WO2024095593A1 - Power-transmitting device, power-receiving device, wireless power transfer system, method for controlling wireless power transmission, and storage medium - Google Patents

Power-transmitting device, power-receiving device, wireless power transfer system, method for controlling wireless power transmission, and storage medium Download PDF

Info

Publication number
WO2024095593A1
WO2024095593A1 PCT/JP2023/031900 JP2023031900W WO2024095593A1 WO 2024095593 A1 WO2024095593 A1 WO 2024095593A1 JP 2023031900 W JP2023031900 W JP 2023031900W WO 2024095593 A1 WO2024095593 A1 WO 2024095593A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmission
power transmitting
value
period
Prior art date
Application number
PCT/JP2023/031900
Other languages
French (fr)
Japanese (ja)
Inventor
元 志村
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2024095593A1 publication Critical patent/WO2024095593A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present disclosure relates to a power transmission device capable of wireless power transmission, a power receiving device, a wireless power transmission system, a control method for wireless power transmission, a storage medium, etc.
  • Patent Document 1 discloses a method for foreign object detection in the WPC standard.
  • Patent Document 2 discloses a method for determining whether or not an object is present near a power transmitter based on the amount of attenuation of the power transmitter's voltage value during the period in which the power transmitter's voltage gradually decreases after power transmission is stopped.
  • Patent Document 3 discloses a method for determining the presence or absence of a foreign object in a wireless power transmission device having multiple coils by using information on the quality factor obtained from each coil.
  • the method described in Patent Document 2 is applied to assume a process for determining the presence or absence of a foreign object.
  • the power transmission device performs a process for measuring voltage or current during a period in which power transmission is restricted in multiple power transmission coils.
  • the power transmission device needs to appropriately control the period related to the measurement process, but the conventional technology does not take into account the period related to the measurement process performed in multiple power transmission coils.
  • the present disclosure aims to provide a technology for controlling the processing period for measurement processing executed during a period in which power transmission to a power receiving device is restricted in a power transmitting device having multiple power transmitting coils.
  • the power transmission device disclosed herein includes a power transmission means for wirelessly transmitting power to a power receiving device using multiple power transmission coils, a communication means for communicating with the power receiving device, a measurement means for measuring the voltage or current related to the power transmission coils or the voltage and current, and a control means for limiting the power transmission from the power transmission means to the power receiving device by controlling the power transmission performed by the power transmission means using a power transmission coil selected from the multiple power transmission coils.
  • the control means controls to limit the power transmission to the selected multiple power transmission coils, and sets the processing period related to the measurement process performed by the measurement means for each of the power transmission coils based on information on the processing period determined by the power receiving device for each of the power transmission coils.
  • the present disclosure provides a technology for controlling the processing period for measurement processing executed during a period in which power transmission to a power receiving device is restricted in a power transmitting device having multiple power transmitting coils.
  • FIG. 1 is a diagram illustrating an example of the configuration of a wireless power transmission system according to a first embodiment.
  • 1 is a functional block diagram illustrating a configuration example of a power transmitting device according to a first embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a power receiving device according to the first embodiment.
  • This is an explanatory diagram of a method for setting thresholds in state detection using the Power Loss method.
  • 5A and 5B are explanatory diagrams of a Q-factor measurement method according to the first embodiment.
  • 4 is a block diagram showing an example of a functional configuration of a control unit of a power transmitting device according to the first embodiment.
  • FIG. 5 is a flowchart illustrating a process of the power transmitting device according to the first embodiment.
  • FIG. 5 is a flowchart illustrating processing of a power receiving device according to the first embodiment.
  • 5A to 5C are explanatory diagrams of state detection using a waveform attenuation method according to the first embodiment.
  • FIG. 4 is an explanatory diagram of a detection processing period using a waveform attenuation method according to the first embodiment.
  • 5 is an explanatory diagram of a threshold setting method in state detection using a waveform attenuation method according to the first embodiment;
  • FIG. 4A and 4B are diagrams illustrating a method for measuring a coupling state indicator between a power transmitting antenna and a power receiving antenna according to the first embodiment.
  • 4 is an explanatory diagram of a threshold setting method in state detection by a bonding state indicator measurement method according to the first embodiment.
  • FIG. 1A and 1B are schematic diagrams illustrating a power transmitting device and a power receiving device according to a first embodiment.
  • 5 is a flowchart illustrating a process of the power transmitting device in the first embodiment.
  • 5 is a flowchart illustrating processing of a power receiving device in the first embodiment.
  • 4 is a sequence diagram illustrating an example of processing by a power transmitting device and a power receiving device according to the first embodiment.
  • FIG. 5 is a flowchart illustrating a process of the power transmitting device in the first embodiment.
  • 5 is a flowchart illustrating a process of a power receiving device in the first embodiment.
  • 10 is a sequence diagram illustrating another example of processing by the power transmitting device and the power receiving device according to the first embodiment.
  • FIG. 10 is a flowchart illustrating a process of a power transmitting device according to a second embodiment.
  • 10 is a flowchart illustrating a process of a power receiving device according to a second embodiment.
  • Fig. 1 is a diagram showing an example of the configuration of a wireless charging system according to a first embodiment.
  • This system includes a power transmitting device 100, a power receiving device 200, and a charging stand 300.
  • the power receiving device 200 may be referred to as RX and the power transmitting device 100 as TX.
  • the detailed configurations of TX and RX will be described later with reference to Figs. 2 and 3.
  • RX is an electronic device that receives power from TX and charges its built-in battery while placed on the charging stand 300.
  • TX is an electronic device that transmits power wirelessly to RX placed on the charging stand 300.
  • the charging stand 300 constitutes a part of the TX, hereinafter, when the RX is "placed on the charging stand 300," it may be said that the RX is "placed on the TX.”
  • the spatial range in which the RX can receive power from the TX is shown diagrammatically within the dotted line frame 400 in Figure 1.
  • RX and TX may have the functionality to execute applications other than the wireless charging function.
  • RX is a smartphone and TX is an accessory device for charging the battery of the smartphone.
  • FIG. 2 is a functional block diagram showing an example of the configuration of the power transmission device 100 (TX) according to the first embodiment.
  • the TX has a control unit 101, a power supply unit 102, a power transmission unit 103, a first communication unit 104, a power transmission antenna (power transmission coil) 105, a memory 106, a resonant capacitor 107, and a switch unit 108.
  • the TX also has a second communication unit 109 and a user interface (hereinafter referred to as UI) unit 110.
  • UI user interface
  • the power transmission device 100 has multiple power transmission units 103.
  • the TX has three power transmission units 103a, 103b, and 103c.
  • the power transmission device 100 also has multiple first communication units 104.
  • the TX has three first communication units 104a, 104b, and 104c.
  • the first communication units 104a, 104b, and 104c are connected to the corresponding power transmission units 103a, 103b, and 103c, respectively.
  • all three power transmission units 103 (or first communication units 104) have the same characteristics, but they may each have different characteristics.
  • the power transmission device 100 has N power transmission antennas 105a, 105b, ... 105n.
  • the power transmission device 100 also has N resonant capacitors 107a, 107b, ... 107n.
  • the power transmission device 100 also has N switch units 108a, 108b, ... 108n.
  • Each power transmission antenna, resonant capacitor, and switch unit has the same alphabet attached to its reference number, forming a pair.
  • power transmission antenna 105a, resonant capacitor 107a, and switch unit 108a form a pair.
  • the power transmitting antenna 105a and the resonant capacitor 107a are connected in series, and the switch unit 108a is connected in parallel to the power transmitting antenna 105a and the resonant capacitor 107a.
  • all N power transmitting antennas 105 (or resonant capacitors 107, or switch units 108) have the same characteristics, but they may each have different characteristics.
  • the control unit 101 controls the entire TX by executing a control program stored in the memory 106.
  • the control unit 101 also controls power transmission, including communication for device authentication in the TX. Furthermore, the control unit 101 can control the execution of applications other than wireless power transmission.
  • the control unit 101 includes one or more processors, such as a CPU (Central Processing Unit) or an MPU (Microprocessor Unit). Alternatively, the control unit 101 may be configured with hardware, such as an application specific integrated circuit (ASIC).
  • processors such as a CPU (Central Processing Unit) or an MPU (Microprocessor Unit).
  • MPU Microprocessor Unit
  • the control unit 101 may be configured with hardware, such as an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the control unit 101 may also be configured to include an array circuit such as an FPGA (Field Programmable Gate Array) compiled to execute a specified process.
  • the control unit 101 can execute a process of storing information to be stored in the memory 106 during execution of various processes, and a time measurement process using a timer (not shown).
  • the power supply unit 102 supplies power to each functional block element.
  • the power supply unit 102 includes, for example, a power supply connection circuit to a commercial power source and a battery.
  • the battery is charged with power supplied from the commercial power source.
  • the power transmission unit 103 converts the DC or AC power input from the power supply unit 102 into AC power in the frequency band used for wireless power transmission, and inputs the AC power to the power transmission antenna 105, thereby generating electromagnetic waves for the RX to receive power.
  • the power transmission unit 103 includes an inverter and converts the DC voltage supplied by the power supply unit 102 into an AC voltage using a switching circuit with a half-bridge or full-bridge configuration.
  • the power transmission unit 103 includes multiple FETs (Field Effect Transistors) that form a bridge, and a gate driver that controls the ON/OFF of the multiple FETs.
  • FETs Field Effect Transistors
  • the power transmitting unit 103 controls the intensity of the electromagnetic waves (transmission power) to be output by adjusting the voltage (transmission voltage) or current (transmission current), or both, input to the power transmitting antenna 105.
  • the strength of the electromagnetic waves (corresponding to the strength of the transmission power, hereinafter also referred to as the intensity) is controlled by the magnitude of the transmission voltage or the transmission current.
  • the intensity of the electromagnetic waves to be output is controlled by adjusting the voltage or current, or both, input to the inverter.
  • the intensity of the electromagnetic waves to be output is controlled by adjusting the voltage or current, or both, output from the inverter included in the power transmission unit 103.
  • the control unit 101 controls the start and stop of power transmission by issuing instructions to the power transmission unit 103, and also controls the intensity of the electromagnetic waves to be output. Based on an instruction signal from the control unit 101, the power transmission unit 103 performs output control related to the power of the AC frequency electromagnetic waves so that the start or stop of power transmission by the power transmission antenna 105 or the intensity of the electromagnetic waves to be output is controlled.
  • the power transmitting unit 103 is assumed to have a power supply capacity sufficient to output 15 watts (W) of power to the charging unit (206 in FIG. 3) of the power receiving device 200 that complies with the WPC standard.
  • the first communication unit 104 is connected to the control unit 101 and the power transmission unit 103, and communicates with the RX for power transmission control based on the WPC standard.
  • the first communication unit 104 performs frequency shift keying of the electromagnetic waves output from the power transmission antenna 105, and transmits information to the RX to perform communication.
  • the first communication unit 104 also demodulates the electromagnetic waves transmitted from the power transmitting antenna 105 that were modulated by the RX, and acquires the information transmitted by the RX. Communication by the first communication unit 104 is performed by superimposing a communication signal on the electromagnetic waves transmitted from the power transmitting antenna 105.
  • the memory 106 can store information about the TX and RX states.
  • Information about the TX and RX states includes the transmitted power value and the received power value.
  • Information about the TX state is acquired by the control unit 101.
  • Information about the RX state is acquired by the RX control unit (201 in FIG. 3) and can be received by the first communication unit 104 or the second communication unit 109.
  • the switch unit 108 is connected in parallel to the series circuit of the resonant capacitor 107 and the power transmitting antenna 105.
  • the control unit 101 transmits a control signal to the switch unit 108 via the selection unit 111, which will be described later, to control its ON/OFF state.
  • the power transmitting antenna 105 is connected to the resonant capacitor 107.
  • the switch unit 108 When the switch unit 108 is turned on and short-circuited by a control signal from the control unit 101, the power transmitting antenna 105 and the resonant capacitor 107 form a series resonant circuit and resonate at a specific frequency fA. At this time, a current flows through the closed circuit formed by the power transmitting antenna 105, the resonant capacitor 107, and the switch unit 108.
  • the second communication unit 109 is connected to the control unit 101, and communicates with the RX using a standard different from the WPC standard.
  • the second communication unit 109 communicates with the RX (the second communication unit 212 in FIG. 3) using an antenna different from the power transmission antenna 105.
  • Examples of communication using standards different from the WPC standard include wireless LAN (Local Area Network), Bluetooth (registered trademark) Low Energy (BLE), and NFC (Near Field Communication).
  • the frequency band used by the power transmitting antenna 105 to transmit power is different from the frequency band used by the second communication unit 109 for communication.
  • TX may selectively use one of multiple communication standards to communicate with RX.
  • the following communication formats are possible:
  • the UI unit 110 is connected to the control unit 101 and performs various outputs to the user.
  • the various outputs include screen display, blinking or color changes of LEDs (Light Emitting Diodes), audio output from a speaker, vibration of the TX main unit, and other operations.
  • the UI unit 110 is realized by an LCD panel, a speaker, a vibration motor, etc.
  • the selection unit 111 connects each of the power transmission units 103a, 103b, and 103c to one of the power transmission antennas 105 (power transmission antennas 105a to 105n).
  • the selection unit 111 connects the power transmission unit 103 (103a, 103b, or 103c) to any one or more power transmission antennas.
  • the control unit 101 controls the selection unit 111 to determine which of the power transmission antennas 105a to 105n each power transmission unit should be connected to.
  • the selection unit 111 switches the connection between the power transmission unit 103 and the power transmission antenna 105 in accordance with a control signal from the control unit 101.
  • the power transmission device may have one power transmission unit 103 and one first communication unit 104.
  • one power transmission unit 103 is connected to any one or multiple power transmission antennas 105 via a selection unit 111 controlled by the control unit 101.
  • FIG. 3 is a block diagram showing an example of the configuration of the power receiving device 200 (RX).
  • the RX has a control unit 201, a UI unit 202, a power receiving unit 203, a first communication unit 204, a power receiving antenna 205, a charging unit 206, a battery 207, and a memory 208.
  • the RX further has a first switch unit 209, a second switch unit 210, a resonant capacitor 211, a second communication unit 212, and a third switch unit 213.
  • RX has three power receiving units 203a, 203b, and 203c, and three first communication units 204a, 204b, and 204c.
  • the first communication units 204a, 204b, and 204c are connected to the corresponding power receiving units 203a, 203b, and 203c, respectively.
  • all three power receiving units 203 (or first communication units 204) have the same characteristics, but they may each have different characteristics.
  • RX has multiple receiving antennas (receiving coils) 205.
  • RX has N receiving antennas 205a, 205b, ... 205n.
  • RX also has N resonant capacitors 211a, 211b, ... 211n.
  • RX has N second switch units 210a, 210b, ... 210n and N third switch units 213a, 213b, ... 213n.
  • Each receiving antenna, resonant capacitor, second switch unit, and third switch unit are paired with the same alphabet attached to the reference numeral.
  • a power receiving antenna 205a, a resonant capacitor 211a, a second switch section 210a, and a third switch section 213a form a group.
  • the power receiving antenna 205a is connected to the resonant capacitor 211a via the third switch section 213a, and the second switch section 210a is connected in parallel to the power receiving antenna 205a, the third switch section 213a, and the resonant capacitor 211a.
  • all N receiving antennas 205 (or resonant capacitors 211, or second switch section 210, or third switch section 213) have the same characteristics, but may each have different characteristics.
  • the control unit 201 controls each functional block element of the RX by executing a control program stored in the memory 208. Furthermore, the control unit 201 can perform control to execute applications other than wireless power transmission.
  • the control unit 201 is configured to include one or more processors such as a CPU or MPU.
  • the control unit 201 can control the entire RX (e.g., the entire smartphone) in cooperation with the OS (Operating System) that it is running.
  • OS Operating System
  • control unit 201 may be configured with hardware such as an ASIC, or may include an array circuit such as an FPGA compiled to execute a specified process.
  • the control unit 201 stores information to be stored during execution of various processes in the memory 208, and is also capable of executing timing processes using a timer (not shown).
  • the UI unit 202 is connected to the control unit 201 and performs various outputs to the user.
  • the various outputs include screen display, blinking or color changes of LEDs (Light Emitting Diodes), audio output from a speaker, vibration of the RX main unit, and other operations.
  • the UI unit 202 is realized by an LCD panel, a speaker, a vibration motor, etc.
  • the power receiving unit 203 receives AC power (AC voltage and AC current) generated by electromagnetic induction based on electromagnetic waves radiated from the TX power transmitting antenna 105 via the power receiving antenna (power receiving coil) 205.
  • the power receiving unit 203 then converts the AC power into DC or AC power of a specified frequency and outputs the power to the charging unit 206.
  • the charging unit 206 charges the battery 207.
  • the power receiving unit 203 includes a rectification unit (rectifier, rectification circuit) and a voltage control unit that are necessary to supply power to the load in RX.
  • the rectification unit converts the AC voltage and AC current received from the power transmitting antenna 105 via the power receiving antenna 205 into DC voltage and DC current.
  • the voltage control unit converts the level of the DC voltage input from the rectification unit to a predetermined level.
  • the predetermined level is a DC voltage level at which the control unit 201 and the charging unit 206 can operate.
  • the power receiving unit 203 supplies power for charging the battery 207 from the charging unit 206. It is assumed that the power receiving unit 203 has a power supply capacity sufficient to output 15 watts of power to the charging unit 206.
  • the first communication unit 204 communicates with the first communication unit 104 of the TX for power reception control based on the WPC standard.
  • the first communication unit 204 is connected to the power receiving antenna 205 and the control unit 201.
  • the first communication unit 204 demodulates the electromagnetic waves input from the receiving antenna 205 to obtain the information transmitted from the TX.
  • the first communication unit 204 performs load modulation or amplitude modulation on the input electromagnetic waves, and superimposes a signal related to the information to be transmitted to the TX on the electromagnetic waves, thereby communicating with the TX.
  • the memory 208 stores information about the status of the TX and RX.
  • Information about the status of the RX is acquired by the control unit 201.
  • Information about the status of the TX is acquired by the control unit 101 of the TX, and can be received by the first communication unit 204 or the second communication unit 212.
  • the first switch unit 209 is provided between the charging unit 206 and the battery 207, and is controlled by the control unit 201.
  • the first switch unit 209 has a function of controlling whether or not the power received by the power receiving unit 203 is to be supplied to the battery 207, and a function of controlling the size of the load.
  • control unit 201 When the control unit 201 turns the first switch unit 209 to the OFF state and opens it, the power received by the power receiving unit 203 is not supplied to the battery 207. When the control unit 201 turns the first switch unit 209 to the ON state and shorts it, the power received by the power receiving unit 203 is supplied to the battery 207.
  • the first switch unit 209 is disposed between the charging unit 206 and the battery 207, but the first switch unit 209 may be disposed between the power receiving unit 203 and the charging unit 206. Alternatively, multiple first switch units 209 may be disposed between the closed circuit formed by the power receiving antenna 205, the resonant capacitor 211, and the second switch unit 210, and each of the power receiving units 203 (power receiving unit 203a, power receiving unit 203b, power receiving unit 203c).
  • the first switch unit 209 has a function of controlling whether or not the power received by the power receiving antenna 205 is supplied to the power receiving unit 203. Also, in the example of FIG. 3, the first switch unit 209 is shown as one functional block element, but it is possible to realize the first switch unit 209 as part of the charging unit 206 or the power receiving unit 203.
  • the first switch unit 209 is not limited to being inserted in series between the charging unit 206 and the battery 207, but may be inserted in parallel between the charging unit 206 and the battery 207.
  • the control unit 201 when the control unit 201 turns the first switch unit 209 to the OFF state and opens it, the power received by the power receiving unit 203 is supplied to the battery 207.
  • the control unit 201 turns the first switch unit 209 to the ON state and shorts it, the power received by the power receiving unit 203 is not supplied to the battery 207.
  • the second switch unit 210 On the input side of the power receiving unit 203, the second switch unit 210 is connected in parallel with the resonant capacitor 211.
  • the resonant capacitor 211 is connected to the power receiving antenna 205 via the third switch unit 213.
  • the second switch unit 210 and the third switch unit 213 are controlled by the control unit 201.
  • the second switch unit 210 and the third switch unit 213 are controlled by the control unit 201 via the selection unit 214 described below.
  • the third switch unit 213 has a function of controlling whether or not the terminal of the power receiving antenna 205 is opened.
  • the control unit 201 When the control unit 201 turns the third switch unit 213 to the OFF state, the terminal of the power receiving antenna 205 is in an open state. When the control unit 201 turns the third switch unit 213 to the ON state, the power receiving antenna 205 is connected to the power receiving unit 203 via the resonant capacitor 211 and the selection unit 214.
  • the control unit 201 turns the third switch unit 213 to the ON state and the second switch unit 210 is turned ON and short-circuited, the receiving antenna 205 and the resonant capacitor 211 form a series resonant circuit and resonate at a specific frequency fB.
  • the second switch section 210 may be disposed between the power receiving antenna 205 and the resonant capacitor 211.
  • the third switch section 213 When the third switch section 213 is in the ON state and the second switch section 210 is in the ON state, the terminals of the power receiving antenna 205 are shorted.
  • the third switch section 213 may also be disposed between the resonant capacitor 211 and the power receiving section 203.
  • the selection unit 214 connects each of the power receiving units 203a, 203b, and 203c to one of the power receiving antennas 205 (power receiving antennas 205a to 205n).
  • the selection unit 214 connects the power receiving unit 203 (203a, 203b, or 203c) to any one or more power receiving antennas 205.
  • the control unit 201 controls the selection unit 214 to determine which of the power receiving antennas 205 (power receiving antennas 205a to 205n) each power receiving unit should be connected to.
  • the selection unit 214 switches the connection between the power receiving unit 203 and the power receiving antenna 205 according to a control signal from the control unit 201.
  • the TX and RX perform wireless power transmission based on the WPC standard between the transmitting antenna 105 and the receiving antenna 205.
  • WPC standard the amount of power guaranteed when the RX receives power from the TX is specified by a value called Guaranteed Load Power (hereinafter referred to as "GP").
  • GP Guaranteed Load Power
  • GP indicates the power value that guarantees output to the load of RX even if the efficiency of power transmission between the receiving antenna 205 and the transmitting antenna 105 decreases due to a change in the relative positions of RX and TX.
  • the load of RX is the charging unit 206, the battery 207, etc. in FIG. 3, and the value of GP corresponds to the amount of power that is guaranteed to be output from the receiving unit 203.
  • the value of GP corresponds to the amount of power guaranteed to be output from the rectification unit of the power receiving unit 203.
  • the value of GP is 5 (watts) and the positional relationship between the power receiving antenna 205 and the power transmitting antenna 105 has changed. In this case, even if the power transmission efficiency decreases, the TX performs power transmission control so that it can output 5 watts to the RX load.
  • GP is determined by negotiation between TX and RX. This embodiment can be applied to any configuration in which power is transmitted and received at a power determined by mutual negotiation between a power transmitting device and a power receiving device, not limited to GP.
  • the object is an object that can affect power transmission and is an object (foreign object) different from the power receiving device 200.
  • the electromagnetic waves used for power transmission will affect the foreign object, causing an increase in temperature or destruction of the foreign object.
  • a foreign object is, for example, a paperclip or an IC card.
  • a foreign object is neither a part of a power receiving device or a product in which the power receiving device is incorporated, nor a part of a power transmitting device or a product in which the power transmitting device is incorporated, but is an object that can generate heat when exposed to a power signal transmitted by a power transmitting antenna.
  • a power receiving device and an object that is an integral part of a product in which the power receiving device is incorporated, or a power transmitting device and an object that is an integral part of a product in which the power transmitting device is incorporated, are not considered foreign objects.
  • the WPC standard specifies a method for preventing the foreign object from heating up or being destroyed by stopping power transmission when a foreign object is present.
  • the power transmitting device 100 is capable of detecting the presence of a foreign object on the charging stand 300.
  • the power loss method is a method for detecting a foreign object based on the difference between the transmitted power in the power transmitting device 100 and the received power in the power receiving device 200.
  • the Q-factor measurement method is a method for detecting a foreign object based on a change in the quality factor (Q-factor, quality coefficient, Q-factor) associated with the power transmitting antenna 105 (power transmitting coil) in the power transmitting device 100.
  • the Q-factor measurement method is a method for detecting foreign objects by detecting changes in the quality factor (Q-factor, quality coefficient, Q-factor) of the resonant circuit including the power transmitting antenna 105 (power transmitting coil) and the resonant capacitor 107 in the power transmitting device 100.
  • the foreign objects that the power transmission device 100 detects are not limited to objects present on the charging stand 300.
  • the power transmission device 100 can detect foreign objects located in the vicinity of the power transmission device 100.
  • the power transmission device 100 can detect foreign objects located within a range where power can be transmitted.
  • Figure 4 is an explanatory diagram of a threshold setting method for state detection using the Power Loss method, with the horizontal axis representing the transmitted power of the power transmitting device 100 and the vertical axis representing the received power of the power receiving device 200.
  • point 1000 corresponds to the first transmitted power value Pt1 and the first received power value Pr1
  • point 1001 corresponds to the second transmitted power value Pt2 and the second received power value Pr2.
  • point 1003 corresponds to the third transmitted power value Pt3 and the third received power value Pr3.
  • the foreign object to be detected is a conductive metal piece or the like.
  • the power transmitting device 100 transmits power to the power receiving device 200 at a first transmission power value Pt1, and the power receiving device 200 receives power at a first reception power value Pr1. Then, the power transmitting device 100 stores the first transmission power value Pt1.
  • the first transmission power value Pt1 and the first reception power value Pr1 are predetermined minimum transmission power values and reception power values.
  • the power receiving device 200 performs load control so that the power it receives is the minimum power.
  • the power receiving device 200 performs load control so that the power it receives is within a predetermined range or is equal to or less than a predetermined threshold.
  • the “power” in “power within a predetermined range” or “power below a predetermined threshold” refers to a power with a value of approximately 10% of the Reference Power described below.
  • the power receiving device 200 may disconnect the load from the power receiving antenna 205 so that the received power is not supplied to the load (such as the charging unit 206 and battery 207 in FIG. 3).
  • the load may be controlled so that a predetermined amount of power is supplied to the load. This can be achieved by the power receiving device 200 controlling the first switch unit 209.
  • the state of the load controlled in this way is referred to as the light load state.
  • the power receiving device 200 notifies the power transmitting device 100 of the first received power value Pr1.
  • the signal related to the first received power value Pr1 is a Received Power Data Packet (mode 1) defined in the WPC standard. Hereinafter, this packet will be referred to as "RP1.”
  • the power transmitting device 100 which receives RP1 from the power receiving device 200, calculates the power loss between the power transmitting device 100 and the power receiving device 200.
  • a calibration point (hereafter abbreviated as CP) 1000 that indicates the correspondence between Pt1 and Pr1 can be created.
  • the power transmitting device 100 changes the transmission power value to the second transmission power value Pt2 and transmits power to the power receiving device 200, and the power receiving device 200 receives power at the second receiving power value Pr2.
  • this state is referred to as the Connected Load state.
  • the power transmitting device 100 stores the second transmission power value Pt2.
  • the second transmission power value Pt2 and the second reception power value Pr2 are the maximum transmission power value and reception power value that have been determined in advance.
  • the power receiving device 200 performs load control so that the received power becomes the maximum power.
  • maximum power refers to a power value close to the Reference Power described below.
  • the power receiving device 200 connects the power receiving antenna 205 to the load so that the received power is supplied to the load.
  • the power receiving device 200 notifies the power transmitting device 100 of the second received power value Pr2.
  • the signal related to the second received power value Pr2 is a Received Power Data Packet (mode 2) defined in the WPC standard.
  • the power transmitting device 100 which has received RP2 from the power receiving device 200, calculates the power loss between the power transmitting device 100 and the power receiving device 200.
  • the power transmitting device 100 performs linear interpolation between CP1000 and CP1001 to generate a line segment 1002.
  • the line segment 1002 shows the relationship between the transmitted power and the received power in a state in which no foreign object is detected to exist near the power transmitting device 100 and the power receiving device 200 (hereinafter referred to as the first detection state).
  • the power transmission device 100 can estimate the power value that the power receiving device 200 will receive when transmitting power at a specified transmission power in the first detection state. For example, assume that the power transmission device 100 transmits power at a third transmission power value Pt3. In this case, the power transmission device 100 can estimate the third received power value Pr3 that the power receiving device 200 will receive from a point 1003 on the line segment 1002 that corresponds to Pt3.
  • the power loss between the power transmitting device 100 and the power receiving device 200 according to the load can be obtained based on multiple combinations of the transmission power value of the power transmitting device 100 and the reception power value of the power receiving device 200 measured while changing the load.
  • the power loss between the power transmitting device 100 and the power receiving device 200 according to all loads can be estimated by performing an interpolation process from multiple combinations of the transmission power value and the reception power value.
  • the calibration process performed by the power transmission device 100 and the power receiving device 200 in this way so that the power transmission device 100 can obtain a combination of the transmission power value and the reception power value is called "Power Loss method calibration process.”
  • the calibration process is also abbreviated as CAL process.
  • the power transmitting device 100 transmits power to the power receiving device 200 at a third transmission power value Pt3, and the power transmitting device 100 receives a signal related to a received power value Pr3 * from the power receiving device 200.
  • the signal relating to the received power value Pr3 * is a Received Power Data Packet (mode 0) defined in the WPC standard, but other messages may be used. Hereinafter, this packet will be referred to as "RP0".
  • RP0 includes, for example, received power value Pr3 * .
  • Ploss_FO can be estimated as the power consumed by the foreign object, i.e., the power loss.
  • the second detection state the state in which the presence of a foreign object is detected near the power transmitting device 100 and the power receiving device 200 is referred to as the second detection state.
  • the power transmission device 100 compares the power loss Ploss_FO that would have been consumed by the foreign object with a predetermined threshold value. If the value of the power loss Ploss_FO exceeds the threshold value, the power transmission device 100 can determine that a foreign object is present.
  • the second method is basically described, but the contents of this embodiment can also be applied to the first method.
  • Figures 5(A) and (B) are explanatory diagrams of the Q-factor measurement method according to the first embodiment
  • Figure 5(A) is a schematic circuit diagram for explaining a method of measuring the Quality Factor (Q-factor, quality coefficient, Q-factor) using the Q-factor measurement method.
  • the AC power supply 901 is a power supply that outputs the AC power generated by the power transmission unit 103 of the TX.
  • the power transmission antenna 902 corresponds to the power transmission antenna 105
  • the capacitor 903 corresponds to the resonant capacitor 107.
  • the power transmission antenna 902 and the capacitor 903 are connected in series.
  • the voltage value V8 is a voltage value of a predetermined frequency generated by the power transmitting unit 103 for operating the wireless power transmission system.
  • the voltage value V9 is a voltage value applied to the power transmitting antenna 902.
  • TX is capable of changing the frequency related to the voltage value.
  • the voltage values V8 and V9 are voltage values that the TX measures when it transmits an Analog Ping (hereinafter referred to as AP) or a Digital Ping (hereinafter referred to as DP) to the RX. Note that since the voltage values V8 and V9 are AC voltage values, their effective values (RMS) may also be used.
  • AP Analog Ping
  • DP Digital Ping
  • Figure 5 (B) shows an example of the measurement results of V9/V8 versus frequency, with a characteristic that has a peak at 100 kHz.
  • the horizontal axis is the frequency axis, and the vertical axis represents the voltage ratio "V9/V8.”
  • V9/V8 represents the quality factor related to the power transmitting antenna 902, so when an object is placed near the power transmitting antenna 902, the value changes.
  • the change in Quality Factor differs depending on whether no object is placed on the TX, whether an RX is placed on the TX, whether a foreign object (such as a metal piece) is placed on the TX, or whether an RX and a foreign object are placed on the TX.
  • TX receives a FOD Status Data packet signal from RX.
  • This packet contains a Reference Quality Factor Value and a Reference Resonance Frequency Value.
  • the Reference Quality Factor Value is the Quality Factor that can be measured at the terminals of the transmitting antenna of the test TX when the RX is placed on the test TX and there are no foreign objects nearby.
  • the Reference Resonance Frequency Value is the resonant frequency calculated from the inductance value that can be measured at the terminal of the transmitting antenna of the test TX when the RX is placed on the test TX and there is no foreign object nearby.
  • a threshold is set based on the Reference Quality Factor Value. Foreign objects are detected by comparing this threshold with the Quality Factor calculated from the measured V9/V8.
  • a threshold value is set based on the Reference Resonance Frequency Value. Foreign objects are detected by comparing this threshold value with the resonance frequency obtained by measuring V9/V8.
  • the RX and TX in this embodiment communicate for power transmission and reception control based on the WPC standard.
  • the WPC standard specifies multiple phases, including a Power Transfer phase in which power transmission is performed, and one or more phases before the actual power transmission.
  • each phase communication is carried out for the necessary power transmission and reception control.
  • foreign object detection using the Power Loss method is performed in the Power Transfer phase based on data acquired in the Calibration phase.
  • foreign object detection using the Q-value measurement method is performed before power transmission (before sending DP and in the Negotiation phase or Renegotiation phase).
  • FIG. 6 is a block diagram showing an example of the functional configuration of the control unit 101 of the power transmission device 100 (TX) according to the first embodiment.
  • the control unit 101 has a communication control unit 301, a power transmission control unit 302, a measurement unit 303, a setting unit 304, and a state detection unit 305.
  • the communication control unit 301 controls communication with the RX via the first communication unit 104 or the second communication unit 109.
  • the power transmission control unit 302 controls the power transmission unit 103 to control the power transmission to the RX.
  • the measurement unit 303 measures the waveform attenuation index, which will be described later.
  • the measurement unit 303 also measures the power transmitted to the RX via the power transmission unit 103, and measures the average transmitted power per unit time.
  • the measurement unit 303 also measures the Quality Factor of the power transmission antenna 105.
  • the measurement unit 303 also measures the quality factor of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107.
  • the quality factor of the power transmitting antenna 105 and the quality factor of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107 are referred to as the quality factor related to the power transmitting antenna 105.
  • the measurement unit 303 also measures the temperature using temperature sensors arranged at multiple locations on the power transmitting device 100.
  • the measurement unit 303 also measures a quantity (coupling state index) that indicates the electromagnetic coupling state (hereinafter also simply referred to as the coupling state) between the power transmitting antenna 105 and the power receiving antenna 205.
  • the coupling state index includes, for example, a coupling coefficient. The method of measuring the coupling state index will be described later.
  • the setting unit 304 sets a threshold value that serves as a reference for determining the presence or absence of a foreign object when the TX performs status detection.
  • Status detection is, for example, status detection based on the power loss method, the Q value measurement method, or the waveform attenuation method, status detection based on the temperature measured in the power transmitting device 100, or status detection based on the coupling coefficient between the power transmitting antenna 105 and the power receiving antenna 205, etc.
  • the setting unit 304 can set judgment thresholds required for state detection processing using other methods.
  • the setting unit 304 calculates and sets the thresholds for detecting foreign objects or the thresholds for detecting positional deviations between TX and RX in the Power Loss method, the Q-factor measurement method, the waveform attenuation method, and the coupling state index measurement method for the power transmitting antenna and the power receiving antenna.
  • the setting unit 304 also calculates and sets a threshold value for detecting foreign objects or a threshold value for detecting misalignment between TX and RX based on the temperature of the power transmitting device measured by the measurement unit 303.
  • the setting unit 304 can also set a judgment threshold value required for state detection processing using other methods.
  • the state detection unit 305 detects the state of TX and RX. For example, the state detection unit 305 detects foreign objects present between TX and RX, and also detects misalignment between the transmitting antenna 105 and the receiving antenna 205. More specifically, state detection processing is possible using the power loss method, the Q value measurement method, the waveform attenuation method, the temperature measured by the power transmitting device 100, and the electromagnetic coupling state (e.g., the coupling coefficient) between the transmitting antenna 105 and the receiving antenna 205.
  • the power loss method the Q value measurement method
  • the waveform attenuation method the temperature measured by the power transmitting device 100
  • the electromagnetic coupling state e.g., the coupling coefficient
  • the status detection unit 305 can detect foreign objects and positional deviations between the power transmitting antenna 105 and the power receiving antenna 205 using other methods. For example, in a TX equipped with an NFC communication function, the status detection unit 305 performs status detection processing using a function for detecting a counterpart device according to the NFC standard.
  • the state detection unit 305 can detect state changes on the TX in addition to detecting the presence or absence of a foreign object and the electromagnetic coupling state between the transmitting antenna and the receiving antenna. For example, the TX can detect an increase or decrease in the number of RXs on the TX.
  • the state detection unit 305 can perform a foreign object detection process and a positional deviation detection process between the transmitting antenna 105 and the receiving antenna 205 based on the threshold value set by the setting unit 304 and the measurement results by the measurement unit 303.
  • the state detection unit 305 can obtain data such as the waveform attenuation index, the transmission power, the Quality Factor, the temperature measured by the power transmission device 100, and the coupling coefficient between the power transmission antenna 105 and the power receiving antenna 205 as the measurement results of the measurement unit 303.
  • the processes performed by the communication control unit 301, power transmission control unit 302, measurement unit 303, setting unit 304, and state detection unit 305 shown in FIG. 6 can be realized using programs executed by a CPU or the like provided in the control unit 101. Each process is executed in parallel according to an independent program, with synchronization between the programs achieved by event processing or the like. However, two or more of these processes may be incorporated into the processing of a single program.
  • the Identification and Configuration phase will be referred to as the I&C phase.
  • FIG. 7 is a flowchart explaining the processing of the power transmission device according to the first embodiment, and shows an example of the flow of the power transmission control processing executed by the TX. This processing is realized, for example, by the control unit 101 of the TX executing a program read from the memory 106.
  • This process is also executed when the power of the TX is turned on, when the user of the TX inputs an instruction to start a wireless power transmission application, or when the TX is connected to a commercial power source and receives power. This process may also be started by some other trigger.
  • the TX executes the processes defined as the Selection phase and Ping phase, and waits for the RX to be placed.
  • the TX In the Selection phase, the TX repeatedly transmits the AP intermittently, and detects objects that are within the power transmission range.
  • the TX can detect that an RX, a conductor piece, etc. has been placed on the charging stand 300.
  • the TX detects one or both of the voltage and current values of the power transmitting antenna 105 when an AP is transmitted. If the voltage value falls below a threshold value or if the current value exceeds a threshold value, the TX determines that an object is present and transitions to the Ping phase.
  • the TX detects the presence of an object within the power transmission range, it transmits a DP.
  • the power of the DP is greater than the power of the AP, and is sufficient to start up the control unit 201 of the RX placed on the TX. If there is a specified response to the DP, the TX determines that the object detected in the Selection phase is the RX, and that the RX has been placed on the charging stand 300.
  • the "predetermined response" is a Signal Strength (SIG) Data Packet sent by the RX.
  • This packet includes a Signal Strength Value that indicates the signal strength of the signal received by the RX.
  • This value is calculated from the voltage (rectified voltage) applied to the rectifier of the power receiving unit 203 measured by the RX, or the voltage (open circuit voltage) of the open circuit including the power receiving antenna 205 measured by the RX, or the received power value measured by the RX, etc.
  • the TX Before transmitting the DP, the TX also measures the Quality Factor of the transmitting antenna 105, for example, using the AP. This measurement result is used when executing the foreign object detection process using the Q-value measurement method. Note that, depending on the version of the WPC standard, the above-mentioned Selection phase may be called the Ping phase as part of the above-mentioned Ping phase.
  • the TX receives a Signal Strength (SIG) Data Packet.
  • SIG Signal Strength
  • ID Packet an Identification Data Packet
  • This packet contains the Manufacturer Code and Basic Device ID, which are identifiers for each individual RX, as well as information elements that can identify the version of the WPC standard that is supported.
  • the RX sends a Configuration Data Packet to the TX.
  • This packet contains the RX's capability information (device configuration information) shown below.
  • the TX When the TX receives these packets, it sends an ACK acknowledgement, and the I&C phase ends.
  • the I&C phase may also be called the Configuration phase depending on the version of the WPC standard.
  • the TX may also obtain the identification information of the RX by a method other than communication in the I&C phase of the WPC standard.
  • the identification information for each individual RX may also be a Wireless Power ID.
  • the identification information for each individual RX may be any other identification information capable of identifying the individual RX, such as a Bluetooth (registered trademark) Address (hereinafter referred to as "BD_ADDR”) unique to the second communication unit 212 of the RX.
  • BD_ADDR Bluetooth (registered trademark) Address
  • BD_ADDR is an 8-byte address used in BLE.
  • BD_ADDR is a public address defined in the BLE standard that indicates, for example, the manufacturer of the RX or individual identification information of the BLE communication function (second communication unit 212).
  • BD_ADDR may also be a random address.
  • the TX determines the GP value through negotiation with the RX based on the RX's request and the power transmission capacity of the device itself. Communication is performed in the negotiation phase of the WPC standard, and the GP value is determined based on the GP value requested by the RX, the TX's power transmission capacity, etc.
  • GP which is determined through negotiation between the TX and RX, is the power output (supplied) to the load of the RX.
  • the RX sends a Specific Request to the TX, which includes information about the Requested Load Power.
  • Requested Load Power is the power requested by the RX to be output to the load of the RX. This power is consumed by the load, and the load refers to the system to which power is supplied from the RX or the power receiving unit of the RX (for example, the charging unit 206 of the RX, the battery 207).
  • the TX already has a Potential Load Power value or a Negotiable Load Power value.
  • Potential Load Power is the maximum load power value (Highest Load Power Level) that the TX can negotiate and output (supply) to the RX load.
  • Negotiable Load Power is the maximum load power value (Highest Load Power Level) that the TX can negotiate and output (supply) to the RX load during a specified period or under specified conditions.
  • the negotiation is successful when the Requested Load Power value is smaller than the Negotiable Load Power value.
  • TX and RX set the Requested Load Power value as the GP value and store it in memory. In other words, TX receives the Requested Load Power value from RX, and if that value is smaller than the Negotiable Load Power value, it sends an ACK acknowledgement to RX.
  • the TX and RX set the Requested Load Power value as the GP value and store it in memory. If the Requested Load Power value received from the RX is greater than the Negotiable Load Power value, the TX sends a negative acknowledgement NAK to the RX.
  • the RX reduces the value of Requested Load Power and again sends a signal indicating the value of Requested Load Power to the TX.
  • the RX repeats the above process until it receives an ACK positive response from the TX.
  • the TX and RX set the value of Requested Load Power as the GP value and store it in memory.
  • the GP value that is determined will be the value requested by the RX if the TX accepts the request from the RX, but if not, it will be a predetermined value (e.g., 5 watts) defined in the WPC standard. Alternatively, if the TX obtains information indicating that the RX does not support the negotiation phase, it will not perform communication in the negotiation phase and will determine the GP value to be a predetermined value.
  • the predetermined value is, for example, a value (e.g., 5 watts) that is predefined in the WPC standard.
  • the TX also performs foreign object detection processing using the Q-value measurement method in response to a request from the RX.
  • the TX receives an FOD Status Data packet from the RX. This packet includes the above-mentioned Reference Quality Factor Value and Reference Resonance Frequency Value.
  • foreign object detection processing is performed based on a threshold value based on the Reference Quality Factor Value and the Reference Resonance Frequency Value.
  • the value of the Quality Factor of the transmitting antenna 105 measured by the TX before transmitting the DP is compared with the above threshold value, and the presence or absence of a foreign object and the possibility of its presence are determined based on the comparison result.
  • the WPC standard also prescribes a method of transitioning to the Power Transfer phase, and then performing the same processing as the Negotiation phase again upon request from the RX.
  • the phase in which this processing is performed after the Power Transfer phase is called the Renegotiation phase.
  • the TX and RX execute CAL processing in the calibration phase.
  • the TX executes CAL processing using the Power Loss method based on the determined Reference Power value or GP value.
  • the RX transmits a signal to the TX that contains information about the received power in a light load state (hereinafter referred to as first reference received power information).
  • a light load state is, for example, a load disconnection state, a load state in which the received power value of the RX is equal to or lower than a first threshold, or a load state in which the received power value of the RX is within a predetermined first range.
  • the first reference received power information is information indicating 500 milliwatts.
  • the first reference received power information is information contained in RP1, but other messages may be used.
  • the TX determines whether or not to accept the first reference received power information based on the value of the Control Error Value contained in the Control Error (CE) Data Packet received from the RX.
  • CE Control Error
  • Control Error Data Packet will be abbreviated as CE, and Control Error Value will be abbreviated as CEV. If TX accepts the first reference received power information, it will send an acknowledgment ACK to RX. If TX does not accept the first reference received power information, it will send a negative acknowledgment NAK to RX.
  • the RX performs processing to transmit to the TX a signal containing information about the received power in a load connection state (hereinafter referred to as second reference received power information).
  • the load connection state is, for example, a maximum load state or a load state in which the transmitted power value is equal to or greater than a second threshold value.
  • the RX is a load state in which the power received by the RX is the maximum power.
  • maximum power is a power value close to the Reference Power.
  • it is a load state in which the received power value of the RX is within a predetermined second range.
  • the second range is a range of power values higher than the first range.
  • the second reference received power information is information indicating 5 watts.
  • the second reference received power information is information included in RP2, but other messages may be used.
  • the TX determines whether or not to accept the second reference received power information based on the CEV included in the CE received from the RX.
  • the TX accepts the second reference received power information, it sends an acknowledgment ACK to the RX. If the TX does not accept the second reference received power information, it sends a negative acknowledgment NAK to the RX. The TX completes the CAL process after sending an acknowledgment ACK to the second reference received power information from the RX.
  • the above CAL process enables the TX to calculate the amount of power loss between the TX and the RX in the light load state and the load connected state based on the transmission power value of the TX and the received power value contained in the first and second reference received power information.
  • the TX can also calculate the amount of power loss between the TX and the RX for all possible transmission powers by performing an interpolation process between multiple power loss amounts. All possible transmission powers by the TX are, for example, any power within the range of the receiving power received by the RX in this embodiment from 500 milliwatts to 5 watts.
  • the TX transmits power until the RX battery is fully charged.
  • control is performed for starting and continuing power transmission, as well as error processing and stopping power transmission due to full charge.
  • the TX and RX perform communication processing for this power transmission and reception control.
  • the transmitting antenna 105 and the receiving antenna 205 used when performing wireless power transmission based on the WPC standard communication is performed by superimposing a signal on the electromagnetic waves transmitted from the transmitting antenna 105 or the receiving antenna 205.
  • the range in which communication based on the WPC standard between the TX and the RX is possible is the same as the range in which the TX can transmit power.
  • the RX repeatedly transmits CE to the TX at time intervals of t_interval.
  • t_interval is a value defined in the WPC standard, e.g., 250 milliseconds.
  • the RX can use the CE to request the TX how much to increase or decrease its transmission power.
  • the CE packet includes a parameter (CEV) for adjusting the transmission power.
  • CEV parameter for adjusting the transmission power.
  • the TX adjusts the transmission power by controlling the current or voltage of the transmission antenna 105 based on the received CE. By repeating this process, transmission at an appropriate power according to the request of the RX is performed almost in real time.
  • the RX When the RX is fully charged, it sends an End Power Transfer Data Packet (hereinafter referred to as "EPT") to the TX to end the Power Transfer phase.
  • EPT End Power Transfer Data Packet
  • the RX may send an EPT for reasons other than full charge.
  • the TX stops transmitting power to the RX for charging.
  • TX determines that RX has been removed from the charging station 300 and ends the Power Transfer phase.
  • t_timeout is a value defined by the WPC standard, and is, for example, 1500 milliseconds.
  • the RX may transmit packets other than CE during the Power Transfer phase.
  • An example of a packet other than CE is a Charge Status Data Packet that notifies the TX of the status of the RX's battery 207.
  • the packet stores a Charge Status Value that indicates the percentage of charge of the battery 207.
  • the TX When the TX receives the Charge Status Data Packet, it notifies the user of the charging status, for example by displaying text or a figure based on the Charge Status Value on the UI unit 110.
  • the TX may receive the Charge Status Data Packet at any time, and may notify the user at any time.
  • the TX transmits power to the RX and performs foreign object detection processing using the Power Loss method.
  • the amount of power loss between the TX and RX in the first detection state during the power transmission process is calculated from the difference between the transmitted power value and the received power value using CAL processing.
  • the calculated amount of power loss corresponds to the reference amount of power loss in the absence of a foreign object. If the TX determines that the difference between the amount of power loss between the TX and RX measured during power transmission after CAL processing and the reference amount of power loss is equal to or greater than a threshold value, it determines that the second detection state is present.
  • the Calibration phase mentioned above may also be called the Power Transfer phase as part of the Power Transfer phase mentioned above.
  • FIG. 8 is a flowchart illustrating the process of the power receiving device according to the first embodiment. This process is realized, for example, by the control unit 201 of the RX executing a program read from the memory 208.
  • the RX executes the processes defined as the Selection phase and Ping phase of the WPC standard, and waits for its own device to be placed on the TX.
  • the RX detects that it has been placed on the TX, for example, by detecting a DP from the TX.
  • the RX receives the DP, it sends a Signal Strength (SIG) Data Packet to the TX.
  • SIG Signal Strength
  • the RX when the RX detects that its own device has been placed on the TX, it transmits information including its own device's identification information to the TX using the above-mentioned ID Packet and Configuration Data Packet.
  • the identification information of the RX may be transmitted by a method other than communication in the I&C phase, and other identification information such as BD_ADDR may be used as long as it is information that can identify each individual RX. Furthermore, the RX may transmit information other than the identification information to the TX in S1302.
  • the RX sends a Specific Request including the Requested Load Power information to the TX, waits for a response from the TX, and determines the GP.
  • RX and TX perform the calibration phase processing.
  • RX transmits RP1 and RP2 to TX.
  • RX receives power until the battery 207 is fully charged.
  • the RX and TX perform foreign object detection processing using the Power Loss method.
  • the RX repeatedly transmits CE at intervals of t_interval.
  • the RX transmits EPT to the TX and ends the processing.
  • the Power Loss method is a method for detecting foreign objects based on the results of measuring the amount of power loss during power transmission, and has the disadvantage that the accuracy of foreign object detection decreases when the power transmission device 100 is transmitting a large amount of power. On the other hand, it has the advantage that high power transmission efficiency can be maintained because the foreign object detection process can be performed while continuing power transmission.
  • the TX can detect foreign objects using the voltage waveform or current waveform related to the power transmission to the RX.
  • the voltage waveform or current waveform related to the power transmission from the TX to the RX is called the power transmission waveform.
  • FIG. 9 is an explanatory diagram of state detection using the waveform attenuation method according to the first embodiment, and explains the principle of foreign object detection using the waveform attenuation method.
  • An example of foreign object detection using a transmission waveform related to power transmission from a power transmitting device 100 (TX) to a power receiving device 200 (RX) is shown.
  • the horizontal axis represents time
  • the vertical axis represents voltage or current values.
  • the waveform 600 shown in FIG. 9 shows, for example, the change over time of the high-frequency voltage value or current value observed at the TX power transmission antenna 105. Alternatively, it shows the change over time of the high-frequency voltage value or current value observed at a circuit including the TX power transmission antenna 105 and the resonant capacitor 107.
  • TX which is transmitting power to RX via the transmitting antenna 105, stops transmitting power at time T0 .
  • the power supply for power transmission from the power supply unit 102 is stopped.
  • the power supply for power transmission to the transmitting antenna 105 is stopped.
  • the frequency f1 of the transmitting wave is a fixed frequency that is between 87 kHz and 205 kHz, for example, that is used in the WPC standard.
  • Point 601 on waveform 600 is a point on the envelope of the high frequency voltage, and ( T1 , A1 ) indicates that the voltage value at time T1 is A1 .
  • Point 602 on waveform 600 is a point on the envelope of the high frequency voltage, and ( T2 , A2 ) indicates that the voltage value at time T2 is A2 .
  • the Quality Factor (Q-factor, quality coefficient, Q value) of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107 can be obtained based on the change in voltage value over time after time T0 .
  • the TX calculates the Quality Factor using Equation 1 based on the time and voltage value at points 601 and 602 on the envelope of the high frequency voltage, and the frequency f2 of the transmission wave after power transmission is stopped at time T0 .
  • Q ⁇ f 2 (T 2 - T 1 ) / ln (A 1 / A 2 ) (Equation 1)
  • Equation 1 ln represents a natural logarithm function. Note that the frequency f1 of the transmission wave when the TX is transmitting power to the RX may differ from the frequency f2 of the transmission wave immediately after the TX stops transmitting power to the RX.
  • the value of the Quality Factor decreases when a foreign object is present near TX and RX because the foreign object causes energy loss. Therefore, when looking at the slope of the attenuation of the voltage value, the slope of the line connecting points 601 and 602 is greater when a foreign object is present than when no foreign object is present.
  • the attenuation rate of the amplitude of waveform 600 increases.
  • the presence or absence of a foreign object can be determined based on the attenuation state of the voltage value between points 601 and 602.
  • a value of the Quality Factor that is lower than the reference value means that the waveform attenuation rate (the degree of decrease in the amplitude of the waveform per unit time) is high.
  • the presence or absence of a foreign object can be determined using the voltage value A2 after a predetermined time has elapsed.
  • the presence or absence of a foreign object can be determined using the time ( T2 - T1 ) that has elapsed until the voltage value A1 reaches the predetermined voltage value A2 .
  • the vertical axis of FIG. 9 has been described as the axis of the voltage value of the high-frequency voltage applied to the TX power transmission antenna 105, the vertical axis of FIG. 9 may also be the value of the current flowing through the power transmission antenna 105.
  • the attenuation state of the current value during the power transmission stop period changes depending on the presence or absence of a foreign object.
  • the waveform attenuation rate is higher than when a foreign object is not present. Therefore, a foreign object can be detected by applying the same method described above to the time change in the current value flowing through the power transmission antenna 105.
  • the Quality Factor calculated from the current waveform, the slope of the current value attenuation, the current value difference, the current value ratio, the current value absolute value, or the time it takes for the current value to reach a predetermined value can be used as waveform attenuation indicators to determine the presence or absence of a foreign object and detect the foreign object.
  • the waveform attenuation index may be measured during the period when the TX temporarily reduces the power supplied from the power supply unit 102 from a predetermined power level to a lower power level.
  • the waveform attenuation index may be measured during the period when the power supply for power transmission to the power transmitting antenna 105 is temporarily reduced from a predetermined power level to a lower power level.
  • the voltage or current values are measured at two points in time during the period when the TX limits power transmission (power transmission limit period), but measurements may be taken at three or more points in time and the waveform attenuation index may be calculated using these measurements.
  • power transmission limiting includes stopping power transmission from the TX to the RX and reducing the transmission power.
  • FIG. 10 is an explanatory diagram of a detection processing period using the waveform attenuation method according to the first embodiment, and FIG. 10 shows a power transmission waveform when detecting a foreign object using the waveform attenuation method, with the horizontal axis representing time and the vertical axis representing the voltage value or current value of the power transmission antenna 105.
  • the RX controls the TX not to communicate using amplitude modulation or load modulation.
  • the TX controls the RX not to communicate using frequency shift keying.
  • this period will be referred to as the communication prohibition period.
  • TX will transmit power to RX.
  • TX will transmit power stably to RX.
  • this period will be referred to as the power transmission period.
  • the TX When the TX receives an execution request packet (command) from the RX requesting a foreign object detection operation, it suspends power transmission after a specified period of time has elapsed, or temporarily reduces the transmission power.
  • this specified period will be referred to as the preparation period.
  • the RX controls the TX so that it does not communicate using amplitude modulation or load modulation.
  • the TX also controls the RX so that it does not communicate using frequency shift keying. By controlling so that communication does not occur during the preparation period, disturbances in the transmission wave shape are suppressed, and the TX is able to more accurately calculate the waveform attenuation index of the transmission wave shape (described later).
  • the request packet for executing the foreign object detection operation may be RP0, RP1, or RP2 as described above.
  • the power transmitting unit 103 of the TX stops power transmission or temporarily reduces the transmission power
  • the amplitude of the transmitted wave attenuates.
  • the period from when the TX temporarily stops power transmission or temporarily reduces the transmission power to when power transmission is resumed is hereinafter referred to as the transmission power control period.
  • the transmission power control period the period from when the TX temporarily sets the value of the inverter input voltage input to the inverter in the power transmission unit 103 to 0 volts or temporarily reduces it to when the input voltage value is returned to the predetermined value.
  • the period from when the TX temporarily sets the inverter output voltage output by the inverter in the power transmission unit 103 to 0 volts or temporarily reduces it to when the output voltage value is returned to a predetermined value is hereafter referred to as the transmission power control period. Also, the control by the TX to temporarily stop or temporarily reduce the transmission power is referred to as transmission power control.
  • the TX calculates the waveform attenuation index of the transmitted wave, compares the calculated value of the waveform attenuation index with a threshold value, and determines whether or not a foreign object is present, or the possibility (probability of presence) of a foreign object. This determination is called foreign object determination.
  • the RX controls the TX so that it does not communicate using amplitude modulation or load modulation.
  • the TX also controls the RX so that it does not communicate using frequency shift keying. By controlling so that communication does not occur during the transmission power control period, disturbance of the transmission wave shape is suppressed, and the TX can calculate the waveform attenuation index of the transmission wave shape with higher accuracy. Furthermore, foreign object determination may be performed during the transmission power control period, during the communication prohibition period, or during the power transmission period.
  • the TX resumes power transmission. During the transient response period immediately after power transmission resumes, the transmission waveform is not stable, so communication is prohibited again. Then, the TX transitions to a power transmission period in which stable power transmission is performed from the TX to the RX.
  • the TX repeatedly executes the processes at the start of power transmission, the communication prohibited period, the power transmission period, the preparation period, and the transmission power control period.
  • the TX then calculates a waveform attenuation index at a predetermined timing, compares the calculated value of the waveform attenuation index with a threshold value, and performs a foreign object determination.
  • a foreign object determination is performed based on a voltage value or a current value measured at at least two points in time during the transmission power control period.
  • the RX controls the TX so that it does not communicate with the TX using amplitude modulation or load modulation. Also, the TX controls the RX so that it does not communicate with the RX using frequency shift keying. In other words, the TX controls the RX so that it does not communicate with the RX during a predetermined first period after receiving an execution request packet (command) from the RX.
  • the WPC standard specifies the period during which the TX cannot transmit packets to the RX (packet transmission is prohibited) after the TX receives a packet other than an execution request packet from the RX during the Power Transfer phase.
  • the first period is a period longer than the period.
  • the RX controls the TX so that it does not communicate with the TX for a specified second period after sending an execution request packet (command) to the TX.
  • the WPC standard specifies a period during which the RX cannot send packets to the TX (packet transmission is prohibited) after the RX has sent a packet other than an execution request packet to the TX during the Power Transfer phase. The second period is longer than that period.
  • the waveform attenuation index is affected by the load of these elements.
  • the waveform attenuation index changes depending on the state of the power receiving unit 203, charging unit 206, and battery 207.
  • the control unit 201 of the RX switches the first switch unit 209 to the disconnected (OFF) state during the preparation period.
  • the RX transmits an execution request packet (command) to the TX and executes the above process during the preparation period.
  • the RX transmits an execution request packet (command) to the TX and executes the above process at the same time. This makes it possible to suppress the effect of the battery 207.
  • the same effect can be obtained by setting the first switch unit 209 to a light load state instead of a disconnected state.
  • the same effect can be obtained by performing load control so that the power received by the RX is minimized.
  • the same effect can be achieved by performing load control so that the power received by the RX is within a predetermined range or is below a predetermined threshold.
  • power refers to power with a value of approximately 10% of the Reference Power.
  • the RX may control the load so that a predetermined power is supplied to the load.
  • the operations in the Light Load state include the above-mentioned operations.
  • the RX maintains the above-mentioned control even during the transmission power control period. Then, after the power transmission is resumed, the RX releases the above-mentioned control and performs control to return to the original state.
  • the RX control unit 201 may turn on the second switch unit 210 to short circuit it, allowing current to flow through the closed circuit formed by the power receiving antenna 205, the resonant capacitor 211, and the second switch unit 210. This makes it possible to suppress the effects of the power receiving unit 203, the charging unit 206, and the battery 207.
  • the RX transmits an execution request packet (command) to the TX and executes the above process during the preparation period. Alternatively, the RX transmits the execution request packet (command) to the TX and executes the above process at the same time.
  • the RX maintains the above control during the transmission power control period. Then, after the power transmission is resumed, the RX releases the above control and performs control to return to the original state.
  • More accurate foreign object detection is possible based on the waveform attenuation index of the transmitted radio wave acquired by controlling the first switch unit 209 or the second switch unit 210, or both.
  • the same effect can also be obtained by setting the first switch unit 209 to the Light Load state instead of the disconnected state.
  • the RX may switch to a low power consumption mode or control the power consumption to be constant while the first switch unit 209 is turned ON to short circuit and the second switch unit 210 is turned OFF to disconnect.
  • the RX transmits an execution request packet (command) to the TX and executes the above processing during the preparation period.
  • the RX executes the above process at the same time as sending an execution request packet (command) to the TX.
  • the RX maintains the above control even during the transmission power control period. Then, after the power transmission is resumed, the RX releases the above control and performs control to return to the original state.
  • the waveform attenuation index is affected by the fluctuations in power consumption. For this reason, the RX limits (including halting) the operation of software applications, or sets hardware function block elements to a low power consumption mode or a stopped operation mode. By using the waveform attenuation index measured with the RX power consumption suppressed, more accurate foreign object detection is possible.
  • the waveform attenuation rate is affected by these elements.
  • the value of the waveform attenuation index changes depending on the state of the power transmitting unit 103, the first communication unit 104, and the power supply unit 102.
  • the TX When the TX receives a request packet (command) to execute foreign object detection from the RX, the TX turns on the switch unit 108 during the preparation period, causing a current to flow through the closed circuit formed by the power transmitting antenna 105, the resonant capacitor 107, and the switch unit 108. This makes it possible to suppress the influence of the power transmitting unit 103, the first communication unit 104, and the power supply unit 102 when measuring the waveform attenuation index.
  • a switch (not shown) may be provided between the power transmitting antenna 105 and the power transmitting unit 103, and the influence of the power supply unit 102, the power transmitting unit 103, and the first communication unit 104 may be suppressed by turning off the switch during the preparation period.
  • a switch may be provided between the power transmitting unit 103 and the closed circuit formed by the power transmitting antenna 105, the resonant capacitor 107, and the switch unit 108.
  • the TX When the TX measures the waveform attenuation index and detects a foreign object, it can control the switch to disconnect the closed circuit from the power transmission unit, thereby suppressing the above-mentioned effects.
  • the TX maintains the above-mentioned control even during the transmission power control period.
  • the TX releases the above-mentioned control and controls the system to return to its original state.
  • the first threshold setting method is a method in which the TX holds a predetermined value as the threshold, which is a common value that is not dependent on the RX to which power is transmitted.
  • This threshold is a fixed value, or a variable value determined by the TX depending on the situation. If a foreign object is present, the waveform attenuation rate of the transmission waveform during the transmission power control period increases. Therefore, the value of the waveform attenuation index obtained when no foreign object is present is stored in advance, and this value is set as the threshold.
  • the TX compares the measured value of Quality Factor with a predetermined threshold value.
  • the threshold value is set based on the measured value of Quality Factor when no foreign matter is present or on the measured value taking into account the measurement error. If the measured value of Quality Factor is smaller than the threshold value, it is determined that "foreign matter is present” or “there is a high possibility that foreign matter is present.” If the measured value of Quality Factor is equal to or greater than the threshold value, it is determined that "no foreign matter is present” or "there is a low possibility that foreign matter is present.”
  • the second threshold setting method is a method in which the TX adjusts and determines the threshold based on information transmitted from the RX.
  • a notable difference from the first threshold setting method is that the value of the waveform attenuation index may differ depending on the RX that is the target of power transmission and is placed on the TX.
  • the electrical characteristics of the RX which is electromagnetically coupled via the TX's transmitting antenna, affect the value of the waveform attenuation index.
  • the Quality Factor measured by the TX when no foreign object is present may differ depending on the RX placed on the TX.
  • the RX therefore retains Quality Factor information for each TX when the RX is placed on the TX in the absence of any foreign object, and notifies the TX of the Quality Factor information.
  • the TX adjusts and determines the threshold for each RX based on the Quality Factor information received from the RX.
  • the TX receives a FOD Status Data Packet containing the above-mentioned Reference Quality Factor Value information, and adjusts and determines the threshold value in the Q-value measurement method.
  • the Reference Quality Factor Value corresponds to the Quality Factor information when the RX is placed on the TX in the absence of any foreign object. Therefore, the TX performs adjustments based on the Reference Quality Factor Value and determines the threshold value for foreign object detection using the waveform attenuation method.
  • the Reference Quality Factor Value transmitted from the RX to the TX in this phase is information used for foreign object detection in the Q-value measurement method, which originally measures the Quality Factor in the frequency domain.
  • the Quality Factor when Quality Factor is used as the waveform decay index, although the method of deriving Quality Factor is different, the Quality Factor can also be calculated from the waveform in Figure 9 using Equation 1, for example, using the waveform decay method that measures Quality Factor in the time domain.
  • the threshold value of the Quality Factor of the waveform attenuation method based on the Reference Quality Factor Value.
  • the value of the waveform attenuation index which takes into account a predetermined value (a value corresponding to the measurement error) for the Reference Quality Factor Value, may be set as the threshold value for foreign matter determination.
  • the TX sets the threshold value for the Quality Factor of the waveform attenuation method based on the information already sent from the RX to the TX in the Negotiation phase, eliminating the need to perform new measurements to set the threshold value.
  • the threshold value can be set in a shorter time.
  • Foreign object determination based on the set threshold value and the measured value of the Quality Factor is as described above.
  • the third threshold setting method is a method in which the TX measures the waveform attenuation index in the first detection state in which no foreign object is present, and adjusts and determines the threshold based on the information from the measurement result.
  • the timing for pre-measuring the waveform attenuation index in the first detection state is explained. Assume that in the negotiation phase, foreign object detection is performed using the Q-value measurement method, and it is determined that no foreign object is present.
  • the system proceeds to the Calibration phase and the Power Transfer phase.
  • proceeding to the negotiation phase or later means that the foreign object detection using the Q-value measurement method has determined that no foreign object is present.
  • the timing for measuring the waveform attenuation index in the absence of foreign matter may be the Negotiation phase, the Calibration phase, or the Power Transfer phase.
  • the waveform attenuation index is measured in the power transfer phase.
  • the timing for measuring the waveform attenuation index in the absence of a foreign object is set to the first stage of the power transfer phase. The reason for this is that the more time that passes from the point at which the Q-value measurement method determines that there is no foreign object, the higher the probability that a foreign object will be present near the TX and RX.
  • the timing is specified by either the RX or the TX, and the TX measures the waveform attenuation index at that time and sets the measured value as the threshold.
  • the RX transmits a specified packet to the TX to notify the TX of the timing.
  • the TX measures the waveform attenuation index at that time and sets the measured value as the threshold.
  • the specified packet will be referred to as an execution request packet below.
  • a value obtained by adding a specified value (a value corresponding to the measurement error) to the waveform attenuation index may be set as the threshold for determining foreign matter.
  • the fourth threshold setting method is one in which the TX adjusts and determines the threshold depending on the transmission power.
  • the value of the waveform attenuation index may differ depending on the transmission power. This is because the amount of heat generated and the characteristics of the TX's electrical circuitry change depending on the transmission power, which affects the value of the waveform attenuation index. Therefore, the TX measures the waveform attenuation index for each transmission power and adjusts and determines the threshold based on the measurement results, enabling more accurate foreign object detection.
  • FIG. 11 is an explanatory diagram of a threshold setting method for state detection using the waveform attenuation method according to the first embodiment, and is a diagram for explaining a threshold setting method for foreign object determination for each TX transmission power in the waveform attenuation method.
  • the horizontal axis represents the transmission power of the power transmitting device 100
  • the vertical axis represents the waveform attenuation index (waveform attenuation rate) of the transmission voltage waveform or current waveform.
  • point 1100 corresponds to the transmission power value Pt1 and the waveform attenuation index ⁇ 1
  • point 1101 corresponds to the transmission power value Pt2 and the waveform attenuation index ⁇ 2.
  • point 1103 corresponds to the transmission power value Pt3 and the waveform attenuation index ⁇ 3.
  • the RX performs control so that the RX is in a light load state when power is transmitted from the TX.
  • a light load state is, for example, a load disconnection state in which no power is supplied to the load of the RX, a load state in which the received power value of the RX is equal to or lower than a first threshold, or a load state in which the received power value of the RX is within a predetermined first range.
  • the transmission power value of the TX in this state is Pt1. Then, the TX stops transmission in a light load state or reduces the transmission power and measures the waveform attenuation index ⁇ 1. At this time, the TX recognizes the transmission power value Pt1, and stores in memory CP1100 that associates the transmission power value Pt1 with the waveform attenuation index ⁇ 1.
  • the RX controls the load connection state.
  • the load connection state is, for example, a maximum load state or a load state in which the transmission power value is equal to or greater than the second threshold. Alternatively, it is a load state in which the power received by the RX is the maximum power.
  • maximum power is a power value close to the Reference Power.
  • the TX stops transmitting power while connected to the load, or reduces the transmitted power, and measures the waveform attenuation index ⁇ 2.
  • the TX stores in memory CP1101, which associates the transmission power value Pt2 with the waveform attenuation index ⁇ 2.
  • the TX generates line segment 1102 by linearly interpolating between CP1100 and CP1101.
  • Line segment 1102 shows the relationship between the transmission power in the first detection state and the waveform attenuation index of the transmission wave.
  • the TX can therefore estimate the waveform attenuation index of the transmitted wave for each transmitted power value in the first detection state based on line segment 1102. For example, for a transmitted power value Pt3, the waveform attenuation index is estimated to be ⁇ 3 from point 1103 on line segment 1102 that corresponds to Pt3.
  • the TX can calculate a threshold value for foreign object determination for each transmitted power value based on the estimation result.
  • the waveform attenuation index estimated in the first detection state for a certain transmission power value, plus a predetermined value (a value corresponding to the measurement error), can be set as the threshold for determining whether a foreign object is present.
  • the CAL processing performed by the power transmitting device 100 and the power receiving device 200 to obtain a combination of the transmission power value and the waveform attenuation index is hereinafter referred to as the "CAL processing of the waveform attenuation method.”
  • measurements were performed at two points, the transmission power values Pt1 and Pt2, but to improve accuracy, measurements may be performed at three or more points to calculate the waveform attenuation index for each transmission power.
  • the RX may control the light load state and the load connection state after notifying the TX by sending a specified packet. Also, either of the two controls may be performed first.
  • the calculation process of the foreign object determination threshold for each load may be performed in the calibration phase.
  • the TX acquires the data required for foreign object detection using the Power Loss method.
  • the TX acquires data on the received power value and power loss of each RX when the load state of the RX is a light load state and when the load state is connected. Therefore, the measurements of CP1100 and CP1101 in FIG. 11 may be performed together with the measurement of power loss when the RX is in a light load state and when the RX is in a loaded state during the calibration phase.
  • the TX when the TX receives a signal having first reference received power information from the RX, in addition to the predetermined processing to be performed in the calibration phase, the TX measures CP1100.
  • This first reference received power information is the RP1 information defined in the WPC standard, but other messages may also be used.
  • TX receives a signal having second reference received power information from RX, in addition to the predetermined processing to be performed in the calibration phase, it measures CP1101.
  • This second reference received power information is information of RP2, but other messages may be used. Since there is no need to set aside a separate period for measuring CP1100 and CP1101, the measurements of CP1100 and CP1101 can be performed in a shorter time.
  • the TX adjusts and sets the threshold value of the waveform attenuation index at each transmission power. For example, when Quality Factor is used as the waveform attenuation index, the TX compares the measured value of Quality Factor with the threshold value determined by the above method.
  • thresholds are set for each transmission power of the TX, enabling more accurate foreign object determination.
  • the number of judgment thresholds set by the above method is not limited to one. Multiple thresholds can be set in stages. For example, the first threshold is set as the judgment threshold for "there is a status abnormality”, the second threshold is set as the judgment threshold for "there is a high possibility of a status abnormality”, the third threshold is set as the judgment threshold for "there is a low possibility of a status abnormality”, and the fourth threshold is set as the judgment threshold for "there is no status abnormality”.
  • the causes of this are, for example, noise being mixed in during the transmission power control period, or the position of the RX placed on the TX being shifted. If the value of the waveform attenuation index calculated from the transmission waveform during one transmission power control period is not accurate, it may lead to an erroneous judgment in foreign object detection.
  • the TX then performs multiple transmission power controls, measures the waveform attenuation index from the transmission waveform during multiple transmission power control periods, and is able to perform more accurate foreign object detection based on the results of the multiple measurements.
  • the k value can decrease if a foreign object (such as a metal piece) gets between the transmitting antenna and the receiving antenna, or if the transmitting antenna and the receiving antenna are misaligned. Or the distance between the transmitting antenna and the receiving antenna becomes too large.
  • a foreign object such as a metal piece
  • a process for detecting coupling state indicators related to the transmitting antenna and the receiving antenna is performed to improve the accuracy of detecting foreign objects and the accuracy of detection when the positional deviation or distance is large.
  • FIGS 12(A) and (B) are explanatory diagrams of the method for measuring the coupling status indicator of the transmitting antenna and the receiving antenna according to the first embodiment
  • Figure 12(A) is an equivalent circuit diagram for explaining the first measurement method.
  • the definitions of various quantities related to the transmitting antenna (transmitting coil) on the primary side (TX) are shown below.
  • r1 Winding resistance of the transmitting antenna.
  • L1 Self-inductance of the transmitting antenna.
  • V1 The transmitting voltage (input voltage) across the transmitting antenna, measured by the TX.
  • r2 Winding resistance of the receiving antenna.
  • L2 Self-inductance of the receiving antenna.
  • V2 The receiving voltage (output voltage) across the receiving antenna measured by the RX.
  • the RX When the TX calculates the coupling coefficient k, the RX notifies the TX of the measured receiving voltage V2 and the value of the self-inductance L2 of the receiving antenna that the RX holds in advance.
  • the TX calculates the k value using the measured transmitting voltage V1, the value of the self-inductance L1 of the transmitting antenna that the TX holds in advance, and the receiving voltage V2 and self-inductance L2 values received from the RX.
  • RX can notify TX of a constant calculated using either or both of L1 and L2, and V2, and TX can calculate the k value using the constant and V2 received from RX, and the transmission voltage V1 measured by TX.
  • the TX notifies the RX of the measured transmission voltage V1 and the previously stored value of the self-inductance L1 of the transmission antenna.
  • the RX calculates the k value using the measured receiving voltage V2, the previously stored value of the self-inductance L2 of the receiving antenna, and the values of the transmission voltage V1 and self-inductance L1 received from the TX.
  • the TX can notify the RX of a constant calculated using either or both of L1 and L2, and V1, and the RX can calculate the k value using the constant and V1 received from the TX, and the receiving voltage V2 measured by the RX.
  • the transmission voltage V1 is calculated by the TX actually measuring the voltage applied to the transmission antenna, or by the TX calculating it from the set value of the transmission power. Alternatively, the transmission voltage V1 may be set as the set value of the transmission voltage during transmission.
  • the transmission voltage V1 applied to the transmission antenna can be obtained from the transmission voltage (denoted as V3) applied to a circuit (e.g., an inverter) in the TX power transmission unit 103 and the voltage across the resonant capacitor 107.
  • the transmission voltage V3 applied to the circuit in the TX power transmission unit 103 is, for example, the inverter input voltage input to the inverter in the TX power transmission unit 103, or the inverter output voltage output by the inverter.
  • the TX may also calculate the transmission voltage V3 from the set value of the transmission power.
  • the TX may actually measure the transmission voltage V3 and the voltage across the resonant capacitor 107, and use these to determine the transmission voltage V1.
  • the TX may transmit the measured values of the transmission voltage V3 and the voltage across the resonant capacitor 107 to the RX, and the RX may calculate the transmission voltage V1, thereby calculating the k value.
  • the RX may control the third switch unit 213 to be turned OFF so that the terminal of the power receiving antenna 205 is in an open state. This makes it possible to open both ends of the power receiving antenna as shown in FIG. 12(A).
  • the first measurement method is not affected by the resonant capacitor 211, the power receiving unit 203, the charging unit 206, or the battery 207, so it is possible to measure the coupling coefficient k with higher accuracy.
  • the power receiving voltage V2 applied to the power receiving antenna can be calculated from the power receiving voltage (denoted as V4) applied to the circuit (e.g., the rectifier) of the RX power receiving unit 203 and the voltage applied across the resonant capacitor 211.
  • the receiving voltage V4 applied to the circuit of the RX power receiving unit 203 is, for example, the rectifier input voltage input to the rectifier of the RX power receiving unit 203.
  • the receiving voltage V2 applied to the receiving antenna can be calculated from the receiving voltage (or the output voltage of the rectifier) of the circuit (for example, the rectifier) of the RX power receiving unit 203 and the voltage across the resonant capacitor 211.
  • RX may actually measure the receiving voltage V4 and the voltage across the resonant capacitor 211, and use these to determine the receiving voltage V2.
  • RX may actually measure the receiving voltage of the rectifier (or the output voltage of the rectifier) and the voltage across the resonant capacitor 211, and use these to determine the receiving voltage V2.
  • RX may transmit the measured value of the receiving voltage V4 and the voltage across the resonant capacitor 211 to TX, and TX may calculate the receiving voltage V2, thereby calculating the k value.
  • RX may transmit the measured value of the receiving voltage of the rectifier (or the output voltage of the rectifier) and the voltage across the resonant capacitor 211 to TX, and TX may calculate the receiving voltage V2, thereby calculating the k value.
  • the RX When the TX or RX performs the first measurement method, the RX may be controlled to be in a light load state or a loaded state. By keeping the load state of the RX constant, it becomes possible to measure the coupling coefficient k with higher accuracy. Alternatively, the TX or RX may be controlled to perform the first measurement method in both states when the RX is in a light load state and when it is in a loaded state.
  • the TX or RX may be controlled so that the first measurement method is performed when the RX is in each of three or more load states.
  • the coupling state can be determined with higher accuracy.
  • Coupled state indices there are several other quantities that can be used as indices to represent the electromagnetic coupling state between the transmitting antenna and the receiving antenna, and in this disclosure, these are collectively referred to as "coupling state indices.”
  • Each coupling state index has a value that corresponds to the electromagnetic coupling state between the transmitting antenna and the receiving antenna.
  • the contents of this embodiment can also be applied in the same way when using other coupling state indices other than the coupling coefficient.
  • V3 is, for example, the inverter input voltage input to the inverter of the TX power transmitting unit 103, or the inverter output voltage output by the inverter.
  • V4 is, for example, the rectifier input voltage input to the rectifier of the RX power receiving unit 203. These can be used to perform a calculation process for the coupling state between the transmitting antenna and the receiving antenna. Alternatively, the coupling state between the transmitting antenna and the receiving antenna can be calculated using the output voltage (denoted as V5) of a circuit (for example, a rectifier) of the RX power receiving unit 203.
  • the output voltage V5 is the voltage applied to the load (charging unit, battery).
  • the TX notifies the RX of the transmission voltage V3, and the RX is able to calculate the coupling state index.
  • the TX notifies the RX of a constant calculated using the electrical characteristics of the transmitting antenna (e.g., L1), and the RX can calculate the coupling state index using the constant.
  • the RX can calculate the coupling state index from the transmission voltage V3 received from the TX, a constant calculated using the electrical characteristics of the transmission antenna (e.g., L1) received from the TX, and the receiving voltage V4 or output voltage V5 measured by the RX.
  • RX notifies TX of receiving voltage V4 or output voltage V5, and TX calculates the value of the coupling state index.
  • RX notifies TX of a constant calculated using the electrical characteristics of the receiving antenna (e.g., L2), and TX can calculate the coupling state index using the constant.
  • the TX can calculate the coupling state index from the receiving voltage V4 or output voltage V5 received from the RX, a constant calculated using the electrical characteristics of the receiving antenna received from the RX (e.g., L2), and the transmitting voltage V3 measured by the TX.
  • the TX and RX exchange information such as the voltage values V1 to V5, the self-inductance values L1 and L2, or constants that represent the electrical characteristics of the transmitting and receiving antennas.
  • the timing of measuring the voltage values and the timing of sending and receiving each piece of information are explained below. Measurement of each voltage value is performed, for example, during the Ping phase.
  • the TX transmits a DP to the RX.
  • any of the voltage values V1, V2, V3, V4, and V5 that are generated when transmitting a DP can be used.
  • the TX and RX measure any of the values V1 to V5 and store and retain the value in memory 106 or memory 208.
  • the TX transmits a specified packet to the RX to notify it of the timing of measuring the voltage value.
  • the RX When the RX receives the specified packet, it measures the voltage value of either V2, V4, or V5. The RX measures the value of either V2, V4, or V5 and stores it in memory 208.
  • the RX transmits a specified packet to the TX to notify it of the timing for measuring the voltage value.
  • the TX receives the specified packet, it measures the voltage value of either V1 or V3.
  • the TX measures either the value of V1 or V3 and stores it in the memory 106.
  • the TX receives information on the voltage value of either V2, V4, or V5 from the RX.
  • the TX transmits a specified transmission request packet to the RX to request the transmission of a packet containing information on the voltage value of either V2, V4, or V5.
  • RX When RX receives the transmission request packet, it transmits a specified packet containing information on one of the voltage values V2, V4, or V5 to TX. TX receives the specified packet containing information on one of the voltage values V2, V4, or V5 notified by RX, and stores the information in memory 106.
  • the information contained in the specified packet may include not only the receiving voltage of the RX, but also the receiving power, the requested receiving power value, the value of the self-inductance L2, a constant calculated using the electrical characteristics of the receiving antenna, etc. Also, information regarding the temperature of the RX may be included.
  • the TX receives the information from the RX and can use the information and the calculated coupling status index to perform more appropriate control.
  • the Signal Strength Data packet can be used to notify the TX of the RX's information.
  • the specified packet may be an Identification Data packet or an Extended Identification Data packet in the I&C phase. Or it may be a Configuration Data packet.
  • it may be a packet in the calibration phase or power transfer phase.
  • it may be RP1, RP2, or RP0.
  • the present invention is not limited to the example in which TX uses the voltage value generated when transmitting DP.
  • any of the voltage values V1 to V5 that are generated when the TX transmits to the AP during the Selection phase may be used.
  • any of the voltage values V1 to V5 that are generated when the TX transmits power to the RX during the Power Transfer phase may be used.
  • RX receives information on either the voltage value V1 or V3 from TX.
  • RX transmits a specified transmission request packet to TX to request the transmission of a packet including information on either the voltage value V1 or V3.
  • the TX When the TX receives the transmission request packet, it transmits a specified packet containing information on either the V1 or V3 voltage value to the RX.
  • the RX receives the specified packet containing information on either the V1 or V3 voltage value transmitted by the TX, and stores the information in memory 208.
  • the information contained in the specified packet may include not only the TX voltage, but also the transmitted power value, the transmittable power value, the value of the self-inductance L1, a constant calculated using the electrical characteristics of the transmitting antenna, and other information.
  • the information may include the results of foreign object detection using the foreign object detection methods described above (power loss method, Q-value measurement method, waveform attenuation method) and information regarding the temperature of the TX.
  • the RX can receive this information from the TX and use this information and the calculated binding state index to perform more appropriate control.
  • the Power Transmitter Capabilities (CAP) Data Packet can be used to notify the RX of TX information.
  • the Power Transmitter Identification (ID) data packet can be used to notify the RX of TX information.
  • the RX may control the third switch section 213 between the resonant capacitor 211 and the power receiving section 203 to be turned OFF, so that the terminal of the circuit formed by the power receiving antenna 205 and the resonant capacitor 211 is in an open state.
  • the coupling state index can be measured with higher accuracy since the first measurement method is not affected by the power receiving unit 203, the charging unit 206, or the battery 207.
  • the RX may control the load so that the above-mentioned light load state is achieved.
  • the RX may control the load so that the load is in the load connection state described above. This makes it possible to measure the coupling state index while maintaining the load state in a specified state, enabling more accurate state detection.
  • FIG. 12(B) is an equivalent circuit diagram for explaining the second measurement method.
  • r1, r2 and L1, L2 are the same as in Figure 12(A).
  • the various quantities related to the transmitting antenna (coil) on the primary side (TX) are defined below.
  • V6 Input voltage (transmission voltage) of the transmission antenna when the receiving antenna side is shorted.
  • V7 Input voltage (transmission voltage) of the transmission antenna when the receiving antenna side is in an open state.
  • I1 The current flowing through the transmitting antenna when the receiving antenna is shorted.
  • I2 The current flowing through the transmitting antenna when the receiving antenna is in an open state.
  • Lsc in Equation 3 represents the inductance of the power transmitting antenna when both ends of the power receiving antenna are short-circuited.
  • the control unit 201 sets the third switch unit 213 and the second switch unit 210 to the ON state (short-circuit state).
  • the Lsc value can be obtained by measuring the inductance value of the transmitting antenna.
  • the inductance value of the transmitting antenna can be calculated from the input voltage V6 and current I1 of the transmitting antenna.
  • Lopen represents the inductance of the power transmitting antenna when both ends of the power receiving antenna are open.
  • the control unit 201 sets the third switch unit 213 to the OFF state (open state). In this state, the Lopen value can be obtained by measuring the inductance value of the power transmitting antenna.
  • the inductance value of the transmitting antenna can be determined from the input voltage V7 and current I2 of the transmitting antenna.
  • the coupling state index (coupling coefficient) can be determined from the input voltage and current of the transmitting antenna when both ends of the receiving antenna are short-circuited and open.
  • TX can also calculate the coupling state index based on the transmission voltage and current applied to a circuit (e.g., an inverter) in the power transmitting unit 103.
  • the input voltages V6 and V7 represent the transmission voltage applied to a circuit (e.g., an inverter) in the power transmitting unit 103.
  • the transmission voltages V6 and V7 applied to the circuit included in the power transmission unit 103 of the TX are, for example, the inverter input voltage or the inverter output voltage.
  • the input voltages V6 and V7 may also be the voltages applied to both terminals of a series resonant circuit consisting of a power transmission antenna and a resonant capacitor.
  • the transmission voltage applied to a circuit (e.g., an inverter) in the power transmitting unit 103 and the voltage across the resonant capacitor 107 can be measured, and the voltage applied to the power transmitting antenna can be calculated from the results.
  • a circuit e.g., an inverter
  • the transmission voltage applied to the circuit (e.g., inverter) of the power transmitting unit 103 may be calculated by the TX from the set value of the transmission power.
  • the current I1 or I2 is not limited to the current flowing through the power transmitting antenna, but may be, for example, a current flowing through a circuit (e.g., an inverter) included in the power transmitting unit 103.
  • the current flowing through a circuit included in the power transmitting unit 103 of the TX is, for example, an inverter input current or an inverter output current.
  • the open and short states of the power receiving antenna have been described as examples in which the control unit 201 realizes these states by controlling the second switch unit 210 and the third switch unit 213. These states may also be realized by the power receiving unit 203. Also, instead of the short state, a Light Load state may be used. Also, instead of the open state, a Connected Load state may be used.
  • the TX can calculate the coupling state index by measuring the input voltages V6 and V7 and the currents I1 and I2. Therefore, information such as the voltage value measured by the RX or the inductance value of the receiving antenna is not required, so there is no need for the RX to notify the TX of this information.
  • the RX when the TX measures the input voltage V6 and the current I1, the RX needs to keep both terminals of the circuit that includes the receiving antenna in SHORT. Also, when the TX measures the input voltage V7 and the current I2, the RX needs to keep both terminals of the circuit that includes the receiving antenna in OPEN.
  • the RX needs to control both terminals of the circuit that contains the receiving antenna to a SHORT or OPEN state.
  • the TX (or RX) decides the measurement timing and notifies the RX (or TX).
  • the RX also notifies the TX when it has completed the control of setting both terminals of the circuit containing the receiving antenna to the SHORT or OPEN state.
  • This notification is performed by communication based on the WPC standard between the first communication unit 104 of the TX and the first communication unit 204 of the RX, or by communication based on a standard other than the WPC standard between the second communication unit 109 of the TX and the second communication unit 212 of the RX.
  • the input voltages V6, V7 and currents I1, I2 are measured, for example, in the Ping phase.
  • the TX transmits a DP to the RX. Therefore, the values of V6, V7 and currents I1, I2 generated when transmitting the DP can be used.
  • the TX acquires the values of V6, V7, I1, I2, stores them in memory 106, and calculates the coupling state index.
  • V6, V7, I1, and I2 generated when the TX transmits an AP in the Selection phase may be used.
  • the voltage values of V6, V7, I1, and I2 generated when the TX transmits power to the RX in the Power Transfer phase may be used.
  • either the first or second measurement method can be applied to the method of measuring the coupling status index of the transmitting antenna and the receiving antenna.
  • a method of setting a status determination threshold for the coupling status index obtained by the first or second measurement method is described.
  • the status determination includes a determination regarding the detection of a foreign object between the power transmitting antenna and the power receiving antenna, a determination regarding the detection of a misalignment between the power transmitting antenna and the power receiving antenna, and a determination regarding the detection of the separation between the power transmitting antenna and the power receiving antenna.
  • the first threshold setting method is to set the value of the coupling status index when there is no status abnormality as the threshold.
  • status detection for example, a judgment result such as "status abnormality exists", “status abnormality is highly likely”, “status abnormality is low”, “no status abnormality” or the like is obtained. Assume that the RX is placed on the test TX and there is no status abnormality between the transmitting antenna and the receiving antenna.
  • the value of the coupling state index between the test TX including the transmitting antenna and the RX including the receiving antenna can be set as the threshold.
  • the value of the coupling state index (threshold) measured in advance is stored in the memory of the RX, and the RX notifies the TX of the threshold.
  • the TX uses this threshold value to perform a judgment process regarding status detection.
  • the RX may transmit this threshold value to the TX within an FOD Status Data packet defined in the WPC standard. Alternatively, when the RX performs a judgment process regarding status detection, the RX uses this threshold value to perform the judgment process regarding status detection.
  • the value of the coupling state index of the power transmitting antenna and the power receiving antenna that provides a predetermined power transmission efficiency is set as the threshold value.
  • the determination result regarding the state detection is, for example, as follows.
  • A1 "The specified power transmission efficiency cannot be obtained” or "The coupling state between the transmitting antenna and the receiving antenna is not good.”
  • A2 "There is a high possibility that the specified power transmission efficiency cannot be obtained” or "The coupling state between the transmitting antenna and the receiving antenna may not be good.”
  • A3 "There is a high possibility that a specified power transmission efficiency can be obtained” or "There is a high possibility that the coupling state between the transmitting antenna and the receiving antenna is good.”
  • A4 "A predetermined power transmission efficiency is obtained” or "The coupling state between the transmitting antenna and the receiving antenna is good.”
  • the value of the coupling state index between the test TX including the transmitting antenna and the RX including the receiving antenna can be set as the threshold.
  • the RX holds the value of the coupling state index measured in advance in its memory as the threshold, and notifies the TX of the threshold.
  • the TX uses this threshold value to perform a judgment process regarding status detection.
  • the RX may transmit this threshold value to the TX within an FOD Status Data packet defined in the WPC standard. Alternatively, when the RX performs a judgment process regarding status detection, the RX uses this threshold value to perform the judgment process regarding status detection.
  • the second threshold setting method is a method in which the TX and RX set the coupling state index measured by the first or second measurement method as the threshold when there is no abnormality between the transmitting antenna and the receiving antenna.
  • the method for confirming this state can utilize a state detection means for the TX and RX related to foreign object detection by the power loss method, foreign object detection by the waveform attenuation method, foreign object detection by the Q value measurement method, foreign object detection based on the temperature of the TX or RX, etc.
  • this confirmation is performed by a method and means other than the first or second measurement method. If it is determined that there is no abnormal condition (or no foreign matter) as a result, the bond condition index is measured using the first or second measurement method, and an appropriate threshold value is set based on the measurement result.
  • a foreign object detection process using a Q-value measurement method is executed in the negotiation phase or Renegotiation phase. If the result of the foreign object detection process is that there is "no abnormal state" (or "no foreign object"), the bond state index is measured using the first or second measurement method after the negotiationation phase or Renegotiation phase.
  • the TX or RX can set a more appropriate threshold value. Furthermore, the foreign object detection process using the Power Loss method is executed during the Power Transfer phase. After the foreign object detection process is executed, the binding state index is measured using the first or second measurement method, and based on the measurement results, a more appropriate threshold value can be set.
  • the TX can measure the Quality Factor by the waveform attenuation method using the AP or DP transmitted by the TX in the Selection phase or Ping phase, and execute the foreign object detection process.
  • the binding status index is measured using the first or second measurement method after the phase in which the foreign object detection process is executed, and an appropriate threshold can be set based on the measurement result.
  • the foreign object detection process using the waveform attenuation method is performed during the power transfer phase.
  • the binding state index is measured using the first or second measurement method, and a more appropriate threshold value can be set based on the measurement result.
  • FIG. 13 is a diagram for explaining the threshold setting method for state detection using the coupling state index according to the first embodiment.
  • the horizontal axis represents the transmission power
  • the vertical axis represents the coupling state index.
  • point 1200 corresponds to the transmission power value Pt1 and the coupling state index value k1
  • point 1201 corresponds to the transmission power value Pt2 and the coupling state index value k2.
  • point 1203 corresponds to the transmission power value Pt3 and the coupling state index value k3.
  • a circuit e.g., a rectifier
  • the charging unit 206 and the battery 207 are connected as loads to the RX power receiving unit 203.
  • the calculated coupling state index value changes depending on the load state. In order to determine the presence or absence of a state abnormality depending on the load state, it is necessary to set an appropriate threshold value for the coupling state index.
  • RX controls the load so that it is in a light load state.
  • a light load state is, for example, a load disconnection state, a load state in which the received power value of RX is equal to or lower than a first threshold, or a load state in which the received power value of RX is within a first predetermined range.
  • the transmitted power value in this state is Pt1.
  • the TX and RX measure the transmission voltage on the TX side and the receiving voltage on the RX side.
  • the TX and RX exchange information such as the above values of V1 to V7, the values of self-inductance L1 and L2, or constants calculated using the electrical characteristics of the transmitting antenna and the receiving antenna, and the TX or RX calculates the coupling state index value k1.
  • the TX recognizes the transmission power value Pt1, and stores in memory CP1200 that associates Pt1 with k1.
  • the RX controls the load of the RX so that it is in a load connection state when power is transmitted from the TX.
  • the load connection state is, for example, a maximum load state or a load state in which the transmission power value is equal to or greater than a second threshold value.
  • the RX is a load state in which the power received by the RX is the maximum power.
  • maximum power is a power value close to the Reference Power.
  • it is a load state in which the received power value of the RX is within a predetermined second range.
  • the second range is a range of power values higher than the first range.
  • the transmission power value of the TX in this state is Pt2.
  • the TX and RX measure the transmission voltage on the TX side and the receiving voltage on the RX side.
  • the TX and RX exchange information such as the values of V1 to V7 mentioned above, the values of self-inductances L1 and L2, or constants calculated using the electrical characteristics of the transmitting antenna and receiving antenna, and the TX or RX calculates the coupling state index value k2.
  • the TX stores in memory CP1201, which associates Pt2 and k2. Next, the TX performs linear interpolation between CP1200 and CP1201 to generate line segment 1202.
  • Line segment 1202 shows the relationship between the transmission power and the coupling state index when there is no state abnormality.
  • the TX can use line segment 1202 to estimate the coupling state index value for each transmission power value when there is no abnormal state. For example, assume that the transmission power value is Pt3. In this case, the coupling state index value can be estimated to be k3 from point 1203 on line segment 1202 that corresponds to the transmission power value Pt3. Based on the estimation result, the TX can calculate a threshold value to be used to determine the presence or absence of an abnormal state for each transmission power value.
  • the coupling state index value obtained by adding a predetermined value (a value corresponding to the measurement error) to the estimated result of the coupling state index value when there is no abnormality at a certain transmission power value can be set as the judgment threshold value.
  • the CAL processing performed by the power transmitting device 100 and the power receiving device 200 in this manner so that the power transmitting device 100 can obtain a combination of the transmitted power value and the coupling state index value is referred to as the "CAL processing of the coupling state index measurement method.”
  • the RX may control the load to a light load state and to a load connected state after notifying the TX that it will perform these controls. Also, either of these two controls may be performed first.
  • the operation for calculating the judgment threshold for state detection for each load (or each transmission power value) is performed, for example, in the calibration phase.
  • the TX acquires the data required for foreign object detection using the Power Loss method.
  • the TX acquires data on the amount of power loss when the RX is in a light load state and when the RX is in a loaded state. Therefore, the measurements of CP1200 and CP1201 in FIG. 13 can be performed together with the measurement of power loss when the RX is in a light load state and when it is in a loaded state during the calibration phase.
  • the TX when the TX receives the first reference received power information from the RX, it measures CP1200 in addition to the predetermined processing to be performed in the calibration phase.
  • the first reference received power information is information from RP1, but other messages may be used.
  • the TX receives the second reference received power information from the RX, it measures CP1201 in addition to the predetermined processing to be performed in the calibration phase.
  • the second reference received power information is information from RP2, but other messages may be used. In this way, there is no need to set aside a separate period for measuring CP1200 and CP1201, so CP1200 and CP1201 can be measured in a shorter time.
  • the RX when the RX performs a determination process regarding state detection, the RX receives a specified packet including the above-mentioned Pt1 information from the TX. Then, when the RX receives the specified packet including the Pt1 information, it measures k1 and stores in memory CP1200 that associates Pt1 with k1.
  • RX receives a specific packet containing the above Pt2 information from TX. Then, when RX receives a specific packet containing Pt2 information, it measures k2 and stores CP1201, which associates Pt2 with k2, in memory. Next, RX performs linear interpolation between CP1200 and CP1201 to generate line segment 1202.
  • the RX can use line segment 1202 to estimate the coupling state index value for each transmission power value in a state where there is no abnormality. In this way, the power receiving device 200 can obtain the combination of the transmission power value and the coupling state index value of the power transmitting device 100.
  • the fourth threshold setting method is a method in which the TX or RX sets a threshold in advance for a coupling state indicator having a value within a predetermined range.
  • This threshold is a common value that is not dependent on the RX to which power is transmitted, and the TX or RX holds a predetermined value.
  • the threshold is a fixed value that is independent of the situation, or a variable value that is determined by the TX or RX depending on the situation.
  • the coupling coefficient k is used as the coupling status index
  • the range of the k value is "0 ⁇ k ⁇ 1".
  • TX or RX will determine that "there is a status abnormality" when “0 ⁇ k ⁇ 0.2”, and will determine that "there is a high possibility of a status abnormality" when "0.2 ⁇ k ⁇ 0.5".
  • TX or RX will determine that "the possibility of a status abnormality is low” if "0.5 ⁇ k ⁇ 0.8” and will determine that "there is no status abnormality” if "0.8 ⁇ k ⁇ 1".
  • Data on the conditions for the k value is stored in memory in advance, and the determination process is carried out based on the conditions.
  • TX or RX will determine the above (A1) if "0 ⁇ k ⁇ 0.2”, the above (A2) if “0.2 ⁇ k ⁇ 0.5”, the above (A3) if "0.5 ⁇ k ⁇ 0.8”, and the above (A4) if "0.8 ⁇ k ⁇ 1".
  • a value obtained by adding a predetermined value (a value corresponding to a measurement error) to the binding state index value calculated based on the measurement results or received information can also be set as the judgment threshold.
  • the threshold is not limited to one, and multiple thresholds can be set in stages.
  • the coupling status indicator measurement is performed by the RX transmitting a specified packet to the TX.
  • the specified packet is a Signal Strength Data packet transmitted from the RX to the TX.
  • it may be an Identification Data packet, Extended Identification Data packet, or Configuration Data packet in the I&C phase. Or it may be a packet in the Calibration phase or Power Transfer phase. In other words, it may be RP1, RP2, or RP0.
  • the TX When the TX receives the above-mentioned specified packet from the RX, it calculates the binding status index. The TX makes a judgment by comparing the judgment threshold set by the above-mentioned method with the calculated binding status index value. If the TX judges that there is no abnormal status, it sends a positive response ACK to the RX.
  • TX transmits status information to RX that means "no status abnormality.” Also, if TX determines that "the possibility of a status abnormality is low,” it transmits status information to RX that means "the possibility of a status abnormality is low.”
  • the TX judges that "there is a high possibility of a status abnormality,” it will send status information to the RX indicating that "there is a high possibility of a status abnormality.” If the TX judges that "there is a status abnormality,” it will either send a negative acknowledgement NAK to the RX, or send status information to the RX indicating that "there is a status abnormality.”
  • the TX judges that the above is (A4), it transmits an ACK acknowledgement to the RX, or transmits status information corresponding to the judgment result to the RX. Also, if the TX judges that the above is (A3) or (A2), it transmits status information corresponding to the judgment result to the RX.
  • the TX judges that the above (A1) is true, it either transmits a negative acknowledgement (NAK) to the RX, or transmits status information corresponding to the judgment result to the RX.
  • NAK negative acknowledgement
  • the status information is numerical information according to the status.
  • the TX transmits the status information (level) expressed as a numerical value to the RX.
  • the coupling status indicator measurement is performed by the RX, it is executed by the TX transmitting a specified packet to the RX.
  • the TX When the TX receives a request packet from the RX requesting transmission of the specified packet, the TX may transmit the specified packet.
  • the RX receives the specified packet from the TX, the RX calculates a binding status index. The RX makes a judgment by comparing the judgment threshold set by the above-mentioned method with the calculated binding status index value.
  • RX determines that there is no abnormal status, it transmits status information to TX that means there is no abnormal status. If RX determines that there is a low possibility of an abnormal status, it transmits status information to TX that means there is a low possibility of an abnormal status. If RX determines that there is a high possibility of an abnormal status, it transmits status information to TX that means there is a high possibility of an abnormal status.
  • RX determines that "there is an abnormal status"
  • RX transmits status information meaning "there is an abnormal status” to RX.
  • RX transmits status information corresponding to the determination result to TX.
  • the status information is numerical information according to the status. For example, in the case of (A4) above, it transmits "0", in the case of A(3) above, it transmits "1", in the case of (A2) above, it transmits "2", and in the case of (A1) above, it transmits "3", and the status information (level) expressed as a numerical value to TX.
  • Methods for detecting foreign objects include the power loss method, the Q-factor measurement method, the waveform attenuation method, and methods based on the temperature measured by the power transmitting device 100 and the electromagnetic coupling state (e.g., the coupling coefficient) between the power transmitting antenna 105 and the power receiving antenna 205.
  • the electromagnetic coupling state e.g., the coupling coefficient
  • the first method is for the TX to set the length (time) of the preparation period to a predetermined value.
  • the RX also holds in advance a predetermined value which is the length (time) of the preparation period.
  • the second method is for the TX (or RX) to determine the length of the period to a predetermined value depending on the state of the device itself and notify the RX (or TX).
  • the third method is for TX and RX to communicate with each other and determine the length of the period to a predetermined value. For example, TX (or RX) notifies RX (or TX) of the determined maximum time. RX (or TX) notifies TX (or RX) of the determined minimum time. RX (or TX) determines a value within the range set by TX and RX and notifies TX (or RX).
  • the fourth method is to set the length of the preparation period to a different predetermined value for each transmitting antenna involved in the execution of the waveform attenuation method.
  • the fifth method is to set the length of the preparation period to the same value for multiple transmitting antennas involved in the execution of the waveform attenuation method.
  • the length of the transmission power control period is determined by negotiation between the RX and the TX.
  • the TX determines the minimum time that can be set as the transmission power control period and notifies the RX (or TX).
  • the RX also determines the maximum time that can be set as the transmission power control period and notifies the TX (or RX). In addition, the RX (or TX) determines the minimum time that can be set as the transmission power control period and notifies the TX (or RX). The TX or RX determines the time within the settable range based on the times notified to each other. The optimal transmission power control period can be set within the determined time range.
  • the TX When determining the optimal transmission power control period, the TX (or RX) notifies the RX (or TX) of the length of the determined transmission power control period using a specified packet.
  • the specified packet by which the RX notifies the TX of the length of the determined transmission power control period may be an execution request packet (e.g., a Received Power Data Packet).
  • the TX or RX determines the length of the transmission power control period to be the minimum time within the range set by both devices. The greater the difference in power between the power immediately before transmission resumes and the transmission power at the time transmission resumes, the greater the ringing that occurs. Therefore, the above-mentioned method makes it possible to suppress ringing that occurs in the transmission waveform at the time transmission resumes.
  • the TX or RX may determine the maximum time within the range set by both devices as the length of the transmission power control period. In this way, the attenuation state of the transmitted radio wave can be observed for a longer period of time, enabling highly accurate foreign object detection.
  • the content of the negotiation is not limited to the above example.
  • the TX (or RX) notifies the RX (or TX) of the range of time that the device itself can set.
  • the RX (or TX) then decides on the time.
  • information for determining the length of the transmission power control period may be included in the execution request packet (e.g., Received Power Data Packet).
  • a predetermined value may be set as the length of the transmission power control period.
  • the TX (or RX) may determine a predetermined value depending on the state of the device and notify the RX (or TX).
  • TX or RX is determined so that the transmission power control period is shorter when the transmission power of TX is large than when it is small.
  • ringing occurs in the transmission waveform at the point where transmission is resumed. The greater the difference in level between the power immediately before transmission is resumed and the transmission power at the time transmission is resumed, the greater the ringing that occurs.
  • the transmission power control period is made longer so that the attenuation state can be observed for a long period of time.
  • the TX or RX can determine the length of the transmission power control period based on the magnitude of the transmission power.
  • the magnitude of the transmission power of TX is taken as an example, but this may be replaced with the following power.
  • ⁇ Guaranteed Load Power ⁇ Requested Load Power ⁇ Potential Load Power ⁇ Negotiable Load Power ⁇ Maximum Power Value ⁇ Reference Power
  • the length of the transmission power control period can be determined based on the magnitude of the setting value for the transmission power determined by negotiation between the TX and the RX. Alternatively, the length of the transmission power control period may be determined based on information stored in RP0, RP1, or RP2 that the RX transmits to the TX.
  • the Received Power Data Packet stores received power value information that indicates the amount of power received by the RX from the TX.
  • the information on the transmitted power of the TX may be replaced with this received power value information.
  • the information on the transmitted power of the TX may be replaced with the load power consumption consumed by the load of the RX.
  • the coupling state index of both antennas can be measured by the above-mentioned coupling state index measurement method or other measurement methods. TX or RX is determined so that the transmission power control period is longer when the coupling state between the transmitting antenna 105 and the receiving antenna 205 is not good than when the state is good.
  • a good bonding state is one in which a comparison of the measured k value with a threshold value results in a determination of "no abnormal condition.”
  • a bad bonding state is one in which a comparison of the measured k value with a threshold value results in a determination of "possible abnormal condition” or "abnormal condition.”
  • the antenna coupling state is not good, there is a possibility that a foreign object is present between the transmitting antenna 105 and the receiving antenna 205, so highly accurate foreign object detection is required. If the coupling state index value is not within a specified range, the transmission power control period is extended and the attenuation state is observed for a long period of time.
  • one method is to determine a shorter transmission power control period according to the coupling state index, the weaker the antenna coupling.
  • the weaker the antenna coupling the lower the power transmission efficiency.
  • shortening the transmission power control period makes it possible to secure a longer period during which power can be transmitted, improving power transmission efficiency.
  • the measurement of the coupling state index between the transmitting antenna 105 and the receiving antenna 205 may be performed multiple times at a predetermined timing before or after the start of TX power transmission.
  • the length of the transmission power control period may be changed based on each measurement result.
  • the TX performs measurements three times at a predetermined timing after starting power transmission. If the measured coupling state index values are all different, the length of the transmission power control period is changed three times. There is also a method of determining whether to lengthen or shorten the transmission power control period depending on the coupling state, based on user specifications, etc.
  • the TX or RX can determine the length of the transmission power control period based on the value of the coupling state index.
  • TX or RX is determined so that the transmission power control period is longer when the frequency of the transmission radio waves is low than when it is high.
  • the frequency of the transmission radio waves is the frequency of the electromagnetic waves radiated from the transmitting antenna 105 to the receiving antenna 205 for power transmission during the power transmission period.
  • the higher the frequency of the electromagnetic waves the greater the loss. Therefore, the higher the frequency of the transmitted radio waves, the greater the attenuation rate of the electromagnetic waves during the transmission power control period, and the steeper the attenuation. On the other hand, the lower the frequency of the electromagnetic waves, the smaller the attenuation rate of the electromagnetic waves during the transmission power control period, and the more gradually they attenuate.
  • the higher the frequency of the transmitted radio waves the shorter the wavelength of the electromagnetic waves during the transmission power control period. This makes it possible to shorten the time difference between points 601 and 602 in FIG. 10, and makes it possible to calculate the attenuation rate in a shorter time.
  • the lower the frequency of the electromagnetic waves the longer the wavelength of the electromagnetic waves during the transmission power control period.
  • the time difference between points 601 and 602 in Figure 10 becomes longer, and it takes longer to calculate the attenuation rate. Therefore, the lower the frequency of the transmitted radio waves, the longer the transmission power control period can be set, allowing the attenuation state to be observed for a longer period of time. This increases the accuracy of measuring the attenuation state and improves the accuracy of the waveform attenuation index.
  • the attenuation state can be observed for a long period of time by making the transmission power control period longer. This increases the accuracy of measuring the attenuation state and improves the accuracy of the waveform attenuation index.
  • the frequency of the electromagnetic waves used for power transmission in the WPC standard is between 87 kHz and 205 kHz. If the frequency of the transmitted radio waves varies between 87 kHz and 205 kHz, the transmission power control period may be controlled according to the frequency.
  • a first transmission power control period is set. If the frequency is within a second frequency band different from the first frequency band, a second transmission power control period having a different length from the first transmission power control period is set.
  • the TX or RX can determine the length of the transmission power control period based on the frequency of the transmission radio waves.
  • the Quality Factor of the transmitting antenna 105 can be obtained by a Q-factor measurement method or other measurement method. TX or RX is determined so that the transmission power control period is shorter when the Quality Factor of the transmitting antenna 105 is low than when it is high.
  • the TX or RX shortens the transmission power control period when the Quality Factor is low rather than when it is high. This makes it possible to reduce the difference in transmission power when transmission resumes, making it possible to suppress ringing.
  • the transmission power control period can be lengthened to ensure a longer period during which the attenuation state of the transmission wave can be observed. This improves the accuracy of foreign object detection.
  • the quality factor of the transmitting antenna 105 may be measured multiple times at a predetermined timing before or after the start of power transmission by the TX.
  • the transmission power control period can be changed based on each measurement result.
  • the TX performs measurements three times at a specified timing after starting power transmission. If the measured Quality Factors are all different, the length of the transmission power control period is changed three times. There is also a method of determining whether to lengthen or shorten the transmission power control period depending on the Quality Factor, based on user specifications, etc.
  • the TX or RX can determine the length of the transmission power control period based on the Quality Factor.
  • the purpose of setting the communication prohibition period is to prevent communication from occurring when ringing occurs in the transmission waveform after power transmission is resumed.
  • the length of the communication prohibition period is determined by the TX, who sets the length (time) of the communication prohibition period to a predetermined value.
  • RX also holds in advance a predetermined value which is the length (time) of the communication prohibition period.
  • RX (or TX) determines the length of the communication prohibition period to a predetermined value and notifies TX (or RX).
  • RX (or TX) may determine the length of the communication prohibition period to a predetermined value depending on the state of the device and notify TX (or RX).
  • the TX and RX may communicate with each other and determine the length of the communication prohibition period to a predetermined value.
  • the TX may notify the RX of the maximum time (or minimum time) that it has determined, and the RX may notify the TX of the minimum time (or maximum time) that it has determined.
  • the TX or the RX may determine the length of the communication prohibition period within a range set by the TX and the RX.
  • TX (or RX) notifies RX (or TX) of the determined length of the communication prohibition period using a specified packet.
  • the specified packet may be an execution request packet (Received Power Data Packet). For example, within the range set by TX and RX, TX or RX determines the shortest time as the length of the communication prohibition period.
  • TX or RX may determine the maximum time as the length of the communication prohibition period.
  • TX or RX is determined so that the communication prohibition period is longer when the transmission power is large than when it is small.
  • the TX or RX may set the communication prohibition period to be shorter.
  • the TX or RX can determine the length of the communication prohibition period based on the magnitude of the transmission power.
  • the length of the communication prohibition period can be determined based on the setting value related to the transmission power determined by negotiation between the TX and the RX.
  • the length of the communication prohibition period may be determined based on the information stored in RP0, RP1, or RP2.
  • These packets contain information about the received power value of the RX.
  • the transmission power transmitted by the TX may be replaced with this received power value information.
  • the information about the transmission power of the TX may be replaced with the load power consumption consumed by the load of the RX.
  • TX or RX is determined so that the communication prohibition period is longer when the coupling state between the transmitting antenna and the receiving antenna is not good than when it is good.
  • TX or RX is determined so that the communication prohibition period is longer when the coupling state between the transmitting antenna and the receiving antenna is not good than when it is good.
  • the coupling state is not good, there is a possibility that the transmitting antenna and the receiving antenna are misaligned.
  • the inclusion of foreign matter or misalignment of the antennas can cause waveform distortion and signal degradation in communication between the TX and RX, and also increase the likelihood of communication errors.
  • a longer communication prohibition period is set compared to when the value of the coupling status index is equal to or greater than the threshold. This allows communication to be performed after the ringing of the transmission wave waveform when power transmission is resumed has converged or become sufficiently small, reducing the possibility of a communication error occurring.
  • the configuration may be such that the smaller the coupling status index, the longer the communication prohibition period that is determined.
  • the TX or RX can determine the length of the communication prohibition period depending on the coupling status index.
  • the communication prohibition period in order to improve communication quality, there is a method of shortening the communication prohibition period the worse the antenna coupling state.
  • the worse the coupling state the higher the possibility of a communication error occurring.
  • the communication prohibition period can be shortened to ensure a longer period during which communication is possible.
  • the TX and RX communicate at a slower speed or with a larger modulation depth than when the coupling is good.
  • the TX transmits communication data using a slower frequency shift keying modulation, or transmits communication data using a frequency shift keying modulation with a larger modulation depth.
  • the RX also transmits communication data using slower amplitude modulation or load modulation, or transmits communication data using amplitude modulation or load modulation with a higher modulation depth. This reduces the probability of communication errors occurring and improves communication quality.
  • a shorter communication prohibition period is set compared to a second coupled state where the value of the coupled state index is equal to or greater than the threshold.
  • the TX and RX communicate at a slower speed or with a larger modulation depth than in the second coupled state.
  • the TX and RX may be configured to set the communication prohibition period to be shorter in response to a decrease in the coupling state index value, and to perform slower communication or communication using a larger modulation factor.
  • communication may be performed at a slower speed or with a larger modulation factor compared to when the coupling state is good, regardless of the setting or change of the length of the communication prohibition period.
  • the antenna coupling status index may be measured multiple times at a predetermined timing before or after the start of TX power transmission.
  • the length of the communication prohibition period, or the communication speed or modulation level can be changed based on each measurement result.
  • the TX performs three measurements at a predetermined timing after starting power transmission, and the measured values of the coupling state index are all different.
  • the length of the communication prohibition period, or the communication speed or modulation degree will be changed three times.
  • TX or RX is determined so that the communication prohibition period is longer when the frequency of the transmitted radio waves is high than when the frequency is low.
  • the communication prohibition period is set longer than when the frequency of the transmitted radio waves is equal to or lower than the threshold.
  • the communication prohibition period may be set longer as the frequency is higher.
  • the communication prohibition period is set longer than when the frequency is equal to or higher than the threshold.
  • the communication prohibition period may be set longer as the frequency is lower.
  • the communication prohibition period may be controlled according to the frequency. For example, when the frequency is within a first frequency band, the first communication prohibition period is set.
  • a second communication prohibition period is set with a length different from that of the first communication prohibition period.
  • the TX or RX can determine the length of the communication prohibition period based on the frequency of the transmitted radio waves.
  • the Quality Factor can be obtained by Q-factor measurement or other measurement methods. TX or RX is determined so that the communication prohibition period is longer when the Quality Factor is low than when it is high.
  • the communication prohibition period is longer than when the Quality Factor is equal to or greater than the threshold.
  • the communication prohibition period may be longer the lower the Quality Factor.
  • the communication inhibition period can be shortened to ensure a longer period during which power can be transmitted from TX to RX. This contributes to improving power transmission efficiency and also makes it possible to suppress the impact of a low Quality Factor on the decrease in power transmission efficiency.
  • the communication prohibition period is set shorter than when the Quality Factor is equal to or higher than the threshold value.
  • the communication prohibition period may be set shorter as the Quality Factor is lower.
  • the Quality Factor related to the transmitting antenna 105 can be measured multiple times at a predetermined timing before or after the start of TX power transmission, and the length of the communication prohibition period can be changed based on each measurement result. For example, if three measurements are performed at a predetermined timing after the start of power transmission and the measured values of the Quality Factor are all different, the communication prohibition period will be changed three times.
  • the TX or RX can determine the length of the communication prohibition period based on the Quality Factor associated with the power transmitting antenna 105.
  • TX or RX is determined so that the longer the transmission power control period, the longer the communication prohibition period.
  • the TX and RX can determine the length of the communication prohibition period based on the length of the transmission power control period.
  • RX determines the length of the power transmission period to a predetermined value and notifies TX (or RX).
  • TX may determine the length of the power transmission period to a predetermined value depending on the state of the device and notify RX (or TX).
  • the TX and RX may communicate with each other and determine the length of the power transmission period to a predetermined value.
  • the TX determines the maximum time (or minimum time) that can be set as the length of the power transmission period and notifies the RX.
  • the RX determines the minimum time (or maximum time) that can be set as the length of the power transmission period and notifies the TX.
  • the TX or RX determines the length of the power transmission period within the range set by the TX and RX.
  • the TX (or RX) that determines the power transmission period notifies the RX (or TX) of the determined power transmission period using a specified packet.
  • the specified packet may be an execution request packet (e.g., a Received Power Data Packet).
  • TX or RX is determined so that the transmission period is shorter when the transmission power is large than when it is small. The higher the transmission power, the higher the foreign object detection accuracy required.
  • the opportunities for detecting foreign objects can be increased, enabling highly accurate foreign object detection.
  • the method of determining the length of the transmission period is not limited to the method of determining the size of the transmission power.
  • the size of the transmission power by the TX may be replaced with the various setting values related to the transmission power that are determined by negotiation between the TX and the RX.
  • the TX can determine the length of the transmission period based on the setting values.
  • the length of the power transmission period can be determined based on the load power consumption consumed by the RX load. Also, when the TX and RX determine the length of the power transmission period using the method described above, the RX transmits a packet requesting execution of the above-mentioned foreign object detection operation so as to satisfy the determined length of the power transmission period.
  • TX and RX determine the power transmission period to be a first length, RX transmits an execution request packet to TX at a first time interval. If TX and RX determine the power transmission period to be a second length that is longer than the first length, RX transmits an execution request packet to TX at a second time interval that is longer than the first time interval.
  • TX or RX is determined so that the power transmission period is shorter when the coupling state of both antennas is not good than when it is good.
  • TX or RX is determined so that the power transmission period is shorter when the coupling state of both antennas is not good than when it is good.
  • the power transmission period is not set as a detection processing period, and power transmission continues.
  • the TX makes the power transmission period longer than when the coupling state is good.
  • the TX may be configured to make the power transmission period longer the worse the antenna coupling state.
  • the method for measuring the Quality Factor is as described above, and it can be obtained by a Q-value measurement method or the like. TX or RX is determined so that the power transmission period is longer when the Quality Factor is low than when it is high.
  • the Quality Factor The lower the Quality Factor, the more likely it is that the efficiency of power transmission from TX to RX will decrease.
  • the Quality Factor is low, the power transmission period can be lengthened to ensure a longer period during which power can be transmitted from TX to RX. This improves power transmission efficiency and also makes it possible to suppress the impact of a low Quality Factor on the decrease in power transmission efficiency.
  • the TX When the Quality Factor is lower than the threshold, the TX extends the power transmission period more than when the Quality Factor is equal to or greater than the threshold. Alternatively, the TX may be configured to extend the power transmission period as the Quality Factor becomes lower.
  • Each period described above does not necessarily have to be set individually.
  • a configuration may be used in which the length of the entire detection processing period, including at least the transmission power control period, is determined.
  • the TX and RX determine the length of the entire detection processing period based on the magnitude of the transmission power or the various setting values related to the transmission power.
  • the TX and RX determine the length of the entire detection processing period based on the load power consumption consumed by the RX load.
  • the length of the entire detection processing period may be determined based on the coupling state between the transmitting antenna and the receiving antenna, or the quality factor associated with the antennas. Note that the method of setting each period described above can also be applied to a configuration in which the TX has one transmitting antenna and the RX has one receiving antenna.
  • This detection processing period is a period that is set to include a communication prohibition period, a power transmission period, a preparation period, a power transmission control period, or one or more of these periods.
  • the length of the period and the timing can be set arbitrarily.
  • the set value of the detection processing period related to the waveform attenuation method executed for each power transmitting antenna is set to be the same for all power transmitting antennas.
  • the jth power transmitting antenna one of the N power transmitting antennas that executes the waveform attenuation method among multiple power transmitting antennas.
  • the communication prohibition period corresponding to the jth power transmitting antenna is denoted as the jth communication prohibition period.
  • the first through Nth communication prohibition periods are all set to the same length.
  • the power transmitting period, preparation period, and transmission power control period corresponding to the jth power transmitting antenna are all set to the same length.
  • the TX and RX determine the length of each period to be an optimal time.
  • the detection processing period related to the waveform decay method performed for each transmitting antenna is set to the same length for all transmitting antennas that perform the waveform decay method.
  • the length of the detection processing period By setting the length of the detection processing period to an optimal time, it becomes possible to measure the waveform attenuation index at each transmitting antenna.
  • the detection processing period By setting the detection processing period to the same length for each transmitting antenna that performs the waveform attenuation method, it becomes possible to suppress disturbances and ringing in the transmitted radio wave waveform, and to perform stable communication while detecting foreign objects with high accuracy.
  • the control is described in which the detection processing periods (communication prohibited period, power transmission period, preparation period, and power transmission power control period) for each power transmission antenna are made the same, but this is not limiting.
  • the configuration may be such that the length of the entire detection processing period including the first power transmission power control period is made the same as the length of the entire detection processing period including the second power transmission power control period.
  • a period including at least one of a communication prohibition period, a power transmission period, a preparation period, and a power transmission power control period corresponding to a first power transmission antenna is referred to as a first period.
  • a period including at least one of a communication prohibition period, a power transmission period, a preparation period, and a power transmission power control period corresponding to a second power transmission antenna is referred to as a second period.
  • a configuration may be adopted in which the first period and the second period are controlled to be the same.
  • the TX controls the timing of the waveform attenuation method executed at each transmitting antenna based on the determined detection processing period so that the timing is the same.
  • the communication prohibited period, power transmission period, preparation period, and transmission power control period are the same for each transmitting antenna.
  • the RX determines the timing for executing the waveform attenuation method for each transmitting antenna, it simultaneously transmits an execution request packet for determining the timing to each transmitting antenna of the TX. This simplifies transmission control.
  • the TX determines the timing for executing the waveform attenuation method for each transmitting antenna, the TX only needs to simultaneously set the timing and execute the waveform attenuation method, making control simple.
  • the second control method is a method of controlling so that the above timing for each period is different.
  • the TX Based on the determined detection processing period, the TX sets the waveform attenuation method executed at each transmitting antenna to different timing. For example, one or more of the communication prohibited period, the power transmission period, the preparation period, and the transmission power control period are at different timings for at least one transmitting antenna.
  • the RX determines the timing for executing the waveform attenuation method for each transmitting antenna, it transmits an execution request packet for determining the timing to each transmitting antenna related to the execution of the waveform attenuation method at different timings.
  • the TX receives the execution request packet at different timings from each transmitting antenna, it performs transmission power control at different timings accordingly.
  • the TX performs transmission power control for multiple selected transmitting antennas during a transmission power control period, and can obtain multiple waveform attenuation indices from the measurement results of the attenuation state of the transmitted radio wave.
  • waveform attenuation indices e.g., Quality Factor
  • the TX compares the acquired values of the multiple waveform attenuation indexes with a predetermined threshold value to determine the presence of a foreign object. For example, when a Quality Factor is used as the waveform attenuation index, the TX determines that a foreign object is present if the number of Quality Factors smaller than the threshold value among the multiple Quality Factors is greater than a predetermined number.
  • the TX determines that a foreign object is present if the number of waveform attenuation amounts or waveform attenuation rates that are greater than a threshold value among multiple waveform attenuation amounts or waveform attenuation rates is greater than a predetermined number.
  • the threshold value for determining a foreign object may be set as a predetermined range having an upper threshold value and a lower threshold value.
  • a foreign object determination is made based on the number of waveform attenuation indices that are within a predetermined range based on a threshold value, or the number of waveform attenuation indices that are not within the predetermined range.
  • predetermined number is a number obtained by multiplying the number of times transmission power control is executed by a predetermined ratio.
  • any number can be set as a ratio for determining the "predetermined number,” and the method for determining the "predetermined number” is not limited to this, and any method can be adopted. Furthermore, if the number of Quality Factors smaller than the threshold value among multiple Quality Factors is 1 or more, it may be determined that "foreign matter is present.”
  • TX may compare the value of the waveform attenuation index with a threshold value to determine the possibility that a foreign object exists and express this as a specified index.
  • a threshold value an index indicating the possibility (probability of existence) of a foreign object is referred to as the "probability of existence index" of a foreign object.
  • TX calculates the number of waveform attenuation indexes that fall within a specified range.
  • the specified range is a predefined range having an upper threshold value and a lower threshold value.
  • the TX obtains a presence probability index corresponding to the number of waveform attenuation indexes within the range and notifies the RX.
  • the more waveform attenuation indexes that fall within the specified range the lower the probability of a foreign object being present, and the fewer the waveform attenuation indexes that fall within the specified range, the higher the probability of a foreign object being present.
  • the TX notifies the RX of a presence probability index according to the magnitude of the probability of the presence of a foreign object.
  • the criteria for judgment can be changed arbitrarily depending on the type of waveform attenuation index.
  • the probability of the presence of a foreign object itself may be used as the index of the probability of the presence of a foreign object.
  • the TX can compare each of the multiple waveform attenuation indices with a predetermined threshold value to obtain multiple presence probability indices that correspond to the possibility (presence probability) that a foreign object exists.
  • the TX determines a final result from the multiple presence probability indices.
  • the TX transmits a signal (e.g., ACK or NAK) based on the judgment result to the RX.
  • a signal e.g., ACK or NAK
  • the TX may notify the RX of information indicating the probability of the presence of a foreign object using a specified packet.
  • the RX can receive information on multiple waveform attenuation indicators or presence probability indicators from the TX and perform the above-mentioned foreign object determination.
  • the TX can compare the measurement results at each transmitting antenna with the above-mentioned threshold value to determine the presence or absence of a foreign object at each transmitting antenna, or the possibility that a foreign object exists (probability of existence), and notify the RX of the determination result.
  • the RX can make a comprehensive judgment on the judgment results from each transmitting antenna and make a final judgment on the possibility (probability) of the presence of a foreign object. Also, an example was shown in which the TX calculates a waveform attenuation index from the measurement results, but since the transmitting antenna and the receiving antenna are electromagnetically coupled, the RX can observe the attenuation state of the transmitted wave.
  • the RX may calculate a waveform attenuation index from the measurement results and perform the above-mentioned foreign object determination based on the calculated waveform attenuation index.
  • the TX executes transmission power control multiple times for multiple transmitting antennas. By performing foreign object determination using multiple waveform attenuation indexes calculated from the respective waveform attenuation states, more accurate foreign object detection is possible.
  • Figs. 14(A) and (B) are schematic diagrams showing the configuration of a power transmission device and a power receiving device according to the first embodiment.
  • Fig. 14(A) the processing executed by a power transmission device having multiple power transmission antennas and a power receiving device having one power receiving antenna will be described.
  • the number of power transmission antennas that the power transmitting device 100 can use for power transmission is n, and the number of antennas that the power receiving device 200 can use for power reception is one.
  • the TX transmits power to the RX using multiple power transmission antennas selected from the n power transmission antennas.
  • TX and RX are capable of one-to-one communication.
  • FIG. 15 is a flowchart explaining the processing of the power transmitting device in the first embodiment, and shows the processing of the TX.
  • Figure 16 is a flowchart explaining the processing of the power receiving device in the first embodiment, and shows the processing of the RX. The following processing is realized by each control unit of the TX and RX executing a program stored in memory.
  • processing begins at S1501, and the power supply of the TX is turned ON at S1502. After the Selection phase and Ping phase, the TX detects the RX at S1503. The TX starts transmitting power to the detected RX at S1504.
  • the power transmission at this time is performed in the I&C phase, the Negotiation phase, the Calibration phase, the Power Transfer phase, etc. Next, proceed to the processing of S1505.
  • the TX determines whether or not it has received a packet requesting execution of foreign object detection from the RX. If the packet requesting execution has not been received (No in S1505), the TX waits for a predetermined period of time, and then repeats the determination process in S1505. If the TX has received a packet requesting execution from the RX (Yes in S1505), the TX proceeds to the process in S1506.
  • the TX selects one of the multiple power transmitting antennas to be used for foreign object detection. For example, the TX selects the multiple power transmitting antennas that are being used to transmit power to the RX. Alternatively, the TX may select all of the power transmitting antennas. Alternatively, the TX may select multiple power transmitting antennas that are spaced apart by a predetermined distance.
  • the TX may select multiple transmitting antennas that have detected the placement of an object through transmission from the AP.
  • the three transmitting antennas used to transmit power to the RX are selected.
  • the TX sets each period related to the transmission power control to be executed for the selected transmitting antenna based on the information in the execution request packet received from the RX.
  • Each period related to the transmission power control is set to be the same period.
  • Each period related to transmission power control is a detection processing period, which is a communication prohibited period, a transmission period, a preparation period, a transmission power control period, or a period set to include one or more of these periods.
  • the TX executes transmission power control based on the periods set for the selected transmission antenna.
  • the TX controls the timing of the waveform attenuation method to be executed for each transmitting antenna so that it is the same.
  • the communication inhibition period, transmission period, preparation period, and transmission power control period related to the execution of the waveform attenuation method are the same for each transmitting antenna.
  • the TX may control the timing of the waveform attenuation method to be executed for each transmitting antenna to be different.
  • at least one of the communication inhibition period, the transmission period, the preparation period, and the transmission power control period related to the execution of the waveform attenuation method will have different timing for at least one transmitting antenna.
  • the TX determines whether or not foreign object detection processing has been performed for the selected multiple transmitting antennas.
  • the determination processing in S1509 is repeatedly performed until the waveform attenuation index is measured for all three selected transmitting antennas and foreign object detection processing is performed.
  • the process proceeds to S1510.
  • the TX compares the multiple acquired measurement results with a threshold value to determine the presence or absence of a foreign object, or the possibility (probability of presence) of a foreign object.
  • the TX determines whether the judgment result is "foreign object present" or "there is a high possibility that a foreign object is present.” If the judgment result is obtained (Yes in S1511), the TX proceeds to processing in S1512, and if the judgment result is not obtained (No in S1511), the TX proceeds to processing in S1516.
  • the TX notifies the RX of the determination result ("foreign object present” or "high possibility of the presence of a foreign object") in a specified packet. For example, the TX sends a negative acknowledgement NAK to the RX.
  • the TX notifies the RX of the determination result ("no foreign object” or "low possibility of the presence of a foreign object") in a specified packet. For example, the TX sends an acknowledgement ACK to the RX.
  • the TX may notify the RX of the presence probability index information. For example, the TX obtains the presence probability of a foreign object based on the difference between the measured waveform attenuation index and a set threshold value, and calculates the presence probability index.
  • the packet transmitted from the TX to the RX includes any of the following information: the presence or absence of a foreign object, the possibility of the presence of a foreign object, the probability of the presence of a foreign object, or an index of the probability of the presence of a foreign object.
  • the TX may notify the RX of an action it requests while transmitting the packet.
  • the action request may be an action request to reduce the transmission power of the TX or the reception power of the RX, or an action request to change the GP value.
  • the foreign object detection is based on the power loss method, the Q value measurement method, the waveform attenuation method, the temperature measured by the power transmitting device 100, or the electromagnetic coupling state (e.g., the coupling coefficient) between the power transmitting antenna 105 and the power receiving antenna 205.
  • CAL processing additional or re-perform measurement processing
  • the process proceeds to S1513. Also, from S1516, the process proceeds to S1505.
  • the TX receives an EPT, which is a power transmission stop command, from the RX.
  • the TX stops transmitting power to the RX.
  • the TX receives a specified packet from the RX requesting an operation to limit the TX's transmission power or the RX's receiving power.
  • the TX executes a predetermined operation to limit the transmission power of the TX or the receiving power of the RX.
  • the predetermined operation may be the process flow for determining the GP value described above.
  • the TX may reduce the transmission power to the RX.
  • the series of processes ends.
  • Processing starts at S1601 in FIG. 16, and the power supply of the RX is turned ON at S1602.
  • the TX detects the RX after passing through the Selection phase and Ping phase.
  • the RX starts receiving power transmitted from the TX.
  • the power received here is the power transmitted from the TX in the I&C phase, negotiation phase, Calibration phase, Power Transfer phase, etc. Next, proceed to processing of S1605.
  • the RX determines whether to request foreign object detection from the TX. If the predetermined conditions are met, the RX decides to request foreign object detection from the TX using the waveform attenuation method (Yes in S1605) and proceeds to processing in S1606.
  • the RX decides not to request the TX to detect foreign objects using the waveform attenuation method (No in S1605). In this case, the process of S1606 is repeated and the RX continues receiving power. Examples of the specified conditions in S1605 are shown below.
  • ⁇ An error occurs in communication between TX and RX.
  • RX detects a communication error.
  • a decrease in the power transmitted from the TX to the RX is observed.
  • the acquired calibration data is an abnormal value.
  • the RX receives information from the TX indicating that the calibration data is abnormal.
  • a temperature rise is observed in the TX or RX.
  • the RX detects a temperature rise, or the RX receives information from the TX indicating that the temperature is rising.
  • a high probability that a foreign object is present is detected using a method other than the waveform attenuation method.
  • the RX receives information from the TX indicating that a foreign object is present.
  • These conditions are conditions when the presence of a foreign object is suspected.
  • the specified conditions are conditions when the transmission power transmitted from the TX to the RX is to be increased or decreased.
  • the specified conditions are conditions when the receiving power received by the RX from the TX is to be increased or decreased.
  • the specified condition is a condition when information (set value) related to the transmission power of the TX or information (set value) related to the receiving power of the RX, which is held by the TX or RX, is changed.
  • the specified condition is a condition when the value of the GP is changed.
  • the specified condition is a condition when calibration (CAL processing of the Power Loss method) is performed.
  • the predetermined condition is a condition under which the RX notifies the TX of the RX's state (e.g., received power, etc.). For example, when any one or more of a number of conditions are satisfied, the RX determines to request foreign object detection from the TX.
  • the predetermined condition may be a condition other than the above, and can be set arbitrarily.
  • the RX determines the length of the detection processing period related to the transmission power control executed for each transmitting antenna.
  • the detection processing period and the method for setting it are as described above.
  • the RX transmits to the TX an execution request packet including information for determining each period related to the transmission power control.
  • the information is information for determining the length of the transmission power control period and the length of the communication prohibition period.
  • the execution request packet may be RP0, RP1, or RP2, or individual packets may be used.
  • the execution request packet that the RX sends to the TX in S1607 will be described.
  • the RX sends to the TX the number of execution request packets corresponding to the number of transmitting antennas involved in the execution of the waveform attenuation method.
  • the three transmitting antennas involved in the execution of the waveform attenuation method are referred to as the first to third transmitting antennas.
  • the RX transmits first to third execution request packets to the TX.
  • the first to third execution request packets each include information for determining the respective periods related to the transmission power control of the first to third transmission antennas.
  • the information for determining the detection processing periods related to the transmission power control, which is included in the first to third execution request packets, respectively, is set by the RX so that it is the same for the first transmission antenna, the second transmission antenna, and the third transmission antenna.
  • the RX sets the length of each period in the detection processing period one by one.
  • the setting value of the detection processing period related to the waveform attenuation method executed by each transmitting antenna is set to be the same value for each transmitting antenna.
  • the RX can transmit multiple execution request packets to the TX as separate execution request packets.
  • each execution request packet further includes information that associates each transmitting antenna with the setting value of each detection processing period.
  • the TX notifies the RX of information regarding the transmitting antenna that the TX selected prior to the time of S1605.
  • the information includes the number of transmitting antennas involved in the execution of the waveform attenuation method, the identifiers of the transmitting antennas, and information on the type and electrical characteristics of the transmitting antennas.
  • Each execution request packet includes information relating to the transmitting antenna, which associates the identifier of the transmitting antenna with the setting value of each detection processing period, to identify the target transmitting antenna and indicate which transmitting antenna the detection processing period is for.
  • Each execution request packet includes information relating to the power transmission unit, which associates the identifier of the power transmission unit with the setting value of each detection processing period, as information relating to the power transmission unit for identifying the target power transmission unit in order to indicate which power transmission unit the detection processing period is for.
  • the RX determines the timing for executing the waveform decay method for each transmitting antenna
  • the RX transmits multiple execution request packets including identifiers of each transmitting antenna related to the execution of the waveform decay method at different timings.
  • the multiple execution request packets contain the same information for determining each period related to the transmission power control.
  • the TX receives an execution request packet including an identifier of a transmission antenna, it performs transmission power control at the transmission antenna with that identifier.
  • the TX receives multiple execution request packets at different times, it performs transmission power control at each transmission antenna at different times accordingly. Note that the above-mentioned transmission antenna may be replaced with a power transmission unit.
  • the RX can transmit the first to third execution request packets to the TX as a single execution request packet.
  • the RX transmits to the TX an execution request packet that includes identifiers of the three power transmitting antennas and the corresponding three detection processing period setting values.
  • One execution request packet includes a list (information) that associates the identifier of each power transmitting antenna with the setting value of each detection processing period.
  • the TX that receives the execution request packet can recognize the setting value of the detection processing period for each power transmitting antenna that is the target of execution. Note that the above-mentioned power transmitting antenna may be replaced with a power transmitting unit.
  • One execution request packet contains a list (information) that associates the identifier of each power transmitting unit with the setting value of each detection processing period. In addition, it is considered to control the above-mentioned periods in each power transmitting antenna so that they have the same timing.
  • the RX determines the timing to execute the waveform attenuation method (transmission power control) in each power transmitting antenna, it can transmit the above-mentioned one execution request packet to the TX as a packet that determines the timing.
  • the TX When the TX receives the execution request packet, it executes the waveform attenuation method (transmission power control) simultaneously for each transmitting antenna. Alternatively, if the TX determines the timing for executing the waveform attenuation method for each transmitting antenna, the TX can execute the waveform attenuation method simultaneously at that timing.
  • the waveform attenuation method transmission power control
  • the TX receives one execution request packet as described above from the RX, the TX controls the timing at which the TX executes the waveform attenuation method (transmission power control) at each transmitting antenna to be shifted by a predetermined period and executed at different timings.
  • the above-mentioned power transmission antenna may be replaced with a power transmission unit.
  • the detection processing period related to the waveform decay method executed for multiple power transmission antennas is set to the same length for all power transmission antennas for which the waveform decay method is executed.
  • the RX transmits one execution request packet to the TX, which includes one piece of time information for each period set by the above-mentioned method.
  • the TX sets the length of the detection processing period of each transmitting antenna for which the waveform attenuation method is to be executed to the same value based on each piece of time information included in the received execution request packet.
  • the process proceeds to S1608, where the RX determines whether or not it has received the foreign object detection determination result from the TX. If a notification packet including the foreign object detection determination result is not received from the TX (No in S1608), the RX waits until it receives the notification packet, and the determination process of S1608 is repeated. If the RX receives the notification packet from the TX (Yes in S1608), the process proceeds to S1609.
  • the RX determines whether the judgment result included in the received notification packet satisfies a predetermined condition.
  • the predetermined condition is, for example, that a judgment result of "foreign object present” or "there is a high possibility that a foreign object is present” is obtained.
  • the RX transmits a power transmission stop command (EPT) to the TX.
  • EPT power transmission stop command
  • the RX may transmit to the TX a specified packet requesting an operation to reduce the TX transmission power or the RX reception power, or a specified packet requesting an operation to change the GP value.
  • the RX executes a predetermined operation to limit the transmission power of the TX or the receiving power of the RX.
  • the predetermined operation can be the process flow for determining the GP value described above.
  • the RX may request the TX to execute an additional measurement process (CAL process) for setting a threshold value used in foreign object detection, or to execute it again.
  • CAL process additional measurement process
  • the foreign object detection may be based on the power loss method, the Q value measurement method, the waveform attenuation method, the temperature measured at the TX, or the electromagnetic coupling state (e.g., the coupling coefficient) between the transmitting antenna and the receiving antenna.
  • the series of processes ends at S1611.
  • RX executes a predetermined process, and then proceeds to the process of S1605.
  • An example of the predetermined process is shown below.
  • CAL process for setting the threshold value used in foreign object detection.
  • FIG. 17 is a sequence diagram explaining an example of processing by the power transmitting device and power receiving device according to the first embodiment, showing an example of the operation of the TX and RX.
  • the operation of the TX is shown on the left, and the operation of the RX is shown on the right.
  • the TX After the TX is powered on, it transitions to the Selection phase and the Ping phase, and upon detecting the placement of the RX, it starts the power transmission process.
  • the RX is powered on, it is placed on the TX, and transitions to the Selection phase and the Ping phase.
  • the RX determines the execution request for foreign object detection and determines the length of the detection processing period.
  • the RX transmits an execution request packet requesting the TX to detect foreign objects using the waveform attenuation method.
  • the TX having received the execution request packet, selects a transmitting antenna to execute foreign object detection and sets the length of the detection processing period corresponding to the selected transmitting antenna.
  • the TX measures the waveform attenuation index and performs a foreign object determination based on the measurement results.
  • the TX notifies the RX of the foreign object determination results.
  • the RX analyzes the acquired foreign object determination results and sends a power transmission stop command (EPT) to the TX.
  • EPT power transmission stop command
  • FIG. 14(B) shows an example in which three power transmitting coils are selected from the n power transmitting antennas in the power transmitting device 100, and the power receiving device 200 having three power receiving antennas receives power.
  • TX and RX are capable of independent communication in an n-to-n (e.g., 3-to-3) configuration.
  • Figure 18 is a flowchart explaining the processing of the power transmitting device in the first embodiment, and shows the TX processing.
  • Figure 19 is a flowchart explaining the processing of the power receiving device in the first embodiment, and shows the RX processing.
  • the TX determines that it has received a packet requesting execution of foreign object detection from the RX (Yes in S1705), it proceeds to processing in S1706.
  • the TX sets each period (detection processing period) related to the transmission power control to be executed in the transmitting antenna that received the execution request packet, based on the information in the execution request packet received from the RX.
  • the TX sets the length of each period related to the transmission power control to be executed for the three selected transmitting antennas (the three transmitting antennas that received the execution request packet) to be the same.
  • the TX executes the transmission power control for the three transmitting antennas that received the execution request packet based on each of the set periods. Next, the process proceeds to S1708.
  • the TX determines whether the execution of the foreign object detection operation has been completed for all transmitting antennas that received the request to execute foreign object detection. If the waveform attenuation index has been measured for all three transmitting antennas that received the execution request packet and the execution of the foreign object detection operation has been completed (Yes in S1708), the TX proceeds to processing in S1709.
  • the TX compares the acquired multiple measurement results with a threshold value to determine whether a foreign object is present. If the determination result is "foreign object present” or “there is a high possibility that a foreign object is present” (Yes in S1710), the process proceeds to S1711. If the determination result is "no foreign object present” or “there is a low possibility that a foreign object is present” (No in S1710), the process proceeds to S1715.
  • the TX notifies the RX of the determination result ("foreign object present" or "high possibility of foreign object presence") in a specified packet. This can be achieved, for example, by the TX sending a negative acknowledgement NAK to the RX.
  • the TX receives a power transmission stop command (EPT) from the RX, and in S1713 the TX stops transmitting power to the RX.
  • EPT power transmission stop command
  • the TX receives a specified packet from the RX requesting an operation to limit the TX transmission power or the RX reception power.
  • the RX then executes a specified operation to limit the TX transmission power or the RX reception power.
  • the specified operation may be the process flow for determining the GP value described above.
  • the TX may reduce the power transmitted to the RX.
  • the TX may include information requesting the RX to perform a specific operation in a packet containing the result of the foreign object detection determination and transmit the packet to the RX.
  • the series of processes ends.
  • the TX notifies the RX of the determination result ("no foreign object” or "low possibility of the presence of a foreign object") in a specified packet. This can be achieved by the TX sending an ACK acknowledgement to the RX, for example. Then, the process proceeds to S1705 to continue power transmission.
  • the RX selects a power transmitting antenna for performing foreign object detection.
  • a power transmitting antenna for transmitting a packet requesting execution of foreign object detection is selected.
  • the RX can select, as the power transmitting antenna for requesting foreign object detection, one of multiple power transmitting antennas used for transmitting power to the RX, or all power transmitting antennas facing the power receiving antennas possessed by the RX.
  • the RX may select multiple transmitting antennas based on a predetermined rule. For example, it is possible to select multiple transmitting antennas that are separated by a predetermined distance from multiple transmitting antennas that face the receiving antenna possessed by the RX. In the example shown in FIG. 14(B), three transmitting antennas that are used to transmit power to the RX are selected.
  • the configuration is not limited to one in which the RX selects the transmitting antenna that performs foreign object detection, and the TX may select the transmitting antenna that performs foreign object detection.
  • the TX notifies the RX of predetermined information on the transmitting antenna that performs foreign object detection, and the RX selects the transmitting antenna that transmits the execution request packet based on that information. After S1806, the process proceeds to S1807.
  • the RX determines the detection processing period related to the foreign object detection processing.
  • the detection processing period and the method for setting it are as described above.
  • the RX transmits to the TX an execution request packet including information for determining each period related to the transmission power control.
  • the information included in the execution request packet is, for example, information for determining the length of the transmission power control period and the length of the communication prohibition period.
  • the execution request packet may be RP0, RP1, or RP2. Also, individual packets may be used as the execution request packet.
  • RX transmits the execution request packet to each of the three transmitting antennas selected in S1806. For example, the transmitting antennas selected by RX in S1806 are the first to third transmitting antennas.
  • the receiving antennas facing the first to third transmitting antennas, respectively, are called the first to third receiving antennas.
  • the RX transmits execution request packets containing the same information for determining each period related to the transmission power control from each of the first to third receiving antennas to the first to third transmitting antennas.
  • the RX may control the timing of the waveform attenuation method (transmission power control) executed by each transmission antenna so that the timing is the same.
  • the RX simultaneously transmits an execution request packet to each transmission antenna related to the execution of the waveform attenuation method.
  • the TX that receives the execution request packet sets the communication prohibition period, transmission period, preparation period, and transmission power control period for each transmission antenna so that they are all at the same timing.
  • the TX executes the waveform attenuation method (transmission power control) at the same timing for each transmitting antenna.
  • the timing of each of the above periods for each transmitting antenna may be controlled so that each period has a different timing.
  • the RX transmits an execution request packet to each transmitting antenna involved in executing the waveform attenuation method, the execution request packet including an instruction to set each period to a different timing.
  • the RX transmits an execution request packet at different times to each transmitting antenna involved in the execution of the waveform attenuation method.
  • the execution request packet includes the same information for determining each period related to the transmission power control.
  • the TX receives the execution request packet transmitted by the RX at different times for each transmitting antenna, the TX performs transmission power control at different times for each transmitting antenna accordingly.
  • the TX controls at least one of the communication prohibition period, power transmission period, preparation period, and power transmission power control period for each power transmission antenna so that the timing is different for at least one power transmission antenna.
  • the TX may control the timing at which the TX executes the waveform attenuation method (transmitted power control) for each transmitting antenna to be shifted by a predetermined period and executed at different timings. After S1808, the process proceeds to S1809.
  • the RX receives information from the TX indicating that the foreign object detection operation has been completed at each transmitting antenna. This information includes information used for foreign object determination at the transmitting antenna selected by the RX. In S1810, the RX determines whether or not the result of the foreign object detection determination has been received from the TX.
  • the processes of S1810 to S1814 are similar to the processes of S1608 to S1612 in FIG. 16, respectively, and therefore will not be described here.
  • FIG. 20 is a sequence diagram explaining another example of processing of the power transmitting device and the power receiving device according to the first embodiment, showing an example of the operation of the TX and the RX. Only the differences from FIG. 17 will be explained.
  • the RX determines the execution request for foreign object detection, it selects the power transmitting antenna related to the execution of foreign object detection and determines the length of the detection processing period.
  • the RX transmits an execution request packet requesting the TX to detect a foreign object using the waveform attenuation method.
  • the TX that receives the execution request packet sets the length of the detection process period for the power transmission antenna selected by the RX. Note that in the above example, the TX and RX perform control through communication based on the first standard (WPC standard) between the first communication unit 104 of the TX and the first communication unit 204 of the RX.
  • WPC standard the first standard
  • the TX and RX may perform control through communication based on a second standard (a standard other than the WPC standard) that is performed between the second communication unit 109 of the TX and the second communication unit 212 of the RX.
  • the TX may have a second communication unit 109 in each of the power transmitting units 103a, 103b, and 103c.
  • the RX may have a second communication unit 212 in each of the power receiving units 203a, 203b, and 203c. In this case, faster communication is possible, making it possible to perform appropriate control.
  • noise may occur in a specific frequency band.
  • the spectrum is limited to that frequency.
  • the spectrum will have a spectrum other than the specified frequency, depending on the transmission pause period and cycle.
  • transmission power control for multiple transmission antennas it is assumed that multiple detection processing periods are each set to the same length and repeated multiple times.
  • electromagnetic waves with relatively large power may be generated in a specific frequency band other than the frequency band used for power transmission (e.g., 87 kHz to 205 kHz).
  • the electromagnetic waves in the specific frequency band may not be so large that no problem may occur.
  • the Radio Laws of each country set limits on power in each frequency band, but depending on the power transmission conditions, the strength of electromagnetic waves generated at frequencies other than those between 87 kHz and 205 kHz may exceed the regulated values.
  • a method for controlling each period related to the transmission power control of the waveform attenuation method executed by multiple transmission antennas to different lengths.
  • the detection processing period related to the waveform attenuation method executed by each transmission antenna is set to be a different length for all transmission antennas involved in the execution of the waveform attenuation method, or at least for some of the transmission antennas.
  • the communication prohibition periods corresponding to the first through Nth power transmitting antennas involved in the execution of the waveform attenuation method are all set to different lengths.
  • the length of the communication prohibition period corresponding to at least one of the first through Nth power transmitting antennas is set to a length different from the communication prohibition periods corresponding to the other power transmitting antennas.
  • control may be configured so that the length of the entire detection processing period including at least the power transmission power control period corresponding to the first power transmission antenna is different from the length of the detection processing period including at least the power transmission power control period corresponding to the second power transmission antenna.
  • the configuration may be such that the length of at least one of the communication prohibition period, power transmission period, preparation period, and power transmission power control period related to the first power transmitting antenna is controlled to be different from the length of the corresponding period in the detection processing period related to the second power transmitting antenna.
  • the TX and RX it is possible to change the length and timing of the period (start or end point of the period).
  • the TX sets the communication prohibition period, power transmission period, preparation period, and power transmission power control period for each power transmitting antenna to the same timing for each power transmitting antenna based on the determined detection processing period.
  • the RX determines the timing for executing the waveform attenuation method for each power transmitting antenna, it can simultaneously transmit an execution request packet that determines the timing for transmission to the TX.
  • the TX determines the timing for executing the waveform attenuation method for each transmitting antenna, the TX can execute the waveform attenuation method at the same time. In either case, it is possible to simplify the control.
  • the TX can control, based on the determined detection processing period, at least one of the communication prohibition period, power transmission period, preparation period, and power transmission power control period for each power transmission antenna to have different timing for at least one power transmission antenna.
  • the method for setting each of the above periods is as described in the first embodiment.
  • the TX or RX determines the optimal length of each period based on the setting method described in the first embodiment.
  • the length of the detection processing period is determined by the method of the first embodiment, and from the second time onwards, a detection processing period is determined that is adjusted to have a length different from the first detection processing period.
  • the method for adjusting the period length at this time may be any method.
  • the TX also determines the detection processing period based on information contained in the execution request packet received from the RX.
  • the execution request packet includes information for determining the length of the detection processing period.
  • the RX sets the length of the detection processing period corresponding to the information so that it is a different length for each transmitting antenna where the waveform attenuation method is executed.
  • the length (time) of the detection processing period is set to a different value for each of multiple transmitting antennas involved in the execution of the waveform attenuation method.
  • the method described in the first embodiment can be applied to the method of foreign object determination that is performed based on multiple measurement results obtained when the TX measures waveform attenuation indices (Q value, etc.) for multiple transmitting antennas.
  • FIG. 21 is a flowchart explaining the processing of the power transmitting device in the second embodiment, and shows the processing of the TX.
  • steps S1901 to S1904 and S1909 to S1916 in FIG. 21 are similar to the processes in steps S1501 to S1504 and S1509 to S1516 in FIG. 15, respectively, and therefore will not be described.
  • the process proceeds to S1905.
  • the TX waits until it receives a packet requesting execution of foreign object detection from the RX (No in S1905). If the TX receives a packet requesting execution of foreign object detection from the RX (Yes in S1905), the process proceeds to S1906. In S1906, the TX selects, based on the information contained in the packet requesting execution, a power transmitting antenna that will perform the foreign object detection operation from among the multiple power transmitting antennas that the TX possesses.
  • TX sets each period related to transmission power control for the three selected transmitting antennas based on the information in the foreign object detection request packet.
  • the TX may control the timing of the waveform attenuation method (transmission power control) executed by each transmission antenna so that it is the same.
  • the method of control is as described in the first embodiment. In other words, the communication inhibition period, transmission period, preparation period, and transmission power control period related to the waveform attenuation method executed by the TX at each transmission antenna are the same for each transmission antenna.
  • the TX may control the timing of the waveform attenuation method (transmission power control) executed by each transmission antenna to be different.
  • the method of this control is as described in the first embodiment.
  • at least one of the communication inhibition period, transmission period, preparation period, and transmission power control period related to the waveform attenuation method executed by the TX at each transmission antenna has different timing for at least one transmission antenna.
  • the periods related to the transmission power control for the three transmitting antennas selected by the TX are set to be different lengths.
  • the TX executes the transmission power control for the three selected transmitting antennas based on the respective set periods. Then, the process proceeds to S1909.
  • the detection processing period related to the waveform attenuation method executed by each transmitting antenna is set to a different length for all transmitting antennas for which the waveform attenuation method is executed, or for at least some of the transmitting antennas.
  • the RX determines to request foreign object detection using the waveform attenuation method from the TX (Yes in S1605), the process proceeds to S1606.
  • the RX determines the length and timing of the detection processing period related to the foreign object detection process.
  • the detection processing period is a period including a preparation period, a transmission power control period, a communication prohibition period, and a power transmission period.
  • RX transmits to TX an execution request packet including information for determining each period related to transmission power control.
  • the information included in the execution request packet is, for example, information for determining the length of the transmission power control period and the length of the communication prohibition period.
  • the RX sends execution request packets to the TX the same number of times as the number of transmitting antennas related to the execution of the waveform attenuation method.
  • the transmitting antennas related to the execution of the waveform attenuation method are the first to third transmitting antennas, and the RX sends the first to third execution request packets to each transmitting antenna.
  • the first to third execution request packets each include information for determining each period related to the transmission power control of the first to third power transmitting antennas. At least some of this information is set differently for the first to third power transmitting antennas.
  • the RX sets each period of the detection processing period one by one using the method described in the first embodiment.
  • RX shifts each period of the detection processing period by a specified amount based on each set period, and sets two new periods for each detection processing period. As a result, three periods of the detection processing period are determined by RX. Each period of the detection processing period determined by RX is of a different length (time).
  • the RX allocates the determined detection processing period to each of the first to third power transmitting antennas.
  • the detection processing period related to the waveform attenuation method executed by each power transmitting antenna is set to a different length for all power transmitting antennas involved in the execution of the waveform attenuation method, or for at least some of the power transmitting antennas.
  • the first to third execution request packets may be sent as separate execution request packets or as a single execution request packet from RX to TX.
  • the RX determines each of the detection processing periods one by one by the method described in the first embodiment.
  • the RX transmits one execution request packet including information on the determined detection processing period to the TX.
  • the TX receives the execution request packet, that is, a packet including one piece of time information (information representing a representative value) for each period of the detection processing period, from the RX.
  • the TX selects, from among the multiple power transmitting antennas, a power transmitting antenna that will perform the foreign object detection operation.
  • the method for selecting the transmitting antenna is the method described in the first embodiment (FIG. 15: S1506).
  • the TX shifts each of the detection processing periods by a predetermined time based on each of the detection processing periods based on the acquired time information, and sets two new detection processing periods for each period.
  • the TX determines three periods each. The lengths of the three sets of periods determined by the TX are different.
  • the TX sets each of the determined detection processing periods (each of the three sets of periods) as detection processing periods corresponding to the first to third transmitting antennas, respectively. In this way, it is possible to set each period to a different length for all transmitting antennas involved in the execution of the waveform attenuation method, or for at least some of the transmitting antennas.
  • FIG. 22 is a flowchart for explaining the processing of the power receiving device in the second embodiment, and shows the processing of RX. Note that the processing of S1701 to S1704 and S1708 to S1715 in Fig. 18 is the same as in the first embodiment, and therefore the description thereof will be omitted.
  • the process proceeds to S1705.
  • the TX waits until it receives a packet requesting execution of foreign object detection from the RX (No in S1705). If the TX receives a packet requesting execution of foreign object detection from the RX (Yes in S1705), it proceeds to S1706.
  • the TX sets each period related to the transmission power control for each transmitting antenna using the method described above, based on the time information in the execution request packet received from the RX.
  • Each period related to the transmission power control for the three transmitting antennas selected by the RX is set to a different length.
  • the TX performs transmission power control for the three transmitting antennas selected by the execution request packet based on the set periods.
  • the RX can control the timing of the waveform attenuation method that the TX executes for each transmitting antenna so that they are the same.
  • the method of this control is as described in the first embodiment.
  • the communication prohibition period, power transmission period, preparation period, and power transmission power control period related to the waveform attenuation method are the same for each power transmission antenna.
  • the RX may control the timing of the waveform attenuation method executed by the TX for each power transmission antenna to be different.
  • the method of this control is as described in the first embodiment.
  • at least one of the communication inhibition period, power transmission period, preparation period, and power transmission control period related to the waveform attenuation method has different timing for at least one power transmission antenna.
  • the RX determines the detection processing period for the foreign object detection processing using the waveform attenuation method.
  • the detection processing period is a period that includes the preparation period, the transmission power control period, the communication prohibition period, and the power transmission period.
  • RX transmits to TX an execution request packet including information for determining each period related to transmission power control.
  • the information is, for example, information for determining the length of the transmission power control period and the length of the communication prohibition period.
  • the execution request packet may be RP0, RP1, or RP2, or individual packets may be used.
  • the RX transmits an execution request packet (first to third execution request packets) to each of the three transmitting antennas (first to third transmitting antennas) selected in S2206.
  • the first to third execution request packets each include information for determining each period related to the transmission power control for the first to third transmitting antennas.
  • the RX sets each period of the detection processing period one by one using the method described in the first embodiment.
  • the RX shifts each period of the detection processing period by a predetermined time based on each set period, and sets two new periods of the detection processing period each.
  • each of the three periods has a different length.
  • the RX allocates the determined detection processing periods (each of the three sets of periods) to the first to third transmitting antennas.
  • the detection processing periods related to the waveform attenuation method executed by each of the multiple transmitting antennas are set to different lengths for all transmitting antennas involved in the execution of the waveform attenuation method, or for at least some of the transmitting antennas.
  • the RX transmits an execution request packet including time information for determining each period related to the transmission power control from each of the three receiving antennas facing the transmitting antenna selected in S2206 to each of the three opposing transmitting antennas.
  • the RX transmits to the TX, for all transmitting antennas involved in the execution of the waveform attenuation method, an execution request packet including one piece of time information (information representing a representative value) for each period of the detection processing period set by the above-mentioned method.
  • the TX receives from the RX an execution request packet including time information of the detection processing period for each transmitting antenna that executes the waveform attenuation method.
  • the TX sets two new detection processing periods each based on the received time information and shifts each detection processing period by a specified time, using each period as a reference. As a result, three periods each are determined by the TX.
  • the three detection processing periods determined by the TX are of different lengths.
  • the TX sets each of the three detection processing periods determined as the detection processing periods for each of the first to third power transmitting antennas. Note that in the above example, the TX and RX are described as performing control through communication based on the first standard (WPC standard) between the first communication unit 104 of the TX and the first communication unit 204 of the RX.
  • WPC standard the first standard
  • the TX and RX may perform control through communication based on a second standard (a standard other than the WPC standard) performed between the second communication unit 109 of the TX and the second communication unit 212 of the RX.
  • the TX may have a second communication unit 109 in each of the power transmitting units 103a, 103b, and 103c.
  • the RX may have a second communication unit 212 in each of the power receiving units 203a, 203b, and 203c. In this case, faster communication is possible, making it possible to perform appropriate control.
  • the set value of the detection processing period related to the waveform attenuation method executed for each power transmitting antenna is set to a different value.
  • the detection processing period is set to a different length for all power transmitting antennas involved in the execution of the waveform attenuation method, or at least for some of the power transmitting antennas. According to this embodiment, it is possible to achieve more reliable foreign object detection while suppressing noise in specific frequency bands other than the frequency band used for power transmission.
  • the TX sets the length of each period related to the transmission power control to an optimal value and performs transmission power control at the selected transmitting antenna.
  • this method has the advantages of enabling more accurate foreign object detection, enabling foreign object detection in a shorter time, enabling more stable communication, and enabling faster communication.
  • the length of each period related to the transmission power control is set to a different value for each selected power transmitting antenna.
  • predetermined condition is a condition corresponding to whether the power transmitted from TX to RX or its set value is less than a threshold value or greater than or equal to a threshold value. For example, even if the method of the first embodiment is used when the power transmitted from TX to RX or its set value is less than a predetermined value, noise in a particular frequency band may not be so large that no problem occurs.
  • the set value of the transmission power can be the set value related to the transmission power determined by negotiation between the TX and the RX.
  • the information stored in RP0, RP1, and RP2 that the RX transmits to the TX may be used.
  • the information on the RX's received power value stored in these packets may be used in place of the transmitted power.
  • the load power consumed by the RX's load may be used in place of the transmitted power.
  • predetermined condition is a condition that corresponds to the strength of the electromagnetic coupling between the TX transmitting antenna and the RX receiving antenna. For example, if the electromagnetic coupling between the two antennas is strong and it is determined that the power leaking between the antennas is less than a reference value (threshold value), the method of the first embodiment can be used.
  • the reason for this is that noise in a particular frequency band may not be a problem. If the values of the coupling state index for both antennas are within the reference range and the leaking power is less than the reference value, the method of the first embodiment can be used. Also, if the values of the coupling state index for both antennas are outside the reference range and the leaking power is equal to or greater than the reference value, the method of the second embodiment can be used.
  • the strength of the electromagnetic coupling between the transmitting antenna and the receiving antenna can vary due to the following reasons.
  • the first reason is related to the performance of the transmitting antenna and the receiving antenna. For example, the greater the difference between the size (antenna diameter) of the transmitting antenna and the size (antenna diameter) of the receiving antenna, the weaker the electromagnetic coupling between the two antennas may be.
  • the RX mounted on the TX controls switching between the method of the first embodiment and the method of the second embodiment. For example, when a first type of transmitting antenna (or receiving antenna) is used, the method switches to the method of the first embodiment, and when a second type of transmitting antenna (or receiving antenna) is used, the method switches to the method of the second embodiment.
  • the second cause is related to misalignment of the RX placed on the TX. For example, if the position of the RX is misaligned from its initial position relative to the TX, the relative positions of the transmitting antenna and the receiving antenna change, and the electromagnetic coupling between the two antennas may become weaker than before the misalignment.
  • the TX or RX detects a change in the relative position between the TX and RX, and performs control to switch to the method of the first embodiment if the amount of positional deviation is within a specified range, and to switch to the method of the second embodiment if the amount of positional deviation is not within the specified range.
  • Methods for detecting changes in the relative position between TX and RX include using the results of measurements made by photoelectric sensors, eddy current displacement sensors, contact displacement sensors, ultrasonic sensors, image discrimination sensors, weight sensors, etc., mounted on the TX or RX.
  • the quality factor of a transmitting antenna can be measured by the Q value measurement method, the waveform attenuation method, etc. Alternatively, there is a method of measuring the change in the coupling condition index (coupling coefficient) between the transmitting antenna and the receiving antenna.
  • Methods for measuring the Quality Factor used to detect misalignment include, for example, transmitting a signal at a resonant frequency (sine wave, square wave, etc.) and measuring the Quality Factor at that resonant frequency. Another method is to transmit signals at multiple frequencies near the resonant frequency multiple times and measure their Quality Factors.
  • a signal e.g., a pulse wave
  • the measurement results are processed (e.g., a Fourier transform). Then, the Quality Factor at multiple frequencies is measured.
  • a method may be used that uses the resonant frequency of the power transmitting antenna, the sharpness of the resonant curve, or the inductance value of the power transmitting antenna, the coupling coefficient between the power transmitting antenna and an object placed on the TX, or the measurement results of the electrical characteristics of the power transmitting unit including the power transmitting antenna of the TX.
  • a determination may be made based on the measurement results of the electrical characteristics at one or more frequencies.
  • a method for measuring electrical characteristics at multiple frequencies can be achieved by transmitting signals of each frequency (sine wave, square wave, etc.) multiple times and measuring the electrical characteristics of the signals of each frequency. This method has the advantage that measurements can be made with relatively little calculation processing in the power transmission device.
  • a signal e.g., a pulse wave
  • the measurement results can be processed (e.g., a Fourier transform) to calculate the electrical characteristics at multiple frequencies.
  • a signal having some frequency components at multiple frequencies can be transmitted multiple times, and the measurement results can be processed (e.g., a Fourier transform) to calculate the electrical characteristics at multiple frequencies.
  • This method has the advantage that the number of times signals need to be transmitted for measurement can be reduced, allowing measurements to be made in a relatively short time.
  • a method may be used in which the change in the relative position between the TX and RX is detected by measuring the change over time in the received power value of the RX.
  • the TX and RX may perform wireless communication according to a standard different from the WPC standard.
  • the method of the first embodiment if the method of the first embodiment is used, noise generated by the transmission power control of the TX may affect the communication. Therefore, if the TX and RX do not perform wireless communication according to a standard different from the WPC standard, control is performed to switch to the method of the first embodiment, and if the TX and RX perform wireless communication according to a standard different from the WPC standard, control is performed to switch to the method of the second embodiment.
  • control entity that decides to change from the method of the first embodiment to the method of the second embodiment may be either the control unit of the TX or the control unit of the RX.
  • the contents of the first to third embodiments may be implemented in any combination.
  • other known measurement methods related to the Quality Factor which is one of the waveform attenuation indexes, can also be applied to the above embodiments.
  • the processing described in the embodiments may be performed by devices different from the RX and TX.
  • another device may measure the voltage or current during the period when the TX limits power transmission, and/or determine the presence or absence of a foreign object based on the measurement results.
  • the other device may also determine the length of the detection processing period.
  • the other device may also control the RX and TX to perform the processing described in the above embodiment.
  • the TX or RX When the TX or RX detects the possible presence of a foreign object by the foreign object detection method, the TX or RX performs a first notification process for the user.
  • the notification to the user is a notification encouraging the removal of the foreign object that is between the power transmitting antennas or on the power transmitting antenna. This can be realized, for example, by using the UI unit 202 of the RX to perform various outputs to the user.
  • the various outputs include the screen display on the LCD panel, the blinking or color change of the LED, the audio output from the speaker, and the vibration of the RX body by the vibration motor.
  • the TX may have the same function as the UI unit 202 of the RX, and may notify the user to encourage the removal of the foreign object on the TX.
  • the coupling between the transmitting antenna and the receiving antenna may be weakened due to misalignment between the two antennas. If the measured value of the antenna coupling state index falls below a predetermined threshold, the RX performs a second notification process to prompt the user to reposition the RX on the TX. This can be achieved by using the UI unit to provide various outputs to the user as described above.
  • the possibility of appropriate power transmission from the TX to the RX increases.
  • the first notification process and the second notification process may have different notification contents so that the user can distinguish between them.
  • the power transmitting device and the power receiving device may be, for example, a tablet device, a hard disk device, a memory device, or an information processing device such as a personal computer (PC). They may also be imaging devices such as a still camera or a video camera, image input devices such as a scanner, or image output devices such as a printer, a copier, or a projector.
  • imaging devices such as a still camera or a video camera
  • image input devices such as a scanner
  • image output devices such as a printer, a copier, or a projector.
  • the power receiving device of the present disclosure may also be an information terminal device.
  • the information terminal device has a display unit (display) that displays information to a user and is supplied with power received from the power receiving antenna.
  • the power received from the power receiving antenna is stored in a power storage unit (battery), and power is supplied from the battery to the display unit.
  • the power receiving device may have a communication unit that communicates with other devices different from the power transmitting device.
  • the communication unit may be compatible with communication standards such as NFC communication and the fifth generation mobile communication system (5G).
  • the power receiving device of the present disclosure may also be a vehicle such as an automobile.
  • an automobile serving as a power receiving device may receive power from a charger (power transmitting device) via a power transmitting antenna installed in a parking lot.
  • an automobile serving as a power receiving device may receive power from a charger (power transmitting device) via a power transmitting antenna embedded in the road.
  • the received power is supplied to a battery.
  • the power from the battery may be supplied to a driving unit (motor, electric unit) that drives the wheels, or it may be used to drive sensors used for driving assistance or a communication unit that communicates with external devices.
  • the power receiving device may have, in addition to the wheels, a battery, a motor or sensor that is driven using the received power, and even a communication unit that communicates with devices other than the power transmitting device.
  • the power receiving device may have a housing unit for housing a person.
  • the sensor may be a sensor used to measure the distance between the vehicle and other obstacles.
  • the communication unit may be compatible with, for example, the Global Positioning System (GPS).
  • GPS Global Positioning System
  • the communication unit may also be compatible with communication standards such as the fifth generation mobile communication system (5G).
  • 5G fifth generation mobile communication system
  • the vehicle may also be a bicycle or a motorcycle.
  • the power receiving device of the present disclosure may also be an electric tool, a home appliance, etc.
  • These devices which are power receiving devices, may have a battery as well as a motor that is driven by the received power stored in the battery.
  • These devices may also have a notification means for notifying the remaining battery charge, etc.
  • These devices may also have a communication unit that communicates with other devices other than the power transmitting device.
  • the communication unit may be compatible with communication standards such as NFC and the fifth generation mobile communication system (5G).
  • the power transmission device disclosed herein may be an in-vehicle charger that transmits power to a mobile information terminal device such as a smartphone or tablet that supports wireless power transmission within an automobile.
  • Such an on-board charger may be installed anywhere in the vehicle.
  • the on-board charger may be installed in the vehicle's console, instrument panel (dashboard), between the passenger seats, on the ceiling, or in the door. However, it is best not to install it in a location that interferes with driving.
  • the power transmission device has been described as an example of an on-board charger, such chargers are not limited to those installed in vehicles, and may also be installed on transport vehicles such as trains, airplanes, and ships. In this case, the charger may also be installed in a position between passenger seats, on the ceiling, or in the door.
  • a vehicle such as an automobile equipped with an on-board charger may be the power transmitting device.
  • the power transmitting device has wheels and a battery, and supplies power to the power receiving device via a power transmitting circuit unit and a power transmitting antenna using the power of the battery.
  • the present disclosure can also be realized by supplying a program that realizes one or more functions of the above-described embodiments to a system or device via a network or storage medium, and having one or more processors in a computer of the system or device read and execute the program.
  • a specific compiler can be used to automatically generate a dedicated circuit on the FPGA from a program for implementing each step.
  • a gate array circuit can be formed in the same way as an FPGA, and implemented as hardware.
  • the present invention has been described above in detail based on a preferred embodiment, but the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and are not excluded from the scope of the present invention. Furthermore, the present invention includes, for example, implementations that use at least one processor or circuit to realize the functions of the above embodiment. It is also possible to use multiple processors to perform distributed processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

In order to provide technology that, in a power-transmitting device having a plurality of power-transmitting coils, controls a processing period pertaining to measurement processing executed during a period in which power transmission to a power-receiving device is limited, this power-transmitting device 100 wirelessly transmits power to a power-receiving device 200 using a plurality of power-transmitting coils 105. The power-receiving device 200 is capable of receiving power via a power-receiving coil 205. The power-transmitting device 100 measures voltage or current in the power-transmitting coils 105 at two or more points in time when power transmission to the power-receiving device 200 is stopped or during a power transmission restriction period in which the transmitted power is reduced. When a request to execute a foreign object detection process is received from the power-receiving device 200, the power-transmitting device 100 sets the processing period during which measurement processing is performed for a plurality of selected power-transmitting coils 105 for each power-transmitting coil on the basis of time information pertaining to the processing period, the time information being received from the power-receiving device 200.

Description

送電装置、受電装置、無線電力伝送システム、無線電力伝送の制御方法、および記憶媒体POWER TRANSMITTING APPARATUS, POWER RECEIVING APPARATUS, WIRELESS POWER TRANSMISSION SYSTEM, CONTROL METHOD FOR WIRELESS POWER TRANSMISSION, AND STORAGE MEDIUM
 本開示は、無線電力伝送が可能な送電装置、受電装置、無線電力伝送システム、無線電力伝送の制御方法、および記憶媒体等に関する。 The present disclosure relates to a power transmission device capable of wireless power transmission, a power receiving device, a wireless power transmission system, a control method for wireless power transmission, a storage medium, etc.
 無線充電の標準化団体Wireless Power Consortiumが策定する規格(以下、WPC規格と記す)が知られている。特許文献1には、WPC規格における異物検出(Foreign Object Detection)の方法が開示されている。 The standard (hereinafter referred to as the WPC standard) established by the Wireless Power Consortium, a standardization organization for wireless charging, is known. Patent Document 1 discloses a method for foreign object detection in the WPC standard.
 また、特許文献2には、電力伝送の停止後に、送電器の電圧が徐々に低下する期間における送電器の電圧値の減衰量に基づいて、送電器の近傍に物体が存在するか否かを判定する方法が開示されている。また、特許文献3には、複数のコイルを有する無線電力伝送装置において、各コイルで得られる品質係数の情報を用いて異物の有無を判定する方法が開示されている。 Patent Document 2 discloses a method for determining whether or not an object is present near a power transmitter based on the amount of attenuation of the power transmitter's voltage value during the period in which the power transmitter's voltage gradually decreases after power transmission is stopped. Patent Document 3 discloses a method for determining the presence or absence of a foreign object in a wireless power transmission device having multiple coils by using information on the quality factor obtained from each coil.
特開2017-70074号公報JP 2017-70074 A 特表2018-512036号公報JP 2018-512036 A 特開2020-114170号公報JP 2020-114170 A
 特許文献3に開示された送電装置において、特許文献2に記載の方法を適用して異物の有無を判定する処理を想定する。送電装置は、複数の送電コイルにおいて送電を制限する期間に電圧または電流を測定する処理を行う。この場合、送電装置は測定処理に関わる期間を適切に制御する必要があるが、従来の技術では複数の送電コイルで実施される測定処理に関わる期間について考慮されていない。 In the power transmission device disclosed in Patent Document 3, the method described in Patent Document 2 is applied to assume a process for determining the presence or absence of a foreign object. The power transmission device performs a process for measuring voltage or current during a period in which power transmission is restricted in multiple power transmission coils. In this case, the power transmission device needs to appropriately control the period related to the measurement process, but the conventional technology does not take into account the period related to the measurement process performed in multiple power transmission coils.
 本開示は、複数の送電コイルを有する送電装置において、受電装置への送電を制限する期間に実行される測定処理に係る処理期間を制御する技術の提供を目的とする。 The present disclosure aims to provide a technology for controlling the processing period for measurement processing executed during a period in which power transmission to a power receiving device is restricted in a power transmitting device having multiple power transmitting coils.
 本開示の送電装置は、複数の送電コイルを使用して受電装置に無線で送電する送電手段と、前記受電装置と通信する通信手段と、前記送電コイルに係る電圧もしくは電流または該電圧および電流を測定する測定手段と、前記複数の送電コイルから選択される送電コイルを用いて前記送電手段が行う送電の制御にて前記送電手段から前記受電装置への送電を制限する制御手段と、を備える。前記制御手段は、前記受電装置とは異なる物体の検出処理の実行要求を前記受電装置から前記通信手段が受信した場合、選択された複数の送電コイルに対して送電を制限する制御を行うとともに、当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間を、前記受電装置が当該送電コイルごとに決定した当該処理期間の情報により設定する。 The power transmission device disclosed herein includes a power transmission means for wirelessly transmitting power to a power receiving device using multiple power transmission coils, a communication means for communicating with the power receiving device, a measurement means for measuring the voltage or current related to the power transmission coils or the voltage and current, and a control means for limiting the power transmission from the power transmission means to the power receiving device by controlling the power transmission performed by the power transmission means using a power transmission coil selected from the multiple power transmission coils. When the communication means receives from the power receiving device a request to execute a detection process for an object different from the power receiving device, the control means controls to limit the power transmission to the selected multiple power transmission coils, and sets the processing period related to the measurement process performed by the measurement means for each of the power transmission coils based on information on the processing period determined by the power receiving device for each of the power transmission coils.
 本開示によれば、複数の送電コイルを有する送電装置において、受電装置への送電を制限する期間に実行される測定処理に係る処理期間を制御する技術を提供することができる。 The present disclosure provides a technology for controlling the processing period for measurement processing executed during a period in which power transmission to a power receiving device is restricted in a power transmitting device having multiple power transmitting coils.
第1実施形態に係る無線電力伝送システムの構成例を示す図である。1 is a diagram illustrating an example of the configuration of a wireless power transmission system according to a first embodiment. 第1実施形態に係る送電装置の構成例を示す機能ブロック図である。1 is a functional block diagram illustrating a configuration example of a power transmitting device according to a first embodiment. 第1実施形態に係る受電装置の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a power receiving device according to the first embodiment. Power Loss法による状態検出における閾値設定方法の説明図である。This is an explanatory diagram of a method for setting thresholds in state detection using the Power Loss method. (A)、(B)は第1実施形態に係るQ値計測法の説明図である。5A and 5B are explanatory diagrams of a Q-factor measurement method according to the first embodiment. 第1実施形態に係る送電装置の制御部の機能構成例を示すブロック図である。4 is a block diagram showing an example of a functional configuration of a control unit of a power transmitting device according to the first embodiment. FIG. 第1実施形態に係る送電装置の処理を説明するフローチャートである。5 is a flowchart illustrating a process of the power transmitting device according to the first embodiment. 第1実施形態に係る受電装置の処理を説明するフローチャートである。5 is a flowchart illustrating processing of a power receiving device according to the first embodiment. 第1実施形態に係る波形減衰法による状態検出の説明図である。5A to 5C are explanatory diagrams of state detection using a waveform attenuation method according to the first embodiment. 第1実施形態に係る波形減衰法による検出処理期間の説明図である。FIG. 4 is an explanatory diagram of a detection processing period using a waveform attenuation method according to the first embodiment. 第1実施形態に係る波形減衰法による状態検出における閾値設定方法の説明図である。5 is an explanatory diagram of a threshold setting method in state detection using a waveform attenuation method according to the first embodiment; FIG. (A)、(B)は第1実施形態に係る送電アンテナと受電アンテナの結合状態指標測定法の説明図である。4A and 4B are diagrams illustrating a method for measuring a coupling state indicator between a power transmitting antenna and a power receiving antenna according to the first embodiment. 第1実施形態に係る結合状態指標測定法による状態検出における閾値設定方法の説明図である。4 is an explanatory diagram of a threshold setting method in state detection by a bonding state indicator measurement method according to the first embodiment. FIG. (A)、(B)は、第1実施形態に係る送電装置と受電装置を模式的に示す構成図である。1A and 1B are schematic diagrams illustrating a power transmitting device and a power receiving device according to a first embodiment. 第1実施形態における送電装置の処理を説明するフローチャートである。5 is a flowchart illustrating a process of the power transmitting device in the first embodiment. 第1実施形態における受電装置の処理を説明するフローチャートである。5 is a flowchart illustrating processing of a power receiving device in the first embodiment. 第1実施形態に係る送電装置と受電装置の処理例を説明するシーケンス図である。4 is a sequence diagram illustrating an example of processing by a power transmitting device and a power receiving device according to the first embodiment. FIG. 第1実施形態における送電装置の処理を説明するフローチャートである。5 is a flowchart illustrating a process of the power transmitting device in the first embodiment. 第1実施形態における受電装置の処理を説明するフローチャートである。5 is a flowchart illustrating a process of a power receiving device in the first embodiment. 第1実施形態に係る送電装置と受電装置の処理の別例を説明するシーケンス図である。10 is a sequence diagram illustrating another example of processing by the power transmitting device and the power receiving device according to the first embodiment. FIG. 第2実施形態における送電装置の処理を説明するフローチャートである。10 is a flowchart illustrating a process of a power transmitting device according to a second embodiment. 第2実施形態における受電装置の処理を説明するフローチャートである。10 is a flowchart illustrating a process of a power receiving device according to a second embodiment.
 以下、本開示の実施形態について、添付図面を参照しつつ詳細に説明する。実施形態では無線電力伝送システムを適用した無線充電システムを示す。一例として、WPC規格に基づく無線電力伝送について説明する。 Below, an embodiment of the present disclosure will be described in detail with reference to the attached drawings. In the embodiment, a wireless charging system to which a wireless power transmission system is applied is shown. As an example, wireless power transmission based on the WPC standard will be described.
[第1実施形態]
 図1は第1実施形態に係る無線充電システムの構成例を示す図である。本システムは、送電装置100、受電装置200、充電台300を備える。以下では、表記を簡潔にするため、受電装置200をRXと呼び、送電装置100をTXと呼ぶ場合がある。TXとRXの詳細な構成については図2および図3を用いて後述する。
[First embodiment]
Fig. 1 is a diagram showing an example of the configuration of a wireless charging system according to a first embodiment. This system includes a power transmitting device 100, a power receiving device 200, and a charging stand 300. In the following, for the sake of simplicity, the power receiving device 200 may be referred to as RX and the power transmitting device 100 as TX. The detailed configurations of TX and RX will be described later with reference to Figs. 2 and 3.
 RXは、充電台300に載置された状態で、TXから受電して内蔵バッテリに充電を行う電子機器である。TXは、充電台300に載置されたRXに対して無線送電を行う電子機器である。 RX is an electronic device that receives power from TX and charges its built-in battery while placed on the charging stand 300. TX is an electronic device that transmits power wirelessly to RX placed on the charging stand 300.
 充電台300はTXの一部を構成するので、以下ではRXが「充電台300に戴置された」ことを「TXに載置された」という場合がある。RXがTXから受電可能な空間的範囲を、図1にて点線枠400の範囲で模式的に示す。 Because the charging stand 300 constitutes a part of the TX, hereinafter, when the RX is "placed on the charging stand 300," it may be said that the RX is "placed on the TX." The spatial range in which the RX can receive power from the TX is shown diagrammatically within the dotted line frame 400 in Figure 1.
 RXとTXは無線充電機能以外のアプリケーションを実行する機能を有しうる。例えば、RXはスマートフォンであり、TXはそのスマートフォンのバッテリを充電するためのアクセサリ機器である。 RX and TX may have the functionality to execute applications other than the wireless charging function. For example, RX is a smartphone and TX is an accessory device for charging the battery of the smartphone.
 図2を参照して、送電装置100の構成例について説明する。図2は第1実施形態に係る送電装置100(TX)の構成例を示す機能ブロック図である。TXは、制御部101、電源部102、送電部103、第1通信部104、送電アンテナ(送電コイル)105、メモリ106、共振コンデンサ107、スイッチ部108を有する。 With reference to FIG. 2, an example of the configuration of the power transmission device 100 will be described. FIG. 2 is a functional block diagram showing an example of the configuration of the power transmission device 100 (TX) according to the first embodiment. The TX has a control unit 101, a power supply unit 102, a power transmission unit 103, a first communication unit 104, a power transmission antenna (power transmission coil) 105, a memory 106, a resonant capacitor 107, and a switch unit 108.
 またTXは第2通信部109、ユーザインタフェース(以下、UIと記す)部110を有する。なお、図2(および図3)では各機能ブロック要素が別体として記載されているが、任意の複数の機能ブロック要素は同一チップ内に実装されてもよい。 The TX also has a second communication unit 109 and a user interface (hereinafter referred to as UI) unit 110. Note that although each functional block element is shown as a separate entity in FIG. 2 (and FIG. 3), any number of functional block elements may be implemented within the same chip.
 送電装置100は、複数の送電部103を有する。本実施形態では、TXが3つ送電部103a、103b、103cを有する例を示す。また、送電装置100は、複数の第1通信部104を有する。 The power transmission device 100 has multiple power transmission units 103. In this embodiment, an example is shown in which the TX has three power transmission units 103a, 103b, and 103c. The power transmission device 100 also has multiple first communication units 104.
 本実施形態ではTXが3つの第1通信部104a、104b、104cを有する例を示す。第1通信部104a、104b、104cはそれぞれ対応する送電部103a、103b、103cに接続されている。本実施形態では、3つの送電部103(または第1通信部104)は全て同じ特性を有するものとするが、それぞれ異なる特性を有してもよい。 In this embodiment, an example is shown in which the TX has three first communication units 104a, 104b, and 104c. The first communication units 104a, 104b, and 104c are connected to the corresponding power transmission units 103a, 103b, and 103c, respectively. In this embodiment, all three power transmission units 103 (or first communication units 104) have the same characteristics, but they may each have different characteristics.
 送電装置100は、N個の送電アンテナ105a、105b、・・・105nを有する。また、送電装置100は、N個の共振コンデンサ107a、107b、・・・107nを有する。また、送電装置100は、N個のスイッチ部108a、108b、・・・108nを有する。 The power transmission device 100 has N power transmission antennas 105a, 105b, ... 105n. The power transmission device 100 also has N resonant capacitors 107a, 107b, ... 107n. The power transmission device 100 also has N switch units 108a, 108b, ... 108n.
 それぞれの送電アンテナ、共振コンデンサ、スイッチ部は、符号に付記したアルファベットの同じものが組をなす。例えば送電アンテナ105aと共振コンデンサ107aとスイッチ部108aが組をなす。 Each power transmission antenna, resonant capacitor, and switch unit has the same alphabet attached to its reference number, forming a pair. For example, power transmission antenna 105a, resonant capacitor 107a, and switch unit 108a form a pair.
 送電アンテナ105aと共振コンデンサ107aとが直列に接続され、送電アンテナ105aと共振コンデンサ107aに対してスイッチ部108aが並列に接続される。本実施形態では、N個の送電アンテナ105(または共振コンデンサ107、またはスイッチ部108)は全て同じ特性を有するものとするが、それぞれ異なる特性を有してもよい。 The power transmitting antenna 105a and the resonant capacitor 107a are connected in series, and the switch unit 108a is connected in parallel to the power transmitting antenna 105a and the resonant capacitor 107a. In this embodiment, all N power transmitting antennas 105 (or resonant capacitors 107, or switch units 108) have the same characteristics, but they may each have different characteristics.
 制御部101は、メモリ106に記憶されている制御プログラムを実行することにより、TX全体を制御する。また、制御部101はTXにおける機器認証のための通信を含む送電制御を行う。さらに制御部101は、無線電力伝送以外のアプリケーションを実行するための制御を行うことが可能である。 The control unit 101 controls the entire TX by executing a control program stored in the memory 106. The control unit 101 also controls power transmission, including communication for device authentication in the TX. Furthermore, the control unit 101 can control the execution of applications other than wireless power transmission.
 制御部101は、CPU(Central Processing Unit)またはMPU(MicroProcessor Unit)等の1つ以上のプロセッサーを含んで構成される。あるいは、制御部101は、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)等のハードウェアで構成されてもよい。 The control unit 101 includes one or more processors, such as a CPU (Central Processing Unit) or an MPU (Microprocessor Unit). Alternatively, the control unit 101 may be configured with hardware, such as an application specific integrated circuit (ASIC).
 また、制御部101は、所定の処理を実行するようにコンパイルされたFPGA(Field Programmable Gate Array)等のアレイ回路を含んで構成されてもよい。制御部101は、各種処理の実行中に記憶しておくべき情報をメモリ106に記憶させる処理や、タイマ(不図示)を用いた計時処理を実行することができる。 The control unit 101 may also be configured to include an array circuit such as an FPGA (Field Programmable Gate Array) compiled to execute a specified process. The control unit 101 can execute a process of storing information to be stored in the memory 106 during execution of various processes, and a time measurement process using a timer (not shown).
 電源部102は、各機能ブロック要素への電源供給を行う。電源部102は、例えば、商用電源への電源接続回路やバッテリを備える。バッテリは商用電源から供給される電力により蓄電される。 The power supply unit 102 supplies power to each functional block element. The power supply unit 102 includes, for example, a power supply connection circuit to a commercial power source and a battery. The battery is charged with power supplied from the commercial power source.
 送電部103は、電源部102から入力される直流電力または交流電力を、無線電力伝送に用いる周波数帯域の交流電力に変換し、交流電力を送電アンテナ105へ入力することによって、RXに受電させるための電磁波を発生させる。 The power transmission unit 103 converts the DC or AC power input from the power supply unit 102 into AC power in the frequency band used for wireless power transmission, and inputs the AC power to the power transmission antenna 105, thereby generating electromagnetic waves for the RX to receive power.
 例えば、送電部103はインバータを備え、電源部102が供給する直流電圧を、ハーフブリッジ構成またはフルブリッジ構成のスイッチング回路で交流電圧に変換する。送電部103はブリッジを構成する複数のFET(Field Effect Transistor)と、複数のFETのON/OFFを制御するゲートドライバを含む。 For example, the power transmission unit 103 includes an inverter and converts the DC voltage supplied by the power supply unit 102 into an AC voltage using a switching circuit with a half-bridge or full-bridge configuration. The power transmission unit 103 includes multiple FETs (Field Effect Transistors) that form a bridge, and a gate driver that controls the ON/OFF of the multiple FETs.
 送電部103は、送電アンテナ105に入力する電圧(送電電圧)もしくは電流(送電電流)、またはその両方を調節することにより、出力させる電磁波の強度(送電電力)を制御する。送電電圧または送電電流の大小により電磁波の強弱(送電電力の大小に相当し、以下、強度ともいう)が制御される。 The power transmitting unit 103 controls the intensity of the electromagnetic waves (transmission power) to be output by adjusting the voltage (transmission voltage) or current (transmission current), or both, input to the power transmitting antenna 105. The strength of the electromagnetic waves (corresponding to the strength of the transmission power, hereinafter also referred to as the intensity) is controlled by the magnitude of the transmission voltage or the transmission current.
 例えば、送電部103がインバータを有する場合、インバータに入力する電圧もしくは電流、またはその両方を調節することにより、出力させる電磁波の強度が制御される。あるいは、送電部103が有するインバータから出力される電圧もしくは電流、またはその両方を調節することにより、出力させる電磁波の強度が制御される。 For example, if the power transmission unit 103 has an inverter, the intensity of the electromagnetic waves to be output is controlled by adjusting the voltage or current, or both, input to the inverter. Alternatively, the intensity of the electromagnetic waves to be output is controlled by adjusting the voltage or current, or both, output from the inverter included in the power transmission unit 103.
 制御部101は送電部103に指示することで送電の開始や停止の制御を行い、また、出力させる電磁波の強度を制御する。送電部103では、制御部101からの指示信号に基づいて、送電アンテナ105による送電の開始もしくは停止、または出力させる電磁波の強度が制御されるように、交流周波数の電磁波の電力に係る出力制御が行われる。 The control unit 101 controls the start and stop of power transmission by issuing instructions to the power transmission unit 103, and also controls the intensity of the electromagnetic waves to be output. Based on an instruction signal from the control unit 101, the power transmission unit 103 performs output control related to the power of the AC frequency electromagnetic waves so that the start or stop of power transmission by the power transmission antenna 105 or the intensity of the electromagnetic waves to be output is controlled.
 また、送電部103はWPC規格に対応した受電装置200の充電部(図3:206)に15ワット(W)の電力を出力するだけの電力供給能力があるものとする。 Furthermore, the power transmitting unit 103 is assumed to have a power supply capacity sufficient to output 15 watts (W) of power to the charging unit (206 in FIG. 3) of the power receiving device 200 that complies with the WPC standard.
 第1通信部104は制御部101と送電部103に接続され、RXとの間でWPC規格に基づく送電制御のための通信を行う。第1通信部104は、送電アンテナ105から出力される電磁波の周波数偏移変調を行い、RXへ情報を伝送して通信を行う。 The first communication unit 104 is connected to the control unit 101 and the power transmission unit 103, and communicates with the RX for power transmission control based on the WPC standard. The first communication unit 104 performs frequency shift keying of the electromagnetic waves output from the power transmission antenna 105, and transmits information to the RX to perform communication.
 また、第1通信部104は、RXが変調を行った送電アンテナ105から送電される電磁波を復調して、RXが送信した情報を取得する。第1通信部104による通信は、送電アンテナ105から送電される電磁波に通信用の信号が重畳されることにより行われる。 The first communication unit 104 also demodulates the electromagnetic waves transmitted from the power transmitting antenna 105 that were modulated by the RX, and acquires the information transmitted by the RX. Communication by the first communication unit 104 is performed by superimposing a communication signal on the electromagnetic waves transmitted from the power transmitting antenna 105.
 メモリ106は、制御プログラムの他に、TXおよびRXの状態に関する情報を記憶することができる。TXおよびRXの状態に関する情報とは送電電力値、受電電力値等である。TXの状態に関する情報は制御部101により取得される。RXの状態に関する情報はRXの制御部(図3:201)により取得され、第1通信部104または第2通信部109が受信可能である。 In addition to the control program, the memory 106 can store information about the TX and RX states. Information about the TX and RX states includes the transmitted power value and the received power value. Information about the TX state is acquired by the control unit 101. Information about the RX state is acquired by the RX control unit (201 in FIG. 3) and can be received by the first communication unit 104 or the second communication unit 109.
 スイッチ部108は、共振コンデンサ107および送電アンテナ105の直列回路に対して並列に接続されている。制御部101は、後述する選択部111を経由して、スイッチ部108に制御信号を送信して、そのON/OFF制御を行う。送電アンテナ105は、共振コンデンサ107と接続されている。 The switch unit 108 is connected in parallel to the series circuit of the resonant capacitor 107 and the power transmitting antenna 105. The control unit 101 transmits a control signal to the switch unit 108 via the selection unit 111, which will be described later, to control its ON/OFF state. The power transmitting antenna 105 is connected to the resonant capacitor 107.
 制御部101からの制御信号によりスイッチ部108がON状態になって短絡される場合、送電アンテナ105と共振コンデンサ107は直列共振回路を形成し、特定の周波数fAで共振する。このとき、送電アンテナ105と共振コンデンサ107、スイッチ部108が形成する閉回路に電流が流れる。 When the switch unit 108 is turned on and short-circuited by a control signal from the control unit 101, the power transmitting antenna 105 and the resonant capacitor 107 form a series resonant circuit and resonate at a specific frequency fA. At this time, a current flows through the closed circuit formed by the power transmitting antenna 105, the resonant capacitor 107, and the switch unit 108.
 一方、制御部101からの制御信号によってスイッチ部108はOFF状態になり、当該回路が開放されると、送電アンテナ105と共振コンデンサ107には送電部103から電力が供給される。 On the other hand, when the switch unit 108 is turned OFF by a control signal from the control unit 101 and the circuit is opened, power is supplied from the power transmission unit 103 to the power transmission antenna 105 and the resonant capacitor 107.
 第2通信部109は制御部101と接続され、RXとの間でWPC規格とは異なる規格による通信を行う。例えば第2通信部109は、送電アンテナ105とは異なるアンテナを用いてRX(図3の第2通信部212)と通信する。 The second communication unit 109 is connected to the control unit 101, and communicates with the RX using a standard different from the WPC standard. For example, the second communication unit 109 communicates with the RX (the second communication unit 212 in FIG. 3) using an antenna different from the power transmission antenna 105.
 WPC規格とは異なる規格による通信として、無線LAN(Local Area Network)、Bluetooth(登録商標) Low Energy(BLE)、NFC(Near Field Communication)が挙げられる。送電アンテナ105が送電する際に使用する周波数帯域と、第2通信部109が通信に使用する周波数帯域とは異なる。 Examples of communication using standards different from the WPC standard include wireless LAN (Local Area Network), Bluetooth (registered trademark) Low Energy (BLE), and NFC (Near Field Communication). The frequency band used by the power transmitting antenna 105 to transmit power is different from the frequency band used by the second communication unit 109 for communication.
 TXとRXとの通信に関し、TXは、複数の通信規格のうちの、いずれかを選択的に用いてRXとの通信を行ってもよい。下記に示す複数の通信を選択的に用いた通信形態が可能である。 Regarding communication between TX and RX, TX may selectively use one of multiple communication standards to communicate with RX. The following communication formats are possible:
 ・TXの第1通信部104とRXの第1通信部204(図3)との間で行われる、第1の規格(WPC規格)に基づく通信。 - Communication based on the first standard (WPC standard) between the first communication unit 104 of the TX and the first communication unit 204 of the RX (Figure 3).
・TXの第2通信部109とRXの第2通信部212(図3)との間で行われる、第2の規格(WPC規格以外の規格)に基づく通信。 - Communication based on a second standard (a standard other than the WPC standard) between the second communication unit 109 of the TX and the second communication unit 212 of the RX (Figure 3).
 UI部110は制御部101と接続され、ユーザに対する各種の出力を行う。各種の出力とは、画面表示、LED(Light Emitting Diode)の点滅や色の変化、スピーカーによる音声出力、TX本体の振動等の動作である。UI部110は液晶パネル、スピーカー、バイブレーションモータ等により実現される。 The UI unit 110 is connected to the control unit 101 and performs various outputs to the user. The various outputs include screen display, blinking or color changes of LEDs (Light Emitting Diodes), audio output from a speaker, vibration of the TX main unit, and other operations. The UI unit 110 is realized by an LCD panel, a speaker, a vibration motor, etc.
 選択部111は、送電部103a、送電部103b、送電部103cそれぞれと、いずれかの送電アンテナ105(送電アンテナ105a~105n)とを接続する。選択部111は、送電部103(103aまたは103bまたは103c)を任意の1つまたは複数の送電アンテナに接続する。 The selection unit 111 connects each of the power transmission units 103a, 103b, and 103c to one of the power transmission antennas 105 (power transmission antennas 105a to 105n). The selection unit 111 connects the power transmission unit 103 (103a, 103b, or 103c) to any one or more power transmission antennas.
 制御部101は選択部111を制御することにより、各送電部を、いずれの送電アンテナ105a~105nに接続させるかを決定する。選択部111は、制御部101の制御信号にしたがい、送電部103と送電アンテナ105との接続を切り替える。 The control unit 101 controls the selection unit 111 to determine which of the power transmission antennas 105a to 105n each power transmission unit should be connected to. The selection unit 111 switches the connection between the power transmission unit 103 and the power transmission antenna 105 in accordance with a control signal from the control unit 101.
 図2の例では、送電部103と第1通信部104を、それぞれ3つ有する構成を示した。この例に限定されることなく、送電装置が送電部103と第1通信部104は、それぞれ1つ有する構成でもよい。この場合、1つの送電部103は、制御部101により制御される選択部111を介して、任意の1つまたは複数の送電アンテナ105に接続される。 In the example of FIG. 2, a configuration having three power transmission units 103 and three first communication units 104 is shown. Without being limited to this example, the power transmission device may have one power transmission unit 103 and one first communication unit 104. In this case, one power transmission unit 103 is connected to any one or multiple power transmission antennas 105 via a selection unit 111 controlled by the control unit 101.
 次に図3を参照して、第1実施形態に係る受電装置200の構成例について説明する。図3は、受電装置200(RX)の構成例を示すブロック図である。RXは、制御部201、UI部202、受電部203、第1通信部204、受電アンテナ205、充電部206、バッテリ207、メモリ208を有する。RXはさらに第1スイッチ部209、第2スイッチ部210、共振コンデンサ211、第2通信部212、第3スイッチ部213を有する。 Next, referring to FIG. 3, an example of the configuration of the power receiving device 200 according to the first embodiment will be described. FIG. 3 is a block diagram showing an example of the configuration of the power receiving device 200 (RX). The RX has a control unit 201, a UI unit 202, a power receiving unit 203, a first communication unit 204, a power receiving antenna 205, a charging unit 206, a battery 207, and a memory 208. The RX further has a first switch unit 209, a second switch unit 210, a resonant capacitor 211, a second communication unit 212, and a third switch unit 213.
 本実施形態では、RXが3つの受電部203a、203b、203cと、3つの第1通信部204a、204b、204cを有する例を示す。第1通信部204a、204b、204cはそれぞれ対応する受電部203a、203b、203cに接続される。本実施形態では、3つの受電部203(または第1通信部204)は全て同じ特性を有するものとするが、それぞれ異なる特性を有してもよい。 In this embodiment, an example is shown in which RX has three power receiving units 203a, 203b, and 203c, and three first communication units 204a, 204b, and 204c. The first communication units 204a, 204b, and 204c are connected to the corresponding power receiving units 203a, 203b, and 203c, respectively. In this embodiment, all three power receiving units 203 (or first communication units 204) have the same characteristics, but they may each have different characteristics.
 RXは複数の受電アンテナ(受電コイル)205を有する。RXがN個の受電アンテナ205a、205b、・・・205nを有する例を示す。また、RXはN個の共振コンデンサ211a、211b、・・・211nを有する。 RX has multiple receiving antennas (receiving coils) 205. In this example, RX has N receiving antennas 205a, 205b, ... 205n. RX also has N resonant capacitors 211a, 211b, ... 211n.
 RXはN個の第2スイッチ部210a、210b、・・・210nと、N個の第3スイッチ部213a、213b、・・・213nを有する。それぞれの受電アンテナ、共振コンデンサ、第2スイッチ部、および第3スイッチ部は、符号に付記したアルファベットの同じものが組をなす。 RX has N second switch units 210a, 210b, ... 210n and N third switch units 213a, 213b, ... 213n. Each receiving antenna, resonant capacitor, second switch unit, and third switch unit are paired with the same alphabet attached to the reference numeral.
 例えば受電アンテナ205a、共振コンデンサ211a、第2スイッチ部210a、および第3スイッチ部213aが組をなす。受電アンテナ205aは第3スイッチ部213aを介して共振コンデンサ211aと接続され、第2スイッチ部210aは受電アンテナ205a、第3スイッチ部213a、および共振コンデンサ211aに対して並列に接続される。 For example, a power receiving antenna 205a, a resonant capacitor 211a, a second switch section 210a, and a third switch section 213a form a group. The power receiving antenna 205a is connected to the resonant capacitor 211a via the third switch section 213a, and the second switch section 210a is connected in parallel to the power receiving antenna 205a, the third switch section 213a, and the resonant capacitor 211a.
 本実施形態では、N個の受電アンテナ205(または共振コンデンサ211、または第2スイッチ部210、または第3スイッチ部213)は全て同じ特性を有するものとするが、それぞれ異なる特性を有してもよい。 In this embodiment, all N receiving antennas 205 (or resonant capacitors 211, or second switch section 210, or third switch section 213) have the same characteristics, but may each have different characteristics.
 制御部201は、メモリ208に記憶されている制御プログラムを実行することによりRXの各機能ブロック要素を制御する。さらに、制御部201は、無線電力伝送以外のアプリケーションを実行するための制御を行うことができる。 The control unit 201 controls each functional block element of the RX by executing a control program stored in the memory 208. Furthermore, the control unit 201 can perform control to execute applications other than wireless power transmission.
 制御部201はCPUまたはMPU等の1つ以上のプロセッサーを含んで構成される。また、制御部201が実行しているOS(Operating System)との協働によりRX全体(例えばスマートフォン全体)を制御することができる。 The control unit 201 is configured to include one or more processors such as a CPU or MPU. In addition, the control unit 201 can control the entire RX (e.g., the entire smartphone) in cooperation with the OS (Operating System) that it is running.
 あるいは、制御部201は、ASIC等のハードウェアで構成されるか、または所定の処理を実行するようにコンパイルされたFPGA等のアレイ回路を含んで構成される。制御部201は、各種処理の実行中に記憶しておくべき情報をメモリ208に記憶させ、また、タイマ(不図示)を用いた計時処理の実行が可能である。 Alternatively, the control unit 201 may be configured with hardware such as an ASIC, or may include an array circuit such as an FPGA compiled to execute a specified process. The control unit 201 stores information to be stored during execution of various processes in the memory 208, and is also capable of executing timing processes using a timer (not shown).
 UI部202は制御部201と接続され、ユーザに対する各種の出力を行う。各種の出力とは、画面表示、LED(Light Emitting Diode)の点滅や色の変化、スピーカーによる音声出力、RX本体の振動等の動作である。UI部202は液晶パネル、スピーカー、バイブレーションモータ等により実現される。 The UI unit 202 is connected to the control unit 201 and performs various outputs to the user. The various outputs include screen display, blinking or color changes of LEDs (Light Emitting Diodes), audio output from a speaker, vibration of the RX main unit, and other operations. The UI unit 202 is realized by an LCD panel, a speaker, a vibration motor, etc.
 受電部203は、受電アンテナ(受電コイル)205を介して、TXの送電アンテナ105から放射された電磁波に基づく電磁誘導により生じた交流電力(交流電圧および交流電流)を受電する。そして、受電部203は、交流電力を直流または所定周波数の交流電力に変換して充電部206に電力を出力する。 The power receiving unit 203 receives AC power (AC voltage and AC current) generated by electromagnetic induction based on electromagnetic waves radiated from the TX power transmitting antenna 105 via the power receiving antenna (power receiving coil) 205. The power receiving unit 203 then converts the AC power into DC or AC power of a specified frequency and outputs the power to the charging unit 206.
 充電部206はバッテリ207の充電を行う。受電部203は、RXにおける負荷に対して電力の供給に必要な整流部(整流器、整流回路)および電圧制御部を含む。整流部は、受電アンテナ205を介して受電した送電アンテナ105からの交流電圧および交流電流を直流電圧および直流電流に変換する。 The charging unit 206 charges the battery 207. The power receiving unit 203 includes a rectification unit (rectifier, rectification circuit) and a voltage control unit that are necessary to supply power to the load in RX. The rectification unit converts the AC voltage and AC current received from the power transmitting antenna 105 via the power receiving antenna 205 into DC voltage and DC current.
 電圧制御部は、整流部から入力される直流電圧のレベルを所定レベルに変換する。所定レベルとは、制御部201および充電部206等の動作が可能な直流電圧のレベルである。受電部203は、充電部206からバッテリ207への充電用の電力を供給する。受電部203は充電部206に15ワットの電力を出力するだけの電力供給能力があるものとする。 The voltage control unit converts the level of the DC voltage input from the rectification unit to a predetermined level. The predetermined level is a DC voltage level at which the control unit 201 and the charging unit 206 can operate. The power receiving unit 203 supplies power for charging the battery 207 from the charging unit 206. It is assumed that the power receiving unit 203 has a power supply capacity sufficient to output 15 watts of power to the charging unit 206.
 第1通信部204は、TXが有する第1通信部104との間で、WPC規格に基づく受電制御のための通信を行う。第1通信部204は受電アンテナ205と制御部201に接続されている。 The first communication unit 204 communicates with the first communication unit 104 of the TX for power reception control based on the WPC standard. The first communication unit 204 is connected to the power receiving antenna 205 and the control unit 201.
 第1通信部204は、受電アンテナ205から入力された電磁波を復調してTXから送信された情報を取得する。第1通信部204は、入力された電磁波に対して負荷変調または振幅変調を行って、TXへ送信すべき情報に関する信号を電磁波に重畳することにより、TXとの間で通信を行う。 The first communication unit 204 demodulates the electromagnetic waves input from the receiving antenna 205 to obtain the information transmitted from the TX. The first communication unit 204 performs load modulation or amplitude modulation on the input electromagnetic waves, and superimposes a signal related to the information to be transmitted to the TX on the electromagnetic waves, thereby communicating with the TX.
 メモリ208は、制御プログラムの他に、TXおよびRXの状態に関する情報等を記憶する。RXの状態に関する情報は制御部201により取得される。またTXの状態に関する情報はTXの制御部101により取得され、第1通信部204または第2通信部212により受信することができる。 In addition to the control program, the memory 208 stores information about the status of the TX and RX. Information about the status of the RX is acquired by the control unit 201. Information about the status of the TX is acquired by the control unit 101 of the TX, and can be received by the first communication unit 204 or the second communication unit 212.
 第1スイッチ部209は充電部206とバッテリ207との間に設けられており、制御部201により制御される。第1スイッチ部209は、受電部203が受電した電力をバッテリ207に供給するか否かを制御する機能と、負荷の大きさを制御する機能を有する。 The first switch unit 209 is provided between the charging unit 206 and the battery 207, and is controlled by the control unit 201. The first switch unit 209 has a function of controlling whether or not the power received by the power receiving unit 203 is to be supplied to the battery 207, and a function of controlling the size of the load.
 制御部201によって第1スイッチ部209がOFF状態となって開放される場合、受電部203が受電した電力はバッテリ207に供給されない。制御部201により第1スイッチ部209がON状態となって短絡される場合、受電部203が受電した電力がバッテリ207に供給される。 When the control unit 201 turns the first switch unit 209 to the OFF state and opens it, the power received by the power receiving unit 203 is not supplied to the battery 207. When the control unit 201 turns the first switch unit 209 to the ON state and shorts it, the power received by the power receiving unit 203 is supplied to the battery 207.
 図3の例では第1スイッチ部209が充電部206とバッテリ207との間に配置されているが、第1スイッチ部209は受電部203と充電部206との間に配置されてもよい。あるいは第1スイッチ部209は、受電アンテナ205と共振コンデンサ211、および第2スイッチ部210が形成する閉回路と、各受電部203(受電部203a、受電部203b、受電部203c)との間に複数配置されてもよい。 3, the first switch unit 209 is disposed between the charging unit 206 and the battery 207, but the first switch unit 209 may be disposed between the power receiving unit 203 and the charging unit 206. Alternatively, multiple first switch units 209 may be disposed between the closed circuit formed by the power receiving antenna 205, the resonant capacitor 211, and the second switch unit 210, and each of the power receiving units 203 (power receiving unit 203a, power receiving unit 203b, power receiving unit 203c).
 この場合、第1スイッチ部209は、受電アンテナ205が受電した電力を受電部203に供給するか否かを制御する機能を有する。また、図3の例では第1スイッチ部209が1つの機能ブロック要素として記載されているが、第1スイッチ部209を充電部206または受電部203の一部として実現することが可能である。 In this case, the first switch unit 209 has a function of controlling whether or not the power received by the power receiving antenna 205 is supplied to the power receiving unit 203. Also, in the example of FIG. 3, the first switch unit 209 is shown as one functional block element, but it is possible to realize the first switch unit 209 as part of the charging unit 206 or the power receiving unit 203.
 また、第1スイッチ部209が充電部206とバッテリ207との間に直列に挿入されている構成に限定されず、第1スイッチ部209は充電部206とバッテリ207との間に並列に挿入されてもよい。 Furthermore, the first switch unit 209 is not limited to being inserted in series between the charging unit 206 and the battery 207, but may be inserted in parallel between the charging unit 206 and the battery 207.
 この場合、制御部201により第1スイッチ部209がOFF状態となって開放される場合、受電部203が受電した電力はバッテリ207に供給される。制御部201により第1スイッチ部209がON状態となって短絡される場合、受電部203が受電した電力はバッテリ207に供給されない。 In this case, when the control unit 201 turns the first switch unit 209 to the OFF state and opens it, the power received by the power receiving unit 203 is supplied to the battery 207. When the control unit 201 turns the first switch unit 209 to the ON state and shorts it, the power received by the power receiving unit 203 is not supplied to the battery 207.
 受電部203の入力側にて第2スイッチ部210は共振コンデンサ211と並列に接続されている。共振コンデンサ211は第3スイッチ部213を介して受電アンテナ205に接続されている。第2スイッチ部210と第3スイッチ部213は、制御部201により制御される。 On the input side of the power receiving unit 203, the second switch unit 210 is connected in parallel with the resonant capacitor 211. The resonant capacitor 211 is connected to the power receiving antenna 205 via the third switch unit 213. The second switch unit 210 and the third switch unit 213 are controlled by the control unit 201.
 本実施形態では、第2スイッチ部210と第3スイッチ部213は、後述する選択部214を経由して、制御部201により制御される。第3スイッチ部213は、受電アンテナ205の端子を開放にするか否かを制御する機能を有する。 In this embodiment, the second switch unit 210 and the third switch unit 213 are controlled by the control unit 201 via the selection unit 214 described below. The third switch unit 213 has a function of controlling whether or not the terminal of the power receiving antenna 205 is opened.
 制御部201により第3スイッチ部213がOFF状態となる場合、受電アンテナ205の端子は開放状態になる。制御部201により第3スイッチ部213がON状態となる場合、受電アンテナ205は共振コンデンサ211と選択部214を介して受電部203と接続される。 When the control unit 201 turns the third switch unit 213 to the OFF state, the terminal of the power receiving antenna 205 is in an open state. When the control unit 201 turns the third switch unit 213 to the ON state, the power receiving antenna 205 is connected to the power receiving unit 203 via the resonant capacitor 211 and the selection unit 214.
 制御部201により第3スイッチ部213がON状態となり、第2スイッチ部210がON状態となって短絡される場合、受電アンテナ205と共振コンデンサ211は直列共振回路を形成し、特定の周波数fBで共振する。 When the control unit 201 turns the third switch unit 213 to the ON state and the second switch unit 210 is turned ON and short-circuited, the receiving antenna 205 and the resonant capacitor 211 form a series resonant circuit and resonate at a specific frequency fB.
 受電アンテナ205、共振コンデンサ211、第2スイッチ部210が形成する閉回路に電流が流れ、受電部203に電流は流れない。そして第2スイッチ部210がOFF状態となって当該回路が開放されると、受電アンテナ205と共振コンデンサ211により受電された電力は、受電部203へ供給される。 Current flows through the closed circuit formed by the power receiving antenna 205, the resonant capacitor 211, and the second switch section 210, and no current flows through the power receiving section 203. When the second switch section 210 is turned OFF and the circuit is opened, the power received by the power receiving antenna 205 and the resonant capacitor 211 is supplied to the power receiving section 203.
 なお、図3の例に限定されることなく、第2スイッチ部210は、受電アンテナ205と共振コンデンサ211との間に配置されてもよい。第3スイッチ部213がON状態であって、第2スイッチ部210がON状態である場合、受電アンテナ205の端子は短絡される。また、第3スイッチ部213は、共振コンデンサ211と受電部203との間に配置されてもよい。 Note that, without being limited to the example of FIG. 3, the second switch section 210 may be disposed between the power receiving antenna 205 and the resonant capacitor 211. When the third switch section 213 is in the ON state and the second switch section 210 is in the ON state, the terminals of the power receiving antenna 205 are shorted. The third switch section 213 may also be disposed between the resonant capacitor 211 and the power receiving section 203.
 選択部214は、受電部203a、受電部203b、受電部203cそれぞれと、いずれかの受電アンテナ205(受電アンテナ205a~205n)とを接続する。選択部214は、受電部203(203aまたは203bまたは203c)を、任意の1つまたは複数の受電アンテナ205に接続する。 The selection unit 214 connects each of the power receiving units 203a, 203b, and 203c to one of the power receiving antennas 205 (power receiving antennas 205a to 205n). The selection unit 214 connects the power receiving unit 203 (203a, 203b, or 203c) to any one or more power receiving antennas 205.
 制御部201は選択部214を制御することにより、各受電部をいずれの受電アンテナ205(受電アンテナ205a~205n)に接続させるかを決定する。選択部214は、制御部201の制御信号にしたがい、受電部203と受電アンテナ205との接続を切り替える。 The control unit 201 controls the selection unit 214 to determine which of the power receiving antennas 205 (power receiving antennas 205a to 205n) each power receiving unit should be connected to. The selection unit 214 switches the connection between the power receiving unit 203 and the power receiving antenna 205 according to a control signal from the control unit 201.
 TXとRXは、送電アンテナ105と受電アンテナ205との間でWPC規格に基づく無線電力伝送を行う。WPC規格では、RXがTXから受電する際に保証される電力の大きさが、Guaranteed Load Power(以下、「GP」と記す)と呼ばれる値によって規定される。 The TX and RX perform wireless power transmission based on the WPC standard between the transmitting antenna 105 and the receiving antenna 205. In the WPC standard, the amount of power guaranteed when the RX receives power from the TX is specified by a value called Guaranteed Load Power (hereinafter referred to as "GP").
 例えばGPは、RXとTXとの位置関係が変動したことにより受電アンテナ205と送電アンテナ105との間の送電効率が低下したとしても、RXの負荷への出力が保証される電力値を示す。RXの負荷は図3の充電部206、バッテリ207等であり、GPの値は、受電部203から出力されることが保証される電力量に相当する。 For example, GP indicates the power value that guarantees output to the load of RX even if the efficiency of power transmission between the receiving antenna 205 and the transmitting antenna 105 decreases due to a change in the relative positions of RX and TX. The load of RX is the charging unit 206, the battery 207, etc. in FIG. 3, and the value of GP corresponds to the amount of power that is guaranteed to be output from the receiving unit 203.
 あるいは、GPの値は、受電部203が有する整流部から出力されることが保証される電力量に相当する。例えばGPの値を5(ワット)として、受電アンテナ205と送電アンテナ105との位置関係が変動した場合を想定する。この場合、電力伝送効率が低下したとしても、TXはRXの負荷へ5ワットを出力することができるように送電制御を行う。 Alternatively, the value of GP corresponds to the amount of power guaranteed to be output from the rectification unit of the power receiving unit 203. For example, assume that the value of GP is 5 (watts) and the positional relationship between the power receiving antenna 205 and the power transmitting antenna 105 has changed. In this case, even if the power transmission efficiency decreases, the TX performs power transmission control so that it can output 5 watts to the RX load.
 また、GPはTXとRXとが行う交渉により決定される。なお、GPに限らず、送電装置と受電装置とが互いに交渉を行うことにより決定される電力で送受電が行われる構成において、本実施形態を適用可能である。 GP is determined by negotiation between TX and RX. This embodiment can be applied to any configuration in which power is transmitted and received at a power determined by mutual negotiation between a power transmitting device and a power receiving device, not limited to GP.
 また、TXからRXへの送電を行う際、TXの近傍に物体が存在する場合を想定する。この場合の物体は、送電に影響しうる物体であって、受電装置200とは異なる物体(異物)である。送電のための電磁波が異物に影響し、異物の温度上昇や破壊が発生する可能性がある。 In addition, when transmitting power from TX to RX, a case is assumed in which an object is present near TX. In this case, the object is an object that can affect power transmission and is an object (foreign object) different from the power receiving device 200. There is a possibility that the electromagnetic waves used for power transmission will affect the foreign object, causing an increase in temperature or destruction of the foreign object.
 本開示における異物とは、例えばクリップやICカードである。異物は、受電装置および受電装置が組み込まれた製品の一部または送電装置および送電装置が組み込まれた製品の一部のいずれでもなく、送電アンテナが送電する電力信号にさらされたときに発熱しうる物体である。 In this disclosure, a foreign object is, for example, a paperclip or an IC card. A foreign object is neither a part of a power receiving device or a product in which the power receiving device is incorporated, nor a part of a power transmitting device or a product in which the power transmitting device is incorporated, but is an object that can generate heat when exposed to a power signal transmitted by a power transmitting antenna.
 受電装置および受電装置が組み込まれた製品に不可欠な部分の物体または送電装置および送電装置が組み込まれた製品に不可欠な部分の物体は異物には当たらない。WPC規格では、異物が存在する場合に送電を停止することで異物の温度上昇や破壊の発生を抑制する方法が規定されている。具体的には、送電装置100は充電台300の上に異物が存在することを検出可能である。 A power receiving device and an object that is an integral part of a product in which the power receiving device is incorporated, or a power transmitting device and an object that is an integral part of a product in which the power transmitting device is incorporated, are not considered foreign objects. The WPC standard specifies a method for preventing the foreign object from heating up or being destroyed by stopping power transmission when a foreign object is present. Specifically, the power transmitting device 100 is capable of detecting the presence of a foreign object on the charging stand 300.
 Power Loss(パワーロス)法は、送電装置100における送電電力と受電装置200における受電電力との差分により異物を検出する方法である。またQ値計測法は、送電装置100における送電アンテナ105(送電コイル)に係るQuality Factor(Q-factor、品質係数、Q値)の変化により異物を検出する方法である。 The power loss method is a method for detecting a foreign object based on the difference between the transmitted power in the power transmitting device 100 and the received power in the power receiving device 200. The Q-factor measurement method is a method for detecting a foreign object based on a change in the quality factor (Q-factor, quality coefficient, Q-factor) associated with the power transmitting antenna 105 (power transmitting coil) in the power transmitting device 100.
 またQ値計測法は、送電装置100における送電アンテナ105(送電コイル)と共振コンデンサ107を含む共振回路のQuality Factor(Q-factor、品質係数、Q値)の変化により異物を検出する方法である。 The Q-factor measurement method is a method for detecting foreign objects by detecting changes in the quality factor (Q-factor, quality coefficient, Q-factor) of the resonant circuit including the power transmitting antenna 105 (power transmitting coil) and the resonant capacitor 107 in the power transmitting device 100.
 ただし、送電装置100が検出する異物については充電台300の上に存在する物体に限定されない。送電装置100は、送電装置100の近傍に位置する異物を検出可能である。例えば送電装置100は、送電可能な範囲に位置する異物を検出することができる。 However, the foreign objects that the power transmission device 100 detects are not limited to objects present on the charging stand 300. The power transmission device 100 can detect foreign objects located in the vicinity of the power transmission device 100. For example, the power transmission device 100 can detect foreign objects located within a range where power can be transmitted.
 図4を参照して、WPC規格で規定されているPower Loss法に基づく異物検出について説明する。図4は、Power Loss法による状態検出における閾値設定方法の説明図であり、横軸は送電装置100の送電電力を表し、縦軸は受電装置200の受電電力を表す。 With reference to Figure 4, foreign object detection based on the Power Loss method defined in the WPC standard will be described. Figure 4 is an explanatory diagram of a threshold setting method for state detection using the Power Loss method, with the horizontal axis representing the transmitted power of the power transmitting device 100 and the vertical axis representing the received power of the power receiving device 200.
 直線状の線分1002で示されるグラフ線上にて、点1000は第1送電電力値Pt1および第1受電電力値Pr1に対応し、点1001は第2送電電力値Pt2および第2受電電力値Pr2に対応する。当該グラフ線上にて、点1003は第3送電電力値Pt3および第3受電電力値Pr3に対応する。検出対象の異物は導電性を有する金属片等である。 On the graph line indicated by the straight line segment 1002, point 1000 corresponds to the first transmitted power value Pt1 and the first received power value Pr1, and point 1001 corresponds to the second transmitted power value Pt2 and the second received power value Pr2. On the graph line, point 1003 corresponds to the third transmitted power value Pt3 and the third received power value Pr3. The foreign object to be detected is a conductive metal piece or the like.
 まず、送電装置100は第1送電電力値Pt1で受電装置200に対して送電を行い、受電装置200は第1受電電力値Pr1で受電する。そして、送電装置100は第1送電電力値Pt1を記憶する。例えば、第1送電電力値Pt1、第1受電電力値Pr1は、予め定められた最小の送電電力値、受電電力値である。 First, the power transmitting device 100 transmits power to the power receiving device 200 at a first transmission power value Pt1, and the power receiving device 200 receives power at a first reception power value Pr1. Then, the power transmitting device 100 stores the first transmission power value Pt1. For example, the first transmission power value Pt1 and the first reception power value Pr1 are predetermined minimum transmission power values and reception power values.
 このとき、受電装置200は受電する電力が最小の電力となるように負荷制御を行う。あるいは、受電装置200は受電する電力が予め定められた所定の範囲内の電力、あるいは所定の閾値以下の電力となるように負荷制御を行う。 At this time, the power receiving device 200 performs load control so that the power it receives is the minimum power. Alternatively, the power receiving device 200 performs load control so that the power it receives is within a predetermined range or is equal to or less than a predetermined threshold.
 「予め定められた所定の範囲内の電力」、あるいは「所定の閾値以下の電力」の「電力」とは、後述するReference Powerのおよそ10%の値の電力である。例えば、受電装置200は、受電した電力が負荷(図3の充電部206、バッテリ207等)に供給されないように、受電アンテナ205から負荷を切断してもよい。 The "power" in "power within a predetermined range" or "power below a predetermined threshold" refers to a power with a value of approximately 10% of the Reference Power described below. For example, the power receiving device 200 may disconnect the load from the power receiving antenna 205 so that the received power is not supplied to the load (such as the charging unit 206 and battery 207 in FIG. 3).
 あるいは、所定の電力が負荷に供給されるように、負荷を制御してもよい。これらは、受電装置200が第1スイッチ部209を制御することによって実現できる。以下、このように制御された負荷の状態をLight Load状態(軽負荷状態)という。 Alternatively, the load may be controlled so that a predetermined amount of power is supplied to the load. This can be achieved by the power receiving device 200 controlling the first switch unit 209. Hereinafter, the state of the load controlled in this way is referred to as the light load state.
 続いて、受電装置200は、第1受電電力値Pr1を送電装置100に通知する。第1受電電力値Pr1に関する信号は、WPC規格で規定されるReceived Power Data Packet(mode1)である。以下、当該パケットを「RP1」と表記する。 Then, the power receiving device 200 notifies the power transmitting device 100 of the first received power value Pr1. The signal related to the first received power value Pr1 is a Received Power Data Packet (mode 1) defined in the WPC standard. Hereinafter, this packet will be referred to as "RP1."
 受電装置200からRP1を受信した送電装置100は、送電装置100と受電装置200との間の電力損失を算出する。このときの電力損失はPt1-Pr1(=Ploss1)である。Pt1とPr1との対応を示すキャリブレーションポイント(以下、CPと略記する)1000を作成することができる。 The power transmitting device 100, which receives RP1 from the power receiving device 200, calculates the power loss between the power transmitting device 100 and the power receiving device 200. The power loss at this time is Pt1-Pr1 (=Ploss1). A calibration point (hereafter abbreviated as CP) 1000 that indicates the correspondence between Pt1 and Pr1 can be created.
 続いて、送電装置100は送電電力値を第2送電電力値Pt2に変更し、受電装置200に対して送電を行い、受電装置200は第2受電電力値Pr2で受電する。以下、この状態をConnected Load状態(負荷接続状態)という。 Then, the power transmitting device 100 changes the transmission power value to the second transmission power value Pt2 and transmits power to the power receiving device 200, and the power receiving device 200 receives power at the second receiving power value Pr2. Hereinafter, this state is referred to as the Connected Load state.
 そして送電装置100は第2送電電力値Pt2を記憶する。例えば、第2送電電力値Pt2、第2受電電力値Pr2は、予め定められた最大の送電電力値、受電電力値である。このとき、受電装置200は受電する電力が最大の電力となるように負荷制御を行う。 Then, the power transmitting device 100 stores the second transmission power value Pt2. For example, the second transmission power value Pt2 and the second reception power value Pr2 are the maximum transmission power value and reception power value that have been determined in advance. At this time, the power receiving device 200 performs load control so that the received power becomes the maximum power.
 ここで、「最大の電力」とは、後述するReference Powerに近い値の電力である。例えば、受電装置200は受電した電力が負荷に供給されるように、受電アンテナ205と負荷とを接続する。 Here, "maximum power" refers to a power value close to the Reference Power described below. For example, the power receiving device 200 connects the power receiving antenna 205 to the load so that the received power is supplied to the load.
 これらは、第1スイッチ部209を制御することによって実現できる。続いて、受電装置200は第2受電電力値Pr2を送電装置100に通知する。第2受電電力値Pr2に関する信号は、WPC規格で規定されるReceived Power Data Packet(mode2)である。 These can be achieved by controlling the first switch unit 209. Next, the power receiving device 200 notifies the power transmitting device 100 of the second received power value Pr2. The signal related to the second received power value Pr2 is a Received Power Data Packet (mode 2) defined in the WPC standard.
 以下、当該パケットを「RP2」と表記する。受電装置200からRP2を受信した送電装置100は、送電装置100と受電装置200との間の電力損失を算出する。このときの電力損失はPt2-Pr2(=Ploss2)である。Pt2とPr2との対応を示すCP1001を生成することができる。 Hereinafter, this packet will be referred to as "RP2". The power transmitting device 100, which has received RP2 from the power receiving device 200, calculates the power loss between the power transmitting device 100 and the power receiving device 200. The power loss at this time is Pt2-Pr2 (=Ploss2). It is possible to generate CP1001, which indicates the correspondence between Pt2 and Pr2.
 送電装置100はCP1000とCP1001との間の直線補間処理を実行し、線分1002を生成する。線分1002は、送電装置100と受電装置200の近傍に異物が存在しないとして検出される状態(以下、第1の検出状態という)における送電電力と受電電力との関係を示している。 The power transmitting device 100 performs linear interpolation between CP1000 and CP1001 to generate a line segment 1002. The line segment 1002 shows the relationship between the transmitted power and the received power in a state in which no foreign object is detected to exist near the power transmitting device 100 and the power receiving device 200 (hereinafter referred to as the first detection state).
 送電装置100は線分1002に基づき、第1の検出状態にて所定の送電電力で送電した場合に受電装置200が受電する電力値を推定することができる。例えば、送電装置100が第3送電電力値Pt3で送電した場合を想定する。この場合、送電装置100は線分1002上の、Pt3に対応する点1003から、受電装置200が受電する第3受電電力値Pr3を推定できる。 Based on the line segment 1002, the power transmission device 100 can estimate the power value that the power receiving device 200 will receive when transmitting power at a specified transmission power in the first detection state. For example, assume that the power transmission device 100 transmits power at a third transmission power value Pt3. In this case, the power transmission device 100 can estimate the third received power value Pr3 that the power receiving device 200 will receive from a point 1003 on the line segment 1002 that corresponds to Pt3.
 以上のように、負荷を変えながら測定された送電装置100の送電電力値と受電装置200の受電電力値との複数の組み合わせに基づいて、負荷に応じた送電装置100と受電装置200との間の電力損失を求めることができる。また、送電電力値と受電電力値との複数の組み合わせからの補間処理により、すべての負荷に応じた送電装置100と受電装置200との間の電力損失を推定できる。 As described above, the power loss between the power transmitting device 100 and the power receiving device 200 according to the load can be obtained based on multiple combinations of the transmission power value of the power transmitting device 100 and the reception power value of the power receiving device 200 measured while changing the load. In addition, the power loss between the power transmitting device 100 and the power receiving device 200 according to all loads can be estimated by performing an interpolation process from multiple combinations of the transmission power value and the reception power value.
 このように、送電装置100が送電電力値と受電電力値との組み合わせを取得するために送電装置100および受電装置200が行うキャリブレーション処理を、「Power Loss法のCalibration処理」と呼ぶ。またCalibration処理を、CAL処理と略記する。 The calibration process performed by the power transmission device 100 and the power receiving device 200 in this way so that the power transmission device 100 can obtain a combination of the transmission power value and the reception power value is called "Power Loss method calibration process." The calibration process is also abbreviated as CAL process.
 Power Loss法のCAL処理後、送電装置100が第3送電電力値Pt3で受電装置200に送電し、送電装置100が受電装置200から受電電力値Pr3に関する信号を受信した場合を想定する。 It is assumed that after the CAL process of the Power Loss method, the power transmitting device 100 transmits power to the power receiving device 200 at a third transmission power value Pt3, and the power transmitting device 100 receives a signal related to a received power value Pr3 * from the power receiving device 200.
 この受電電力値Pr3に関する信号は、WPC規格で規定されるReceived Power Data Packet(mode0)であるが、他のメッセージが用いられてもよい。以下、当該パケットを「RP0」と表記する。 The signal relating to the received power value Pr3 * is a Received Power Data Packet (mode 0) defined in the WPC standard, but other messages may be used. Hereinafter, this packet will be referred to as "RP0".
 RP0には、例えば受電電力値Pr3が含まれる。送電装置100は、第1の検出状態における受電電力値Pr3から受電電力値Pr3を減算して、Pr3-Pr3(=Ploss_FO)を算出する。 RP0 includes, for example, received power value Pr3 * . Power transmitting device 100 subtracts received power value Pr3 * from received power value Pr3 in the first detection state to calculate Pr3-Pr3 * (=Pluss_FO).
 Ploss_FOは、送電装置100と受電装置200の近傍に異物が存在する場合、その異物で消費される電力、つまり電力損失と推定することができる。以下、送電装置100と受電装置200の近傍に異物が存在すると検出される状態を、第2の検出状態という。 When a foreign object is present near the power transmitting device 100 and the power receiving device 200, Ploss_FO can be estimated as the power consumed by the foreign object, i.e., the power loss. Hereinafter, the state in which the presence of a foreign object is detected near the power transmitting device 100 and the power receiving device 200 is referred to as the second detection state.
 第2の検出状態にて送電装置100は、異物で消費されたであろう電力損失Ploss_FOを、あらかじめ決められた閾値と比較する。電力損失Ploss_FOの値が閾値を超えた場合、送電装置100は異物が存在すると判定することができる。 In the second detection state, the power transmission device 100 compares the power loss Ploss_FO that would have been consumed by the foreign object with a predetermined threshold value. If the value of the power loss Ploss_FO exceeds the threshold value, the power transmission device 100 can determine that a foreign object is present.
 あるいは、送電装置100は、第1の検出状態における第3受電電力値Pr3を受電装置200から取得し、送電装置100と受電装置200との間の電力損失Pt3-Pr3(=Ploss3)を事前に求めておく。 Alternatively, the power transmitting device 100 obtains the third received power value Pr3 in the first detection state from the power receiving device 200, and calculates the power loss Pt3-Pr3 (=Ploss3) between the power transmitting device 100 and the power receiving device 200 in advance.
 次に送電装置100は、第2の検出状態にて受電装置200から受電電力値Pr3を取得し、第2の検出状態での送電装置100と受電装置200との間の電力損失Pt3-Pr3(=Ploss3)を算出する。そして送電装置100は、Ploss3-Ploss3を用いて電力損失Ploss_FOを推定することができる。 Next, the power transmitting device 100 acquires the received power value Pr3 * from the power receiving device 200 in the second detection state, and calculates the power loss Pt3-Pr3 * (=Ploss3 * ) between the power transmitting device 100 and the power receiving device 200 in the second detection state. Then, the power transmitting device 100 can estimate the power loss Ploss_FO using Ploss3 * -Ploss3.
 以上のように、第2の検出状態におけるPloss_FOの算出方法には2つの方法がある。
・Pr3-Pr3からPloss_FOを算出する第1の方法。
・Ploss3-Ploss3からPloss_FOを算出する第2の方法。
As described above, there are two methods for calculating Ploss_FO in the second detection state.
A first method of calculating Ploss_FO from Pr3-Pr3 * .
Plus3 *-- A second method for calculating Plus_FO from Plus3.
 本実施形態では基本的に第2の方法について述べるが、第1の方法においても本実施形態の内容を適用可能である。 In this embodiment, the second method is basically described, but the contents of this embodiment can also be applied to the first method.
 次に、図5を参照して、WPC規格で規定されているQ値計測法に基づく異物検出について説明する。図5(A)、(B)は第1実施形態に係るQ値計測法の説明図であり、図5(A)は、Q値計測法によるQuality Factor(Q-factor、品質係数、Q値)の測定方法を説明するための概略回路図である。 Next, referring to Figure 5, foreign object detection based on the Q-factor measurement method defined in the WPC standard will be described. Figures 5(A) and (B) are explanatory diagrams of the Q-factor measurement method according to the first embodiment, and Figure 5(A) is a schematic circuit diagram for explaining a method of measuring the Quality Factor (Q-factor, quality coefficient, Q-factor) using the Q-factor measurement method.
 交流電源901は、TXの送電部103が生成する交流電力を出力する電源である。送電アンテナ902は、送電アンテナ105に相当し、コンデンサ903は共振コンデンサ107に相当する。送電アンテナ902とコンデンサ903は直列に接続されている。 The AC power supply 901 is a power supply that outputs the AC power generated by the power transmission unit 103 of the TX. The power transmission antenna 902 corresponds to the power transmission antenna 105, and the capacitor 903 corresponds to the resonant capacitor 107. The power transmission antenna 902 and the capacitor 903 are connected in series.
 電圧値V8は、送電部103が生成する、無線電力伝送システムを動作させるための所定周波数の電圧値である。電圧値V9は、送電アンテナ902にかかる電圧値である。ここでTXは、電圧値に関する周波数を変化させることができるものとする。 The voltage value V8 is a voltage value of a predetermined frequency generated by the power transmitting unit 103 for operating the wireless power transmission system. The voltage value V9 is a voltage value applied to the power transmitting antenna 902. Here, TX is capable of changing the frequency related to the voltage value.
 また、電圧値V8およびV9は、TXがRXに対してAnalog Ping(以下、APと記す)、またはDigital Ping(以下、DPと記す)を送信する際にTXが測定する電圧値である。なお、電圧値V8およびV9は交流電圧値であるので、それらの実効値(RMS)を用いてもよい。 The voltage values V8 and V9 are voltage values that the TX measures when it transmits an Analog Ping (hereinafter referred to as AP) or a Digital Ping (hereinafter referred to as DP) to the RX. Note that since the voltage values V8 and V9 are AC voltage values, their effective values (RMS) may also be used.
 図5(B)は周波数に対するV9/V8の測定結果の例として、100kHzにピークを有する特性を示す。横軸は周波数軸であり、縦軸は電圧比「V9/V8」を表す。V9/V8は、送電アンテナ902に係るQuality Factorを表すので、送電アンテナ902の近傍に物体が載置されると、その値は変化する。 Figure 5 (B) shows an example of the measurement results of V9/V8 versus frequency, with a characteristic that has a peak at 100 kHz. The horizontal axis is the frequency axis, and the vertical axis represents the voltage ratio "V9/V8." V9/V8 represents the quality factor related to the power transmitting antenna 902, so when an object is placed near the power transmitting antenna 902, the value changes.
 Quality Factorの変化は、TXに物体が載置されない場合と、TXにRXが載置された場合と、TXに異物(金属片等)が載置された場合と、TXにRXと異物が載置された場合とで、それぞれ異なる。 The change in Quality Factor differs depending on whether no object is placed on the TX, whether an RX is placed on the TX, whether a foreign object (such as a metal piece) is placed on the TX, or whether an RX and a foreign object are placed on the TX.
 NegotiationフェーズにてTXはRXから、FOD Status Data packetの信号を受信する。当該パケットはReference Quality Factor ValueおよびReference Resonance Frequency Valueを含む。 In the Negotiation phase, TX receives a FOD Status Data packet signal from RX. This packet contains a Reference Quality Factor Value and a Reference Resonance Frequency Value.
 Reference Quality Factor Valueは、試験用TXにRXが載置され、かつ、異物が近くに存在しない場合の、試験用TXの送電アンテナの端子で測定できるQuality Factorである。 The Reference Quality Factor Value is the Quality Factor that can be measured at the terminals of the transmitting antenna of the test TX when the RX is placed on the test TX and there are no foreign objects nearby.
 また、Reference Resonance Frequency Valueは、試験用TXにRXが載置され、かつ、異物が近くに存在しない場合の、試験用TXの送電アンテナの端子で測定できるインダクタンス値から算出される共振周波数である。 The Reference Resonance Frequency Value is the resonant frequency calculated from the inductance value that can be measured at the terminal of the transmitting antenna of the test TX when the RX is placed on the test TX and there is no foreign object nearby.
 Q値計測法にて、Reference Quality Factor Valueを基準として閾値が設定される。この閾値と、測定されたV9/V8から求められるQuality Factorとを比較することで異物検出が行われる。 In the Q-value measurement method, a threshold is set based on the Reference Quality Factor Value. Foreign objects are detected by comparing this threshold with the Quality Factor calculated from the measured V9/V8.
 あるいは、Reference Resonance Frequency Valueを基準として閾値が設定される。この閾値と、V9/V8を測定して求められる共振周波数とを比較することで異物検出が行われる。 Alternatively, a threshold value is set based on the Reference Resonance Frequency Value. Foreign objects are detected by comparing this threshold value with the resonance frequency obtained by measuring V9/V8.
 本実施形態のRXとTXは、WPC規格に基づく送受電制御のための通信を行う。WPC規格では、電力伝送が実行されるPower Transferフェーズと、実際の電力伝送前の1以上のフェーズとを含む、複数のフェーズが規定されている。 The RX and TX in this embodiment communicate for power transmission and reception control based on the WPC standard. The WPC standard specifies multiple phases, including a Power Transfer phase in which power transmission is performed, and one or more phases before the actual power transmission.
 各フェーズにおいて必要な送受電制御のための通信が行われる。例えば、Power Loss法による異物検出は、Calibrationフェーズにより取得されたデータに基づき、Power Transferフェーズに実施される。また、Q値計測法による異物検出は、電力伝送前(DPの送信前と、NegotiationフェーズまたはRenegotiationフェーズ)に実施される。 In each phase, communication is carried out for the necessary power transmission and reception control. For example, foreign object detection using the Power Loss method is performed in the Power Transfer phase based on data acquired in the Calibration phase. In addition, foreign object detection using the Q-value measurement method is performed before power transmission (before sending DP and in the Negotiation phase or Renegotiation phase).
 次に図6を参照して、TXの制御部101の機能について説明する。図6は、第1実施形態に係る送電装置100(TX)の制御部101の機能構成例を示すブロック図である。制御部101は、通信制御部301、送電制御部302、測定部303、設定部304、状態検出部305を有する。通信制御部301は、第1通信部104または第2通信部109を介したRXとの通信の制御を行う。 Next, the function of the control unit 101 of the TX will be described with reference to FIG. 6. FIG. 6 is a block diagram showing an example of the functional configuration of the control unit 101 of the power transmission device 100 (TX) according to the first embodiment. The control unit 101 has a communication control unit 301, a power transmission control unit 302, a measurement unit 303, a setting unit 304, and a state detection unit 305. The communication control unit 301 controls communication with the RX via the first communication unit 104 or the second communication unit 109.
 送電制御部302は、送電部103を制御することで、RXへの送電を制御する。測定部303は、後述する波形減衰指標を測定する。また測定部303は、送電部103を介してRXに対して送電する電力を計測し、単位時間ごとに平均送電電力を測定する。また測定部303は、送電アンテナ105のQuality Factorの測定を行う。 The power transmission control unit 302 controls the power transmission unit 103 to control the power transmission to the RX. The measurement unit 303 measures the waveform attenuation index, which will be described later. The measurement unit 303 also measures the power transmitted to the RX via the power transmission unit 103, and measures the average transmitted power per unit time. The measurement unit 303 also measures the Quality Factor of the power transmission antenna 105.
 また測定部303は、送電アンテナ105と共振コンデンサ107を含む共振回路のQuality Factorの測定を行う。以下、送電アンテナ105のQuality Factor、および送電アンテナ105と共振コンデンサ107を含む共振回路のQuality Factorのことを、送電アンテナ105に係るQuality Factorと呼ぶ。 The measurement unit 303 also measures the quality factor of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107. Hereinafter, the quality factor of the power transmitting antenna 105 and the quality factor of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107 are referred to as the quality factor related to the power transmitting antenna 105.
 また測定部303は、送電装置100の複数個所に配置された温度センサにより温度の測定を行う。また測定部303は、送電アンテナ105と受電アンテナ205との電磁結合状態(以下、単に結合状態ともいう)を表す量(結合状態指標)を測定する。結合状態指標には、例えば結合係数が含まれる。結合状態指標測定法については後述する。 The measurement unit 303 also measures the temperature using temperature sensors arranged at multiple locations on the power transmitting device 100. The measurement unit 303 also measures a quantity (coupling state index) that indicates the electromagnetic coupling state (hereinafter also simply referred to as the coupling state) between the power transmitting antenna 105 and the power receiving antenna 205. The coupling state index includes, for example, a coupling coefficient. The method of measuring the coupling state index will be described later.
 設定部304は、TXが状態検出を行う上で、異物の有無を判定するための基準となる閾値を設定する。状態検出とは、例えばPower Loss法、Q値計測法、波形減衰法に基づく状態検出、送電装置100において測定された温度に基づく状態検出、または送電アンテナ105と受電アンテナ205との結合係数等に基づく状態検出である。 The setting unit 304 sets a threshold value that serves as a reference for determining the presence or absence of a foreign object when the TX performs status detection. Status detection is, for example, status detection based on the power loss method, the Q value measurement method, or the waveform attenuation method, status detection based on the temperature measured in the power transmitting device 100, or status detection based on the coupling coefficient between the power transmitting antenna 105 and the power receiving antenna 205, etc.
 なお、設定部304は、その他の方法を用いた状態検出処理に必要となる判定用閾値を設定することができる。設定部304は、Power Loss法、Q値計測法、波形減衰法、送電アンテナと受電アンテナの結合状態指標測定法における、それぞれの異物検出用の閾値またはTXとRXとの位置ずれ検出用の閾値を算出して設定する。 The setting unit 304 can set judgment thresholds required for state detection processing using other methods. The setting unit 304 calculates and sets the thresholds for detecting foreign objects or the thresholds for detecting positional deviations between TX and RX in the Power Loss method, the Q-factor measurement method, the waveform attenuation method, and the coupling state index measurement method for the power transmitting antenna and the power receiving antenna.
 また設定部304は、測定部303により測定された送電装置の温度に基づき、異物検出用の閾値またはTXとRXとの位置ずれ検出用の閾値を算出して設定する。なお、設定部304は、その他の方法を用いた状態検出処理に必要となる判定用閾値を設定することができる。 The setting unit 304 also calculates and sets a threshold value for detecting foreign objects or a threshold value for detecting misalignment between TX and RX based on the temperature of the power transmitting device measured by the measurement unit 303. The setting unit 304 can also set a judgment threshold value required for state detection processing using other methods.
 状態検出部305は、TXとRXの状態検出を行う。例えば状態検出部305は、TXとRXとの間に存在する異物の検出を行い、また、送電アンテナ105と受電アンテナ205との位置ずれを検出する。より具体的には、Power Loss法、Q値計測法、波形減衰法、送電装置100にて測定された温度、送電アンテナ105と受電アンテナ205との電磁結合状態(例えば結合係数)による状態検出処理が可能である。 The state detection unit 305 detects the state of TX and RX. For example, the state detection unit 305 detects foreign objects present between TX and RX, and also detects misalignment between the transmitting antenna 105 and the receiving antenna 205. More specifically, state detection processing is possible using the power loss method, the Q value measurement method, the waveform attenuation method, the temperature measured by the power transmitting device 100, and the electromagnetic coupling state (e.g., the coupling coefficient) between the transmitting antenna 105 and the receiving antenna 205.
 状態検出部305は、異物検出や、送電アンテナ105と受電アンテナ205との位置ずれ検出処理を、その他の方法で行うことが可能である。例えばNFC通信機能を備えるTXにおいて、状態検出部305は、NFC規格による対向機検出機能を用いて状態検出処理を行う。 The status detection unit 305 can detect foreign objects and positional deviations between the power transmitting antenna 105 and the power receiving antenna 205 using other methods. For example, in a TX equipped with an NFC communication function, the status detection unit 305 performs status detection processing using a function for detecting a counterpart device according to the NFC standard.
 また、状態検出部305は、異物の有無の検出や送電アンテナと受電アンテナとの電磁結合状態の検出以外に、TX上の状態変化を検出可能である。例えば、TX上のRXの数の増減をTXが検出可能である。状態検出部305は、設定部304により設定された閾値と、測定部303による測定結果に基づいて、異物検出処理や送電アンテナ105と受電アンテナ205との位置ずれ検出処理を行うことができる。 The state detection unit 305 can detect state changes on the TX in addition to detecting the presence or absence of a foreign object and the electromagnetic coupling state between the transmitting antenna and the receiving antenna. For example, the TX can detect an increase or decrease in the number of RXs on the TX. The state detection unit 305 can perform a foreign object detection process and a positional deviation detection process between the transmitting antenna 105 and the receiving antenna 205 based on the threshold value set by the setting unit 304 and the measurement results by the measurement unit 303.
 例えば状態検出部305は、測定部303の測定結果として、波形減衰指標、送電電力、Quality Factor、送電装置100にて測定された温度、送電アンテナ105と受電アンテナ205との結合係数等のデータを取得可能である。 For example, the state detection unit 305 can obtain data such as the waveform attenuation index, the transmission power, the Quality Factor, the temperature measured by the power transmission device 100, and the coupling coefficient between the power transmission antenna 105 and the power receiving antenna 205 as the measurement results of the measurement unit 303.
 図6に示す通信制御部301、送電制御部302、測定部303、設定部304、状態検出部305が実行する処理については、制御部101の備えるCPU等が実行するプログラムを用いて実現可能である。各処理は、それぞれが独立したプログラムにしたがい、イベント処理等によりプログラム間の同期をとりながら並行して実行される。ただし、これらの処理のうち、2つ以上が1つのプログラムによる処理に組み込まれていてもよい。 The processes performed by the communication control unit 301, power transmission control unit 302, measurement unit 303, setting unit 304, and state detection unit 305 shown in FIG. 6 can be realized using programs executed by a CPU or the like provided in the control unit 101. Each process is executed in parallel according to an independent program, with synchronization between the programs achieved by event processing or the like. However, two or more of these processes may be incorporated into the processing of a single program.
 続いて、TXおよびRXが実行する送受電制御処理の流れの例について説明する。電力伝送のフェーズであるPower Transferフェーズの前には、下記のフェーズがある。 Next, an example of the flow of the power transmission and reception control process executed by TX and RX will be explained. Before the Power Transfer phase, which is the power transmission phase, there are the following phases.
・Selectionフェーズ。
・Pingフェーズ。
・Identification and Configurationフェーズ(Configurationフェーズ)。
・Negotiationフェーズ。
・Calibrationフェーズ。
- Selection phase.
・Ping phase.
Identification and Configuration phase (Configuration phase).
-Negotiation phase.
- Calibration phase.
 以下では、Identification and ConfigurationフェーズをI&Cフェーズと呼ぶ。 In the following, the Identification and Configuration phase will be referred to as the I&C phase.
 図7は、第1実施形態に係る送電装置の処理を説明するフローチャートであり、TXが実行する送電制御処理の流れの例を示す。本処理は、例えばTXの制御部101がメモリ106から読み出したプログラムを実行することによって実現される。 FIG. 7 is a flowchart explaining the processing of the power transmission device according to the first embodiment, and shows an example of the flow of the power transmission control processing executed by the TX. This processing is realized, for example, by the control unit 101 of the TX executing a program read from the memory 106.
 また、本処理は、TXの電源がオンされたことに応じて、TXのユーザが無線電力伝送アプリケーションの開始指示を入力したことに応じて、または、TXが商用電源に接続され電力供給を受けていることに応じて、実行される。また、他の契機によって本処理が開始されてもよい。 This process is also executed when the power of the TX is turned on, when the user of the TX inputs an instruction to start a wireless power transmission application, or when the TX is connected to a commercial power source and receives power. This process may also be started by some other trigger.
 S1201でTXは、SelectionフェーズとPingフェーズとして規定されている処理を実行し、RXが載置されるのを待ち受ける。TXは、SelectionフェーズにてAPを繰り返し間欠送信し、送電可能範囲内に存在する物体を検出する。 In S1201, the TX executes the processes defined as the Selection phase and Ping phase, and waits for the RX to be placed. In the Selection phase, the TX repeatedly transmits the AP intermittently, and detects objects that are within the power transmission range.
 例えばTXは、充電台300にRXや導体片等が載置されたことを検出可能である。TXは、APを送信したときの送電アンテナ105の電圧値と電流値の一方または両方を検出する。TXは、当該電圧値が閾値を下回る場合、または当該電流値が閾値を超える場合に、物体が存在すると判断し、Pingフェーズに遷移する。 For example, the TX can detect that an RX, a conductor piece, etc. has been placed on the charging stand 300. The TX detects one or both of the voltage and current values of the power transmitting antenna 105 when an AP is transmitted. If the voltage value falls below a threshold value or if the current value exceeds a threshold value, the TX determines that an object is present and transitions to the Ping phase.
 そして、TXは、送電可能範囲内に物体が存在することを検出した場合、DPを送信する。DPの電力は、APの電力より大きく、TX上に載置されたRXの制御部201が起動するのに十分な電力である。そして、TXは、DPに対する所定の応答があった場合、Selectionフェーズで検出された物体がRXであり、RXが充電台300に載置されたと判定する。 Then, if the TX detects the presence of an object within the power transmission range, it transmits a DP. The power of the DP is greater than the power of the AP, and is sufficient to start up the control unit 201 of the RX placed on the TX. If there is a specified response to the DP, the TX determines that the object detected in the Selection phase is the RX, and that the RX has been placed on the charging stand 300.
 ここで、「所定の応答」とは、RXが送信する、Singnal Strength (SIG) Data Packetである。当該パケットは、RXが受信する信号の信号強度を表すSingnal Strength Valueを含む。 Here, the "predetermined response" is a Signal Strength (SIG) Data Packet sent by the RX. This packet includes a Signal Strength Value that indicates the signal strength of the signal received by the RX.
 この値は、RXが測定する受電部203の整流部にかかる電圧(整流電圧)、あるいはRXが測定する受電アンテナ205を含む開回路の電圧(開回路電圧)、あるいはRXが測定する受信電力値等から算出される。 This value is calculated from the voltage (rectified voltage) applied to the rectifier of the power receiving unit 203 measured by the RX, or the voltage (open circuit voltage) of the open circuit including the power receiving antenna 205 measured by the RX, or the received power value measured by the RX, etc.
 また、TXはDPの送信前に、例えばAPを用いて、送電アンテナ105に係るQuality Factorの測定を行う。この測定結果は、Q値測定法を用いた異物検出処理を実行する際に使用される。なお、WPC規格のバージョンによっては、上述したSelectionフェーズが、上述したPingフェーズの一部として、Pingフェーズと呼ばれる場合もある。 Before transmitting the DP, the TX also measures the Quality Factor of the transmitting antenna 105, for example, using the AP. This measurement result is used when executing the foreign object detection process using the Q-value measurement method. Note that, depending on the version of the WPC standard, the above-mentioned Selection phase may be called the Ping phase as part of the above-mentioned Ping phase.
 S1202でTXは、Singnal Strength (SIG) Data Packetを受信する。TXはRXの載置を検出すると、WPC規格で規定されたI&Cフェーズでの通信により、そのRXから識別情報を取得する。 At S1202, the TX receives a Signal Strength (SIG) Data Packet. When the TX detects that the RX has been placed, it obtains identification information from the RX through communication in the I&C phase defined by the WPC standard.
 I&Cフェーズでは、RXは、Identification Data Packet(ID Packet)をTXへ送信する。当該パケットには、RXの個体ごとの識別子情報であるManufacturer CodeとBasic Device IDと、対応しているWPC規格のバージョンを特定可能な情報要素が格納される。 In the I&C phase, the RX sends an Identification Data Packet (ID Packet) to the TX. This packet contains the Manufacturer Code and Basic Device ID, which are identifiers for each individual RX, as well as information elements that can identify the version of the WPC standard that is supported.
 さらに、RXは、Configuration Data PacketをTXへ送信する。当該パケットには、以下に示すRXの能力情報(機器構成情報)が含まれる。 Furthermore, the RX sends a Configuration Data Packet to the TX. This packet contains the RX's capability information (device configuration information) shown below.
・RXが対応しているWPC規格のバージョンを特定することが可能な情報。
・RXが負荷に供給できる最大電力を特定する値であるMaximum Power ValueあるいはReference Power。
・RXがWPC規格のNegotiation機能を有するか否かを示す情報。
・TXがRXに対して情報を送信する際に用いる通信の変調方式である周波数偏移変調において使用されるパラメータ。
- Information that makes it possible to identify the version of the WPC standard that the RX supports.
- Maximum Power Value or Reference Power, which is a value that specifies the maximum power the RX can supply to the load.
Information indicating whether the RX has a WPC standard Negotiation function.
A parameter used in frequency shift keying, which is a communication modulation method used when TX transmits information to RX.
 TXは、これらのパケットを受信すると、肯定応答ACKを送信し、I&Cフェーズが終了する。なお、I&Cフェーズは、WPC規格のバージョンによっては、Configurationフェーズと呼ばれる場合もある。 When the TX receives these packets, it sends an ACK acknowledgement, and the I&C phase ends. Note that the I&C phase may also be called the Configuration phase depending on the version of the WPC standard.
 またTXは、WPC規格のI&Cフェーズでの通信以外の方法でRXの識別情報を取得してもよい。また、RXの個体ごとの識別情報は、Wireless Power IDでもよい。 The TX may also obtain the identification information of the RX by a method other than communication in the I&C phase of the WPC standard. The identification information for each individual RX may also be a Wireless Power ID.
 さらに、RXの個体ごとの識別情報は、RXの第2通信部212に固有のBluetooth(登録商標) Address(以下、「BD_ADDR」と呼ぶ)等の、RXの個体を識別可能な任意の他の識別情報であってもよい。 Furthermore, the identification information for each individual RX may be any other identification information capable of identifying the individual RX, such as a Bluetooth (registered trademark) Address (hereinafter referred to as "BD_ADDR") unique to the second communication unit 212 of the RX.
 なお、BD_ADDRは、BLEで使用する8バイトのアドレスである。BD_ADDRは、例えばRXの製造メーカや、BLEの通信機能(第2通信部212)の個体識別情報を示す、BLE規格で規定されたPublic Addressである。BD_ADDRは、Random Addressであってもよい。 BD_ADDR is an 8-byte address used in BLE. BD_ADDR is a public address defined in the BLE standard that indicates, for example, the manufacturer of the RX or individual identification information of the BLE communication function (second communication unit 212). BD_ADDR may also be a random address.
 続いてS1203でTXは、RXの要求と自装置の送電能力に基づいて、そのRXとの交渉によってGPの値を決定する。WPC規格のNegotiationフェーズでの通信が行われ、RXが要求するGPの値やTXの送電能力等に基づいてGPの値が決定される。 Next, in S1203, the TX determines the GP value through negotiation with the RX based on the RX's request and the power transmission capacity of the device itself. Communication is performed in the negotiation phase of the WPC standard, and the GP value is determined based on the GP value requested by the RX, the TX's power transmission capacity, etc.
 TXとRXが交渉を行って決定されるGPは、RXの負荷に対して出力(供給)される電力である。ここで、GP値を決定する処理の流れを説明する。RXはTXに対して、Requested Load Powerの情報が含まれるSpecific Requestを送信する。 GP, which is determined through negotiation between the TX and RX, is the power output (supplied) to the load of the RX. Here, we explain the process flow for determining the GP value. The RX sends a Specific Request to the TX, which includes information about the Requested Load Power.
 Requested Load Powerとは、RXが要求する、RXの負荷へ出力する電力である。この電力は負荷で消費される電力であり、負荷とは、RXまたはRXの受電部から電力が供給されるシステムのことである(例えばRXの充電部206、バッテリ207)。 Requested Load Power is the power requested by the RX to be output to the load of the RX. This power is consumed by the load, and the load refers to the system to which power is supplied from the RX or the power receiving unit of the RX (for example, the charging unit 206 of the RX, the battery 207).
 一方、TXは、Potential Load Powerの値、あるいはNegotiable Load Powerの値を予め有している。Potential Load Powerとは、TXが交渉可能な、RXの負荷へ出力(供給)可能な最大負荷電力値(Highest Load Power Level)である。 On the other hand, the TX already has a Potential Load Power value or a Negotiable Load Power value. Potential Load Power is the maximum load power value (Highest Load Power Level) that the TX can negotiate and output (supply) to the RX load.
 また、Negotiable Load Powerとは、所定の期間中または所定の条件下における、TXが交渉可能な、RXの負荷へ出力(供給)可能な最大負荷電力値(Highest Load Power Level)である。Requested Load Powerの値が、Negotiable Load Powerの値よりも小さい場合に交渉は成立する。 Negotiable Load Power is the maximum load power value (Highest Load Power Level) that the TX can negotiate and output (supply) to the RX load during a specified period or under specified conditions. The negotiation is successful when the Requested Load Power value is smaller than the Negotiable Load Power value.
 この場合、TXとRXはRequested Load Powerの値をGP値として設定してメモリに保持する。つまり、TXは、RXからRequested Load Powerの値を受信し、その値がNegotiable Load Powerの値よりも小さい場合、肯定応答ACKをRXに送信する。 In this case, TX and RX set the Requested Load Power value as the GP value and store it in memory. In other words, TX receives the Requested Load Power value from RX, and if that value is smaller than the Negotiable Load Power value, it sends an ACK acknowledgement to RX.
 TXとRXはRequested Load Powerの値をGP値として設定してメモリに保持する。TXは、RXから受信したRequested Load Powerの値がNegotiable Load Powerの値よりも大きい場合、否定応答NAKをRXに送信する。 The TX and RX set the Requested Load Power value as the GP value and store it in memory. If the Requested Load Power value received from the RX is greater than the Negotiable Load Power value, the TX sends a negative acknowledgement NAK to the RX.
 RXはRequested Load Powerの値を小さくして、再度TXに対してRequested Load Powerの値を示す信号を送信する。RXは、TXから肯定応答ACKを受信するまで、上述の処理を繰り返す。RXが肯定応答ACKを受信した場合、TXとRXはRequested Load Powerの値をGP値として設定してメモリに保持する。 The RX reduces the value of Requested Load Power and again sends a signal indicating the value of Requested Load Power to the TX. The RX repeats the above process until it receives an ACK positive response from the TX. When the RX receives an ACK positive response, the TX and RX set the value of Requested Load Power as the GP value and store it in memory.
 決定されるGPの値は、TXがRXの要求を受け入れた場合にはRXが要求した値となるが、そうでない場合にはWPC規格で定められた所定の値(例えば5ワット)となる。あるいは、TXは、RXがNegotiationフェーズに対応していないことを示す情報を取得した場合、Negotiationフェーズの通信は行わず、GP値を所定値に決定する。所定値とは、例えばWPC規格で予め規定された値(例えば5ワット)である。 The GP value that is determined will be the value requested by the RX if the TX accepts the request from the RX, but if not, it will be a predetermined value (e.g., 5 watts) defined in the WPC standard. Alternatively, if the TX obtains information indicating that the RX does not support the negotiation phase, it will not perform communication in the negotiation phase and will determine the GP value to be a predetermined value. The predetermined value is, for example, a value (e.g., 5 watts) that is predefined in the WPC standard.
 またTXは、RXからの要求に従って、Q値測定法を用いた異物検出処理を実行する。TXはRXから、FOD Status Data packetを受信する。当該パケットは上記Reference Quality Factor ValueおよびReference Resonance Frequency Valueを含む。 The TX also performs foreign object detection processing using the Q-value measurement method in response to a request from the RX. The TX receives an FOD Status Data packet from the RX. This packet includes the above-mentioned Reference Quality Factor Value and Reference Resonance Frequency Value.
 Q値計測法において、Reference Quality Factor ValueおよびReference Resonance Frequency Valueを基準とした閾値に基づいて、異物検出処理が実行される。 In the Q-value measurement method, foreign object detection processing is performed based on a threshold value based on the Reference Quality Factor Value and the Reference Resonance Frequency Value.
 Q値測定法による異物検出処理ではRXからのTXへの要求にしたがい、TXがDPの送信前に測定した、送電アンテナ105のQuality Factorの値と、上記閾値とが比較され、比較結果に基づいて異物の有無や存在の可能性が判定される。 In the foreign object detection process using the Q-factor measurement method, in response to a request from the RX to the TX, the value of the Quality Factor of the transmitting antenna 105 measured by the TX before transmitting the DP is compared with the above threshold value, and the presence or absence of a foreign object and the possibility of its presence are determined based on the comparison result.
 またWPC規格では、一旦Power Transferフェーズに移行した後、RXからの要求によって再度Negotiationフェーズと同様の処理を行う方法が規定されている。Power Transferフェーズから移行してこれらの処理を行うフェーズのことをRenegotiationフェーズと呼ぶ。 The WPC standard also prescribes a method of transitioning to the Power Transfer phase, and then performing the same processing as the Negotiation phase again upon request from the RX. The phase in which this processing is performed after the Power Transfer phase is called the Renegotiation phase.
 続いてS1204でTXとRXは、CalibrationフェーズにてCAL処理を実行する。TXは、決定したReference Powerの値あるいはGPの値に基づいてPower Loss法のCAL処理を実行する。 Next, in S1204, the TX and RX execute CAL processing in the calibration phase. The TX executes CAL processing using the Power Loss method based on the determined Reference Power value or GP value.
 具体的には、RXは、TXに対し、軽負荷状態における受電電力に関する情報(以下、第1の基準受電電力情報という)を有する信号を送信する。軽負荷状態は、例えば負荷切断状態や、RXの受電電力値が第1の閾値以下になる負荷状態、あるいはRXの受電電力値が予め定められた第1の範囲内になる負荷状態である。 Specifically, the RX transmits a signal to the TX that contains information about the received power in a light load state (hereinafter referred to as first reference received power information). A light load state is, for example, a load disconnection state, a load state in which the received power value of the RX is equal to or lower than a first threshold, or a load state in which the received power value of the RX is within a predetermined first range.
 例えば、第1の基準受電電力情報は500ミリワットを示す情報である。第1の基準受電電力情報はRP1に含まれる情報であるが、他のメッセージが用いられてもよい。TXは、RXから受信するControl Error(CE) Data Packetの中に含まれる、Control Error Valueの値に基づいて、第1の基準受電電力情報を受け入れるか否かを判定する。 For example, the first reference received power information is information indicating 500 milliwatts. The first reference received power information is information contained in RP1, but other messages may be used. The TX determines whether or not to accept the first reference received power information based on the value of the Control Error Value contained in the Control Error (CE) Data Packet received from the RX.
 以下、Control Error Data PacketをCEと表記し、Control Error ValuをCEVと表記する。TXは第1の基準受電電力情報を受け入れる場合、肯定応答ACKをRXへ送信する。また、TXは第1の基準受電電力情報を受け入れない場合、否定応答NAKをRXへ送信する。 Hereinafter, Control Error Data Packet will be abbreviated as CE, and Control Error Value will be abbreviated as CEV. If TX accepts the first reference received power information, it will send an acknowledgment ACK to RX. If TX does not accept the first reference received power information, it will send a negative acknowledgment NAK to RX.
 次に、RXは、TXに対し、負荷接続状態における受電電力に関する情報(以下、第2の基準受電電力情報という)を有する信号を送信するための処理を行う。負荷接続状態は、例えば最大負荷状態や、送電電力値が第2の閾値以上になる負荷状態である。 Next, the RX performs processing to transmit to the TX a signal containing information about the received power in a load connection state (hereinafter referred to as second reference received power information). The load connection state is, for example, a maximum load state or a load state in which the transmitted power value is equal to or greater than a second threshold value.
 あるいは、RXが受電する電力が最大の電力となる負荷状態である。ここで、「最大の電力」とは、Reference Powerに近い値の電力である。あるいはRXの受電電力値が予め定められた第2の範囲内になる負荷状態である。ここで、第2の範囲は上記第1の範囲よりも高い電力値の範囲である。 Or, it is a load state in which the power received by the RX is the maximum power. Here, "maximum power" is a power value close to the Reference Power. Or, it is a load state in which the received power value of the RX is within a predetermined second range. Here, the second range is a range of power values higher than the first range.
 例えば、第2の基準受電電力情報は5ワットを示す情報である。第2の基準受電電力情報はRP2に含まれる情報であるが、他のメッセージが用いられてもよい。TXは、RXから受信するCE中に含まれるCEVに基づいて、第2の基準受電電力情報を受け入れるか否かを判定する。 For example, the second reference received power information is information indicating 5 watts. The second reference received power information is information included in RP2, but other messages may be used. The TX determines whether or not to accept the second reference received power information based on the CEV included in the CE received from the RX.
 TXは第2の基準受電電力情報を受け入れる場合、肯定応答ACKをRXへ送信する。また、TXは第2の基準受電電力情報を受け入れない場合、否定応答NAKをRXへ送信する。TXは、RXからの第2の基準受電電力情報に対して肯定応答ACKを送信してから、CAL処理を完了する。 If the TX accepts the second reference received power information, it sends an acknowledgment ACK to the RX. If the TX does not accept the second reference received power information, it sends a negative acknowledgment NAK to the RX. The TX completes the CAL process after sending an acknowledgment ACK to the second reference received power information from the RX.
 以上のCAL処理により、TXは、TXの送電電力値、および、第1および第2の基準受電電力情報に含まれる受電電力値に基づいて、軽負荷状態と負荷接続状態におけるTXとRXとの間の電力損失量を算出することが可能となる。 The above CAL process enables the TX to calculate the amount of power loss between the TX and the RX in the light load state and the load connected state based on the transmission power value of the TX and the received power value contained in the first and second reference received power information.
 またTXは、複数の電力損失量の間の補間処理を行うことで、TXが取り得るすべての送電電力におけるTXとRXとの間の電力損失量を算出することができる。TXが取り得るすべての送電電力とは、例えば本実施形態にてRXが受電する受電電力が500ミリワットから5ワットになる範囲における、任意の電力である。 The TX can also calculate the amount of power loss between the TX and the RX for all possible transmission powers by performing an interpolation process between multiple power loss amounts. All possible transmission powers by the TX are, for example, any power within the range of the receiving power received by the RX in this embodiment from 500 milliwatts to 5 watts.
 その後、S1205でTXは、RXのバッテリが満充電状態となるまで送電する。Power Transferフェーズでの通信において、送電の開始、継続、およびエラー処理や満充電による送電停止等のための制御が行われる。TXとRXは、これらの送受電制御のための通信処理を行う。 Then, in S1205, the TX transmits power until the RX battery is fully charged. In the communication in the Power Transfer phase, control is performed for starting and continuing power transmission, as well as error processing and stopping power transmission due to full charge. The TX and RX perform communication processing for this power transmission and reception control.
 例えば、WPC規格に基づいて無線電力伝送を行う際に使用する送電アンテナ105および受電アンテナ205を用いて、送電アンテナ105または受電アンテナ205から送信される電磁波に信号を重畳して通信が行われる。なお、TXとRXとの間でWPC規格に基づく通信が可能な範囲は、TXの送電可能範囲と同様の範囲である。 For example, using the transmitting antenna 105 and the receiving antenna 205 used when performing wireless power transmission based on the WPC standard, communication is performed by superimposing a signal on the electromagnetic waves transmitted from the transmitting antenna 105 or the receiving antenna 205. Note that the range in which communication based on the WPC standard between the TX and the RX is possible is the same as the range in which the TX can transmit power.
 RXは、TXに対してt_intervalの時間間隔で繰り返しCEを送信する。t_intervalはWPC規格で定義される値であり、例えば250ミリ秒である。RXはCEにより、TXに対して送電電力をどのくらい上げるか、または下げるかを要求することができる。 The RX repeatedly transmits CE to the TX at time intervals of t_interval. t_interval is a value defined in the WPC standard, e.g., 250 milliseconds. The RX can use the CE to request the TX how much to increase or decrease its transmission power.
 つまり、CEパケットは、送電電力を調整するためのパラメータ(CEV)を含む。TXは、受信したCEに基づいて送電アンテナ105の電流または電圧を制御することで送電電力を調整する。この処理を繰り返すことで、RXの要求に応じた適切な電力での送電がほぼリアルタイムに行われる。 In other words, the CE packet includes a parameter (CEV) for adjusting the transmission power. The TX adjusts the transmission power by controlling the current or voltage of the transmission antenna 105 based on the received CE. By repeating this process, transmission at an appropriate power according to the request of the RX is performed almost in real time.
 RXは、満充電となるとEnd Power Transfer Data Packet(以下、「EPT」と記す)をTXに送信してPower Transferフェーズを終了させる。RXは、満充電以外の理由でEPTを送信してもよい。また、TXはPower Transferフェーズが終了すると、RXに対する充電のための送電を停止する。 When the RX is fully charged, it sends an End Power Transfer Data Packet (hereinafter referred to as "EPT") to the TX to end the Power Transfer phase. The RX may send an EPT for reasons other than full charge. In addition, when the Power Transfer phase ends, the TX stops transmitting power to the RX for charging.
 TXは、最後にCEを受信してからt_timeoutが経過しても次のCEを受信できなかった場合、RXが充電台300から取り除かれたと判断してPower Transferフェーズを終了する。t_timeoutはWPC規格で定義される値であり、例えば1500ミリ秒である。 If TX does not receive the next CE even after t_timeout has elapsed since the last CE was received, TX determines that RX has been removed from the charging station 300 and ends the Power Transfer phase. t_timeout is a value defined by the WPC standard, and is, for example, 1500 milliseconds.
 RXはPower Transferフェーズ中にCE以外のパケットを送信してもよい。CE以外のパケットの一例は、RXのバッテリ207の状態をTXに通知するCharge Status Data Packetである。当該パケットには、バッテリ207が何パーセントの充電状態であるかを表すCharge Status Valueが格納される。 The RX may transmit packets other than CE during the Power Transfer phase. An example of a packet other than CE is a Charge Status Data Packet that notifies the TX of the status of the RX's battery 207. The packet stores a Charge Status Value that indicates the percentage of charge of the battery 207.
 TXは、Charge Status Data Packetを受信すると、例えばUI部110にCharge Status Valueに基づいて文字や図で表示を行うことでユーザに充電状態を通知する。Charge Status Data Packetに関しては、TXはいつ受信してもよいし、いつユーザへの通知を行ってもよい。 When the TX receives the Charge Status Data Packet, it notifies the user of the charging status, for example by displaying text or a figure based on the Charge Status Value on the UI unit 110. The TX may receive the Charge Status Data Packet at any time, and may notify the user at any time.
 Power TransferフェーズにてTXは、RXに対して送電を行うとともに、Power Loss法による異物検出処理を行う。例えばCAL処理により、送電電力値と受電電力値との差分から、送電処理中の第1の検出状態におけるTXとRXとの間の電力損失量が算出される。 In the Power Transfer phase, the TX transmits power to the RX and performs foreign object detection processing using the Power Loss method. For example, the amount of power loss between the TX and RX in the first detection state during the power transmission process is calculated from the difference between the transmitted power value and the received power value using CAL processing.
 算出された電力損失量は、異物が存在しない状態における、基準の電力損失量に相当する。そしてTXは、CAL処理後の送電中に測定された、TXとRXとの間の電力損失量と、基準の電力損失量との差分が閾値以上であると判定した場合、第2の検出状態と判断する。 The calculated amount of power loss corresponds to the reference amount of power loss in the absence of a foreign object. If the TX determines that the difference between the amount of power loss between the TX and RX measured during power transmission after CAL processing and the reference amount of power loss is equal to or greater than a threshold value, it determines that the second detection state is present.
 なお、WPC規格のバージョンによっては、上述したCalibrationフェーズが、上述したPower Transferフェーズの一部として、Power Transferフェーズと呼ばれる場合もある。 Note that depending on the version of the WPC standard, the Calibration phase mentioned above may also be called the Power Transfer phase as part of the Power Transfer phase mentioned above.
 図8を参照して、RXが実行する受電制御処理の例について説明する。図8、第1実施形態に係る受電装置の処理を説明するフローチャートである。本処理は、例えばRXの制御部201がメモリ208から読み出したプログラムを実行することによって実現される。S1301でRXは、WPC規格のSelectionフェーズとPingフェーズとして規定される処理を実行し、自装置がTXに載置されるのを待つ。 An example of the power receiving control process executed by the RX will be described with reference to FIG. 8. FIG. 8 is a flowchart illustrating the process of the power receiving device according to the first embodiment. This process is realized, for example, by the control unit 201 of the RX executing a program read from the memory 208. In S1301, the RX executes the processes defined as the Selection phase and Ping phase of the WPC standard, and waits for its own device to be placed on the TX.
 RXは、例えば、TXからのDPを検出することによって、TXに載置されたことを検出する。RXはDPを受信すると、Singnal Strength (SIG) Data PacketをTXに送信する。 The RX detects that it has been placed on the TX, for example, by detecting a DP from the TX. When the RX receives the DP, it sends a Signal Strength (SIG) Data Packet to the TX.
 S1302でRXは、自装置がTXに載置されたことを検出すると、上述したID PacketとConfiguration Data Packetにより、自装置の識別情報を含む情報をTXへ送信する。 In S1302, when the RX detects that its own device has been placed on the TX, it transmits information including its own device's identification information to the TX using the above-mentioned ID Packet and Configuration Data Packet.
 なお、RXの識別情報は、I&Cフェーズでの通信以外の方法で送信されてもよく、また、RXの各個体を識別可能な情報であれば、BD_ADDR等の他の識別情報が用いられてもよい。また、RXは、S1302において、識別情報以外の情報をTXへ送信してもよい。 The identification information of the RX may be transmitted by a method other than communication in the I&C phase, and other identification information such as BD_ADDR may be used as long as it is information that can identify each individual RX. Furthermore, the RX may transmit information other than the identification information to the TX in S1302.
 続いてS1303でRXは、RXはTXに対して、Requested Load Powerの情報が含まれるSpecific Requestを送信し、TXからの応答を待ってGPを決定する。 Next, in S1303, the RX sends a Specific Request including the Requested Load Power information to the TX, waits for a response from the TX, and determines the GP.
 S1303では、WPC規格のNegotiationフェーズでの通信が行われる。RXは、TXに対して、上述したFOD Status Data packetを送信する。当該パケットはTXに対してQ値計測法による異物検出動作を要求するパケットである。 In S1303, communication takes place in the negotiation phase of the WPC standard. The RX transmits the above-mentioned FOD Status Data packet to the TX. This packet requests the TX to perform foreign object detection using the Q-value measurement method.
 続いてS1304でRXとTXはCalibrationフェーズの処理を行う。RXはRP1、RP2をTXに送信する。S1305でRXは、バッテリ207が満充電となるまで受電する。 Next, in S1304, RX and TX perform the calibration phase processing. RX transmits RP1 and RP2 to TX. In S1305, RX receives power until the battery 207 is fully charged.
 Power TransferフェーズにてRXとTXは、Power Loss法による異物検出処理を行う。S1305では、RXはt_intervalの間隔でCEを繰り返し送信する。RXはバッテリ207が満充電となると、TXに対してEPTを送信して処理を終了する。 In the Power Transfer phase, the RX and TX perform foreign object detection processing using the Power Loss method. In S1305, the RX repeatedly transmits CE at intervals of t_interval. When the battery 207 is fully charged, the RX transmits EPT to the TX and ends the processing.
 以上のように、Power Loss法は、送電中に電力損失量の測定結果に基づいて異物検出を行う方法であり、送電装置100が大きな電力を送電しているときに異物検出の精度が低下するという短所がある。一方、送電を継続しつつ異物検出処理を行えるので、高い送電効率を保つことができるという長所がある。 As described above, the Power Loss method is a method for detecting foreign objects based on the results of measuring the amount of power loss during power transmission, and has the disadvantage that the accuracy of foreign object detection decreases when the power transmission device 100 is transmitting a large amount of power. On the other hand, it has the advantage that high power transmission efficiency can be maintained because the foreign object detection process can be performed while continuing power transmission.
 ところで、Power Transferフェーズ中における、Power Loss法による異物検出のみでは、異物の誤検出が発生する可能性や、異物が存在するにも関わらず異物なしと判定される誤判定が発生する可能性がある。例えば、Power Transferフェーズでの送電中に、TXとRXの近傍に異物が存在する場合を想定する。 However, when detecting foreign objects only using the Power Loss method during the Power Transfer phase, there is a possibility that a foreign object may be erroneously detected, or that a foreign object may be erroneously determined not to exist even though it is actually present. For example, consider the case where a foreign object is present near the TX and RX during power transmission in the Power Transfer phase.
 この場合、異物からの発熱等が大きくなる可能性があるので、Power Transferフェーズにおける異物検出精度の向上が求められる。そこで、異物検出精度の向上を目的として、送電波形の減衰状態に基づいて異物検出が可能な波形減衰法について説明する。波形減衰法によれば、TXはRXに対して行う送電に係る電圧波形または電流波形を用いて異物検出を行うことが可能である。 In this case, there is a possibility that the heat generated by the foreign object may increase, so it is necessary to improve the accuracy of foreign object detection during the power transfer phase. Therefore, in order to improve the accuracy of foreign object detection, we will explain the waveform attenuation method, which makes it possible to detect foreign objects based on the attenuation state of the transmitted wave. With the waveform attenuation method, the TX can detect foreign objects using the voltage waveform or current waveform related to the power transmission to the RX.
 すなわち新たに規定される異物検出用信号等を用いることなく、異物検出が可能となる。なお、本開示では、TXがRXに対して行う送電に係る電圧波形または電流波形のことを、送電波形と呼ぶ。 In other words, foreign object detection is possible without using a newly defined foreign object detection signal, etc. In this disclosure, the voltage waveform or current waveform related to the power transmission from the TX to the RX is called the power transmission waveform.
 図9は、第1実施形態に係る波形減衰法による状態検出の説明図であり、波形減衰法による異物検出原理を説明するものである。送電装置100(TX)から受電装置200(RX)への送電に係る送電波形を用いた異物検出の例を示す。図9にて横軸は時間軸であり、縦軸は電圧値または電流値を表す。 FIG. 9 is an explanatory diagram of state detection using the waveform attenuation method according to the first embodiment, and explains the principle of foreign object detection using the waveform attenuation method. An example of foreign object detection using a transmission waveform related to power transmission from a power transmitting device 100 (TX) to a power receiving device 200 (RX) is shown. In FIG. 9, the horizontal axis represents time, and the vertical axis represents voltage or current values.
 図9に示す波形600は、例えばTXの送電アンテナ105で観測される高周波の電圧値あるいは電流値の時間経過に伴う変化を示している。あるいは、TXの送電アンテナ105と共振コンデンサ107を含む回路で観測される高周波の電圧値あるいは電流値の時間経過に伴う変化を示している。 The waveform 600 shown in FIG. 9 shows, for example, the change over time of the high-frequency voltage value or current value observed at the TX power transmission antenna 105. Alternatively, it shows the change over time of the high-frequency voltage value or current value observed at a circuit including the TX power transmission antenna 105 and the resonant capacitor 107.
 送電アンテナ105を介してRXに送電を行っているTXは、時刻Tにおいて送電を停止する。時刻Tでは、電源部102からの送電用の電力供給が停止される。つまり、送電アンテナ105への送電用の電力供給が停止される。送電波形の周波数fは、例えばWPC規格で使用される87kHzから205kHzまでの間にある、固定された周波数である。 TX, which is transmitting power to RX via the transmitting antenna 105, stops transmitting power at time T0 . At time T0 , the power supply for power transmission from the power supply unit 102 is stopped. In other words, the power supply for power transmission to the transmitting antenna 105 is stopped. The frequency f1 of the transmitting wave is a fixed frequency that is between 87 kHz and 205 kHz, for example, that is used in the WPC standard.
 波形600上の点601は、高周波電圧の包絡線上の点であり、(T,A)は、時刻Tにおける電圧値がAであることを示す。波形600上の点602は、高周波電圧の包絡線上の点であり、(T,A)は、時刻Tにおける電圧値がAであることを示す。 Point 601 on waveform 600 is a point on the envelope of the high frequency voltage, and ( T1 , A1 ) indicates that the voltage value at time T1 is A1 . Point 602 on waveform 600 is a point on the envelope of the high frequency voltage, and ( T2 , A2 ) indicates that the voltage value at time T2 is A2 .
 送電アンテナ105と共振コンデンサ107を含む共振回路のQuality Factor(Q-factor、品質係数、Q値)は、時刻T以降の電圧値の時間変化に基づいて求めることが可能である。 The Quality Factor (Q-factor, quality coefficient, Q value) of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107 can be obtained based on the change in voltage value over time after time T0 .
 例えば、高周波電圧の包絡線上の点601および602における時刻、電圧値、および時刻Tにおいて送電を停止した後の送電波形の周波数fに基づいて、TXは式1によりQuality Factorを算出する。
 Q=π・f・(T-T)/ln(A/A) (式1)
For example, the TX calculates the Quality Factor using Equation 1 based on the time and voltage value at points 601 and 602 on the envelope of the high frequency voltage, and the frequency f2 of the transmission wave after power transmission is stopped at time T0 .
Q = π f 2 (T 2 - T 1 ) / ln (A 1 / A 2 ) (Equation 1)
 式1中、lnは自然対数関数を表す。なお、TXがRXに送電している時の送電波形の周波数fと、TXがRXへの送電を停止した直後の送電波形の周波数fは異なる場合がある。 In Equation 1, ln represents a natural logarithm function. Note that the frequency f1 of the transmission wave when the TX is transmitting power to the RX may differ from the frequency f2 of the transmission wave immediately after the TX stops transmitting power to the RX.
 Quality Factorの値は、TXとRXの近傍に異物が存在する場合に低下するが、その理由は異物によってエネルギー損失が発生するからである。よって、電圧値の減衰の傾きに着目すると、異物が存在しない場合よりも、異物が存在する場合の方が、点601と点602を結ぶ直線の傾きは大きくなる。 The value of the Quality Factor decreases when a foreign object is present near TX and RX because the foreign object causes energy loss. Therefore, when looking at the slope of the attenuation of the voltage value, the slope of the line connecting points 601 and 602 is greater when a foreign object is present than when no foreign object is present.
 異物によるエネルギー損失が発生する場合、波形600の振幅の減衰率が高くなる。波形減衰法では、点601と点602との間の電圧値の減衰状態に基づいて異物の有無の判定を行うことができる。 If energy loss occurs due to a foreign object, the attenuation rate of the amplitude of waveform 600 increases. With the waveform attenuation method, the presence or absence of a foreign object can be determined based on the attenuation state of the voltage value between points 601 and 602.
 実際に異物の有無を判定する上では、減衰状態を表す何らかの数値の比較によって判定をすることが可能となる。例えば、Quality Factorを用いて判定を行う場合、Quality Factorの値が基準値よりも低くなることは、波形減衰率(単位時間当たりの波形の振幅の減少度合い)が高くなることを意味する。 In order to actually determine whether or not there is a foreign object, it is possible to make a judgment by comparing some kind of numerical value that indicates the attenuation state. For example, when making a judgment using the Quality Factor, a value of the Quality Factor that is lower than the reference value means that the waveform attenuation rate (the degree of decrease in the amplitude of the waveform per unit time) is high.
 別例として、(A-A)/(T-T)により算出される、点601と点602を結ぶ直線の傾きを用いて判定を行う方法がある。また、電圧値の減衰状態を測定する時刻(TおよびT)が固定であるとした場合、電圧値の差(A-A)や、電圧値の比(A/A)を用いて、異物の有無の判定を行うことができる。 As another example, there is a method of making the judgment using the slope of the line connecting points 601 and 602, which is calculated by ( A1 - A2 )/( T2 - T1 ).In addition, if the times ( T1 and T2 ) at which the attenuation state of the voltage values is measured are fixed, the presence or absence of a foreign object can be judged using the difference in the voltage values ( A1 - A2 ) or the ratio of the voltage values ( A1 / A2 ).
 あるいは、送電を停止した直後の電圧値Aが一定であるとした場合、所定の時間経過後の電圧値Aを用いて、異物の有無の判定を行うことができる。あるいは、電圧値Aが所定の電圧値Aとなるまでの経過時間(T-T)を用いて、異物の有無の判定を行うことができる。 Alternatively, if the voltage value A1 immediately after the power transmission is stopped is constant, the presence or absence of a foreign object can be determined using the voltage value A2 after a predetermined time has elapsed. Alternatively, the presence or absence of a foreign object can be determined using the time ( T2 - T1 ) that has elapsed until the voltage value A1 reaches the predetermined voltage value A2 .
 波形減衰法では、送電停止期間中の波形の減衰状態によって異物の有無を判定することが可能である。送電波形の減衰状態を表すQuality Factor等の指標を、本開示では「波形減衰指標」と総称する。また図9の縦軸を、TXの送電アンテナ105に印加される高周波電圧の電圧値の軸として説明したが、図9の縦軸を、送電アンテナ105を流れる電流値としてもよい。 In the waveform attenuation method, it is possible to determine the presence or absence of a foreign object based on the attenuation state of the waveform during the power transmission stop period. Indicators such as the Quality Factor that indicate the attenuation state of the transmitted radio wave are collectively referred to as "waveform attenuation indicators" in this disclosure. In addition, while the vertical axis of FIG. 9 has been described as the axis of the voltage value of the high-frequency voltage applied to the TX power transmission antenna 105, the vertical axis of FIG. 9 may also be the value of the current flowing through the power transmission antenna 105.
 電圧値の場合と同様に、送電停止期間中の電流値の減衰状態が異物の有無によって変化する。異物が存在する場合には、異物が存在しない場合よりも波形減衰率が高くなる。よって、送電アンテナ105を流れる電流値の時間変化に関して、上述と同様の方法を適用して異物を検出することができる。 As with the voltage value, the attenuation state of the current value during the power transmission stop period changes depending on the presence or absence of a foreign object. When a foreign object is present, the waveform attenuation rate is higher than when a foreign object is not present. Therefore, a foreign object can be detected by applying the same method described above to the time change in the current value flowing through the power transmission antenna 105.
 すなわち、電流波形より算出されるQuality Factor、電流値の減衰の傾き、電流値の差、電流値の比、電流値の絶対値、または電流値が所定値になるまでの時間等を波形減衰指標として用いて異物の有無を判定し、異物検出を行うことができる。 In other words, the Quality Factor calculated from the current waveform, the slope of the current value attenuation, the current value difference, the current value ratio, the current value absolute value, or the time it takes for the current value to reach a predetermined value can be used as waveform attenuation indicators to determine the presence or absence of a foreign object and detect the foreign object.
 また、電圧値の減衰状態と電流値の減衰状態の両方に基づく方法がある。この方法では、電圧値の波形減衰指標と電流値の波形減衰指標とから算出される評価値を用いて異物の有無を判定することができる。 There is also a method based on both the attenuation state of the voltage value and the attenuation state of the current value. With this method, the presence or absence of a foreign object can be determined using an evaluation value calculated from the waveform attenuation index of the voltage value and the waveform attenuation index of the current value.
 なお、TXが送電を一時停止した期間の波形減衰指標を測定する例に限定されることはない。TXが電源部102から供給される電力を所定の電力レベルからそれより低い電力レベルまで一時的に下げた期間の波形減衰指標を測定してもよい。つまり、送電アンテナ105への送電用の電力供給を所定の電力レベルからそれより低い電力レベルまで一時的に下げた期間の波形減衰指標を測定してもよい。 Note that this is not limited to the example of measuring the waveform attenuation index during the period when the TX temporarily stops power transmission. The waveform attenuation index may be measured during the period when the TX temporarily reduces the power supplied from the power supply unit 102 from a predetermined power level to a lower power level. In other words, the waveform attenuation index may be measured during the period when the power supply for power transmission to the power transmitting antenna 105 is temporarily reduced from a predetermined power level to a lower power level.
 また、上述の例では、TXが送電を制限する期間(送電制限期間)における2つの時点の電圧または電流の値が測定される構成としたが、3つ以上の時点で測定が行われ、それらを用いて波形減衰指標を算出してもよい。本開示において、送電の制限は、TXからRXへの送電の停止や送電電力の低下を含むものとする。 In addition, in the above example, the voltage or current values are measured at two points in time during the period when the TX limits power transmission (power transmission limit period), but measurements may be taken at three or more points in time and the waveform attenuation index may be calculated using these measurements. In this disclosure, power transmission limiting includes stopping power transmission from the TX to the RX and reducing the transmission power.
 波形減衰法により、送電中の送電波形に基づいて異物検出を行う方法について、図10を用いて説明する。図10は、第1実施形態に係る波形減衰法による検出処理期間の説明図であり、図10では、波形減衰法による異物検出を行う際の送電波形が示され、横軸は時間を表し、縦軸は送電アンテナ105の電圧値または電流値を表す。 A method for detecting a foreign object based on a power transmission waveform during power transmission using the waveform attenuation method will be described with reference to FIG. 10. FIG. 10 is an explanatory diagram of a detection processing period using the waveform attenuation method according to the first embodiment, and FIG. 10 shows a power transmission waveform when detecting a foreign object using the waveform attenuation method, with the horizontal axis representing time and the vertical axis representing the voltage value or current value of the power transmission antenna 105.
 TXが送電を開始した直後の過渡応答期間は、送電波形が安定しない。よって、この送電波形が安定しない過渡応答期間中は、RXはTXに対して振幅変調あるいは負荷変調による通信を行わないように制御する。また、TXはRXに対して周波数偏移変調による通信を行わないように制御する。 During the transient response period immediately after the TX starts transmitting power, the transmission waveform is not stable. Therefore, during this transient response period when the transmission waveform is not stable, the RX controls the TX not to communicate using amplitude modulation or load modulation. In addition, the TX controls the RX not to communicate using frequency shift keying.
 以降、この期間を通信禁止期間と呼ぶ。なお、この通信禁止期間中、TXはRXに対して送電を行う。そして通信禁止期間を経て、TXはRXに対して安定して送電を行う。以降、この期間を送電期間と呼ぶ。 Hereinafter, this period will be referred to as the communication prohibition period. During this communication prohibition period, TX will transmit power to RX. After the communication prohibition period has elapsed, TX will transmit power stably to RX. Hereinafter, this period will be referred to as the power transmission period.
 TXは、RXから異物検出動作を要求する実行要求パケット(コマンド)を受信すると、所定の期間の経過後に送電を一時停止するか、または、送電電力を一時低下させる。以降、この所定の期間を準備期間と呼ぶ。準備期間中は、RXはTXに対して振幅変調あるいは負荷変調による通信を行わないように制御する。 When the TX receives an execution request packet (command) from the RX requesting a foreign object detection operation, it suspends power transmission after a specified period of time has elapsed, or temporarily reduces the transmission power. Hereinafter, this specified period will be referred to as the preparation period. During the preparation period, the RX controls the TX so that it does not communicate using amplitude modulation or load modulation.
 また、TXはRXに対して周波数偏移変調による通信を行わないように制御する。準備期間中に通信を行わないように制御することで、送電波形の乱れを抑制し、TXは後述する送電波形の波形減衰指標の算出を、より高精度に行うことが可能となる。 The TX also controls the RX so that it does not communicate using frequency shift keying. By controlling so that communication does not occur during the preparation period, disturbances in the transmission wave shape are suppressed, and the TX is able to more accurately calculate the waveform attenuation index of the transmission wave shape (described later).
 なお、異物検出動作の実行要求パケットは、上述したRP0、RP1、またはRP2であってもよい。TXの送電部103が送電を停止させるか、あるいは送電電力を一時低下させると、送電波形の振幅は減衰する。TXが送電を一時的に停止させるか、あるいは送電電力を一時的に低下させた時点から、送電再開の時点までの期間を、以降、送電電力制御期間と呼ぶ。 The request packet for executing the foreign object detection operation may be RP0, RP1, or RP2 as described above. When the power transmitting unit 103 of the TX stops power transmission or temporarily reduces the transmission power, the amplitude of the transmitted wave attenuates. The period from when the TX temporarily stops power transmission or temporarily reduces the transmission power to when power transmission is resumed is hereinafter referred to as the transmission power control period.
 ここで、「送電再開」とは、TXが送電電力を所定の値まで上昇させることを示す。あるいはTXが、送電部103が有するインバータに入力されるインバータ入力電圧の値を一時的に0ボルトにするか、あるいは一時的に低下させた時点から、入力電圧の値を所定の値に戻す時点までの期間を、以降、送電電力制御期間と呼ぶ。 Here, "resuming power transmission" means that the TX increases the transmission power to a predetermined value. Alternatively, the period from when the TX temporarily sets the value of the inverter input voltage input to the inverter in the power transmission unit 103 to 0 volts or temporarily reduces it to when the input voltage value is returned to the predetermined value is hereinafter referred to as the transmission power control period.
 あるいはTXが、送電部103が有するインバータが出力するインバータ出力電圧の値を一時的に0ボルトにするか、あるいは一時的に低下させた時点から、出力電圧の値を所定の値に戻す時点までの期間を、以降、送電電力制御期間と呼ぶ。また、TXが送電電力を一時的に停止させるか、あるいは一時的に低下させる制御を、送電電力制御と呼ぶ。 The period from when the TX temporarily sets the inverter output voltage output by the inverter in the power transmission unit 103 to 0 volts or temporarily reduces it to when the output voltage value is returned to a predetermined value is hereafter referred to as the transmission power control period. Also, the control by the TX to temporarily stop or temporarily reduce the transmission power is referred to as transmission power control.
 TXは送電波形の波形減衰指標を算出し、算出した波形減衰指標の値と閾値を比較し、異物の有無、あるいは異物が存在する可能性(存在確率)を判定する。この判定を異物判定と呼ぶ。送電電力制御期間中は、RXはTXに対して振幅変調あるいは負荷変調による通信を行わないように制御する。 The TX calculates the waveform attenuation index of the transmitted wave, compares the calculated value of the waveform attenuation index with a threshold value, and determines whether or not a foreign object is present, or the possibility (probability of presence) of a foreign object. This determination is called foreign object determination. During the transmission power control period, the RX controls the TX so that it does not communicate using amplitude modulation or load modulation.
 また、TXはRXに対して周波数偏移変調による通信を行わないように制御する。送電電力制御期間中に通信を行わないように制御することで、送電波形の乱れを抑制し、TXは送電波形の波形減衰指標の算出を、より高精度に行うことが可能となる。また、異物判定に関しては送電電力制御期間中に実施してもよいし、通信禁止期間、あるいは送電期間に実施してもよい。 The TX also controls the RX so that it does not communicate using frequency shift keying. By controlling so that communication does not occur during the transmission power control period, disturbance of the transmission wave shape is suppressed, and the TX can calculate the waveform attenuation index of the transmission wave shape with higher accuracy. Furthermore, foreign object determination may be performed during the transmission power control period, during the communication prohibition period, or during the power transmission period.
 送電電力制御期間の経過後、異物が検出されない場合、TXは送電を再開する。送電再開直後の過渡応答期間は、送電波形が安定しないため、再度通信禁止期間となる。そして、TXからRXに対して安定して送電を行う送電期間に移行する。 If no foreign object is detected after the transmission power control period has elapsed, the TX resumes power transmission. During the transient response period immediately after power transmission resumes, the transmission waveform is not stable, so communication is prohibited again. Then, the TX transitions to a power transmission period in which stable power transmission is performed from the TX to the RX.
 以上のように、TXは、送電開始、通信禁止期間、送電期間、準備期間、送電電力制御期間での処理を繰り返し実行する。そしてTXは、所定のタイミングで波形減衰指標を算出し、算出した波形減衰指標の値と閾値を比較し、異物判定を行う。波形減衰法では、送電電力制御期間における少なくとも2つの時点で測定される電圧値または電流値に基づいて異物判定が行われる。 As described above, the TX repeatedly executes the processes at the start of power transmission, the communication prohibited period, the power transmission period, the preparation period, and the transmission power control period. The TX then calculates a waveform attenuation index at a predetermined timing, compares the calculated value of the waveform attenuation index with a threshold value, and performs a foreign object determination. In the waveform attenuation method, a foreign object determination is performed based on a voltage value or a current value measured at at least two points in time during the transmission power control period.
 また、準備期間、送電電力制御期間、通信禁止期間は、RXはTXに対して振幅変調あるいは負荷変調による通信を行わないように制御する。また、TXはRXに対して周波数偏移変調による通信を行わないように制御する。つまり、TXは、RXから実行要求パケット(コマンド)を受信してから所定の第1の期間ではRXに対して通信を行わないように制御する。 In addition, during the preparation period, transmission power control period, and communication prohibited period, the RX controls the TX so that it does not communicate with the TX using amplitude modulation or load modulation. Also, the TX controls the RX so that it does not communicate with the RX using frequency shift keying. In other words, the TX controls the RX so that it does not communicate with the RX during a predetermined first period after receiving an execution request packet (command) from the RX.
 WPC規格では、Power Transferフェーズ中にTXがRXから実行要求パケット以外のパケットを受信した後の、TXがRXに対してパケットの送信を行うことができない(パケットの送信が禁止されている)期間を規定している。第1の期間は、当該期間よりも長い期間である。 The WPC standard specifies the period during which the TX cannot transmit packets to the RX (packet transmission is prohibited) after the TX receives a packet other than an execution request packet from the RX during the Power Transfer phase. The first period is a period longer than the period.
 また、RXはTXに対して実行要求パケット(コマンド)を送信してから所定の第2の期間ではTXに対して通信を行わないように制御する。WPC規格では、Power Transferフェーズ中にRXがTXに対して実行要求パケット以外のパケットを送信した後の、RXがTXに対してパケットの送信を行うことができない(パケットの送信が禁止されている)期間を規定している。第2の期間は、当該期間よりも長い期間である。  In addition, the RX controls the TX so that it does not communicate with the TX for a specified second period after sending an execution request packet (command) to the TX. The WPC standard specifies a period during which the RX cannot send packets to the TX (packet transmission is prohibited) after the RX has sent a packet other than an execution request packet to the TX during the Power Transfer phase. The second period is longer than that period.
 送電電力制御期間にて、RXの受電アンテナ205と共振コンデンサ211に、受電部203、充電部206、およびバッテリ207等の要素が接続されていると、波形減衰指標は、これらの要素による負荷の影響を受ける。受電部203、充電部206、およびバッテリ207の状態によって波形減衰指標が変化することになる。 During the transmission power control period, if elements such as the power receiving unit 203, charging unit 206, and battery 207 are connected to the RX power receiving antenna 205 and resonant capacitor 211, the waveform attenuation index is affected by the load of these elements. The waveform attenuation index changes depending on the state of the power receiving unit 203, charging unit 206, and battery 207.
 そのため、例えば波形減衰指標の値が大きい理由が異物による影響であるのか、受電部203、充電部206、バッテリ207等の状態変化によるのかの区別が困難になる。そこで、波形減衰指標に基づく異物検出を行う場合、RXの制御部201は準備期間中に第1スイッチ部209を切断(OFF)状態とする。 As a result, it becomes difficult to distinguish whether the reason for a large value of the waveform attenuation index is the influence of a foreign object or a change in the state of the power receiving unit 203, the charging unit 206, the battery 207, etc. Therefore, when detecting a foreign object based on the waveform attenuation index, the control unit 201 of the RX switches the first switch unit 209 to the disconnected (OFF) state during the preparation period.
 RXはTXに対して実行要求パケット(コマンド)を送信し、準備期間に上記処理を実行する。あるいは、RXはTXに対して実行要求パケット(コマンド)を送信したと同時に、上記処理を実行する。これにより、バッテリ207の影響を抑制することが可能である。 The RX transmits an execution request packet (command) to the TX and executes the above process during the preparation period. Alternatively, the RX transmits an execution request packet (command) to the TX and executes the above process at the same time. This makes it possible to suppress the effect of the battery 207.
 あるいは、第1スイッチ部209を切断した状態の代わりに、Light Load状態(軽負荷状態)とすることによっても同様の効果が得られる。このとき、RXは受電する電力が最小の電力となるように負荷制御を行うことによっても同様の効果が得られる。 Alternatively, the same effect can be obtained by setting the first switch unit 209 to a light load state instead of a disconnected state. In this case, the same effect can be obtained by performing load control so that the power received by the RX is minimized.
 あるいは、第1スイッチ部209を切断した状態の代わりに、RXは受電する電力が予め定められた所定の範囲内の電力、または、所定の閾値以下の電力となるように負荷制御を行うことによっても同様の効果が得られる。 Alternatively, instead of turning off the first switch unit 209, the same effect can be achieved by performing load control so that the power received by the RX is within a predetermined range or is below a predetermined threshold.
 ここで、「予め定められた所定の範囲内の電力」または「所定の閾値以下の電力」において、「電力」とは、Reference Powerのおよそ10%の値の電力である。あるいは、第1スイッチ部209を切断した状態の代わりに、RXは所定の電力が負荷に供給されるように、負荷を制御してもよい。 Here, in "power within a predetermined range" or "power below a predetermined threshold," "power" refers to power with a value of approximately 10% of the Reference Power. Alternatively, instead of the first switch unit 209 being disconnected, the RX may control the load so that a predetermined power is supplied to the load.
 これらは、第1スイッチ部209を制御することによって実現できる。Light Load状態における動作として、上述の動作も含まれるものとする。RXは、上述した制御を送電電力制御期間中も維持する。そして、RXは送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。 These can be achieved by controlling the first switch unit 209. The operations in the Light Load state include the above-mentioned operations. The RX maintains the above-mentioned control even during the transmission power control period. Then, after the power transmission is resumed, the RX releases the above-mentioned control and performs control to return to the original state.
 あるいは、RXの制御部201は第2スイッチ部210をONにして短絡し、受電アンテナ205、共振コンデンサ211、および第2スイッチ部210により形成される閉回路に電流が流れる状態にしてもよい。これにより、受電部203、充電部206、およびバッテリ207の影響を抑制することが可能になる。 Alternatively, the RX control unit 201 may turn on the second switch unit 210 to short circuit it, allowing current to flow through the closed circuit formed by the power receiving antenna 205, the resonant capacitor 211, and the second switch unit 210. This makes it possible to suppress the effects of the power receiving unit 203, the charging unit 206, and the battery 207.
 RXはTXに対して実行要求パケット(コマンド)を送信し、準備期間に上記処理を実行する。あるいは、RXはTXに対して実行要求パケット(コマンド)を送信したと同時に、上記処理を実行する。RXは、上述した制御を送電電力制御期間中も維持する。そしてRXは、送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。 The RX transmits an execution request packet (command) to the TX and executes the above process during the preparation period. Alternatively, the RX transmits the execution request packet (command) to the TX and executes the above process at the same time. The RX maintains the above control during the transmission power control period. Then, after the power transmission is resumed, the RX releases the above control and performs control to return to the original state.
 第1スイッチ部209または第2スイッチ部210、あるいはその両方の制御により取得される送電波形の波形減衰指標に基づいて、より精度の高い異物検出が可能となる。また、第1スイッチ部209を切断した状態の代わりに、Light Load状態とすることによっても同様の効果が得られる。 More accurate foreign object detection is possible based on the waveform attenuation index of the transmitted radio wave acquired by controlling the first switch unit 209 or the second switch unit 210, or both. The same effect can also be obtained by setting the first switch unit 209 to the Light Load state instead of the disconnected state.
 あるいは、RXは準備期間中に、第1スイッチ部209をONにして短絡し、第2スイッチ部210をOFFにして切断した状態において、低消費電力モードに移行するか、あるいは消費電力が一定になるように制御してもよい。RXはTXに対して実行要求パケット(コマンド)を送信し、準備期間に上記処理を実行する。 Alternatively, during the preparation period, the RX may switch to a low power consumption mode or control the power consumption to be constant while the first switch unit 209 is turned ON to short circuit and the second switch unit 210 is turned OFF to disconnect. The RX transmits an execution request packet (command) to the TX and executes the above processing during the preparation period.
 あるいは、RXはTXに対して実行要求パケット(コマンド)を送信したと同時に、上記処理を実行する。RXは、上述した制御を送電電力制御期間中も維持する。そしてRXは、送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。 Alternatively, the RX executes the above process at the same time as sending an execution request packet (command) to the TX. The RX maintains the above control even during the transmission power control period. Then, after the power transmission is resumed, the RX releases the above control and performs control to return to the original state.
 RXでの消費電力が一定でない場合や、大きな電力が消費される場合には、波形減衰指標は消費電力の変動の影響を受ける。そのため、RXはソフトウェアアプリケーションの動作を制限(停止を含む)するか、あるいはハードウェア機能ブロック要素を低消費電力モードに設定するか、あるいは動作停止モードに設定する。RXの消費電力を抑制した状態で測定される波形減衰指標を用いることで、より精度の高い異物検出が可能となる。 If the power consumption in the RX is not constant or if a large amount of power is consumed, the waveform attenuation index is affected by the fluctuations in power consumption. For this reason, the RX limits (including halting) the operation of software applications, or sets hardware function block elements to a low power consumption mode or a stopped operation mode. By using the waveform attenuation index measured with the RX power consumption suppressed, more accurate foreign object detection is possible.
 TXでも同様に、波形減衰指標の測定時に、送電アンテナ105と共振コンデンサ107に、送電部103、第1通信部104、および電源部102等の要素が接続されていると、波形減衰率は、これらの要素の影響を受ける。送電部103、第1通信部104、および電源部102の状態によって、波形減衰指標の値が変化することになる。 Similarly, for TX, if elements such as the power transmitting unit 103, the first communication unit 104, and the power supply unit 102 are connected to the power transmitting antenna 105 and the resonant capacitor 107 when the waveform attenuation index is measured, the waveform attenuation rate is affected by these elements. The value of the waveform attenuation index changes depending on the state of the power transmitting unit 103, the first communication unit 104, and the power supply unit 102.
 その結果、例えば波形減衰指標の値が大きい場合でも、それが異物による影響であるのか、あるいは送電部103、第1通信部104、および電源部102の影響であるのかを区別することが困難になる。 As a result, even if the value of the waveform attenuation index is large, it is difficult to distinguish whether this is due to the influence of a foreign object or the influence of the power transmission unit 103, the first communication unit 104, and the power supply unit 102.
 そこで、TXはRXから異物検出の実行要求パケット(コマンド)を受信した場合、準備期間中にスイッチ部108をONにして、送電アンテナ105、共振コンデンサ107、およびスイッチ部108で形成される閉回路に電流が流れる状態とする。これにより、波形減衰指標の測定時に、送電部103、第1通信部104、および電源部102による影響を抑制することが可能になる。 When the TX receives a request packet (command) to execute foreign object detection from the RX, the TX turns on the switch unit 108 during the preparation period, causing a current to flow through the closed circuit formed by the power transmitting antenna 105, the resonant capacitor 107, and the switch unit 108. This makes it possible to suppress the influence of the power transmitting unit 103, the first communication unit 104, and the power supply unit 102 when measuring the waveform attenuation index.
 あるいは、送電アンテナ105と送電部103との間にスイッチ(不図示)を設け、準備期間中に当該スイッチを切断することで電源部102、送電部103、および第1通信部104による影響を抑制することが可能になる。あるいは、送電アンテナ105、共振コンデンサ107、スイッチ部108で形成される閉回路と、送電部103との間にスイッチを設けてもよい。 Alternatively, a switch (not shown) may be provided between the power transmitting antenna 105 and the power transmitting unit 103, and the influence of the power supply unit 102, the power transmitting unit 103, and the first communication unit 104 may be suppressed by turning off the switch during the preparation period. Alternatively, a switch may be provided between the power transmitting unit 103 and the closed circuit formed by the power transmitting antenna 105, the resonant capacitor 107, and the switch unit 108.
 TXは波形減衰指標を測定して異物検出を行うときに当該スイッチの制御により閉回路と送電部とを切断して、上記の影響を抑制することが可能である。TXは、上述した制御を送電電力制御期間中も維持する。 When the TX measures the waveform attenuation index and detects a foreign object, it can control the switch to disconnect the closed circuit from the power transmission unit, thereby suppressing the above-mentioned effects. The TX maintains the above-mentioned control even during the transmission power control period.
 そしてTXは、送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。上記の方法を単独に実施するか、または組み合わせて実施することで、より精度の高い異物検出が可能である。 Then, after power transmission is resumed, the TX releases the above-mentioned control and controls the system to return to its original state. By implementing the above methods alone or in combination, more accurate foreign object detection is possible.
 続いて、波形減衰法に基づく異物判定の閾値設定方法を説明する。波形減衰指標の測定値と所定の閾値を比較し、比較結果に基づいて異物判定が可能である。第1の閾値設定方法は、閾値として、送電対象となるRXに依存しない共通の値である、予め定められた値をTXが保持する方法である。 Next, a method for setting a threshold for foreign object detection based on the waveform attenuation method will be described. A measurement value of the waveform attenuation index is compared with a predetermined threshold, and a foreign object can be detected based on the comparison result. The first threshold setting method is a method in which the TX holds a predetermined value as the threshold, which is a common value that is not dependent on the RX to which power is transmitted.
 この閾値は固定値、または、状況に応じてTXが決定する可変値である。送電電力制御期間中の送電波形は、異物が存在すると波形減衰率が高くなる。よって、異物が存在しない状態で取得される波形減衰指標の値を予め保持しておき、この値が閾値として設定される。 This threshold is a fixed value, or a variable value determined by the TX depending on the situation. If a foreign object is present, the waveform attenuation rate of the transmission waveform during the transmission power control period increases. Therefore, the value of the waveform attenuation index obtained when no foreign object is present is stored in advance, and this value is set as the threshold.
 波形減衰指標の測定値と閾値との比較により、「異物有り」あるいは「異物が存在する可能性は高い」と判定することができる。例えば、波形減衰指標としてQuality Factorを採用する場合、TXはQuality Factorの測定値と、予め定められた閾値とを比較する。 By comparing the measured value of the waveform attenuation index with a threshold value, it can be determined that "foreign matter is present" or "there is a high possibility that a foreign matter is present." For example, if Quality Factor is used as the waveform attenuation index, the TX compares the measured value of Quality Factor with a predetermined threshold value.
 閾値は、異物が存在しない状態でのQuality Factorの測定値または当該測定値に対して測定誤差を加味した値に基づいて設定される。Quality Factorの測定値が閾値よりも小さい場合、「異物有り」あるいは「異物が存在する可能性は高い」と判定される。Quality Factorの測定値が閾値以上である場合、「異物無し」あるいは「異物が存在する可能性は低い」と判定される。 The threshold value is set based on the measured value of Quality Factor when no foreign matter is present or on the measured value taking into account the measurement error. If the measured value of Quality Factor is smaller than the threshold value, it is determined that "foreign matter is present" or "there is a high possibility that foreign matter is present." If the measured value of Quality Factor is equal to or greater than the threshold value, it is determined that "no foreign matter is present" or "there is a low possibility that foreign matter is present."
 第2の閾値設定方法は、RXから送信される情報に基づいてTXが閾値を調整して決定する方法である。第1の閾値設定方法との相違点として留意すべきことは、波形減衰指標の値が、TXに載置される、送電対象のRXによって異なる可能性があるということである。 The second threshold setting method is a method in which the TX adjusts and determines the threshold based on information transmitted from the RX. A notable difference from the first threshold setting method is that the value of the waveform attenuation index may differ depending on the RX that is the target of power transmission and is placed on the TX.
 その理由は、TXの送電アンテナを介して電磁的に結合するRXの電気特性が、波形減衰指標の値に影響を与えるからである。例えば、波形減衰指標としてQuality Factorを採用する場合、異物が存在しないときにTXが測定するQuality Factorは、TXに載置されるRXによって異なる可能性がある。 The reason is that the electrical characteristics of the RX, which is electromagnetically coupled via the TX's transmitting antenna, affect the value of the waveform attenuation index. For example, if Quality Factor is used as the waveform attenuation index, the Quality Factor measured by the TX when no foreign object is present may differ depending on the RX placed on the TX.
 そこでRXは、異物が存在しない状態でTXに載置された際のQuality Factorの情報をTXごとに保持しておき、Quality Factorの情報をTXに通知する。TXはRXから受信したQuality Factorの情報に基づいてRXごとに閾値を調整して決定する。 The RX therefore retains Quality Factor information for each TX when the RX is placed on the TX in the absence of any foreign object, and notifies the TX of the Quality Factor information. The TX adjusts and determines the threshold for each RX based on the Quality Factor information received from the RX.
 より具体的には、TXは、Negotiationフェーズにて上記Reference Quality Factor Valueの情報を含むFOD Status Data Packetを受信し、Q値計測法における閾値を調整して決定する。 More specifically, in the Negotiation phase, the TX receives a FOD Status Data Packet containing the above-mentioned Reference Quality Factor Value information, and adjusts and determines the threshold value in the Q-value measurement method.
 Reference Quality Factor Valueは、異物が存在しない状態でRXがTXに載置された際のQuality Factorの情報に相当する。よって、TXはReference Quality Factor Valueに基づいて調整を行い、波形減衰法による異物判定用の閾値を決定する。 The Reference Quality Factor Value corresponds to the Quality Factor information when the RX is placed on the TX in the absence of any foreign object. Therefore, the TX performs adjustments based on the Reference Quality Factor Value and determines the threshold value for foreign object detection using the waveform attenuation method.
 なお、当該フェーズにてRXからTXに送信されるReference Quality Factor Valueは、本来周波数領域でQuality Factorを計測する、Q値計測法における異物検出に用いる情報である。 The Reference Quality Factor Value transmitted from the RX to the TX in this phase is information used for foreign object detection in the Q-value measurement method, which originally measures the Quality Factor in the frequency domain.
 しかし、波形減衰指標としてQuality Factorを用いる場合、Quality Factorの導出方法は異なるが、時間領域でQuality Factorを計測する波形減衰法によっても、例えば図9の波形から式1によってQuality Factorを求めることができる。 However, when Quality Factor is used as the waveform decay index, although the method of deriving Quality Factor is different, the Quality Factor can also be calculated from the waveform in Figure 9 using Equation 1, for example, using the waveform decay method that measures Quality Factor in the time domain.
 そのため、Reference Quality Factor Valueに基づいて、波形減衰法のQuality Factorの閾値を設定することは可能である。なお、Reference Quality Factor Valueに対して所定値(測定誤差に対応する値)を加味した波形減衰指標の値を、異物判定用の閾値として設定してもよい。 Therefore, it is possible to set the threshold value of the Quality Factor of the waveform attenuation method based on the Reference Quality Factor Value. Note that the value of the waveform attenuation index, which takes into account a predetermined value (a value corresponding to the measurement error) for the Reference Quality Factor Value, may be set as the threshold value for foreign matter determination.
 このようにNegotiationフェーズで既にRXからTXに送信された情報に基づき、TXが波形減衰法のQuality Factorの閾値を設定することで、閾値設定のための新たな測定等を行う必要がなくなる。この結果、より短時間で閾値の設定が可能となる。設定後の閾値とQuality Factorの測定値に基づく異物判定については上述のとおりである。 In this way, the TX sets the threshold value for the Quality Factor of the waveform attenuation method based on the information already sent from the RX to the TX in the Negotiation phase, eliminating the need to perform new measurements to set the threshold value. As a result, the threshold value can be set in a shorter time. Foreign object determination based on the set threshold value and the measured value of the Quality Factor is as described above.
 第3の閾値設定方法は、異物が存在しない第1の検出状態でTXが波形減衰指標を測定し、その測定結果の情報に基づいて、TXが閾値を調整して決定する方法である。以下、第1の検出状態における波形減衰指標を予め測定するタイミングについて説明する。Negotiationフェーズにおいて、Q値計測法による異物検出が行われた結果、異物が無いと判定された場合を想定する。 The third threshold setting method is a method in which the TX measures the waveform attenuation index in the first detection state in which no foreign object is present, and adjusts and determines the threshold based on the information from the measurement result. Below, the timing for pre-measuring the waveform attenuation index in the first detection state is explained. Assume that in the negotiation phase, foreign object detection is performed using the Q-value measurement method, and it is determined that no foreign object is present.
 この場合、Calibrationフェーズ、Power Transferフェーズへと進む。つまり、Negotiationフェーズ以降に進んだということは、Q値計測法による異物検出の結果として、異物が無いと判定されたことを意味している。 In this case, the system proceeds to the Calibration phase and the Power Transfer phase. In other words, proceeding to the Negotiation phase or later means that the foreign object detection using the Q-value measurement method has determined that no foreign object is present.
 Negotiationフェーズ、Calibrationフェーズ、Power Transferフェーズのいずれかにおいて、異物が無い状態での波形減衰指標を測定できる可能性が高い。 There is a high possibility that the waveform attenuation index can be measured in the absence of foreign objects during the Negotiation phase, Calibration phase, or Power Transfer phase.
 よって、異物が無い状態での波形減衰指標を測定するタイミングとしては、Negotiationフェーズ、Calibrationフェーズ、Power Transferフェーズのいずれかでよい。 Therefore, the timing for measuring the waveform attenuation index in the absence of foreign matter may be the Negotiation phase, the Calibration phase, or the Power Transfer phase.
 例えばPower Transferフェーズにて波形減衰指標の測定を実施する場合を想定する。異物が無い状態での波形減衰指標を測定するタイミングは、Power Transferフェーズの最初の段階に設定される。その理由は、Q値計測法により異物が無いと判定された時点から時間が経過するほど、TXとRXの近傍に異物が入る確率が高くなるからである。 For example, consider the case where the waveform attenuation index is measured in the power transfer phase. The timing for measuring the waveform attenuation index in the absence of a foreign object is set to the first stage of the power transfer phase. The reason for this is that the more time that passes from the point at which the Q-value measurement method determines that there is no foreign object, the higher the probability that a foreign object will be present near the TX and RX.
 当該タイミングはRXまたはTXが指定し、TXはそのときの波形減衰指標を測定し、測定値を閾値として設定する。例えば、RXはTXに対して、当該タイミングを通知するための所定のパケットを送信する。TXはRXから当該所定のパケットを受信した後、そのときの波形減衰指標を測定し、測定値を閾値として設定する。 The timing is specified by either the RX or the TX, and the TX measures the waveform attenuation index at that time and sets the measured value as the threshold. For example, the RX transmits a specified packet to the TX to notify the TX of the timing. After receiving the specified packet from the RX, the TX measures the waveform attenuation index at that time and sets the measured value as the threshold.
 当該所定のパケットを、以下、実行要求パケットと呼ぶ。なお、当該波形減衰指標に対して所定値(測定誤差に対応する値)を加味した値を異物判定用の閾値として設定してもよい。 The specified packet will be referred to as an execution request packet below. Note that a value obtained by adding a specified value (a value corresponding to the measurement error) to the waveform attenuation index may be set as the threshold for determining foreign matter.
 第4の閾値設定方法は、TXが送電電力に応じて閾値を調整して決定する方法である。波形減衰指標の値は送電電力によって異なる可能性がある。その理由は、送電電力の大小によって発熱量やTXの電気回路の諸特性等が変化し、それらが波形減衰指標の値に影響を与えるからである。そこでTXは送電電力ごとの波形減衰指標を測定し、測定結果に基づいて閾値を調整して決定することで、より高精度な異物検出が可能となる。 The fourth threshold setting method is one in which the TX adjusts and determines the threshold depending on the transmission power. The value of the waveform attenuation index may differ depending on the transmission power. This is because the amount of heat generated and the characteristics of the TX's electrical circuitry change depending on the transmission power, which affects the value of the waveform attenuation index. Therefore, the TX measures the waveform attenuation index for each transmission power and adjusts and determines the threshold based on the measurement results, enabling more accurate foreign object detection.
 図11は第1実施形態に係る波形減衰法による状態検出における閾値設定方法の説明図であり、波形減衰法におけるTXの送電電力ごとの異物判定用の閾値設定方法を説明するための図である。図11にて、横軸は送電装置100の送電電力を表し、縦軸は送電の電圧波形または電流波形の波形減衰指標(波形減衰率)を表す。 FIG. 11 is an explanatory diagram of a threshold setting method for state detection using the waveform attenuation method according to the first embodiment, and is a diagram for explaining a threshold setting method for foreign object determination for each TX transmission power in the waveform attenuation method. In FIG. 11, the horizontal axis represents the transmission power of the power transmitting device 100, and the vertical axis represents the waveform attenuation index (waveform attenuation rate) of the transmission voltage waveform or current waveform.
 直線状の線分1102で示されるグラフ線上にて、点1100は送電電力値Pt1および波形減衰指標δ1に対応し、点1101は送電電力値Pt2および波形減衰指標δ2に対応する。当該グラフ線上にて、点1103は送電電力値Pt3および波形減衰指標δ3に対応する。 On the graph line indicated by the straight line segment 1102, point 1100 corresponds to the transmission power value Pt1 and the waveform attenuation index δ1, and point 1101 corresponds to the transmission power value Pt2 and the waveform attenuation index δ2. On the graph line, point 1103 corresponds to the transmission power value Pt3 and the waveform attenuation index δ3.
 まず、RXは、TXから送電があった場合にRXが軽負荷状態になるように制御する。軽負荷状態は、例えばRXの負荷に電力が供給されない負荷切断状態や、RXの受電電力値が第1の閾値以下になる負荷状態、あるいはRXの受電電力値が予め定められた第1の範囲内になる負荷状態である。 First, the RX performs control so that the RX is in a light load state when power is transmitted from the TX. A light load state is, for example, a load disconnection state in which no power is supplied to the load of the RX, a load state in which the received power value of the RX is equal to or lower than a first threshold, or a load state in which the received power value of the RX is within a predetermined first range.
 この状態でのTXの送電電力値をPt1とする。そして、TXは軽負荷状態で送電を停止させるか、または送電電力を低下させて、波形減衰指標δ1を測定する。このとき、TXは送電電力値Pt1を認識しており、送電電力値Pt1と波形減衰指標δ1とを関連付けるCP1100をメモリに記憶しておく。 The transmission power value of the TX in this state is Pt1. Then, the TX stops transmission in a light load state or reduces the transmission power and measures the waveform attenuation index δ1. At this time, the TX recognizes the transmission power value Pt1, and stores in memory CP1100 that associates the transmission power value Pt1 with the waveform attenuation index δ1.
 次にRXは負荷接続状態の制御を行う。負荷接続状態は、例えば最大負荷状態や、送電電力値が第2の閾値以上になる負荷状態である。あるいは、RXが受電する電力が最大の電力となる負荷状態である。ここで、「最大の電力」とは、Reference Powerに近い値の電力である。 Next, the RX controls the load connection state. The load connection state is, for example, a maximum load state or a load state in which the transmission power value is equal to or greater than the second threshold. Alternatively, it is a load state in which the power received by the RX is the maximum power. Here, "maximum power" is a power value close to the Reference Power.
 あるいはRXの受電電力値が予め定められた第2の範囲内になる負荷状態である。ここで、第2の範囲は上記第1の範囲よりも高い電力値の範囲である。この状態でのTXの送電電力値をPt2とする。そしてTXは負荷接続状態で送電を停止させるか、または送電電力を低下させて、波形減衰指標δ2を測定する。 Or it is a load state in which the received power value of the RX is within a predetermined second range. Here, the second range is a range of power values higher than the first range. The transmitted power value of the TX in this state is Pt2. Then, the TX stops transmitting power while connected to the load, or reduces the transmitted power, and measures the waveform attenuation index δ2.
 このとき、TXは、送電電力値Pt2と波形減衰指標δ2とを関連づけるCP1101をメモリに記憶しておく。続いて、TXはCP1100とCP1101との間を直線補間して線分1102を生成する。線分1102は第1の検出状態における送電電力と送電波形の波形減衰指標との関係を示している。 At this time, the TX stores in memory CP1101, which associates the transmission power value Pt2 with the waveform attenuation index δ2. Next, the TX generates line segment 1102 by linearly interpolating between CP1100 and CP1101. Line segment 1102 shows the relationship between the transmission power in the first detection state and the waveform attenuation index of the transmission wave.
 よって、TXは線分1102に基づき、第1の検出状態における、送電電力値ごとの送電波形の波形減衰指標を推定することができる。例えば、送電電力値Pt3の場合、Pt3に対応する線分1102上の点1103から、波形減衰指標がδ3と推定される。TXは推定結果に基づき、送電電力値ごとの、異物判定用の閾値を算出することが可能である。 The TX can therefore estimate the waveform attenuation index of the transmitted wave for each transmitted power value in the first detection state based on line segment 1102. For example, for a transmitted power value Pt3, the waveform attenuation index is estimated to be δ3 from point 1103 on line segment 1102 that corresponds to Pt3. The TX can calculate a threshold value for foreign object determination for each transmitted power value based on the estimation result.
 例えば、ある送電電力値における、第1の検出状態での波形減衰指標の推定結果に対して、所定値(測定誤差に対応する値)を加味した波形減衰指標を、異物判定用の閾値として設定することができる。 For example, the waveform attenuation index estimated in the first detection state for a certain transmission power value, plus a predetermined value (a value corresponding to the measurement error), can be set as the threshold for determining whether a foreign object is present.
 送電電力値と波形減衰指標との組み合わせを取得するために、送電装置100と受電装置200とが行うCAL処理を、以下では「波形減衰法のCAL処理」と呼ぶ。上述の例では、送電電力値Pt1とPt2という2ポイントの測定を行ったが、より精度を高めるために、3以上のポイントで測定を実施して各送電電力の波形減衰指標を算出してもよい。 The CAL processing performed by the power transmitting device 100 and the power receiving device 200 to obtain a combination of the transmission power value and the waveform attenuation index is hereinafter referred to as the "CAL processing of the waveform attenuation method." In the above example, measurements were performed at two points, the transmission power values Pt1 and Pt2, but to improve accuracy, measurements may be performed at three or more points to calculate the waveform attenuation index for each transmission power.
 RXは軽負荷状態の制御と、負荷接続状態の制御とをそれぞれ、TXに所定のパケットを送信して通知した後に行ってもよい。また、当該2つの制御はいずれが先に行われてもよい The RX may control the light load state and the load connection state after notifying the TX by sending a specified packet. Also, either of the two controls may be performed first.
 負荷ごと(または送電電力値ごと)の異物判定用閾値の算出処理は、Calibrationフェーズにおいて行われてもよい。上述したように、TXはCalibrationフェーズにて、Power Loss法による異物検出を行う際に必要となるデータを取得する。 The calculation process of the foreign object determination threshold for each load (or each transmission power value) may be performed in the calibration phase. As described above, in the calibration phase, the TX acquires the data required for foreign object detection using the Power Loss method.
 その際、TXは、RXの負荷状態が軽負荷状態の場合と負荷接続状態の場合における、それぞれのRXの受電電力値および電力損失に関するデータを取得する。そこで、図11におけるCP1100とCP1101の測定は、Calibrationフェーズにおいて、RXが軽負荷状態になったときと負荷接続状態になったときに、電力損失の測定と一緒に行われてもよい。 At that time, the TX acquires data on the received power value and power loss of each RX when the load state of the RX is a light load state and when the load state is connected. Therefore, the measurements of CP1100 and CP1101 in FIG. 11 may be performed together with the measurement of power loss when the RX is in a light load state and when the RX is in a loaded state during the calibration phase.
 例えばTXは、RXから第1の基準受電電力情報を有する信号を受信した際に、Calibrationフェーズで行うべき所定の処理に加えて、CP1100の測定を行う。この第1の基準受電電力情報は、WPC規格で規定されるRP1の情報であるが、他のメッセージが用いられてもよい。 For example, when the TX receives a signal having first reference received power information from the RX, in addition to the predetermined processing to be performed in the calibration phase, the TX measures CP1100. This first reference received power information is the RP1 information defined in the WPC standard, but other messages may also be used.
 またTXは、RXから第2の基準受電電力情報を有する信号を受信した際に、Calibrationフェーズで行うべき所定の処理に加えて、CP1101の測定を行う。この第2の基準受電電力情報は、RP2の情報であるが、他のメッセージが用いられてもよい。CP1100とCP1101の測定を行う期間を別途設ける必要はなくなるので、より短時間でCP1100とCP1101の測定を実行できる。 Furthermore, when TX receives a signal having second reference received power information from RX, in addition to the predetermined processing to be performed in the calibration phase, it measures CP1101. This second reference received power information is information of RP2, but other messages may be used. Since there is no need to set aside a separate period for measuring CP1100 and CP1101, the measurements of CP1100 and CP1101 can be performed in a shorter time.
 このようにTXが各送電電力で測定した波形減衰指標に基づき、TXが各送電電力での波形減衰指標の閾値を調整して設定する。例えば、波形減衰指標としてQuality Factorを用いる場合、TXはQuality Factorの測定値と、上記方法で決定した閾値とを比較する。 In this way, based on the waveform attenuation index measured by the TX at each transmission power, the TX adjusts and sets the threshold value of the waveform attenuation index at each transmission power. For example, when Quality Factor is used as the waveform attenuation index, the TX compares the measured value of Quality Factor with the threshold value determined by the above method.
 Quality Factorの測定値が閾値よりも小さい場合、「異物有り」または「異物が存在する可能性有り」と判定される。Quality Factorの測定値が閾値以上である場合、「異物無し」または「異物が存在する可能性は低い」と判定される。以上により、TXの各送電電力における閾値が設定されて、より高精度な異物判定が可能となる。 If the measured value of the Quality Factor is smaller than the threshold, it is determined that "foreign object is present" or "there is a possibility that a foreign object is present." If the measured value of the Quality Factor is equal to or greater than the threshold, it is determined that "no foreign object is present" or "there is a low possibility that a foreign object is present." In this way, thresholds are set for each transmission power of the TX, enabling more accurate foreign object determination.
 上記方法により設定される判定用閾値は1つとは限らない。複数の閾値を段階的に設定することができる。例えば、第1の閾値は「状態異常有り」の判定用閾値、第2の閾値は「状態異常の可能性が高い」の判定用閾値、第3の閾値は「状態異常の可能性が低い」の判定用閾値、第4の閾値は「状態異常無し」の判定用閾値として設定される。 The number of judgment thresholds set by the above method is not limited to one. Multiple thresholds can be set in stages. For example, the first threshold is set as the judgment threshold for "there is a status abnormality", the second threshold is set as the judgment threshold for "there is a high possibility of a status abnormality", the third threshold is set as the judgment threshold for "there is a low possibility of a status abnormality", and the fourth threshold is set as the judgment threshold for "there is no status abnormality".
 また、異物検出処理を1回実行するだけでは正確性を期すことができない可能性がある。例えば、1回の送電電力制御を行い、その波形減衰指標により異物判定を行う場合、送電電力制御期間中の送電波形に乱れが生じる可能性がある。 In addition, there is a possibility that accuracy cannot be expected by performing the foreign object detection process only once. For example, if a single transmission power control is performed and a foreign object is determined based on the waveform attenuation index, there is a possibility that disturbances will occur in the transmission power waveform during the transmission power control period.
 その原因は、例えば送電電力制御期間にノイズが混入すること、または、TX上に載置されるRXの位置がずれることである。1回の送電電力制御期間中の送電波形から算出される波形減衰指標の値が正確でない場合、異物検出にて誤判定を招く可能性がある。 The causes of this are, for example, noise being mixed in during the transmission power control period, or the position of the RX placed on the TX being shifted. If the value of the waveform attenuation index calculated from the transmission waveform during one transmission power control period is not accurate, it may lead to an erroneous judgment in foreign object detection.
 そこで、TXは複数回の送電電力制御を行い、複数の送電電力制御期間中の送電波形から波形減衰指標を測定し、複数回の測定結果に基づいて、より高精度な異物検出を行うことができる。 The TX then performs multiple transmission power controls, measures the waveform attenuation index from the transmission waveform during multiple transmission power control periods, and is able to perform more accurate foreign object detection based on the results of the multiple measurements.
 次に、送電アンテナと受電アンテナに係る結合状態指標の測定方法を説明する。まず、第1の測定方法について説明する。無線電力伝送では、送電アンテナ105と受電アンテナ205とを電磁結合させて送電が行われる。 Next, a method for measuring the coupling state index relating to the power transmitting antenna and the power receiving antenna will be described. First, the first measurement method will be described. In wireless power transmission, power is transmitted by electromagnetically coupling the power transmitting antenna 105 and the power receiving antenna 205.
 送電アンテナ105に交流電流を流して、受電アンテナ205を貫く磁束を変化させることによって受電アンテナ205に電圧が誘起される。結合状態指標である結合係数(kと表記し、その値をk値という)は、例えば送電アンテナで発生した磁束の全て(100%)が受電アンテナを貫くときに「k=1」となる。 By passing an alternating current through the transmitting antenna 105 and changing the magnetic flux that penetrates the receiving antenna 205, a voltage is induced in the receiving antenna 205. The coupling coefficient (denoted as k, and its value is called the k value), which is an index of the coupling state, is "k = 1" when, for example, all (100%) of the magnetic flux generated by the transmitting antenna penetrates the receiving antenna.
 また送電アンテナで発生した磁束の70%が受電アンテナを貫くときに「k=0.7」となる。この場合、送電アンテナで発生した残り(30%)の磁束は漏れ磁束(漏洩磁束)となる。 When 70% of the magnetic flux generated by the transmitting antenna penetrates the receiving antenna, k = 0.7. In this case, the remaining magnetic flux (30%) generated by the transmitting antenna becomes leakage magnetic flux.
 これは送電アンテナで発生した磁束のうち、受電アンテナを貫かなかった磁束である。したがって、送電アンテナと受電アンテナとの結合状態が良好であってk値が大きいとき、TXからRXに送電される電力の伝送効率は高い。逆に結合状態が良好でなく、k値が小さいとき、TXからRXに送電される電力の伝送効率は低い。 This is the magnetic flux generated by the transmitting antenna that did not penetrate the receiving antenna. Therefore, when the coupling between the transmitting antenna and the receiving antenna is good and the k value is large, the transmission efficiency of power transmitted from TX to RX is high. Conversely, when the coupling is not good and the k value is small, the transmission efficiency of power transmitted from TX to RX is low.
 k値が低下する要因としては、送電アンテナと受電アンテナとの間に異物(金属片等)が入ることや、送電アンテナと受電アンテナとの位置ずれがある。あるいは送電アンテナと受電アンテナとの距離が大きくなることが挙げられる。 The k value can decrease if a foreign object (such as a metal piece) gets between the transmitting antenna and the receiving antenna, or if the transmitting antenna and the receiving antenna are misaligned. Or the distance between the transmitting antenna and the receiving antenna becomes too large.
 送電アンテナと受電アンテナとの間に異物が入ると、異物に熱が発生する可能性がある。また、送電アンテナと受電アンテナとの位置ずれや離間が発生すると漏れ磁束(漏洩磁束)が多くなるので、周囲に大きなノイズを発生させる可能性がある。 If a foreign object gets between the transmitting antenna and the receiving antenna, heat may be generated in the object. Also, if the transmitting antenna and the receiving antenna are misaligned or separated, there will be a lot of leakage magnetic flux, which may cause a large amount of noise in the surrounding area.
 k値が小さい場合には、より安全で高品質な無線電力伝送を実現するための適切な制御が必要である。本実施形態では、異物の検出精度や、前記位置ずれや前記距離が大きい場合の検知精度を向上させるために、送電アンテナと受電アンテナに係る結合状態指標の検出処理が行われる。 When the k value is small, appropriate control is required to achieve safer and higher quality wireless power transmission. In this embodiment, a process for detecting coupling state indicators related to the transmitting antenna and the receiving antenna is performed to improve the accuracy of detecting foreign objects and the accuracy of detection when the positional deviation or distance is large.
 図12を参照して、送電アンテナと受電アンテナの結合状態指標測定法について説明する。図12(A)、(B)は第1実施形態に係る送電アンテナと受電アンテナの結合状態指標測定法の説明図であり、図12(A)は、第1の測定方法を説明するための等価回路図である。1次側(TX)の送電アンテナ(送電コイル)に関する諸量の定義を下記に示す。 The method for measuring the coupling status indicator of the transmitting antenna and the receiving antenna will be described with reference to Figure 12. Figures 12(A) and (B) are explanatory diagrams of the method for measuring the coupling status indicator of the transmitting antenna and the receiving antenna according to the first embodiment, and Figure 12(A) is an equivalent circuit diagram for explaining the first measurement method. The definitions of various quantities related to the transmitting antenna (transmitting coil) on the primary side (TX) are shown below.
・r1:送電アンテナの巻き線抵抗。
・L1:送電アンテナの自己インダクタンス。
・V1:TXが測定した、送電アンテナにかかる送電電圧(入力電圧)。
r1: Winding resistance of the transmitting antenna.
L1: Self-inductance of the transmitting antenna.
V1: The transmitting voltage (input voltage) across the transmitting antenna, measured by the TX.
 また、2次側(RX)の受電アンテナ(受電コイル)に関する諸量の定義を下記に示す。
・r2:受電アンテナの巻き線抵抗。
・L2:受電アンテナの自己インダクタンス。
・V2:RXが測定した、受電アンテナにかかる受電電圧(出力電圧)。
The following are definitions of various quantities related to the receiving antenna (receiving coil) on the secondary side (RX).
r2: Winding resistance of the receiving antenna.
L2: Self-inductance of the receiving antenna.
V2: The receiving voltage (output voltage) across the receiving antenna measured by the RX.
 送電アンテナと受電アンテナとの結合係数kは、下記式2により算出できる。
 k=(V2/V1)・√(L1/L2)   (式2)
The coupling coefficient k between the power transmitting antenna and the power receiving antenna can be calculated by the following formula 2.
k = (V2/V1) · √(L1/L2) (Equation 2)
 TXが結合係数kを算出する場合、RXは測定した受電電圧V2と、予めRXが保持している受電アンテナの自己インダクタンスL2の値をTXに通知する。TXは測定した送電電圧V1と、予め保持している送電アンテナの自己インダクタンスL1の値と、RXから受信した受電電圧V2と自己インダクタンスL2の値を用いてk値を算出する。 When the TX calculates the coupling coefficient k, the RX notifies the TX of the measured receiving voltage V2 and the value of the self-inductance L2 of the receiving antenna that the RX holds in advance. The TX calculates the k value using the measured transmitting voltage V1, the value of the self-inductance L1 of the transmitting antenna that the TX holds in advance, and the receiving voltage V2 and self-inductance L2 values received from the RX.
 あるいは、RXはL1,L2のすべて、またはいずれかを用いて算出される定数と、V2をTXに通知し、TXはRXから受信した当該定数とV2と、TXが測定した送電電圧V1とを用いてk値を算出することができる。 Alternatively, RX can notify TX of a constant calculated using either or both of L1 and L2, and V2, and TX can calculate the k value using the constant and V2 received from RX, and the transmission voltage V1 measured by TX.
 一方、RXが結合係数kを算出する場合、TXは測定した送電電圧V1と、予め保持している送電アンテナの自己インダクタンスL1の値をRXに通知する。RXは測定した受電電圧V2と、予め保持している受電アンテナの自己インダクタンスL2の値と、TXから受信した送電電圧V1と自己インダクタンスL1の値を用いてk値を算出する。 On the other hand, when the RX calculates the coupling coefficient k, the TX notifies the RX of the measured transmission voltage V1 and the previously stored value of the self-inductance L1 of the transmission antenna. The RX calculates the k value using the measured receiving voltage V2, the previously stored value of the self-inductance L2 of the receiving antenna, and the values of the transmission voltage V1 and self-inductance L1 received from the TX.
 あるいは、TXはL1,L2のすべて、またはいずれかを用いて算出される定数と、V1をRXに通知し、RXはTXから受信した当該定数とV1と、RXが測定した受電電圧V2とを用いてk値を算出することができる。 Alternatively, the TX can notify the RX of a constant calculated using either or both of L1 and L2, and V1, and the RX can calculate the k value using the constant and V1 received from the TX, and the receiving voltage V2 measured by the RX.
 送電電圧V1については、TXが送電アンテナにかかる電圧を実際に測定するか、またはTXが送電電力の設定値から算出する。あるいは送電電圧V1を送電時の送電電圧の設定値としてもよい。 The transmission voltage V1 is calculated by the TX actually measuring the voltage applied to the transmission antenna, or by the TX calculating it from the set value of the transmission power. Alternatively, the transmission voltage V1 may be set as the set value of the transmission voltage during transmission.
 また、TXの送電部103が有する回路(例えばインバータ)にかかる送電電圧(V3と記す)と、共振コンデンサ107の両端にかかる電圧から送電アンテナにかかる送電電圧V1を求めることができる。ここで、TXの送電部103が有する回路にかかる送電電圧V3とは、例えばTXの送電部103が有するインバータに入力されるインバータ入力電圧、あるいはインバータが出力するインバータ出力電圧である。 Furthermore, the transmission voltage V1 applied to the transmission antenna can be obtained from the transmission voltage (denoted as V3) applied to a circuit (e.g., an inverter) in the TX power transmission unit 103 and the voltage across the resonant capacitor 107. Here, the transmission voltage V3 applied to the circuit in the TX power transmission unit 103 is, for example, the inverter input voltage input to the inverter in the TX power transmission unit 103, or the inverter output voltage output by the inverter.
 この場合、送電電圧V3についてもTXが送電電力の設定値から算出してもよい。あるいは、TXが、送電電圧V3と共振コンデンサ107の両端にかかる電圧を実際に測定して、それらを用いて送電電圧V1を求めてもよい。あるいは、TXは、測定した送電電圧V3と共振コンデンサ107の両端にかかる電圧の値をRXに送信し、RXが送電電圧V1を求めることで、k値を算出してもよい。 In this case, the TX may also calculate the transmission voltage V3 from the set value of the transmission power. Alternatively, the TX may actually measure the transmission voltage V3 and the voltage across the resonant capacitor 107, and use these to determine the transmission voltage V1. Alternatively, the TX may transmit the measured values of the transmission voltage V3 and the voltage across the resonant capacitor 107 to the RX, and the RX may calculate the transmission voltage V1, thereby calculating the k value.
 また、TXまたはRXが第1の測定方法を実施する際、RXは第3スイッチ部213をOFFにして、受電アンテナ205の端子が開放状態になるように制御してもよい。これにより、図12(A)で示すように受電アンテナの両端を開放状態にすることが可能となる。 Also, when the TX or RX performs the first measurement method, the RX may control the third switch unit 213 to be turned OFF so that the terminal of the power receiving antenna 205 is in an open state. This makes it possible to open both ends of the power receiving antenna as shown in FIG. 12(A).
 第1の測定方法にて共振コンデンサ211、受電部203、充電部206、バッテリ207による影響を受けることが無いので、より高精度に結合係数kの測定が可能となる。また、RXの受電部203が有する回路(例えば整流部)にかかる受電電圧(V4と記す)と、共振コンデンサ211の両端にかかる電圧から受電アンテナにかかる受電電圧V2を求めることができる。 The first measurement method is not affected by the resonant capacitor 211, the power receiving unit 203, the charging unit 206, or the battery 207, so it is possible to measure the coupling coefficient k with higher accuracy. In addition, the power receiving voltage V2 applied to the power receiving antenna can be calculated from the power receiving voltage (denoted as V4) applied to the circuit (e.g., the rectifier) of the RX power receiving unit 203 and the voltage applied across the resonant capacitor 211.
 ここで、RXの受電部203が有する回路にかかる受電電圧V4とは、例えばRXの受電部203が有する整流部に入力される整流部入力電圧である。あるいはRXの受電部203が有する回路(例えば整流部)の受電電圧(または整流部の出力電圧)と、共振コンデンサ211の両端にかかる電圧から受電アンテナにかかる受電電圧V2を求めることができる。 Here, the receiving voltage V4 applied to the circuit of the RX power receiving unit 203 is, for example, the rectifier input voltage input to the rectifier of the RX power receiving unit 203. Alternatively, the receiving voltage V2 applied to the receiving antenna can be calculated from the receiving voltage (or the output voltage of the rectifier) of the circuit (for example, the rectifier) of the RX power receiving unit 203 and the voltage across the resonant capacitor 211.
 この場合、RXが、受電電圧V4と共振コンデンサ211の両端にかかる電圧を実際に測定して、それらを用いて受電電圧V2を求めてもよい。あるいは、RXが、整流部の受電電圧(または整流部の出力電圧)と共振コンデンサ211の両端にかかる電圧を実際に測定して、それらを用いて受電電圧V2を求めてもよい。 In this case, RX may actually measure the receiving voltage V4 and the voltage across the resonant capacitor 211, and use these to determine the receiving voltage V2. Alternatively, RX may actually measure the receiving voltage of the rectifier (or the output voltage of the rectifier) and the voltage across the resonant capacitor 211, and use these to determine the receiving voltage V2.
 あるいは、RXは、測定した受電電圧V4と共振コンデンサ211の両端にかかる電圧の値をTXに送信し、TXが受電電圧V2を求めることで、k値を算出してもよい。あるいは、RXは、測定した整流部の受電電圧(または整流部の出力電圧)と共振コンデンサ211の両端にかかる電圧の値をTXに送信し、TXが受電電圧V2を求めることで、k値を算出してもよい。 Alternatively, RX may transmit the measured value of the receiving voltage V4 and the voltage across the resonant capacitor 211 to TX, and TX may calculate the receiving voltage V2, thereby calculating the k value. Alternatively, RX may transmit the measured value of the receiving voltage of the rectifier (or the output voltage of the rectifier) and the voltage across the resonant capacitor 211 to TX, and TX may calculate the receiving voltage V2, thereby calculating the k value.
 TXまたはRXが第1の測定方法を実施する際、RXは軽負荷状態または負荷接続状態となるように制御してもよい。RXの負荷の状態を一定にすることで、より高精度に結合係数kの測定が可能となる。あるいは、TXまたはRXは、RXが軽負荷状態のときと、負荷接続状態のときの両方の状態において、第1の測定方法を実施するように制御してもよい。 When the TX or RX performs the first measurement method, the RX may be controlled to be in a light load state or a loaded state. By keeping the load state of the RX constant, it becomes possible to measure the coupling coefficient k with higher accuracy. Alternatively, the TX or RX may be controlled to perform the first measurement method in both states when the RX is in a light load state and when it is in a loaded state.
 あるいは、TXまたはRXは、RXが3つ以上のそれぞれの負荷状態において、第1の測定方法を実施するように制御してもよい。複数のRXの負荷状態における結合状態の測定を行い、複数の測定結果に基づいて結合状態を判定することで、より高精度に結合状態を判定することができる。 Alternatively, the TX or RX may be controlled so that the first measurement method is performed when the RX is in each of three or more load states. By measuring the coupling state in multiple load states of the RX and determining the coupling state based on the multiple measurement results, the coupling state can be determined with higher accuracy.
 送電アンテナと受電アンテナとの電磁結合状態を表す指標としては、結合係数以外にも複数の量があり、本開示では、それらを総称して「結合状態指標」と呼ぶ。結合状態指標はいずれも、送電アンテナと受電アンテナとの電磁結合状態に対応する値を有する。結合係数以外の、その他の結合状態指標を用いる場合にも同様に本実施形態の内容を適用可能である。 In addition to the coupling coefficient, there are several other quantities that can be used as indices to represent the electromagnetic coupling state between the transmitting antenna and the receiving antenna, and in this disclosure, these are collectively referred to as "coupling state indices." Each coupling state index has a value that corresponds to the electromagnetic coupling state between the transmitting antenna and the receiving antenna. The contents of this embodiment can also be applied in the same way when using other coupling state indices other than the coupling coefficient.
 例えば、結合状態指標として、TXの送電部103が有する回路にかかる送電電圧V3と、RXの受電部203が有する回路にかかる受電電圧V4を用いる方法がある。ここで、V3は、例えばTXの送電部103が有するインバータに入力されるインバータ入力電圧、または、インバータが出力するインバータ出力電圧である。 For example, there is a method of using the transmission voltage V3 applied to the circuit of the TX power transmitting unit 103 and the receiving voltage V4 applied to the circuit of the RX power receiving unit 203 as the coupling state indicator. Here, V3 is, for example, the inverter input voltage input to the inverter of the TX power transmitting unit 103, or the inverter output voltage output by the inverter.
 V4は、例えばRXの受電部203が有する整流部に入力される整流部入力電圧である。これらを用いて送電アンテナと受電アンテナとの結合状態の算出処理を行うことができる。あるいはRXの受電部203が有する回路(例えば整流部)の出力電圧(V5と記す)を用いて送電アンテナと受電アンテナとの結合状態の算出が可能である。出力電圧V5は、負荷(充電部、バッテリ)に印加される電圧である。 V4 is, for example, the rectifier input voltage input to the rectifier of the RX power receiving unit 203. These can be used to perform a calculation process for the coupling state between the transmitting antenna and the receiving antenna. Alternatively, the coupling state between the transmitting antenna and the receiving antenna can be calculated using the output voltage (denoted as V5) of a circuit (for example, a rectifier) of the RX power receiving unit 203. The output voltage V5 is the voltage applied to the load (charging unit, battery).
 TXは送電電圧V3をRXに通知し、RXは結合状態指標を算出することが可能となる。このとき、TXは送電アンテナの電気特性(例えばL1)を用いて算出される定数をRXに通知し、RXは当該定数を用いて結合状態指標を算出することができる。 The TX notifies the RX of the transmission voltage V3, and the RX is able to calculate the coupling state index. At this time, the TX notifies the RX of a constant calculated using the electrical characteristics of the transmitting antenna (e.g., L1), and the RX can calculate the coupling state index using the constant.
 つまり、RXは、TXから受信した送電電圧V3と、TXから受信した送電アンテナの電気特性(例えばL1)を用いて算出される定数と、RXが測定した受電電圧V4または出力電圧V5から結合状態指標を算出することができる。 In other words, the RX can calculate the coupling state index from the transmission voltage V3 received from the TX, a constant calculated using the electrical characteristics of the transmission antenna (e.g., L1) received from the TX, and the receiving voltage V4 or output voltage V5 measured by the RX.
 あるいは、RXは受電電圧V4または出力電圧V5をTXに通知し、TXは結合状態指標の値を算出する。このとき、RXは受電アンテナの電気特性(例えばL2)を用いて算出される定数をTXに通知し、TXは当該定数を用いて結合状態指標を算出することができる。 Alternatively, RX notifies TX of receiving voltage V4 or output voltage V5, and TX calculates the value of the coupling state index. At this time, RX notifies TX of a constant calculated using the electrical characteristics of the receiving antenna (e.g., L2), and TX can calculate the coupling state index using the constant.
 つまり、TXは、RXから受信した受電電圧V4または出力電圧V5と、RXから受信した受電アンテナの電気特性(例えばL2)を用いて算出される定数と、TXが測定した送電電圧V3から結合状態指標を算出することができる。 In other words, the TX can calculate the coupling state index from the receiving voltage V4 or output voltage V5 received from the RX, a constant calculated using the electrical characteristics of the receiving antenna received from the RX (e.g., L2), and the transmitting voltage V3 measured by the TX.
 TXとRXは、V1からV5の電圧値、自己インダクタンスL1,L2の値、あるいは送電アンテナや受電アンテナの電気特性を表す定数の情報を送受し合う。以下、電圧値の測定のタイミングと、各情報の送受のタイミングについて説明する。各電圧値の測定は、例えばPingフェーズに実行される。Pingフェーズでは、TXはRXに対してDPを送信する。 The TX and RX exchange information such as the voltage values V1 to V5, the self-inductance values L1 and L2, or constants that represent the electrical characteristics of the transmitting and receiving antennas. The timing of measuring the voltage values and the timing of sending and receiving each piece of information are explained below. Measurement of each voltage value is performed, for example, during the Ping phase. During the Ping phase, the TX transmits a DP to the RX.
 よって、DPの送信時に発生するV1,V2,V3,V4,V5のいずれかの電圧値を用いることができる。PingフェーズにてTXおよびRXは、V1からV5のいずれかの値を測定してメモリ106またはメモリ208に記憶保持する。あるいは、TXはRXに対して、電圧値の測定のタイミングを通知する所定のパケットを送信する。 Therefore, any of the voltage values V1, V2, V3, V4, and V5 that are generated when transmitting a DP can be used. In the Ping phase, the TX and RX measure any of the values V1 to V5 and store and retain the value in memory 106 or memory 208. Alternatively, the TX transmits a specified packet to the RX to notify it of the timing of measuring the voltage value.
 RXは、当該所定のパケットを受信したら、V2、V4、V5のいずれかの電圧値の測定を行う。RXは、V2、V4、V5のいずれかの値を測定してメモリ208に記憶保持する。 When the RX receives the specified packet, it measures the voltage value of either V2, V4, or V5. The RX measures the value of either V2, V4, or V5 and stores it in memory 208.
 あるいは、RXはTXに対して、電圧値の測定のタイミングを通知する所定のパケットを送信する。TXは、当該所定のパケットを受信したら、V1、V3のいずれかの電圧値の測定を行う。TXは、V1、V3のいずれかの値を測定してメモリ106に記憶保持する。 Alternatively, the RX transmits a specified packet to the TX to notify it of the timing for measuring the voltage value. When the TX receives the specified packet, it measures the voltage value of either V1 or V3. The TX measures either the value of V1 or V3 and stores it in the memory 106.
 TXがRXからV2、V4、V5のいずれかの電圧値の情報を受信する場合について述べる。TXは、RXに対して、V2、V4、V5のいずれかの電圧値の情報を含むパケットの送信を要求するための所定の送信要求パケットを送信する。 The following describes a case where the TX receives information on the voltage value of either V2, V4, or V5 from the RX. The TX transmits a specified transmission request packet to the RX to request the transmission of a packet containing information on the voltage value of either V2, V4, or V5.
 RXは、当該送信要求パケットを受信したら、TXに対して、V2、V4、V5のいずれかの電圧値の情報を有する所定パケットを送信する。TXは、RXから通知されたV2、V4、V5のいずれかの電圧値の情報を有する所定パケットを受信し、当該情報をメモリ106に記憶する。 When RX receives the transmission request packet, it transmits a specified packet containing information on one of the voltage values V2, V4, or V5 to TX. TX receives the specified packet containing information on one of the voltage values V2, V4, or V5 notified by RX, and stores the information in memory 106.
 所定パケットが有する情報には、RXの受電電圧だけでなく、受電電力や、要求する受電電力値、自己インダクタンスL2の値、受電アンテナの電気特性を用いて算出される定数等の情報が含まれてもよい。また、あるいはRXの温度に関する情報が含まれてもよい。 The information contained in the specified packet may include not only the receiving voltage of the RX, but also the receiving power, the requested receiving power value, the value of the self-inductance L2, a constant calculated using the electrical characteristics of the receiving antenna, etc. Also, information regarding the temperature of the RX may be included.
 TXは、RXから当該情報を受信し、当該情報と算出する結合状態指標とを用いて、より適切な制御を行うことができる。所定パケットとしては、Signal Strength Data packetを使用して、RXの情報をTXに通知することができる。 The TX receives the information from the RX and can use the information and the calculated coupling status index to perform more appropriate control. As the specified packet, the Signal Strength Data packet can be used to notify the TX of the RX's information.
 あるいは所定パケットは、I&Cフェーズにおける、Identification Data packetまたはExtended Identification Data packetである。またはConfiguration Data packetであってもよい。 Alternatively, the specified packet may be an Identification Data packet or an Extended Identification Data packet in the I&C phase. Or it may be a Configuration Data packet.
 あるいは、CalibrationフェーズやPower TransferフェーズにおけるPacketであってもよい。つまりRP1、RP2、RP0でもよい。なお、TXがDPの送信時に発生する電圧値を用いる例に限定されることはない。 Alternatively, it may be a packet in the calibration phase or power transfer phase. In other words, it may be RP1, RP2, or RP0. Note that the present invention is not limited to the example in which TX uses the voltage value generated when transmitting DP.
 SelectionフェーズにてTXがAPの送信時に発生するV1からV5のいずれかの電圧値を用いてもよい。あるいは、Power TransferフェーズにてTXがRXに対して送電する時に発生するV1からV5のいずれかの電圧値を用いてもよい。 Any of the voltage values V1 to V5 that are generated when the TX transmits to the AP during the Selection phase may be used. Alternatively, any of the voltage values V1 to V5 that are generated when the TX transmits power to the RX during the Power Transfer phase may be used.
 次に、RXがTXからV1、V3のいずれかの電圧値の情報を受信する場合について述べる。RXは、TXに対して、V1、V3のいずれかの電圧値の情報を含むパケットの送信を要求するための所定の送信要求パケットを送信する。 Next, we will describe the case where RX receives information on either the voltage value V1 or V3 from TX. RX transmits a specified transmission request packet to TX to request the transmission of a packet including information on either the voltage value V1 or V3.
 TXは、当該送信要求パケットを受信したら、RXに対して、V1、V3のいずれかの電圧値の情報を有する所定パケットを送信する。RXは、TXが送信したV1、V3のいずれかの電圧値の情報を有する所定パケットを受信し、当該情報をメモリ208に記憶する。 When the TX receives the transmission request packet, it transmits a specified packet containing information on either the V1 or V3 voltage value to the RX. The RX receives the specified packet containing information on either the V1 or V3 voltage value transmitted by the TX, and stores the information in memory 208.
 所定パケットが有する情報には、TXの電圧だけでなく、送電電力値や送電可能な電力値、自己インダクタンスL1の値、送電アンテナの電気特性を用いて算出される定数等の情報が含まれてもよい。 The information contained in the specified packet may include not only the TX voltage, but also the transmitted power value, the transmittable power value, the value of the self-inductance L1, a constant calculated using the electrical characteristics of the transmitting antenna, and other information.
 また、あるいは上述した異物検出方法(Power Loss法、Q値計測法、波形減衰法)による異物検出結果や、TXの温度に関する情報が含まれてもよい。RXは、TXから当該情報を受信し、当該情報と算出する結合状態指標とを用いて、より適切な制御を行うことができる。 Alternatively, the information may include the results of foreign object detection using the foreign object detection methods described above (power loss method, Q-value measurement method, waveform attenuation method) and information regarding the temperature of the TX. The RX can receive this information from the TX and use this information and the calculated binding state index to perform more appropriate control.
 また、所定パケットとしては、Power Transmitter Capabilities (CAP) Data Packetを使用して、TXの情報をRXに通知することができる。あるいは、Power Transmitter Identification (ID) data Packetを使用して、TXの情報をRXに通知することができる。 Furthermore, as a specified packet, the Power Transmitter Capabilities (CAP) Data Packet can be used to notify the RX of TX information. Alternatively, the Power Transmitter Identification (ID) data packet can be used to notify the RX of TX information.
 なお、TXがDPの送信時に発生する電圧値を用いる例に限定されることはない。SelectionフェーズにてTXがAPの送信時に発生するV1からV5のいずれかの電圧値を用いてもよい。あるいは、Power TransferフェーズにてTXがRXに対して送電する時に発生するV1からV5のいずれかの電圧値を用いてもよい。 Note that this is not limited to the example where the voltage value generated when the TX transmits the DP is used. Any of the voltage values V1 to V5 generated when the TX transmits the AP in the Selection phase may be used. Alternatively, any of the voltage values V1 to V5 generated when the TX transmits power to the RX in the Power Transfer phase may be used.
 RXは第1の測定方法を実施する際、共振コンデンサ211と受電部203との間にある第3スイッチ部213をOFFにして、受電アンテナ205と共振コンデンサ211で構成される回路の端子が開放状態になるように制御してもよい。 When performing the first measurement method, the RX may control the third switch section 213 between the resonant capacitor 211 and the power receiving section 203 to be turned OFF, so that the terminal of the circuit formed by the power receiving antenna 205 and the resonant capacitor 211 is in an open state.
 これにより、第1の測定方法の実施において受電部203、充電部206、バッテリ207による影響を受けることがないので、より高精度に結合状態指標の測定が可能となる。あるいは、RXは第1の測定方法を実施する際、上述した軽負荷状態となるように負荷を制御してもよい。 As a result, the coupling state index can be measured with higher accuracy since the first measurement method is not affected by the power receiving unit 203, the charging unit 206, or the battery 207. Alternatively, when the first measurement method is performed, the RX may control the load so that the above-mentioned light load state is achieved.
 RXは第1の測定方法を実施する際、上述した負荷接続状態となるように、負荷を制御してもよい。これにより、負荷の状態を所定の状態に保った状態で結合状態指標の測定することが可能となり、より高精度な状態検出が可能となる。 When implementing the first measurement method, the RX may control the load so that the load is in the load connection state described above. This makes it possible to measure the coupling state index while maintaining the load state in a specified state, enabling more accurate state detection.
 次に、送電アンテナと受電アンテナの結合状態指標測定法の別例として、第2の測定方法について説明する。図12(B)は、第2の測定方法を説明するための等価回路図である。r1,r2とL1,L2については図12(A)と同じである。1次側(TX)の送電アンテナ(コイル)に関する諸量の定義を下記に示す。 Next, a second measurement method will be described as another example of a method for measuring the coupling state indicator between the transmitting antenna and the receiving antenna. Figure 12(B) is an equivalent circuit diagram for explaining the second measurement method. r1, r2 and L1, L2 are the same as in Figure 12(A). The various quantities related to the transmitting antenna (coil) on the primary side (TX) are defined below.
・V6:受電アンテナ側がショート状態のときの送電アンテナの入力電圧(送電電圧)。
・V7:受電アンテナ側がオープン状態のときの送電アンテナの入力電圧(送電電圧)。
・I1:受電アンテナ側がショート状態のときの送電アンテナに流れる電流。
・I2:受電アンテナ側がオープン状態のときの送電アンテナに流れる電流。
V6: Input voltage (transmission voltage) of the transmission antenna when the receiving antenna side is shorted.
V7: Input voltage (transmission voltage) of the transmission antenna when the receiving antenna side is in an open state.
I1: The current flowing through the transmitting antenna when the receiving antenna is shorted.
I2: The current flowing through the transmitting antenna when the receiving antenna is in an open state.
 結合係数kは、下記式3により算出することができる。
 k=√(1-Lsc/Lopen)   (式3)
The coupling coefficient k can be calculated by the following formula 3.
k = √(1-Lsc/Lopen) (Equation 3)
 式3中のLscは、受電アンテナの両端を短絡させた場合の、送電アンテナのインダンクタンスを表す。例えば制御部201は第3スイッチ部213および第2スイッチ部210をON状態(短絡状態)にする。 Lsc in Equation 3 represents the inductance of the power transmitting antenna when both ends of the power receiving antenna are short-circuited. For example, the control unit 201 sets the third switch unit 213 and the second switch unit 210 to the ON state (short-circuit state).
 この状態で送電アンテナのインダクタンス値を測定することでLsc値を取得できる。送電アンテナのインダクタンス値は、送電アンテナの入力電圧V6および電流I1から求めることができる。 In this state, the Lsc value can be obtained by measuring the inductance value of the transmitting antenna. The inductance value of the transmitting antenna can be calculated from the input voltage V6 and current I1 of the transmitting antenna.
 式3中のLopenは、受電アンテナの両端を開放させた場合の、送電アンテナのインダンクタンスを表す。例えば制御部201は第3スイッチ部213をOFF状態(開放状態)にする。この状態で送電アンテナのインダクタンス値を測定することでLopen値を取得できる。 In Equation 3, Lopen represents the inductance of the power transmitting antenna when both ends of the power receiving antenna are open. For example, the control unit 201 sets the third switch unit 213 to the OFF state (open state). In this state, the Lopen value can be obtained by measuring the inductance value of the power transmitting antenna.
 送電アンテナのインダクタンス値は、送電アンテナの入力電圧V7および電流I2から求めることができる。第2の測定方法では、結合状態指標(結合係数)を、受電アンテナの両端を短絡にした場合と開放にした場合におけるそれぞれの、送電アンテナの入力電圧と電流から求めることが可能である。 The inductance value of the transmitting antenna can be determined from the input voltage V7 and current I2 of the transmitting antenna. In the second measurement method, the coupling state index (coupling coefficient) can be determined from the input voltage and current of the transmitting antenna when both ends of the receiving antenna are short-circuited and open.
 またTXは、送電部103が有する回路(例えばインバータ)にかかる送電電圧と電流に基づいて結合状態指標を算出することが可能である。この場合、入力電圧V6,V7は送電部103が有する回路(例えばインバータ)にかかる送電電圧を表す。 TX can also calculate the coupling state index based on the transmission voltage and current applied to a circuit (e.g., an inverter) in the power transmitting unit 103. In this case, the input voltages V6 and V7 represent the transmission voltage applied to a circuit (e.g., an inverter) in the power transmitting unit 103.
 ここで、TXの送電部103が含む回路にかかる送電電圧V6,V7とは、例えばインバータ入力電圧、あるいはインバータ出力電圧である。また入力電圧V6,V7は送電アンテナと共振コンデンサから成る直列共振回路の両端子にかかる電圧であってもよい。 Here, the transmission voltages V6 and V7 applied to the circuit included in the power transmission unit 103 of the TX are, for example, the inverter input voltage or the inverter output voltage. The input voltages V6 and V7 may also be the voltages applied to both terminals of a series resonant circuit consisting of a power transmission antenna and a resonant capacitor.
 あるいは、送電部103が有する回路(例えばインバータ)にかかる送電電圧と、共振コンデンサ107の両端にかかる電圧を測定し、その結果から送電アンテナにかかる電圧を算出してもよい。 Alternatively, the transmission voltage applied to a circuit (e.g., an inverter) in the power transmitting unit 103 and the voltage across the resonant capacitor 107 can be measured, and the voltage applied to the power transmitting antenna can be calculated from the results.
 つまり、送電部103が有する回路(例えばインバータ)にかかる送電電圧と、共振コンデンサ107の両端にかかる電圧の測定結果から、結合状態指標を求めることが可能である。この場合の送電部103が有する回路(例えばインバータ)にかかる送電電圧は、TXが送電電力の設定値から算出してもよい。 In other words, it is possible to obtain the coupling state index from the measurement results of the transmission voltage applied to the circuit (e.g., inverter) of the power transmitting unit 103 and the voltage applied to both ends of the resonant capacitor 107. In this case, the transmission voltage applied to the circuit (e.g., inverter) of the power transmitting unit 103 may be calculated by the TX from the set value of the transmission power.
 図12(B)にて電流I1またはI2は送電アンテナに流れる電流に限定されず、例えば送電部103が有する回路(例えばインバータ)に流れる電流であってもよい。ここで、TXの送電部103が含む回路に流れる電流とは、例えばインバータ入力電流、あるいはインバータ出力電流である。 In FIG. 12(B), the current I1 or I2 is not limited to the current flowing through the power transmitting antenna, but may be, for example, a current flowing through a circuit (e.g., an inverter) included in the power transmitting unit 103. Here, the current flowing through a circuit included in the power transmitting unit 103 of the TX is, for example, an inverter input current or an inverter output current.
 受電アンテナのオープン状態およびショート状態については、制御部201が第2スイッチ部210および第3スイッチ部213の制御により実現する例を説明した。これらの状態は受電部203で実現されてもよい。またショート状態に代えて、Light Load状態(軽負荷状態)としてもよい。またオープン状態に代えて、Connected Load状態(負荷接続状態)としてもよい。 The open and short states of the power receiving antenna have been described as examples in which the control unit 201 realizes these states by controlling the second switch unit 210 and the third switch unit 213. These states may also be realized by the power receiving unit 203. Also, instead of the short state, a Light Load state may be used. Also, instead of the open state, a Connected Load state may be used.
 第2の測定方法にてTXは、入力電圧V6,V7および電流I1,I2を測定することによって結合状態指標の算出が可能である。よってRXが測定する電圧値や受電アンテナのインダクタンス値等の情報は必要ないので、RXからTXに対する当該情報の通知は不要である。 In the second measurement method, the TX can calculate the coupling state index by measuring the input voltages V6 and V7 and the currents I1 and I2. Therefore, information such as the voltage value measured by the RX or the inductance value of the receiving antenna is not required, so there is no need for the RX to notify the TX of this information.
 ただし、TXが入力電圧V6および電流I1を測定するときに、RXは受電アンテナが含まれる回路の両端子をSHORT(短絡)にする必要がある。また、TXが入力電圧V7および電流I2を測定するときに、RXは受電アンテナが含まれる回路の両端子をOPEN(開放)にする必要がある。 However, when the TX measures the input voltage V6 and the current I1, the RX needs to keep both terminals of the circuit that includes the receiving antenna in SHORT. Also, when the TX measures the input voltage V7 and the current I2, the RX needs to keep both terminals of the circuit that includes the receiving antenna in OPEN.
 つまり、TXが入力電圧および電流を測定するタイミングに応じて、RXは受電アンテナが含まれる回路の両端子をSHORT(短絡)またはOPEN(開放)の状態に制御することが必要である。測定のタイミングについては、TX(またはRX)が決定してRX(またはTX)に通知する。 In other words, depending on the timing when the TX measures the input voltage and current, the RX needs to control both terminals of the circuit that contains the receiving antenna to a SHORT or OPEN state. The TX (or RX) decides the measurement timing and notifies the RX (or TX).
 またRXは、受電アンテナが含まれる回路の両端子をSHORT(短絡)またはOPEN(開放)の状態に制御する制御が完了したら、TXに通知する。これら通知は、TXの第1通信部104とRXの第1通信部204との間で行うWPC規格に基づく通信、または、TXの第2通信部109とRXの第2通信部212との間で行うWPC規格以外の規格による通信によって実施される。 The RX also notifies the TX when it has completed the control of setting both terminals of the circuit containing the receiving antenna to the SHORT or OPEN state. This notification is performed by communication based on the WPC standard between the first communication unit 104 of the TX and the first communication unit 204 of the RX, or by communication based on a standard other than the WPC standard between the second communication unit 109 of the TX and the second communication unit 212 of the RX.
 入力電圧V6,V7および電流I1,I2の測定は、例えばPingフェーズに実行される。Pingフェーズでは、TXはRXに対してDPを送信する。よって、DPの送信時に発生するV6,V7や電流I1,I2の値を用いることができる。Pingフェーズにおいて、TXはV6,V7,I1,I2の値を取得してメモリ106に保持し、結合状態指標を算出する。 The input voltages V6, V7 and currents I1, I2 are measured, for example, in the Ping phase. In the Ping phase, the TX transmits a DP to the RX. Therefore, the values of V6, V7 and currents I1, I2 generated when transmitting the DP can be used. In the Ping phase, the TX acquires the values of V6, V7, I1, I2, stores them in memory 106, and calculates the coupling state index.
 なお、TXがDPの送信時に発生する前記電圧値、電流値を用いる例に限定されることはない。例えばSelectionフェーズにてTXがAPの送信時に発生するV6,V7,I1,I2の値を用いてもよい。あるいは、Power TransferフェーズにてTXがRXに対して送電する時に発生するV6,V7,I1,I2の電圧値を用いてもよい。 Note that this is not limited to the example where the voltage and current values generated when the TX transmits a DP are used. For example, the values of V6, V7, I1, and I2 generated when the TX transmits an AP in the Selection phase may be used. Alternatively, the voltage values of V6, V7, I1, and I2 generated when the TX transmits power to the RX in the Power Transfer phase may be used.
 本開示では、送電アンテナと受電アンテナの結合状態指標測定法に関し、第1および第2の測定方法のいずれも適用可能である。以下では第1または第2の測定方法により取得される結合状態指標に対する状態判定用閾値の設定方法について説明する。 In this disclosure, either the first or second measurement method can be applied to the method of measuring the coupling status index of the transmitting antenna and the receiving antenna. Below, a method of setting a status determination threshold for the coupling status index obtained by the first or second measurement method is described.
 状態判定とは、送電アンテナと受電アンテナとの間の異物検出に関する判定や、送電アンテナと受電アンテナとの位置ずれの検出に関する判定や、送電アンテナと受電アンテナとが離れていることの検出に関する判定等である。第1または第2の測定方法を実施して、状態判定用閾値を用いて状態異常の有無を判定することが可能である。以下、第1乃至第4の閾値設定方法について説明する。 The status determination includes a determination regarding the detection of a foreign object between the power transmitting antenna and the power receiving antenna, a determination regarding the detection of a misalignment between the power transmitting antenna and the power receiving antenna, and a determination regarding the detection of the separation between the power transmitting antenna and the power receiving antenna. By implementing the first or second measurement method, it is possible to determine the presence or absence of a status abnormality using a status determination threshold. The first to fourth threshold setting methods are described below.
 第1の閾値設定方法は、状態異常が無い状態での結合状態指標の値を閾値として設定する方法である。状態検出では、例えば「状態異常有り」、「状態異常の可能性が高い」、「状態異常の可能性が低い」、「状態異常無し」等の判定結果が得られる。試験用TXにRXが載置され、かつ、送電アンテナと受電アンテナとの間の状態異常が無い場合を想定する。 The first threshold setting method is to set the value of the coupling status index when there is no status abnormality as the threshold. In status detection, for example, a judgment result such as "status abnormality exists", "status abnormality is highly likely", "status abnormality is low", "no status abnormality" or the like is obtained. Assume that the RX is placed on the test TX and there is no status abnormality between the transmitting antenna and the receiving antenna.
 この場合、送電アンテナを含む試験用TXと受電アンテナを含むRXとの結合状態指標の値を閾値とすることができる。事前に測定された当該結合状態指標の値(閾値)はRXがメモリに保持しており、RXは閾値をTXに通知する。 In this case, the value of the coupling state index between the test TX including the transmitting antenna and the RX including the receiving antenna can be set as the threshold. The value of the coupling state index (threshold) measured in advance is stored in the memory of the RX, and the RX notifies the TX of the threshold.
 TXは当該閾値を用いて状態検出に関する判定処理を行う。この閾値については、RXがTXに対して、WPC規格で規定されるFOD Status Data packet内に含めて送信してもよい。あるいは、RXが状態検出に関する判定処理を行う場合、RXは当該閾値を用いて状態検出に関する判定処理を行う。 The TX uses this threshold value to perform a judgment process regarding status detection. The RX may transmit this threshold value to the TX within an FOD Status Data packet defined in the WPC standard. Alternatively, when the RX performs a judgment process regarding status detection, the RX uses this threshold value to perform the judgment process regarding status detection.
 あるいは、所定の電力伝送効率が得られる送電アンテナと受電アンテナの結合状態指標の値が閾値として設定される。状態検出に関する判定結果は、例えば下記のとおりである。 Alternatively, the value of the coupling state index of the power transmitting antenna and the power receiving antenna that provides a predetermined power transmission efficiency is set as the threshold value. The determination result regarding the state detection is, for example, as follows.
(A1)「所定の電力伝送効率が得られない」あるいは「送電アンテナと受電アンテナの結合状態が良好でない」。
(A2)「所定の電力伝送効率が得られない可能性が高い」あるいは「送電アンテナと受電アンテナの結合状態が良好でない可能性がある」。
(A3)「所定の電力伝送効率が得られる可能性が高い」あるいは「送電アンテナと受電アンテナの結合状態が良好である可能性がある」。
(A4)「所定の電力伝送効率が得られる」あるいは「送電アンテナと受電アンテナの結合状態が良好である」。
(A1) "The specified power transmission efficiency cannot be obtained" or "The coupling state between the transmitting antenna and the receiving antenna is not good."
(A2) "There is a high possibility that the specified power transmission efficiency cannot be obtained" or "The coupling state between the transmitting antenna and the receiving antenna may not be good."
(A3) "There is a high possibility that a specified power transmission efficiency can be obtained" or "There is a high possibility that the coupling state between the transmitting antenna and the receiving antenna is good."
(A4) "A predetermined power transmission efficiency is obtained" or "The coupling state between the transmitting antenna and the receiving antenna is good."
 試験用TXにRXが載置され、かつ、送電アンテナと受電アンテナとの間の状態異常が無い場合(A4)を想定する。この場合、送電アンテナを含む試験用TXと受電アンテナを含むRXとの結合状態指標の値を閾値とすることができる。事前に測定された当該結合状態指標の値を閾値としてRXがメモリに保持しており、RXは閾値をTXに通知する。 Assume that the RX is placed on the test TX and there is no abnormality in the state between the transmitting antenna and the receiving antenna (A4). In this case, the value of the coupling state index between the test TX including the transmitting antenna and the RX including the receiving antenna can be set as the threshold. The RX holds the value of the coupling state index measured in advance in its memory as the threshold, and notifies the TX of the threshold.
 TXは当該閾値を用いて状態検出に関する判定処理を行う。この閾値については、RXがTXに対して、WPC規格で規定されるFOD Status Data packet内に含めて送信してもよい。あるいは、RXが状態検出に関する判定処理を行う場合、RXは当該閾値を用いて状態検出に関する判定処理を行う。 The TX uses this threshold value to perform a judgment process regarding status detection. The RX may transmit this threshold value to the TX within an FOD Status Data packet defined in the WPC standard. Alternatively, when the RX performs a judgment process regarding status detection, the RX uses this threshold value to perform the judgment process regarding status detection.
 第2の閾値設定方法は、送電アンテナと受電アンテナとの間に状態異常が無い状態において、TXとRXが、第1または第2の測定方法で測定した結合状態指標を閾値として設定する方法である。当該状態の確認方法としては、Power Loss法による異物検出や、波形減衰法による異物検出や、Q値計測法による異物検出や、TXまたはRXの温度に基づく異物検出等に係る、TXとRXの状態検出手段を利用することができる。 The second threshold setting method is a method in which the TX and RX set the coupling state index measured by the first or second measurement method as the threshold when there is no abnormality between the transmitting antenna and the receiving antenna. The method for confirming this state can utilize a state detection means for the TX and RX related to foreign object detection by the power loss method, foreign object detection by the waveform attenuation method, foreign object detection by the Q value measurement method, foreign object detection based on the temperature of the TX or RX, etc.
 その結果、状態異常が無いと判断された場合、高い確率で、状態異常が無い状態であることを確認できる。つまり、この確認は、第1または第2の測定方法以外の方法および手段により実行される。その結果、「状態異常無し」(または「異物無し」)と判定された場合には、第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて適切な閾値が設定される。 If it is determined that there is no abnormal condition as a result, it can be confirmed with a high probability that there is no abnormal condition. In other words, this confirmation is performed by a method and means other than the first or second measurement method. If it is determined that there is no abnormal condition (or no foreign matter) as a result, the bond condition index is measured using the first or second measurement method, and an appropriate threshold value is set based on the measurement result.
 例えばWPC規格では、NegotiationフェーズまたはRenegotiationフェーズにてQ値計測法を用いた異物検出処理が実行される。異物検出処理の結果、「状態異常無し」(または「異物無し」)と判定された場合、NegotiationフェーズまたはRenegotiationフェーズ以降において第1または第2の測定方法を用いて結合状態指標が測定される。 For example, in the WPC standard, a foreign object detection process using a Q-value measurement method is executed in the Negotiation phase or Renegotiation phase. If the result of the foreign object detection process is that there is "no abnormal state" (or "no foreign object"), the bond state index is measured using the first or second measurement method after the Negotiation phase or Renegotiation phase.
 測定結果に基づいて、TXあるいはRXは、より適切な閾値を設定することが可能である。また、Power Loss法による異物検出処理は、Power Transferフェーズ中に実行される。当該異物検出処理の実行後に、第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて、より適切な閾値を設定することが可能である。 Based on the measurement results, the TX or RX can set a more appropriate threshold value. Furthermore, the foreign object detection process using the Power Loss method is executed during the Power Transfer phase. After the foreign object detection process is executed, the binding state index is measured using the first or second measurement method, and based on the measurement results, a more appropriate threshold value can be set.
 あるいは、TXは、SelectionフェーズやPingフェーズにてTXが送信するAPあるいはDPを用いて、波形減衰法によりQuality Factorを測定し、異物検出処理を実行することができる。この場合、異物検出処理が実行されたフェーズ以降に第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて適切な閾値を設定することが可能である。 Alternatively, the TX can measure the Quality Factor by the waveform attenuation method using the AP or DP transmitted by the TX in the Selection phase or Ping phase, and execute the foreign object detection process. In this case, the binding status index is measured using the first or second measurement method after the phase in which the foreign object detection process is executed, and an appropriate threshold can be set based on the measurement result.
 あるいは、波形減衰法による異物検出処理は、Power Transferフェーズ中に実行される。当該異物検出処理の実行後に、第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて、より適切な閾値を設定することが可能である。 Alternatively, the foreign object detection process using the waveform attenuation method is performed during the power transfer phase. After the foreign object detection process is performed, the binding state index is measured using the first or second measurement method, and a more appropriate threshold value can be set based on the measurement result.
 次に、図13を参照して、第3の閾値設定方法について説明する。図13は、第1実施形態に係る結合状態指標を用いた状態検出における閾値設定方法を説明するための図である。図13にて横軸は送電電力を表し、縦軸は結合状態指標を表す。直線状の線分1202で示されるグラフ線上にて、点1200は送電電力値Pt1および結合状態指標値k1に対応し、点1201は送電電力値Pt2および結合状態指標値k2に対応する。 Next, the third threshold setting method will be described with reference to FIG. 13. FIG. 13 is a diagram for explaining the threshold setting method for state detection using the coupling state index according to the first embodiment. In FIG. 13, the horizontal axis represents the transmission power, and the vertical axis represents the coupling state index. On the graph line represented by the straight line segment 1202, point 1200 corresponds to the transmission power value Pt1 and the coupling state index value k1, and point 1201 corresponds to the transmission power value Pt2 and the coupling state index value k2.
 当該グラフ線上にて、点1203は送電電力値Pt3および結合状態指標値k3に対応する。以下、第1の測定方法での結合状態指標値の算出において、RXの受電部203が有する回路(例えば整流部)にかかる受電電圧V4または出力電圧V5を用いる場合の例を示す。 On the graph line, point 1203 corresponds to the transmission power value Pt3 and the coupling state index value k3. Below, an example is shown in which the receiving voltage V4 or the output voltage V5 applied to a circuit (e.g., a rectifier) of the receiving unit 203 of the RX is used to calculate the coupling state index value in the first measurement method.
 図3に示したように、RXの受電部203には充電部206、バッテリ207が負荷として接続される。負荷状態に応じて、算出される結合状態指標値は変化する。負荷状態によって状態異常の有無を判定するためには、結合状態指標に対する閾値を適切に設定する必要がある。 As shown in FIG. 3, the charging unit 206 and the battery 207 are connected as loads to the RX power receiving unit 203. The calculated coupling state index value changes depending on the load state. In order to determine the presence or absence of a state abnormality depending on the load state, it is necessary to set an appropriate threshold value for the coupling state index.
 まずRXは、TXから送電があった場合、負荷が軽負荷状態となるように制御する。軽負荷状態は、例えば負荷切断状態や、RXの受電電力値が第1の閾値以下になる負荷状態、あるいはRXの受電電力値が予め定められた第1の範囲内になる負荷状態である。この状態での送電電力値をPt1とする。 First, when power is transmitted from TX, RX controls the load so that it is in a light load state. A light load state is, for example, a load disconnection state, a load state in which the received power value of RX is equal to or lower than a first threshold, or a load state in which the received power value of RX is within a first predetermined range. The transmitted power value in this state is Pt1.
 TXとRXは、その状態でTX側の送電電圧およびRX側の受電電圧の測定を実施する。TXとRXは、上記V1からV7の値や、自己インダクタンスL1,L2の値、あるいは送電アンテナや受電アンテナの電気特性を用いて算出される定数等の情報のやり取りを行い、TXまたはRXは結合状態指標値k1を算出する。 In this state, the TX and RX measure the transmission voltage on the TX side and the receiving voltage on the RX side. The TX and RX exchange information such as the above values of V1 to V7, the values of self-inductance L1 and L2, or constants calculated using the electrical characteristics of the transmitting antenna and the receiving antenna, and the TX or RX calculates the coupling state index value k1.
 このときにTXは送電電力値Pt1を認識しており、Pt1とk1とを関連付けるCP1200をメモリに記憶しておく。次にRXは、TXから送電があった場合にRXの負荷が負荷接続状態となるように制御する。負荷接続状態は、例えば最大負荷状態や、送電電力値が第2の閾値以上になる負荷状態である。 At this time, the TX recognizes the transmission power value Pt1, and stores in memory CP1200 that associates Pt1 with k1. Next, the RX controls the load of the RX so that it is in a load connection state when power is transmitted from the TX. The load connection state is, for example, a maximum load state or a load state in which the transmission power value is equal to or greater than a second threshold value.
 あるいは、RXが受電する電力が最大の電力となる負荷状態である。ここで、「最大の電力」とは、Reference Powerに近い値の電力である。あるいはRXの受電電力値が予め定められた第2の範囲内になる負荷状態である。ここで、第2の範囲は上記第1の範囲よりも高い電力値の範囲である。 Or, it is a load state in which the power received by the RX is the maximum power. Here, "maximum power" is a power value close to the Reference Power. Or, it is a load state in which the received power value of the RX is within a predetermined second range. Here, the second range is a range of power values higher than the first range.
 この状態でのTXの送電電力値をPt2とする。TXとRXは、その状態でTX側の送電電圧およびRX側の受電電圧の測定を実施する。TXとRXは、上記V1からV7の値や、自己インダクタンスL1,L2の値、あるいは送電アンテナや受電アンテナの電気特性を用いて算出される定数等の情報のやり取りを行い、TXまたはRXは結合状態指標値k2を算出する。 The transmission power value of the TX in this state is Pt2. In this state, the TX and RX measure the transmission voltage on the TX side and the receiving voltage on the RX side. The TX and RX exchange information such as the values of V1 to V7 mentioned above, the values of self-inductances L1 and L2, or constants calculated using the electrical characteristics of the transmitting antenna and receiving antenna, and the TX or RX calculates the coupling state index value k2.
 TXは、Pt2とk2とを関連づけるCP1201をメモリに記憶しておく。続いて、TXは、CP1200とCP1201との間の直線補間を行い、線分1202を生成する。線分1202は、状態異常がない状態における送電電力と結合状態指標との関係を示している。 The TX stores in memory CP1201, which associates Pt2 and k2. Next, the TX performs linear interpolation between CP1200 and CP1201 to generate line segment 1202. Line segment 1202 shows the relationship between the transmission power and the coupling state index when there is no state abnormality.
 TXは線分1202を用いて、状態異常がない状態における、送電電力値ごとの結合状態指標値を推定することができる。例えば、送電電力値がPt3の場合を想定する。この場合、送電電力値Pt3に対応する線分1202上の点1203から、結合状態指標値をk3と推定することができる。推定結果に基づいてTXは、送電電力値ごとに、状態異常の有無の判定に用いる閾値を算出することが可能となる。 The TX can use line segment 1202 to estimate the coupling state index value for each transmission power value when there is no abnormal state. For example, assume that the transmission power value is Pt3. In this case, the coupling state index value can be estimated to be k3 from point 1203 on line segment 1202 that corresponds to the transmission power value Pt3. Based on the estimation result, the TX can calculate a threshold value to be used to determine the presence or absence of an abnormal state for each transmission power value.
 例えば、ある送電電力値における状態異常無しの場合の結合状態指標値の推定結果に対して所定値(測定誤差に対応する値)を加味した結合状態指標値を、判定用閾値として設定することができる。 For example, the coupling state index value obtained by adding a predetermined value (a value corresponding to the measurement error) to the estimated result of the coupling state index value when there is no abnormality at a certain transmission power value can be set as the judgment threshold value.
 このように、送電装置100が送電電力値と結合状態指標値との組み合わせを取得するために送電装置100と受電装置200とが行うCAL処理を、「結合状態指標測定法のCAL処理」と呼ぶ。 The CAL processing performed by the power transmitting device 100 and the power receiving device 200 in this manner so that the power transmitting device 100 can obtain a combination of the transmitted power value and the coupling state index value is referred to as the "CAL processing of the coupling state index measurement method."
 なお、RXは、負荷に対して軽負荷状態となる制御と、負荷接続状態となる制御を、それぞれTXに対して制御を行うことを通知したあとに行ってもよい。また、これらの2つの制御はいずれが先に行われてもよい。 The RX may control the load to a light load state and to a load connected state after notifying the TX that it will perform these controls. Also, either of these two controls may be performed first.
 負荷ごと(または送電電力値ごと)の状態検出の判定用閾値を算出するための動作は、例えばCalibrationフェーズに行われる。CalibrationフェーズにてTXは、Power Loss法による異物検出を行う際に必要となるデータを取得する。 The operation for calculating the judgment threshold for state detection for each load (or each transmission power value) is performed, for example, in the calibration phase. In the calibration phase, the TX acquires the data required for foreign object detection using the Power Loss method.
 その際、TXは、RXの負荷状態が軽負荷状態である場合と、RXの負荷状態が負荷接続状態である場合における、それぞれの電力損失量のデータを取得する。そこで、図13におけるCP1200とCP1201の測定は、CalibrationフェーズにRXが軽負荷状態になった場合と負荷接続状態になった場合に、電力損失の測定と一緒に行うことができる。 At that time, the TX acquires data on the amount of power loss when the RX is in a light load state and when the RX is in a loaded state. Therefore, the measurements of CP1200 and CP1201 in FIG. 13 can be performed together with the measurement of power loss when the RX is in a light load state and when it is in a loaded state during the calibration phase.
 すなわち、TXは、RXから第1の基準受電電力情報を受信した際、Calibrationフェーズで行うべき所定の処理に加えて、CP1200の測定を行う。第1の基準受電電力情報はRP1による情報であるが、他のメッセージが用いられてもよい。またTXは、RXから第2の基準受電電力情報を受信した際、Calibrationフェーズで行うべき所定の処理に加えて、CP1201の測定を行う。 In other words, when the TX receives the first reference received power information from the RX, it measures CP1200 in addition to the predetermined processing to be performed in the calibration phase. The first reference received power information is information from RP1, but other messages may be used. Also, when the TX receives the second reference received power information from the RX, it measures CP1201 in addition to the predetermined processing to be performed in the calibration phase.
 第2の基準受電電力情報はRP2による情報であるが、他のメッセージが用いられてもよい。このように、CP1200とCP1201の測定を行う期間を別途設ける必要がないので、より短時間でCP1200とCP1201の測定が可能となる。 The second reference received power information is information from RP2, but other messages may be used. In this way, there is no need to set aside a separate period for measuring CP1200 and CP1201, so CP1200 and CP1201 can be measured in a shorter time.
 あるいは、RXが状態検出に関する判定処理を行う場合、RXはTXから上記のPt1の情報を含む所定のパケットを受信する。そして、RXはPt1の情報を含む所定のパケットを受信した場合にk1を測定し、Pt1とk1とを関連付けるCP1200をメモリに記憶しておく。 Alternatively, when the RX performs a determination process regarding state detection, the RX receives a specified packet including the above-mentioned Pt1 information from the TX. Then, when the RX receives the specified packet including the Pt1 information, it measures k1 and stores in memory CP1200 that associates Pt1 with k1.
 同様に、RXはTXから上記のPt2の情報を含む所定のパケットを受信する。そして、RXはPt2の情報を含む所定のパケットを受信した場合にk2を測定し、Pt2とk2とを関連付けるCP1201をメモリに記憶しておく。続いて、RXは、CP1200とCP1201との間の直線補間を行い、線分1202を生成する。 Similarly, RX receives a specific packet containing the above Pt2 information from TX. Then, when RX receives a specific packet containing Pt2 information, it measures k2 and stores CP1201, which associates Pt2 with k2, in memory. Next, RX performs linear interpolation between CP1200 and CP1201 to generate line segment 1202.
 RXは線分1202を用いて、状態異常がない状態における、送電電力値ごとの結合状態指標値を推定することができる。このようにすることで、受電装置200が、送電装置100の送電電力値と結合状態指標値との組み合わせを取得することができる。 The RX can use line segment 1202 to estimate the coupling state index value for each transmission power value in a state where there is no abnormality. In this way, the power receiving device 200 can obtain the combination of the transmission power value and the coupling state index value of the power transmitting device 100.
 第4の閾値設定方法は、TXまたはRXが、所定の範囲内の値を有する結合状態指標に対して予め閾値を設定する方法である。この閾値は、送電対象となるRXに依存しない共通の値として、予め定められた値をTXあるいはRXが保持する。なお、当該閾値は状況に依らない固定値または状況に応じてTXあるいはRXが決定する可変値である。 The fourth threshold setting method is a method in which the TX or RX sets a threshold in advance for a coupling state indicator having a value within a predetermined range. This threshold is a common value that is not dependent on the RX to which power is transmitted, and the TX or RX holds a predetermined value. Note that the threshold is a fixed value that is independent of the situation, or a variable value that is determined by the TX or RX depending on the situation.
 例えば、結合状態指標として結合係数kを用いる場合、k値の範囲は「0≦k≦1」である。例えば、TXまたはRXは「0≦k<0.2」の場合に「状態異常有り」と判断し、「0.2≦k<0.5」の場合に「状態異常の可能性が高い」と判断する。 For example, if the coupling coefficient k is used as the coupling status index, the range of the k value is "0≦k≦1". For example, TX or RX will determine that "there is a status abnormality" when "0≦k<0.2", and will determine that "there is a high possibility of a status abnormality" when "0.2≦k<0.5".
 TXまたはRXは「0.5≦k<0.8」の場合に「状態異常の可能性が低い」と判断し、「0.8≦k≦1」の場合に「状態異常無し」と判断する。k値に対する条件のデータは予めメモリに保持されており、条件に基づいて判断処理が実行される。 TX or RX will determine that "the possibility of a status abnormality is low" if "0.5≦k<0.8" and will determine that "there is no status abnormality" if "0.8≦k≦1". Data on the conditions for the k value is stored in memory in advance, and the determination process is carried out based on the conditions.
 また、例えば、TXまたはRXは「0≦k<0.2」の場合に上記(A1)と判断し、「0.2≦k<0.5」の場合に上記(A2)と判断し、「0.5≦k<0.8」の場合に上記(A3)と判断し、「0.8≦k≦1」の場合に上記(A4)と判断する。 For example, TX or RX will determine the above (A1) if "0≦k<0.2", the above (A2) if "0.2≦k<0.5", the above (A3) if "0.5≦k<0.8", and the above (A4) if "0.8≦k≦1".
 結合状態指標を用いた状態検出に関する判定用閾値の設定においても、測定結果または受信情報に基づいて算出される結合状態指標値に対して所定値(測定誤差に対応する値)を加味した値を判定用閾値として設定することができる。なお、閾値は1つとは限らず、複数の閾値を段階的に設定可能であることは上述したとおりである。 When setting a judgment threshold for state detection using a binding state index, a value obtained by adding a predetermined value (a value corresponding to a measurement error) to the binding state index value calculated based on the measurement results or received information can also be set as the judgment threshold. As mentioned above, the threshold is not limited to one, and multiple thresholds can be set in stages.
 次に、第1または第2の測定方法を用いて結合状態指標を算出するタイミングについて説明する。結合状態指標測定は、RXがTXに所定のパケットを送信することで実行される。所定のパケットとしては、RXがTXに送信するSignal Strength Data packetである。 Next, the timing for calculating the coupling status indicator using the first or second measurement method will be described. The coupling status indicator measurement is performed by the RX transmitting a specified packet to the TX. The specified packet is a Signal Strength Data packet transmitted from the RX to the TX.
 あるいは、I&Cフェーズにおける、Identification Data packetまたはExtended Identification Data packetまたはConfiguration Data packetであってもよい。あるいは、CalibrationフェーズやPower TransferフェーズにおけるPacketであってもよい。つまりRP1、RP2、RP0でもよい。 Or it may be an Identification Data packet, Extended Identification Data packet, or Configuration Data packet in the I&C phase. Or it may be a packet in the Calibration phase or Power Transfer phase. In other words, it may be RP1, RP2, or RP0.
 TXは、RXから上記所定のパケットを受信すると、結合状態指標を算出する。TXは上述の方法で設定した判定用閾値と、算出した結合状態指標の値とを比較して判定を行う。TXは、「状態異常無し」と判定した場合、RXに対して肯定応答ACKを送信する。 When the TX receives the above-mentioned specified packet from the RX, it calculates the binding status index. The TX makes a judgment by comparing the judgment threshold set by the above-mentioned method with the calculated binding status index value. If the TX judges that there is no abnormal status, it sends a positive response ACK to the RX.
 あるいは、TXは「状態異常無し」を意味する状態情報をRXに送信する。またTXは「状態異常の可能性が低い」と判定した場合、「状態異常の可能性が低い」ことを意味する状態情報をRXに送信する。 Alternatively, TX transmits status information to RX that means "no status abnormality." Also, if TX determines that "the possibility of a status abnormality is low," it transmits status information to RX that means "the possibility of a status abnormality is low."
 またTXは「状態異常の可能性が高い」と判定した場合、「状態異常の可能性が高い」ことを意味する状態情報をRXに送信する。またTXは「状態異常有り」と判定した場合、RXに対して否定応答NAKを送信するか、あるいは、「状態異常有り」を意味する状態情報をRXに送信する。 If the TX judges that "there is a high possibility of a status abnormality," it will send status information to the RX indicating that "there is a high possibility of a status abnormality." If the TX judges that "there is a status abnormality," it will either send a negative acknowledgement NAK to the RX, or send status information to the RX indicating that "there is a status abnormality."
 あるいは、TXは、上記(A4)と判定した場合、RXに対して肯定応答ACKを送信するか、あるいは、判定結果に対応する状態情報をRXに送信する。またTXは上記(A3)と判定した場合や、上記(A2)と判定した場合、判定結果にそれぞれに対応する状態情報をRXに送信する。 Alternatively, if the TX judges that the above is (A4), it transmits an ACK acknowledgement to the RX, or transmits status information corresponding to the judgment result to the RX. Also, if the TX judges that the above is (A3) or (A2), it transmits status information corresponding to the judgment result to the RX.
 またTXは上記(A1)と判定した場合、RXに対して否定応答NAKを送信するか、あるいは、判定結果に対応する状態情報をRXに送信する。例えば状態情報は、状態に応じた数値情報である。 If the TX judges that the above (A1) is true, it either transmits a negative acknowledgement (NAK) to the RX, or transmits status information corresponding to the judgment result to the RX. For example, the status information is numerical information according to the status.
 例えば上記(A4)の場合に「0」、上記A(3)の場合に「1」、上記(A2)の場合に「2」、上記(A1)の場合に「3」とし、TXは数値で表現した状態情報(レベル)をRXに送信する。あるいは、結合状態指標測定をRXが行う場合、TXがRXに所定のパケットを送信することで実行される。 For example, in the case of (A4) above, it is set to "0", in the case of A(3) above, it is set to "1", in the case of (A2) above, it is set to "2", and in the case of (A1) above, it is set to "3", and the TX transmits the status information (level) expressed as a numerical value to the RX. Alternatively, when the coupling status indicator measurement is performed by the RX, it is executed by the TX transmitting a specified packet to the RX.
 TXは、RXから上記所定のパケットの送信を要求する要求パケットを受信した場合に、上記所定のパケットを送信するようにしてもよい。RXは、TXから上記所定のパケットを受信すると、結合状態指標を算出する。RXは上述の方法で設定した判定用閾値と、算出した結合状態指標の値とを比較して判定を行う。 When the TX receives a request packet from the RX requesting transmission of the specified packet, the TX may transmit the specified packet. When the RX receives the specified packet from the TX, the RX calculates a binding status index. The RX makes a judgment by comparing the judgment threshold set by the above-mentioned method with the calculated binding status index value.
 RXは、「状態異常無し」と判定した場合、「状態異常無し」を意味する状態情報をTXに送信する。またRXは「状態異常の可能性が低い」と判定した場合、「状態異常の可能性が低い」ことを意味する状態情報をTXに送信する。またRXは「状態異常の可能性が高い」と判定した場合、「状態異常の可能性が高い」ことを意味する状態情報をTXに送信する。 If RX determines that there is no abnormal status, it transmits status information to TX that means there is no abnormal status. If RX determines that there is a low possibility of an abnormal status, it transmits status information to TX that means there is a low possibility of an abnormal status. If RX determines that there is a high possibility of an abnormal status, it transmits status information to TX that means there is a high possibility of an abnormal status.
 またRXは「状態異常有り」と判定した場合、「状態異常有り」を意味する状態情報をRXに送信する。あるいは、RXは、判定結果に対応する状態情報をTXに送信する。例えば状態情報は、状態に応じた数値情報である。例えば上記(A4)の場合に「0」、上記A(3)の場合に「1」、上記(A2)の場合に「2」、上記(A1)の場合に「3」とし、RXは数値で表現した状態情報(レベル)をTXに送信する。 If RX determines that "there is an abnormal status", it transmits status information meaning "there is an abnormal status" to RX. Alternatively, RX transmits status information corresponding to the determination result to TX. For example, the status information is numerical information according to the status. For example, in the case of (A4) above, it transmits "0", in the case of A(3) above, it transmits "1", in the case of (A2) above, it transmits "2", and in the case of (A1) above, it transmits "3", and the status information (level) expressed as a numerical value to TX.
 異物検出方法にはPower Loss法、Q値計測法、波形減衰法、送電装置100にて測定された温度、送電アンテナ105と受電アンテナ205との電磁結合状態(例えば結合係数)に基づく方法がある。 Methods for detecting foreign objects include the power loss method, the Q-factor measurement method, the waveform attenuation method, and methods based on the temperature measured by the power transmitting device 100 and the electromagnetic coupling state (e.g., the coupling coefficient) between the power transmitting antenna 105 and the power receiving antenna 205.
 複数の送電アンテナを有する送電装置において、波形減衰法による異物検出を実施する場合には、準備期間、送電電力制御期間、通信禁止期間、送電期間を適切に制御する必要がある。以下では、波形減衰法における各期間の設定方法と、各期間の適切な時間を決定する方法の例について説明する。 When detecting foreign objects using the waveform decay method in a power transmission device with multiple power transmission antennas, it is necessary to appropriately control the preparation period, power transmission power control period, communication prohibition period, and power transmission period. Below, we explain an example of how to set each period in the waveform decay method and how to determine the appropriate time for each period.
 まず、準備期間の決定方法について説明する。第1の方法は、TXが準備期間の長さ(時間)を予め決められた所定の値に設定する方法である。この場合、RXも準備期間の長さ(時間)である所定の値を予め保持している。また、第2の方法は、TX(またはRX)は装置自身の状態に応じて期間の長さを所定の値に決定して、RX(またはTX)に通知する方法である。 First, the methods for determining the preparation period will be explained. The first method is for the TX to set the length (time) of the preparation period to a predetermined value. In this case, the RX also holds in advance a predetermined value which is the length (time) of the preparation period. The second method is for the TX (or RX) to determine the length of the period to a predetermined value depending on the state of the device itself and notify the RX (or TX).
 第3の方法は、TXとRXが互いに通信して期間の長さを所定の値に決定する方法である。例えば、TX(またはRX)は決定した最大時間をRX(またはTX)に通知する。RX(またはTX)は決定した最小時間をTX(またはRX)に通知する。TXとRXで設定した範囲内の値をRX(またはTX)が決定し、TX(またはRX)に通知する。 The third method is for TX and RX to communicate with each other and determine the length of the period to a predetermined value. For example, TX (or RX) notifies RX (or TX) of the determined maximum time. RX (or TX) notifies TX (or RX) of the determined minimum time. RX (or TX) determines a value within the range set by TX and RX and notifies TX (or RX).
 第4の方法は、波形減衰法の実行に係る送電アンテナごとに準備期間の長さを異なる所定の値に設定する方法である。第5の方法は、波形減衰法の実行に係る複数の送電アンテナに対して準備期間の長さを同一の値に設定する方法である。準備期間の長さを適切な時間に設定することによって、送電電力制御期間での波形の乱れを抑制可能となる。 The fourth method is to set the length of the preparation period to a different predetermined value for each transmitting antenna involved in the execution of the waveform attenuation method. The fifth method is to set the length of the preparation period to the same value for multiple transmitting antennas involved in the execution of the waveform attenuation method. By setting the length of the preparation period to an appropriate time, it is possible to suppress waveform disturbance during the transmission power control period.
 次に、送電電力制御期間の決定方法について説明する。上記第3の方法と同様に、送電電力制御期間の長さは、RXとTXとの間で交渉して決定される。例えば、TX(またはRX)は送電電力制御期間として設定可能な最小時間を決定してRX(またはTX)に通知する。 Next, a method for determining the transmission power control period will be described. As with the third method above, the length of the transmission power control period is determined by negotiation between the RX and the TX. For example, the TX (or RX) determines the minimum time that can be set as the transmission power control period and notifies the RX (or TX).
 またRX(またはTX)は送電電力制御期間として設定可能な最大時間を決定してTX(またはRX)に通知する。また、加えて、RX(またはTX)は送電電力制御期間として設定可能な最小時間を決定してTX(またはRX)に通知する。TXまたはRXは、互いに通知し合った時間により設定可能な範囲内の時間を決定する。決定された時間の範囲内で、最適な送電電力制御期間を設定することができる。 The RX (or TX) also determines the maximum time that can be set as the transmission power control period and notifies the TX (or RX). In addition, the RX (or TX) determines the minimum time that can be set as the transmission power control period and notifies the TX (or RX). The TX or RX determines the time within the settable range based on the times notified to each other. The optimal transmission power control period can be set within the determined time range.
 最適な送電電力制御期間を決定するに際し、TX(またはRX)は、所定のパケットを用いて、決定した送電電力制御期間の長さをRX(またはTX)に通知する。RXがTXに対して、決定した送電電力制御期間の長さを通知するための所定のパケットは、実行要求パケット(例えば、Received Power Data Packet)であってもよい。 When determining the optimal transmission power control period, the TX (or RX) notifies the RX (or TX) of the length of the determined transmission power control period using a specified packet. The specified packet by which the RX notifies the TX of the length of the determined transmission power control period may be an execution request packet (e.g., a Received Power Data Packet).
 交渉の結果、TXまたはRXは、両装置が設定した範囲のうち、最小の時間を送電電力制御期間の長さとして決定する。送電再開直前の電力と、送電再開時の送電電力との高低差が大きいほど、大きなリンギングが発生する。よって、上述の方法で、送電再開時点で送電波形に発生するリンギングの抑制が可能になる。 As a result of the negotiation, the TX or RX determines the length of the transmission power control period to be the minimum time within the range set by both devices. The greater the difference in power between the power immediately before transmission resumes and the transmission power at the time transmission resumes, the greater the ringing that occurs. Therefore, the above-mentioned method makes it possible to suppress ringing that occurs in the transmission waveform at the time transmission resumes.
 あるいは、TXまたはRXは、両装置が設定した範囲のうち、最大の時間を送電電力制御期間の長さとして決定してもよい。このようにすることで、送電波形の減衰状態をより長時間にわたって観測できるので、高精度な異物検出が可能になる。 Alternatively, the TX or RX may determine the maximum time within the range set by both devices as the length of the transmission power control period. In this way, the attenuation state of the transmitted radio wave can be observed for a longer period of time, enabling highly accurate foreign object detection.
 交渉の内容については上述の例に限定されない。例えばTX(またはRX)は、装置自身が設定可能な時間の範囲をRX(またはTX)に通知する。通知されたRX(またはTX)が時間を決定する。 The content of the negotiation is not limited to the above example. For example, the TX (or RX) notifies the RX (or TX) of the range of time that the device itself can set. The RX (or TX) then decides on the time.
 また、送電電力制御期間の長さを決定するための情報は、実行要求パケット(例えば、Received Power Data Packet)に含まれていてもよい。あるいは、予め決められた所定の値が送電電力制御期間の長さとして設定されてもよい。あるいはTX(またはRX)が装置の状態に応じて所定の値を決定してRX(またはTX)に通知してもよい。 In addition, information for determining the length of the transmission power control period may be included in the execution request packet (e.g., Received Power Data Packet). Alternatively, a predetermined value may be set as the length of the transmission power control period. Alternatively, the TX (or RX) may determine a predetermined value depending on the state of the device and notify the RX (or TX).
 続いて、TXによる送電電力と、送電電力制御期間との関係について説明する。TXまたはRXは、TXの送電電力が小さい時よりも大きい時の方が、より短い送電電力制御期間となるように決定する。送電電力制御期間を経て送電が再開されると、送電波形は送電再開時点でリンギングが発生する。送電再開直前の電力と、送電再開時の送電電力との高低差が大きいほど、大きなリンギングが発生する。 Next, the relationship between the transmission power by TX and the transmission power control period will be explained. TX or RX is determined so that the transmission power control period is shorter when the transmission power of TX is large than when it is small. When transmission is resumed after the transmission power control period, ringing occurs in the transmission waveform at the point where transmission is resumed. The greater the difference in level between the power immediately before transmission is resumed and the transmission power at the time transmission is resumed, the greater the ringing that occurs.
 よって、リンギングを小さくするためには、送電再開直前の電力と、送電再開時の送電電力との高低差を小さくする必要がある。送電電力制御期間を短くすることにより、送電波形の減衰が小さい状態で送電が再開されるので、結果として、上記高低差が小さくなり、リンギングを抑制可能である。同様に、送電電力が大きいほど、送電電力制御期間を短くすることにより、上記高低差を小さくし、リンギングを抑制可能である。 Therefore, in order to reduce ringing, it is necessary to reduce the difference in level between the power just before transmission resumes and the transmitted power when transmission resumes. By shortening the transmission power control period, transmission resumes with little attenuation of the transmitted radio wave, which results in a smaller difference in level and makes it possible to suppress ringing. Similarly, the higher the transmission power, the smaller the difference in level can be made by shortening the transmission power control period, making it possible to suppress ringing.
 一方で、波形減衰指標の測定精度を優先させる場合には、送電電力が大きいほど、より長い送電電力制御期間を決定する方法がある。例えば、送電電力が大きいほど、異物が存在する場合における危険性が高まるので、より高精度な異物検出が求められる。したがって、送電電力が所定値よりも大きい場合、送電電力制御期間をより長くして減衰状態が長時間観測される。 On the other hand, when the measurement accuracy of the waveform attenuation index is prioritized, there is a method of determining a longer transmission power control period as the transmission power is higher. For example, the higher the transmission power, the higher the risk of a foreign object being present, so more accurate foreign object detection is required. Therefore, when the transmission power is greater than a predetermined value, the transmission power control period is made longer so that the attenuation state can be observed for a long period of time.
 これにより、減衰状態の測定精度を高め、波形減衰指標の精度を向上させることが可能である。なお、送電電力の大きさに応じて、送電電力制御期間を長くするか短くするかを、ユーザによる指定等に基づいて決定してもよい。TXまたはRXは、送電電力の大きさに基づいて送電電力制御期間の長さを決定することが可能である。 This makes it possible to increase the accuracy of measuring the attenuation state and improve the accuracy of the waveform attenuation index. In addition, whether to lengthen or shorten the transmission power control period depending on the magnitude of the transmission power may be determined based on a user specification, etc. The TX or RX can determine the length of the transmission power control period based on the magnitude of the transmission power.
 上述の説明ではTXの送電電力の大きさを例にしたが、これを下記電力に置換してもよい。
・Guaranteed Load Power
・Requested Load Power
・Potential Load Power
・Negotiable Load Power
・Maximum Power Value
・Reference Power
In the above explanation, the magnitude of the transmission power of TX is taken as an example, but this may be replaced with the following power.
・Guaranteed Load Power
・Requested Load Power
・Potential Load Power
・Negotiable Load Power
・Maximum Power Value
・Reference Power
 TXとRXとの交渉により決定される送電電力に関する設定値の大きさに基づいて、送電電力制御期間の長さを決定することができる。あるいは、RXがTXに送信するRP0、RP1、またはRP2に格納される情報に基づいて、送電電力制御期間の長さを決定してもよい。 The length of the transmission power control period can be determined based on the magnitude of the setting value for the transmission power determined by negotiation between the TX and the RX. Alternatively, the length of the transmission power control period may be determined based on information stored in RP0, RP1, or RP2 that the RX transmits to the TX.
 Received Power Data Packetには、RXがTXから受電した電力の大きさを示す受電電力値情報が格納されている。TXの送電電力の情報は、この受電電力値情報に置き換えてもよい。あるいは、TXの送電電力の情報を、RXの負荷で消費される負荷消費電力に置き換えてもよい。 The Received Power Data Packet stores received power value information that indicates the amount of power received by the RX from the TX. The information on the transmitted power of the TX may be replaced with this received power value information. Alternatively, the information on the transmitted power of the TX may be replaced with the load power consumption consumed by the load of the RX.
 次に、送電アンテナ105と受電アンテナ205との電磁結合状態と、送電電力制御期間との関係について説明する。両アンテナの結合状態指標は、上述の結合状態指標測定法、あるいは、その他の測定方法によって測定が可能である。TXまたはRXは、送電アンテナ105と受電アンテナ205との結合状態が良好な場合よりも、当該状態が良好でない場合の方が、より長い送電電力制御期間となるように決定する。 Next, the relationship between the electromagnetic coupling state between the transmitting antenna 105 and the receiving antenna 205 and the transmission power control period will be described. The coupling state index of both antennas can be measured by the above-mentioned coupling state index measurement method or other measurement methods. TX or RX is determined so that the transmission power control period is longer when the coupling state between the transmitting antenna 105 and the receiving antenna 205 is not good than when the state is good.
 例えば、結合状態が良好な場合とは、測定されたk値と閾値との比較により、「状態異常無し」と判定された場合である。結合状態が良好でない場合とは、測定されたk値と閾値との比較により、「状態異常の可能性有り」または「状態異常有り」と判定された場合である。 For example, a good bonding state is one in which a comparison of the measured k value with a threshold value results in a determination of "no abnormal condition." A bad bonding state is one in which a comparison of the measured k value with a threshold value results in a determination of "possible abnormal condition" or "abnormal condition."
 アンテナの結合状態が良好でない場合には、送電アンテナ105と受電アンテナ205との間に異物が混入している可能性があるので、高精度な異物検出が求められる。結合状態指標の値が所定の範囲内でない場合、送電電力制御期間をより長くして減衰状態が長時間観測される。 If the antenna coupling state is not good, there is a possibility that a foreign object is present between the transmitting antenna 105 and the receiving antenna 205, so highly accurate foreign object detection is required. If the coupling state index value is not within a specified range, the transmission power control period is extended and the attenuation state is observed for a long period of time.
 これにより、減衰状態の測定精度を高め、波形減衰指標の精度を向上させることができる。あるいは、波形減衰指標の測定精度を優先させる場合、結合状態が良好でない時(電磁結合が弱い時)に、その度合いに応じて、送電電力制御期間を長くする方法がある。 This makes it possible to increase the accuracy of the attenuation state measurement and improve the accuracy of the waveform attenuation index. Alternatively, if the measurement accuracy of the waveform attenuation index is given priority, there is a method in which when the coupling state is not good (when the electromagnetic coupling is weak), the transmission power control period is lengthened according to the degree of the poor coupling state.
 一方で、送電効率を優先させる場合には、結合状態指標に応じて、アンテナの結合が弱いほど、より短い送電電力制御期間となるように決定する方法がある。アンテナの結合が弱くなるほど、送電効率は低下する。アンテナの結合が弱い状態では、送電電力制御期間をより短くすることで、送電可能な期間をより長く確保することが可能となり、送電効率が向上する。 On the other hand, when priority is given to power transmission efficiency, one method is to determine a shorter transmission power control period according to the coupling state index, the weaker the antenna coupling. The weaker the antenna coupling, the lower the power transmission efficiency. When antenna coupling is weak, shortening the transmission power control period makes it possible to secure a longer period during which power can be transmitted, improving power transmission efficiency.
 また、送電アンテナ105と受電アンテナ205との結合状態指標の測定は、TXの送電開始前または送電開始後に、所定のタイミングで複数回実施されてもよい。送電開始後に所定のタイミングで複数回の測定を実施する場合、それぞれの測定結果に基づいて送電電力制御期間の長さを変更してもよい。 In addition, the measurement of the coupling state index between the transmitting antenna 105 and the receiving antenna 205 may be performed multiple times at a predetermined timing before or after the start of TX power transmission. When performing multiple measurements at a predetermined timing after the start of power transmission, the length of the transmission power control period may be changed based on each measurement result.
 例えば、TXは送電開始後に所定のタイミングで測定を3回実施する。測定された結合状態指標の値がすべて異なる場合、送電電力制御期間の長さは3回変更される。また、結合状態に応じて、送電電力制御期間を長くするか短くするかを、ユーザによる指定等に基づいて決定する方法がある。TXまたはRXは、結合状態指標の値に基づいて送電電力制御期間の長さを決定することができる。 For example, the TX performs measurements three times at a predetermined timing after starting power transmission. If the measured coupling state index values are all different, the length of the transmission power control period is changed three times. There is also a method of determining whether to lengthen or shorten the transmission power control period depending on the coupling state, based on user specifications, etc. The TX or RX can determine the length of the transmission power control period based on the value of the coupling state index.
 次に、送電アンテナ105から受電アンテナ205に対して送電のために放射される電磁波(以下、送電波という)の周波数と、送電電力制御期間との関係について説明する。TXまたはRXは、送電波の周波数が高い時よりも低い時の方が、より長い送電電力制御期間となるように決定する。送電波の周波数は、送電期間中に送電アンテナ105から受電アンテナ205に対して送電のために放射される電磁波の周波数である。 Next, the relationship between the frequency of the electromagnetic waves (hereinafter referred to as transmission radio waves) radiated from the transmitting antenna 105 to the receiving antenna 205 for power transmission and the transmission power control period will be described. TX or RX is determined so that the transmission power control period is longer when the frequency of the transmission radio waves is low than when it is high. The frequency of the transmission radio waves is the frequency of the electromagnetic waves radiated from the transmitting antenna 105 to the receiving antenna 205 for power transmission during the power transmission period.
 一般的に、電磁波の周波数が高いほど、損失は大きくなる。そのため、送電波の周波数が高いほど、送電電力制御期間中の電磁波の減衰率は大きくなり、急峻に減衰する。他方、電磁波の周波数が低いほど、送電電力制御期間中の電磁波の減衰率は小さくなり、緩やかに減衰する。 In general, the higher the frequency of the electromagnetic waves, the greater the loss. Therefore, the higher the frequency of the transmitted radio waves, the greater the attenuation rate of the electromagnetic waves during the transmission power control period, and the steeper the attenuation. On the other hand, the lower the frequency of the electromagnetic waves, the smaller the attenuation rate of the electromagnetic waves during the transmission power control period, and the more gradually they attenuate.
 また、送電波の周波数が高いほど、送電電力制御期間中の電磁波の波長は短くなる。図10の点601と点602との時間差をより短くすることが可能となり、より短い時間で減衰率の算出が可能となる。他方、電磁波の周波数が低いほど、送電電力制御期間中の電磁波の波長は長くなる。 Furthermore, the higher the frequency of the transmitted radio waves, the shorter the wavelength of the electromagnetic waves during the transmission power control period. This makes it possible to shorten the time difference between points 601 and 602 in FIG. 10, and makes it possible to calculate the attenuation rate in a shorter time. On the other hand, the lower the frequency of the electromagnetic waves, the longer the wavelength of the electromagnetic waves during the transmission power control period.
 図10の点601と点602の時間差がより長くなり、減衰率の算出により長い時間を要する。したがって、送電波の周波数が低いほど、送電電力制御期間をより長くすることにより、減衰状態を長時間観測することができる。これにより、減衰状態の測定精度を高め、波形減衰指標の精度を向上させることができる。 The time difference between points 601 and 602 in Figure 10 becomes longer, and it takes longer to calculate the attenuation rate. Therefore, the lower the frequency of the transmitted radio waves, the longer the transmission power control period can be set, allowing the attenuation state to be observed for a longer period of time. This increases the accuracy of measuring the attenuation state and improves the accuracy of the waveform attenuation index.
 別の観点では、送電波の周波数が低いほど、送電電力制御期間を短くする方法がある。送電波の周波数が低いほど、電磁波の波形は安定する。他方、電磁波の周波数が高いほど、電磁波は送電アンテナ105の周辺の物体等の影響を受けやすくなり、電磁波の波形が不安定になる可能性がある。 From another perspective, there is a method of shortening the transmission power control period as the frequency of the transmission radio waves is lower. The lower the frequency of the transmission radio waves, the more stable the waveform of the electromagnetic waves. On the other hand, the higher the frequency of the electromagnetic waves, the more susceptible the electromagnetic waves are to the influence of objects around the power transmitting antenna 105, and the more likely it is that the waveform of the electromagnetic waves will become unstable.
 したがって、送電波の周波数が高い場合、送電電力制御期間をより長くすることにより、減衰状態を長時間観測することができる。これにより、減衰状態の測定精度を高め、波形減衰指標の精度を向上させることができる。 Therefore, when the frequency of the transmitted radio waves is high, the attenuation state can be observed for a long period of time by making the transmission power control period longer. This increases the accuracy of measuring the attenuation state and improves the accuracy of the waveform attenuation index.
 例えば、WPC規格で送電に使用される電磁波の周波数は、87kHzから205kHzの間の周波数である。送電波の周波数が87kHzから205kHzの間で変化する場合、当該周波数に応じて送電電力制御期間を制御してもよい。 For example, the frequency of the electromagnetic waves used for power transmission in the WPC standard is between 87 kHz and 205 kHz. If the frequency of the transmitted radio waves varies between 87 kHz and 205 kHz, the transmission power control period may be controlled according to the frequency.
 あるいは、送電波の周波数が、予め定めた第1の周波数帯域(例えば87kHzから205kHz)内である場合、第1の送電電力制御期間が設定される。当該周波数が第1の周波数帯域とは異なる第2の周波数帯域内である場合、第1の送電電力制御期間とは長さの異なる第2の送電電力制御期間が設定される。 Alternatively, if the frequency of the transmission radio waves is within a predetermined first frequency band (e.g., 87 kHz to 205 kHz), a first transmission power control period is set. If the frequency is within a second frequency band different from the first frequency band, a second transmission power control period having a different length from the first transmission power control period is set.
 また、送電波の周波数に応じて、送電電力制御期間を長くするか短くするかを、ユーザによる指定等に基づいて決定する方法がある。TXまたはRXは、送電波の周波数に基づいて送電電力制御期間の長さを決定することができる。 There is also a method of determining whether to lengthen or shorten the transmission power control period based on user specifications, etc., depending on the frequency of the transmission radio waves. The TX or RX can determine the length of the transmission power control period based on the frequency of the transmission radio waves.
 次に、送電アンテナ105に係るQuality Factorと、送電電力制御期間との関係について説明する。送電アンテナ105に係るQuality Factorは、Q値計測法、または、その他の測定方法によって取得可能である。TXまたはRXは、送電アンテナ105に係るQuality Factorが高い時よりも低い時の方が、より短い送電電力制御期間となるように決定する。 Next, the relationship between the Quality Factor of the transmitting antenna 105 and the transmission power control period will be described. The Quality Factor of the transmitting antenna 105 can be obtained by a Q-factor measurement method or other measurement method. TX or RX is determined so that the transmission power control period is shorter when the Quality Factor of the transmitting antenna 105 is low than when it is high.
 Quality Factorが低いほど、波形減衰法を実行した時の送電電力制御期間での波形減衰率は大きくなる。この場合、Quality Factorが高い時よりもQuality Factorが低い時の方が、送電電力制御期間での送電波形の振幅が短時間で小さくなってしまう。 The lower the Quality Factor, the greater the waveform attenuation rate during the transmission power control period when the waveform attenuation method is executed. In this case, the amplitude of the transmission wave waveform during the transmission power control period becomes smaller in a short period of time when the Quality Factor is low than when the Quality Factor is high.
 そこでTXまたはRXは、Quality Factorが高い時よりも低い時の方が、送電電力制御期間をより短くする。これにより、送電再開時の送電電力の高低差をより小さくすることができるので、リンギングの抑制が可能である。 Therefore, the TX or RX shortens the transmission power control period when the Quality Factor is low rather than when it is high. This makes it possible to reduce the difference in transmission power when transmission resumes, making it possible to suppress ringing.
 一方で、異物検出の精度を優先させる場合、送電アンテナ105に係るQuality Factorが低いほど、より長い送電電力制御期間となるように決定する方法がある。Quality Factorが低いほど、送電電力制御期間での送電波形の振幅は短時間で小さくなる。 On the other hand, when priority is given to the accuracy of foreign object detection, there is a method of determining a longer transmission power control period as the Quality Factor for the transmitting antenna 105 is lower. The lower the Quality Factor, the smaller the amplitude of the transmitted wave during the transmission power control period becomes in a short period of time.
 送電波形の振幅が小さくなると、送電波形は周囲のノイズ等に影響されやすくなり、送電波形が乱れる可能性がある。したがって、Quality Factorが低い場合、送電電力制御期間をより長くすることで、送電波形の減衰状態の観測可能時間を長く確保することができる。これにより、異物検出精度が向上する。 When the amplitude of the transmission wave becomes smaller, the transmission waveform becomes more susceptible to the effects of surrounding noise, etc., and there is a possibility that the transmission waveform may become distorted. Therefore, when the Quality Factor is low, the transmission power control period can be lengthened to ensure a longer period during which the attenuation state of the transmission wave can be observed. This improves the accuracy of foreign object detection.
 また、送電アンテナ105に係るQuality Factorの測定は、TXの送電開始前または送電開始後に所定のタイミングで複数回行われてもよい。TXは送電開始後に所定のタイミングで測定を複数回実施する場合、それぞれの測定結果に基づいて、送電電力制御期間を変更することができる。 In addition, the quality factor of the transmitting antenna 105 may be measured multiple times at a predetermined timing before or after the start of power transmission by the TX. When the TX performs measurements multiple times at a predetermined timing after the start of power transmission, the transmission power control period can be changed based on each measurement result.
 例えば、TXは送電開始後に所定のタイミングで測定を3回実施する。測定されたQuality Factorがすべて異なる場合、送電電力制御期間の長さは3回変更される。また、Quality Factorに応じて、送電電力制御期間を長くするか短くするかを、ユーザによる指定等に基づいて決定する方法がある。TXまたはRXは、Quality Factorに基づいて送電電力制御期間の長さを決定することができる。 For example, the TX performs measurements three times at a specified timing after starting power transmission. If the measured Quality Factors are all different, the length of the transmission power control period is changed three times. There is also a method of determining whether to lengthen or shorten the transmission power control period depending on the Quality Factor, based on user specifications, etc. The TX or RX can determine the length of the transmission power control period based on the Quality Factor.
 次に、通信禁止期間の決定方法について説明する。通信禁止期間を設ける目的は、送電再開後、送電波形にリンギングが発生状態において通信を行わないようにすることである。通信禁止期間の長さについてはTXが通信禁止期間の長さ(時間)を予め決められた所定の値に設定する方法である。 Next, we will explain how to determine the communication prohibition period. The purpose of setting the communication prohibition period is to prevent communication from occurring when ringing occurs in the transmission waveform after power transmission is resumed. The length of the communication prohibition period is determined by the TX, who sets the length (time) of the communication prohibition period to a predetermined value.
 この場合、RXも通信禁止期間の長さ(時間)である所定の値を予め保持している。あるいは通信禁止期間の長さについてはRX(またはTX)が所定の値に決定し、TX(またはRX)に通知する。あるいはRX(またはTX)は、通信禁止期間の長さを、装置の状態に応じて所定の値に決定してTX(またはRX)に通知してもよい。 In this case, RX also holds in advance a predetermined value which is the length (time) of the communication prohibition period. Alternatively, RX (or TX) determines the length of the communication prohibition period to a predetermined value and notifies TX (or RX). Alternatively, RX (or TX) may determine the length of the communication prohibition period to a predetermined value depending on the state of the device and notify TX (or RX).
 あるいは、TXとRXが互い通信を行い、通信禁止期間の長さを所定の値に決定してもよい。あるいは、TXが決定した最大時間(または最小時間)をRXに通知し、またRXが決定した最小時間(または最大時間)をTXに通知する。TXとRXが設定した範囲内で、TXまたはRXは通信禁止期間の長さを決定してもよい。 Alternatively, the TX and RX may communicate with each other and determine the length of the communication prohibition period to a predetermined value. Alternatively, the TX may notify the RX of the maximum time (or minimum time) that it has determined, and the RX may notify the TX of the minimum time (or maximum time) that it has determined. The TX or the RX may determine the length of the communication prohibition period within a range set by the TX and the RX.
 TX(またはRX)は所定のパケットを用いて、決定した通信禁止期間の長さをRX(またはTX)に通知する。所定のパケットは、実行要求パケット(Received Power Data Packet)であってもよい。例えば、TXとRXが設定した範囲のうち、TXまたはRXは最小の時間を通信禁止期間の長さとして決定する。 TX (or RX) notifies RX (or TX) of the determined length of the communication prohibition period using a specified packet. The specified packet may be an execution request packet (Received Power Data Packet). For example, within the range set by TX and RX, TX or RX determines the shortest time as the length of the communication prohibition period.
 これにより、通信が可能な時間が長くなるので、高速な通信や、制御の高速化が可能になる。あるいは、TXとRXが設定した範囲のうち、TXまたはRXは最大の時間を通信禁止期間の長さとして決定してもよい。 This lengthens the time during which communication is possible, enabling high-speed communication and faster control. Alternatively, within the range set by TX and RX, TX or RX may determine the maximum time as the length of the communication prohibition period.
 これにより、リンギングが収束してから通信が行われるので、通信の安定化に有効である。また、通信禁止期間の長さを決定するための情報は、実行要求パケット(Received Power Data Packet)に含まれていてもよい。 This allows communication to take place after the ringing has subsided, which is effective in stabilizing communication. In addition, information for determining the length of the communication prohibition period may be included in the execution request packet (Received Power Data Packet).
 続いて、TXの送電電力と通信禁止期間との関係について説明する。TXまたはRXは、送電電力が小さい時よりも大きい時の方が、より長い通信禁止期間となるように決定する。送電電力制御期間を経て送電を再開する場合や送電再開のタイミングで送電波形にリンギングが発生する。 Next, the relationship between the TX transmission power and the communication prohibition period will be explained. TX or RX is determined so that the communication prohibition period is longer when the transmission power is large than when it is small. When power transmission is resumed after a transmission power control period or at the timing of power transmission resumption, ringing occurs in the transmission waveform.
 送電再開時の送電電力の高低差が大きいほど、大きなリンギングが発生する。送電電力が大きいほど、大きなリンギングが発生する可能性がある。そこで、送電電力が大きいほど、通信禁止期間を長くすることにより、リンギングが収束し、あるいは十分小さくなってから通信を行うことができる。 The greater the difference in transmission power when transmission resumes, the greater the ringing that will occur. The higher the transmission power, the greater the possibility of ringing. Therefore, by making the communication prohibition period longer for higher transmission power, communication can be resumed after the ringing has converged or become sufficiently small.
 つまりTXとRXとの間で安定した通信を行うことが可能である。なお、通信を行う期間をできるだけ短くしたい場合等では、TXまたはRXが通信禁止期間をより短くなるように設定してもよい。TXまたはRXは、送電電力の大きさに基づいて、通信禁止期間の長さを決定することができる。 In other words, stable communication can be performed between the TX and RX. Note that, in cases where it is desired to shorten the period during which communication is performed as much as possible, the TX or RX may set the communication prohibition period to be shorter. The TX or RX can determine the length of the communication prohibition period based on the magnitude of the transmission power.
 上述の説明では送電電力の大きさを例にしたが、送電電力に関する上記の各種設定値に置き換えてもよい。すなわち、TXとRXとの間で交渉を行うことにより決定される送電電力に関する設定値に基づいて、通信禁止期間の長さを決定することができる。あるいは、RP0、RP1、またはRP2に格納される情報に基づいて、通信禁止期間の長さを決定してもよい。 In the above explanation, the magnitude of the transmission power is used as an example, but this may be replaced with the various settings related to the transmission power mentioned above. In other words, the length of the communication prohibition period can be determined based on the setting value related to the transmission power determined by negotiation between the TX and the RX. Alternatively, the length of the communication prohibition period may be determined based on the information stored in RP0, RP1, or RP2.
 これらのパケットにはRXの受電電力値情報が格納されている。TXが送電する送電電力は、この受電電力値情報に置き換えてもよい。あるいは、TXの送電電力の情報を、RXの負荷で消費される負荷消費電力に置き換えてもよい。 These packets contain information about the received power value of the RX. The transmission power transmitted by the TX may be replaced with this received power value information. Alternatively, the information about the transmission power of the TX may be replaced with the load power consumption consumed by the load of the RX.
 次に、送電アンテナ105と受電アンテナ205との結合状態と、通信禁止期間との関係について説明する。TXまたはRXは、送電アンテナと受電アンテナとの結合状態が良好な場合よりも、良好でない場合の方が、より長い通信禁止期間となるように決定する。結合状態が良好でない場合、送電アンテナと受電アンテナとの間に異物が混入している可能性がある。 Next, the relationship between the coupling state between the transmitting antenna 105 and the receiving antenna 205 and the communication prohibition period will be explained. TX or RX is determined so that the communication prohibition period is longer when the coupling state between the transmitting antenna and the receiving antenna is not good than when it is good. When the coupling state is not good, there is a possibility that a foreign object has entered between the transmitting antenna and the receiving antenna.
 また、結合状態が良好でない場合、送電アンテナと受電アンテナとの位置ずれが発生している可能性がある。異物の混入、あるいは、アンテナの位置ずれの発生は、TXとRXとの通信に対して、波形のひずみや通信の信号劣化等を引き起こす原因となり、また、通信エラーが発生する可能性が高くなる。 In addition, if the coupling state is not good, there is a possibility that the transmitting antenna and the receiving antenna are misaligned. The inclusion of foreign matter or misalignment of the antennas can cause waveform distortion and signal degradation in communication between the TX and RX, and also increase the likelihood of communication errors.
 そこで、例えば、結合状態指標の値が閾値未満である場合、結合状態指標の値が閾値以上である場合に比較して、より長い通信禁止期間が設定される。これにより、送電再開時の送電波形のリンギングが収束し、あるいは十分小さくなってから通信を行うことができ、通信エラーが発生する可能性が低くなる。 Therefore, for example, when the value of the coupling status index is less than the threshold, a longer communication prohibition period is set compared to when the value of the coupling status index is equal to or greater than the threshold. This allows communication to be performed after the ringing of the transmission wave waveform when power transmission is resumed has converged or become sufficiently small, reducing the possibility of a communication error occurring.
 あるいは結合状態指標が小さいほど、より長い通信禁止期間が決定される構成であってもよい。TXまたはRXは、結合状態指標に応じて通信禁止期間の長さを決定することができる。 Alternatively, the configuration may be such that the smaller the coupling status index, the longer the communication prohibition period that is determined. The TX or RX can determine the length of the communication prohibition period depending on the coupling status index.
 別の観点では、通信の品質を向上させるために、アンテナの結合状態が良好でないほど、通信禁止期間を短くする方法がある。結合状態が良好でないほど、通信エラーが発生する可能性は高くなる。結合状態が良好でない場合、通信禁止期間をより短くすることにより、通信可能な期間を長く確保することができる。 From another perspective, in order to improve communication quality, there is a method of shortening the communication prohibition period the worse the antenna coupling state. The worse the coupling state, the higher the possibility of a communication error occurring. When the coupling state is poor, the communication prohibition period can be shortened to ensure a longer period during which communication is possible.
 この場合、結合状態が良好である場合に比べて、TXとRXは、より低速な通信を行うか、あるいは、より大きな変調度(Modulation depth)で通信を行う。例えば、TXは、より低速な周波数偏移変調を用いて通信データを送信するか、あるいは、より大きな変調度の周波数偏移変調を用いて通信データを送信する。 In this case, the TX and RX communicate at a slower speed or with a larger modulation depth than when the coupling is good. For example, the TX transmits communication data using a slower frequency shift keying modulation, or transmits communication data using a frequency shift keying modulation with a larger modulation depth.
 また、RXは、より低速な振幅変調または負荷変調を用いて通信データを送信するか、あるいは、より大きな変調度の振幅変調あるいは負荷変調を用いて通信データを送信する。これにより、通信エラーが発生する確率を低くすることができ、通信の品質を向上させることができる。 The RX also transmits communication data using slower amplitude modulation or load modulation, or transmits communication data using amplitude modulation or load modulation with a higher modulation depth. This reduces the probability of communication errors occurring and improves communication quality.
 例えば、結合状態指標の値が閾値未満である第1の結合状態では、結合状態指標の値が閾値以上である第2の結合状態に比較して、短い通信禁止期間が設定される。第1の結合状態にてTXとRXは、第2の結合状態よりも低速な通信、あるいは大きな変調度を用いた通信を行う。 For example, in a first coupled state where the value of the coupled state index is less than the threshold, a shorter communication prohibition period is set compared to a second coupled state where the value of the coupled state index is equal to or greater than the threshold. In the first coupled state, the TX and RX communicate at a slower speed or with a larger modulation depth than in the second coupled state.
 なお、TXとRXは結合状態指標値の低下に応じて通信禁止期間を短く設定して、より低速な通信、あるいは、より大きな変調度を用いた通信を行う構成であってもよい。または、通信禁止期間の長さの設定または変更に関わりなく、結合状態が良好でない場合、結合状態が良い場合に比べて、より低速な通信、あるいは、より大きな変調度を用いた通信が行われてもよい。 The TX and RX may be configured to set the communication prohibition period to be shorter in response to a decrease in the coupling state index value, and to perform slower communication or communication using a larger modulation factor. Alternatively, regardless of the setting or change of the length of the communication prohibition period, when the coupling state is poor, communication may be performed at a slower speed or with a larger modulation factor compared to when the coupling state is good, regardless of the setting or change of the length of the communication prohibition period.
 また、アンテナの結合状態指標の測定は、TXの送電開始前または送電開始後に、所定のタイミングで複数回行われてもよい。送電開始後に所定のタイミングで複数回の測定を実施する場合には、それぞれの測定結果に基づいて、通信禁止期間の長さ、あるいは通信の速度や変調度を変更することができる。 In addition, the antenna coupling status index may be measured multiple times at a predetermined timing before or after the start of TX power transmission. When multiple measurements are performed at a predetermined timing after the start of power transmission, the length of the communication prohibition period, or the communication speed or modulation level can be changed based on each measurement result.
 例えば、TXは送電開始後に所定のタイミングで3回の測定を実施し、測定され結合状態指標の値がすべて異なるものとする。この場合、通信禁止期間の長さ、あるいは通信の速度や変調度は3回変更されることになる。また、結合状態に応じて通信禁止期間を長くするか短くするかを、ユーザによる指定等に基づいて決定する方法がある。 For example, the TX performs three measurements at a predetermined timing after starting power transmission, and the measured values of the coupling state index are all different. In this case, the length of the communication prohibition period, or the communication speed or modulation degree, will be changed three times. There is also a method of determining whether to lengthen or shorten the communication prohibition period depending on the coupling state, based on user specifications, etc.
 続いて、送電アンテナ105による送電波の周波数と、通信禁止期間との関係について説明する。TXまたはRXは、送電波の周波数が低い時よりも周波数が高い時の方が、より長い通信禁止期間となるように決定する。 Next, the relationship between the frequency of the radio waves transmitted by the power transmitting antenna 105 and the communication prohibition period will be explained. TX or RX is determined so that the communication prohibition period is longer when the frequency of the transmitted radio waves is high than when the frequency is low.
 送電電力制御期間を経て送電を再開する場合に送電波形に発生するリンギングは、送電波の周波数が高いほど、大きくなる可能性がある。つまり、送電波の周波数が高いほど、大きなリンギングが発生しうる。そこで、送電波の周波数が高いほど、通信禁止期間を長くすることにより、リンギングが収束し、あるいは十分小さくなってから通信を行うことができる。 When power transmission is resumed after a period of power transmission control, the higher the frequency of the transmitted radio waves, the greater the ringing that may occur in the transmission waveform. In other words, the higher the frequency of the transmitted radio waves, the greater the ringing that may occur. Therefore, by making the communication prohibition period longer for the higher frequency of the transmitted radio waves, communication can be performed after the ringing has converged or become sufficiently small.
 よって、TXとRXとの間で安定した通信が可能となる。送電波の周波数が閾値よりも高い場合、送電波の周波数が閾値以下である場合よりも、通信禁止期間が長く設定される。あるいは当該周波数が高いほど、通信禁止期間が長くなる構成であってもよい。 This enables stable communication between the TX and RX. When the frequency of the transmitted radio waves is higher than the threshold, the communication prohibition period is set longer than when the frequency of the transmitted radio waves is equal to or lower than the threshold. Alternatively, the communication prohibition period may be set longer as the frequency is higher.
 別の観点では、送電波の周波数が低いほど、通信禁止期間を長くする方法がある。送電電力制御期間を経て送電を再開する場合、送電波の周波数が低いほど、リンギングが長期間に亘って発生する可能性がある。 From another perspective, there is a method of lengthening the communication prohibition period the lower the frequency of the transmitted radio waves. When power transmission is resumed after a transmission power control period, the lower the frequency of the transmitted radio waves, the more likely it is that ringing will occur for a long period of time.
 そこで送電アンテナ105による送電波の周波数が低いほど、通信禁止期間を長くすることにより、リンギングが収束し、あるいは十分小さくなってから通信を行うことができる。 The lower the frequency of the radio waves transmitted by the power transmitting antenna 105, the longer the communication inhibition period should be, so that communication can be performed after the ringing has converged or become sufficiently small.
 よって、TXとRXの間の安定した通信が可能である。当該周波数が閾値よりも低い場合、当該周波数が閾値以上である場合よりも、通信禁止期間は長く設定される。あるいは当該周波数が低いほど、通信禁止期間を長くする構成であってもよい。 Therefore, stable communication between TX and RX is possible. When the frequency is lower than the threshold, the communication prohibition period is set longer than when the frequency is equal to or higher than the threshold. Alternatively, the communication prohibition period may be set longer as the frequency is lower.
 また、送電波の周波数が所定の範囲(例えばWPC規格では87kHzから205kHzの間)で変化する場合、当該周波数に応じて通信禁止期間を制御してもよい。例えば、当該周波数が第1の周波数帯域内である場合、第1の通信禁止期間に設定される。 In addition, when the frequency of the transmitted radio waves varies within a predetermined range (for example, between 87 kHz and 205 kHz in the WPC standard), the communication prohibition period may be controlled according to the frequency. For example, when the frequency is within a first frequency band, the first communication prohibition period is set.
 また当該周波数が第1の周波数帯域とは異なる第2の周波数帯域内である場合、第1の通信禁止期間とは長さの異なる第2の通信禁止期間に設定される。また、送電アンテナ105による送電波の周波数に応じて、通信禁止期間を長くするか短くするかを、ユーザによる指定等に基づいて決定する方法がある。TXまたはRXは、送電波の周波数に基づいて、通信禁止期間の長さを決定することができる。 If the frequency is within a second frequency band different from the first frequency band, a second communication prohibition period is set with a length different from that of the first communication prohibition period. There is also a method of determining whether to lengthen or shorten the communication prohibition period based on a user specification or the like, depending on the frequency of the radio waves transmitted by the power transmitting antenna 105. The TX or RX can determine the length of the communication prohibition period based on the frequency of the transmitted radio waves.
 次に送電アンテナ105に係るQuality Factorと、通信禁止期間との関係につい説明する。当該Quality Factorは、Q値計測法やその他の測定方法によって取得可能である。TXまたはRXは、Quality Factorが高い時よりも低い時の方が、より長い通信禁止期間となるように決定する。 Next, the relationship between the Quality Factor of the transmitting antenna 105 and the communication prohibition period will be explained. The Quality Factor can be obtained by Q-factor measurement or other measurement methods. TX or RX is determined so that the communication prohibition period is longer when the Quality Factor is low than when it is high.
 Quality Factorが低いほど、送電電力制御期間での送電波形の振幅が短時間で小さくなるので、送電再開時の送電電力の高低差が大きくなり、より大きなリンギングが発生する。そこでQuality Factorが低いほど通信禁止期間を長くして、リンギングが収まってから通信を行うことで、通信エラーの発生を抑制することが可能となる。 The lower the Quality Factor, the smaller the amplitude of the transmitted wave during the transmission power control period in a short time, so the difference in the transmitted power when transmission resumes becomes larger, and larger ringing occurs. Therefore, the lower the Quality Factor, the longer the communication prohibition period is, and communication is performed after the ringing has subsided, making it possible to suppress the occurrence of communication errors.
 Quality Factorが閾値より低い場合、Quality Factorが閾値以上である場合に比較して、通信禁止期間は長くなる。あるいは、Quality Factorが低いほど、通信禁止期間を長くする構成であってもよい。 If the Quality Factor is lower than the threshold, the communication prohibition period is longer than when the Quality Factor is equal to or greater than the threshold. Alternatively, the communication prohibition period may be longer the lower the Quality Factor.
 別の観点では、送電アンテナ105に係るQuality Factorが低いほど、通信禁止期間を短くする方法がある。Quality Factorが低いほど、TXからRXへの送電効率は低下する可能性がある。 From another perspective, there is a method for shortening the communication inhibition period the lower the Quality Factor of the power transmitting antenna 105 is. The lower the Quality Factor is, the lower the power transmission efficiency from TX to RX may be.
 そこでQuality Factorが低い場合、通信禁止期間をより短くすることにより、TXからRXへの送電が可能な時間を長く確保することができる。よって、送電効率の向上に寄与し、また、Quality Factorが低くなることによる送電効率の低下への影響を抑制することが可能となる。 When the Quality Factor is low, the communication inhibition period can be shortened to ensure a longer period during which power can be transmitted from TX to RX. This contributes to improving power transmission efficiency and also makes it possible to suppress the impact of a low Quality Factor on the decrease in power transmission efficiency.
 送電アンテナ105のQuality Factorが閾値より低い場合、Quality Factorが閾値以上である場合に比較して、通信禁止期間が短く設定される。あるいはQuality Factorが低いほど、通信禁止期間を短くする構成であってもよい。 If the Quality Factor of the power transmitting antenna 105 is lower than the threshold value, the communication prohibition period is set shorter than when the Quality Factor is equal to or higher than the threshold value. Alternatively, the communication prohibition period may be set shorter as the Quality Factor is lower.
 また、送電アンテナ105に係るQuality Factorについては、TXの送電開始前または送電開始後に所定のタイミングで複数回実施することができ、それぞれの測定結果に基づいて、通信禁止期間の長さを変更することができる。例えば、送電開始後に所定のタイミングで3回の測定が実施され、Quality Factorの測定値がすべて異なる場合、通信禁止期間は3回変更されることになる。 In addition, the Quality Factor related to the transmitting antenna 105 can be measured multiple times at a predetermined timing before or after the start of TX power transmission, and the length of the communication prohibition period can be changed based on each measurement result. For example, if three measurements are performed at a predetermined timing after the start of power transmission and the measured values of the Quality Factor are all different, the communication prohibition period will be changed three times.
 また、Quality Factorに応じて、通信禁止期間を長くするか短くするかを、ユーザによる指定等に基づいて決定する方法がある。TXまたはRXは、送電アンテナ105に係るQuality Factorに基づいて、通信禁止期間の長さを決定することが可能である。 There is also a method of determining whether to lengthen or shorten the communication prohibition period depending on the Quality Factor, based on a user specification, etc. The TX or RX can determine the length of the communication prohibition period based on the Quality Factor associated with the power transmitting antenna 105.
 次に、送電電力制御期間と通信禁止期間との関係について説明する。TXまたはRXは、送電電力制御期間が長いほど、より長い通信禁止期間となるように決定する。上述したように、送電再開直前の電力と送電再開時の送電電力との高低差が大きいほど、大きなリンギングが発生する。送電電力制御期間が長くなるほど、送電波形の減衰は大きくなるので、当該高低差が大きくなり、大きなリンギングが発生する。 Next, the relationship between the transmission power control period and the communication prohibition period will be explained. TX or RX is determined so that the longer the transmission power control period, the longer the communication prohibition period. As mentioned above, the greater the difference in level between the power just before transmission resumes and the transmission power at the time transmission resumes, the greater the ringing that occurs. The longer the transmission power control period, the greater the attenuation of the transmitted wave, so the greater the difference in level and the greater the ringing that occurs.
 そこで送電電力制御期間が長くなるほど、通信禁止期間を長くすることにより、リンギングが収束し、あるいは十分小さくなってから通信を行うことができる。よって、TXとRXの間で安定した通信が可能である。TXおよびRXは、送電電力制御期間の長さに基づいて、通信禁止期間の長さを決定することが可能である。 The longer the transmission power control period, the longer the communication prohibition period, allowing communication to take place after the ringing has converged or become sufficiently small. This allows stable communication between the TX and RX. The TX and RX can determine the length of the communication prohibition period based on the length of the transmission power control period.
 次に、送電期間の決定方法について説明する。RX(またはTX)は、送電期間の長さを予め決められた値に決定してTX(またはRX)に通知する。あるいは、TX(またはRX)は装置の状態に応じて送電期間の長さを所定の値に決定してRX(またはTX)に通知してもよい。 Next, a method for determining the power transmission period will be described. RX (or TX) determines the length of the power transmission period to a predetermined value and notifies TX (or RX). Alternatively, TX (or RX) may determine the length of the power transmission period to a predetermined value depending on the state of the device and notify RX (or TX).
 あるいは、TXとRXで互いに通信を行い、送電期間の長さを所定の値に決定してもよい。TXは送電期間の長さとして設定可能な最大の時間(または最小の時間)を決定してRXに通知する。RXは送電期間の長さとして設定可能な最小の時間(または最大の時間)を決定してTXに通知する。 Alternatively, the TX and RX may communicate with each other and determine the length of the power transmission period to a predetermined value. The TX determines the maximum time (or minimum time) that can be set as the length of the power transmission period and notifies the RX. The RX determines the minimum time (or maximum time) that can be set as the length of the power transmission period and notifies the TX.
 TXとRXが設定した範囲内で、TXまたはRXは送電期間の長さを決定する。この場合、送電期間を決定するTX(またはRX)は、所定のパケットを用いて、決定した送電期間をRX(またはTX)に通知する。所定のパケットは、実行要求パケット(例えば、Received Power Data Packet)であってもよい。 The TX or RX determines the length of the power transmission period within the range set by the TX and RX. In this case, the TX (or RX) that determines the power transmission period notifies the RX (or TX) of the determined power transmission period using a specified packet. The specified packet may be an execution request packet (e.g., a Received Power Data Packet).
 続いて、TXの送電電力と送電期間との関係について説明する。TXまたはRXは、送電電力が小さい時よりも大きい時の方が、より短い送電期間となるように決定する。送電電力が大きくなるほど、より高い異物検出精度が求められる。 Next, the relationship between the TX transmission power and the transmission period will be explained. TX or RX is determined so that the transmission period is shorter when the transmission power is large than when it is small. The higher the transmission power, the higher the foreign object detection accuracy required.
 送電電力が大きくなるほど、送電期間を短くすることにより、所定期間内の送電電力制御期間の回数を増やすことが可能である。また、送電波形の減衰状態を観測する回数を増やして異物検出の機会を増加させることができ、高精度な異物検出が可能となる。 The higher the transmission power, the shorter the transmission period can be, which increases the number of transmission power control periods within a given period. In addition, by increasing the number of times the attenuation state of the transmission wave is observed, the opportunities for detecting foreign objects can be increased, enabling highly accurate foreign object detection.
 別の観点では、送電電力が大きくなるほど、送電期間を長く設定する方法がある。より長い送電期間を設定することにより、送電電力の伝送効率を下げることなく、送電を行うことが可能になる。 From another perspective, there is a method of setting the transmission period longer as the transmission power increases. By setting a longer transmission period, it becomes possible to transmit power without reducing the transmission efficiency.
 送電電力の大きさに基づいて、送電期間の長さを決定する方法に限定されることはない。TXによる送電電力の大きさを、TXとRXとの間で交渉を行うことにより決定される送電電力に関する上記各種設定値に置き換えてもよい。TXは当該設定値に基づいて、送電期間の長さを決定することができる。 The method of determining the length of the transmission period is not limited to the method of determining the size of the transmission power. The size of the transmission power by the TX may be replaced with the various setting values related to the transmission power that are determined by negotiation between the TX and the RX. The TX can determine the length of the transmission period based on the setting values.
 あるいは、RXの負荷で消費される負荷消費電力に基づいて、送電期間の長さを決定することができる。またTXとRXが上述した方法で送電期間の長さを決定した場合、RXはその決定した送電期間の長さを満たすように、上記異物検出動作の実行要求パケットを送信する。 Alternatively, the length of the power transmission period can be determined based on the load power consumption consumed by the RX load. Also, when the TX and RX determine the length of the power transmission period using the method described above, the RX transmits a packet requesting execution of the above-mentioned foreign object detection operation so as to satisfy the determined length of the power transmission period.
 つまり、TXとRXが送電期間を第1の長さと決定した場合、RXはTXに対して、第1の時間の間隔で実行要求パケットを送信する。そして、TXとRXが送電期間を第1の長さよりも長い第2の長さに決定した場合、RXはTXに対して、第1の時間の間隔よりも長い、第2の時間の間隔で実行要求パケットを送信する。 In other words, if TX and RX determine the power transmission period to be a first length, RX transmits an execution request packet to TX at a first time interval. If TX and RX determine the power transmission period to be a second length that is longer than the first length, RX transmits an execution request packet to TX at a second time interval that is longer than the first time interval.
 このようにすることで、TXとRXが決定した送電期間の長さで送電を行うことが可能となる。これは、以下に述べる送電期間の長さの制御においても適用可能である。 In this way, it becomes possible to transmit power with the length of the power transmission period determined by TX and RX. This can also be applied to the control of the length of the power transmission period described below.
 次に、送電アンテナ105と受電アンテナ205の結合状態と、送電期間との関係について説明する。TXまたはRXは、両アンテナの結合状態が良好な時よりも良好でない時の方が、より短い送電期間となるように決定する。結合状態が良好でない場合、送電アンテナと受電アンテナとの間に異物が混入している可能性があるので、高い異物検出精度が求められる。 Next, the relationship between the coupling state of the transmitting antenna 105 and the receiving antenna 205 and the power transmission period will be explained. TX or RX is determined so that the power transmission period is shorter when the coupling state of both antennas is not good than when it is good. When the coupling state is not good, there is a possibility that a foreign object has entered between the transmitting antenna and the receiving antenna, so high accuracy in detecting foreign objects is required.
 よって、結合状態が良好でないほど、送電期間を短くすることで、所定期間内の送電電力制御期間の回数を増やし、送電波形の減衰状態を観測する回数を増やして異物検出の機会を増加させることが可能である。よって、高精度な異物検出が可能となる。 Therefore, by shortening the power transmission period as the coupling state becomes poorer, it is possible to increase the number of power transmission control periods within a given period, and increase the number of times the attenuation state of the transmitted radio wave is observed, thereby increasing the opportunities for detecting foreign objects. This makes it possible to detect foreign objects with high accuracy.
 別の観点では、送電アンテナ105と受電アンテナ205との結合状態が良好な時よりも良好でない時の方が、送電期間を長くする方法がある。この方法では、送電効率は低くなるが、送電期間をより長く設定することにより、送電電力の伝送効率を下げることなく、送電を行うことが可能になる。 From another perspective, there is a method of making the power transmission period longer when the coupling state between the transmitting antenna 105 and the receiving antenna 205 is not good than when it is good. With this method, the power transmission efficiency decreases, but by setting the power transmission period longer, it becomes possible to transmit power without reducing the transmission efficiency of the transmitted power.
 なお、送電期間中にTXが上記実行要求パケットをRXから受信しなかった場合、検出処理期間としての送電期間は設定されず、送電が継続される。TXはアンテナの結合状態が良好でない時に、結合状態が良好である時よりも送電期間を長くする。あるいは、アンテナの結合状態が良好でないほど、送電期間を長くする構成であってもよい。 If the TX does not receive the execution request packet from the RX during the power transmission period, the power transmission period is not set as a detection processing period, and power transmission continues. When the antenna coupling state is not good, the TX makes the power transmission period longer than when the coupling state is good. Alternatively, the TX may be configured to make the power transmission period longer the worse the antenna coupling state.
 次に、送電アンテナ105に係るQuality Factorと、送電期間との関係について説明する。Quality Factorの測定方法は上述のとおりであり、Q値計測法等によって取得可能である。TXまたはRXはQuality Factorが高い時よりも低い時の方が、より長い送電期間となるように決定する。 Next, the relationship between the Quality Factor of the transmitting antenna 105 and the power transmission period will be explained. The method for measuring the Quality Factor is as described above, and it can be obtained by a Q-value measurement method or the like. TX or RX is determined so that the power transmission period is longer when the Quality Factor is low than when it is high.
 Quality Factorが低いほど、TXからRXへの送電効率が低下する可能性がある。Quality Factorが低い場合、送電期間をより長くすることにより、TXからRXへの送電が可能な時間を長く確保することができる。よって送電効率が向上し、またQuality Factorが低くなることによる送電効率の低下への影響を抑制することが可能である。 The lower the Quality Factor, the more likely it is that the efficiency of power transmission from TX to RX will decrease. When the Quality Factor is low, the power transmission period can be lengthened to ensure a longer period during which power can be transmitted from TX to RX. This improves power transmission efficiency and also makes it possible to suppress the impact of a low Quality Factor on the decrease in power transmission efficiency.
 TXはQuality Factorが閾値より低い場合、Quality Factorが閾値以上である場合よりも送電期間を長くする。あるいは、Quality Factorが低くなるほど、送電期間をより長くする構成であってもよい。 When the Quality Factor is lower than the threshold, the TX extends the power transmission period more than when the Quality Factor is equal to or greater than the threshold. Alternatively, the TX may be configured to extend the power transmission period as the Quality Factor becomes lower.
 別の観点では、送電アンテナ105に係るQuality Factorが低いほど、送電期間を短くする方法がある。Quality Factorが低い場合、送電アンテナと受電アンテナとの間に異物が混入している可能性があるので、高い異物検出精度が求められる。 From another perspective, there is a method of shortening the power transmission period as the Quality Factor of the power transmitting antenna 105 becomes lower. When the Quality Factor is low, there is a possibility that a foreign object is present between the power transmitting antenna and the power receiving antenna, so high accuracy in detecting foreign objects is required.
 Quality Factorが低いほど、送電期間を短くすることで、所定期間内の送電電力制御期間の回数を増やし、送電波形の減衰状態を観測する回数を増やして異物検出の機会を増加させることが可能である。よって、高精度な異物検出が可能となる。なお、送電期間中にTXが上記実行要求パケットをRXから受信しなかった場合、検出処理期間としての送電期間は設定されず、送電が継続される。 The lower the Quality Factor, the shorter the power transmission period can be, which increases the number of power transmission power control periods within a specified period and increases the number of times the attenuation state of the transmitted radio wave is observed, thereby increasing the opportunities for foreign object detection. This enables highly accurate foreign object detection. Note that if the TX does not receive the execution request packet from the RX during the power transmission period, the power transmission period is not set as a detection processing period, and power transmission continues.
 以上に説明した各期間は必ずしも個別に設定されなくてもよい。例えば、少なくとも送電電力制御期間を含む検出処理期間全体の長さが決定される構成であってもよい。この場合、TXおよびRXは、送電電力の大きさまたは送電電力に関する上記各種設定値に基づいて、検出処理期間全体の長さを決定する。あるいは、TXおよびRXは、RXの負荷で消費される負荷消費電力に基づいて、検出処理期間全体の長さを決定する。 Each period described above does not necessarily have to be set individually. For example, a configuration may be used in which the length of the entire detection processing period, including at least the transmission power control period, is determined. In this case, the TX and RX determine the length of the entire detection processing period based on the magnitude of the transmission power or the various setting values related to the transmission power. Alternatively, the TX and RX determine the length of the entire detection processing period based on the load power consumption consumed by the RX load.
 あるいは、送電アンテナと受電アンテナとの結合状態、あるいはアンテナに係るQuality Factorに基づいて、検出処理期間全体の長さが決定される構成であってもよい。なお、上述した各期間の設定方法は、TXが1つの送電アンテナを有し、RXが1つの受電アンテナを有する構成においても適用可能である。 Alternatively, the length of the entire detection processing period may be determined based on the coupling state between the transmitting antenna and the receiving antenna, or the quality factor associated with the antennas. Note that the method of setting each period described above can also be applied to a configuration in which the TX has one transmitting antenna and the RX has one receiving antenna.
 次に、複数の送電アンテナを有する送電装置100において、波形減衰法による異物検出を実行する場合について説明する。この場合、1つの送電アンテナに対して波形減衰法を実行する場合に比較して、より高精度に異物を検出できる。複数の送電アンテナにおいて波形減衰法をそれぞれ実行する場合には、各送電アンテナに対して波形減衰法を実行するための検出処理期間を設定する必要がある。 Next, a case where foreign object detection is performed using the waveform attenuation method in a power transmission device 100 having multiple power transmission antennas will be described. In this case, foreign objects can be detected with higher accuracy than when the waveform attenuation method is performed for one power transmission antenna. When the waveform attenuation method is performed for each of multiple power transmission antennas, it is necessary to set a detection processing period for performing the waveform attenuation method for each power transmission antenna.
 この検出処理期間は、通信禁止期間、送電期間、準備期間、送電電力制御期間、または、いずれか1つ以上の期間を含むように設定される期間である。TXおよびRXが行う各期間の制御においては、期間の長さと、タイミング(期間の開始時点または終了時点)を任意に設定することが可能である。 This detection processing period is a period that is set to include a communication prohibition period, a power transmission period, a preparation period, a power transmission control period, or one or more of these periods. In controlling each period performed by the TX and RX, the length of the period and the timing (start or end point of the period) can be set arbitrarily.
 本実施形態において、各送電アンテナに対して実行される波形減衰法に関わる検出処理期間の設定値は、全ての送電アンテナにおいて同一となるように設定される。例えば、通信禁止期間を例にして説明すると、複数の送電アンテナのうち、波形減衰法を実行するN個の送電アンテナの1つを、第jの送電アンテナと表記する。 In this embodiment, the set value of the detection processing period related to the waveform attenuation method executed for each power transmitting antenna is set to be the same for all power transmitting antennas. For example, when explaining using a communication prohibited period as an example, one of the N power transmitting antennas that executes the waveform attenuation method among multiple power transmitting antennas is referred to as the jth power transmitting antenna.
 jは1からNの範囲のいずれかの値を表す自然数の変数である。第jの送電アンテナに対応する通信禁止期間を、第jの通信禁止期間と表記する。第1乃至第Nの通信禁止期間は全て同一の長さに設定される。同様に、送電期間、準備期間、送電電力制御期間についても、第jの送電アンテナに対応する各期間は全て同一の長さに設定される。 j is a natural number variable that represents any value in the range from 1 to N. The communication prohibition period corresponding to the jth power transmitting antenna is denoted as the jth communication prohibition period. The first through Nth communication prohibition periods are all set to the same length. Similarly, the power transmitting period, preparation period, and transmission power control period corresponding to the jth power transmitting antenna are all set to the same length.
 上述した方法に基づいて、TXとRXは、それぞれの期間の長さを最適な時間に決定する。各送電アンテナに対して実行される波形減衰法に関わる検出処理期間は、波形減衰法を実行する全ての送電アンテナにおいて同一の長さに設定される。 Based on the method described above, the TX and RX determine the length of each period to be an optimal time. The detection processing period related to the waveform decay method performed for each transmitting antenna is set to the same length for all transmitting antennas that perform the waveform decay method.
 当該検出処理期間の長さを最適な時間に設定することで、各送電アンテナでの波形減衰指標を測定することが可能となる。また、波形減衰法を実行する各送電アンテナに対して検出処理期間を同一の長さに設定することにより、送電波形の乱れやリンギングを抑制し、安定した通信を行いつつ、高精度な異物検出を実施することが可能となる。 By setting the length of the detection processing period to an optimal time, it becomes possible to measure the waveform attenuation index at each transmitting antenna. In addition, by setting the detection processing period to the same length for each transmitting antenna that performs the waveform attenuation method, it becomes possible to suppress disturbances and ringing in the transmitted radio wave waveform, and to perform stable communication while detecting foreign objects with high accuracy.
 上述の例では、送電アンテナごとの検出処理期間(通信禁止期間、送電期間、準備期間、送電電力制御期間)を同一とする制御を説明したが、これに限定されない。例えば、第1の送電電力制御期間を含む検出処理期全体の長さと、第2の送電電力制御期間を含む検出処理期間全体の長さとが同一になるように制御する構成でもよい。 In the above example, the control is described in which the detection processing periods (communication prohibited period, power transmission period, preparation period, and power transmission power control period) for each power transmission antenna are made the same, but this is not limiting. For example, the configuration may be such that the length of the entire detection processing period including the first power transmission power control period is made the same as the length of the entire detection processing period including the second power transmission power control period.
 また、第1の送電アンテナに対応する通信禁止期間、送電期間、準備期間、送電電力制御期間のうちの少なくともいずれかを含む期間を第1の期間と表記する。また、第2の送電アンテナに対応する通信禁止期間、送電期間、準備期間、送電電力制御期間のうちの少なくともいずれかを含む期間を第2の期間と表記する。第1の期間と第2の期間とが同一となるように制御する構成でもよい。 A period including at least one of a communication prohibition period, a power transmission period, a preparation period, and a power transmission power control period corresponding to a first power transmission antenna is referred to as a first period. A period including at least one of a communication prohibition period, a power transmission period, a preparation period, and a power transmission power control period corresponding to a second power transmission antenna is referred to as a second period. A configuration may be adopted in which the first period and the second period are controlled to be the same.
 続いて波形減衰法のタイミングについて説明する。第1の制御方法では、TXは決定した検出処理期間に基づき、各送電アンテナにて実行される波形減衰法のタイミングが同じとなるように制御する。通信禁止期間、送電期間、準備期間、送電電力制御期間は、各送電アンテナで同じタイミングになる。 Next, the timing of the waveform attenuation method will be explained. In the first control method, the TX controls the timing of the waveform attenuation method executed at each transmitting antenna based on the determined detection processing period so that the timing is the same. The communication prohibited period, power transmission period, preparation period, and transmission power control period are the same for each transmitting antenna.
 RXは、各送電アンテナに対して波形減衰法を実行するタイミングを決定する場合、タイミングを決定するための実行要求パケットを、TXの各送電アンテナに対して同時に送信する。これにより、送信制御を簡素化できる。一方、各送電アンテナで波形減衰法を実行するタイミングをTXが決定する場合には、TXは当該タイミングを同時に設定して波形減衰法を実行すればよいので、制御が簡単である。 When the RX determines the timing for executing the waveform attenuation method for each transmitting antenna, it simultaneously transmits an execution request packet for determining the timing to each transmitting antenna of the TX. This simplifies transmission control. On the other hand, when the TX determines the timing for executing the waveform attenuation method for each transmitting antenna, the TX only needs to simultaneously set the timing and execute the waveform attenuation method, making control simple.
 第2の制御方法は、各期間に関する上記タイミングが異なるように制御する方法である。TXは決定した検出処理期間に基づき、各送電アンテナにて実行される波形減衰法を、異なるタイミングに設定する。例えば、通信禁止期間、送電期間、準備期間、送電電力制御期間のうちの1つ以上は、少なくとも1つの送電アンテナにおいて異なるタイミングになる。 The second control method is a method of controlling so that the above timing for each period is different. Based on the determined detection processing period, the TX sets the waveform attenuation method executed at each transmitting antenna to different timing. For example, one or more of the communication prohibited period, the power transmission period, the preparation period, and the transmission power control period are at different timings for at least one transmitting antenna.
 RXは、各送電アンテナに対して波形減衰法を実行するタイミングを決定する場合、波形減衰法の実行に係る各送電アンテナに対して、タイミングを決定するための実行要求パケットを異なるタイミングで送信する。TXは、各送電アンテナで当該実行要求パケットを異なるタイミングで受信したら、それに応じて異なるタイミングで送電電力制御を行う。 When the RX determines the timing for executing the waveform attenuation method for each transmitting antenna, it transmits an execution request packet for determining the timing to each transmitting antenna related to the execution of the waveform attenuation method at different timings. When the TX receives the execution request packet at different timings from each transmitting antenna, it performs transmission power control at different timings accordingly.
 これにより、TXから発生する電力の送電に用いる周波数以外のノイズのレベルを低下させることが可能となる。あるいは、TXが第1の制御方法で送電電力制御を行うと、一時的にRXの受電電力は低下するが、第2の制御方法では、その低下量を抑制することが可能となる。 This makes it possible to reduce the level of noise generated by the TX at frequencies other than those used to transmit power. Alternatively, when the TX performs transmission power control using the first control method, the received power of the RX temporarily decreases, but the second control method makes it possible to suppress the amount of this decrease.
 次に、TXが複数の送電アンテナにおいて波形減衰指標(例えばQuality Factor)を測定した場合に取得される複数の測定結果に基づく異物判定方法について説明する。TXは、選択した複数の送電アンテナに対し、送電電力制御期間に送電電力制御を行い、送電波形の減衰状態の測定結果から、複数の波形減衰指標を取得することができる。 Next, we will explain a method for determining whether or not a foreign object exists based on multiple measurement results obtained when the TX measures waveform attenuation indices (e.g., Quality Factor) at multiple transmitting antennas. The TX performs transmission power control for multiple selected transmitting antennas during a transmission power control period, and can obtain multiple waveform attenuation indices from the measurement results of the attenuation state of the transmitted radio wave.
 TXは、取得した複数の波形減衰指標の値と、予め定められた閾値とを比較して異物判定を行う。例えば、波形減衰指標としてQuality Factorが使用される場合、TXは複数のQuality Factorのうち、閾値よりも小さいQuality Factorの数が所定数よりも多い場合、「異物あり」と判定する。 The TX compares the acquired values of the multiple waveform attenuation indexes with a predetermined threshold value to determine the presence of a foreign object. For example, when a Quality Factor is used as the waveform attenuation index, the TX determines that a foreign object is present if the number of Quality Factors smaller than the threshold value among the multiple Quality Factors is greater than a predetermined number.
 あるいは、波形減衰指標として波形減衰量または波形減衰率が使用される場合、TXは、複数の波形減衰量または波形減衰率のうち、閾値よりも大きい波形減衰量または波形減衰率の数が所定数よりも多い場合に、「異物あり」と判定する。異物判定用の閾値は、上限の閾値と下限の閾値を有する所定の範囲として設定されてもよい。 Alternatively, when the waveform attenuation amount or waveform attenuation rate is used as the waveform attenuation index, the TX determines that a foreign object is present if the number of waveform attenuation amounts or waveform attenuation rates that are greater than a threshold value among multiple waveform attenuation amounts or waveform attenuation rates is greater than a predetermined number. The threshold value for determining a foreign object may be set as a predetermined range having an upper threshold value and a lower threshold value.
 この場合、複数の波形減衰指標のうち、閾値に基づく所定の範囲に含まれる波形減衰指標の数、または所定の範囲に含まれない波形減衰指標の数に応じて、異物判定が行われる。なお、上記「所定の数」は、送電電力制御の実行回数に対して所定の割合を乗じた数とする。 In this case, a foreign object determination is made based on the number of waveform attenuation indices that are within a predetermined range based on a threshold value, or the number of waveform attenuation indices that are not within the predetermined range. Note that the above "predetermined number" is a number obtained by multiplying the number of times transmission power control is executed by a predetermined ratio.
 例えば、TXが5回の波形減衰法を実行した場合、所定の数として5回の40%の数(5×0.4=2)が設定される。複数のQuality Factorのうち、閾値よりも小さいQuality Factorの数が2よりも大きい場合、「異物あり」と判定される。なお、「所定の数」についてはQuality Factor以外の波形減衰指標が使用される場合にも同様である。 For example, if the TX executes the waveform attenuation method five times, 40% of five times (5 x 0.4 = 2) is set as the predetermined number. If the number of Quality Factors smaller than the threshold among the multiple Quality Factors is greater than 2, it is determined that "foreign matter is present." Note that the same applies to the "predetermined number" when a waveform attenuation index other than the Quality Factor is used.
 また、「所定の数」を決定するための割合として任意の数を設定可能であり、「所定の数」の決定方法はこれに限定されず、任意の方法を採用可能である。また、複数のQuality Factorのうち、閾値よりも小さいQuality Factorの数が1以上の場合に、「異物あり」と判定されるようにしてもよい。 Furthermore, any number can be set as a ratio for determining the "predetermined number," and the method for determining the "predetermined number" is not limited to this, and any method can be adopted. Furthermore, if the number of Quality Factors smaller than the threshold value among multiple Quality Factors is 1 or more, it may be determined that "foreign matter is present."
 TXは、波形減衰指標の値と閾値とを比較し、異物が存在する可能性を求めて所定の指標で表してもよい。異物が存在する可能性(存在確率)を示す指標のことを、以下、異物の「存在確率指標」と呼ぶ。例えば、TXは、所定の範囲内に入っている波形減衰指標の数を算出する。所定の範囲は、上限の閾値と下限の閾値を有する予め定められた範囲である。 TX may compare the value of the waveform attenuation index with a threshold value to determine the possibility that a foreign object exists and express this as a specified index. Hereinafter, an index indicating the possibility (probability of existence) of a foreign object is referred to as the "probability of existence index" of a foreign object. For example, TX calculates the number of waveform attenuation indexes that fall within a specified range. The specified range is a predefined range having an upper threshold value and a lower threshold value.
 TXは当該範囲内である波形減衰指標の数に対応する存在確率指標を求めてRXに通知する。所定の範囲内に入っている波形減衰指標の数が多いほど異物の存在確率が低く、所定の範囲内に入っている波形減衰指標の数が少ないほど異物の存在確率が高いものとする。 The TX obtains a presence probability index corresponding to the number of waveform attenuation indexes within the range and notifies the RX. The more waveform attenuation indexes that fall within the specified range, the lower the probability of a foreign object being present, and the fewer the waveform attenuation indexes that fall within the specified range, the higher the probability of a foreign object being present.
 TXは、異物の存在確率の大小に応じた存在確率指標をRXに通知する。なお、波形減衰指標の種別に応じて、判定の基準は任意に変更が可能である。また、異物の存在確率指標として、異物の存在確率そのものが使用されてもよい。 The TX notifies the RX of a presence probability index according to the magnitude of the probability of the presence of a foreign object. Note that the criteria for judgment can be changed arbitrarily depending on the type of waveform attenuation index. In addition, the probability of the presence of a foreign object itself may be used as the index of the probability of the presence of a foreign object.
 TXは、複数の波形減衰指標をそれぞれ所定の閾値と比較し、異物が存在する可能性(存在確率)に対応する、複数の存在確率指標を取得することができる。TXは、複数の存在確率指標から最終的な結果を決定する。 The TX can compare each of the multiple waveform attenuation indices with a predetermined threshold value to obtain multiple presence probability indices that correspond to the possibility (presence probability) that a foreign object exists. The TX determines a final result from the multiple presence probability indices.
 これは、異物の有無、あるいは異物が存在する可能性(存在確率)を表す判定結果である。TXは判定結果に基づく信号(例えば、ACKまたはNAK)をRXに送信する。あるいは、TXは、異物の存在確率を示す情報を、所定のパケットを用いてRXに通知してもよい。 This is a judgment result that indicates the presence or absence of a foreign object, or the possibility that a foreign object exists (probability of existence). The TX transmits a signal (e.g., ACK or NAK) based on the judgment result to the RX. Alternatively, the TX may notify the RX of information indicating the probability of the presence of a foreign object using a specified packet.
 RXは、複数の波形減衰指標または存在確率指標の情報をTXから受信して、上述の異物判定を行うことが可能である。あるいは、TXが各送電アンテナにおける測定結果と上述の閾値とを比較して、各送電アンテナにおける異物の有無、または異物が存在する可能性(存在確率)を判定し、判定結果をRXに通知する。 The RX can receive information on multiple waveform attenuation indicators or presence probability indicators from the TX and perform the above-mentioned foreign object determination. Alternatively, the TX can compare the measurement results at each transmitting antenna with the above-mentioned threshold value to determine the presence or absence of a foreign object at each transmitting antenna, or the possibility that a foreign object exists (probability of existence), and notify the RX of the determination result.
 RXは、各送電アンテナにおける判定結果を総合的に判断して、最終的な異物存在の可能性(存在確率)の判定を行うことができる。また、TXが測定結果から波形減衰指標を算出する例を示したが、送電アンテナと受電アンテナは電磁的に結合しているので、RXは送電波形の減衰状態を観測可能である。 The RX can make a comprehensive judgment on the judgment results from each transmitting antenna and make a final judgment on the possibility (probability) of the presence of a foreign object. Also, an example was shown in which the TX calculates a waveform attenuation index from the measurement results, but since the transmitting antenna and the receiving antenna are electromagnetically coupled, the RX can observe the attenuation state of the transmitted wave.
 よって、RXが波形減衰指標を測定結果から算出し、算出した波形減衰指標を基づき、上述の異物判定を行ってもよい。TXは送電電力制御を複数の送電アンテナに対して複数回実行する。それぞれの波形減衰状態から算出される、複数の波形減衰指標を用いて異物判定を行うことで、より高精度な異物検出が可能となる。 Therefore, the RX may calculate a waveform attenuation index from the measurement results and perform the above-mentioned foreign object determination based on the calculated waveform attenuation index. The TX executes transmission power control multiple times for multiple transmitting antennas. By performing foreign object determination using multiple waveform attenuation indexes calculated from the respective waveform attenuation states, more accurate foreign object detection is possible.
 次に図14(A)、(B)は、第1実施形態に係る送電装置と受電装置を模式的に示す構成図であり、図14(A)を参照して、複数の送電アンテナを有する送電装置と、1つの受電アンテナを有する受電装置が実行する処理について説明する。 Next, Figs. 14(A) and (B) are schematic diagrams showing the configuration of a power transmission device and a power receiving device according to the first embodiment. With reference to Fig. 14(A), the processing executed by a power transmission device having multiple power transmission antennas and a power receiving device having one power receiving antenna will be described.
 送電装置100が送電に使用可能な送電アンテナをn個とし、受電装置200が受電に使用可能なアンテナを1個とする。TXは、n個の送電アンテナから選択される複数の送電アンテナを用いてRXに送電を行う。 The number of power transmission antennas that the power transmitting device 100 can use for power transmission is n, and the number of antennas that the power receiving device 200 can use for power reception is one. The TX transmits power to the RX using multiple power transmission antennas selected from the n power transmission antennas.
 例えば、3つの送電アンテナを用いてRXへの送電が行われるものとする。RXは、1つの受電アンテナを用いて、TXが送電する電力を無線で受電する。この場合、受電アンテナは、3つの送電アンテナのうちの1つの送電アンテナよりも、大きなサイズである。図14(A)に示す構成にてTXとRXは、1対1の通信が可能である。 For example, assume that power is transmitted to RX using three transmitting antennas. RX wirelessly receives the power transmitted by TX using one receiving antenna. In this case, the receiving antenna is larger in size than one of the three transmitting antennas. With the configuration shown in FIG. 14(A), TX and RX are capable of one-to-one communication.
 図15、図16を参照して、RXおよびTXの処理の流れを説明する。図15は、第1実施形態における送電装置の処理を説明するフローチャートであり、TXの処理を表す。図16は第1実施形態における受電装置の処理を説明するフローチャートであり、RXの処理を表す。以下の処理は、TXおよびRXが有する各制御部が、メモリに記憶されたプログラムを実行することにより実現される。 The processing flow of RX and TX will be described with reference to Figures 15 and 16. Figure 15 is a flowchart explaining the processing of the power transmitting device in the first embodiment, and shows the processing of the TX. Figure 16 is a flowchart explaining the processing of the power receiving device in the first embodiment, and shows the processing of the RX. The following processing is realized by each control unit of the TX and RX executing a program stored in memory.
 図15のS1501で処理が開始し、S1502でTXの電源がONになる。Selectionフェーズ、Pingフェーズを経て、S1503でTXはRXを検出する。S1504でTXは検出したRXに対して送電を開始する。 In Figure 15, processing begins at S1501, and the power supply of the TX is turned ON at S1502. After the Selection phase and Ping phase, the TX detects the RX at S1503. The TX starts transmitting power to the detected RX at S1504.
 このときの送電は、I&Cフェーズ、Negotiationフェーズ、Calibrationフェーズ、Power Transferフェーズ等において行われる送電である。次にS1505の処理に進む。 The power transmission at this time is performed in the I&C phase, the Negotiation phase, the Calibration phase, the Power Transfer phase, etc. Next, proceed to the processing of S1505.
 S1505でTXは、RXから異物検出の実行要求パケットを受信したか否かを判定する。実行要求パケットが受信されていない場合(S1505でNo)、所定時間の待機処理後、S1505の判定処理が繰り返し実行される。また、TXがRXから実行要求パケットを受信した場合(S1505でYes)、S1506の処理に進む。 In S1505, the TX determines whether or not it has received a packet requesting execution of foreign object detection from the RX. If the packet requesting execution has not been received (No in S1505), the TX waits for a predetermined period of time, and then repeats the determination process in S1505. If the TX has received a packet requesting execution from the RX (Yes in S1505), the TX proceeds to the process in S1506.
 S1506でTXは、複数の送電アンテナのうち、異物検出に使用する送電アンテナを選択する。例えばTXは、RXへの送電に使用している複数の送電アンテナを選択する。あるいは、TXは全ての送電アンテナを選択してもよい。あるいは、TXは所定の距離だけ離間した、複数の送電アンテナを選択してもよい。 In S1506, the TX selects one of the multiple power transmitting antennas to be used for foreign object detection. For example, the TX selects the multiple power transmitting antennas that are being used to transmit power to the RX. Alternatively, the TX may select all of the power transmitting antennas. Alternatively, the TX may select multiple power transmitting antennas that are spaced apart by a predetermined distance.
 所定の規則に基づいて複数の送電アンテナを選択することが可能である。あるいは、TXはAPの送信によって物体の載置を検出した複数の送電アンテナを選択してもよい。図14(A)に示す例では、RXへの送電に使用されている3つの送電アンテナが選択される。 It is possible to select multiple transmitting antennas based on a predetermined rule. Alternatively, the TX may select multiple transmitting antennas that have detected the placement of an object through transmission from the AP. In the example shown in FIG. 14(A), the three transmitting antennas used to transmit power to the RX are selected.
 S1507でTXは、RXから受信した実行要求パケット内の情報に基づき、選択した送電アンテナに対して実行する送電電力制御に関わる各期間を設定する。当該送電電力制御に関わる各期間は同一の期間になるように設定される。 In S1507, the TX sets each period related to the transmission power control to be executed for the selected transmitting antenna based on the information in the execution request packet received from the RX. Each period related to the transmission power control is set to be the same period.
 送電電力制御に関わる各期間とは検出処理期間であり、通信禁止期間、送電期間、準備期間、送電電力制御期間、または、いずれか1つ以上の期間を含むように設定される期間である。S1508でTXは、選択した送電アンテナに対してそれぞれ設定された期間に基づいて、送電電力制御を実行する。 Each period related to transmission power control is a detection processing period, which is a communication prohibited period, a transmission period, a preparation period, a transmission power control period, or a period set to include one or more of these periods. In S1508, the TX executes transmission power control based on the periods set for the selected transmission antenna.
 例えばTXは、各送電アンテナについて実行される波形減衰法のタイミングが同じになるように制御する。この場合、波形減衰法の実行に係る通信禁止期間、送電期間、準備期間、送電電力制御期間は、各送電アンテナで同じタイミングになる。 For example, the TX controls the timing of the waveform attenuation method to be executed for each transmitting antenna so that it is the same. In this case, the communication inhibition period, transmission period, preparation period, and transmission power control period related to the execution of the waveform attenuation method are the same for each transmitting antenna.
 あるいは、TXは、各送電アンテナについて実行される波形減衰法のタイミングが異なるように制御してもよい。この場合、波形減衰法の実行に係る通信禁止期間、送電期間、準備期間、送電電力制御期間のうちの少なくとも1つの期間は、少なくとも1つの送電アンテナで異なるタイミングになる。次にS1509の処理に進む。 Alternatively, the TX may control the timing of the waveform attenuation method to be executed for each transmitting antenna to be different. In this case, at least one of the communication inhibition period, the transmission period, the preparation period, and the transmission power control period related to the execution of the waveform attenuation method will have different timing for at least one transmitting antenna. Next, proceed to processing of S1509.
 S1509でTXは、選択された複数の送電アンテナに対して異物検出処理を行ったか否かを判定する。図14(A)に示す例では、選択された3つの送電アンテナ全てについて波形減衰指標が測定されて異物検出処理が実行されるまでS1509の判定処理が繰り返し実行される。 In S1509, the TX determines whether or not foreign object detection processing has been performed for the selected multiple transmitting antennas. In the example shown in FIG. 14(A), the determination processing in S1509 is repeatedly performed until the waveform attenuation index is measured for all three selected transmitting antennas and foreign object detection processing is performed.
 選択された3つの送電アンテナ全てについて波形減衰指標が測定され、異物検出処理の実行が完了した場合(S1509でYes)、S1510の処理に進む。S1510でTXは、取得した複数の測定結果と閾値とを比較して、異物の有無、あるいは異物存在の可能性(存在確率)を判定する。 When the waveform attenuation index has been measured for all three selected transmitting antennas and the foreign object detection process has been completed (Yes in S1509), the process proceeds to S1510. In S1510, the TX compares the multiple acquired measurement results with a threshold value to determine the presence or absence of a foreign object, or the possibility (probability of presence) of a foreign object.
 S1511でTXは、判定結果が「異物有り」あるいは「異物が存在する可能性は高い」であるか否かを判定する。当該判定結果が取得された場合(S1511でYes)、S1512の処理に進み、当該判定結果が取得されない場合(S1511でNo)にはS1516の処理に進む。 In S1511, the TX determines whether the judgment result is "foreign object present" or "there is a high possibility that a foreign object is present." If the judgment result is obtained (Yes in S1511), the TX proceeds to processing in S1512, and if the judgment result is not obtained (No in S1511), the TX proceeds to processing in S1516.
 S1512でTXはRXに対して、判定結果(「異物有り」あるいは「異物が存在する可能性は高い」)を所定のパケットで通知する。例えばTXは否定応答NAKをRXに送信する。一方、S1516でTXはRXに対して、判定結果(「異物無し」あるいは「異物が存在する可能性は低い」)を所定のパケットで通知する。例えばTXは肯定応答ACKをRXに送信する。 In S1512, the TX notifies the RX of the determination result ("foreign object present" or "high possibility of the presence of a foreign object") in a specified packet. For example, the TX sends a negative acknowledgement NAK to the RX. On the other hand, in S1516, the TX notifies the RX of the determination result ("no foreign object" or "low possibility of the presence of a foreign object") in a specified packet. For example, the TX sends an acknowledgement ACK to the RX.
 判定結果としての「異物が存在する可能性」に関しては、異物の存在確率指標の情報を用いることができる。TXは、存在確率指標の情報をRXに通知してもよい。例えばTXは、測定された波形減衰指標と、設定された閾値との差分に基づいて、異物の存在確率を取得し、存在確率指標を算定する。 In regard to the "possibility of the presence of a foreign object" as a judgment result, information on the foreign object presence probability index can be used. The TX may notify the RX of the presence probability index information. For example, the TX obtains the presence probability of a foreign object based on the difference between the measured waveform attenuation index and a set threshold value, and calculates the presence probability index.
 TXからRXに送信されるパケットは、異物の存在の有無、異物が存在する可能性、異物の存在確率もしくは存在確率指標のうち、いずれかの情報を含む。また、TXは当該パケットを送信するとともに、RXに対して要求する動作を通知してもよい。例えば動作要求には、TXの送電電力またはRXの受電電力を低下させるための動作要求や、GP値を変更するための動作要求がある。 The packet transmitted from the TX to the RX includes any of the following information: the presence or absence of a foreign object, the possibility of the presence of a foreign object, the probability of the presence of a foreign object, or an index of the probability of the presence of a foreign object. In addition, the TX may notify the RX of an action it requests while transmitting the packet. For example, the action request may be an action request to reduce the transmission power of the TX or the reception power of the RX, or an action request to change the GP value.
 あるいは、異物検出にて使用される閾値を設定するための測定処理(CAL処理)の追加実行または再実行の動作要求がある。当該異物検出はPower Loss法、Q値計測法、波形減衰法、送電装置100にて測定された温度、または送電アンテナ105と受電アンテナ205との電磁結合状態(例えば結合係数)に基づく異物検出である。 Or there is a request to perform additional or re-perform measurement processing (CAL processing) to set a threshold value used in foreign object detection. The foreign object detection is based on the power loss method, the Q value measurement method, the waveform attenuation method, the temperature measured by the power transmitting device 100, or the electromagnetic coupling state (e.g., the coupling coefficient) between the power transmitting antenna 105 and the power receiving antenna 205.
 あるいは、当該異物検出を実行するための動作要求がある。これらの事項については、後述する図14(B)の例や実施形態でも同様である。 Or, there is an operation request to execute the foreign object detection. These matters are also the same in the example and embodiment of FIG. 14(B) described later.
 S1512の次にS1513の処理に進む。また、S1516からS1505の処理に移行する。S1513でTXは、送電停止コマンドであるEPTをRXから受信する。S1514でTXはRXに対する送電を停止する。あるいは、S1513において、TXはRXから、TXの送電電力、あるいはRXの受電電力を制限するための動作を要求する所定のパケットを受信する。 After S1512, the process proceeds to S1513. Also, from S1516, the process proceeds to S1505. At S1513, the TX receives an EPT, which is a power transmission stop command, from the RX. At S1514, the TX stops transmitting power to the RX. Alternatively, at S1513, the TX receives a specified packet from the RX requesting an operation to limit the TX's transmission power or the RX's receiving power.
 そしてTXは、TXの送電電力、あるいはRXの受電電力を制限するための所定の動作を実行する。ここで所定の動作とは、上述したGP値を決定する処理の流れでありうる。そしてS1514において、TXはRXに対する送電電力を低下させてもよい。S1515にて、一連の処理を終了する。 Then, the TX executes a predetermined operation to limit the transmission power of the TX or the receiving power of the RX. Here, the predetermined operation may be the process flow for determining the GP value described above. Then, in S1514, the TX may reduce the transmission power to the RX. In S1515, the series of processes ends.
 続いてRXの処理を説明する。図16のS1601で処理を開始し、S1602でRXの電源がONになる。S1603でRXはTXに載置されると、Selectionフェーズ、Pingフェーズを経て、TXはRXを検出する。S1604でRXは、TXから送電される電力の受電を開始する。 Next, the processing of the RX will be explained. Processing starts at S1601 in FIG. 16, and the power supply of the RX is turned ON at S1602. When the RX is placed on the TX at S1603, the TX detects the RX after passing through the Selection phase and Ping phase. At S1604, the RX starts receiving power transmitted from the TX.
 ここで受電される電力は、I&Cフェーズ、Negotiationフェーズ、Calibrationフェーズ、Power Transferフェーズ等においてTXから送電される電力である。次にS1605の処理に進む。 The power received here is the power transmitted from the TX in the I&C phase, Negotiation phase, Calibration phase, Power Transfer phase, etc. Next, proceed to processing of S1605.
 S1605でRXは、TXに対して異物検出を要求するか否かを判断する。所定の条件を満たす場合、RXはTXに対して波形減衰法による異物検出を要求することを決定し(S1605でYes)、S1606の処理に進む。 In S1605, the RX determines whether to request foreign object detection from the TX. If the predetermined conditions are met, the RX decides to request foreign object detection from the TX using the waveform attenuation method (Yes in S1605) and proceeds to processing in S1606.
 またRXは、所定の条件を満たさない場合、TXに対して波形減衰法による異物検出を要求しないことを決定する(S1605でNo)。この場合、S1606の処理が繰り返し実行され、RXは受電を継続する。S1605での、所定の条件の例を下記に示す。 If the specified conditions are not met, the RX decides not to request the TX to detect foreign objects using the waveform attenuation method (No in S1605). In this case, the process of S1606 is repeated and the RX continues receiving power. Examples of the specified conditions in S1605 are shown below.
・TXとRXとの通信にエラーが発生すること。(RXが通信のエラーを検知すること。)
・TXからRXへの送電電力の低下が観測されること。(RXが受電電力の低下を観測すること。)
・取得されたキャリブレーションデータが異常値であること。(RXが、キャリブレーションデータが異常であることを示す情報をTXから受信すること。)
・TXまたはRXにおいて温度の上昇が観測されること。(RXが温度の上昇を検知すること。あるいはRXが、温度が上昇していることを示す情報をTXから受信すること。)
・波形減衰法以外の異物検出において、異物の存在する可能性が高いことが検知されること。(RXが、異物の存在する可能性が高いことを示す情報をTXから受信すること。)
・An error occurs in communication between TX and RX. (RX detects a communication error.)
A decrease in the power transmitted from the TX to the RX is observed. (The RX observes a decrease in the power received.)
The acquired calibration data is an abnormal value. (The RX receives information from the TX indicating that the calibration data is abnormal.)
A temperature rise is observed in the TX or RX. (The RX detects a temperature rise, or the RX receives information from the TX indicating that the temperature is rising.)
A high probability that a foreign object is present is detected using a method other than the waveform attenuation method. (The RX receives information from the TX indicating that a foreign object is present.)
 これらの条件は、異物の存在が疑われる場合の条件である。あるいは、所定の条件は、TXからRXに対して送電する送電電力をより大きくするか、または小さくする場合の条件である。あるいは、RXがTXから受電する受電電力をより大きくするか、または小さくする場合の条件である。 These conditions are conditions when the presence of a foreign object is suspected. Alternatively, the specified conditions are conditions when the transmission power transmitted from the TX to the RX is to be increased or decreased. Alternatively, the specified conditions are conditions when the receiving power received by the RX from the TX is to be increased or decreased.
 あるいは、所定の条件は、TXまたはRXが保持する、TXの送電電力に関する情報(設定値)、またはRXの受電電力に関する情報(設定値)が変更される場合の条件である。あるいは、所定の条件は、GPの値が変更される場合の条件である。あるいは、所定の条件は、キャリブレーション(Power Loss法のCAL処理)を実施する場合の条件である。 Alternatively, the specified condition is a condition when information (set value) related to the transmission power of the TX or information (set value) related to the receiving power of the RX, which is held by the TX or RX, is changed. Alternatively, the specified condition is a condition when the value of the GP is changed. Alternatively, the specified condition is a condition when calibration (CAL processing of the Power Loss method) is performed.
 CAL処理では、異物検出にて使用される閾値を設定するための測定が実施される。あるいは、所定の条件は、RXがTXに対して、RXの状態(例えば受電電力等)を通知する場合の条件である。例えばRXは、複数の条件のうちのいずれか1つ以上が満たされた場合、TXに対する異物検出の要求を決定する。なお、所定の条件は上記以外の条件でもよく、任意に設定可能である。 In the CAL process, measurements are performed to set the threshold value used in foreign object detection. Alternatively, the predetermined condition is a condition under which the RX notifies the TX of the RX's state (e.g., received power, etc.). For example, when any one or more of a number of conditions are satisfied, the RX determines to request foreign object detection from the TX. Note that the predetermined condition may be a condition other than the above, and can be set arbitrarily.
 S1606でRXは、各送電アンテナに対して実行される送電電力制御に関わる検出処理期間の長さを決定する。検出処理期間およびその設定方法については、上述のとおりである。S1607でRXは、送電電力制御に関わる各期間を決定するための情報を含む実行要求パケットをTXに送信する。 In S1606, the RX determines the length of the detection processing period related to the transmission power control executed for each transmitting antenna. The detection processing period and the method for setting it are as described above. In S1607, the RX transmits to the TX an execution request packet including information for determining each period related to the transmission power control.
 例えば、当該情報は、送電電力制御期間の長さ、および、通信禁止期間の長さを決定するための情報である。実行要求パケットはRP0、RP1、RP2であってもよく、また個別のパケットが使用されてもよい。 For example, the information is information for determining the length of the transmission power control period and the length of the communication prohibition period. The execution request packet may be RP0, RP1, or RP2, or individual packets may be used.
 S1607でRXがTXに送信する上記実行要求パケットについて説明する。RXは、波形減衰法の実行に係る送電アンテナの数に対応する分の実行要求パケットをTXに送信する。図14の例にて、波形減衰法の実行に係る3つの送電アンテナを第1乃至第3の送電アンテナと表記する。 The execution request packet that the RX sends to the TX in S1607 will be described. The RX sends to the TX the number of execution request packets corresponding to the number of transmitting antennas involved in the execution of the waveform attenuation method. In the example of FIG. 14, the three transmitting antennas involved in the execution of the waveform attenuation method are referred to as the first to third transmitting antennas.
 RXはTXに対して第1乃至第3の実行要求パケットを送信する。第1乃至第3の実行要求パケットはそれぞれ、第1乃至第3の送電アンテナの送電電力制御に関わる各期間を決定するための情報を含むものとする。第1乃至第3の実行要求パケットにそれぞれ含まれる、送電電力制御に関わる検出処理期間を決定するための情報は、第1の送電アンテナ、第2の送電アンテナ、第3の送電アンテナで同一になるようにRXが設定する。 The RX transmits first to third execution request packets to the TX. The first to third execution request packets each include information for determining the respective periods related to the transmission power control of the first to third transmission antennas. The information for determining the detection processing periods related to the transmission power control, which is included in the first to third execution request packets, respectively, is set by the RX so that it is the same for the first transmission antenna, the second transmission antenna, and the third transmission antenna.
 例えば、RXは検出処理期間におけるそれぞれの期間の長さを1つずつ設定する。各送電アンテナで実行される波形減衰法に関わる検出処理期間の設定値は、各送電アンテナで同じ値になるように設定される。 For example, the RX sets the length of each period in the detection processing period one by one. The setting value of the detection processing period related to the waveform attenuation method executed by each transmitting antenna is set to be the same value for each transmitting antenna.
 RXは複数の実行要求パケットを、別々の実行要求パケットとしてTXに送信することができる。この場合、各実行要求パケットは、各送電アンテナと各検出処理期間の設定値とを関連づける情報をさらに含む。例えば、TXはS1605の時点よりも前にTXが選択した送電アンテナに関する情報をRXに通知する。 The RX can transmit multiple execution request packets to the TX as separate execution request packets. In this case, each execution request packet further includes information that associates each transmitting antenna with the setting value of each detection processing period. For example, the TX notifies the RX of information regarding the transmitting antenna that the TX selected prior to the time of S1605.
 具体的には、当該情報は、波形減衰法の実行に係る送電アンテナの数、当該送電アンテナの識別子、当該送電アンテナの種類(タイプ)や電気特性の情報等である。各実行要求パケットは、どの送電アンテナに対する検出処理期間であるかを示すために、対象の送電アンテナを識別するための、送電アンテナに関する情報として、送電アンテナの識別子と各検出処理期間の設定値とを関連づける情報を含む。 Specifically, the information includes the number of transmitting antennas involved in the execution of the waveform attenuation method, the identifiers of the transmitting antennas, and information on the type and electrical characteristics of the transmitting antennas. Each execution request packet includes information relating to the transmitting antenna, which associates the identifier of the transmitting antenna with the setting value of each detection processing period, to identify the target transmitting antenna and indicate which transmitting antenna the detection processing period is for.
 よって、TXは各送電アンテナに対応する検出処理期間の設定値を認識することが可能となる。なお、上述した送電アンテナは、送電部と置換してもよい。各実行要求パケットは、どの送電部に対する検出処理期間であるかを示すために、対象の送電部を識別するための、送電部に関する情報として、送電部の識別子と各検出処理期間の設定値とを関連づける情報を含む。 Therefore, the TX can recognize the setting value of the detection processing period corresponding to each power transmission antenna. Note that the above-mentioned power transmission antenna may be replaced with a power transmission unit. Each execution request packet includes information relating to the power transmission unit, which associates the identifier of the power transmission unit with the setting value of each detection processing period, as information relating to the power transmission unit for identifying the target power transmission unit in order to indicate which power transmission unit the detection processing period is for.
 また、各送電アンテナにおける各期間が、異なるタイミングとなるように制御することを考える。RXが各送電アンテナで波形減衰法を実行するタイミングを決定する場合、RXは、波形減衰法の実行に係る各送電アンテナの識別子を含む複数の実行要求パケットを、異なるタイミングで送信する。 Furthermore, consider controlling each period for each transmitting antenna to have a different timing. When the RX determines the timing for executing the waveform decay method for each transmitting antenna, the RX transmits multiple execution request packets including identifiers of each transmitting antenna related to the execution of the waveform decay method at different timings.
 当該複数の実行要求パケットは、送電電力制御に関わる各期間を決定するための同一の情報を含む。TXは、送電アンテナの識別子を含む実行要求パケットを受信したら、当該識別子の送電アンテナにおいて送電電力制御を行う。TXは、複数の実行要求パケットを異なるタイミングで受信したら、それに応じて各送電アンテナにおいて異なるタイミングで送電電力制御を行う。なお、上述した送電アンテナは、送電部と置換してもよい。 The multiple execution request packets contain the same information for determining each period related to the transmission power control. When the TX receives an execution request packet including an identifier of a transmission antenna, it performs transmission power control at the transmission antenna with that identifier. When the TX receives multiple execution request packets at different times, it performs transmission power control at each transmission antenna at different times accordingly. Note that the above-mentioned transmission antenna may be replaced with a power transmission unit.
 あるいは、RXは第1乃至第3の実行要求パケットに関し、1つの実行要求パケットとしてTXに送信することもできる。図14の例でRXは、3つの送電アンテナの識別子とそれぞれ対応する3つの検出処理期間の設定値が含まれる実行要求パケットをTXに送信する。 Alternatively, the RX can transmit the first to third execution request packets to the TX as a single execution request packet. In the example of FIG. 14, the RX transmits to the TX an execution request packet that includes identifiers of the three power transmitting antennas and the corresponding three detection processing period setting values.
 1つの実行要求パケットは、各送電アンテナの識別子と各検出処理期間の設定値とを関連づけるリスト(情報)を含む。当該実行要求パケットを受信したTXは、実行対象となる送電アンテナごとに検出処理期間の設定値を認識することが可能である。なお、上述した送電アンテナは、送電部と置換してもよい。 One execution request packet includes a list (information) that associates the identifier of each power transmitting antenna with the setting value of each detection processing period. The TX that receives the execution request packet can recognize the setting value of the detection processing period for each power transmitting antenna that is the target of execution. Note that the above-mentioned power transmitting antenna may be replaced with a power transmitting unit.
 1つの実行要求パケットは、各送電部の識別子と各検出処理期間の設定値とを関連づけるリスト(情報)を含む。また、各送電アンテナにおける上記各期間が、同一のタイミングとなるように制御することを考える。RXが各送電アンテナで波形減衰法(送電電力制御)を実行するタイミングを決定する場合、上述した1つの実行要求パケットを、タイミングを決定するパケットとしてTXに送信すればよい。 One execution request packet contains a list (information) that associates the identifier of each power transmitting unit with the setting value of each detection processing period. In addition, it is considered to control the above-mentioned periods in each power transmitting antenna so that they have the same timing. When the RX determines the timing to execute the waveform attenuation method (transmission power control) in each power transmitting antenna, it can transmit the above-mentioned one execution request packet to the TX as a packet that determines the timing.
 TXは当該1つの実行要求パケットを受信したら、各送電アンテナにおいて波形減衰法(送電電力制御)を同時に実行する。あるいはTXが各送電アンテナで波形減衰法を実行するタイミングを決定する場合、TXは当該タイミングを同時にして波形減衰法を実行すればよい。 When the TX receives the execution request packet, it executes the waveform attenuation method (transmission power control) simultaneously for each transmitting antenna. Alternatively, if the TX determines the timing for executing the waveform attenuation method for each transmitting antenna, the TX can execute the waveform attenuation method simultaneously at that timing.
 また、各送電アンテナにおける上記各期間が、異なるタイミングとなるように制御することを考える。TXはRXから上述した1つの実行要求パケットを受信したら、TXが各送電アンテナにて波形減衰法(送電電力制御)を実行するタイミングを所定の期間ずらして、異なるタイミングで実行するように制御する。 Furthermore, consider controlling the above-mentioned periods at each transmitting antenna so that they are different timing. When the TX receives one execution request packet as described above from the RX, the TX controls the timing at which the TX executes the waveform attenuation method (transmission power control) at each transmitting antenna to be shifted by a predetermined period and executed at different timings.
 なお、上述した送電アンテナは、送電部と置換してもよい。複数の送電アンテナに対して実行される波形減衰法に関わる検出処理期間については、波形減衰法の実行対象である全ての送電アンテナにおいて同じ長さに設定される。 The above-mentioned power transmission antenna may be replaced with a power transmission unit. The detection processing period related to the waveform decay method executed for multiple power transmission antennas is set to the same length for all power transmission antennas for which the waveform decay method is executed.
 RXは、上述の方法で設定される各期間について1つの時間情報を含む、1つの実行要求パケットをTXに送信する。TXは、受信した当該実行要求パケットに含まれる各時間情報に基づいて、波形減衰法の実行対象である各送電アンテナの検出処理期間の長さを同一の値に設定する。 The RX transmits one execution request packet to the TX, which includes one piece of time information for each period set by the above-mentioned method. The TX sets the length of the detection processing period of each transmitting antenna for which the waveform attenuation method is to be executed to the same value based on each piece of time information included in the received execution request packet.
 S1607の次にS1608の処理に進み、RXは異物検出の判定結果をTXから受信したか否かを判定する。TXから異物検出の判定結果を含む通知パケットが受信されない場合(S1608でNo)、RXは当該通知パケットを受信するまで待機し、S1608の判定処理が繰り返し実行される。またRXが、TXから当該通知パケットを受信した場合(S1608でYes)、S1609の処理に進む。 After S1607, the process proceeds to S1608, where the RX determines whether or not it has received the foreign object detection determination result from the TX. If a notification packet including the foreign object detection determination result is not received from the TX (No in S1608), the RX waits until it receives the notification packet, and the determination process of S1608 is repeated. If the RX receives the notification packet from the TX (Yes in S1608), the process proceeds to S1609.
 S1609でRXは、受信した上記通知パケットに含まれる判定結果が所定の条件を満たしている否かを判定する。所定の条件とは、例えば、「異物有り」あるいは「異物が存在する可能性は高い」の判定結果が取得されることである。 In S1609, the RX determines whether the judgment result included in the received notification packet satisfies a predetermined condition. The predetermined condition is, for example, that a judgment result of "foreign object present" or "there is a high possibility that a foreign object is present" is obtained.
 所定の条件を満たす場合(S1609でYes)、S1610の処理に進む。所定の条件を満たさない場合(S1609でNo)、例えば、判定結果が「異物無し」あるいは「異物が存在する可能性は低い」である場合にはS1612の処理に進む。 If the specified condition is met (Yes in S1609), the process proceeds to S1610. If the specified condition is not met (No in S1609), for example, if the determination result is "no foreign object" or "the possibility of the presence of a foreign object is low," the process proceeds to S1612.
 S1610でRXはTXに対して送電停止コマンド(EPT)を送信する。あるいは、S1610においてRXはTXに対して、TXの送電電力もしくはRXの受電電力を低下させるための動作を要求する所定のパケット、または、GP値を変更するための動作を要求する所定のパケットを送信してもよい。 In S1610, the RX transmits a power transmission stop command (EPT) to the TX. Alternatively, in S1610, the RX may transmit to the TX a specified packet requesting an operation to reduce the TX transmission power or the RX reception power, or a specified packet requesting an operation to change the GP value.
 そしてRXは、TXの送電電力、あるいはRXの受電電力を制限するための所定の動作を実行する。ここで所定の動作とは、上述したGP値を決定する処理の流れでありうる。あるいはRXはTXに対して、異物検出で使用する閾値を設定するための測定処理(CAL処理)の追加実行、あるいは再実行をするための動作を要求してもよい。 Then, the RX executes a predetermined operation to limit the transmission power of the TX or the receiving power of the RX. Here, the predetermined operation can be the process flow for determining the GP value described above. Alternatively, the RX may request the TX to execute an additional measurement process (CAL process) for setting a threshold value used in foreign object detection, or to execute it again.
 当該異物検出は、Power Loss法、Q値計測法、波形減衰法、TXにおいて測定された温度、送電アンテナと受電アンテナとの電磁結合状態(例えば結合係数)に基づく異物検出等である。S1610の後、S1611で一連の処理を終了する。 The foreign object detection may be based on the power loss method, the Q value measurement method, the waveform attenuation method, the temperature measured at the TX, or the electromagnetic coupling state (e.g., the coupling coefficient) between the transmitting antenna and the receiving antenna. After S1610, the series of processes ends at S1611.
 一方、S1612でRXは所定の処理を実行してから、S1605の処理に移行する。所定の処理の例を下記に示す。
・TXからRXに対して送電する送電電力を上げる処理。
・異物検出で使用する閾値を設定するための測定処理(CAL処理)。
・RXの状態(受電電力等)をTXに通知する処理。
On the other hand, in S1612, RX executes a predetermined process, and then proceeds to the process of S1605. An example of the predetermined process is shown below.
A process of increasing the transmission power sent from TX to RX.
Measurement process (CAL process) for setting the threshold value used in foreign object detection.
-Process of notifying TX of RX status (received power, etc.)
 図17は、第1実施形態に係る送電装置と受電装置の処理例を説明するシーケンス図であり、TXとRXの動作例を示す。左側にTXの動作を示し、右側にRXの動作を示す。TXは電源ONの後、Selectionフェーズ、Pingフェーズに移行し、RXの載置を検知して送電処理を開始する。RXは電源ONの後、TX上に載置されて、Selectionフェーズ、Pingフェーズに移行する。 FIG. 17 is a sequence diagram explaining an example of processing by the power transmitting device and power receiving device according to the first embodiment, showing an example of the operation of the TX and RX. The operation of the TX is shown on the left, and the operation of the RX is shown on the right. After the TX is powered on, it transitions to the Selection phase and the Ping phase, and upon detecting the placement of the RX, it starts the power transmission process. After the RX is powered on, it is placed on the TX, and transitions to the Selection phase and the Ping phase.
 RXは異物検出の実行要求を決定し、上記検出処理期間の長さを決定する。RXは波形減衰法による異物検出をTXに要求する実行要求パケットを送信する。当該実行要求パケットを受信したTXは、異物検出を実行するべく送電アンテナを選択し、選択された送電アンテナに対応する上記検出処理期間の長さを設定する。 The RX determines the execution request for foreign object detection and determines the length of the detection processing period. The RX transmits an execution request packet requesting the TX to detect foreign objects using the waveform attenuation method. The TX, having received the execution request packet, selects a transmitting antenna to execute foreign object detection and sets the length of the detection processing period corresponding to the selected transmitting antenna.
 TXは波形減衰指標を測定し、測定結果に基づいて異物判定を行う。TXは異物判定結果をRXに通知する。RXは取得した異物判定結果を解析し、送電停止コマンド(EPT)をTXに送信する。TXは受信した当該送電停止コマンドにしたがってRXへの送電を停止させる。 The TX measures the waveform attenuation index and performs a foreign object determination based on the measurement results. The TX notifies the RX of the foreign object determination results. The RX analyzes the acquired foreign object determination results and sends a power transmission stop command (EPT) to the TX. The TX stops power transmission to the RX in accordance with the received power transmission stop command.
 次に、図14(B)を参照して、n個の送電アンテナを有する送電装置とn個の受電アンテナを有する受電装置が行う処理について説明する。図14(B)は、送電装置100においてn個の送電アンテナうち、3つの送電コイルが選択されて、3つの受電アンテナを有する受電装置200が受電する例を示す。 Next, referring to FIG. 14(B), the processing performed by a power transmitting device having n power transmitting antennas and a power receiving device having n power receiving antennas will be described. FIG. 14(B) shows an example in which three power transmitting coils are selected from the n power transmitting antennas in the power transmitting device 100, and the power receiving device 200 having three power receiving antennas receives power.
 3つの送電アンテナは3つの受電アンテナにそれぞれ対向し、3対の送電アンテナおよび受電アンテナによって、それぞれ無線による電力伝送が実施される。TXとRXは、n対n(例えば3対3)の、それぞれ独立した通信が可能である。 The three transmitting antennas face the three receiving antennas, respectively, and wireless power transmission is carried out by each of the three pairs of transmitting and receiving antennas. TX and RX are capable of independent communication in an n-to-n (e.g., 3-to-3) configuration.
 図18、図19を参照して、RXおよびTXの処理の流れについて説明する。図18は第1実施形態における送電装置の処理を説明するフローチャートであり、TXの処理を表す。図19は第1実施形態における受電装置の処理を説明するフローチャートであり、RXの処理を表す。 The flow of RX and TX processing will be described with reference to Figures 18 and 19. Figure 18 is a flowchart explaining the processing of the power transmitting device in the first embodiment, and shows the TX processing. Figure 19 is a flowchart explaining the processing of the power receiving device in the first embodiment, and shows the RX processing.
 以下の処理は、TXおよびRXの有する各制御部が、メモリに記憶されたプログラムを実行することにより実現される。図18のS1701乃至S1705の処理はそれぞれ、図15のS1501乃至S1505の処理と同様であるので説明を省略する。 The following processing is realized by each control unit of TX and RX executing a program stored in memory. The processing of S1701 to S1705 in FIG. 18 is similar to the processing of S1501 to S1505 in FIG. 15, respectively, and therefore will not be described.
 S1705でTXは、RXから異物検出の実行要求パケットを受信したと判定した場合(S1705でYes)、S1706の処理に進む。S1706でTXは、RXから受信した実行要求パケット内の情報に基づいて、実行要求パケットを受信した送電アンテナにおいて実行する送電電力制御に関わる各期間(検出処理期間)を設定する。 If in S1705 the TX determines that it has received a packet requesting execution of foreign object detection from the RX (Yes in S1705), it proceeds to processing in S1706. In S1706, the TX sets each period (detection processing period) related to the transmission power control to be executed in the transmitting antenna that received the execution request packet, based on the information in the execution request packet received from the RX.
 TXは選択した3つの送電アンテナ(実行要求パケットを受信した3つの送電アンテナ)に対して実行する送電電力制御に関わる各期間の長さを同一に設定する。S1707でTXは、実行要求パケットを受信した3つの送電アンテナに対して、設定された各期間に基づいて送電電力制御を実行する。次にS1708の処理に進む。 The TX sets the length of each period related to the transmission power control to be executed for the three selected transmitting antennas (the three transmitting antennas that received the execution request packet) to be the same. In S1707, the TX executes the transmission power control for the three transmitting antennas that received the execution request packet based on each of the set periods. Next, the process proceeds to S1708.
 S1708でTXは、異物検出の実行要求を受信した送電アンテナ全てで異物検出動作の実行が完了したか否かを判定する。実行要求パケットを受信した3つの送電アンテナ全てにおいて波形減衰指標が測定され、異物検出動作の実行が完了した場合(S1708でYes)、S1709の処理に進む。 In S1708, the TX determines whether the execution of the foreign object detection operation has been completed for all transmitting antennas that received the request to execute foreign object detection. If the waveform attenuation index has been measured for all three transmitting antennas that received the execution request packet and the execution of the foreign object detection operation has been completed (Yes in S1708), the TX proceeds to processing in S1709.
 実行要求パケットを受信した、いずれかの送電アンテナにおいて波形減衰指標の測定および異物検出動作の実行が完了していない場合(S1708でNo)、S1708の判定処理が繰り返し実行される。 If the measurement of the waveform attenuation index and the execution of the foreign object detection operation have not been completed for any of the power transmitting antennas that received the execution request packet (No in S1708), the determination process of S1708 is repeatedly executed.
 S1709でTXは、取得した複数の測定結果と閾値とを比較して、異物判定を行う。判定結果が「異物有り」あるいは「異物が存在する可能性は高い」である場合(S1710でYes)、S1711の処理に進む。また判定結果が「異物無し」あるいは「異物が存在する可能性は低い」である場合(S1710でNo)、S1715の処理に進む。 In S1709, the TX compares the acquired multiple measurement results with a threshold value to determine whether a foreign object is present. If the determination result is "foreign object present" or "there is a high possibility that a foreign object is present" (Yes in S1710), the process proceeds to S1711. If the determination result is "no foreign object present" or "there is a low possibility that a foreign object is present" (No in S1710), the process proceeds to S1715.
 S1711でTXはRXに対して、所定のパケットで判定結果(「異物有り」あるいは「異物が存在する可能性は高い」)を通知する。これは、例えばTXがRXに対して、否定応答NAKを送信することで実現できる。S1712でTXは、RXから送電停止コマンド(EPT)を受信すると、S1713でTXはRXに対する送電を停止する。 In S1711, the TX notifies the RX of the determination result ("foreign object present" or "high possibility of foreign object presence") in a specified packet. This can be achieved, for example, by the TX sending a negative acknowledgement NAK to the RX. In S1712, the TX receives a power transmission stop command (EPT) from the RX, and in S1713 the TX stops transmitting power to the RX.
 あるいは、S1712において、TXはRXから、TXの送電電力、あるいはRXの受電電力を制限するための動作を要求する所定のパケットを受信する。そしてRXは、TXの送電電力、あるいはRXの受電電力を制限するための所定の動作を実行する。ここで所定の動作とは、上述したGP値を決定する処理の流れでありうる。 Alternatively, in S1712, the TX receives a specified packet from the RX requesting an operation to limit the TX transmission power or the RX reception power. The RX then executes a specified operation to limit the TX transmission power or the RX reception power. Here, the specified operation may be the process flow for determining the GP value described above.
 そしてS1713において、TXはRXに対する送電電力を低下させてもよい。この時、TXは、RXに対して所定の動作を要求する情報を、異物検出の判定結果を有するパケットに含めてRXに送信してもよい。そしてS1714で一連の処理を終了する。 Then, in S1713, the TX may reduce the power transmitted to the RX. At this time, the TX may include information requesting the RX to perform a specific operation in a packet containing the result of the foreign object detection determination and transmit the packet to the RX. Then, in S1714, the series of processes ends.
 またS1715でTXは、RXに対して所定のパケットで判定結果(「異物無し」あるいは「異物が存在する可能性は低い」)を通知する。これは、TXがRXに対して、例えば肯定応答ACKを送信することで実現できる。そしてS1705の処理に移行して送電を継続する。 In addition, in S1715, the TX notifies the RX of the determination result ("no foreign object" or "low possibility of the presence of a foreign object") in a specified packet. This can be achieved by the TX sending an ACK acknowledgement to the RX, for example. Then, the process proceeds to S1705 to continue power transmission.
 次にRXの処理を説明する。図19のS1801乃至S1805の処理はそれぞれ、図16のS1601乃至S1605の処理と同様であるので説明を省略し、相違点を説明する。S1805でRXが波形減衰法による異物検出を要求することを決定した場合(S1805でYes)、S1806の処理に進む。 Next, the RX processing will be described. The processing of S1801 to S1805 in FIG. 19 is similar to the processing of S1601 to S1605 in FIG. 16, so the description will be omitted and only the differences will be described. If the RX determines in S1805 to request foreign object detection using the waveform attenuation method (Yes in S1805), the process proceeds to S1806.
 S1806でRXは、異物検出を実行する送電アンテナを選択する。すなわち、異物検出の実行要求パケットを送信する送電アンテナが選択される。RXは、異物検出を要求する送電アンテナとして、RXへの送電に使用されている複数の送電アンテナ、あるいは、RXが有する受電アンテナに対向する、すべての送電アンテナを選択することが可能である。 In S1806, the RX selects a power transmitting antenna for performing foreign object detection. In other words, a power transmitting antenna for transmitting a packet requesting execution of foreign object detection is selected. The RX can select, as the power transmitting antenna for requesting foreign object detection, one of multiple power transmitting antennas used for transmitting power to the RX, or all power transmitting antennas facing the power receiving antennas possessed by the RX.
 あるいは、RXは所定の規則に基づいて複数の送電アンテナを選択してもよい。例えば、RXが有する受電アンテナに対向する複数の送電アンテナのうち、所定の距離をもって離間する複数の送電アンテナを選択することが可能である。図14(B)に示す例では、RXへの送電に使用されている3つの送電アンテナが選択される。 Alternatively, the RX may select multiple transmitting antennas based on a predetermined rule. For example, it is possible to select multiple transmitting antennas that are separated by a predetermined distance from multiple transmitting antennas that face the receiving antenna possessed by the RX. In the example shown in FIG. 14(B), three transmitting antennas that are used to transmit power to the RX are selected.
 なお、異物検出を実行する送電アンテナをRXが選択する構成に限定されることなく、異物検出を実行する送電アンテナをTXが選択してもよい。この場合、TXは予め決定した異物検出を実行する送電アンテナの情報をRXに通知し、RXは当該情報に基づき、実行要求パケットを送信する送電アンテナを選択する。S1806の次にS1807の処理に進む。 Note that the configuration is not limited to one in which the RX selects the transmitting antenna that performs foreign object detection, and the TX may select the transmitting antenna that performs foreign object detection. In this case, the TX notifies the RX of predetermined information on the transmitting antenna that performs foreign object detection, and the RX selects the transmitting antenna that transmits the execution request packet based on that information. After S1806, the process proceeds to S1807.
 S1807でRXは、異物検出処理に係る上記検出処理期間を決定する。検出処理期間およびその設定方法については、上述のとおりである。S1808でRXは、送電電力制御に関わる各期間を決定するための情報を含む実行要求パケットをTXに送信する。本実施形態にて、実行要求パケットに含まれる情報は、例えば、送電電力制御期間の長さ、および、通信禁止期間の長さを決定するための情報である。 In S1807, the RX determines the detection processing period related to the foreign object detection processing. The detection processing period and the method for setting it are as described above. In S1808, the RX transmits to the TX an execution request packet including information for determining each period related to the transmission power control. In this embodiment, the information included in the execution request packet is, for example, information for determining the length of the transmission power control period and the length of the communication prohibition period.
 実行要求パケットはRP0、RP1、RP2であってもよい。また、実行要求パケットとして個別のパケットが使用されてもよい。RXは実行要求パケットを、S1806で選択した3つの送電アンテナそれぞれに対して送信する。例えばRXがS1806で選択した送電アンテナを第1乃至第3の送電アンテナとする。 The execution request packet may be RP0, RP1, or RP2. Also, individual packets may be used as the execution request packet. RX transmits the execution request packet to each of the three transmitting antennas selected in S1806. For example, the transmitting antennas selected by RX in S1806 are the first to third transmitting antennas.
 第1乃至第3の送電アンテナにそれぞれ対向する受電アンテナを第1乃至第3の受電アンテナとする。RXは第1乃至第3の受電アンテナのそれぞれから、第1乃至第3の送電アンテナに対して、送電電力制御に関わる各期間を決定するための同一の情報を含む実行要求パケットを送信する。 The receiving antennas facing the first to third transmitting antennas, respectively, are called the first to third receiving antennas. The RX transmits execution request packets containing the same information for determining each period related to the transmission power control from each of the first to third receiving antennas to the first to third transmitting antennas.
 各送電アンテナにおいて実行される波形減衰法(送電電力制御)のタイミングについては、同じタイミングとなるようにRXが制御してもよい。RXは、波形減衰法の実行に係る各送電アンテナに対して、同時に実行要求パケットを送信する。実行要求パケットを受信したTXは、各送電アンテナに対する通信禁止期間、送電期間、準備期間、送電電力制御期間がそれぞれ同じタイミングとなるように設定する。 The RX may control the timing of the waveform attenuation method (transmission power control) executed by each transmission antenna so that the timing is the same. The RX simultaneously transmits an execution request packet to each transmission antenna related to the execution of the waveform attenuation method. The TX that receives the execution request packet sets the communication prohibition period, transmission period, preparation period, and transmission power control period for each transmission antenna so that they are all at the same timing.
 そしてTXは各送電アンテナにおいて、同じタイミングで波形減衰法(送電電力制御)を実行する。あるいは、各送電アンテナに対する上記各期間のタイミングについては、各期間が異なるタイミングとなるように制御する方法でもよい。この場合、RXは、波形減衰法の実行に係る各送電アンテナに対して、各期間を異なるタイミングとする指示を含む実行要求パケットを送信する。 Then, the TX executes the waveform attenuation method (transmission power control) at the same timing for each transmitting antenna. Alternatively, the timing of each of the above periods for each transmitting antenna may be controlled so that each period has a different timing. In this case, the RX transmits an execution request packet to each transmitting antenna involved in executing the waveform attenuation method, the execution request packet including an instruction to set each period to a different timing.
 あるいは、RXは、波形減衰法の実行に係る各送電アンテナに対して、異なるタイミングで実行要求パケットを送信する。当該実行要求パケットは、送電電力制御に関わる各期間を決定するための同一の情報を含む。TXはRXが送信した当該実行要求パケットを、各送電アンテナで異なるタイミングで受信したら、それに応じて各送電アンテナにおいて異なるタイミングで送電電力制御を行う。 Alternatively, the RX transmits an execution request packet at different times to each transmitting antenna involved in the execution of the waveform attenuation method. The execution request packet includes the same information for determining each period related to the transmission power control. When the TX receives the execution request packet transmitted by the RX at different times for each transmitting antenna, the TX performs transmission power control at different times for each transmitting antenna accordingly.
 TXは、各送電アンテナに対する通信禁止期間、送電期間、準備期間、送電電力制御期間の少なくとも1つは、少なくとも1つの送電アンテナで異なるタイミングになるように制御する。 The TX controls at least one of the communication prohibition period, power transmission period, preparation period, and power transmission power control period for each power transmission antenna so that the timing is different for at least one power transmission antenna.
 あるいは、TXは各送電アンテナについて、RXから実行要求パケットを同時に受信した場合において、TXが各送電アンテナにて波形減衰法(送電電力制御)を実行するタイミングを所定の期間ずらして、異なるタイミングで実行するように制御してもよい。S1808の次にS1809の処理に進む。 Alternatively, when the TX simultaneously receives execution request packets from the RX for each transmitting antenna, the TX may control the timing at which the TX executes the waveform attenuation method (transmitted power control) for each transmitting antenna to be shifted by a predetermined period and executed at different timings. After S1808, the process proceeds to S1809.
 S1809でRXは、各送電アンテナにて異物検出動作の実行が完了したことを示す情報をTXから受信する。当該情報には、RXが選択した送電アンテナにて異物判定に用いる情報が含まれる。S1810でRXは、異物検出の判定結果をTXから受信したか否かを判定する。S1810乃至S1814の処理はそれぞれ、図16のS1608乃至S1612の処理と同様であるので説明を割愛する。 In S1809, the RX receives information from the TX indicating that the foreign object detection operation has been completed at each transmitting antenna. This information includes information used for foreign object determination at the transmitting antenna selected by the RX. In S1810, the RX determines whether or not the result of the foreign object detection determination has been received from the TX. The processes of S1810 to S1814 are similar to the processes of S1608 to S1612 in FIG. 16, respectively, and therefore will not be described here.
 図20は、第1実施形態に係る送電装置と受電装置の処理の別例を説明するシーケンス図であり、TXとRXの動作例を示す。図17との相違点のみ説明する。RXは異物検出の実行要求を決定した後、異物検出の実行に係る送電アンテナを選択して上記検出処理期間の長さを決定する。RXは波形減衰法による異物検出をTXに要求する実行要求パケットを送信する。 FIG. 20 is a sequence diagram explaining another example of processing of the power transmitting device and the power receiving device according to the first embodiment, showing an example of the operation of the TX and the RX. Only the differences from FIG. 17 will be explained. After the RX determines the execution request for foreign object detection, it selects the power transmitting antenna related to the execution of foreign object detection and determines the length of the detection processing period. The RX transmits an execution request packet requesting the TX to detect a foreign object using the waveform attenuation method.
 当該実行要求パケットを受信したTXは、RXが選択した送電アンテナに対して上記検出処理期間の長さを設定する。なお上述した例においては、TXとRXは、TXの第1通信部104とRXの第1通信部204との間で行われる、第1の規格(WPC規格)に基づく通信で制御を行う場合について述べた。 The TX that receives the execution request packet sets the length of the detection process period for the power transmission antenna selected by the RX. Note that in the above example, the TX and RX perform control through communication based on the first standard (WPC standard) between the first communication unit 104 of the TX and the first communication unit 204 of the RX.
 TXとRXは、TXの第2通信部109とRXの第2通信部212との間で行われる、第2の規格(WPC規格以外の規格)に基づく通信で制御を行ってもよい。また、TXは送電部103a、103b、103c各々に、第2通信部109を有してもよい。また、RXは受電部203a、203b、203c各々に、第2通信部212を有してもよい。この場合、より高速な通信が可能となり、適切な制御を行うことが可能となる。 The TX and RX may perform control through communication based on a second standard (a standard other than the WPC standard) that is performed between the second communication unit 109 of the TX and the second communication unit 212 of the RX. The TX may have a second communication unit 109 in each of the power transmitting units 103a, 103b, and 103c. The RX may have a second communication unit 212 in each of the power receiving units 203a, 203b, and 203c. In this case, faster communication is possible, making it possible to perform appropriate control.
 本実施形態によれば、複数の送電アンテナを有する送電装置において、送電が制限される期間に実施される測定処理に係る処理期間を適切に制御することができる。 According to this embodiment, in a power transmission device having multiple power transmission antennas, it is possible to appropriately control the processing period for the measurement process performed during the period when power transmission is restricted.
[第2実施形態]
 次に本開示の第2実施形態を説明する。本実施形態では、複数の送電アンテナに対する送電電力制御に関わる各期間の長さ(時間)を異なる値に設定して、波形減衰法による異物検出を行う場合について説明する。異物検出処理を複数の送電アンテナで実行し、複数の検出結果に基づいて異物判定を行うことで、より確実な異物検出を実現できる。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described. In this embodiment, a case will be described in which the length (time) of each period related to the power transmission control for multiple power transmitting antennas is set to a different value and foreign object detection is performed using the waveform attenuation method. By executing the foreign object detection process for multiple power transmitting antennas and performing a foreign object determination based on multiple detection results, more reliable foreign object detection can be achieved.
 第1実施形態で説明した方法では、例えば同一の送電電力制御期間による送電電力制御を複数の送電アンテナに対して実行した場合、特定の周波数帯域にノイズが発生する可能性がある。一般的に、所定周波数の正弦波を送信する場合にスペクトラムは当該周波数のみとなる。 In the method described in the first embodiment, for example, when transmission power control is performed for multiple transmission antennas using the same transmission power control period, noise may occur in a specific frequency band. In general, when transmitting a sine wave of a specific frequency, the spectrum is limited to that frequency.
 所定周波数の正弦波の送信途中で所定の期間の送信停止がある場合のスペクトラムは、送信の停止期間と周期に応じて、当該周波数以外のスペクトラムを有することになる。複数の送電アンテナでの送電電力制御にて、複数の検出処理期間をそれぞれ同一の長さに設定して複数回繰り返すことを想定する。 If there is a transmission pause for a specified period during the transmission of a sine wave of a specified frequency, the spectrum will have a spectrum other than the specified frequency, depending on the transmission pause period and cycle. With transmission power control for multiple transmission antennas, it is assumed that multiple detection processing periods are each set to the same length and repeated multiple times.
 この場合、送電に使用する周波数帯域(例えば87kHzから205kHz)以外の特定の周波数帯域において、電力の比較的大きな電磁波が発生しうる。例えばTXからRXへの送電電力が所定値よりも小さい場合には、特定の周波数帯域での電磁波はそれほど大きくならず、問題が生じないこともある。 In this case, electromagnetic waves with relatively large power may be generated in a specific frequency band other than the frequency band used for power transmission (e.g., 87 kHz to 205 kHz). For example, if the power transmitted from TX to RX is smaller than a specified value, the electromagnetic waves in the specific frequency band may not be so large that no problem may occur.
 つまり送電電力が所定値未満の場合には、第1実施形態で説明したように、複数の送電アンテナに対して波形減衰法の実行に係る複数の検出処理期間の長さを最適な同一の値に設定することは、高精度な異物検出を行う上で有効である。しかし、送電電力が所定値よりも大きい場合等に発生した電磁波が、その他の機器に対して誤動作等を招くノイズになる可能性がある。 In other words, when the transmission power is less than a predetermined value, as described in the first embodiment, setting the lengths of the multiple detection processing periods related to the execution of the waveform attenuation method for multiple transmission antennas to the same optimal value is effective in performing highly accurate foreign object detection. However, when the transmission power is greater than the predetermined value, the generated electromagnetic waves may become noise that may cause malfunctions in other devices.
 また、各国の電波法においては、各周波数帯域での電力に対して規制値が設定されているが、送電状態によっては87kHzから205kHzの間の周波数以外に発生する電磁波の強度が規制値以上になってしまうこともありうる。 In addition, the Radio Laws of each country set limits on power in each frequency band, but depending on the power transmission conditions, the strength of electromagnetic waves generated at frequencies other than those between 87 kHz and 205 kHz may exceed the regulated values.
 本実施形態では、複数の送電アンテナで実行される波形減衰法の送電電力制御に関わる各期間を異なる長さに制御する方法を説明する。各送電アンテナで実行される波形減衰法に関わる検出処理期間は、波形減衰法の実行に係る全ての送電アンテナ、あるいは少なくとも一部の送電アンテナにおいて異なる長さとなるように設定される。 In this embodiment, a method is described for controlling each period related to the transmission power control of the waveform attenuation method executed by multiple transmission antennas to different lengths. The detection processing period related to the waveform attenuation method executed by each transmission antenna is set to be a different length for all transmission antennas involved in the execution of the waveform attenuation method, or at least for some of the transmission antennas.
 例えば、波形減衰法の実行に係る第1乃至第Nの送電アンテナにそれぞれ対応する通信禁止期間は全て異なる長さに設定される。あるいは、第1乃至第Nの送電アンテナのうち、少なくとも1つの送電アンテナに対応する通信禁止期間の長さは、その他の送電アンテナに対応する通信禁止期間とは異なる長さに設定される。 For example, the communication prohibition periods corresponding to the first through Nth power transmitting antennas involved in the execution of the waveform attenuation method are all set to different lengths. Alternatively, the length of the communication prohibition period corresponding to at least one of the first through Nth power transmitting antennas is set to a length different from the communication prohibition periods corresponding to the other power transmitting antennas.
 これらの事項は第1乃至第Nの送電アンテナにそれぞれ対応する送電期間、準備期間、送電電力制御期間についても同様である。あるいは、例えば、第1の送電アンテナに対応する少なくとも送電電力制御期間を含む検出処理期間全体の長さが、第2の送電アンテナに対応する少なくとも送電電力制御期間を含む検出処理期間の長さと異なるように制御が行われる構成でもよい。 These items also apply to the power transmission period, preparation period, and power transmission power control period corresponding to the first to Nth power transmission antennas, respectively. Alternatively, for example, the control may be configured so that the length of the entire detection processing period including at least the power transmission power control period corresponding to the first power transmission antenna is different from the length of the detection processing period including at least the power transmission power control period corresponding to the second power transmission antenna.
 また、第1の送電アンテナに係る通信禁止期間、送電期間、準備期間、送電電力制御期間のうちの少なくともいずれかの期間の長さが、第2の送電アンテナに係る検出処理期間における該当期間の長さとは異なるように制御が行われる構成でもよい。TXおよびRXが行う各期間の制御においては期間の長さとタイミング(期間の開始時点または終了時点)を変更することが可能である。 Furthermore, the configuration may be such that the length of at least one of the communication prohibition period, power transmission period, preparation period, and power transmission power control period related to the first power transmitting antenna is controlled to be different from the length of the corresponding period in the detection processing period related to the second power transmitting antenna. In controlling each period performed by the TX and RX, it is possible to change the length and timing of the period (start or end point of the period).
 例えばTXは、決定された検出処理期間に基づいて、各送電アンテナに対する通信禁止期間、送電期間、準備期間、送電電力制御期間を各送電アンテナで同じタイミングに設定する。RXが各送電アンテナで波形減衰法を実行するタイミングを決定する場合、TXに送信するタイミングを決定する実行要求パケットを同時に送信すればよい。 For example, the TX sets the communication prohibition period, power transmission period, preparation period, and power transmission power control period for each power transmitting antenna to the same timing for each power transmitting antenna based on the determined detection processing period. When the RX determines the timing for executing the waveform attenuation method for each power transmitting antenna, it can simultaneously transmit an execution request packet that determines the timing for transmission to the TX.
 あるいはTXが各送電アンテナで波形減衰法を実行するタイミングを決定する場合、TXは当該タイミングを同時にして波形減衰法を実行すればよい。いずれの場合でも制御を簡単化することが可能である。 Alternatively, if the TX determines the timing for executing the waveform attenuation method for each transmitting antenna, the TX can execute the waveform attenuation method at the same time. In either case, it is possible to simplify the control.
 あるいは、TXは決定された検出処理期間に基づいて、各送電アンテナに対する通信禁止期間、送電期間、準備期間、送電電力制御期間の少なくとも1つが、少なくとも1つの送電アンテナで異なるタイミングになるよう制御することができる。 Alternatively, the TX can control, based on the determined detection processing period, at least one of the communication prohibition period, power transmission period, preparation period, and power transmission power control period for each power transmission antenna to have different timing for at least one power transmission antenna.
 これにより、TXから発生する電力の送電に用いる周波数以外のノイズのレベルを低下させることが可能となる。またTXが送電電力制御を行うと、一時的にRXの受電電力が低下するが、この低下量を抑制することが可能となる。 This makes it possible to reduce the level of noise generated by the TX at frequencies other than those used to transmit power. In addition, when the TX performs transmission power control, the received power of the RX temporarily decreases, but it is possible to suppress the amount of this decrease.
 上記の各期間の設定方法は第1実施形態で説明したとおりである。例えば、第1実施形態で説明した設定方法に基づいて、TXまたはRXは、それぞれの期間の最適な長さを決定する。ただし、検出処理期間の長さを異ならせるためには、必ずしも毎回最適な期間の長さとする必要はない。 The method for setting each of the above periods is as described in the first embodiment. For example, the TX or RX determines the optimal length of each period based on the setting method described in the first embodiment. However, in order to vary the length of the detection processing period, it is not necessary to set the period to the optimal length each time.
 例えば、第1の送電アンテナの1回目の異物検出の際、第1実施形態の方法により検出処理期間の長さが決定され、2回目以降には、1回目の検出処理期間とは異なる長さとなるように調整された検出処理期間が決定される。また、このときの期間の長さの調整方法は、任意の方法により行われてもよい。 For example, when the first power transmitting antenna detects a foreign object for the first time, the length of the detection processing period is determined by the method of the first embodiment, and from the second time onwards, a detection processing period is determined that is adjusted to have a length different from the first detection processing period. In addition, the method for adjusting the period length at this time may be any method.
 またTXは、RXから受信される実行要求パケットに含まれる情報に基づいて検出処理期間を決定する。当該実行要求パケットは、検出処理期間の長さを決定するための情報を含む。RXは当該情報に対応する検出処理期間の長さを、波形減衰法が実行される各送電アンテナにおいてそれぞれ異なる長さとなるように設定する。 The TX also determines the detection processing period based on information contained in the execution request packet received from the RX. The execution request packet includes information for determining the length of the detection processing period. The RX sets the length of the detection processing period corresponding to the information so that it is a different length for each transmitting antenna where the waveform attenuation method is executed.
 本実施形態では、例えば波形減衰法の実行に係る複数の送電アンテナそれぞれにおいて、検出処理期間の長さ(時間)を異なる値に設定する。特定の周波数帯域におけるノイズを抑制して、より高精度な異物検出の実施が可能となる。TXが複数の送電アンテナに係る波形減衰指標(Q値等)を測定した場合に取得される複数の測定結果に基づいて行われる異物判定の方法については、第1実施形態で説明した方法を適用可能である。 In this embodiment, for example, the length (time) of the detection processing period is set to a different value for each of multiple transmitting antennas involved in the execution of the waveform attenuation method. By suppressing noise in a specific frequency band, more accurate foreign object detection can be implemented. The method described in the first embodiment can be applied to the method of foreign object determination that is performed based on multiple measurement results obtained when the TX measures waveform attenuation indices (Q value, etc.) for multiple transmitting antennas.
 図14(A)を参照し、TXが3つの送電アンテナを用いてRXに送電を行い、RXが1つの受電アンテナを用いて電力を無線で受電する例において本実施形態の説明を行う。図21は、第2実施形態における送電装置の処理を説明するフローチャートであり、TXの処理を表す。 With reference to FIG. 14(A), this embodiment will be described in an example in which the TX transmits power to the RX using three transmitting antennas, and the RX receives power wirelessly using one receiving antenna. FIG. 21 is a flowchart explaining the processing of the power transmitting device in the second embodiment, and shows the processing of the TX.
 図21のS1901乃至S1904とS1909乃至S1916の処理はそれぞれ、図15のS1501乃至S1504とS1509乃至S1516の処理と同様であるので、それらの説明を省略する。 The processes in steps S1901 to S1904 and S1909 to S1916 in FIG. 21 are similar to the processes in steps S1501 to S1504 and S1509 to S1516 in FIG. 15, respectively, and therefore will not be described.
 S1904の次にS1905の処理に進む。TXは、RXから異物検出の実行要求パケットを受信するまで待機する(S1905でNo)。TXは、RXから異物検出の実行要求パケットを受信した場合(S1905でYes)、S1906の処理に進む。S1906でTXは実行要求パケットに含まれる情報に基づき、TXが有する複数の送電アンテナのうち、異物検出動作を実行する送電アンテナを選択する。 After S1904, the process proceeds to S1905. The TX waits until it receives a packet requesting execution of foreign object detection from the RX (No in S1905). If the TX receives a packet requesting execution of foreign object detection from the RX (Yes in S1905), the process proceeds to S1906. In S1906, the TX selects, based on the information contained in the packet requesting execution, a power transmitting antenna that will perform the foreign object detection operation from among the multiple power transmitting antennas that the TX possesses.
 例えば当該実行要求パケットに含まれる情報に基づき、図14(A)ではRXへの送電に使用される3つの送電アンテナが選択される。次にS1907でTXは、当該異物検出要求パケット内の情報に基づき、選択した3つの送電アンテナに対して送電電力制御に関わる各期間を設定する。 For example, in FIG. 14(A), three transmitting antennas to be used for transmitting power to RX are selected based on the information contained in the execution request packet. Next, in S1907, TX sets each period related to transmission power control for the three selected transmitting antennas based on the information in the foreign object detection request packet.
 TXは各送電アンテナにて実行される波形減衰法(送電電力制御)のタイミングを同じになるように制御してもよい。この制御の方法については、第1実施形態で述べた通りである。つまり、TXが各送電アンテナにて実行する波形減衰法に係る通信禁止期間、送電期間、準備期間、送電電力制御期間は、各送電アンテナで同じタイミングとなる。 The TX may control the timing of the waveform attenuation method (transmission power control) executed by each transmission antenna so that it is the same. The method of control is as described in the first embodiment. In other words, the communication inhibition period, transmission period, preparation period, and transmission power control period related to the waveform attenuation method executed by the TX at each transmission antenna are the same for each transmission antenna.
 あるいは、TXは各送電アンテナにて実行する波形減衰法(送電電力制御)のタイミングを異なるように制御してもよい。この制御の方法については、第1実施形態で述べた通りである。つまり、TXが各送電アンテナにて実行する波形減衰法に係る通信禁止期間、送電期間、準備期間、送電電力制御期間の少なくとも1つは、少なくとも1つの送電アンテナで異なるタイミングとなる。 Alternatively, the TX may control the timing of the waveform attenuation method (transmission power control) executed by each transmission antenna to be different. The method of this control is as described in the first embodiment. In other words, at least one of the communication inhibition period, transmission period, preparation period, and transmission power control period related to the waveform attenuation method executed by the TX at each transmission antenna has different timing for at least one transmission antenna.
 図14(A)の例において、TXが選択した3つの送電アンテナに対する送電電力制御に関わる各期間は、異なる長さとなるように設定される。S1908でTXは、選択した3つの送電アンテナに対し、設定された各期間に基づいて送電電力制御を実行する。そして、S1909の処理に進む。 In the example of FIG. 14(A), the periods related to the transmission power control for the three transmitting antennas selected by the TX are set to be different lengths. In S1908, the TX executes the transmission power control for the three selected transmitting antennas based on the respective set periods. Then, the process proceeds to S1909.
 以上のように、各送電アンテナで実行される波形減衰法に関わる検出処理期間は、波形減衰法の実行対象となる全ての送電アンテナ、あるいは少なくとも一部の送電アンテナにおいて異なる長さに設定される。 As described above, the detection processing period related to the waveform attenuation method executed by each transmitting antenna is set to a different length for all transmitting antennas for which the waveform attenuation method is executed, or for at least some of the transmitting antennas.
 次に図16を流用して、RXが行う処理を説明する。S1601乃至S1605とS1608乃至S1612の処理については第1実施形態と同様であるので、それらの説明を省略する。 Next, the processing performed by RX will be explained using FIG. 16. The processing from S1601 to S1605 and S1608 to S1612 is the same as in the first embodiment, so the explanation of those will be omitted.
 S1605でRXがTXに対して波形減衰法による異物検出を要求することを決定(S1605でYes)した場合、S1606の処理に進む。S1606でRXは、異物検出処理に係る検出処理期間の長さとタイミングを決定する。例えば検出処理期間は、準備期間、送電電力制御期間、通信禁止期間、送電期間を含む期間である。 If in S1605 the RX determines to request foreign object detection using the waveform attenuation method from the TX (Yes in S1605), the process proceeds to S1606. In S1606, the RX determines the length and timing of the detection processing period related to the foreign object detection process. For example, the detection processing period is a period including a preparation period, a transmission power control period, a communication prohibition period, and a power transmission period.
 S1607でRXは、送電電力制御に関わる各期間を決定するための情報を含む実行要求パケットをTXに送信する。実行要求パケットに含まれる情報は、例えば、送電電力制御期間の長さ、および、通信禁止期間の長さを決定するための情報である。 In S1607, RX transmits to TX an execution request packet including information for determining each period related to transmission power control. The information included in the execution request packet is, for example, information for determining the length of the transmission power control period and the length of the communication prohibition period.
 ここで、RXがTXに対して送信する、送電電力制御に関わる各期間を決定するための情報を含む実行要求パケットについて説明する。RXは実行要求パケットを、波形減衰法の実行に係る送電アンテナの数の分だけ、TXに送信する。波形減衰法の実行に係る送電アンテナを第1乃至第3の送電アンテナとし、RXは各送電アンテナに対して第1乃至第3の実行要求パケットを送信する。 Here, we will explain the execution request packet that the RX sends to the TX, which contains information for determining each period related to the transmission power control. The RX sends execution request packets to the TX the same number of times as the number of transmitting antennas related to the execution of the waveform attenuation method. The transmitting antennas related to the execution of the waveform attenuation method are the first to third transmitting antennas, and the RX sends the first to third execution request packets to each transmitting antenna.
 第1乃至第3の実行要求パケットは、第1乃至第3の送電アンテナの送電電力制御に関わる各期間を決定するための情報をそれぞれ含むとする。これらの情報は、第1乃至第3の送電アンテナに対して少なくとも一部は異なるように設定される。RXは第1実施形態で説明した方法によって検出処理期間の各期間を1つずつ設定する。 The first to third execution request packets each include information for determining each period related to the transmission power control of the first to third power transmitting antennas. At least some of this information is set differently for the first to third power transmitting antennas. The RX sets each period of the detection processing period one by one using the method described in the first embodiment.
 RXは、設定したそれぞれの期間を基準として、検出処理期間のそれぞれの期間を所定の時間ずらして、新たに検出処理期間のそれぞれの期間を2つずつ設定する。これにより、検出処理期間の各期間は、RXにより、それぞれ3つずつ決定されることになる。RXによって決定された検出処理期間の各期間は、異なる長さ(時間)の期間である。 RX shifts each period of the detection processing period by a specified amount based on each set period, and sets two new periods for each detection processing period. As a result, three periods of the detection processing period are determined by RX. Each period of the detection processing period determined by RX is of a different length (time).
 RXは、決定した検出処理期間を、第1乃至第3の送電アンテナにそれぞれ割り振る。このようにすることで、各送電アンテナで実行される波形減衰法に関わる検出処理期間は、波形減衰法の実行に係る全ての送電アンテナ、あるいは少なくとも一部の送電アンテナにおいて異なる長さに設定される。 The RX allocates the determined detection processing period to each of the first to third power transmitting antennas. In this way, the detection processing period related to the waveform attenuation method executed by each power transmitting antenna is set to a different length for all power transmitting antennas involved in the execution of the waveform attenuation method, or for at least some of the power transmitting antennas.
 なお、第1乃至第3の実行要求パケットについては、別々の実行要求パケットとするか、あるいは1つの実行要求パケットとしてRXからTXに送信されてもよいことは第1実施形態と同じである。 Note that, as in the first embodiment, the first to third execution request packets may be sent as separate execution request packets or as a single execution request packet from RX to TX.
 次に図21および図16を参照して、波形減衰法の実行に係る3つの送電アンテナに対する検出処理期間を設定する、別の方法について説明する。S1606でRXは第1実施形態で説明した方法によって検出処理期間のそれぞれの期間を1つずつ決定する。S1607でRXは、決定された検出処理期間の情報を含む1つの実行要求パケットをTXに送信する。 Next, referring to FIG. 21 and FIG. 16, another method for setting the detection processing period for the three transmitting antennas involved in the execution of the waveform attenuation method will be described. In S1606, the RX determines each of the detection processing periods one by one by the method described in the first embodiment. In S1607, the RX transmits one execution request packet including information on the determined detection processing period to the TX.
 S1905でTXは当該実行要求パケット、つまり検出処理期間のそれぞれの期間の時間情報(代表値を表す情報)をそれぞれ1つ含むパケットを、RXから受信する。S1906でTXは複数の送電アンテナのうち、異物検出動作を実行する送電アンテナを選択する。 In S1905, the TX receives the execution request packet, that is, a packet including one piece of time information (information representing a representative value) for each period of the detection processing period, from the RX. In S1906, the TX selects, from among the multiple power transmitting antennas, a power transmitting antenna that will perform the foreign object detection operation.
 送電アンテナの選択方法は、第1実施形態(図15:S1506)で説明した方法である。S1907でTXは、取得した時間情報による検出処理期間のそれぞれの期間を基準として、検出処理期間のそれぞれの期間を所定の時間ずらして、新たに検出処理期間のそれぞれの期間を2つずつ設定する。 The method for selecting the transmitting antenna is the method described in the first embodiment (FIG. 15: S1506). In S1907, the TX shifts each of the detection processing periods by a predetermined time based on each of the detection processing periods based on the acquired time information, and sets two new detection processing periods for each period.
 各期間は、TXにより、それぞれ3つずつ決定されることになる。TXによって決定される3組の各期間の長さは異なる。TXは、決定した検出処理期間のそれぞれの期間(3組の各期間)を、第1乃至第3の送電アンテナそれぞれに対応する検出処理期間とする。このようにすることで、波形減衰法の実行に係る全ての送電アンテナ、あるいは少なくとも一部の送電アンテナに対して各期間を異なる長さに設定することができる。 The TX determines three periods each. The lengths of the three sets of periods determined by the TX are different. The TX sets each of the determined detection processing periods (each of the three sets of periods) as detection processing periods corresponding to the first to third transmitting antennas, respectively. In this way, it is possible to set each period to a different length for all transmitting antennas involved in the execution of the waveform attenuation method, or for at least some of the transmitting antennas.
 次に、図14(B)および図18を流用し、図22を参照して、TXが3つの送電アンテナを用いてRXに送電を行い、RXが3つの受電アンテナを用いて電力を無線で受電する例において本実施形態の説明を行う。図22は第2実施形態における受電装置の処理を説明するフローチャートであり、RXの処理を表す。なお、図18のS1701乃至S1704とS1708乃至S1715の処理については第1実施形態と同様であるので、それらの説明を省略する。 Next, referring to Fig. 22 and Fig. 14B and Fig. 18, an example in which TX transmits power to RX using three power transmitting antennas and RX wirelessly receives power using three power receiving antennas will be described in this embodiment. Fig. 22 is a flowchart for explaining the processing of the power receiving device in the second embodiment, and shows the processing of RX. Note that the processing of S1701 to S1704 and S1708 to S1715 in Fig. 18 is the same as in the first embodiment, and therefore the description thereof will be omitted.
 S1704の次にS1705の処理に進む。TXは、RXから異物検出の実行要求パケットを受信するまで待機する(S1705でNo)。TXは、RXから異物検出の実行要求パケットを受信した場合(S1705でYes)、S1706の処理に進む。 After S1704, the process proceeds to S1705. The TX waits until it receives a packet requesting execution of foreign object detection from the RX (No in S1705). If the TX receives a packet requesting execution of foreign object detection from the RX (Yes in S1705), it proceeds to S1706.
 ここでTXはRXから受信した実行要求パケット内の時間情報に基づき、上述した方法で、送電アンテナごとの送電電力制御に関わる各期間を設定する。RXが選択した3つの送電アンテナに対する送電電力制御に関わる各期間は、異なる長さに設定される。 Here, the TX sets each period related to the transmission power control for each transmitting antenna using the method described above, based on the time information in the execution request packet received from the RX. Each period related to the transmission power control for the three transmitting antennas selected by the RX is set to a different length.
 S1707でTXは、実行要求パケットによって選択の指定を受けた3つの送電アンテナに対して、設定された各期間に基づいて送電電力制御を行う。例えば、RXは、TXが各送電アンテナで実行する波形減衰法のタイミングを、同じタイミングとなるように制御することができる。 In S1707, the TX performs transmission power control for the three transmitting antennas selected by the execution request packet based on the set periods. For example, the RX can control the timing of the waveform attenuation method that the TX executes for each transmitting antenna so that they are the same.
 この制御の方法については、第1実施形態で述べた通りである。この場合、波形減衰法に関する通信禁止期間、送電期間、準備期間、送電電力制御期間は、各送電アンテナで同じタイミングになる。あるいは、RXは、TXが各送電アンテナで実行する波形減衰法のタイミングを、異なるタイミングとなるように制御してもよい。 The method of this control is as described in the first embodiment. In this case, the communication prohibition period, power transmission period, preparation period, and power transmission power control period related to the waveform attenuation method are the same for each power transmission antenna. Alternatively, the RX may control the timing of the waveform attenuation method executed by the TX for each power transmission antenna to be different.
 この制御の方法については、第1実施形態で述べた通りである。この場合、波形減衰法に関する通信禁止期間、送電期間、準備期間、送電電力制御期間の少なくとも1つは、少なくとも1つの送電アンテナで異なるタイミングになる。 The method of this control is as described in the first embodiment. In this case, at least one of the communication inhibition period, power transmission period, preparation period, and power transmission control period related to the waveform attenuation method has different timing for at least one power transmission antenna.
 次に図22を参照して、RXが行う処理を説明する。なお、図22のS2201乃至S2206とS2209乃至S2214の処理はそれぞれ、図19のS1801乃至S1806とS1809乃至S1814の処理と同様であるので、それらの説明を省略する。 Next, the processing performed by RX will be described with reference to FIG. 22. Note that the processing of S2201 to S2206 and S2209 to S2214 in FIG. 22 is similar to the processing of S1801 to S1806 and S1809 to S1814 in FIG. 19, respectively, and therefore the description thereof will be omitted.
 S2207でRXは、波形減衰法による異物検出処理に係る検出処理期間を決定する。検出処理期間は、準備期間、送電電力制御期間、通信禁止期間、送電期間を含む期間である。 In S2207, the RX determines the detection processing period for the foreign object detection processing using the waveform attenuation method. The detection processing period is a period that includes the preparation period, the transmission power control period, the communication prohibition period, and the power transmission period.
 S2208でRXは、送電電力制御に関わる各期間を決定するための情報を含む実行要求パケットをTXに送信する。当該情報は、例えば、送電電力制御期間の長さ、および、通信禁止期間の長さを決定するための情報である。実行要求パケットはRP0、RP1、RP2であってもよく、また、個別のパケットが使用されてもよい。 In S2208, RX transmits to TX an execution request packet including information for determining each period related to transmission power control. The information is, for example, information for determining the length of the transmission power control period and the length of the communication prohibition period. The execution request packet may be RP0, RP1, or RP2, or individual packets may be used.
 RXは、S2206で選択した3つの送電アンテナ(第1乃至第3の送電アンテナ)それぞれに対して実行要求パケット(第1乃至第3の実行要求パケット)を送信する。第1乃至第3の実行要求パケットはそれぞれ、第1乃至第3の送電アンテナに対する送電電力制御に関わる各期間を決定するための情報を含む。 The RX transmits an execution request packet (first to third execution request packets) to each of the three transmitting antennas (first to third transmitting antennas) selected in S2206. The first to third execution request packets each include information for determining each period related to the transmission power control for the first to third transmitting antennas.
 これらの情報は、第1乃至第3の送電アンテナで少なくとも一部が異なるように設定される。例えば、RXは第1実施形態で説明した方法によって検出処理期間のそれぞれの期間を1つずつ設定する。RXは設定したそれぞれの期間を基準として、検出処理期間のそれぞれの期間を所定の時間ずらして、新たに検出処理期間のそれぞれの期間を2つずつ設定する。 These pieces of information are set so that at least some of them are different for the first to third power transmitting antennas. For example, the RX sets each period of the detection processing period one by one using the method described in the first embodiment. The RX shifts each period of the detection processing period by a predetermined time based on each set period, and sets two new periods of the detection processing period each.
 これにより、各期間は、RXにより、それぞれ3つずつ決定され、3つの各期間は長さの異なる期間である。RXは、決定した検出処理期間(3組の各期間)を、第1乃至第3の送電アンテナに割り振る。複数の送電アンテナでそれぞれ実行される波形減衰法に関わる検出処理期間は、波形減衰法の実行に係る全ての送電アンテナ、あるいは少なくとも一部の送電アンテナにおいて異なる長さに設定される。 As a result, three periods are determined by the RX, and each of the three periods has a different length. The RX allocates the determined detection processing periods (each of the three sets of periods) to the first to third transmitting antennas. The detection processing periods related to the waveform attenuation method executed by each of the multiple transmitting antennas are set to different lengths for all transmitting antennas involved in the execution of the waveform attenuation method, or for at least some of the transmitting antennas.
 RXは、S2206で選択された送電アンテナに対向する3つの受電アンテナそれぞれから、対向する3つの送電アンテナそれぞれに対して、送電電力制御に関わる各期間を決定するための時間情報を含む実行要求パケットを送信する。 The RX transmits an execution request packet including time information for determining each period related to the transmission power control from each of the three receiving antennas facing the transmitting antenna selected in S2206 to each of the three opposing transmitting antennas.
 あるいは、RXは、波形減衰法の実行に係る全ての送電アンテナに対して、上述の方法で設定した検出処理期間のそれぞれの期間について1つの時間情報(代表値を表す情報)を含む実行要求パケットをTXに送信する。TXは、波形減衰法を実行する各送電アンテナにおいて、検出処理期間の時間情報を含む実行要求パケットをRXから受信する。 Alternatively, the RX transmits to the TX, for all transmitting antennas involved in the execution of the waveform attenuation method, an execution request packet including one piece of time information (information representing a representative value) for each period of the detection processing period set by the above-mentioned method. The TX receives from the RX an execution request packet including time information of the detection processing period for each transmitting antenna that executes the waveform attenuation method.
 TXは、受信した時間情報に基づき、検出処理期間のそれぞれの期間を基準として、検出処理期間のそれぞれの期間を所定の時間ずらして、新たに検出処理期間のそれぞれの期間を2つずつ設定する。これにより、各期間は、TXにより、それぞれ3つずつ決定されることになる。 The TX sets two new detection processing periods each based on the received time information and shifts each detection processing period by a specified time, using each period as a reference. As a result, three periods each are determined by the TX.
 TXによって決定された検出処理期間のそれぞれの3つの期間は、長さの異なる期間である。TXは、決定した検出処理期間のそれぞれ3つの期間を、第1乃至第3の送電アンテナそれぞれの検出処理期間とする。なお上述した例においては、TXとRXは、TXの第1通信部104とRXの第1通信部204との間で行われる、第1の規格(WPC規格)に基づく通信で制御を行う場合について述べた。 The three detection processing periods determined by the TX are of different lengths. The TX sets each of the three detection processing periods determined as the detection processing periods for each of the first to third power transmitting antennas. Note that in the above example, the TX and RX are described as performing control through communication based on the first standard (WPC standard) between the first communication unit 104 of the TX and the first communication unit 204 of the RX.
 TXとRXは、TXの第2通信部109とRXの第2通信部212との間で行われる、第2の規格(WPC規格以外の規格)に基づく通信で制御を行ってもよい。また、TXは送電部103a、103b、103c各々に、第2通信部109を有してもよい。また、RXは受電部203a、203b、203c各々に、第2通信部212を有してもよい。この場合、より高速な通信が可能となり、適切な制御を行うことが可能となる。 The TX and RX may perform control through communication based on a second standard (a standard other than the WPC standard) performed between the second communication unit 109 of the TX and the second communication unit 212 of the RX. The TX may have a second communication unit 109 in each of the power transmitting units 103a, 103b, and 103c. The RX may have a second communication unit 212 in each of the power receiving units 203a, 203b, and 203c. In this case, faster communication is possible, making it possible to perform appropriate control.
 本実施形態では、送電アンテナごとに実行される波形減衰法に関わる検出処理期間の設定値を異なる値とする。つまり、波形減衰法の実行に係る全ての送電アンテナ、あるいは少なくとも一部の送電アンテナにおいて検出処理期間のそれぞれの期間が異なる長さになるように設定される。本実施形態によれば、送電に使用する周波数帯域以外の特定の周波数帯域におけるノイズを抑制しつつ、より確実な異物検出を実現できる。 In this embodiment, the set value of the detection processing period related to the waveform attenuation method executed for each power transmitting antenna is set to a different value. In other words, the detection processing period is set to a different length for all power transmitting antennas involved in the execution of the waveform attenuation method, or at least for some of the power transmitting antennas. According to this embodiment, it is possible to achieve more reliable foreign object detection while suppressing noise in specific frequency bands other than the frequency band used for power transmission.
[第3実施形態]
 次に本開示の第3実施形態を説明する。本実施形態では、第1実施形態で説明した方法と第2実施形態で説明した方法を、所定の条件によって切り替える方法を示す。第1実施形態の方法では、送電電力制御に関わる各期間の長さは、選択された各送電アンテナに対して同一の値に設定される。
[Third embodiment]
Next, a third embodiment of the present disclosure will be described. In this embodiment, a method of switching between the method described in the first embodiment and the method described in the second embodiment according to a predetermined condition will be described. In the method of the first embodiment, the length of each period related to the transmission power control is set to the same value for each selected power transmitting antenna.
 選択された複数の送電アンテナで波形減衰法による異物検出が行われる場合、TXは、送電電力制御に関わる各期間の長さを最適な値に設定し、選択された送電アンテナにおいて送電電力制御を行う。この方法によれば第2実施形態の方法に比べて、より高精度な異物検出が可能となること、より短時間で異物検出が可能となること、より安定した通信が可能となること、より高速な通信が可能となること等の効果がある。 When foreign object detection using the waveform attenuation method is performed at multiple selected transmitting antennas, the TX sets the length of each period related to the transmission power control to an optimal value and performs transmission power control at the selected transmitting antenna. Compared to the method of the second embodiment, this method has the advantages of enabling more accurate foreign object detection, enabling foreign object detection in a shorter time, enabling more stable communication, and enabling faster communication.
 他方、第2実施形態の方法では、送電電力制御に関わる各期間の長さは、選択された各送電アンテナに対して異なる値に設定される。この方法によれば、選択された複数の送電アンテナで波形減衰法による異物検出を行う場合、第1実施形態の方法に比べて、特定の周波数帯域でのノイズの抑制が可能となるという効果がある。 On the other hand, in the method of the second embodiment, the length of each period related to the transmission power control is set to a different value for each selected power transmitting antenna. This method has the advantage that, compared to the method of the first embodiment, noise can be suppressed in a specific frequency band when foreign object detection is performed using the waveform attenuation method with multiple selected power transmitting antennas.
 上記「所定の条件」は、TXからRXへの送電電力またはその設定値が閾値未満であるか、または閾値以上であるかに対応する条件である。例えば、TXからRXへの送電電力またはその設定値が所定値よりも小さい場合に第1実施形態の方法を用いても、特定の周波数帯域でのノイズはそれほど大きくならず、問題が生じない場合もある。 The above "predetermined condition" is a condition corresponding to whether the power transmitted from TX to RX or its set value is less than a threshold value or greater than or equal to a threshold value. For example, even if the method of the first embodiment is used when the power transmitted from TX to RX or its set value is less than a predetermined value, noise in a particular frequency band may not be so large that no problem occurs.
 よって、送電電力またはその設定値が所定値よりも小さい場合、第1実施形態の方法を用い、送電電力またはその設定値が所定値以上である場合、第2実施形態の方法を用いることができる。なお、送電電力の設定値としては、上述したように、TXとRXとの交渉により決定される送電電力に関する設定値を用いることができる。 Therefore, if the transmission power or its set value is smaller than a predetermined value, the method of the first embodiment can be used, and if the transmission power or its set value is equal to or greater than the predetermined value, the method of the second embodiment can be used. Note that, as described above, the set value of the transmission power can be the set value related to the transmission power determined by negotiation between the TX and the RX.
 あるいは、RXがTXに送信するRP0、RP1、RP2に格納される情報を用いてもよい。これらのパケットに格納されているRXの受電電力値の情報を、送電電力の代わりに用いることができる。あるいは、RXの負荷で消費される負荷消費電力を、送電電力の代わりに用いることができる。 Alternatively, the information stored in RP0, RP1, and RP2 that the RX transmits to the TX may be used. The information on the RX's received power value stored in these packets may be used in place of the transmitted power. Alternatively, the load power consumed by the RX's load may be used in place of the transmitted power.
 また上記「所定の条件」の別例は、TXの送電アンテナとRXの受電アンテナとの電磁結合の強弱に対応する条件である。例えば、両アンテナの電磁結合が強く、アンテナ間から漏洩する電力が基準値(閾値)未満であると判断される場合、第1実施形態の方法を用いることができる。 Another example of the above "predetermined condition" is a condition that corresponds to the strength of the electromagnetic coupling between the TX transmitting antenna and the RX receiving antenna. For example, if the electromagnetic coupling between the two antennas is strong and it is determined that the power leaking between the antennas is less than a reference value (threshold value), the method of the first embodiment can be used.
 その理由は、特定の周波数帯域でのノイズが問題とならない場合もあることによる。両アンテナの結合状態指標の値が基準範囲内であって、漏洩する電力が基準値未満である場合、第1実施形態の方法を用いることができる。また、両アンテナの結合状態指標の値が基準範囲外であって、漏洩する電力が基準値以上である場合、第2実施形態の方法を用いることができる。 The reason for this is that noise in a particular frequency band may not be a problem. If the values of the coupling state index for both antennas are within the reference range and the leaking power is less than the reference value, the method of the first embodiment can be used. Also, if the values of the coupling state index for both antennas are outside the reference range and the leaking power is equal to or greater than the reference value, the method of the second embodiment can be used.
 送電アンテナと受電アンテナとの電磁結合の強さは、以下の原因で変動し得る。第1の原因は送電アンテナと受電アンテナの性能に関連する。例えば、送電アンテナの大きさ(アンテナ径)と、受電アンテナの大きさ(アンテナ径)との差が大きいほど、両アンテナの電磁結合が弱くなる可能性がある。 The strength of the electromagnetic coupling between the transmitting antenna and the receiving antenna can vary due to the following reasons. The first reason is related to the performance of the transmitting antenna and the receiving antenna. For example, the greater the difference between the size (antenna diameter) of the transmitting antenna and the size (antenna diameter) of the receiving antenna, the weaker the electromagnetic coupling between the two antennas may be.
 複数の種類の送電アンテナと受電アンテナが存在する場合、TXに載置されるRXによって、第1実施形態の方法と第2実施形態の方法とを切り替える制御が行われる。例えば、第1の種類の送電アンテナ(または受電アンテナ)が使用される場合に第1実施形態の方法に切り替わり、第2の種類の送電アンテナ(または受電アンテナ)が使用される場合に第2実施形態の方法に切り替わる。 When multiple types of transmitting antennas and receiving antennas exist, the RX mounted on the TX controls switching between the method of the first embodiment and the method of the second embodiment. For example, when a first type of transmitting antenna (or receiving antenna) is used, the method switches to the method of the first embodiment, and when a second type of transmitting antenna (or receiving antenna) is used, the method switches to the method of the second embodiment.
 第2の原因は、TXに載置されるRXの位置ずれに関連する。例えばRXの位置がTXに対して初期位置からずれた場合、送電アンテナと受電アンテナとの相対位置に変化が生じる結果、両アンテナの電磁結合が位置ずれの前よりも弱くなる可能性がある。 The second cause is related to misalignment of the RX placed on the TX. For example, if the position of the RX is misaligned from its initial position relative to the TX, the relative positions of the transmitting antenna and the receiving antenna change, and the electromagnetic coupling between the two antennas may become weaker than before the misalignment.
 TXまたはRXは、TXとRXとの相対位置の変化を検知し、位置ずれ量が所定の範囲内である場合に第1実施形態の方法に切り替え、位置ずれ量が所定の範囲内でない場合に第2実施形態の方法に切り替える制御を行う。 The TX or RX detects a change in the relative position between the TX and RX, and performs control to switch to the method of the first embodiment if the amount of positional deviation is within a specified range, and to switch to the method of the second embodiment if the amount of positional deviation is not within the specified range.
 TXとRXとの相対位置の変化を検知する方法としては、TXまたはRXに実装される光電センサ、渦電流式変位センサ、接触式変位センサ、超音波センサ、画像判別センサ、重量センサ等による測定結果を用いる方法がある。 Methods for detecting changes in the relative position between TX and RX include using the results of measurements made by photoelectric sensors, eddy current displacement sensors, contact displacement sensors, ultrasonic sensors, image discrimination sensors, weight sensors, etc., mounted on the TX or RX.
 あるいは、時間領域で測定された、送電アンテナもしくは受電アンテナに係るQuality Factorの変化、または周波数領域で測定された、送電アンテナもしくは受電アンテナに係るQuality Factorの変化を測定する方法がある。 Alternatively, there is a method of measuring the change in the Quality Factor of the transmitting antenna or the receiving antenna measured in the time domain, or the change in the Quality Factor of the transmitting antenna or the receiving antenna measured in the frequency domain.
 送電アンテナに係るQuality Factorは、Q値計測法や波形減衰法等によって測定することが可能である。あるいは、送電アンテナと受電アンテナの結合状態指標(結合係数)の変化を測定する方法がある。 The quality factor of a transmitting antenna can be measured by the Q value measurement method, the waveform attenuation method, etc. Alternatively, there is a method of measuring the change in the coupling condition index (coupling coefficient) between the transmitting antenna and the receiving antenna.
 位置ずれの検出に使用されるQuality Factorの測定方法としては、例えば共振周波数の信号(正弦波、矩形波等)を送信し、当該共振周波数におけるQuality Factorを測定する方法がある。また、共振周波数近傍の複数の周波数の信号を複数回送信し、それらのQuality Factorを測定する方法がある。 Methods for measuring the Quality Factor used to detect misalignment include, for example, transmitting a signal at a resonant frequency (sine wave, square wave, etc.) and measuring the Quality Factor at that resonant frequency. Another method is to transmit signals at multiple frequencies near the resonant frequency multiple times and measure their Quality Factors.
 あるいは、電気的特性の測定にて複数の周波数のすべて、もしくは一部の周波数成分を有する信号(例えば、パルス波)を1回送信し、その測定結果に対して演算処理(例えば、フーリエ変換)を行う。そして複数の周波数におけるQuality Factorを測定する方法がある。 Alternatively, when measuring electrical characteristics, a signal (e.g., a pulse wave) containing all or some of the frequency components of multiple frequencies is sent once, and the measurement results are processed (e.g., a Fourier transform). Then, the Quality Factor at multiple frequencies is measured.
 あるいは、送電アンテナの共振周波数、共振曲線の鋭さ、または送電アンテナのインダクタンス値や、送電アンテナとTX上に載置される物体との結合係数、TXの送電アンテナを含む送電部の電気的特性の測定結果を用いる方法でもよい。また、1つもしくは複数の周波数における電気的特性の測定結果に基づく判定が行われてもよい。 Alternatively, a method may be used that uses the resonant frequency of the power transmitting antenna, the sharpness of the resonant curve, or the inductance value of the power transmitting antenna, the coupling coefficient between the power transmitting antenna and an object placed on the TX, or the measurement results of the electrical characteristics of the power transmitting unit including the power transmitting antenna of the TX. In addition, a determination may be made based on the measurement results of the electrical characteristics at one or more frequencies.
 なお、複数の周波数における電気的特性を測定するための方法は、測定における各周波数の信号(正弦波、矩形波等)を複数回送信し、各々の周波数の信号における電気的特性を測定することで実現可能である。この方法は、送電装置での演算処理を比較的少なくして測定ができるという効果がある。 In addition, a method for measuring electrical characteristics at multiple frequencies can be achieved by transmitting signals of each frequency (sine wave, square wave, etc.) multiple times and measuring the electrical characteristics of the signals of each frequency. This method has the advantage that measurements can be made with relatively little calculation processing in the power transmission device.
 あるいは、電気的特性の測定にて複数の周波数のすべての周波数成分を有する信号(例えば、パルス波)を1回送信し、その測定結果に対して演算処理(例えば、フーリエ変換)を行うことで、複数の周波数における電気的特性を算出することができる。 Alternatively, when measuring electrical characteristics, a signal (e.g., a pulse wave) having all frequency components at multiple frequencies can be transmitted once, and the measurement results can be processed (e.g., a Fourier transform) to calculate the electrical characteristics at multiple frequencies.
 あるいは、電気的特性の測定にて複数の周波数の一部の周波数成分を有する信号を複数回送信し、その測定結果に対して演算処理(例えば、フーリエ変換)を行うことで、複数の周波数における電気的特性を算出することができる。 Alternatively, when measuring electrical characteristics, a signal having some frequency components at multiple frequencies can be transmitted multiple times, and the measurement results can be processed (e.g., a Fourier transform) to calculate the electrical characteristics at multiple frequencies.
 この方法は、測定のための信号の送信回数を少なくすることができるので、比較的短時間で測定ができるという効果がある。あるいは、RXの受電電力値の時間変化を測定することにより、TXとRXとの相対位置の変化を検出する方法でもよい。 This method has the advantage that the number of times signals need to be transmitted for measurement can be reduced, allowing measurements to be made in a relatively short time. Alternatively, a method may be used in which the change in the relative position between the TX and RX is detected by measuring the change over time in the received power value of the RX.
 また、TXとRXはWPC規格とは異なる規格の無線通信を行う場合がありうる。この場合、第1実施形態の方法を用いると、TXの送電電力制御で発生するノイズが通信に影響を及ぼす可能性がある。そこで、TXとRXがWPC規格とは異なる規格の無線通信を行わない場合、第1実施形態の方法に切り替え、TXとRXがWPC規格とは異なる規格の無線通信を行う場合、第2実施形態の方法に切り替える制御が行われる。 Furthermore, the TX and RX may perform wireless communication according to a standard different from the WPC standard. In this case, if the method of the first embodiment is used, noise generated by the transmission power control of the TX may affect the communication. Therefore, if the TX and RX do not perform wireless communication according to a standard different from the WPC standard, control is performed to switch to the method of the first embodiment, and if the TX and RX perform wireless communication according to a standard different from the WPC standard, control is performed to switch to the method of the second embodiment.
 本実施形態では、予め定めた条件に応じて第1実施形態の方法と第2実施形態の方法を使い分けることで、送電電力制御に関わる各期間を適切に制御することが可能である。第1実施形態の方法から第2実施形態の方法への変更(またはその逆の変更)を決定する制御主体は、TXまたはRXの制御部のどちらでもよい。 In this embodiment, by selectively using the method of the first embodiment and the method of the second embodiment according to predetermined conditions, it is possible to appropriately control each period related to the transmission power control. The control entity that decides to change from the method of the first embodiment to the method of the second embodiment (or vice versa) may be either the control unit of the TX or the control unit of the RX.
[本開示の適用分野]
 第1乃至第3実施形態の内容は、任意に組み合わせて実施されてもよい。また、波形減衰指標の1つであるQuality Factorに関する、その他の公知の測定方法を上記実施形態に適用することも可能である。また、実施形態で説明した処理は、RXおよびTXとは異なる装置により行われてもよい。
[Applications of the present disclosure]
The contents of the first to third embodiments may be implemented in any combination. In addition, other known measurement methods related to the Quality Factor, which is one of the waveform attenuation indexes, can also be applied to the above embodiments. In addition, the processing described in the embodiments may be performed by devices different from the RX and TX.
 例えば、TXが送電を制限する期間における電圧または電流の測定、および、測定結果に基づく異物の有無の判定、の少なくともいずれかを、他の装置が行ってよい。また、検出処理期間の長さの決定を、他の装置が行ってもよい。また、他の装置が、上記実施形態で説明した処理をRXおよびTXに実施させるように制御してもよい。 For example, another device may measure the voltage or current during the period when the TX limits power transmission, and/or determine the presence or absence of a foreign object based on the measurement results. The other device may also determine the length of the detection processing period. The other device may also control the RX and TX to perform the processing described in the above embodiment.
 TXまたはRXは異物検出方法によって、異物の存在の可能性を検知した場合、TXまたはRXはユーザに対して第1の通知処理を行う。ユーザへの通知は、送電アンテナと送電アンテナとの間、または送電アンテナ上に存在する異物の除去を促す通知である。これは、例えばRXのUI部202を用いて、ユーザに対する各種の出力を行うことで実現できる。 When the TX or RX detects the possible presence of a foreign object by the foreign object detection method, the TX or RX performs a first notification process for the user. The notification to the user is a notification encouraging the removal of the foreign object that is between the power transmitting antennas or on the power transmitting antenna. This can be realized, for example, by using the UI unit 202 of the RX to perform various outputs to the user.
 各種の出力とは、液晶パネルの画面表示、LEDの点滅や色の変化、スピーカーによる音声出力、バイブレーションモータによるRX本体の振動等の動作である。ユーザに対する通知により、異物が除去された場合、TXからRXに対して、より適切に送電が行われる可能性が高まる。あるいは、TXは、RXのUI部202と同様の機能を有しており、ユーザに対してTX上の異物の除去を促す通知を行ってもよい。 The various outputs include the screen display on the LCD panel, the blinking or color change of the LED, the audio output from the speaker, and the vibration of the RX body by the vibration motor. By notifying the user, if the foreign object is removed, the possibility of more appropriate power transmission from the TX to the RX increases. Alternatively, the TX may have the same function as the UI unit 202 of the RX, and may notify the user to encourage the removal of the foreign object on the TX.
 あるいは、送電アンテナと受電アンテナとの位置ずれによって、両アンテナの結合が弱くなる可能性がある。アンテナの結合状態指標の測定値が所定の閾値を下回った場合、RXはユーザに対し、TX上のRXの再配置を促す第2の通知処理を行う。上述したようにUI部を用いて、ユーザに対する各種の出力を行うことで実現できる。 Alternatively, the coupling between the transmitting antenna and the receiving antenna may be weakened due to misalignment between the two antennas. If the measured value of the antenna coupling state index falls below a predetermined threshold, the RX performs a second notification process to prompt the user to reposition the RX on the TX. This can be achieved by using the UI unit to provide various outputs to the user as described above.
 ユーザへの通知により、TX上のRXが最適な位置になった場合、TXからRXに対して適切に送電が行われる可能性が高まる。なお、第1の通知処理と第2の通知処理については、ユーザが区別できるように異なる通知内容としてもよい。 If the RX on the TX is in the optimal position as a result of the notification to the user, the possibility of appropriate power transmission from the TX to the RX increases. Note that the first notification process and the second notification process may have different notification contents so that the user can distinguish between them.
 例えば、LEDの点滅や色の変化が異なるようにする方法や、スピーカーによる音声出力が異なるようにする方法や、バイブレーションモータ等によるRX本体の振動パターンが異なるようにする方法等がある。 For example, there are ways to make the LED blink or change color differently, to make the sound output from the speaker different, and to make the vibration pattern of the RX body using a vibration motor, etc.
 前記実施形態における構成の一部(場合によっては全部)を、他の同様の機能を果たす他の構成と置き換え、または省略してもよく、別の構成を追加してもよい。またWPC規格による限定されることなく、他の電磁誘導方式、磁界共鳴方式、電界共鳴方式、マイクロ波方式、レーザー等を利用した方式への適用が可能である。 Some (or in some cases, all) of the configurations in the above embodiment may be replaced with other configurations that perform similar functions, or may be omitted, or other configurations may be added. Furthermore, without being limited by the WPC standard, it is possible to apply the present invention to other systems that use electromagnetic induction, magnetic field resonance, electric field resonance, microwaves, lasers, etc.
 また、送電装置および受電装置は、例えば、タブレット機器、ハードディスク装置やメモリ装置、あるいは、パーソナルコンピュータ(PC)等の情報処理装置であってもよい。また、スチルカメラやビデオカメラ等の撮像装置、スキャナ等の画像入力装置であってもよいし、プリンタやコピー機、プロジェクタ等の画像出力装置であってもよい。 The power transmitting device and the power receiving device may be, for example, a tablet device, a hard disk device, a memory device, or an information processing device such as a personal computer (PC). They may also be imaging devices such as a still camera or a video camera, image input devices such as a scanner, or image output devices such as a printer, a copier, or a projector.
 また、本開示の受電装置は、情報端末機器でもよい。例えば、情報端末機器は、受電アンテナから受けた電力が供給される、情報をユーザに表示する表示部(ディスプレイ)を有している。 The power receiving device of the present disclosure may also be an information terminal device. For example, the information terminal device has a display unit (display) that displays information to a user and is supplied with power received from the power receiving antenna.
 なお、受電アンテナから受けた電力は蓄電部(バッテリ)に蓄積され、そのバッテリから表示部に電力が供給される。この場合、受電装置は、送電装置とは異なる他の装置と通信する通信部を有してもよい。通信部は、NFC通信や、第5世代移動通信システム(5G)等の通信規格に対応してもよい。 The power received from the power receiving antenna is stored in a power storage unit (battery), and power is supplied from the battery to the display unit. In this case, the power receiving device may have a communication unit that communicates with other devices different from the power transmitting device. The communication unit may be compatible with communication standards such as NFC communication and the fifth generation mobile communication system (5G).
 また、本開示の受電装置が自動車等の車両であってもよい。例えば、受電装置である自動車は、駐車場に設置された送電アンテナを介して充電器(送電装置)から電力を受電するものであってもよい。また、受電装置である自動車は、道路に埋め込まれた送電アンテナを介して充電器(送電装置)から電力を受電するものでもよい。 The power receiving device of the present disclosure may also be a vehicle such as an automobile. For example, an automobile serving as a power receiving device may receive power from a charger (power transmitting device) via a power transmitting antenna installed in a parking lot. Also, an automobile serving as a power receiving device may receive power from a charger (power transmitting device) via a power transmitting antenna embedded in the road.
 このような自動車は、受電した電力はバッテリに供給される。バッテリの電力は、車輪を駆動する発動部(モータ、電動部)に供給されてもよいし、運転補助に用いられるセンサの駆動や外部装置との通信を行う通信部の駆動に用いられてもよい。 In such automobiles, the received power is supplied to a battery. The power from the battery may be supplied to a driving unit (motor, electric unit) that drives the wheels, or it may be used to drive sensors used for driving assistance or a communication unit that communicates with external devices.
 つまり、この場合、受電装置は、車輪の他、バッテリや、受電した電力を用いて駆動するモータやセンサ、さらには送電装置以外の装置と通信を行う通信部を有してもよい。さらに、受電装置は、人を収容する収容部を有してもよい。例えば、センサとしては、車間距離や他の障害物との距離を測るために使用されるセンサ等がある。 In other words, in this case, the power receiving device may have, in addition to the wheels, a battery, a motor or sensor that is driven using the received power, and even a communication unit that communicates with devices other than the power transmitting device. Furthermore, the power receiving device may have a housing unit for housing a person. For example, the sensor may be a sensor used to measure the distance between the vehicle and other obstacles.
 通信部は、例えば、全地球測位システム(Global Positioning System、Global Positioning Satellite、GPS)に対応してもよい。また、通信部は、第5世代移動通信システム(5G)等の通信規格に対応してもよい。また、車両としては、自転車や自動二輪車であってもよい。 The communication unit may be compatible with, for example, the Global Positioning System (GPS). The communication unit may also be compatible with communication standards such as the fifth generation mobile communication system (5G). The vehicle may also be a bicycle or a motorcycle.
 また、本開示の受電装置は、電動工具、家電製品等でもよい。受電装置であるこれらの機器は、バッテリの他、バッテリに蓄積された受電電力によって駆動するモータを有してもよい。また、これらの機器は、バッテリの残量等を通知する通知手段を有してもよい。また、これらの機器は、送電装置とは異なる他の装置と通信する通信部を有してもよい。 The power receiving device of the present disclosure may also be an electric tool, a home appliance, etc. These devices, which are power receiving devices, may have a battery as well as a motor that is driven by the received power stored in the battery. These devices may also have a notification means for notifying the remaining battery charge, etc. These devices may also have a communication unit that communicates with other devices other than the power transmitting device.
 通信部は、NFCや、第5世代移動通信システム(5G)等の通信規格に対応してもよい。また、本開示の送電装置は、自動車の車両内で、無線電力伝送に対応するスマートフォンやタブレット等の携帯情報端末機器に対して送電を行う車載用充電器であってもよい。 The communication unit may be compatible with communication standards such as NFC and the fifth generation mobile communication system (5G). The power transmission device disclosed herein may be an in-vehicle charger that transmits power to a mobile information terminal device such as a smartphone or tablet that supports wireless power transmission within an automobile.
 このような車載用充電器は、自動車内のどこに設けられていてもよい。例えば、車載用充電器は、自動車のコンソールに設置されてもよいし、インストルメントパネル(インパネ、ダッシュボード)や、乗客の座席間の位置や天井、ドアに設置されてもよい。ただし、運転に支障をきたすような場所に設置されないほうがよい。 Such an on-board charger may be installed anywhere in the vehicle. For example, the on-board charger may be installed in the vehicle's console, instrument panel (dashboard), between the passenger seats, on the ceiling, or in the door. However, it is best not to install it in a location that interferes with driving.
 また、送電装置が車載用充電器の例で説明したが、このような充電器が、車両に配置されるものに限らず、電車や航空機、船舶等の輸送機に設置されてもよい。この場合の充電器も、乗客の座席間の位置や天井、ドアに設置されてもよい。 In addition, while the power transmission device has been described as an example of an on-board charger, such chargers are not limited to those installed in vehicles, and may also be installed on transport vehicles such as trains, airplanes, and ships. In this case, the charger may also be installed in a position between passenger seats, on the ceiling, or in the door.
 また、車載用充電器を備えた自動車等の車両が、送電装置であってもよい。この場合、送電装置は、車輪と、バッテリとを有し、バッテリの電力を用いて、送電回路部や送電アンテナにより受電装置に電力を供給する。 Also, a vehicle such as an automobile equipped with an on-board charger may be the power transmitting device. In this case, the power transmitting device has wheels and a battery, and supplies power to the power receiving device via a power transmitting circuit unit and a power transmitting antenna using the power of the battery.
[その他の実施形態]
 本開示は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。
[Other embodiments]
The present disclosure can also be realized by supplying a program that realizes one or more functions of the above-described embodiments to a system or device via a network or storage medium, and having one or more processors in a computer of the system or device read and execute the program.
 また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。また、本開示のフローチャートを参照して説明した処理の一部をハードウェアにより実現してもよい。 It can also be realized by a circuit (e.g., an ASIC) that realizes one or more functions. Also, some of the processing described with reference to the flowcharts of this disclosure may be realized by hardware.
 この場合、例えば、所定のコンパイラを用いることで、各ステップを実現するためのプログラムからFPGA上に自動的に専用回路を生成すればよい。また、FPGAと同様にしてGate Array回路を形成し、ハードウェアとして実現してもよい。 In this case, for example, a specific compiler can be used to automatically generate a dedicated circuit on the FPGA from a program for implementing each step. Also, a gate array circuit can be formed in the same way as an FPGA, and implemented as hardware.
 以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、それらを本発明の範囲から除外するものではない。又、本発明は、例えば上記実施形態の機能を実現するために少なくとも1つのプロセッサーや回路を用いて実現するものを含む。尚、プロセッサーを複数用いて分散処理させるようにしても良い。 The present invention has been described above in detail based on a preferred embodiment, but the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and are not excluded from the scope of the present invention. Furthermore, the present invention includes, for example, implementations that use at least one processor or circuit to realize the functions of the above embodiment. It is also possible to use multiple processors to perform distributed processing.
(関連出願の相互参照)
 本出願は、先に出願された、2022年11月2日に出願された日本特許出願第2022-176565号の利益を主張するものである。また、上記日本特許出願の内容は本明細書において参照によりその全体が本明細書に組み込まれる。
 

 
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of earlier filed Japanese Patent Application No. 2022-176565, filed on November 2, 2022. The contents of the above Japanese patent application are incorporated herein by reference in their entirety.


Claims (16)

  1.  複数の送電コイルを使用して受電装置に無線で送電する送電手段と、
     前記受電装置と通信する通信手段と、
     前記送電コイルに係る電圧もしくは電流または該電圧および電流を測定する測定手段と、
     前記複数の送電コイルから選択される送電コイルを用いて前記送電手段が行う送電の制御にて前記送電手段から前記受電装置への送電を制限する制御手段と、を備え、
     前記制御手段は、前記受電装置とは異なる物体の検出処理の実行要求を前記受電装置から前記通信手段が受信した場合、選択された複数の送電コイルに対して送電を制限する制御を行うとともに、当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間を、前記受電装置が当該送電コイルごとに決定した当該処理期間の情報により設定する
     ことを特徴とする送電装置。
    A power transmitting means for wirelessly transmitting power to a power receiving device using a plurality of power transmitting coils;
    A communication means for communicating with the power receiving device;
    A measuring means for measuring a voltage or a current, or both the voltage and the current, associated with the power transmitting coil;
    a control unit that controls power transmission from the power transmitting unit to the power receiving device by using a power transmitting coil selected from the plurality of power transmitting coils,
    The control means, when the communication means receives a request from the power receiving device to execute a detection process for an object different from the power receiving device, performs control to limit power transmission to a plurality of selected power transmitting coils, and sets a processing period for the measurement process performed by the measurement means for each of the power transmitting coils based on information on the processing period determined by the power receiving device for each of the power transmitting coils.
  2.  前記測定手段は、前記制御手段によって前記送電手段から前記受電装置へ送電される電力が制限される期間中の2以上の時点で前記測定を行い、
     前記通信手段は、前記複数の送電コイルのうち、第1の送電コイルに対して前記測定手段が第1の測定処理を行う処理期間に関する第1の情報と、第2の送電コイルに対して前記測定手段が第2の測定処理を行う処理期間に関する第2の情報と、を受信し、
     前記制御手段は、前記通信手段が前記受電装置から前記実行要求を受信した場合、前記測定手段が前記第1の測定処理を行う処理期間を前記第1の情報により設定し、前記測定手段が前記第2の測定処理を行う処理期間を前記第2の情報により設定する
     ことを特徴とする請求項1に記載の送電装置。
    The measurement means performs the measurement at two or more points during a period in which the power transmitted from the power transmitting means to the power receiving device is limited by the control means,
    the communication means receives first information on a processing period during which the measurement means performs a first measurement process on a first power transmitting coil among the plurality of power transmitting coils, and second information on a processing period during which the measurement means performs a second measurement process on a second power transmitting coil,
    The power transmitting device according to claim 1, characterized in that, when the communication means receives the execution request from the power receiving device, the control means sets a processing period for the measurement means to perform the first measurement processing based on the first information, and sets a processing period for the measurement means to perform the second measurement processing based on the second information.
  3.  前記制御手段は、前記通信手段が前記受電装置から受信した情報により前記処理期間の長さまたはタイミングを設定する
     ことを特徴とする請求項1または請求項2に記載の送電装置。
    3 . The power transmitting device according to claim 1 , wherein the control means sets a length or timing of the processing period based on information received by the communication means from the power receiving device. 4 .
  4.  前記制御手段は、前記測定手段が前記第1の測定処理を行う処理期間と前記第2の測定処理を行う処理期間とを同じ長さにする第1の設定または異なる長さにする第2の設定を行う
     ことを特徴とする請求項2に記載の送電装置。
    The power transmitting device according to claim 2, characterized in that the control means performs a first setting in which the processing period during which the measurement means performs the first measurement processing and the processing period during which the second measurement processing are performed are the same length, or a second setting in which the processing periods are different lengths.
  5.  前記制御手段は、前記第1の設定と前記第2の設定とを切り替える制御を行う
     ことを特徴とする請求項4に記載の送電装置。
    The power transmitting device according to claim 4 , wherein the control means performs control for switching between the first setting and the second setting.
  6.  前記制御手段は、送電電力もしくはその設定値が閾値未満であるか、または前記送電コイルと前記受電装置の受電コイルとの電磁的な結合状態を表す指標の値が予め定めた範囲内であるという条件を満たす場合、前記第1の設定とし、前記条件を満たさない場合、前記第2の設定とする制御を行う
     ことを特徴とする請求項5に記載の送電装置。
    The power transmission device according to claim 5, characterized in that the control means performs control to set the first setting when a condition is met that the transmission power or its set value is less than a threshold value, or a value of an index representing the electromagnetic coupling state between the transmission coil and the receiving coil of the power receiving device is within a predetermined range, and performs control to set the second setting when the condition is not met.
  7.  前記制御手段は、前記送電手段が出力する送電波形の減衰状態に基づく前記物体の検出処理の実行要求を前記通信手段が前記受電装置から受信した場合、選択された前記送電コイルによる送電を制限し、当該送電コイルに対して前記測定手段が行う測定により取得される前記減衰状態を表す指標を用いて、当該送電コイルに対応する、前記物体の検出処理を行う
     ことを特徴とする請求項1に記載の送電装置。
    The power transmission device according to claim 1, characterized in that, when the communication means receives from the power receiving device a request to execute a detection process for the object based on the attenuation state of the transmission wave output by the power transmitting means, the control means limits power transmission by a selected power transmitting coil, and performs a detection process for the object corresponding to the power transmitting coil using an index representing the attenuation state obtained by measurement performed by the measurement means on the power transmitting coil.
  8.  複数の送電コイルを有する送電装置から、受電コイルを使用して無線で受電する受電手段と、
     前記送電装置と通信する通信手段と、
     受電装置とは異なる物体の検出処理の実行を前記送電装置に対して要求する実行要求を前記通信手段によって送信する制御を行う制御手段と、を備え、
     前記制御手段は、前記通信手段により前記実行要求を前記送電装置に送信する場合、選択された複数の送電コイルに対して送電が制限される期間中に当該送電コイルごとに前記送電装置の有する測定手段が行う測定処理に係る処理期間の情報を決定して前記通信手段により前記送電装置に送信する制御を行う
     ことを特徴とする受電装置。
    a power receiving unit that wirelessly receives power from a power transmitting device having a plurality of power transmitting coils by using a power receiving coil;
    A communication means for communicating with the power transmitting device;
    a control unit that controls transmission of an execution request to the power transmitting device via the communication unit to request the power transmitting device to execute a detection process for an object different from the power receiving device;
    The control means, when transmitting the execution request to the power transmitting device via the communication means, determines information on a processing period related to a measurement process performed by a measuring means of the power transmitting device for each of the selected power transmitting coils during a period in which power transmission is restricted for the selected power transmitting coils, and controls the information to be transmitted to the power transmitting device via the communication means.
  9.  前記制御手段は、前記複数の送電コイルのうち、第1の送電コイルに対して前記測定手段が第1の測定処理を行う処理期間に関する第1の情報と、第2の送電コイルに対して前記測定手段が第2の測定処理を行う処理期間に関する第2の情報と、を決定し、
     前記通信手段は前記第1および第2の情報を前記送電装置に送信する
     ことを特徴とする請求項8に記載の受電装置。
    the control means determines first information on a processing period during which the measurement means performs a first measurement process on a first power transmitting coil among the plurality of power transmitting coils, and second information on a processing period during which the measurement means performs a second measurement process on a second power transmitting coil;
    The power receiving device according to claim 8 , wherein the communication means transmits the first and second information to the power transmitting device.
  10.  前記処理期間の情報は、前記送電装置が前記処理期間の長さまたはタイミングを設定するための情報である
     ことを特徴とする請求項8に記載の受電装置。
    The power receiving device according to claim 8 , wherein the information on the processing period is information for the power transmitting device to set a length or timing of the processing period.
  11.  前記第1および第2の情報は、前記第1の測定処理を行う処理期間と前記第2の測定処理を行う処理期間を前記送電装置が同じ長さに設定するための情報である
     ことを特徴とする請求項9に記載の受電装置。
    The power receiving device according to claim 9 , characterized in that the first and second information are information for the power transmitting device to set a processing period for performing the first measurement processing and a processing period for performing the second measurement processing to have the same length.
  12.  前記第1および第2の情報は、前記第1の測定処理を行う処理期間と前記第2の測定処理を行う処理期間を前記送電装置が異なる長さに設定するための情報である
     ことを特徴とする請求項9に記載の受電装置。
    The power receiving device according to claim 9 , characterized in that the first and second information are information for the power transmitting device to set a processing period for performing the first measurement processing and a processing period for performing the second measurement processing to different lengths.
  13.  前記制御手段は、前記送電装置が出力する送電波形の減衰状態に基づく前記物体の検出処理の実行要求を、前記通信手段により前記送電装置に送信する制御を行い、前記物体の検出処理の検出結果を、前記通信手段により前記送電装置から受信する制御を行う
     ことを特徴とする請求項8に記載の受電装置。
    The power receiving device according to claim 8, characterized in that the control means controls the communication means to transmit to the power transmitting device a request to execute the object detection process based on the attenuation state of the transmitted radio wave output by the power transmitting device, and controls the communication means to receive from the power transmitting device the detection results of the object detection process.
  14.  送電装置および受電装置を備える無線電力伝送システムであって、
     前記送電装置は、
     複数の送電コイルを使用して前記受電装置に無線で送電する送電手段と、
     前記受電装置と通信する第1の通信手段と、
     前記送電コイルに係る電圧もしくは電流または該電圧および電流を測定する測定手段と、
     前記複数の送電コイルから選択される送電コイルを用いて前記送電手段が行う送電の制御にて前記送電手段から前記受電装置への送電を制限する第1の制御手段と、を備え、
     前記受電装置は、
     前記送電装置から受電コイルを使用して無線で受電する受電手段と、
     前記送電装置と通信する第2の通信手段と、
     前記受電装置とは異なる物体の検出処理の実行を前記送電装置に対して要求する実行要求を前記第2の通信手段によって送信する制御を行う第2の制御手段と、を備え、
     前記第2の制御手段は、前記第2の通信手段により前記実行要求を前記送電装置に送信する場合、選択された複数の送電コイルに対して送電が制限される期間中に当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間の情報を決定して前記第2の通信手段により前記送電装置に送信する制御を行い、
     前記第1の制御手段は、前記第1の通信手段が前記実行要求を前記受電装置から受信した場合、選択された前記複数の送電コイルに対して送電を制限する制御を行うとともに、当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間を、前記受電装置が当該送電コイルごとに決定した当該処理期間の情報により設定する
     ことを特徴とする無線電力伝送システム。
    A wireless power transmission system including a power transmitting device and a power receiving device,
    The power transmitting device is
    A power transmitting means for wirelessly transmitting power to the power receiving device using a plurality of power transmitting coils;
    A first communication means for communicating with the power receiving device;
    A measuring means for measuring a voltage or a current, or both the voltage and the current, associated with the power transmitting coil;
    a first control means for limiting power transmission from the power transmitting means to the power receiving device by controlling power transmission performed by the power transmitting means using a power transmitting coil selected from the plurality of power transmitting coils;
    The power receiving device is
    power receiving means for wirelessly receiving power from the power transmitting device using a power receiving coil;
    A second communication means for communicating with the power transmitting device;
    a second control unit that controls transmission of an execution request to the power transmitting device via the second communication unit to request the power transmitting device to execute a detection process for an object different from the power receiving device;
    when transmitting the execution request to the power transmitting device via the second communication means, the second control means performs control to determine information on a processing period related to a measurement process to be performed by the measurement means for each of the selected power transmitting coils during a period in which power transmission to the selected power transmitting coils is restricted, and to transmit the information to the power transmitting device via the second communication means;
    The wireless power transmission system is characterized in that, when the first communication means receives the execution request from the power receiving device, the first control means performs control to limit power transmission to the selected plurality of power transmitting coils, and sets a processing period for the measurement process performed by the measurement means for each of the power transmitting coils based on information of the processing period determined by the power receiving device for each of the power transmitting coils.
  15.  送電装置から受電装置に無線で電力を伝送する無線電力伝送の制御方法であって、
     前記送電装置の送電手段により、複数の送電コイルを使用して前記受電装置に無線で送電する送電工程と、
     前記送電装置の測定手段により、前記送電コイルに係る電圧もしくは電流または該電圧および電流を測定する測定工程と、
     前記送電装置が有する第1の制御手段により、前記複数の送電コイルから選択される送電コイルを用いて前記送電手段が行う送電を制御する第1の制御工程と、
     前記受電装置が有する第2の制御手段により、前記受電装置とは異なる物体の検出処理の実行を前記送電装置に対して要求する実行要求を送信する制御と、選択された複数の送電コイルに対して送電が制限される期間中に当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間の情報を決定して前記送電装置に送信する制御を行う第2の制御工程と、を有し、
     前記第1の制御工程にて前記第1の制御手段は、前記送電装置が前記実行要求を前記受電装置から受信した場合、選択された前記複数の送電コイルに対して送電を制限する制御を行うとともに、当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間を、前記受電装置が当該送電コイルごとに決定した当該処理期間の情報により設定する
     ことを特徴とする無線電力伝送の制御方法。
    A method for controlling wireless power transmission in which power is wirelessly transmitted from a power transmitting device to a power receiving device, comprising:
    a power transmitting step of wirelessly transmitting power to the power receiving device using a plurality of power transmitting coils by a power transmitting unit of the power transmitting device;
    a measuring step of measuring a voltage or a current, or both the voltage and the current, associated with the power transmitting coil by a measuring means of the power transmitting device;
    a first control step of controlling power transmission performed by the power transmitting means using a power transmitting coil selected from the plurality of power transmitting coils by a first control means included in the power transmitting device;
    a second control step of controlling, by a second control means of the power receiving device, to transmit an execution request to the power transmitting device to request the power transmitting device to execute a detection process for an object different from the power receiving device, and determining information on a processing period related to a measurement process to be performed by the measurement means for each of the selected power transmitting coils during a period in which power transmission to the selected power transmitting coils is restricted, and transmitting the information to the power transmitting device;
    a first control means, when the power transmitting device receives the execution request from the power receiving device, performing control to limit power transmission to the selected power transmitting coils, and setting a processing period for the measurement process performed by the measuring means for each of the power transmitting coils based on information on the processing period determined by the power receiving device for each of the power transmitting coils.
  16.  送電装置から受電装置に無線で電力を伝送する無線電力伝送の制御方法であって、
     前記送電装置の送電手段により、複数の送電コイルを使用して前記受電装置に無線で送電する送電工程と、
     前記送電装置の測定手段により、前記送電コイルに係る電圧もしくは電流または該電圧および電流を測定する測定工程と、
     前記送電装置が有する第1の制御手段により、前記複数の送電コイルから選択される送電コイルを用いて前記送電手段が行う送電を制御する第1の制御工程と、
     前記受電装置が有する第2の制御手段により、前記受電装置とは異なる物体の検出処理の実行を前記送電装置に対して要求する実行要求を送信する制御と、選択された複数の送電コイルに対して送電が制限される期間中に当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間の情報を決定して前記送電装置に送信する制御を行う第2の制御工程と、を有し、
     前記第1の制御工程にて前記第1の制御手段は、前記送電装置が前記実行要求を前記受電装置から受信した場合、選択された前記複数の送電コイルに対して送電を制限する制御を行うとともに、当該送電コイルごとに前記測定手段が行う測定処理に係る処理期間を、前記受電装置が当該送電コイルごとに決定した当該処理期間の情報により設定する
     ことを特徴とする無線電力伝送の制御方法の各工程を送電装置および受電装置の各コンピュータに実行させるためのプログラムを記憶したコンピュータで読み取り可能な記憶媒体。
    A method for controlling wireless power transmission in which power is wirelessly transmitted from a power transmitting device to a power receiving device, comprising:
    a power transmitting step of wirelessly transmitting power to the power receiving device using a plurality of power transmitting coils by a power transmitting unit of the power transmitting device;
    a measuring step of measuring a voltage or a current, or both the voltage and the current, associated with the power transmitting coil by a measuring means of the power transmitting device;
    a first control step of controlling power transmission performed by the power transmitting means using a power transmitting coil selected from the plurality of power transmitting coils by a first control means included in the power transmitting device;
    a second control step of controlling, by a second control means of the power receiving device, to transmit an execution request to the power transmitting device to request the power transmitting device to execute a detection process for an object different from the power receiving device, and determining information on a processing period related to a measurement process to be performed by the measurement means for each of the selected power transmitting coils during a period in which power transmission to the selected power transmitting coils is restricted, and transmitting the information to the power transmitting device;
    A computer-readable storage medium storing a program for causing each computer of the power transmitting device and the power receiving device to execute each step of a control method for wireless power transmission, characterized in that in the first control step, when the power transmitting device receives the execution request from the power receiving device, the first control means performs control to limit power transmission to the selected plurality of power transmitting coils, and sets a processing period for the measurement process performed by the measurement means for each of the power transmitting coils based on information of the processing period determined by the power receiving device for each of the power transmitting coils.
PCT/JP2023/031900 2022-11-02 2023-08-31 Power-transmitting device, power-receiving device, wireless power transfer system, method for controlling wireless power transmission, and storage medium WO2024095593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176565 2022-11-02
JP2022176565 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095593A1 true WO2024095593A1 (en) 2024-05-10

Family

ID=90930180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031900 WO2024095593A1 (en) 2022-11-02 2023-08-31 Power-transmitting device, power-receiving device, wireless power transfer system, method for controlling wireless power transmission, and storage medium

Country Status (1)

Country Link
WO (1) WO2024095593A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161966A1 (en) * 2020-02-14 2021-08-19 キヤノン株式会社 Power transmission device and power receiving device, and control method and program therefor
WO2021161776A1 (en) * 2020-02-13 2021-08-19 キヤノン株式会社 Power transmission device and power receiving device, and control method and program therefor
WO2021225048A1 (en) * 2020-05-08 2021-11-11 キヤノン株式会社 Power reception device, power transmission device, control method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161776A1 (en) * 2020-02-13 2021-08-19 キヤノン株式会社 Power transmission device and power receiving device, and control method and program therefor
WO2021161966A1 (en) * 2020-02-14 2021-08-19 キヤノン株式会社 Power transmission device and power receiving device, and control method and program therefor
WO2021225048A1 (en) * 2020-05-08 2021-11-11 キヤノン株式会社 Power reception device, power transmission device, control method, and program

Similar Documents

Publication Publication Date Title
US11038378B2 (en) Hybrid wireless power transmitting system and method therefor
US11670966B2 (en) Apparatus and method for performing communication in wireless power transmission system
US10523062B2 (en) Multi-mode wireless power transmission method and device for same
JP5285418B2 (en) Resonant non-contact power supply device
US11616398B2 (en) Method and apparatus for performing communication in wireless power transmission system
US9680331B2 (en) System and method for frequency protection in wireless charging
CN110999030B (en) Wireless charging device, receiver device and related methods
US11228206B2 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
US11108281B2 (en) Wireless power receiving device, wireless power transmitting device, and method for calibrating power using the same
US20240120778A1 (en) Power transmission apparatus, power receiving apparatus, control method, and storage medium
WO2017203579A1 (en) Coil position detecting method for non-contact power supply system, and non-contact power supply system
WO2024095593A1 (en) Power-transmitting device, power-receiving device, wireless power transfer system, method for controlling wireless power transmission, and storage medium
JP2023517568A (en) wireless power transfer
JP5756646B2 (en) Contactless charging system
KR20180104904A (en) Vehicle wireless power transmitter with integrated short-range wireless communication function and electronic payment method using the same
WO2024116837A1 (en) Power-transmitting device, power-receiving device, wireless power transfer system, method for controlling power-transmitting device, and storage medium
WO2024166725A1 (en) Power receiving device, power transmitting device, communication method, and program
WO2024062770A1 (en) Power transmission device, control method for power transmission device, and storage medium
WO2023210445A1 (en) Power-receiving device, power-transmitting device, method for controlling these, and program
WO2023149238A1 (en) Electric power transmission device and electric power reception device
WO2024095592A1 (en) Electric power transfer device and method for controlling same, electric power receiver, and storage medium
CN118633225A (en) Power transmitting apparatus and power receiving apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885359

Country of ref document: EP

Kind code of ref document: A1