WO2024088146A1 - 一种槽楔及具有其的电机 - Google Patents

一种槽楔及具有其的电机 Download PDF

Info

Publication number
WO2024088146A1
WO2024088146A1 PCT/CN2023/125395 CN2023125395W WO2024088146A1 WO 2024088146 A1 WO2024088146 A1 WO 2024088146A1 CN 2023125395 W CN2023125395 W CN 2023125395W WO 2024088146 A1 WO2024088146 A1 WO 2024088146A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
pole shoe
insulating
insulating body
groove
Prior art date
Application number
PCT/CN2023/125395
Other languages
English (en)
French (fr)
Inventor
杨晨
刘洋
何俊明
章小林
梁雨生
朱敏
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211316978.XA external-priority patent/CN115528844A/zh
Priority claimed from CN202211316730.3A external-priority patent/CN115632507A/zh
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Publication of WO2024088146A1 publication Critical patent/WO2024088146A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic

Definitions

  • the present application relates to the field of motor technology, and in particular to a slot wedge and a motor having the same.
  • the iron core in the motor is an important part of the motor's magnetic circuit.
  • the iron core slots used to store the windings in the motor include three structures: open slots, semi-open slots and closed slots. Among them, the closed slot structure is rarely used in the iron core.
  • the open slot structure has the advantage of facilitating winding offline, but the electromagnetic performance of the motor is poor.
  • the absence of pole shoes increases the air gap harmonics of the motor, increases the loss of the motor, and reduces the performance and efficiency of the motor.
  • the semi-open slot structure is equipped with pole shoes and has the advantage of better electromagnetic performance of the iron core, but the semi-open slot structure is more difficult to offline, and it is difficult to use flat copper wire or formed coils made of flat copper wire.
  • Semi-open slots and open slots are often matched with slot wedges.
  • Traditional slot wedges are divided into insulating slot wedges and magnetic slot wedges. Insulating slot wedges are generally used to fix windings in semi-open slots, and magnetic slot wedges are generally used to fix windings in open slots.
  • the slot opening of the semi-open slot is too small, which makes it difficult to unwind the winding.
  • the magnetic slot wedge can assume the role of the pole shoe, but the magnetic slot wedge will also generate eddy currents, causing the stator temperature to rise. If the magnetic slot wedge is disconnected, so that the slot opening of the open slot is not connected, the eddy current generated by the magnetic slot wedge will decrease, but the limiting function of the magnetic slot wedge on the winding will decrease.
  • the purpose of the present application is to provide a slot wedge and a motor having the same to solve the problems raised in the above background technology.
  • a slot wedge in a first aspect comprising:
  • One or more pole shoes are arranged on one side or two opposite sides of the insulating body, and the outer wall of the pole shoe is fixedly connected to the slot side wall on the adjacent side of the opening slot of the iron core; the inner wall of the pole shoe is fixedly connected to the insulating body to cut off the magnetic connection between the inner wall of the pole shoe and the opening slot.
  • a groove is provided on one side or two opposite sides of the insulating body, and the pole shoe is installed on the groove; the side wall of the pole shoe connected to the side wall of the open groove is the outer wall of the pole shoe, and the side wall of the pole shoe connected to the side wall of the groove is the inner wall of the pole shoe.
  • the insulating body includes a connected insulating body portion and an insulating bottom; the insulating body portion is located between the pole shoe and the slot sidewall on the far side of the opening slot, and the insulating bottom is located on the side of the pole shoe close to the slot bottom of the opening slot.
  • the inner wall of the groove wall formed by the insulating bottom is a first groove wall; in the direction from the insulating bottom to the insulating main body, the first groove wall is inclined in a direction away from the open groove bottom.
  • the insulating body further includes an insulating top portion connected to the insulating body portion, and the insulating top portion is located on the other side of the pole shoe facing away from the bottom of the open slot.
  • the insulating body further includes insulating ends which are blocked at two ends of the pole shoe in the length direction to isolate the magnetic connection between the pole shoe ends and the open slot.
  • a first protrusion extending outward is provided on the outer side of the pole shoe, and a clamping groove is provided on the side wall of the open groove, and the first protrusion is clamped with the clamping groove; the cross-sectional shape of the first protrusion is the same as the cross-sectional shape of the clamping groove.
  • a second protrusion is provided on the insulating end portion and is arranged corresponding to the first protrusion, and a cross-sectional shape of the second protrusion is the same as a cross-sectional shape of the first protrusion.
  • the pole shoe is provided on one side of the insulating body, and the other side of the insulating body facing away from the pole shoe is fixedly connected to the other slot side wall of the open slot.
  • a third protrusion is provided on the other side of the insulating body facing away from the pole shoe, and the third protrusion is clamped and fixed to the other slot side wall of the open slot.
  • the pole shoes are provided on opposite sides of the insulating body, and the insulating body separates the pole shoes located on opposite sides of the insulating body.
  • the second aspect of the present application provides a slot wedge, comprising:
  • pole shoes are arranged on one side or two opposite sides of the insulating body;
  • a positioning portion is provided at the opening of the open slot of the iron core, and the outer side wall of the pole shoe is fixed to the positioning portion by bonding with magnetic conductive adhesive; and the insulating body cuts off the magnetic connection between the inner side wall of the pole shoe and the open slot.
  • a groove for installing the pole shoe is provided on the outer wall of the insulating body, and the inner wall of the pole shoe is in contact with the groove wall of the groove;
  • the insulating body includes an insulating body portion located between the pole shoe and the groove side wall of the opening groove away from the positioning portion, and an insulating bottom portion connected to the insulating body portion and located on the side of the pole shoe close to the bottom of the opening groove.
  • one end of the insulating bottom away from the insulating main body is in contact with a slot side wall of the open slot to cut off the magnetic connection between the inner side wall of the pole shoe and the open slot.
  • the outer side wall of the pole shoe is coplanar with the outer side wall of the insulating body.
  • the inner side wall of the groove wall formed by the insulating bottom is a first groove wall; in the direction from the insulating bottom to the insulating main body, the first groove wall is inclined in a direction away from the open groove bottom.
  • a surface of the pole shoe facing away from the bottom of the open slot is coplanar with an end surface of the iron core where the open slot is provided.
  • the insulating body further includes an insulating top portion connected to the insulating body portion, and the insulating top portion is located on the other side of the pole shoe facing away from the bottom of the open slot.
  • an inner wall surface of the insulating top portion corresponding to the groove is perpendicular to an inner wall surface of the insulating main body portion corresponding to the groove.
  • the insulating body further includes insulating ends blocking two ends of the pole shoe in the length direction.
  • the positioning portion is a V-shaped groove
  • the outer side wall of the pole shoe is adapted to the shape of the groove wall of the positioning portion.
  • the pole shoe is provided on one side of the insulating body, and the other side of the insulating body facing away from the pole shoe is fixedly connected to the other slot side wall of the open slot.
  • the pole shoes are provided on opposite sides of the insulating body, and the insulating body separates the pole shoes located on opposite sides of the insulating body.
  • the third aspect of the present application further provides a motor, comprising: an iron core, on which a plurality of open slots are evenly distributed, the open slots are arranged in one-to-one correspondence with slot wedges, and the slot wedges are the slot wedges described above.
  • front and rear ends of the insulating body extend out of the opening slot respectively.
  • the core slot is an open slot structure with a large space for unwinding, which is convenient for unwinding the core winding;
  • the pole shoe of the slot wedge cooperates with the open slot of the core to play the role of a semi-open slot, which can improve the electromagnetic performance of the core;
  • the pole shoes on both sides are separated by the insulating body, which can avoid the connection between the pole shoes on both sides to generate eddy currents and affect the motor efficiency;
  • an insulating bottom is provided on one side of the pole shoe close to the bottom of the open slot to play an insulating role, and the pole shoe is fixed by the insulating body, which can increase the overall stiffness of the slot wedge, and the insulating body can limit the winding.
  • the pole shoes and the positioning part can also be bonded by magnetic conductive adhesive, which is simple to install and has a fixed installation position; the pole shoes on both sides are separated by an insulating body, which can avoid the connection between the pole shoes on both sides to generate eddy currents and avoid affecting the motor efficiency.
  • the inner wall of the groove formed by the insulating bottom is the first groove wall.
  • the force applied by the insulating bottom to the pole shoe includes a supporting force in the direction away from the groove bottom of the opening groove and a pressure pointing outward to the groove wall of the opening groove. Since the pole shoe is clamped with the groove wall of the opening groove, the outward pressure of the insulating bottom on the pole shoe can increase the interaction force between the groove wall of the opening groove and the pole shoe, thereby improving the connection stability between the pole shoe and the opening groove.
  • the force applied to the pole shoe by the first groove wall inclined at the insulating bottom includes a supporting force in the direction away from the bottom of the open groove and a pressure directed outward to the groove wall of the positioning portion.
  • the outward pressure of the first groove wall on the pole shoe can increase the interaction force between the groove wall of the positioning portion and the pole shoe, thereby improving the bonding stability between the pole shoe and the positioning portion.
  • the insulating top of the pole shoe away from the slot bottom side of the open slot can further strengthen the slot wedge stiffness, so that the slot wedge can withstand greater force, and the insulating top, insulating main body and insulating bottom cooperate with each other to jointly cover the pole shoe, which can prevent the pole shoe from being deformed by the magnetic force of the permanent magnet.
  • the pole shoe and the insulating body on the side of the slot bottom away from the open slot are coplanar, so that the surface of the pole shoe on the side of the slot bottom away from the open slot has no insulating body, which can avoid the insulating body on the slot wedge surface being higher than the core end face and affecting the size of the mechanical air gap.
  • the insulating body has a protective effect on both the front and rear ends of the pole shoe, and can prevent the pole shoe from being damaged during the slot wedge assembly process; the front and rear ends of the insulating body extend out of the open slot respectively, and the insulating body can also play a limiting role on the end winding outside the iron core.
  • the inner wall surface of the groove corresponding to the insulating top is perpendicular to the inner wall surface of the groove corresponding to the insulating main body, so that the shape specifications formed by the pole shoe and the open groove are the same as the shape specifications of the existing semi-open groove, which is convenient for subsequent electromagnetic calculations.
  • FIG1 is a schematic diagram of the structure of a slot wedge in Example 1 of the first aspect of the present application.
  • FIG2 is a top view of a slot wedge in Example 1 of the first aspect of the present application.
  • Fig. 3 is a cross-sectional view taken along line A-A of Fig. 2;
  • FIG4 is a schematic diagram of the assembly of the core and the slot wedge in the first embodiment of the first aspect of the present application.
  • FIG5 is a second schematic diagram of the assembly of the core and the slot wedge in the first embodiment of the first aspect of the present application.
  • FIG. 6 is a schematic diagram of the structure of the opening slot in the first embodiment of the first aspect of the present application.
  • FIG. 7 is a schematic diagram of the assembly of the open slot and the slot wedge in the first embodiment of the first aspect of the present application.
  • Fig. 8 is a cross-sectional view taken along line B-B of Fig. 7;
  • FIG9 is a schematic diagram of the structure of the slot wedge in the second embodiment of the first aspect of the present application.
  • FIG10 is a top view of the slot wedge in the second embodiment of the first aspect of the present application.
  • Fig. 11 is a cross-sectional view taken along line C-C of Fig. 10;
  • FIG12 is a schematic diagram of the structure of the slot wedge in the third embodiment of the first aspect of the present application.
  • FIG13 is a top view of a slot wedge in Embodiment 3 of the first aspect of the present application.
  • FIG14 is a cross-sectional view taken along line D-D in FIG13 .
  • FIG15 is a schematic diagram of the structure of a slot wedge in Example 1 of the second aspect of the present application.
  • FIG16 is a half-section view of the slot wedge in Example 1 of the second aspect of the present application.
  • FIG17 is a schematic diagram of the assembly of the core and the slot wedge in the first embodiment of the second aspect of the present application.
  • FIG18 is a schematic diagram of the structure of the opening slot in the first embodiment of the second aspect of the present application.
  • Example 19 is a schematic diagram of the assembly of the open slot and the slot wedge in Example 1 of the second aspect of the present application.
  • FIG20 is a schematic diagram of the structure of a slot wedge in Embodiment 2 of the second aspect of the present application.
  • FIG21 is a half-section view of a slot wedge in Embodiment 2 of the second aspect of the present application.
  • 22 is a schematic diagram of the assembly of the core and the slot wedge in the second embodiment of the second aspect of the present application.
  • Figure 23 is a schematic diagram of the assembly of the open slot and the slot wedge in Example 2 of the second aspect of the present application.
  • slot wedge In the figure: 1, slot wedge; 2, iron core; 11, insulating body; 12, pole shoe; 110, insulating body; 111, insulating bottom; 112, insulating top; 113, connecting surface; 114, chamfered surface; 115, second protrusion; 116, third protrusion; 121, first protrusion; 21, opening slot; 211, card slot; 212, positioning portion.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • Connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • the present embodiment provides a slot wedge 1, as shown in FIGS. 1-8 , comprising an insulating body 11 and a pole shoe 12.
  • the insulating body 11 is the main trunk of the slot wedge 1, which is used to fix the pole shoe 12 on one hand and bear the force of the winding diffusion tendency on the other hand;
  • the pole shoe 12 is used to connect with the slot side wall of the open slot 21 to form a magnetic circuit, and the structure formed by the pole shoe 12 and the open slot 21 is similar to the existing semi-open slot structure, and the pole shoe 12 is used to improve the electromagnetic performance of the iron core 2. Since the open slot 21 has a certain length, the insulating body 11 is in the shape of a long strip.
  • Pole shoes 12 are provided on opposite sides of the insulating body 11, and the outer side wall of the pole shoe 12 is fixedly connected to the slot side wall on the adjacent side of the open slot 21; the inner side wall of the pole shoe 12 is fixedly connected to the insulating body 11 to cut off the magnetic connection between the inner side wall of the pole shoe 12 and the open slot 21.
  • grooves for mounting the pole shoe 12 are provided on opposite sides of the insulating body 11.
  • the side wall of the pole shoe 12 connected to the groove side wall of the opening groove 21 is the outer side wall of the pole shoe 12, and the side wall of the pole shoe 12 connected to the groove side wall is the inner side wall of the pole shoe 12.
  • the opening groove 21 includes a groove bottom wall, a groove side wall on the adjacent side, and a groove side wall on the distal side.
  • the groove side wall on the distal side and the groove side wall on the adjacent side are arranged oppositely.
  • the groove side wall on the adjacent side and the groove side wall on the distal side are defined by their positions relative to the pole shoe 12.
  • the groove side wall on the adjacent side of the opening groove 21 is a groove side wall directly fixedly connected to the outer side wall of the pole shoe 12.
  • the insulating body 11 cuts off the magnetic connection between the inner side wall of the pole shoe 12 and the opening groove 21, it not only cuts off the magnetic connection between the inner side wall of the pole shoe 12 and the groove side wall on the distal side of the opening groove 21, but also cuts off the magnetic connection between the inner side wall of the pole shoe 12 and the groove bottom wall of the opening groove 21 and the groove side wall on the adjacent side of the opening groove 21.
  • the cross section of the insulating body 11 is in the shape of an “I” as a whole, and includes an insulating body portion 110, an insulating bottom portion 111, and an insulating top portion 112 that are integrally connected.
  • the insulating body portion 110 is located between the two grooves, and is used to separate the two pole shoes 12 located on opposite sides of the insulating body 11;
  • the insulating bottom portion 111 is located on the side of the pole shoe 12 close to the bottom of the opening groove 21; and the insulating top portion 112 is located on the other side of the pole shoe 12 that is away from the bottom of the opening groove.
  • the insulating body 11 does not include the insulating top portion 112, and the cross section of the insulating body 11 is in the shape of a “ ⁇ ” as a whole.
  • the slot on the core is an open slot 21 structure, with a large down-line space, which is convenient for down-line winding of the core and reduces the process difficulty of the core slot;
  • the pole shoe 12 of the slot wedge 1 cooperates with the open slot 21 of the core 2, which can play the role of a semi-open slot and improve the electromagnetic performance of the core 2;
  • the pole shoes 12 on both sides are separated by the insulating body 11, which can avoid the connection between the pole shoes 12 on both sides to generate eddy currents and avoid affecting the motor efficiency;
  • the side of the pole shoe 12 close to the bottom of the open slot 21 is provided with an insulating bottom 111, which plays an insulating role, and the pole shoe 12 is fixed by the insulating body 11, which can increase the overall rigidity of the slot wedge 1, and the insulating body 11 can limit the winding.
  • the insulating top 112 can further strengthen the rigidity of the slot wedge 1, so that the slot wedge 1 can withstand greater force, and the insulating top 112, the insulating body 110 and the insulating bottom 111 cooperate with each other to cover the pole shoe 12 together, which can prevent the pole shoe 12 from being deformed by the magnetic force of the permanent magnet.
  • the inner wall of the groove wall formed by the insulating bottom 111 is the first groove wall, and in the direction from the insulating bottom 111 to the insulating main body 110, the first groove wall is inclined in the direction away from the groove bottom of the opening groove 21.
  • the force applied to the pole shoe 12 by the inclined insulating bottom 111 includes a supporting force in the direction away from the groove bottom of the opening groove 21 and a pressure directed outwardly toward the groove wall of the opening groove 21. Since the pole shoe 12 is clamped with the groove wall of the opening groove 21, the outward pressure of the insulating bottom 111 on the pole shoe 12 can improve the groove wall of the opening groove 21 and the pole shoe 12.
  • the groove side wall includes a first groove wall, a second groove wall and a connecting surface 113
  • the first groove wall is the inner wall of the insulating bottom 111
  • the second groove wall is the inner wall of the insulating top 112
  • the connecting surface 113 is the inner wall of the insulating main body 110
  • the two ends of the connecting surface 113 are respectively connected to the inner side of the first groove wall and the second groove wall.
  • the second groove wall is parallel to the end face of the iron core 2
  • the connecting surface 113 is vertically arranged with the second groove wall, and a chamfered surface 114 can be arranged at the connection between the connecting surface 113 and the second groove wall.
  • the first groove wall is inclined, and the inner side of the pole shoe 12 fits with the groove, so that the shape of the pole shoe 12 after matching with the open slot 21 is the same as the shape of the existing semi-open slot, so that the subsequent electromagnetic calculation is the same as the existing calculation method, which is convenient for designers to design and select.
  • the insulating body 11 also includes insulating ends at both ends of the pole shoe 12 in the length direction.
  • the insulating ends have a protective effect on both the front and rear ends of the pole shoe 12, and can prevent the pole shoe 12 from being damaged during the process of assembling the slot wedge 1 into the open slot 21.
  • the front and rear ends of the insulating end extend out of the open slot 21 respectively, and the insulating end can also limit the end winding outside the iron core 2.
  • the outer side of the pole shoe 12 is provided with a first protrusion 121 extending outward, and the slot wall of the open slot 21 is provided with a clamping slot 211, and the first protrusion 121 is clamped with the clamping slot 211; the cross-sectional shape of the first protrusion 121 is the same as the cross-sectional shape of the clamping slot 211.
  • the present application does not limit the specific shapes of the first protrusion 121 of the pole shoe 12 and the clamping slot 211 of the open slot 21, as long as the concave and convex are matched, the slot wedge 1 can be limited.
  • a second protrusion 115 is provided on the insulating end portion 112 corresponding to the first protrusion 121, and the cross-sectional shape of the second protrusion 115 is the same as the cross-sectional shape of the first protrusion 121.
  • the second protrusion 115 protects the first protrusion 121 and can prevent the first protrusion 121 from being damaged during the process of assembling the slot wedge 1 into the open slot 21.
  • the present embodiment also provides a motor, as shown in FIG4 , which can be a disc motor. As shown in FIG5 , the motor can also be a radial motor. Although radial motor windings can now be wound by welding to complete the winding of lapped windings, continuous wave windings still need to be wound by open slots, that is, the slot wedge 1 of the present embodiment is also applicable to radial motors.
  • the motor includes an iron core 2, and a plurality of open slots 21 are evenly distributed on the iron core 2. The open slots 21 are arranged one by one with the slot wedge 1, and the slot wedge 1 adopts the slot wedge 1 as before.
  • the front and rear ends of the insulating body 11 extend out of the open slot 21 respectively.
  • the shape and specifications formed by the cooperation of the pole shoe 12 in the slot wedge 1 and the open slot 21 are the same as the shape and specifications of the existing semi-open slot, which is convenient for subsequent electromagnetic calculations.
  • the core 2 is firstly rolled or stamped, and a plurality of open slots 21 are processed on the core 2, and the clamping slots 211 are processed on both sides of the open slots 21, so that the slot wedge 1 can be assembled and clamped to limit the slot wedge 1. Because the slot wedge 1 itself will occupy the space of the open slot 21, the clamping slot 211 is located at the upper part of the open slot 21.
  • the clamping slot 211 is 1-2 mm away from the upper end surface of the core 2, so that the clamping slot 211 clamps the slot wedge 1, and the slot wedge 1 does not occupy too much position of the open slot 21.
  • the pole shoe 12 of the slot wedge 1 is prepared.
  • the pole shoe 12 is partially composed of soft magnetic materials, including but not limited to silicon steel sheets, SMC (soft magnetic composite materials), etc.; the soft magnetic materials are then formed by riveting silicon steel sheets, self-adhesive silicon steel sheets, sintering soft magnetic composite materials, etc.
  • the shape of the pole shoe 12 cooperates with the open slot 21 to form the same shape as the existing semi-open slot, which is convenient for electromagnetic calculations and design calculations by designers.
  • the pole shoe 12 After the pole shoe 12 is partially formed, it is placed in a molding die, and then the composite material of the insulating body 11 is added to wrap the pole shoe 12, wherein the composite material is a material with good rigidity and insulation, including but not limited to glass fiber, etc. Subsequently, the slot wedge 1 is manufactured by molding.
  • the pole shoe 12 and the insulating body 11 are combined into a whole without material blending between the two, which can avoid eddy current loss caused by the connection between the soft magnetic material of the pole shoe 12 and the iron core 2.
  • the winding is placed in the open slot 21, and the slot wedge 1 is inserted into the open slot 21.
  • the first protrusion 121 of the pole shoe 12 is matched with the slot 211 of the open slot 21 to complete the final assembly.
  • the pole shoe 12 contacts the core 2 to form a magnetic circuit instead of the pole shoe 12 of the semi-open slot.
  • the insulating body 11 is the main trunk of the slot wedge 1 and can bear the force of the winding diffusion trend.
  • the riveting self-fastening process, core winding process, and composite material molding process involved in this technical solution are all relatively mature processes with low processing difficulty.
  • This embodiment can solve the problems of winding line difficulty, increased air gap harmonics, and increased eddy currents in magnetic slot wedges at a lower cost and technical requirements.
  • the difference between this embodiment and the first embodiment of the first aspect is that: a plurality of pole shoes 12 are respectively provided on both sides of the insulating body 11, and the number of the pole shoes 12 is at least 2.
  • the number of pole shoes 12 on each side is 2, and the two pole shoes 12 on the same side are separated by an insulating body 11. Since the pole shoes 12 on the same side are separated by an insulating body 11, the insulating body 11 adopts a composite material with good rigidity and insulation, which has a stronger ability to resist deformation than the silicon steel sheet and SMC of the pole shoes 12.
  • the ability to resist deformation of this embodiment is stronger than that of the first embodiment.
  • the other structures of this embodiment are the same as those of the first embodiment of the first aspect.
  • asymmetric pole shoe 12 on one side of the motor stator.
  • the difference between this embodiment and the first embodiment of the first aspect is that a pole shoe 12 is provided on one side of the insulating body 11, and the number of pole shoes 12 can be arbitrary. In this embodiment, the number of pole shoes 12 is 1.
  • a third protrusion 116 symmetrical to the first protrusion 121 is provided on the other side of the insulating body 11. During assembly, the first protrusion 121 and the third protrusion 116 are respectively connected to the card slot 211 of the opening slot 21.
  • the other structures of this embodiment are the same as those of the first embodiment of the first aspect.
  • the present embodiment provides a slot wedge 1, as shown in FIGS. 15-19, comprising an insulating body 11 and a pole shoe 12.
  • the insulating body 11 is the main trunk of the slot wedge 1, which is used to fix the pole shoe 12 on the one hand and bear the force of the winding diffusion trend on the other hand;
  • the pole shoe 12 is used to connect with the slot wall of the open slot 21 to form a magnetic circuit, and the structure formed by the pole shoe 12 and the open slot 21 is similar to the existing semi-open slot 21 structure, and the pole shoe 12 is used to improve the electromagnetic performance of the iron core 2. Since the open slot 21 has a certain length, the insulating body 11 is in the shape of a long strip.
  • Pole shoes 12 are provided on opposite sides of the insulating body 11, and a positioning portion 212 is provided at the opening of the open slot 21.
  • the outer wall of the pole shoe 12 is bonded to the positioning portion 212 by magnetic conductive glue; and the insulating body 11 cuts off the magnetic connection between the inner wall of the pole shoe 12 and the open slot 21.
  • a groove for mounting the pole shoe 12 is provided on the outer side wall of the insulating body 11, and the inner side wall of the pole shoe 12 is fitted with the groove wall of the groove;
  • the insulating body 11 includes an insulating body portion 110 located between the pole shoe 12 and the groove side wall of the opening groove 21 away from the positioning portion 212, and an insulating bottom portion 111 connected to the insulating body portion 110 and located on the side of the pole shoe 12 close to the groove bottom of the opening groove; the pole shoes 12 on both sides are separated by the insulating body portion 110.
  • a pole shoe 12 is respectively provided on both sides of the insulating body 11.
  • the number of pole shoes 12 provided on each side of the insulating body 11 can also be 2, 3, 4, etc., and the multiple pole shoes 12 are arranged at intervals on both sides of the insulating body 11 along the length direction of the insulating body 11.
  • the core 2 slot is an open slot structure with a large space for winding, which is convenient for winding the core 2;
  • the pole shoe 12 of the slot wedge 1 cooperates with the open slot 21 of the core 2, which can play the role of a semi-open slot 21, and can improve the electromagnetic performance of the core 2;
  • the pole shoe 12 and the positioning part 212 are bonded by magnetic conductive adhesive, which is simple to install and has a fixed installation position;
  • the pole shoes 12 on both sides are separated by the insulating main body 110, which can avoid the connection between the pole shoes 12 on both sides to generate eddy currents and avoid affecting the motor efficiency;
  • the pole shoe 12 is provided with an insulating groove on one side of the slot bottom close to the open slot 21.
  • the bottom 111 plays an insulating role.
  • the pole shoe 12 is fixed by the insulating body 11, which can increase the overall rigidity of the slot wedge 1.
  • the insulating body 11 can limit the winding.
  • a groove for mounting the pole shoe 12 is provided on the side wall of the insulating body 11, the inner side wall of the pole shoe 12 is fitted with the groove wall of the groove, the outer side wall of the pole shoe 12 is coplanar with the outer side wall of the insulating body 11, the inner side wall of the groove wall formed by the insulating bottom 111 is the first groove wall, and the first groove wall is inclined in the direction away from the bottom of the opening groove in the direction from the insulating bottom 111 to the insulating body 110.
  • the force applied to the pole shoe 12 by the first groove wall inclined on the insulating bottom 111 includes a supporting force in the direction away from the bottom of the opening groove 21 and a pressure directed outwardly to the groove wall of the positioning portion 212.
  • the outward pressure of the first groove wall on the pole shoe 12 can increase the interaction force between the groove wall of the positioning portion 212 and the pole shoe 12, thereby improving the bonding stability between the pole shoe 12 and the positioning portion 212.
  • the surface of the pole shoe 12 on the side away from the slot bottom of the open slot 21 is coplanar with the end surface of the core 2 provided with the open slot 21 .
  • the insulating body 11 also includes an insulating top 112 connected to the insulating body part 110, and the insulating top 112 is located on the other side of the pole shoe 12 facing away from the bottom of the open slot.
  • the inner wall surface of the groove corresponding to the insulating top 112 is perpendicular to the inner wall surface of the groove corresponding to the insulating body part 110.
  • the inner side wall of the pole shoe 12 is in contact with the inner wall of the groove corresponding to the insulating body part 110, the insulating top 112 and the insulating bottom 111.
  • Such a setting can make the shape of the pole shoe 12 after matching with the open slot 21 the same as the shape of the existing semi-open slot 21, so that the subsequent electromagnetic calculation is the same as the existing calculation method, which is convenient for designers to design and select.
  • the insulating top 112 can further strengthen the rigidity of the slot wedge 1, so that the slot wedge 1 can withstand greater force, and the insulating body 11 at this location cooperates with the insulating body 11 on the side of the slot bottom of the pole shoe 12 close to the open slot 21, and jointly covers the pole shoe 12, which can prevent the pole shoe 12 from being deformed by the magnetic force of the permanent magnet.
  • such a setting will cause the insulating body 11 to be higher than the end face of the core 2, which may affect the size of the mechanical air gap.
  • the insulating body 11 may not need to be provided with an insulating top 112 , and the side of the pole shoe 12 facing away from the bottom of the open slot 21 is flush with the upper end surface of the insulating body 110 .
  • the insulating body 11 further includes an insulating end portion blocking the length direction of the pole shoe 12.
  • the insulating end portion has a protective effect on both the front and rear ends of the pole shoe 12.
  • the pole shoe 12 can be prevented from being damaged during the process of assembling the slot wedge 1 into the open slot 21.
  • the insulating bottom 111 extends into the open slot 21 below the positioning portion 212, and the outer side of the insulating bottom 111 fits against the slot wall of the open slot 21.
  • the insulating bottom 111 can further improve the overall rigidity of the slot wedge 1 and increase the force of the insulating body 11 to bear the winding diffusion trend.
  • the positioning portion 212 is a V-shaped groove, and the outer side surface of the pole shoe 12 is inclined outwardly in the direction away from the groove bottom of the opening groove 21.
  • the outer side surface of the pole shoe 12 fits with the positioning portion 212. Since the V-shaped groove has two inclined limiting surfaces, the limiting surfaces can fit with the two outer side surfaces of the pole shoe 12 that are inclined outwardly, thereby having a positioning effect on the pole shoe 12 and preventing the pole shoe 12 from moving toward the groove bottom of the opening groove 21.
  • the positioning portion 212 can also be a rectangular groove, the width of the rectangular groove is greater than the width of the opening groove 21, the outer side surface of the pole shoe 12 is not inclined, the outer side surface of the pole shoe 12 fits with the groove wall of the rectangular groove, the rectangular groove and the opening groove 21 form a step shape, and the rectangular groove can also play a positioning role for the pole shoe 12.
  • the present embodiment also provides a motor, as shown in FIGS. 17-19 , including an iron core 2, on which a plurality of open slots 21 are evenly distributed, and the open slots 21 are arranged one by one corresponding to the slot wedges 1, and the slot wedges 1 adopt the slot wedges 1 as described above.
  • the open slots 21 are the aforementioned open slot 21 structures with positioning portions 212.
  • the motor of the present embodiment can be a disc motor or a radial motor. Although the radial motor winding can be welded to complete the winding of the lap winding, the continuous wave winding still needs to be wound in the open slot manner, that is, the slot wedges 1 of the present embodiment are also applicable to radial motors.
  • the front and rear ends of the insulating body 11 extend out of the opening slots 21 respectively; the insulating body 11 can also limit the end windings outside the iron core 2 .
  • the iron core 2 is rolled or stamped, and a plurality of open slots 21 are processed on the iron core 2, and a positioning portion 212 is processed at the opening of the open slot 21 to facilitate the subsequent assembly of the slot wedge 1.
  • the positioning portion 212 plays a role in connecting and positioning the pole shoe 12.
  • the pole shoe 12 of the slot wedge 1 is prepared.
  • the pole shoe 12 is partially composed of soft magnetic materials, including but not limited to silicon steel sheets, SMC (soft magnetic composite materials), etc.; the soft magnetic materials are then formed by riveting silicon steel sheets, self-adhesive silicon steel sheets, sintering soft magnetic composite materials, etc.
  • the shape of the pole shoe 12 cooperates with the open slot 21 to form the same shape as the existing semi-open slot 21, which is convenient for electromagnetic calculations and convenient for designers to design and calculate.
  • the pole shoe 12 After the pole shoe 12 is partially formed, it is placed in a molding die, and then the composite material of the insulating body 11 is added to wrap the pole shoe 12, wherein the composite material is a material with good rigidity and insulation, including but not limited to glass fiber, etc. Subsequently, the slot wedge 1 is manufactured by molding.
  • the pole shoe 12 and the insulating body 11 are combined into a whole without material blending, which can avoid eddy current loss caused by the connection between the soft magnetic material of the pole shoe 12 and the iron core 2.
  • the winding is placed in the open slot 21, and the pole shoe 12 and the positioning part 212 of the open slot 21 are bonded by magnetic conductive adhesive to complete the final assembly.
  • the pole shoe 12 contacts the iron core 2 to form a magnetic circuit instead of the pole shoe 12 of the semi-open slot 21, and the insulating body 11 is the main trunk of the slot wedge 1, which can bear the force of the winding diffusion trend.
  • the riveting self-fastening process, core winding process, and composite material molding process involved in this technical solution are all relatively mature processes with low processing difficulty.
  • This embodiment can solve the problems of winding line difficulty, increased air gap harmonics, and increased eddy currents in magnetic slot wedges at a lower cost and technical requirements.
  • the difference between this embodiment and the first embodiment of the second aspect is that the pole shoe 12 and the insulating body 11 on the side of the bottom of the slot away from the open slot 21 are coplanar, so that the surface of the pole shoe 12 on the side of the bottom of the slot away from the open slot 21 is free of the insulating body 11, which can avoid the insulating body 11 on the surface of the slot wedge 1 being higher than the end face of the core 2 and affecting the size of the mechanical air gap.
  • the shape of the pole shoe 12 after matching with the open slot 21 is the same as the shape of the existing semi-open slot 21, so that the subsequent electromagnetic calculation is the same as the existing calculation method, which is convenient for designers to design and select.
  • This embodiment does not include the third slot wall 113 of the first embodiment of the second aspect.
  • the other structures of this embodiment are the same as those of the first embodiment of the second aspect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

本申请公开了一种槽楔及电机,槽楔包括绝缘主体和极靴;一个或多个极靴设于绝缘主体的一侧或相对两侧,极靴的外侧壁与铁芯的开口槽的槽侧壁或其开口处的定位部固定连接;极靴的内侧壁通过与绝缘主体固定连接,以切断极靴的内侧壁与开口槽之间的磁性连通。本申请的铁芯槽为开口槽结构,下线空间大,便于铁芯绕组下线,降低铁芯开槽的工艺难度;槽楔的极靴与铁芯的开口槽配合,能够起到半开口槽的作用,能够提高铁芯的电磁性能;两侧的极靴由绝缘主体隔开,能够避免两侧极靴连通产生涡流,避免影响电机效率;极靴靠近开口槽的槽底的一侧设有绝缘主体,起到绝缘的作用,极靴由绝缘主体固定,能够增加槽楔的整体刚度,绝缘主体能够对绕组起限位作用。

Description

一种槽楔及具有其的电机
本申请要求在2022年10月26日提交中国专利局、申请号为202211316978.X、发明名称为“一种复合槽楔及具有其的电机”以及在2022年10月26日提交中国专利局、申请号为202211316730.3、发明名称为“一种槽楔及具有其的电机”的两件中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,特别涉及一种槽楔及具有其的电机。
背景技术
电机中的铁芯是电机磁路的重要组成部分。电机中用于存放绕组的铁芯槽包括开口槽、半开口槽和闭口槽三种结构。其中,闭口槽结构在铁芯中极少使用。开口槽结构具有便于绕组下线的优点,但是电机电磁性能差,没有极靴导致电机的气隙谐波增加,增加电机的损耗,降低电机的性能和效率。半开口槽结构设有极靴,具有铁芯电磁性能较好的优点,但是半开口槽结构下线难度增加,难以使用扁铜线或者由扁铜线制成的成型线圈。
半开口槽和开口槽经常与槽楔匹配设置。传统槽楔分为绝缘槽楔与磁性槽楔,绝缘槽楔一般用于半开口槽中绕组的固定,磁性槽楔一般用于开口槽中绕组的固定。但是半开口槽的槽口过小导致绕组下线困难。开口槽与磁性槽楔配合时,磁性槽楔可以承担极靴的作用,但磁性槽楔同时会产生涡流导致定子温度上升。若将磁性槽楔断开,使开口槽的槽口处不连通,磁性槽楔产生的涡流有所下降,但磁性槽楔对绕组的限位功能下降。
因此,如何在降低下线难度的同时保证电磁性能,成为本领域技术人员亟待解决的技术问题。
发明内容
本申请的目的在于提供一种槽楔及具有其的电机,以解决上述背景技术中提出的问题。
为实现上述目的,本申请第一方面提供了一种槽楔,包括:
绝缘主体;
一个或多个极靴,所述极靴设于所述绝缘主体的一侧或相对两侧,所述极靴的外侧壁与铁芯的开口槽的临近侧的槽侧壁固定连接;所述极靴的内侧壁通过与所述绝缘主体固定连接、以切断所述极靴的内侧壁与所述开口槽之间的磁性连通。
可选地,所述绝缘主体的一侧或相对两侧设有凹槽,所述极靴安装在所述凹槽上;所述极靴与所述开口槽槽侧壁相接的侧壁为所述极靴的外侧壁,所述极靴与所述凹槽侧壁相接的侧壁为所述极靴的内侧壁。
可选地,所述绝缘主体包括相连的绝缘主体部和绝缘底部;所述绝缘主体部位于所述极靴和所述开口槽的远离侧的槽侧壁之间,所述绝缘底部位于所述极靴靠近所述开口槽槽底的一侧。
可选地,所述绝缘底部形成所述凹槽槽壁的内壁为第一槽壁;自所述绝缘底部到所述绝缘主体部的方向上,所述第一槽壁向远离所述开口槽槽底的方向倾斜。
可选地,所述绝缘主体还包括与所述绝缘主体部连接的绝缘顶部,所述绝缘顶部位于所述极靴背向所述开口槽槽底的另一侧。
可选地,所述绝缘主体还包括挡在所述极靴长度方向的两个端部上、以隔绝所述极靴端部与所述开口槽之间的磁性连通的绝缘端部。
可选地,所述极靴的外侧设有向外延伸的第一凸起,所述开口槽的槽侧壁上设有卡槽,所述第一凸起与所述卡槽卡接;所述第一凸起的横截面形状与所述卡槽的横截面形状相同。
可选地,所述绝缘端部上设有对应所述第一凸起设置的第二凸起,所述第二凸起的横截面形状与所述第一凸起的横截面形状相同。
可选地,所述绝缘主体的一侧设有所述极靴,所述绝缘主体背向所述极靴的另一侧与所述开口槽的另一槽侧壁固定连接。
可选地,所述绝缘主体背向所述极靴的另一侧设有第三凸起,所述第三凸起与所述开口槽的另一槽侧壁卡接固定。
可选地,所述绝缘主体的相对两侧均设有所述极靴,且所述绝缘主体隔开位于所述绝缘主体相对两侧的所述极靴。
为实现上述目的,本申请第二方面提供了一种槽楔,包括:
绝缘主体;
一个或多个极靴,所述极靴设于所述绝缘主体的一侧或相对两侧;
铁芯的开口槽的开口处设有定位部,所述极靴的外侧壁与所述定位部通过导磁胶粘接固定;且所述绝缘主体切断所述极靴的内侧壁与所述开口槽之间的磁性连通。
可选地,所述绝缘主体的外侧壁上设有用于安装所述极靴的凹槽,所述极靴的内侧壁与所述凹槽的槽壁相贴合;所述绝缘主体包括位于所述极靴和所述开口槽的远离定位部的槽侧壁之间的绝缘主体部,以及与所述绝缘主体部连接且位于所述极靴靠近所述开口槽槽底的一侧的绝缘底部。
可选地,所述绝缘底部远离所述绝缘主体部的一端与所述开口槽的槽侧壁相贴合、以切断所述极靴内侧壁与所述开口槽之间的磁性连通。
可选地,所述极靴的外侧壁与所述绝缘主体的外侧壁共面。
可选地,所述绝缘底部形成所述凹槽槽壁的内侧壁为第一槽壁;自所述绝缘底部到所述绝缘主体部的方向上,所述第一槽壁向远离所述开口槽槽底的方向倾斜。
可选地,所述极靴背向所述开口槽槽底一侧的表面与铁芯设有所述开口槽的端面共面。
可选地,所述绝缘主体还包括与所述绝缘主体部连接的绝缘顶部,所述绝缘顶部位于所述极靴背向所述开口槽槽底的另一侧。
可选地,所述绝缘顶部对应所述凹槽的内壁面与所述绝缘主体部对应所述凹槽的内壁面垂直。
可选地,所述绝缘主体还包括挡在所述极靴长度方向的两个端部上的绝缘端部。
可选地,所述定位部为V型槽,所述极靴的外侧壁与所述定位部的槽壁的形状相适配。
可选地,所述绝缘主体的一侧设有所述极靴,所述绝缘主体背向所述极靴的另一侧与所述开口槽的另一槽侧壁固定连接。
可选地,所述绝缘主体的相对两侧均设有所述极靴,且所述绝缘主体隔开位于所述绝缘主体相对两侧的所述极靴。
为实现上述目的,本申请第三方面还提供了一种电机,包括:铁芯,所述铁芯上均布有多个开口槽,所述开口槽与槽楔一一对应设置,所述槽楔采用如前所述的槽楔。
可选地,所述绝缘主体的前后两端分别伸出所述开口槽。
综上,本申请的技术效果和优点:
1、本申请中,铁芯槽为开口槽结构,下线空间大,便于铁芯绕组下线;槽楔的极靴与铁芯的开口槽配合,能够起到半开口槽的作用,能够提高铁芯的电磁性能;此外,绝缘主体的相对两侧均设有极靴时,两侧的极靴由绝缘主体隔开,能够避免两侧极靴连通产生涡流,避免影响电机效率;极靴靠近开口槽的槽底的一侧设有绝缘底部,起到绝缘的作用,极靴由绝缘主体固定,能够增加槽楔的整体刚度,绝缘主体能够对绕组起限位作用。
2、本申请中,极靴与定位部还可以通过导磁胶粘接,安装简单,安装位置固定;两侧的极靴由绝缘主体隔开,能够避免两侧极靴连通产生涡流,避免影响电机效率。
3、本申请中,绝缘底部形成凹槽槽壁的内壁为第一槽壁,绝缘底部施加到极靴上的力包括远离开口槽的槽底方向的支撑力和向外指向开口槽槽壁的压力,由于极靴与开口槽的槽壁卡接,绝缘底部对极靴的向外的压力能够提高开口槽的槽壁与极靴之间的相互作用力,从而能够提高极靴与开口槽连接稳定性。
4、本申请中,绝缘底部倾斜设置的第一槽壁施加到极靴上的力包括远离开口槽槽底方向的支撑力和向外指向定位部槽壁的压力,第一槽壁对极靴的向外的压力能够提高定位部的槽壁与极靴之间的相互作用力,从而能够提高极靴与定位部粘接稳定性。
5、本申请中,极靴远离开口槽的槽底一侧的绝缘顶部能够进一步加强槽楔刚度,使槽楔能够承受更大的力,并且绝缘顶部、绝缘主体部和绝缘底部相互配合,共同包覆极靴,能够避免极靴受到永磁体的磁力产生变形。
6、本申请中,远离开口槽的槽底一侧的极靴和绝缘主体共面,使极靴远离开口槽的槽底一侧的表面无绝缘主体,可以避免槽楔表面有绝缘主体高出铁芯端面对机械气隙大小产生影响。
7、本申请中,绝缘主体对极靴的前后两端均具有保护作用,在槽楔装配过程中能够避免极靴受到损伤;绝缘主体的前后两端分别伸出开口槽,绝缘主体能够对铁芯外的端部绕组也起到限位作用。
8、本申请中,绝缘顶部对应凹槽的内壁面与绝缘主体部对应凹槽的内壁面垂直,能够使极靴与开口槽配合形成的形状规格与现有的半开口槽的形状规格相同,便于后续电磁计算。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一方面实施例一中槽楔的结构示意图;
图2为本申请第一方面实施例一中槽楔的俯视图;
图3为图2的A-A剖视图;
图4为本申请第一方面实施例一中铁芯与槽楔的装配示意图一;
图5为本申请第一方面实施例一中铁芯与槽楔的装配示意图二;
图6为本申请第一方面实施例一中开口槽的结构示意图
图7为本申请第一方面实施例一中开口槽与槽楔的装配示意图;
图8为图7的B-B剖视图;
图9为本申请第一方面实施例二中槽楔的结构示意图;
图10为本申请第一方面实施例二中槽楔的俯视图;
图11为图10的C-C剖视图;
图12为本申请第一方面实施例三中槽楔的结构示意图;
图13为本申请第一方面实施例三中槽楔的俯视图;
图14为图13的D-D剖视图。
图15为本申请第二方面实施例一中槽楔的结构示意图;
图16为本申请第二方面实施例一中槽楔的半剖图;
图17为本申请第二方面实施例一中铁芯与槽楔的装配示意图;
图18为本申请第二方面实施例一中开口槽的结构示意图;
图19为本申请第二方面实施例一中开口槽与槽楔的装配示意图;
图20为本申请第二方面实施例二中槽楔的结构示意图;
图21为本申请第二方面实施例二中槽楔的半剖图;
图22为本申请第二方面实施例二中铁芯与槽楔的装配示意图;
图23为本申请第二方面实施例二中开口槽与槽楔的装配示意图。
图中:图中:1、槽楔;2、铁芯;11、绝缘主体;12、极靴;110、绝缘主体部;111、绝缘底部;112、绝缘顶部;113、连接面;114、倒角面;115、第二凸起;116、第三凸起;121、第一凸起;21、开口槽;211、卡槽;212、定位部。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连 接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
第一方面的实施例一
本实施例提供一种槽楔1,如图1-8所示,包括绝缘主体11和极靴12。其中绝缘主体11为槽楔1的主干,其一方面用于固定极靴12,一方面用于承担绕组扩散趋势的力;极靴12用于与开口槽21的槽侧壁连接形成磁路,极靴12与开口槽21配合形成的结构与现有的半开口槽结构类似,极靴12用于提高铁芯2的电磁性能。由于开口槽21具有一定的长度,因此绝缘主体11呈长条状。绝缘主体11相对两侧均设有极靴12,极靴12的外侧壁与开口槽21的临近侧的槽侧壁固定连接;极靴12的内侧壁通过与绝缘主体11固定连接、以切断极靴12的内侧壁与开口槽21之间的磁性连通。具体的,绝缘主体11的相对两侧均设有用于安装极靴12的凹槽,极靴12与开口槽21槽侧壁相接的侧壁为极靴12的外侧壁,极靴12与凹槽侧壁相接的侧壁为极靴12的内侧壁。开口槽21包括槽底壁、临近侧的槽侧壁和远离侧的槽侧壁,远离侧的槽侧壁和临近侧的槽侧壁相对设置,临近侧的槽侧壁和远离侧的槽侧壁以相对于极靴12的位置来限定,开口槽21的临近侧的槽侧壁为与极靴12外侧壁直接固定连接的一个槽侧壁。绝缘主体11在切断极靴12的内侧壁与开口槽21之间的磁性连通时,不仅切断极靴12的内侧壁与开口槽21的远离侧的槽侧壁之间的磁性连通,还切断极靴12的内侧壁与开口槽21的槽底壁、开口槽21的临近侧的槽侧壁之间的磁性连通。
在本实施例的一些实施方式中,绝缘主体11的横截面整体呈“工”字形,包括一体连接的绝缘主体部110、绝缘底部111和绝缘顶部112。其中,绝缘主体部110位于两个凹槽之间,用于隔开位于绝缘主体11相对两侧的两个极靴12;绝缘底部111位于极靴12靠近开口槽21槽底的一侧;绝缘顶部112位于极靴12背向开口槽槽底的另一侧。在本实施例的另一些实施方式中,绝缘主体11不包括绝缘顶部112,绝缘主体11的横截面整体呈“⊥”字型。
本实施例中,铁芯上开槽为开口槽21结构,下线空间大,便于铁芯绕组下线,降低铁芯开槽的工艺难度;槽楔1的极靴12与铁芯2的开口槽21配合,能够起到半开口槽的作用,能够提高铁芯2的电磁性能;此外,两侧的极靴12由绝缘主体11隔开,能够避免两侧极靴12连通产生涡流,避免影响电机效率;极靴12靠近开口槽21的槽底的一侧设有绝缘底部111,起到绝缘的作用,极靴12由绝缘主体11固定,能够增加槽楔1的整体刚度,绝缘主体11能够对绕组起限位作用。绝缘顶部112能够进一步加强槽楔1的刚度,使槽楔1能够承受更大的力,并且绝缘顶部112、绝缘主体部110和绝缘底部111相互配合,共同包覆极靴12,能够避免极靴12受到永磁体的磁力产生变形。
可选地,绝缘底部111形成凹槽槽壁的内壁为第一槽壁,自绝缘底部111到绝缘主体部110的方向上,第一槽壁向远离开口槽21槽底的方向倾斜。本实施例中,倾斜设置的绝缘底部111施加到极靴12上的力包括远离开口槽21槽底方向的支撑力和向外指向开口槽21槽壁的压力,由于极靴12与开口槽21的槽壁卡接,绝缘底部111对极靴12的向外的压力能够提高开口槽21的槽壁与极 靴12之间的相互作用力,从而能够提高极靴12与开口槽21连接稳定性。可选地,凹槽侧壁包括第一槽壁、第二槽壁和连接面113,第一槽壁为绝缘底部111的内壁,第二槽壁为绝缘顶部112的内壁,连接面113为绝缘主体部110的内壁,连接面113的两端分别与第一槽壁和第二槽壁的内侧连接。本实施例中如图3所示,第二槽壁与铁芯2的端面平行,连接面113与第二槽壁垂直设置,连接面113与第二槽壁连接处可以设置倒角面114,第一槽壁倾斜设置,极靴12内侧与凹槽贴合,能够使极靴12与开口槽21配合后的形状与现有半开口槽形状相同,使后续电磁计算与现有计算方式相同,便于设计人员设计选用。
具体地,绝缘主体11还包括挡在极靴12的长度方向上的两端的绝缘端部。绝缘端部对极靴12的前后两端均具有保护作用,在槽楔1装配到开口槽21的过程中能够避免极靴12受到损伤。可选地,绝缘端部的前后两端分别伸出开口槽21,绝缘端部能够对铁芯2外的端部绕组也起到限位作用。
具体地,极靴12的外侧设有向外延伸的第一凸起121,开口槽21的槽壁上设有卡槽211,第一凸起121与卡槽211卡接;第一凸起121的横截面形状与卡槽211的横截面形状相同。本申请对极靴12的第一凸起121和开口槽21的卡槽211的具体形状不做限定,只要有凹凸配合,可起到对槽楔1的限位作用即可。
可选地,绝缘端部112上设有对应第一凸起121设有第二凸起115,第二凸起115的横截面形状与第一凸起121的横截面形状相同。第二凸起115起到保护第一凸起121的作用,在槽楔1装配到开口槽21的过程中能够避免第一凸起121受到损伤。
本实施例还提供一种电机,如图4所示,该电机可以是盘式电机。如图5所示,该电机还可以是径向电机,虽然现在径向电机绕组通过焊接可以完成叠绕绕组的下线,但是连续波绕绕组仍需用开口槽下线的方式,即本实施例的槽楔1在径向电机中同样适用。具体的,如图4-8所示,电机包括铁芯2,铁芯2上均布有多个开口槽21,开口槽21与槽楔1一一对应设置,槽楔1采用如前的槽楔1。可选地,绝缘主体11的前后两端分别伸出开口槽21。槽楔1中的极靴12与开口槽21配合形成的形状规格与现有的半开口槽的形状规格相同,便于后续电磁计算。
以盘式电机为例做具体说明,首先铁芯2通过冲卷或冲压,并在铁芯2上加工多个开口槽21,在开口槽21两侧加工出卡槽211,以便后续槽楔1装配且能够卡住槽楔1,对槽楔1起到限位功能。因为槽楔1本身会占据开口槽21的空间,所以卡槽211位于开口槽21的上部。可选地,卡槽211距离铁芯2的上端面1-2mm,使卡槽211卡死槽楔1的同时,槽楔1不会占据过多开口槽21的位置。
之后对槽楔1的极靴12进行准备。可选地,极靴12部分由软磁材料组成,包括但不限于硅钢片、SMC(软磁复合材料)等;再将软磁材料通过铆接硅钢片、自粘硅钢片、烧结软磁复合材料等方法使极靴12成型。该极靴12形状与开口槽21配合形成与现有半开口槽相同的形状,便于电磁计算,便于设计人员设计计算。
极靴12部分成型之后将其放入模压模具,再添加绝缘主体11的复合材料将极靴12包裹,其中复合材料为刚度较好且绝缘的材料,包括但不限于玻璃纤维等。后续通过模压成型制作出槽楔1。
本实施例使极靴12部分与绝缘主体11部分结合成一个整体且两者没有材料交融,能够避免因极靴12的软磁材料与铁芯2连通产生涡流损耗。最后将绕组放入开口槽21内,再将槽楔1插入开 口槽21,使极靴12的第一凸起121与开口槽21的卡槽211配合,完成最终装配。其中极靴12与铁芯2接触形成磁路代替半开口槽的极靴12,绝缘主体11为槽楔1的主干,能够承担绕组扩散趋势的力。
本技术方案所涉及铆接自扣工艺,铁芯卷绕工艺,复合材料模压工艺均为较成熟工艺,加工难度较低。本实施例能够以较低的成本及技术要求解决绕组下线困难,气隙谐波增加,磁性槽楔涡流增大等问题。
第一方面的实施例二
如图9-11所示,本实施例与第一方面的实施例一的区别在于:绝缘主体11的两侧分别设有多个极靴12,极靴12的个数至少为2个。本实施例中每侧的极靴12个数为2个,同一侧上的两个极靴12之间间隔有绝缘主体11。由于同一侧的极靴12之间间隔有绝缘主体11,绝缘主体11采用刚度较好且绝缘的复合材料,其相较于极靴12的硅钢片及SMC抵抗变形的能力更强,本实施例与实施例1相比抵抗变形的能力更强。本实施例其他结构与第一方面的实施例一相同。
第一方面的实施例三
部分电机会采用电机定子单侧不对称极靴12。为此,如图12-14所示,本实施例与第一方面的实施例一的区别在于:绝缘主体11的一侧设有极靴12,极靴12的个数可以是任意个。本实施例中极靴12个数为1个。绝缘主体11的另一侧设有与第一凸起121对称的第三凸起116。装配时,第一凸起121和第三凸起116分别与开口槽21的卡槽211连接。本实施例其他结构与第一方面的实施例一相同。
第二方面的实施例一
本实施例提供一种槽楔1,如图15-19所示,包括绝缘主体11和极靴12。其中绝缘主体11为槽楔1的主干,其一方面用于固定极靴12,一方面用于承担绕组扩散趋势的力;极靴12用于与开口槽21的槽壁连接形成磁路,极靴12与开口槽21配合形成的结构与现有的半开口槽21结构类似,极靴12用于提高铁芯2的电磁性能。由于开口槽21具有一定的长度,因此绝缘主体11呈长条状。绝缘主体11的相对两侧均设有极靴12,开口槽21的开口处设有定位部212,极靴12的外侧壁与定位部212通过导磁胶粘接;并且绝缘主体11切断极靴12的内侧壁与开口槽21之间的磁性连通。具体的,绝缘主体11的外侧壁上设有用于安装极靴12的凹槽,极靴12的内侧壁与凹槽的槽壁相贴合;绝缘主体11包括位于极靴12和开口槽21的远离定位部212的槽侧壁之间的绝缘主体部110,以及与绝缘主体部110连接且位于极靴12靠近开口槽槽底的一侧的绝缘底部111;两侧的极靴12由绝缘主体部110隔开。本实施例中绝缘主体11的两侧分别设置一个极靴12。绝缘主体11每侧设置的极靴12的个数还可以是2、3、4等多个,多个极靴12在绝缘主体11的两侧沿绝缘主体11的长度方向间隔设置。
本实施例中,铁芯2槽为开口槽结构,下线空间大,便于铁芯2绕组下线;槽楔1的极靴12与铁芯2的开口槽21配合,能够起到半开口槽21的作用,能够提高铁芯2的电磁性能;极靴12与定位部212通过导磁胶粘接,安装简单,安装位置固定;两侧的极靴12由绝缘主体部110隔开,能够避免两侧极靴12连通产生涡流,避免影响电机效率;极靴12靠近开口槽21的槽底的一侧设有绝缘 底部111,起到绝缘的作用,极靴12由绝缘主体11固定,能够增加槽楔1的整体刚度,绝缘主体11能够对绕组起限位作用。
可选地,绝缘主体11的侧壁上设有用于安装极靴12的凹槽,极靴12的内侧壁与凹槽的槽壁相贴合,极靴12的外侧壁与绝缘主体11的外侧壁共面,绝缘底部111形成凹槽槽壁的内侧壁为第一槽壁,自绝缘底部111到绝缘主体部110的方向上,第一槽壁向远离开口槽槽底的方向倾斜。本实施例中,绝缘底部111上倾斜设置的第一槽壁施加到极靴12上的力包括远离开口槽21槽底方向的支撑力和向外指向定位部212槽壁的压力,第一槽壁对极靴12的向外的压力能够提高定位部212的槽壁与极靴12之间的相互作用力,从而能够提高极靴12与定位部212粘接稳定性。
可选地,极靴12远离开口槽21的槽底一侧的表面与铁芯2设有开口槽21的端面共面。
在本实施例的一些实施方式中,绝缘主体11还包括与绝缘主体部110连接的绝缘顶部112,绝缘顶部112位于极靴12背向开口槽槽底的另一侧。绝缘顶部112对应凹槽的内壁面与绝缘主体部110对应凹槽的内壁面垂直。极靴12内侧壁与绝缘主体部110、绝缘顶部112和绝缘底部111对应凹槽的内壁均贴合,如此设置能够使极靴12与开口槽21配合后的形状与现有半开口槽21形状相同,使后续电磁计算与现有计算方式相同,便于设计人员设计选用。绝缘顶部112能够进一步加强槽楔1的刚度,使槽楔1能够承受更大的力,并且该处的绝缘主体11与极靴12靠近开口槽21的槽底一侧的绝缘主体11配合,共同包覆极靴12,能够避免极靴12受到永磁体的磁力产生变形。但是如此设置,绝缘主体11会高出铁芯2端面,可能会对机械气隙大小产生影响。在本实施例的另一些实施方式中,绝缘主体11还可以无需设置绝缘顶部112,极靴12背向开口槽21槽底的一面与绝缘主体部110的上端面齐平。
可选地,绝缘主体11还包括挡在极靴12的长度方向上的绝缘端部。绝缘端部对极靴12的前后两端均具有保护作用。在槽楔1装配到开口槽21的过程中能够避免极靴12受到损伤。
可选地,绝缘底部111伸入定位部212下方的开口槽21内,绝缘底部111的外侧面与开口槽21的槽壁贴合。该绝缘底部111能够进一步提高槽楔1的整体刚度,提高绝缘主体11承担绕组扩散趋势的力。
可选地,定位部212为V型槽,极靴12的外侧面沿远离开口槽21的槽底的方向向外倾斜。极靴12的外侧面与定位部212贴合,由于V型槽具有两个倾斜的限位面,限位面能够与极靴12的两个向外倾斜的外侧面贴合,从而对极靴12具有定位作用,能够避免极靴12向开口槽21槽底方向移动。可替换地,定位部212还可以是矩形槽,矩形槽的宽度大于开口槽21的宽度,极靴12的外侧面不倾斜设置,极靴12外侧面与矩形槽的槽壁贴合,矩形槽与开口槽21形成阶梯状,矩形槽也能够对极靴12起到定位作用。
本实施例还提供一种电机,如图17-19所示,包括铁芯2,铁芯2上均布有多个开口槽21,开口槽21与槽楔1一一对应设置,槽楔1采用如前的槽楔1。开口槽21为前述的具有定位部212的开口槽21结构。本实施例的电机可以是盘式电机也可以是径向电机。虽然现在径向电机绕组通过焊接可以完成叠绕绕组的下线,但是连续波绕绕组仍需用开口槽下线的方式,即本实施例的槽楔1在径向电机中同样适用。
可选地,绝缘主体11的前后两端分别伸出开口槽21;绝缘主体11能够对铁芯2外的端部绕组也起到限位作用。
以盘式电机为例做具体说明,首先铁芯2通过冲卷或冲压,并在铁芯2上加工多个开口槽21,在开口槽21开口处加工出定位部212,以便后续槽楔1装配,定位部212对极靴12起到连接定位作用。
然后对槽楔1的极靴12进行准备。可选地,极靴12部分由软磁材料组成,包括但不限于硅钢片、SMC(软磁复合材料)等;再将软磁材料通过铆接硅钢片、自粘硅钢片、烧结软磁复合材料等方法使极靴12成型。该极靴12形状与开口槽21配合形成与现有半开口槽21相同的形状,便于电磁计算,便于设计人员设计计算。
极靴12部分成型之后将其放入模压模具,再添加绝缘主体11的复合材料将极靴12包裹,其中复合材料为刚度较好且绝缘的材料,包括但不限于玻璃纤维等。后续通过模压成型制作出槽楔1。
本实施例使极靴12部分与绝缘主体11部分结合成一个整体且两者没有材料交融,能够避免因极靴12的软磁材料与铁芯2连通产生涡流损耗。最后将绕组放入开口槽21内,再将极靴12与开口槽21的定位部212通过导磁胶粘接,完成最终装配。其中极靴12与铁芯2接触形成磁路代替半开口槽21的极靴12,绝缘主体11为槽楔1的主干,能够承担绕组扩散趋势的力。
本技术方案所涉及铆接自扣工艺,铁芯卷绕工艺,复合材料模压工艺均为较成熟工艺,加工难度较低。本实施例能够以较低的成本及技术要求解决绕组下线困难,气隙谐波增加,磁性槽楔涡流增大等问题。
第二方面的实施例二
如图20-23所示,本实施例与第二方面的实施例一的区别在于:远离开口槽21的槽底一侧的极靴12和绝缘主体11共面,能够使极靴12远离开口槽21的槽底一侧的表面无绝缘主体11,可以避免槽楔1表面有绝缘主体11高出铁芯2端面对机械气隙大小产生影响。极靴12与开口槽21配合后的形状与现有半开口槽21形状相同,使后续电磁计算与现有计算方式相同,便于设计人员设计选用。本实施例不包括第二方面的实施例一的第三槽壁113。本实施例其他结构与第二方面的实施例一相同。
最后应说明的是:以上仅为本申请的优选实施例而已,并不用于限制本申请,尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种槽楔,其特征在于,包括:
    绝缘主体;
    一个或多个极靴,所述极靴设于所述绝缘主体的一侧或相对两侧,所述极靴的外侧壁与铁芯的开口槽的临近侧的槽侧壁固定连接;所述极靴的内侧壁通过与所述绝缘主体固定连接,以切断所述极靴的内侧壁与所述开口槽之间的磁性连通。
  2. 根据权利要求1所述的槽楔,其特征在于,所述绝缘主体的一侧或相对两侧设有凹槽,所述极靴安装在所述凹槽上;所述极靴与所述开口槽槽侧壁相接的侧壁为所述极靴的外侧壁,所述极靴与所述凹槽侧壁相接的侧壁为所述极靴的内侧壁。
  3. 根据权利要求2所述的槽楔,其特征在于,所述绝缘主体包括相连的绝缘主体部和绝缘底部;所述绝缘主体部位于所述极靴和所述开口槽的远离侧的槽侧壁之间,所述绝缘底部位于所述极靴靠近所述开口槽槽底的一侧。
  4. 根据权利要求3所述的槽楔,其特征在于,所述绝缘底部形成所述凹槽槽壁的内壁为第一槽壁;自所述绝缘底部到所述绝缘主体部的方向上,所述第一槽壁向远离所述开口槽槽底的方向倾斜。
  5. 根据权利要求1-3中任一项所述的槽楔,其特征在于,所述绝缘主体还包括与所述绝缘主体部连接的绝缘顶部,所述绝缘顶部位于所述极靴背向所述开口槽槽底的另一侧。
  6. 根据权利要求1-5中任一项所述的槽楔,其特征在于,所述极靴的外侧设有向外延伸的第一凸起,所述开口槽的槽侧壁上设有卡槽,所述第一凸起与所述卡槽卡接;所述第一凸起的横截面形状与所述卡槽的横截面形状相同。
  7. 根据权利要求6所述的槽楔,其特征在于,所述绝缘主体还包括挡在所述极靴长度方向的两个端部上的绝缘端部。
  8. 根据权利要求7所述的槽楔,其特征在于,所述绝缘端部上设有对应所述第一凸起设置的第二凸起,所述第二凸起的横截面形状与所述第一凸起的横截面形状相同。
  9. 根据权利要求1-8中任一项所述的槽楔,其特征在于,所述绝缘主体的一侧设有所述极靴,所述绝缘主体背向所述极靴的另一侧与所述开口槽的另一槽侧壁固定连接。
  10. 根据权利要求9所述的槽楔,其特征在于,所述绝缘主体背向所述极靴的另一侧设有第三凸起,所述第三凸起与所述开口槽的另一槽侧壁卡接固定。
  11. 根据权利要求1-8中任一项所述的槽楔,其特征在于,所述绝缘主体的相对两侧均设有所述极靴,且所述绝缘主体隔开位于所述绝缘主体相对两侧的所述极靴。
  12. 一种槽楔,其特征在于,包括:
    绝缘主体;
    一个或多个极靴,所述极靴设于所述绝缘主体的一侧或相对两侧;
    铁芯的开口槽的开口处设有定位部,所述极靴的外侧壁与所述定位部通过导磁胶粘接固定;并且,
    所述绝缘主体切断所述极靴的内侧壁与所述开口槽之间的磁性连通。
  13. 根据权利要求12所述的槽楔,其特征在于,所述绝缘主体的外侧壁上设有用于安装所述极靴的凹槽,所述极靴的内侧壁与所述凹槽的槽壁相贴合;所述绝缘主体包括位于所述极靴和所述开口槽的远离定位部的槽侧壁之间的绝缘主体部,以及与所述绝缘主体部连接且位于所述极靴靠近所述开口槽槽底的一侧的绝缘底部。
  14. 根据权利要求13所述的槽楔,其特征在于,所述绝缘底部远离所述绝缘主体部的一端与所述开口槽的槽侧壁相贴合、以切断所述极靴内侧壁与所述开口槽之间的磁性连通。
  15. 根据权利要求13所述的槽楔,其特征在于,所述极靴的外侧壁与所述绝缘主体的外侧壁共面。
  16. 根据权利要求13所述的槽楔,其特征在于,所述绝缘底部形成所述凹槽槽壁的内侧壁为第一槽壁;自所述绝缘底部到所述绝缘主体部的方向上,所述第一槽壁向远离所述开口槽槽底的方向 倾斜。
  17. 根据权利要求12-16中任一项所述的槽楔,其特征在于,所述极靴背向所述开口槽槽底一侧的表面与铁芯设有所述开口槽的端面共面。
  18. 根据权利要求13-16中任一项所述的槽楔,其特征在于,所述绝缘主体还包括与所述绝缘主体部连接的绝缘顶部,所述绝缘顶部位于所述极靴背向所述开口槽槽底的另一侧。
  19. 根据权利要求18所述的槽楔,其特征在于,所述绝缘顶部对应所述凹槽的内壁面与所述绝缘主体部对应所述凹槽的内壁面垂直。
  20. 根据权利要求13-16中任一项所述的槽楔,其特征在于,所述绝缘主体还包括挡在所述极靴长度方向的两个端部上的绝缘端部。
  21. 根据权利要求12-20中任一项所述的槽楔,其特征在于,所述定位部为V型槽,所述极靴的外侧壁与所述定位部的槽壁的形状相适配。
  22. 根据权利要求12-21中任一项所述的槽楔,其特征在于,所述绝缘主体的一侧设有所述极靴,所述绝缘主体背向所述极靴的另一侧与所述开口槽的另一槽侧壁固定连接。
  23. 根据权利要求12-21中任一项所述的槽楔,其特征在于,所述绝缘主体的相对两侧均设有所述极靴,且所述绝缘主体隔开位于所述绝缘主体相对两侧的所述极靴。
  24. 一种电机,包括铁芯,其特征在于,所述铁芯上设有多个开口槽,所述开口槽与槽楔一一对应设置,所述槽楔采用如权利要求1-23中任一项所述的槽楔。
  25. 根据权利要求24所述的电机,其特征在于,所述绝缘主体的前后两端分别伸出所述开口槽。
PCT/CN2023/125395 2022-10-26 2023-10-19 一种槽楔及具有其的电机 WO2024088146A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211316978.X 2022-10-26
CN202211316730.3 2022-10-26
CN202211316978.XA CN115528844A (zh) 2022-10-26 2022-10-26 一种复合槽楔及具有其的电机
CN202211316730.3A CN115632507A (zh) 2022-10-26 2022-10-26 一种槽楔及具有其的电机

Publications (1)

Publication Number Publication Date
WO2024088146A1 true WO2024088146A1 (zh) 2024-05-02

Family

ID=90830074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125395 WO2024088146A1 (zh) 2022-10-26 2023-10-19 一种槽楔及具有其的电机

Country Status (1)

Country Link
WO (1) WO2024088146A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111411A (zh) * 1994-05-05 1995-11-08 陈启星 铁磁性材料与非磁性材料相间的叠层式槽楔的电机
KR20210006220A (ko) * 2019-07-08 2021-01-18 현대모비스 주식회사 고정자 어셈블리용 웨지부재 및 헤어핀 권선모터의 고정자 어셈블리
JP2021136838A (ja) * 2020-02-28 2021-09-13 日立金属株式会社 磁性楔、回転電機、および磁性楔の製造方法
CN114362407A (zh) * 2021-12-29 2022-04-15 浙江源新智能电机有限公司 电机、电机定子及弯折式复合磁性槽楔
CN115528844A (zh) * 2022-10-26 2022-12-27 浙江盘毂动力科技有限公司 一种复合槽楔及具有其的电机
CN115632507A (zh) * 2022-10-26 2023-01-20 浙江盘毂动力科技有限公司 一种槽楔及具有其的电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111411A (zh) * 1994-05-05 1995-11-08 陈启星 铁磁性材料与非磁性材料相间的叠层式槽楔的电机
KR20210006220A (ko) * 2019-07-08 2021-01-18 현대모비스 주식회사 고정자 어셈블리용 웨지부재 및 헤어핀 권선모터의 고정자 어셈블리
JP2021136838A (ja) * 2020-02-28 2021-09-13 日立金属株式会社 磁性楔、回転電機、および磁性楔の製造方法
CN114362407A (zh) * 2021-12-29 2022-04-15 浙江源新智能电机有限公司 电机、电机定子及弯折式复合磁性槽楔
CN115528844A (zh) * 2022-10-26 2022-12-27 浙江盘毂动力科技有限公司 一种复合槽楔及具有其的电机
CN115632507A (zh) * 2022-10-26 2023-01-20 浙江盘毂动力科技有限公司 一种槽楔及具有其的电机

Similar Documents

Publication Publication Date Title
JP5204892B2 (ja) モータの電機子
JP4884418B2 (ja) 分割固定子鉄心の製造方法
US8035265B2 (en) Motor stator and molded motor
WO2020042912A1 (zh) 一种分段铁芯以及盘式电机
CN115632507A (zh) 一种槽楔及具有其的电机
JPH09285044A (ja) ブラシレスdcモータの固定子
JP2008167518A (ja) 固定子
JPH10145990A (ja) アウタロータモータの固定子鉄心
JP2006158199A (ja) 回転電機の固定子
WO2024088146A1 (zh) 一种槽楔及具有其的电机
US7227291B2 (en) Stator for an electrical machine
CN115528844A (zh) 一种复合槽楔及具有其的电机
CN211405625U (zh) 定子铁芯、定子、电机及家用电器
JP5258944B2 (ja) 電動機及び分割固定子鉄心の製造方法
JP2590117Y2 (ja) 電動機の固定子
JP2016116418A (ja) 回転電機のコイル巻回部品、及び、その製造方法
EP3200319B1 (en) Stator assembly, and, motor and electric pump having the same
JP4742418B2 (ja) 電機子およびその電機子を用いたモータ
CN110266126B (zh) 定子铁芯、定子、电机和空调器
JP4619098B2 (ja) ステータ用絶縁部材およびそれを備えた回転機
CN214254093U (zh) 差模电感器
JP3603128B2 (ja) 突極形回転子の巻線方法および突極形回転子
CN213817387U (zh) 一种具有同心式补偿绕组的直流电动机
JP5679833B2 (ja) 回転電機の固定子、回転電機及び圧縮機
CN215817682U (zh) 一种定子、电机及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881724

Country of ref document: EP

Kind code of ref document: A1