 アミド系溶剤としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 その他、ジメチルスルホキシド等も用いることができる。
 中でも好ましくは、芳香族エステル、芳香族エーテルである。
 これらの溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 正孔注入層形成用組成物中の正孔輸送材料の濃度は、本発明の効果を著しく損なわない限り任意である。正孔注入層形成用組成物中の正孔輸送材料の濃度は、膜厚の均一性の点から、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上である。正孔注入層形成用組成物中の正孔輸送材料の濃度は、好ましくは70重量%以下、より好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度は、膜厚ムラが生じ難い点では小さいことが好ましい。また、この濃度は、成膜された正孔注入層に欠陥が生じ難い点では大きいことが好ましい。
<湿式成膜法による正孔注入層の形成>
 湿式成膜法により正孔注入層103を形成する場合、通常は、正孔注入層103を構成する材料を適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層103形成用組成物を適切な手法により、正孔注入層の下層に該当する層(通常は、陽極102)上に塗布して成膜し、乾燥することにより正孔注入層103を形成する。
[正孔輸送層]
 正孔輸送層104は、陽極102から発光層105へ輸送する層である。正孔輸送層104は、本発明の有機電界発光素子に必須の層ではないが、正孔輸送層104を設ける場合は、通常、正孔輸送層104は、正孔注入層103がある場合には正孔注入層103の上に、正孔注入層103が無い場合には陽極102の上に形成する。
 正孔輸送層104の形成方法は、真空蒸着法でも、湿式成膜法でもよく、特に制限はない。正孔輸送層104は、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
 正孔輸送層104を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、正孔輸送層104を形成する材料は、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。多くの場合、正孔輸送層104は、発光層105に接するため、発光層105からの発光を消光したり、発光層105との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
 正孔輸送層104の材料としては、従来、正孔輸送層104の構成材料として用いられている材料であればよい。正孔輸送層104の材料としては、例えばアリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
 正孔輸送層104の材料としては、例えばポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
 中でも、正孔輸送層104の材料としては、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体及びポリアリーレン誘導体の具体例等は、日本国特開2008-98619号公報に記載のものなどが挙げられる。
 ポリアリールアミン誘導体としては、前記芳香族三級アミン高分子化合物を用いることが好ましい。
 湿式成膜法で正孔輸送層104を形成する場合は、上記正孔注入層103の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。
 正孔輸送層形成用組成物には、上述の正孔輸送材料の他、溶剤を含有する。用いる溶剤は、上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件等も正孔注入層103の形成の場合と同様である。
 正孔輸送層形成用組成物が本発明の組成物である場合は、溶剤は本発明の前記第1溶媒と前記第2溶媒である。
 真空蒸着法により正孔輸送層104を形成する場合もまた、その成膜条件等は上記正孔注入層103の形成の場合と同様である。
 正孔輸送層104の膜厚は、発光層中の低分子材料の浸み込みや正孔輸送材料の膨潤など要素を考慮し、通常5nm以上、好ましくは10nm以上で、通常300nm以下、好ましくは200nm以下である。
[発光層]
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極109から注入された電子との再結合により励起されて、主たる発光源となる層である。発光層105は、通常、正孔輸送層104がある場合には正孔輸送層104の上に、正孔輸送層104が無く、正孔注入層103がある場合には正孔注入層103の上に、正孔輸送層104も正孔注入層103も無い場合は、陽極102の上に形成する。
<発光層用材料>
 発光層用材料は、通常、発光材料とホストとなる電荷輸送材料を含む。
<発光材料>
 発光材料としては、通常、有機電界発光素子の発光材料として使用されている任意の公知の材料を適用することができ、特に制限はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。発光材料は、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。さらに好ましくは、赤発光材料と緑発光材料は燐光発光材料であり、青発光材料は蛍光発光材料である。
 本発明の組成物が発光層形成用組成物である場合、以下の燐光発光材料、蛍光発光材料及び電荷輸送材料を用いることが好ましい。
<燐光発光材料>
 燐光発光材料とは、励起三重項状態から発光を示す材料をいう。例えば、Ir、Pt、Euなどを有する金属錯体化合物がその代表例であり、材料の構造として、金属錯体を含むものが好ましい。
 金属錯体の中でも、三重項状態を経由して発光する燐光発光性有機金属錯体として、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を中心金属として含むウェルナー型錯体又は有機金属錯体化合物が挙げられる。このような燐光発光材料としては、例えば、国際公開第2014/024889号、国際公開第2015/087961号、国際公開第2016/194784号、日本国特開2014-074000号公報に記載の燐光発光材料が挙げられる。好ましくは、下記式(201)で表される化合物、又は下記式(205)で表される化合物が好ましく、より好ましくは下記式(201)で表される化合物である。
Figure JPOXMLDOC01-appb-C000010
 
 式(201)において、環A1は置換基を有していてもよい芳香族炭化水素環構造又は置換基を有していてもよい芳香族複素環構造を表す。
 環A2は置換基を有していてもよい芳香族複素環構造を表す。
 R101、R102は各々独立に式(202)で表される構造であり、“*”は環A1又は環A2との結合位置を表す。R101、R102は同じであっても異なっていてもよく、R101、R102がそれぞれ複数個存在する場合、それらは同じであっても異なっていてもよい。
 Ar201、Ar203は、各々独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい芳香族複素環構造を表す。
 Ar202は、置換基を有していてもよい芳香族炭化水素環構造、置換基を有していてもよい芳香族複素環構造、又は置換基を有していてもよい脂肪族炭化水素構造を表す。
 環A1に結合する置換基同士、環A2に結合する置換基同士、又は環A1に結合する置換基と環A2に結合する置換基同士は、互いに結合して環を形成してもよい。
 B201-L200-B202は、アニオン性の2座配位子を表す。B201及びB202は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。L200は、単結合、又は、B201及びB202とともに2座配位子を構成する原子団を表す。B201-L200-B202が複数個存在する場合、それらは同一でも異なっていてもよい。
 なお、式(201)、(202)において、
 i1、i2はそれぞれ独立に、0以上12以下の整数を表し、
 i3は、Ar202に置換可能な数を上限とする0以上の整数を表し、
 i4は、Ar201に置換可能な数を上限とする0以上の整数を表し、
 k1及びk2はそれぞれ独立に、環A1、環A2に置換可能な数を上限とする0以上の整数を表し、
 zは1~3の整数を表す。
(置換基)
 特に断りのない場合、置換基としては、次の置換基群Sから選ばれる基が好ましい。
<置換基群S>
・アルキル基、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~12のアルキル基、さらに好ましくは炭素数1~8のアルキル基、特に好ましくは炭素数1~6のアルキル基。
・アルコキシ基、好ましくは炭素数1~20のアルコキシ基、より好ましくは炭素数1~12のアルコキシ基、さらに好ましくは炭素数1~6のアルコキシ基。
・アリールオキシ基、好ましくは炭素数6~20のアリールオキシ基、より好ましくは炭素数6~14のアリールオキシ基、さらに好ましくは炭素数6~12のアリールオキシ基、特に好ましくは炭素数6のアリールオキシ基。
・ヘテロアリールオキシ基、好ましくは炭素数3~20のヘテロアリールオキシ基、より好ましくは炭素数3~12のヘテロアリールオキシ基。
・アルキルアミノ基、好ましくは炭素数1~20のアルキルアミノ基、より好ましくは炭素数1~12のアルキルアミノ基。
・アリールアミノ基、好ましくは炭素数6~36のアリールアミノ基、より好ましくは炭素数6~24のアリールアミノ基。
・アラルキル基、好ましくは炭素数7~40のアラルキル基、より好ましくは炭素数7~18のアラルキル基、さらに好ましくは炭素数7~12のアラルキル基。
・ヘテロアラルキル基、好ましくは炭素数7~40のヘテロアラルキル基、より好ましくは炭素数7~18のヘテロアラルキル基、
・アルケニル基、好ましくは炭素数2~20のアルケニル基、より好ましくは炭素数2~12のアルケニル基、さらに好ましくは炭素数2~8のアルケニル基、特に好ましくは炭素数2~6のアルケニル基。
・アルキニル基、好ましくは炭素数2~20のアルキニル基、より好ましくは炭素数2~12のアルキニル基。
・アリール基、好ましくは炭素数6~30のアリール基、より好ましくは炭素数6~24のアリール基、さらに好ましくは炭素数6~18のアリール基、特に好ましくは炭素数6~14のアリール基。
・ヘテロアリール基、好ましくは炭素数3~30のヘテロアリール基、より好ましくは炭素数3~24のヘテロアリール基、さらに好ましくは炭素数3~18のヘテロアリール基、特に好ましくは炭素数3~14のヘテロアリール基。
・アルキルシリル基、好ましくはアルキル基の炭素数が1~20であるアルキルシリル基、より好ましくはアルキル基の炭素数が1~12であるアルキルシリル基。
・アリールシリル基、好ましくはアリール基の炭素数が6~20であるアリールシリル基、より好ましくはアリール基の炭素数が6~14であるアリールシリル基。
・アルキルカルボニル基、好ましくは炭素数2~20のアルキルカルボニル基。
・アリールカルボニル基、好ましくは炭素数7~20のアリールカルボニル基。
 以上の基は1つ以上の水素原子がフッ素原子で置き換えられているか、若しくは1つ以上の水素原子が重水素原子で置き換えられていてもよい。
 特に断りのない限り、アリールは芳香族炭化水素環であり、ヘテロアリールは芳香族複素環である。
・水素原子、重水素原子、フッ素原子、シアノ基、又は、-SF
 上記置換基群Sのうち、好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基、及びこれらの基の1つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は-SFであり、
 より好ましくはアルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基であり、及びこれらの基の1つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は-SFであり、
 さらに好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基であり、
 特に好ましくはアルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基であり、
 最も好ましくはアルキル基、アリールアミノ基、アラルキル基、アリール基、ヘテロアリール基である。
 これら置換基群Sにはさらに置換基群Sから選ばれる置換基を置換基として有していてもよい。有していてもよい置換基の好ましい基、より好ましい基、さらに好ましい基、特に好ましい基、最も好ましい基は置換基群Sの中の好ましい基と同様である。
(環A1)
 環A1は置換基を有していてもよい芳香族炭化水素環構造又は置換基を有していてもよい芳香族複素環構造を表す。
 芳香族炭化水素環としては、好ましくは炭素数6~30の芳香族炭化水素環である。具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましい。
 芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環が好ましい。さらに好ましくは、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環である。
 環A1としてより好ましくは、ベンゼン環、ナフタレン環、フルオレン環であり、特に好ましくはベンゼン環又はフルオレン環であり、最も好ましくはベンゼン環である。
(環A2)
 環A2は置換基を有していてもよい芳香族複素環構造を表す。
 芳香族複素環としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環である。具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環が挙げられ、好ましくは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、より好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、最も好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、キノキサリン環、キナゾリン環である。
(環A1と環A2との組み合わせ)
 環A1と環A2の好ましい組み合せとしては、(環A1-環A2)と表記すると、(ベンゼン環-ピリジン環)、(ベンゼン環-キノリン環)、(ベンゼン環-キノキサリン環)、(ベンゼン環-キナゾリン環)、(ベンゼン環-ベンゾチアゾール環)、(ベンゼン環-イミダゾール環)、(ベンゼン環-ピロール環)、(ベンゼン環-ジアゾール環)、及び(ベンゼン環-チオフェン環)である。
(環A1、環A2の置換基)
 環A1、環A2が有していてもよい置換基は任意に選択できるが、好ましくは前記置換基群Sから選ばれる1種又は複数種の置換基である。
(Ar201、Ar202、Ar203
 Ar201、Ar203は、各々独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい芳香族複素環構造を表す。
 Ar202は、置換基を有していてもよい芳香族炭化水素環構造、置換基を有していてもよい芳香族複素環構造、又は置換基を有していてもよい脂肪族炭化水素構造を表す。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族炭化水素環構造である場合、該芳香族炭化水素環構造としては、好ましくは炭素数6~30の芳香族炭化水素環である。具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましく、より好ましくはベンゼン環、ナフタレン環、フルオレン環が好ましく、最も好ましくはベンゼン環である。
 Ar201、Ar202のいずれかが置換基を有していてもよいベンゼン環である場合、少なくとも1つのベンゼン環がオルト位又はメタ位で隣接する構造と結合していることが好ましく、少なくとも1つのベンゼン環がメタ位で隣接する構造と結合していることがより好ましい。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいフルオレン環である場合、フルオレン環の9位及び9’位は、置換基を有するか又は隣接する構造と結合していることが好ましい。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族複素環構造である場合、芳香族複素環構造としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環であり、具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環が挙げられ、好ましくは、ピリジン環、ピリミジン環、トリアジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環である。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいカルバゾール環である場合、カルバゾール環のN位は、置換基を有するか又は隣接する構造と結合していることが好ましい。
 Ar202が置換基を有していてもよい脂肪族炭化水素構造である場合、直鎖、分岐鎖、又は環状構造を有する脂肪族炭化水素構造であり、好ましくは炭素数が1以上24以下であり、さらに好ましくは炭素数が1以上12以下であり、より好ましくは炭素数が1以上8以下である。
(i1、i2、i3、i4、k1、k2)
 i1、i2はそれぞれ独立に、0~12の整数を表し、好ましくは1~12、さらに好ましくは1~8、より好ましくは1~6である。この範囲であることにより、溶解性向上や電荷輸送性向上が見込まれる。
 i3は好ましくは0~5の整数を表し、さらに好ましくは0~2、より好ましくは0又は1である。
 i4は好ましくは0~2の整数を表し、さらに好ましくは0又は1である。
 k1、k2はそれぞれ独立に、好ましくは0~3の整数を表し、さらに好ましくは1~3であり、より好ましくは1又は2であり、特に好ましくは1である。
(Ar201、Ar202、Ar203の好ましい置換基)
 Ar201、Ar202、Ar203が有していてもよい置換基は任意に選択できるが、好ましくは前記置換基群Sから選ばれる1種又は複数種の置換基であり、好ましい基も前記置換基群Sの通りであるが、より好ましくは無置換(水素原子)、アルキル基、アリール基であり、特に好ましくは無置換(水素原子)、アルキル基であり、最も好ましくは無置換(水素原子)またはターシャリーブチル基であり、ターシャリーブチル基はAr203が存在する場合はAr203に、Ar203が存在しない場合はAr202に、Ar202とAr203が存在しない場合はAr201に置換していることが好ましい。
(式(201)で表される化合物の好ましい態様)
 前記式(201)で表される化合物は、下記(I)~(IV)のうちのいずれか1以上を満たす化合物であることが好ましい。
(I)フェニレン連結式
 式(202)で表される構造はベンゼン環が連結した基を有する構造、すなわち、ベンゼン環構造、i1が1~6で、少なくとも1つの前記ベンゼン環がオルト位又はメタ位で隣接する構造と結合していることが好ましい。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(II)(フェニレン)-アラルキル(アルキル)
 環A1又は環A2に、アルキル基若しくはアラルキル基が結合した芳香族炭化水素環基若しくは芳香族複素環基を有する構造、すなわち、Ar201が芳香族炭化水素環構造又は芳香族複素環構造、i1が1~6、Ar202が脂肪族炭化水素構造、i2が1~12、好ましくは3~8、Ar203がベンゼン環構造、i3が0又は1である構造、好ましくは、Ar201は前記芳香族炭化水素環構造であり、さらに好ましくはベンゼン環が1~5連結した構造であり、より好ましくはベンゼン環1つである。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(III)デンドロン
 環A1又は環A2に、デンドロンが結合した構造、例えば、Ar201、Ar202がベンゼン環構造、Ar203がビフェニル又はターフェニル構造、i1、i2が1~6、i3が2、jが2である。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(IV)B201-L200-B202
 B201-L200-B202で表される構造は下記式(203)又は下記式(204)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 
 式(203)中、R211、R212、R213はそれぞれ独立に置換基を表す。
 式(204)中、環B3は、置換基を有していてもよい、窒素原子を含む芳香族複素環構造を表す。環B3は好ましくはピリジン環である。
(好ましい燐光発光材料)
 前記式(201)で表される燐光発光材料としては特に限定はされないが、好ましいものとして以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
 また、下記式(205)で表される燐光発光材料も好ましい。
Figure JPOXMLDOC01-appb-C000014
 
[式(205)中、Mは金属を表し、Tは炭素原子又は窒素原子を表す。R92~R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、R94及びR95は無い。]
 式(205)中、Mの具体例としては、周期表第7~11族から選ばれる金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
 また、式(205)において、R92及びR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素環基又は芳香族複素環基を表す。
 更に、Tが炭素原子の場合、R94及びR95は、それぞれ独立に、R92及びR93と同様の例示物で表される置換基を表す。また、Tが窒素原子の場合は該Tに直接結合するR94又はR95は存在しない。また、R92~R95は、更に置換基を有していてもよい。置換基としては、前記の置換基とすることができる。更に、R92~R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。
(分子量)
 燐光発光材料の分子量は、好ましくは5000以下、更に好ましくは4000以下、特に好ましくは3000以下である。また、燐光発光材料の分子量は、好ましくは800以上、より好ましくは1000以上、更に好ましくは1200以上である。この分子量範囲であることによって、燐光発光材料同士が凝集せず電荷輸送材料と均一に混合し、発光効率の高い発光層を得ることができると考えられる。
 燐光発光材料の分子量は、Tgや融点、分解温度等が高く、燐光発光材料及び形成された発光層の耐熱性に優れる点、及び、ガス発生、再結晶化及び分子のマイグレーション等に起因する膜質の低下や材料の熱分解に伴う不純物濃度の上昇等が起こり難い点では大きいことが好ましい。一方、燐光発光材料の分子量は、有機化合物の精製が容易である点では小さいことが好ましい。
<電荷輸送材料>
 発光層に用いる電荷輸送材料は、電荷輸送性に優れる骨格を有する材料であり、電子輸送材料、正孔輸送材料及び電子と正孔の両方を輸送可能な両極性材料から選ばれることが好ましい。
 電荷輸送性に優れる骨格としては、具体的には、芳香族構造、芳香族アミン構造、トリアリールアミン構造、ジベンゾフラン構造、ナフタレン構造、フェナントレン構造、フタロシアニン構造、ポルフィリン構造、チオフェン構造、ベンジルフェニル構造、フルオレン構造、キナクリドン構造、トリフェニレン構造、カルバゾール構造、ピレン構造、アントラセン構造、フェナントロリン構造、キノリン構造、ピリジン構造、ピリミジン構造、トリアジン構造、オキサジアゾール構造又はイミダゾール構造等が挙げられる。
 電子輸送材料としては、電子輸送性に優れ構造が比較的安定な材料である観点から、ピリジン構造、ピリミジン構造、トリアジン構造を有する化合物がより好ましく、ピリミジン構造、トリアジン構造を有する化合物であることがさらに好ましい。
 正孔輸送材料は、正孔輸送性に優れた構造を有する化合物であり、前記電荷輸送性に優れた中心骨格の中でも、カルバゾール構造、ジベンゾフラン構造、トリアリールアミン構造、ナフタレン構造、フェナントレン構造又はピレン構造が正孔輸送性に優れた構造として好ましく、カルバゾール構造、ジベンゾフラン構造又はトリアリールアミン構造がさらに好ましい。
 発光層に用いる電荷輸送材料は、3環以上の縮合環構造を有することが好ましく、3環以上の縮合環構造を2以上有する化合物又は5環以上の縮合環を少なくとも1つ有する化合物であることがさらに好ましい。これらの化合物であることで、分子の剛直性が増し、熱に応答する分子運動の程度を抑制する効果が得られ易くなる。さらに、3環以上の縮合環及び5環以上の縮合環は、芳香族炭化水素環又は芳香族複素環を有することが電荷輸送性及び材料の耐久性の点で好ましい。
 3環以上の縮合環構造としては、具体的には、アントラセン構造、フェナントレン構造、ピレン構造、クリセン構造、ナフタセン構造、トリフェニレン構造、フルオレン構造、ベンゾフルオレン構造、インデノフルオレン構造、インドロフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造、ジベンゾチオフェン構造等が挙げられる。電荷輸送性ならびに溶解性の観点から、フェナントレン構造、フルオレン構造、インデノフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造及びジベンゾチオフェン構造からなる群より選択される少なくとも1つが好ましく、電荷に対する耐久性の観点からカルバゾール構造又はインドロカルバゾール構造がさらに好ましい。
 本発明においては、有機電界発光素子の電荷に対する耐久性の観点から、発光層の電荷輸送材料の内、少なくとも1つはピリミジン骨格又はトリアジン骨格を有する材料であることが好ましい。
 発光層の電荷輸送材料は、可撓性に優れる観点では高分子材料であることが好ましい。可撓性に優れる材料を用いて形成された発光層は、フレキシブル基板上に形成された有機電界発光素子の発光層として好ましい。発光層に含まれる電荷輸送材料が高分子材料である場合、分子量は、好ましくは5,000以上1,000,000以下、より好ましくは10,000以上、500,000以下、さらに好ましくは10,000以上100,000以下である。
 また、発光層の電荷輸送材料は、合成及び精製のしやすさ、電子輸送性能及び正孔輸送性能の設計のしやすさ、溶媒に溶解した時の粘度調整のしやすさの観点からは、低分子であることが好ましい。発光層に含まれる電荷輸送材料が低分子材料である場合、分子量は、5,000以下が好ましく、さらに好ましくは4,000以下であり、特に好ましくは3,000以下であり、最も好ましくは2,000以下であり、好ましくは300以上、より好ましくは350以上、さらに好ましくは400以上である。
<蛍光発光材料>
 蛍光発光材料としては特に限定されないが、下記式(211)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 
 上記式(211)において、Ar241は置換基を有していてもよい芳香族炭化水素縮合環構造を表し、Ar242、Ar243は各々独立に置換基を有していてもよいアルキル基、芳香族炭化水素環基、芳香族複素基又はこれらが結合した基を表す。n41は1~4の整数である。
 Ar241は好ましくは炭素数10~30の芳香族炭化水素縮合環構造を表し、具体的な環構造としては、ナフタレン、アセナフテン、フルオレン、アントラセン、フェナトレン、フルオランテン、ピレン、テトラセン、クリセン、ペリレン等が挙げられる。
 Ar241はより好ましくは炭素数12~20の芳香族炭化水素縮合環構造であり、具体的な環構造としては、アセナフテン、フルオレン、アントラセン、フェナトレン、フルオランテン、ピレン、テトラセン、クリセン、ペリレンが挙げられる。
 Ar241はさらに好ましくは炭素数16~18の芳香族炭化水素縮合環構造であり、具体的な環構造としては、フルオランテン、ピレン、クリセンが挙げられる。
 n41は1~4であり、好ましくは1~3、さらに好ましくは1~2、最も好ましくは2である。
 Ar242、Ar243のアルキル基としては、炭素数1~12のアルキル基が好ましく、より好ましくは炭素数1~6のアルキル基である。
 Ar242、Ar243の芳香族炭化水素環基としては、炭素数6~30の芳香族炭化水素環基が好ましく、より好ましくは炭素数6~24の芳香族炭化水素環基であり、最も好ましくはフェニル基、ナフチル基である。
 Ar242、Ar243の芳香族複素基としては、炭素数3~30の芳香族複素基が好ましく、より好ましくは炭素数5~24の芳香族炭化水素環基であり、具体的にはカルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基が好ましく、ジベンゾフラニル基がより好ましい。
 Ar241、Ar242、Ar243が有していてもよい置換基は、前記置換基群Sから選ばれる基が好ましく、より好ましくは置換基群Sに含まれる、炭化水素基であり、さらに好ましくは置換基群Sとして好ましい基の中の炭化水素基である。
 上記蛍光発光材料と共に用いる電荷輸送材料としては特に限定されないが、下記式(212)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000016
 
 上記式(212)において、R251、R252はそれぞれ独立に式(213)で表される構造であり、R253は置換基を表し、R253が複数ある場合、同一であっても異なっていてもよく、n43は0~8の整数である。
Figure JPOXMLDOC01-appb-C000017
 
 上記式(213)において、*は式(212)のアントラセン環との結合位置を表し、Ar254、Ar255はそれぞれ独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい複素芳香環構造を表し、Ar254、Ar255はそれぞれ複数個存在する場合、同一であっても異なっていてもよく、n44は1~5の整数、n45は0~5の整数である。
 Ar254は好ましくは、置換基を有していてもよい、炭素数6~30の単環又は縮合環である芳香族炭化水素環構造であり、より好ましくは、置換基を有していてもよい、炭素数6~12の単環又は縮合環である芳香族炭化水素環構造である。
 Ar255は好ましくは、置換基を有していてもよい、炭素数6~30の単環もしくは縮合環である芳香族炭化水素環構造、又は置換基を有していてもよい炭素数6~30の縮合環である芳香族複素環構造である。Ar255はより好ましくは、置換基を有していてもよい、炭素数6~12の単環もしくは縮合環である芳香族炭化水素環構造、又は置換基を有していてもよい炭素数12の縮合環である芳香族複素環構造である。
 n44は好ましくは1~3の整数であり、より好ましくは1又は2である。
 n45は好ましくは0~3の整数であり、より好ましくは0~2である。
 置換基であるR253、Ar254及びAr255が有していてもよい置換基は、前記置換基群Sから選ばれる基が好ましい。より好ましくは置換基群Sに含まれる炭化水素基であり、さらに好ましくは置換基群Sとして好ましい基の中の炭化水素基である。
 蛍光発光材料及び電荷輸送材料の分子量は5,000以下が好ましく、さらに好ましくは4,000以下であり、特に好ましくは3,000以下であり、最も好ましくは2,000以下である。また、好ましくは300以上であり、より好ましくは350以上、さらに好ましくは400以上である。
[正孔阻止層]
 発光層105と後述の電子注入層108との間に、正孔阻止層106を設けてもよい。正孔阻止層106は、電子輸送層のうち、更に陽極102から移動してくる正孔を陰極109に到達するのを阻止する役割をも担う層である。正孔阻止層106は、発光層105の上に、発光層105の陰極109側の界面に接するように積層される層である。
 正孔阻止層106は、陽極102から移動してくる正孔を陰極109に到達するのを阻止する役割と、陰極109から注入された電子を効率よく発光層105の方向に輸送する役割とを有する。
 正孔阻止層106を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項エネルギー準位(T1)が高いことなどが挙げられる。このような条件を満たす正孔阻止層106の材料としては、例えばビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)などが挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層106の材料として好ましい。
 正孔阻止層106の形成方法に制限はない。正孔阻止層106は、湿式成膜法、蒸着法や、その他の方法で形成できる。
 正孔阻止層106の膜厚は、本発明の効果を著しく損なわない限り任意である。正孔阻止層106の膜厚は、通常0.3nm以上、好ましくは0.5nm以上で、通常100nm以下、好ましくは50nm以下である。
[電子輸送層]
 電子輸送層107は、発光層105と陰極109の間に設けられた電子を輸送するための層である。
 電子輸送層107の電子輸送材料としては、通常、陰極109又は陰極109側の隣接層からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば8-ヒドロキシキノリンのアルミニウム錯体やリチウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、トリアジン化合物誘導体、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 電子輸送層107に用いられる電子輸送材料としては、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される電子輸送性有機化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープさせることにより(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)、電子注入輸送性と優れた膜質を両立させることが可能となるため好ましい。また、上述の電子輸送性有機化合物にフッ化リチウムや炭酸セシウムなどのような無機塩をドープすることも有効である。
 電子輸送層107の形成方法に制限はない。電子輸送層107は、湿式成膜法、蒸着法や、その他の方法で形成することができる。
 電子輸送層107の膜厚は、本発明の効果を著しく損なわない限り任意である。電子輸送層107の膜厚は常1nm以上、好ましくは5nm以上で、通常300nm以下、好ましくは100nm以下である。
[電子注入層]
 陰極109から注入された電子を効率良く発光層105に注入するために、電子輸送層107と後述の陰極109との間に電子注入層108を設けてもよい。電子注入層108は、無機塩などからなる。
 電子注入層108の材料としては、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、酸化リチウム(LiO)、炭酸セシウム(II)(CsCO)等が挙げられる(Applied Physics Letters, 1997年, Vol.70、pp.152;日本国特開平10-74586号公報;IEEE Transactions on Electron Devices, 1997年,Vol.44, pp.1245;SID 04 Digest, pp.154等参照)。
 電子注入層108は、電荷輸送性を伴わない場合が多いため、電子注入を効率よく行なうには、極薄膜として用いることが好ましく、その膜厚は、通常0.1nm以上、好ましくは5nm以下である。
[陰極]
 陰極109は、発光層105側の層に電子を注入する役割を果たす電極である。
 陰極109の材料としては、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等が挙げられる。これらのうち、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、例えばスズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金などが用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
 陰極109の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 陰極109の膜厚は、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陰極109の厚みは通常5nm以上、好ましくは10nm以上で、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陰極109の厚みは任意であり、陰極は基板と同一でもよい。
 陰極109の上に異なる導電材料を積層することも可能である。
 例えばナトリウムやセシウム等のアルカリ金属、バリウムやカルシウム等のアルカリ土類金属等からなる低仕事関数の金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えばアルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[その他の層]
 本発明の有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えばその性能を損なわない限り、陽極102と陰極109との間に、上記説明にある層の他に任意の層を有していてもよく、また、上記説明にある層のうち必須でない層が省略されていてもよい。
 また、陰極109の上層に、陰極の保護層として別の有機層を1層、もしくは2層以上の多層で有してもよい。
 以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば図1の層構成であれば、基板101上に他の構成要素を陰極109、電子注入層108、電子輸送層107、正孔阻止層106、発光層105、正孔輸送層104、正孔注入層103、陽極102の順に設けてもよい。
 本発明の有機電界発光素子又は有機ELディスプレイパネルは、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX-Yマトリックス状に配置された構成に適用してもよい。
 上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
[有機電界発光デバイス]
 互いに異なる色に発光する有機電界発光素子を2つ以上用いて、又は、互いに異なる色に発光する有機電界発光素子を2つ以上含む有機ELディスプレイパネルを用いて、有機EL表示装置や有機EL照明などの有機電界発光デバイスとすることができる。この有機電界発光デバイスにおいて、少なくとも1つ、好ましくはすべての有機電界発光素子を本発明の有機電界発光素子とすることで、又は、少なくとも1つ、好ましくはすべての有機電界発光素子として上述の有機電界発光素子を含む本発明の有機ELディスプレイパネルを用いることで、高品質の有機電界発光デバイスを提供できる。
<有機EL表示装置>
 本発明の有機電界発光素子又は有機ELディスプレイパネルを用いた有機EL表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子又は有機ELディスプレイパネルを用いて常法に従って組み立てることができる。
 例えば「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、有機EL表示装置を形成することができる。
<有機EL照明>
 本発明の有機電界発光素子を用いた有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子、又は、上述の有機電界発光素子を含む本発明の有機ELディスプレイパネルを用いて常法に従って組み立てることができる。
[有機電界発光素子、有機ELディスプレイパネルの製造方法]
 本発明の有機電界発光素子又は有機ELディスプレイパネルは、一態様として、下記工程群(i)の後に下記工程群(ii)を含むか、又は、下記工程群(ii)の後に下記工程群(i)を含む方法、又は、これを含む上記設計方法を用いた方法により製造することができる。
工程群(i):機能層1を形成するための機能性インクを区画領域に対してインクジェット法によって印刷する工程と、印刷された区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された区画領域をベークする工程とを、この順で含む工程。
工程群(ii):機能層2を形成するための機能性インクを区画領域に対してインクジェット法によって印刷する工程と、印刷された区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された区画領域をベークする工程とを、この順で含む工程。
 成膜時の溶媒が除去されやすくなることから、減圧乾燥における圧力の下限値は1×10Pa以下であることが好ましく、1×10Pa以下であることがより好ましく、1×10-1Pa以下であることがさらに好ましい。
 減圧乾燥は加熱しながら行うこともできる。この場合には、成膜時の溶媒が除去されやすくなることから、温度は10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることがさらに好ましい。また、インクに含まれる溶媒の突沸を防止する観点から、減圧乾燥における温度は200℃以下であることが好ましく、190℃以下であることがより好ましく、180℃以下であることがさらに好ましい。
 減圧乾燥する時間は、適度に長い時間をかけて機能性インクのピン位置を下げ、且つあまり長時間バンクに有機溶媒が触れ続けないようにするために、1分以上15分未満であることが好ましく、2分以上12分未満であることがより好ましく、3分以上10分未満であることがさらに好ましい。
 本発明の有機電界発光素子又は有機ELディスプレイパネルは、一態様として、機能層1を形成するための機能性インク及び機能層2を形成するための機能性インクの少なくとも一方が2種以上の有機溶媒を含むことができる。この場合、上述の工程群(i)及び工程群(ii)のうち、2種以上の有機溶媒を含む機能性インクを用いる工程群に含まれ、区画領域を真空チャンバー内で減圧乾燥する工程において、2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間には特に制限がないが、減圧乾燥開始後60秒以上であることが好ましい。また、2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間には特に制限がないが、1800秒以下であることが好ましい。
 機能層1を形成するための機能性インク及び機能層2を形成するための機能性インクの両方が2種以上の有機溶媒を含む場合は、上述の工程群(i)及び工程群(ii)のうちの少なくとも一方に含まれる、区画領域を真空チャンバー内で減圧乾燥する工程において、2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間が上述の範囲を満たすことが好ましい。また、上述の工程群(i)及び工程群(ii)の両方に含まれる、区画領域を真空チャンバー内で減圧乾燥する工程において、2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間が上述の範囲を満たすことがより好ましい。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。
<機能性インクの調製>
(機能性インク1の調製)
 下記の構造式で示す高分子化合物(P-1)(重量平均分子量:約15,200)を、2.3重量%になるように1,1-ジフェニルヘキサン(沸点:約320℃)とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク1を得た。
Figure JPOXMLDOC01-appb-C000018
 
(機能性インク2の調製)
 高分子化合物(P-1)を、2.3重量%になるように1,1-ジフェニルペンタン(沸点:約307℃、蒸気圧)にスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク2を得た。
(機能性インク3の調製)
 高分子化合物(P-1)及び下記の構造式で示す電子受容性化合物(HI-1)を重量比で(P-1):(HI-1)=87:13になるように秤量し、正孔注入材料1とした。正孔注入材料1を、2.3重量%になるように安息香酸n-ブチル(沸点:約250℃)にスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク3を得た。
Figure JPOXMLDOC01-appb-C000019
 
(機能性インク4の調製)
 正孔注入材料1を、2.3重量%になるように1,1-ジフェニルペンタン(沸点:約307℃)にスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク4を得た。
(機能性インク5の調製)
 高分子化合物(P-1)と電子受容性化合物(HI-1)を重量比で(P-1):(HI-1)=89:11になるように秤量し、正孔注入材料2とした。次いで、エチル-4-メチルベンゾエート(沸点:約232℃、蒸気圧:約6.6Pa)と4-ブチルビフェニル(沸点:約318℃)を重量比で70:30の割合になるように混合し、混合溶媒1とした。正孔注入材料2を、2.3重量%になるように混合溶媒1とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク5を得た。
(機能性インク6の調製)
 エチル-4-メチルベンゾエート(沸点:約232℃、蒸気圧:約6.6Pa)とγ-デカノラクトン(沸点:約281℃)を重量比で70:30の割合になるように混合し、混合溶媒2とした。正孔注入材料2を、2.3重量%になるように混合溶媒2とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク6を得た。
(機能性インク7の調製)
 下記の構造式で示す低分子化合物(M-1)、下記の構造式で示す高分子化合物(P-2)およびHI-1を重量比で(P-2):(M-1):(HI-1)=64:21:15になるように秤量し、正孔注入材料3とした。次いで、安息香酸n-ブチル(沸点:約250℃)と安息香酸2-エチルヘキシル(沸点:約296.5℃)、安息香酸ベンジルベンジル(沸点:約324℃)を重量比で70:20:10になるように混合し、混合溶媒3とした。正孔注入材料3を、2.3重量%になるように混合溶媒3とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク7を得た。
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
(機能性インク8の調製)
 下記の構造式で示す高分子化合物(P-3)(平均分子量約18000)を、2.3重量%となるように混合溶媒3とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク8を得た。
Figure JPOXMLDOC01-appb-C000022
 
(機能性インク9の調製)
 高分子化合物(P-2)、低分子化合物(M-1)及び電子受容性化合物(HI-1)を重量比で(P-2):(M-1):(HI-1)=42.5:42.5:15になるように秤量し、正孔注入材料4とした。正孔注入材料4を、2.3重量%となるように混合溶媒3とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク9を得た。
(機能性インク10の調製)
 高分子化合物(P-3)(平均分子量:約40000)を2-エチルナフタレン(沸点:約252℃)、安息香酸2-エチルヘキシル(沸点:約296.5℃)および安息香酸ベンジルベンジル(沸点:約324℃)を重量比で70:15:15になるように調整された混合溶媒4に、2.0重量%となるようにスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク10を得た。
(機能性インク11の調製)
 正孔注入材料1を、2.3重量%になるようにエチル-4-メチルベンゾエート(沸点:約232℃、蒸気圧:約6.6Pa)とセバシン酸ジエチル(沸点:約309℃)を重量比で70:30の割合になるように混合した混合溶媒5を用いてスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク11を得た。
(機能性インク51の調製)
 下記の構造式で表す高分子化合物(P-51)、低分子化合物(M-51)及び電子受容性化合物(HI-51)を重量比で(P-51):(M-51):(HI-51)=42.5:42.5:15になるように秤量し、正孔注入材料51とした。次いで、安息香酸n-ブチル(沸点:約250℃)と安息香酸2-エチルヘキシル(沸点:約296.5℃)、安息香酸ベンジル(沸点:約324℃)を重量比で70:20:10になるように混合し、混合溶媒51とした。正孔注入材料51を、2.3重量%となるように混合溶媒51とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク51を得た。
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
(機能性インク52の調製)
 下記の構造式で示す高分子化合物(P-52)(平均分子量:約18000)を、2.3重量%となるように混合溶媒51とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク52を得た。
Figure JPOXMLDOC01-appb-C000026
 
(機能性インク53の調製)
 下記の構造式で示す高分子化合物(P-53)と電子受容性化合物(HI-51)を重量比で(P-53):(HI-51)=89:11になるように秤量し、正孔注入材料52とした。次いで正孔注入材料52を2.3重量%となるように混合溶媒51とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク53を得た。
Figure JPOXMLDOC01-appb-C000027
 
(機能性インク54の調製)
 高分子化合物(P-52)(平均分子量:約18000)を2-エチルナフタレン(沸点:約252℃)、安息香酸2-エチルヘキシル(沸点:約296.5℃)および安息香酸ベンジルベンジル(沸点:約324℃)を重量比で70:15:15になるように混合された混合溶媒52に、2.0重量%となるようにスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク54を得た。
(機能性インク55の調製)
 高分子化合物(P-51)、低分子化合物(M-51)及び電子受容性化合物(HI-51)を重量比で(P-51):(M-51):(HI-51)=64:21:15になるように秤量し、正孔注入材料53とした。正孔注入材料53を、2.3重量%となるように混合溶媒51とスクリューバイアル中で混ぜ合わせ、その後スクリューバイアルごと真空チャンバー内に設置し、真空引きと窒素パージを3回繰り返してスクリューバイアル中の気体部分を窒素に置換した。その後、マグネチックスターラーを用いて420rpmで撹拌しながら、ホットプレート温度110℃で3時間加熱した。得られた該組成物を室温程度まで冷却したのちに、孔径0.2μmのメンブレンフィルタを用いて濾過し、機能性インク55を得た。
<基板の準備>
(基板A1)
 膜厚0.7mmのガラス基板に、スパッタ法によってインジウム・スズ酸化物(ITO)膜、銀・インジウム化合物膜、インジウム・スズ酸化物膜を順番に成膜し、一般的なフォトリソグラフィー法によって電極のパターンを形成した。該基板上に、撥液性を有した感光性レジストを、膜厚が1.4μmになるように塗布し、一般的なフォトリソグラフィー法を用いて開口部を作製した。開口部のサイズは、長軸約202μm、短軸約82μmである。
(基板B1)
 膜厚0.7mmのガラス基板に、スパッタ法によってインジウム・スズ酸化物(ITO)膜、銀・インジウム化合物膜、インジウム・スズ酸化物膜を順番に成膜し、一般的なフォトリソグラフィー法によって電極のパターンを形成した。該基板上に、撥液性を有した感光性レジストを、膜厚が1.3μmになるように塗布し、一般的なフォトリソグラフィー法を用いて開口部を作製した。開口部のサイズは、長軸約202μm、短軸約78μmである。
(基板C1)
 膜厚0.7mmのガラス基板に、スパッタ法によってインジウム・スズ酸化物(ITO)膜、銀・インジウム化合物膜、インジウム・スズ酸化物膜を順番に成膜し、一般的なフォトリソグラフィー法によって電極のパターンを形成した。該基板上に、撥液性を有した感光性レジストを、膜厚が1.3μmになるように塗布し、一般的なフォトリソグラフィー法を用いて開口部を作製した。開口部のサイズは、長軸約210μm、短軸約86μmである。
(基板A2)
 膜厚0.7mmのガラス基板に、スパッタ法によってインジウム・スズ酸化物(ITO)膜、銀・インジウム化合物膜、インジウム・スズ酸化物膜を順番に成膜し、一般的なフォトリソグラフィー法によって電極のパターンを形成した。該基板上に、撥液性を有した感光性レジストを、膜厚が1.3μmになるように塗布し、一般的なフォトリソグラフィー法を用いて開口部を作製した。各種開口部のサイズは、長軸は全て約202μm、短軸はそれぞれ約49、75、102μmである。
(基板B2)
 膜厚0.7mmのガラス基板に、スパッタ法によってインジウム・スズ酸化物(ITO)膜、銀・インジウム化合物膜、インジウム・スズ酸化物膜を順番に成膜し、一般的なフォトリソグラフィー法によって電極のパターンを形成した。該基板上に、撥液性を有した感光性レジストを、膜厚が1.3μmになるように塗布し、一般的なフォトリソグラフィー法を用いて開口部を作製した。開口部のサイズは、長軸約210μm、短軸約86μmである。
(基板C2)
 膜厚0.7mmのガラス基板に、スパッタ法によってインジウム・スズ酸化物(ITO)膜、銀・インジウム化合物膜、インジウム・スズ酸化物膜を順番に成膜し、一般的なフォトリソグラフィー法によって電極のパターンを形成した。該基板上に、撥液性を有した感光性レジストを、膜厚が1.3μmになるように塗布し、一般的なフォトリソグラフィー法を用いて開口部を作製した。開口部のサイズは、長軸約202μm、短軸約78μmである。
 得られた基板は、超純水内に入れて超音波洗浄を15分間実施したのちに、130℃にあらかじめ加熱したクリーンオーブン内で10分間乾燥させた。また、機能性インクを塗布する直前に、230℃に加熱したホットプレート上で10分間ベークし、表面に付着している水分を除去した。
<機能性インクの塗布>
 各機能性インクを、インクジェットプリンター用カートリッジ(富士フイルム株式会社製、DMCLCP-11610)に、マイクロピペットを用いて充填し、インクジェットプリンター(富士フイルム株式会社製、DMP-2831)を用いて該基板の開口部に塗布した。インクジェットヘッドのノズルから吐出される機能性インクの一滴の量を10pLになるように、インクジェットプリンターの吐出電圧を調整した。
(機能性膜1の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク1を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜1を作成した。なお、機能性インク1は、基板A1の1つの開口部に対して15滴入るように塗布した。
(機能性膜2の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク2を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜2を作成した。なお、機能性インク2は、基板A1の1つの開口部に対して15滴入るように塗布した。
(機能性膜3の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク3を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜3を作成した。なお、機能性インク3は、基板A1の1つの開口部に対して7滴入るように塗布した。
(機能性膜4の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク4を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜4を作成した。なお、機能性インク4は、基板A1の1つの開口部に対して7滴入るように塗布した。
(機能性膜5の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク5を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜5を作成した。なお、機能性インク5は、基板A1の1つの開口部に対して9滴入るように塗布した。
(機能性膜6の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク6を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜6を作成した。なお、機能性インク6は、基板A1の1つの開口部に対して15滴入るように塗布している。
(機能性膜7の作成)
 基板B1における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク7を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜7を作成した。なお、機能性インク7は基板B1の1つの開口部に対して19滴入るように塗布している。
(機能性膜8の作成)
 基板B1における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク8を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜8を作成した。なお、機能性インク8は、基板B1の1つの開口部に対して18滴入るように塗布した。
(機能性膜9の作成)
 基板B1における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク9を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜9を作成した。なお、機能性インク9は、基板B1の1つの開口部に対して10滴入るように塗布した。
(機能性膜10の作成)
 基板B1における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク8を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜10を作成した。なお、機能性インク8は、基板B1の1つの開口部に対して30滴入るように塗布した。
(機能性膜11の作成)
 上述のとおりに機能性膜7が成膜された基板B1における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク8を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜11を作成した。なお、機能性インク8は、上述のとおりに機能性膜7が成膜された基板B1の1つの開口部に対して18滴入るように塗布した。
(機能性膜12の作成)
 上述のとおりに機能性膜8が成膜された基板B1における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク7を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜12を作成した。なお、機能性インク7は、上述のとおりに機能性膜8が成膜された基板B1の1つの開口部に対して19滴入るように塗布した。
(機能性膜13の作成)
 基板C1における短軸方向に22個分、長軸方向に7個分の合計154個分の開口部に対して機能性インク9を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜13を作成した。なお、機能性インク9は、基板C1の1つの開口部に対して4滴入るように塗布した。
(機能性膜14の作成)
 基板C1における短軸方向に22個分、長軸方向に7個分の合計154個分の開口部に対して機能性インク10を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜14を作成した。なお、機能性インク10は、基板C1の1つの開口部に対して15滴入るように塗布した。
(機能性膜15の作成)
 上述のとおりに機能性膜13が成膜された基板C1における短軸方向に22個分、長軸方向に7個分の合計154個分の開口部に対して機能性インク10を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜15を作成した。なお、機能性インク10は、上述のとおりに機能性膜13が成膜された基板C1の1つの開口部に対して15滴入るように塗布した。
(機能性膜16の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク11を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜16を作成した。なお、機能性インク11は、基板A1の1つの開口部に対して7滴入るように塗布した。
(機能性膜17の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク2を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜17を作成した。なお、機能性インク2は、基板A1の1つの開口部に対して14滴入るように塗布した。
(機能性膜18の作成)
 上述のとおりに機能性膜16が成膜された基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク2を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜18を作成した。なお、機能性インク2は、上述のとおりに機能性膜16が成膜された基板A1の1つの開口部に対して14滴入るように塗布した。
(機能性膜19の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク11を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜19を作成した。なお、機能性インク11は、基板A1の1つの開口部に対して9滴入るように塗布した。
(機能性膜20の作成)
 上述のとおりに機能性膜19が成膜された基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク2を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜20を作成した。なお、機能性インク2は、上述のとおりに機能性膜19が成膜された基板A1の1つの開口部に対して14滴入るように塗布した。
(機能性膜21の作成)
 基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク11を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜21を作成した。なお、機能性インク11は、基板A1の1つの開口部に対して15滴入るように塗布した。
(機能性膜22の作成)
 上述のとおりに機能性膜21が成膜された基板A1における短軸方向に54個分、長軸方向に32個分の合計1728個分の開口部に対して機能性インク2を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜22を作成した。なお、機能性インク2は、上述のとおりに機能性膜21が成膜された基板A1の1つの開口部に対して14滴入るように塗布した。
(機能性膜R1、G1、B1の作成)
 機能性インク51は基板A2の1つの開口部に対して開口幅49μmの区画領域1つに対して4,8,12,16,20,24滴入るように、開口幅75μmの区画領域1つに対して5,10,15,20,25,30滴入るように、開口幅102μmの区画領域1つに対して6,12,18,24,30,36滴入るように塗布している。塗布する面積は短軸方向に54個分、長軸方向にはそれぞれの滴下数毎に15個分の合計29160個分の開口部に対して塗布し、その後以下の乾燥、焼結工程を行い機能性膜R1-1、R1-2、R1-3、R1-4、R1-5、R1-6、G1-1、G1-2、G1-3、G1-4、G1-5、G1-6、B1-1、B1-2、B1-3、B1-4、B1-5、B1-6を作成した。
(機能性膜R2、G2、B2の作成)
 機能性インク52は基板A2の1つの開口部に対して開口幅49μmの区画領域1つに対して4,8,12,16,20滴入るように、開口幅75μmの区画領域1つに対して5,10,15,20,25,30滴入るように、開口幅102μmの区画領域1つに対して6,12,18,24,30,36滴入るように塗布している。塗布する面積は短軸方向に54個分、長軸方向にはそれぞれの滴下数枚に15個分の合計28350個分の開口部に対して塗布し、その後以下の乾燥、焼結工程を行い機能性膜R2-1、R2-2、R2-3、R2-4、R2-5、G2-1、G2-2、G2-3、G2-4、G2-5、G2-6、B2-1、B2-2、B2-3、B2-4、B2-5、B2-6を作成した。
(機能性膜R3、G3、B3の作成)
 機能性インク53は基板A2の1つの開口部に対して開口幅49μmの区画領域1つに対して4,8,12,16,20,24滴入るように、開口幅75μmの区画領域1つに対して5,10,15,20,25,30滴入るように、開口幅102μmの区画領域1つに対して6,12,18,24,30,36滴入るように塗布している。塗布する面積は短軸方向に54個分、長軸方向にはそれぞれの滴下数毎に15個分の合計29160個分の開口部に対して塗布し、その後以下の乾燥、焼結工程を行い機能性膜R3-1、R3-2、R3-3、R3-4、R3-5、R3-6、G3-1、G3-2、G3-3、G3-4、G3-5、G3-6、B3-1、B3-2、B3-3、B3-4、B3-5、B3-6を作成した。
(機能性膜51の作成)
 基板B2における短軸方向に22個分、長軸方向に7個分の合計154個分の開口部に対して機能性インク51を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜51を作成した。なお、機能性インク51は、基板B2の1つの開口部に対して4滴入るように塗布した。
(機能性膜52の作成)
 基板B2における短軸方向に22個分、長軸方向に7個分の合計154個分の開口部に対して機能性インク54を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜52を作成した。なお、機能性インク54は、基板B2の1つの開口部に対して15滴入るように塗布した。
(機能性膜53の作成)
 上述のとおりに機能性膜51が成膜された基板B2における短軸方向に22個分、長軸方向に7個分の合計154個分の開口部に対して機能性インク54を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜53を作成した。なお、機能性インク54は、上述のとおりに機能性膜51が成膜された基板B2の1つの開口部に対して15滴入るように塗布した。
(機能性膜54の作成)
 基板C2における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク55を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜54を作成した。なお、機能性インク55は基板C2の1つの開口部に対して19滴入るように塗布している。
(機能性膜55の作成)
 基板C2における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク52を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜55を作成した。なお、機能性インク52は、基板C2の1つの開口部に対して18滴入るように塗布した。
(機能性膜56の作成)
 上述のとおりに機能性膜54が成膜された基板C2における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク52を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜56を作成した。なお、機能性インク52は、上述のとおりに機能性膜54が成膜された基板C2の1つの開口部に対して18滴入るように塗布した。
(機能性膜57の作成)
 上述のとおりに機能性膜55が成膜された基板C2における短軸方向に45個分、長軸方向に32個分の合計1440個分の開口部に対して機能性インク55を塗布し、その後以下の乾燥、焼成工程を行うことにより、機能性膜57を作成した。なお、機能性インク55は、上述のとおりに機能性膜55が成膜された基板C2の1つの開口部に対して19滴入るように塗布した。
<乾燥、焼成>
 機能性膜1~22及び51~57が成膜された各基板を開閉式の蓋を有する密閉されたチャンバー内に入れ、メカニカルブースターポンプとロータリーポンプオイルを組み合わせた多段式ポンプ(株式会社アルバック製、VMR-050)を用いて0.1Pa以下の圧力になるまで減圧乾燥した。
 ここで、減圧乾燥は、一度大気圧から240秒かけて1~10Paまで減圧し、その後180秒以上かけて0.1Pa以下とすることにより行った。
 前記減圧乾燥の後、機能性膜1~22及び51~57が成膜された各基板を230℃に加熱されたホットプレート上に配置して30分間焼成し、以下の評価を行った。
<機能性膜の評価1>
 触針式の段差計(株式会社小坂研究所製、ET-100)を用いて、得られた機能性膜1~22について開口部の短軸方向に対する膜厚プロファイルを測定した。測定した膜厚プロファイルに対して、以下の式(1)を用いて平坦度Fを計算し、各機能性膜の平坦度を評価した。
  F=M/Ap×100(%)     (1)
 式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央の膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さ表す。
<機能性膜の評価2>
 触針式の段差計(株式会社小坂研究所製、ET-100)を用いて、得られた機能性膜51~57について開口部の短軸および長軸方向に対する膜厚プロファイルを測定した。測定した膜厚プロファイルに対して、以下の式(1)を用いて平坦度Fを計算し、各機能性膜の平坦度を評価した。
  F=M/Ap×100(%)     (1)
 ただし、Apはバンク開口部の短軸もしくは長軸の長さ、Mは触針式段差計や白色干渉計のような非接触型の計器により測定された開口部分の短軸もしくは長軸の部分を測定した膜厚プロファイルを中心部分の膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有する、機能性膜の長さ(領域)を表している。
<有機電界発光素子の作成>
(正孔輸送層の成膜)
 機能性膜15及び53を製膜した基板を、真空蒸着装置に設置し、装置内を2×10―4Pa以下になるまで排気した。次に、下記式(HT-1)で表される化合物を機能性膜15及び53上に真空蒸着法にて1Å/秒の速度で蒸着し、膜厚20nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000028
 
(発光層の成膜)
 次に、下記式(EM-1)で表される化合物を正孔輸送層上に真空蒸着法にて1.3Å/秒の速度で蒸着し、膜厚50nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000029
 
(電子輸送層の成膜)
 続いて、下記式(HB-1)で表される化合物と8-ヒドロキシキノリノラトリチウムを成膜速度比4:3になるように発光層上に真空蒸着法にて合計して1Å/秒の速度で蒸着し、膜厚10nmの正孔阻止層を形成した。
Figure JPOXMLDOC01-appb-C000030
 
(陰極の成膜)
 続いて、陰極蒸着用のマスクとしてストライプ状シャドーマスクを陽極のITOストライプとは直行するように基板に密着させて、別の真空蒸着装置内に設置した。そして、マグネシウムと銀を加熱して、成膜速度1:9となるように共蒸着速度を制御しながら膜厚25nmのMg/Ag層を形成して陰極を形成した。
(キャッピング層の成膜)
 続いて、上記式(HT-1)で表される化合物を陰極上に真空蒸着法にて1.3Å/秒の速度で蒸着し、膜厚70nmのキャッピング層を形成した。その後、窒素雰囲気下で紫外線硬化樹脂により封止を行い、有機電界発光素子を得た。
<有機電界発光素子の観察>
 作製した有機電界発光素子に、電源装置(ADVANTEST社製、R6144)を使用して7.4ボルトの電圧を印加した。発光像は顕微鏡(株式会社ニコン製,LV100)を用いて倍率20にて、区画領域内の発光状況を撮像した。撮像した画像に保存された画素のsRGB方式で定められるRGB表色系の数値から以下式にて三刺激値XYZを求め、区画領域内での色度座標(CIEx、CIEy)の分布をJISZ8701に記載の方法で算出した。
   X=0.4124R+0.3576G+0.1805B
   Y=0.2126R+0.7152G+0.0722B
   Z=0.0193R+0.1192G+0.9505B
<実験及び考察>
(参考例1-1)
 図2の実線は、一点鎖線で示す機能性膜7の膜厚プロファイル(実測)と破線で示す機能性膜8の膜厚プロファイル(実測)を数値計算処理によって加算して、機能性膜7を機能層1とし、機能性膜8を機能層2として疑似的に再現された機能性膜の膜厚プロファイル(計算)を表す。
(参考例1-2)
 図3の実線は機能性膜7の膜厚プロファイル(実測)と機能性膜8の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、点線は機能性膜11の膜厚プロファイル(実測)を示す。図3に示されるように、数値計算処理によって疑似的に再現された機能性膜の膜厚プロファイル(計算)と、実際に積層して成膜された機能性膜の膜厚プロファイル(実測)とは形状がほぼ一致していた。このことから、基板から近い順に凸形状の機能性膜と凹形状の機能性膜とを積層させた機能性膜の膜厚プロファイルは、凸形状の機能性膜及び凹形状の機能性膜の単膜それぞれについての膜厚プロファイルを数値計算処理によって加算することにより再現できることがわかる。
(参考例1-3)
 図4の実線は機能性膜7の膜厚プロファイル(実測)と機能性膜8の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、点線は機能性膜12の膜厚プロファイル(実測)を示す。図4に示されるように、数値計算処理によって疑似的に再現された機能性膜の膜厚プロファイル(計算)と、実際に積層して成膜された機能性膜の膜厚プロファイル(実測)とは形状がほぼ一致していた。このことから、基板から近い順に凹形状の機能性膜と凸形状の機能性膜とを積層させた機能性膜の膜厚プロファイルは、凹形状の機能性膜及び凸形状の機能性膜の単膜それぞれについての膜厚プロファイルを数値計算処理によって加算することにより再現できることがわかる。
(実施例1)
 図5の実線は、一点鎖線で示す機能性膜1の膜厚プロファイル(実測)と破線で示す機能性膜2の膜厚プロファイル(実測)を数値計算処理によって加算した膜厚プロファイル(計算)を表し、平坦度Fは77%であった。機能性膜1の単膜の平坦度Fは30%、機能性膜2の単膜の平坦度Fは26%であり、機能性膜1と機能性膜2とを積層させることで平坦性が向上していることがわかる。
(実施例2)
 図6の実線は、一点鎖線で示す機能性膜3の膜厚プロファイル(実測)と破線で示す機能性膜4の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、平坦度Fは75%であった。機能性膜3の単膜の平坦度Fは34%、機能性膜4の単膜の平坦度Fは34%であり、機能性膜3と機能性膜4とを積層させることで平坦性が向上していることがわかる。
(実施例3)
 図7の実線は、一点鎖線で示す機能性膜5の膜厚プロファイル(実測)と破線で示す機能性膜6の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、平坦度Fは76%であった。機能性膜5の単膜の平坦度Fは40%、機能性膜6の単膜の平坦度Fは49%であり、機能性膜5と機能性膜6とを積層させることで平坦性が向上していることがわかる。
(実施例4)
 図8の実線は、一点鎖線で示す機能性膜7の膜厚プロファイル(実測)と破線で示す機能性膜8の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、平坦度Fは95%であった。機能性膜7の単膜の平坦度Fは78%、機能性膜8の単膜の平坦度Fは80%であり、機能性膜7と機能性膜8とを積層させることで平坦性が向上していることがわかる。
(実施例5)
 図9の実線は、一点鎖線で示す機能性膜9の膜厚プロファイル(実測)と破線で示す機能性膜10の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、平坦度Fは87%であった。機能性膜9の単膜の平坦度Fは42%、機能性膜10の単膜の平坦度Fは67%であり、機能性膜9と機能性膜10とを積層させることで平坦性が向上していることがわかる。
(参考例2)
 図10は、破線で示す機能性膜13の膜厚プロファイル(実測)と一点鎖線で示す機能性膜14の膜厚プロファイル(実測)、実線で示す機能性膜15の膜厚プロファイル(実測)を示し、各機能性膜の平坦度Fは59%、66%、86%であった。
 また、機能性膜15に対して、上述の方法にしたがって作成した有機電界発光素子の観察を行った。図11と図12は、膜厚プロファイルを計測した位置と同一箇所に対して顕微鏡を用いて撮像された有機電界発光素子の短軸における、色度座標CIExおよびCIEyの分布を示す。ここで、破線で囲まれた領域は開口部であることを示している。機能性膜14、機能性膜15の各平坦度Fは低いが、それぞれの積層膜(機能性膜15)では平坦性が向上したことによって、キャビティ長が均一になるため開口部の色度が均一に分布しており、本手法により区画領域内で均一な発光を得ることができることがわかった。
(参考例3-1)
 図13の実線は、一点鎖線で示す機能性膜16の膜厚プロファイル(実測)と破線で示す機能性膜17の膜厚プロファイル(実測)を数値計算処理によって加算して、機能性膜16を機能層1とし、機能性膜17を機能層2として疑似的に再現された機能性膜の膜厚プロファイル(計算)を表す。
(参考例3-2)
 図14の実線は機能性膜16の膜厚プロファイル(実測)と機能性膜17の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、点線は機能性膜18の膜厚プロファイル(実測)を示す。図14に示されるように、数値計算処理によって疑似的に再現された機能性膜の膜厚プロファイル(計算)と、実際に積層して成膜された機能性膜の膜厚プロファイル(実測)とは形状がほぼ一致していた。このことから、基板から近い順に凸形状の機能性膜と凹形状の機能性膜とを積層させた機能性膜の膜厚プロファイルは、凸形状の機能性膜及び凹形状の機能性膜の単膜それぞれについての膜厚プロファイルを数値計算処理によって加算することにより再現できることがわかる。
(参考例3-3)
 図15の実線は、一点鎖線で示す機能性膜19の膜厚プロファイル(実測)と破線で示す機能性膜17の膜厚プロファイル(実測)を数値計算処理によって加算して、機能性膜19を機能層1とし、機能性膜17を機能層2として疑似的に再現された機能性膜の膜厚プロファイル(計算)を表す。
(参考例3-4)
 図16の実線は機能性膜19の膜厚プロファイル(実測)と機能性膜17の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、点線は機能性膜20の膜厚プロファイル(実測)を示す。図16に示されるように、数値計算処理によって疑似的に再現された機能性膜の膜厚プロファイル(計算)と、実際に積層して成膜された機能性膜の膜厚プロファイル(実測)とは形状がほぼ一致していた。このことから、基板から近い順に凸形状の機能性膜と凹形状の機能性膜とを積層させた機能性膜の膜厚プロファイルは、凸形状の機能性膜及び凹形状の機能性膜の単膜それぞれについての膜厚プロファイルを数値計算処理によって加算することにより再現できることがわかる。
(参考例3-5)
 図17の実線は、一点鎖線で示す機能性膜21の膜厚プロファイル(実測)と破線で示す機能性膜17の膜厚プロファイル(実測)を数値計算処理によって加算して、機能性膜21を機能層1とし、機能性膜17を機能層2として疑似的に再現された機能性膜の膜厚プロファイル(計算)を表す。
(参考例3-6)
 図18の実線は機能性膜21の膜厚プロファイル(実測)と機能性膜17の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、点線は機能性膜22の膜厚プロファイル(実測)を示す。図18に示されるように、数値計算処理によって疑似的に再現された機能性膜の膜厚プロファイル(計算)と、実際に積層して成膜された機能性膜の膜厚プロファイル(実測)とは形状がほぼ一致していた。このことから、基板から近い順に凸形状の機能性膜と凹形状の機能性膜とを積層させた機能性膜の膜厚プロファイルは、凸形状の機能性膜及び凹形状の機能性膜の単膜それぞれについての膜厚プロファイルを数値計算処理によって加算することにより再現できることがわかる。
(参考例51-1)
 図19の実線は、一点鎖線で示す機能性膜54の膜厚プロファイル(実測)と破線で示す機能性膜55の膜厚プロファイル(実測)を数値計算処理によって加算して、機能性膜54を機能層1とし、機能性膜55を機能層2として疑似的に再現された機能性膜の膜厚プロファイル(計算)を表す。
(参考例51-2)
 図20の実線は機能性膜54の膜厚プロファイル(実測)と機能性膜55の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、点線は機能性膜56の膜厚プロファイル(実測)を示す。図20に示されるように、数値計算処理によって疑似的に再現された機能性膜の膜厚プロファイル(計算)と、実際に積層して成膜された機能性膜の膜厚プロファイル(実測)とは形状がほぼ一致していた。このことから、基板から近い順に凸形状の機能性膜と凹形状の機能性膜とを積層させた機能性膜の膜厚プロファイルは、凸形状の機能性膜及び凹形状の機能性膜の単膜それぞれについての膜厚プロファイルを数値計算処理によって加算することにより再現できることがわかる。
(参考例51-3)
 図21の実線は機能性膜54の膜厚プロファイル(実測)と機能性膜55の膜厚プロファイル(実測)とを数値計算処理によって加算した膜厚プロファイル(計算)を表し、点線は機能性膜57の膜厚プロファイル(実測)を示す。図21に示されるように、数値計算処理によって疑似的に再現された機能性膜の膜厚プロファイル(計算)と、実際に積層して成膜された機能性膜の膜厚プロファイル(実測)とは形状がほぼ一致していた。このことから、基板から近い順に凹形状の機能性膜と凸形状の機能性膜とを積層させた機能性膜の膜厚プロファイルは、凹形状の機能性膜及び凸形状の機能性膜の単膜それぞれについての膜厚プロファイルを数値計算処理によって加算することにより再現できることがわかる。
(参考例52)
 図22の実線は、破線で示す機能性膜51の膜厚プロファイル(実測)と一点鎖線で示す機能性膜52の膜厚プロファイル(実測)、実線で示す機能性膜53の膜厚プロファイルを示し、各機能性膜の平坦度Fは59%、66%、86%であった。
 また、機能性膜53に対して、上述の方法にしたがって作成された有機電界発光素子の観察を行った。図23と図24は、膜厚プロファイルを計測した位置と同一箇所に対して顕微鏡を用いて撮像された、有機電界発光素子の短軸における色度座標CIExおよびCIEyの分布を示す。ここで、破線で囲まれた領域は開口部であることを示している。機能性膜51、機能性膜52の各平坦度Fは低いが、それぞれの積層膜(機能性膜53)では平坦性が向上したことによって、キャビティ長が均一になるため開口部の色度が均一に分布しており、本手法により区画領域内で均一な発光を得ることができることがわかる。
(参考例53-1)
 図25は機能性膜R1-1、R1-2、R1-3、R1-4、R1-5、R1-6の膜厚プロファイルを示す。図26は機能性膜G1-1、G1-2、G1-3、G1-4、G1-5、G1-6の膜厚プロファイルを示す。図27は機能性膜B1-1、B1-2、B1-3、B1-4、B1-5、B1-6の膜厚プロファイルを示す。
 <機能性膜の評価2>に記載した式(1)を用いて各機能性膜の平坦性Fを算出し85%以上を判定〇、85%未満を判定×として評価し、中央部の平均膜厚が隔壁側部の平均膜厚よりも厚い場合を凸、薄い場合を凹形状として算出したものを表1~3にまとめた。同じ膜厚であっても画素サイズが異なれば平坦性が異なり、同様に同じ画素サイズであっても膜厚が異なれば平坦性が異なることがわかる。また、湿式塗布法により平坦な膜のみを積層させて有機電界発光素子を作成する場合、使用することができる機能性膜はR1-1、G1-1、G1-6、B1-2、B1-6のみとなる。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
(参考例53-2)
 図28は機能性膜R2-1、R2-2、R2-3、R2-4、R2-5、の膜厚プロファイルを示す。図29は機能性膜G2-1、G2-2、G2-3、G2-4、G2-5、G2-6の膜厚プロファイルを示す。図30は機能性膜B2-1、B2-2、B2-3、B2-4、B2-5、B2―6の膜厚プロファイルを示す。
 <機能性膜の評価2>に記載した式(1)を用いて各機能性膜の平坦性Fを算出し、85%以上を判定〇、85%未満を判定×として評価し、中央部の平均膜厚が隔壁側部の平均膜厚よりも厚い場合を凸、薄い場合を凹形状として算出したものを表4~6にまとめた。同じ膜厚であっても画素サイズが異なれば平坦性が異なり、同様に同じ画素サイズであっても膜厚が異なれば平坦性が異なることがわかる。また、湿式塗布法により平坦な膜のみを積層させて有機電界発光素子を作成する場合、使用することができる機能性膜はR2-4、G2-4、G2-5、B2-4のみとなる。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
(参考例53-3)
 図31は機能性膜R3-1、R3-2、R3-3、R3-4、R3-5、R3-6の膜厚プロファイルを示す。図32は機能性膜G3-1、G3-2、G3-3、G3-4、G3-5、G3-6の膜厚プロファイルを示す。図33は機能性膜B3-1、B3-2、B3-3、B3-4、B3-5、B3-6の膜厚プロファイルを示す。
 <機能性膜の評価2>に記載した式(1)を用いて各機能性膜の平坦性Fを算出し、85%以上を判定〇、85%未満を判定×として評価し、中央部の平均膜厚が隔壁側部の平均膜厚よりも厚い場合を凸、薄い場合を凹形状として算出したものを表7~9にまとめた。また、湿式塗布法により平坦な膜のみを積層させて有機電界発光素子を作成する場合、使用することができる機能性膜は存在しない。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
(参考例54-1)
 機能性インク51と機能性インク52を用いて得られる機能性膜を積層して積層膜を得る場合、従来の平坦な機能性膜を積層させていく手法では平坦度Fが良い水準、今回の場合は85%以上となる組み合わせ同士を用いて積層膜が成膜される。表10に平坦度Fが良い水準の組み合わせを示す。開口幅49μmの区画の場合は積層膜1の1通り、開口幅75μmの区画の場合は積層膜2~5の4通り、開口幅102μmの区画の場合は積層膜6~7の2通りであることがわかる。ここで、参考例51-2よび51-3より、機能層1と機能層2はいずれも下層および上層になりえる。それぞれの開口幅における平坦な積層膜の数が判明したため、これら3種の開口幅全てが平坦になる積層膜の組み合わせは1×4×2=8通りとなり、非常に限られた範囲が選択できる。
Figure JPOXMLDOC01-appb-T000040
(参考例54-2)
 機能性インク51と機能性インク53を用いて得られる機能層を積層して機能性膜を得る場合、従来の平坦な機能性膜を積層させていく手法では平坦度Fが良い水準、今回の場合は85%以上となる組み合わせ同士を用いて成膜される。しかし、機能性インク53を使用して成膜された機能性膜は全て平坦度Fが85%未満であるため、従来法では積層された機能性膜を得ることができない。
(実施例51)
 各機能性膜R1-1、R1-2、R1-3、R1-4、R1-5、R1-6と、各機能性膜R2-1、R2-2、R2-3、R2-4、R2-5を数値計算処理によって加算することで疑似的に積層膜を作成し、積層膜を構成する機能性膜の少なくとも1つの平坦度Fが85%未満で、積層膜の平坦度Fが85%以上のものを表11に示す。同様の操作を、各機能性膜G1-1、G1-2、G1-3、G1-4、G1-5、G1-6と、各機能性膜G2-1、G2-2、G2-3、G2-4、G2-5、G2-6において行ったものを表12に、各機能性膜B1-1、B1-2、B1-3、B1-4、B1-5、B1-6と、各機能性膜B2-1、B2-2、B2-3、B2-4、B2-5、B2-6について行ったものを表13にまとめた。
 表11より、開口幅49μmの区画で平坦となる積層膜は積層膜8~11の4通りであった。
 表12より、開口幅75μmの区画で平坦となる積層膜は積層膜12~21の10通りで、そのうち層1と層2のいずれも凸形状であったのは積層膜13の1通りであった。
 表13より、開口幅102μmの区画で平坦となる積層膜は積層膜22~33の12通りであり、そのうち層1と層2のいずれも凹形状であったのは積層膜31の1通りであった。
 したがって、開口幅49μmの区画における積層膜の平坦度Fが85%以上のものは積層膜1,8~11の5通り、開口幅75μmの区画では積層膜2~5,12~21の14通り、開口幅102μmの区画では積層膜6~7,22~33の14通りであるため、これら3種の開口幅全ての積層膜が平坦になる組み合わせの数は、5×14×14=980通りとなる。
 また、そのうち平坦度Fが85%以上の機能性膜同士の組み合わせからなる積層膜、凸形状と凸形状同士の機能性膜の組み合わせからなる積層膜、凹形状と凹形状同士の機能性膜の組み合わせからなる積層膜は、開口幅49μmの区画では積層膜1の1通りであり、開口幅75μmの区画では積層膜2~5,13の5通り、開口幅102μmの区画では積層膜6~7,31の3通りであり、これらの積層膜を組み合わせて3種の開口幅全ての積層膜が平坦になる組み合わせの数は1×5×3=15通りである。
 したがって、本発明を用いることで取りえる組み合わせの数は980-15=965通りとなる。参考例4-1で示した平坦度Fが85%以上のみを用いて成膜する従来の方法では8通りであるため、本発明によって組み合わせ可能な数は約121倍増加していることがわかる。このように同じ機能性を示す機能性インクで膜厚構成の選択範囲を大きく広げることができ、生産性が向上できることがわかる。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
(実施例52)
 各機能性膜R1-1、R1-2、R1-3、R1-4、R1-5、R1-6と、各機能性膜R3-1、R3-2、R3-3、R3-4、R3-5を数値計算処理によって加算することで疑似的に積層膜を作成し、積層膜を構成する機能性膜の少なくとも1つの平坦度Fが85%未満で、積層膜の平坦度Fが85%以上のものを表14に示す。同様の操作を、各機能性膜G1-1、G1-2、G1-3、G1-4、G1-5、G1-6と、各機能性膜G3-1、G3-2、G3-3、G3-4、G3-5、G3-6において行ったものを表15に、各機能性膜B1-1、B1-2、B1-3、B1-4、B1-5、B1-6と、各機能性膜B3-1、B3-2、B3-3、B3-4、B3-5、B3-6について行ったものを表16にまとめた。
 表14より、開口幅49μmの区画で平坦となる積層膜は積層膜34~37の4通りであった。表15より、開口幅75μmの区画で平坦となる積層膜は積層膜38~45の8通りで、そのうち層1と層2のいずれも凹形状であったのは積層膜40、45の2通りであった。表16より、開口幅102μmの区画で平坦となる積層膜は積層膜46~54の9通りであり、そのうち層1と層2のいずれも凸形状であったのは積層膜46の1通り、いずれも凹形状であったのは積層膜49,54の2通りであった。したがって、3種の開口幅全ての積層膜が平坦になる組み合わせの数は4×8×9=288通りとなり、同じ機能性を示す機能性インクで膜厚構成の選択範囲を大きく広げることができ、生産性が向上できることがわかる。
 また、そのうち平坦度Fが85%以上の機能性膜同士の組み合わせからなる積層膜、凸形状と凸形状同士の機能性膜の組み合わせからなる積層膜、凹形状と凹形状同士の機能性膜の組み合わせからなる積層膜は、開口幅49μmの区画では0通りであり、開口幅75μmの区画では積層膜40、45の2通り、開口幅102μmの区画では積層膜46、49、54の3通りであり、これらの積層膜を組み合わせて3種の開口幅全ての積層膜が平坦になる組み合わせの数は0×2×3=0通りである。
 したがって、本発明を用いることで取りえる組み合わせの数は288-0=288通りとなる。参考例54-2で示した従来法では0通りであったのに対して、大幅に増加していることがわかる。
 また、従来法は、積層時の平坦度が85%以上の膜厚構成を探索するためには36通りの積層膜を作成し探索する必要があったが、本発明を用いることで12通りの膜を作成し膜厚設計を簡略することが可能になる。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 本結果から、非平坦な形状の機能層であっても、組み合わせることで総膜厚を均一化することができ、均一な発光を得ることができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年11月2日出願の日本特許出願(特願2022-176734、特願2022-176735、特願2022-176736)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明の有機電界発光素子、又は、本発明の有機ELディスプレイパネルに含まれる有機電界発光素子は、機能性膜の平坦性が高く光学的な特性に優れるため、有機EL表示装置及び有機EL照明等の複数の発光色を有する有機電界発光デバイスに適用することができる。
 また、本発明による有機電界発光素子の膜厚構成の設計方法により、有機電界発光素子又は有機ELディスプレイパネルを構成する複数の有機電界発光素子に含まれる機能性膜を湿式成膜により形成する場合において、有機膜の膜厚、隔壁材料、画素の大きさ、減圧乾燥工程、インク組成などの各種条件が変化しても、光学的な特性に優れる有機電界発光素子又は有機ELディスプレイパネルの膜厚構成を簡便に設計することができる。
101   基板
102   陽極
103   正孔注入層
104   正孔輸送層
105   発光層
106   正孔阻止層
107   電子輸送層
108   電子注入層
109   陰極
110   有機電界発光素子

Claims (28)

  1.  少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子であって、
     前記有機電界発光素子は隔壁により区画分けされた区画領域に設けられており、
     ここで、前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に、減圧乾燥することにより形成した膜を機能膜1とした場合、前記機能膜1は前記区画領域内の中央部の平均膜厚が前記区画領域内の隔壁側部の平均膜厚よりも厚くなり、
     前記機能層2を形成するための機能性インクを前記区画領域内に、前記機能層2を形成するために必要な量を充填した後に、減圧乾燥することにより形成した膜を機能膜2とした場合、前記機能膜2は前記区画領域内の隔壁側部の平均膜厚が前記区画領域内の中央部の平均膜厚よりも厚くなり、
     前記中央部とは、区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、前記重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側を意味し、
     前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側を意味し、
     さらに、前記閉曲線は直線部及び角部を含んでいてもよく、
     前記機能層1と前記機能層2とが積層されている膜の平坦度Fが、機能膜1の平坦度Fと、機能膜2の平坦度Fのいずれよりも大きな値を示し、
     ここで、平坦度Fは下記式で表される、有機電界発光素子。
      F=M/Ap×100(%)
    (式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
  2.  前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
     前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、請求項1に記載の有機電界発光素子。
  3.  前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、請求項1に記載の有機電界発光素子。
  4.  前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、請求項1に記載の有機電界発光素子。
  5.  前記機能層1及び前記機能層2が、高分子化合物を含む、請求項1に記載の有機電界発光素子。
  6.  下記工程群(i)の後に下記工程群(ii)を含むか、又は、下記工程群(ii)の後に下記工程群(i)を含む、請求項1~5のいずれか一項に記載された有機電界発光素子を製造する方法。
    工程群(i):前記機能層1を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
    工程群(ii):前記機能層2を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
  7.  前記機能層1を形成するための機能性インク及び前記機能層2を形成するための機能性インクの少なくとも一方が2種以上の有機溶媒を含み、
     前記工程群(i)及び工程群(ii)のうち、前記2種以上の有機溶媒を含む機能性インクを用いる工程群に含まれ、前記区画領域を真空チャンバー内で減圧乾燥する工程において、前記2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間が、減圧乾燥開始後60秒以上1800秒以下である、請求項6に記載の方法。
  8.  隔壁により区画分けされた複数の区画領域を有し、前記区画領域に有機電界発光素子が形成された有機ELディスプレイパネルであって、
     前記複数の区画領域は少なくとも第1の区画領域と第2の区画領域とを有し、
     前記第1の区画領域の有機電界発光素子と前記第2の区画領域の有機電界発光素子とは互いに開口面積が異なり、
     前記第1の区画領域および前記第2の区画領域は各々独立に少なくとも機能層1と機能層2とが積層された機能性膜を有し、
     前記第1の区画領域の機能層1を形成する機能性材料と前記第2の区画領域の機能層1を形成する機能性材料とは同一であり、
     前記第1の区画領域の機能層2を形成する機能性材料と前記第2の区画領域の機能層2を形成する機能性材料とは同一であり、
     前記第1の区画領域および前記第2の区画領域のいずれかが少なくとも以下の条件を満たす有機ELディスプレイパネル。
    <条件>
     前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成した膜を機能膜1とした場合、前記機能膜1は前記区画領域の中央部の平均膜厚が隔壁側部の平均膜厚に比べて厚くなり、
     前記機能層2を形成するための機能性インクを前記区画領域内に、前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成した膜を機能膜2とした場合、前記機能膜2は前記区画領域の中央部の平均膜厚が隔壁側部の平均膜厚に比べて薄くなり、
     ここで、前記中央部とは、前記区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側をいう。また、前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側をいう。ここでいう前記閉曲線とは、直線部及び角部を含んでよい。
  9.  前記機能層1と前記機能層2とが積層されている膜の平坦度Fが、前記機能膜1の平坦度Fと、前記機能膜2の平坦度Fのいずれかよりも大きな値を示し、
     ここで、平坦度Fは下記式で表される、請求項8に記載の有機ELディスプレイパネル。
      F=M/Ap×100(%)
    (式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さ表す。)
  10.  前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
     前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、請求項8に記載の有機ELディスプレイパネル。
  11.  前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、請求項8に記載の有機ELディスプレイパネル。
  12.  前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、請求項8に記載の有機ELディスプレイパネル。
  13.  前記機能層1及び前記機能層2が、高分子化合物を含む、請求項8に記載の有機ELディスプレイパネル。
  14.  下記工程群(i)の後に下記工程群(ii)を含むか、又は、下記工程群(ii)の後に下記工程群(i)を含む、請求項8~13のいずれか一項に記載の有機ELディスプレイパネルを製造する方法。
    工程群(i):前記機能層1を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
    工程群(ii):前記機能層2を形成するための機能性インクを前記区画領域に対してインクジェット法によって印刷する工程と、印刷された前記区画領域を真空チャンバー内で減圧乾燥する工程と、乾燥された前記区画領域をベークする工程とを、この順で含む工程。
  15.  前記機能層1を形成するための機能性インク及び前記機能層2を形成するための機能性インクの少なくとも一方が2種以上の有機溶媒を含み、
     前記工程群(i)及び工程群(ii)のうち、前記2種以上の有機溶媒を含む機能性インクを用いる工程群に含まれ、前記区画領域を真空チャンバー内で減圧乾燥する工程において、前記2種以上の有機溶媒のうち最も蒸気圧の低い有機溶媒の蒸気圧よりも低い圧力に到達するまでの時間が、減圧乾燥開始後60秒以上1800秒以下である、請求項14に記載の方法。
  16.  隔壁により区画分けされた区画領域に設けられ、少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子の膜厚構成の設計方法であって、
     前記機能層1を形成するための機能性インクを前記区画領域内に、前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜1)と、前記機能層2を形成するための機能性インクを前記区画領域内に前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜2)と、を積層させた場合のそれぞれの膜の膜厚を、
     前記機能膜1の膜厚プロファイルと、前記機能膜2の膜厚プロファイルと、を数値計算処理によって加算した膜の平坦度Fが75%以上となる組み合わせとする、
     ここで、平坦度Fは下記式で表される、有機電界発光素子の膜厚構成の設計方法。
      F=M/Ap×100(%)
    (式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
  17.  前記機能層1と、前記機能層2とが積層されている膜の平坦度Fが、
     前記機能膜1の平坦度Fと、前記機能膜2の平坦度Fのいずれかよりも大きな値を示す、請求項16に記載の有機電界発光素子の膜厚構成の設計方法。
  18.  前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
     前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、請求項16に記載の有機電界発光素子の膜厚構成の設計方法。
  19.  前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、請求項16に記載の有機電界発光素子の膜厚構成の設計方法。
  20.  前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、請求項16に記載の有機電界発光素子の膜厚構成の設計方法。
  21.  前記機能層1及び前記機能層2が、高分子化合物を含む、請求項16に記載の有機電界発光素子の膜厚構成の設計方法。
  22.  隔壁により区画分けされた複数の区画領域を有し、前記区画領域に有機電界発光素子が形成された有機ELディスプレイパネルにおいて、
     前記複数の区画領域は少なくとも第1の区画領域と第2の区画領域とを有し、
     前記第1の区画領域の有機電界発光素子と前記第2の区画領域の有機電界発光素子とは互いに発光色が異なる有機ELディスプレイパネルの膜厚構成の設計方法であって、
     前記区画領域は各々独立に少なくとも機能層1と機能層2が積層された機能性膜を有し、
     前記第1の区画領域の機能層1を形成する機能性材料と前記第2の区画領域の機能層1を形成する機能性材料とは同一であり、
     前記第1の区画領域の機能層2を形成する機能性材料と前記第2の区画領域の機能層2を形成する機能性材料とは同一であり、
     前記第1の区画領域と前記第2の区画領域は各々独立に、前記機能層1を形成するための機能性インクを前記区画領域内に前記機能層1を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜1)と、前記機能層2を形成するための機能性インクを前記区画領域内に前記機能層2を形成するために必要な量を充填した後に減圧乾燥することにより形成される膜(機能膜2)と、を積層させた場合のそれぞれの膜の膜厚を、
     前記機能膜1の膜厚プロファイルと、前記機能膜2を形成した場合の膜の膜厚プロファイルと、を数値計算処理によって加算した膜の平坦性が75%以上となる組み合わせとする、
     ここで、平坦度Fは下記式で表される、有機ELディスプレイパネルの膜厚構成の設計方法。
      F=M/Ap×100(%)
    (式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された膜厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
  23.  前記機能層1と、前記機能層2とが積層されている膜の平坦度Fが、
     前記機能膜1の平坦度Fと、前記機能膜2の平坦度Fのいずれかよりも大きな値を示す、請求項22に記載の有機ELディスプレイパネルの膜厚構成の設計方法。
  24.  前記機能膜1は、前記区画領域の中央部に膜厚が最も厚い部分が位置する膜であり、
     前記機能膜2は、前記区画領域の中央部以外の領域に膜厚が最も厚い部分が位置する膜である、請求項22に記載の有機ELディスプレイパネルの膜厚構成の設計方法。
  25.  前記機能膜1の平均膜厚が、前記機能膜2の平均膜厚よりも薄い、請求項22に記載の有機ELディスプレイパネルの膜厚構成の設計方法。
  26.  前記機能層1と前記機能層2が、正孔注入層又は正孔輸送層である、請求項22に記載の有機ELディスプレイパネルの膜厚構成の設計方法。
  27.  前記機能層1及び前記機能層2が、高分子化合物を含む、請求項22に記載の有機ELディスプレイパネルの膜厚構成の設計方法。
  28.  少なくとも機能層1と機能層2が積層された機能性膜を有する有機電界発光素子であって、
     前記有機電界発光素子は、隔壁により区画分けされた区画領域に設けられており、
     前記機能層1は、前記区画領域の短軸又は長軸に沿って測定された層厚プロファイルにおいて、下記式の値が機能性膜を構成する層のなかで最も大きくなる層であり、
      (前記区画領域内の中央部の平均膜厚)-(前記区画領域内の隔壁側部の平均膜厚)
     前記機能層2は、前記区画領域の短軸又は長軸に沿って測定された層厚プロファイルにおいて、下記式の値が機能性膜を構成する層のなかで最も大きくなる層であり、
      (前記区画領域内の隔壁側部の平均膜厚)-(前記区画領域内の中央部の平均膜厚)
     ここで、前記中央部とは、区画領域の重心点を通る直線で前記区画領域の全外周を走査した際、前記重心点から隔壁までの60%の位置の点の軌跡として定められる閉曲線を境界とする領域の内側を意味し、
     前記隔壁側部とは、前記区画領域内であって、前記閉曲線を境界とする領域の外側を意味し、
     さらに、前記閉曲線は直線部及び角部を含んでいてもよく、
     前記機能層1と前記機能層2の層厚プロファイルを合算して得られる積層膜の平坦度Fが、機能層1の平坦度Fと、機能層2の平坦度Fのいずれよりも大きな値を示し、
     ここで、平坦度Fは下記式で表される、有機電界発光素子。
      F=M/Ap×100(%)
    (式中、Apは前記区画領域における短軸又は長軸の長さ、Mは前記区画領域における短軸又は長軸に沿って測定された層厚プロファイルを前記区画領域の中央における膜厚hで除算した際に、1.05より小さく0.95より大きくなる膜厚を有するプロファイル部分の長さを表す。)
PCT/JP2023/039357 2022-11-02 2023-10-31 有機電界発光素子、有機電界発光素子を製造する方法、有機elディスプレイパネル、有機elディスプレイパネルを製造する方法、有機電界発光素子の膜厚構成の設計方法及び有機elディスプレイパネルの膜厚構成の設計方法 WO2024096035A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-176734 2022-11-02
JP2022-176735 2022-11-02
JP2022176735 2022-11-02
JP2022176734 2022-11-02
JP2022-176736 2022-11-02
JP2022176736 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024096035A1 true WO2024096035A1 (ja) 2024-05-10

Family

ID=90930594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039357 WO2024096035A1 (ja) 2022-11-02 2023-10-31 有機電界発光素子、有機電界発光素子を製造する方法、有機elディスプレイパネル、有機elディスプレイパネルを製造する方法、有機電界発光素子の膜厚構成の設計方法及び有機elディスプレイパネルの膜厚構成の設計方法

Country Status (1)

Country Link
WO (1) WO2024096035A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253443A (ja) * 2005-03-11 2006-09-21 Seiko Epson Corp 有機el装置、その製造方法および電子機器
WO2013046264A1 (ja) * 2011-09-28 2013-04-04 パナソニック株式会社 有機発光素子用インク、および当該インクの製造方法
JP2020010026A (ja) * 2018-06-29 2020-01-16 住友化学株式会社 有機el素子用組成物
JP2020534656A (ja) * 2017-09-29 2020-11-26 深▲セン▼市▲華▼星光▲電▼半▲導▼体▲顕▼示技▲術▼有限公司 全溶液oledデバイス及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253443A (ja) * 2005-03-11 2006-09-21 Seiko Epson Corp 有機el装置、その製造方法および電子機器
WO2013046264A1 (ja) * 2011-09-28 2013-04-04 パナソニック株式会社 有機発光素子用インク、および当該インクの製造方法
JP2020534656A (ja) * 2017-09-29 2020-11-26 深▲セン▼市▲華▼星光▲電▼半▲導▼体▲顕▼示技▲術▼有限公司 全溶液oledデバイス及びその製造方法
JP2020010026A (ja) * 2018-06-29 2020-01-16 住友化学株式会社 有機el素子用組成物

Similar Documents

Publication Publication Date Title
CN104946006B (zh) 功能层形成用油墨、发光元件的制造方法、发光装置、电子设备
TWI498350B (zh) 有機電子用材料、有機電子元件、有機電激發光元件、及使用其之顯示元件、照明裝置、顯示裝置
JP7415917B2 (ja) 組成物、および有機電界発光素子の製造方法
KR102122184B1 (ko) 유기 전계 발광 소자, 유기 전계 발광 조명 장치 및 유기 전계 발광 표시 장치
JP5259139B2 (ja) 有機電界発光素子用組成物、有機電界発光素子および有機電界発光素子の製造方法
KR101621636B1 (ko) 격납된 층을 제조하기 위한 방법 및 물질, 및 이를 사용하여 제조된 소자
TWI699410B (zh) 機能層形成用組合物、機能層形成用組合物之製造方法、有機el元件之製造方法、有機el裝置、電子機器
WO2010104183A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
EP2583139A2 (en) Process and materials for making contained layers and devices made with same
JP6439877B2 (ja) 有機半導体素子用インク組成物およびこれを用いた有機半導体素子
CN104081878A (zh) 有机电致发光元件、有机el照明和有机el显示装置
CN110654127B (zh) 膜的制造方法、有机el元件的制造方法、以及用于制造膜的墨液组合物组
WO2024096035A1 (ja) 有機電界発光素子、有機電界発光素子を製造する方法、有機elディスプレイパネル、有機elディスプレイパネルを製造する方法、有機電界発光素子の膜厚構成の設計方法及び有機elディスプレイパネルの膜厚構成の設計方法
WO2024157522A1 (ja) 有機電界発光素子の製造方法、及び有機電界発光素子
JP5402703B2 (ja) 有機電界発光素子、有機elディスプレイ、有機el照明及び有機el信号装置
TW202428151A (zh) 有機電致發光元件、製造有機電致發光元件之方法、有機el顯示面板、製造有機el顯示面板之方法、有機電致發光元件之膜厚構成之設計方法及有機el顯示面板之膜厚構成之設計方法
JP2023130237A (ja) 有機電界発光素子の製造方法、及び有機電界発光素子
JP2010192121A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
TW202431961A (zh) 有機電致發光元件之製造方法、及有機電致發光元件
JP2023130238A (ja) 有機電界発光素子の製造方法及び有機電界発光素子
WO2023085170A1 (ja) 組成物、および有機電界発光素子の製造方法
WO2022230821A1 (ja) 有機半導体素子の製造方法
JP2023067190A (ja) 組成物及び有機電界発光素子の製造方法
JP5141229B2 (ja) 外縁規定膜形成用組成物、機能膜の製造方法、有機電界発光素子及びその製造方法、並びに画像表示デバイス
JPWO2023085170A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885789

Country of ref document: EP

Kind code of ref document: A1