WO2024087619A1 - 清洁基站及其控制方法、清洁系统 - Google Patents

清洁基站及其控制方法、清洁系统 Download PDF

Info

Publication number
WO2024087619A1
WO2024087619A1 PCT/CN2023/096942 CN2023096942W WO2024087619A1 WO 2024087619 A1 WO2024087619 A1 WO 2024087619A1 CN 2023096942 W CN2023096942 W CN 2023096942W WO 2024087619 A1 WO2024087619 A1 WO 2024087619A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
base station
cleaning robot
side wall
signal
Prior art date
Application number
PCT/CN2023/096942
Other languages
English (en)
French (fr)
Inventor
黄军舰
梁学
康业伟
李基文
叶力荣
Original Assignee
深圳银星智能集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳银星智能集团股份有限公司 filed Critical 深圳银星智能集团股份有限公司
Publication of WO2024087619A1 publication Critical patent/WO2024087619A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4091Storing or parking devices, arrangements therefor; Means allowing transport of the machine when it is not being used
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/661Docking at a base station
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4005Arrangements of batteries or cells; Electric power supply arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • A47L11/4025Means for emptying
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4083Liquid supply reservoirs; Preparation of the agents, e.g. mixing devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2873Docking units or charging stations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/024Emptying dust or waste liquid containers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/026Refilling cleaning liquid containers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/028Refurbishing floor engaging tools, e.g. cleaning of beating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/10Specific applications of the controlled vehicles for cleaning, vacuuming or polishing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals
    • G05D2111/14Non-visible signals, e.g. IR or UV signals

Definitions

  • the present invention relates to the field of cleaning robots, and in particular to a cleaning base station and a control method and a cleaning system thereof.
  • a cleaning robot is an automated device that cleans the floor.
  • the cleaning robot is usually used in conjunction with a cleaning base station, where the cleaning base station can perform maintenance on the cleaning robot, such as cleaning and charging the cleaning robot.
  • the cleaning robot After the cleaning robot enters the cleaning base station, the cleaning robot is generally aligned through the infrared module of the cleaning base station. When the cleaning robot stops at the correct position, the maintenance work of the cleaning robot can be started. However, the precise alignment of the cleaning robot only through the infrared module makes the control algorithm of the infrared alignment process more demanding.
  • the present invention provides a cleaning base station and a control method thereof, and a cleaning system, which can realize accurate alignment of a cleaning robot while reducing the difficulty of designing a control algorithm for an infrared alignment process.
  • an embodiment of the present invention provides a cleaning base station, which includes: a base, the base including an open chamber capable of accommodating at least part of a cleaning robot, the open chamber having a chamber side wall extending substantially in an arc shape; a first electrode, arranged on the chamber side wall, the first electrode being used to contact a second electrode of the cleaning robot and charge the cleaning robot; an infrared module, arranged on the chamber side wall, for aligning the cleaning robot; and a guide member, arranged on the chamber side wall, the guide member protruding from the chamber side wall, the guide member being able to extend into a guide groove of the cleaning robot, the end of the guide member away from the chamber side wall being a guide portion, and a cross-sectional size of the guide portion gradually decreases in a direction away from the chamber side wall.
  • the cleaning base station includes an infrared module and a guide member.
  • the infrared module can perform preliminary alignment of the cleaning robot.
  • the guide member is arranged to protrude from the side wall of the chamber, and the guide member can extend into the guide groove of the cleaning robot.
  • the end of the guide member away from the side wall of the chamber is a guide part.
  • the cross-sectional size of the guide part gradually decreases, so that the guide member can be captured by the guide groove of the cleaning robot within a preset range.
  • the guide portion includes two inclined surfaces arranged opposite to each other, and the two inclined surfaces gradually approach each other in a direction away from the side wall of the chamber.
  • the guide portion has two inclined surfaces, and the two inclined surfaces gradually approach each other in a direction away from the side wall of the chamber.
  • the guide groove is also provided with a slope matching the slope of the guide part.
  • the guide is centrally arranged on the arc-shaped extension structure of the chamber side wall
  • the cleaning base station further comprises: at least two guide assemblies, which are arranged on the chamber side wall, and the at least two guide assemblies are symmetrically distributed on both sides of the guide, and each of the guide assemblies comprises at least one roller, and the roller portion is exposed on the chamber side wall.
  • the cleaning base station further comprises at least two guide assemblies, and the at least two guide assemblies are symmetrically distributed on both sides of the guide, so that when the cleaning robot deviates to either side of the guide, there is a guide assembly to guide the cleaning robot to the central position of the chamber side wall.
  • Each guide assembly comprises at least one roller, and the roller portion is exposed on the chamber side wall.
  • the roller guides the cleaning robot to a direction closer to the guide by rotating, thereby improving the efficiency of the cleaning robot alignment process.
  • the roller can rotate, the wear on the cleaning robot during the process of guiding the cleaning robot can be reduced.
  • the cleaning base station further comprises: a water injection member, the water injection member is arranged through the side wall of the chamber, the extension axis of the water injection member is parallel to the extension axis of the guide member, one end of the water injection member passing through the side wall of the chamber is a water injection end, the water injection end is in a conical shape, and the conical shape matches the trumpet-shaped water injection port provided by the cleaning robot.
  • the extension axis of the water injection member is parallel to the extension axis of the guide member, the water injection end of the water injection member is in a conical shape, and the conical shape matches the trumpet-shaped water injection port provided by the cleaning robot, when the water injection member just contacts the water injection port, the cleaning robot is allowed to adjust its position within a certain error range, and when the cleaning robot continues to move forward, the accuracy of the water injection end of the water injection member and the water injection port is gradually improved.
  • the cleaning robot reaches the preset position, the water injection end of the water injection member is embedded in the water injection port, so that the second electrode of the cleaning robot is accurately and stably in contact with the first electrode of the cleaning base station.
  • the precise alignment position of the cleaning robot can be confirmed from multiple angles, thereby improving the accuracy of the cleaning robot's alignment.
  • the first electrode includes: a telescopic member, which is telescopically arranged on the side wall of the chamber; a first electrical connector, which is arranged on the end surface of the telescopic member passing through one end of the side wall of the chamber; and an elastic member, which elastically connects the telescopic member to the base, and the elastic member can reset the telescopic member to a first preset position extending outward relative to the side wall of the chamber.
  • the first electrode includes a telescopic member, a first electrical connector and an elastic member, and when the first electrode contacts the second electrode of the cleaning robot, the telescopic arrangement of the telescopic member enables the first electrode to perform a certain degree of adaptive adjustment according to the position of the second electrode, and the elastic member ensures that the electrical contact between the first electrode and the second electrode is more stable.
  • an embodiment of the present invention provides a cleaning system, comprising: a cleaning base station according to any of the aforementioned embodiments of the first aspect of the present invention; a cleaning robot, the cleaning robot being capable of driving toward an open cavity of the cleaning base station, the cleaning robot being provided with a guide groove, the guide groove being capable of accommodating at least part of a guide member of the cleaning base station.
  • the cleaning base station includes an infrared module and a guide member.
  • the infrared module can perform preliminary alignment on the cleaning robot.
  • the guide member is arranged to protrude from the side wall of the chamber, and the guide member can extend into the guide groove of the cleaning robot.
  • the end of the guide member away from the side wall of the chamber is a guide part. In the direction away from the side wall of the chamber, the cross-sectional size of the guide part gradually decreases, so that the guide member can be moved by the cleaning robot within a preset range.
  • the guide groove is captured, and through the cooperation of the guide part and the guide groove, the cleaning robot can be further accurately aligned, thereby reducing the difficulty of designing the control algorithm of the infrared alignment process while achieving accurate alignment of the cleaning robot, thereby reducing product design costs.
  • an embodiment of the present invention provides a control method for a cleaning base station, which is used for a cleaning base station according to any of the aforementioned embodiments of the first aspect of the present invention, the control method for the cleaning base station comprising: performing preliminary alignment of a cleaning robot that is heading towards an open chamber of the cleaning base station through an infrared module; generating an alignment signal after detecting that a preset condition has been met; and generating a maintenance signal for the cleaning robot based on the alignment signal, the maintenance signal comprising a charging signal, and the charging signal is used to control a first electrode of the cleaning base station to charge the cleaning robot, wherein the preset condition comprises: detecting that a guide member of the cleaning base station is embedded in a guide groove of the cleaning robot; and the first electrode of the cleaning base station generates an electrical contact signal indicating that it has contacted a second electrode of the cleaning robot.
  • the cleaning robot driving towards the open chamber of the cleaning base station is preliminarily aligned through the infrared module.
  • the control algorithm design difficulty applied to the infrared module is relatively low, and there is no need to use the infrared module to realize the relatively tight positioning of the cleaning robot.
  • the infrared module can realize the matching of the guide groove of the cleaning robot with the guide member of the cleaning base station.
  • the control method includes generating an alignment signal after detecting that the preset conditions have been met, wherein the preset conditions include: detecting that the guide member of the cleaning base station is embedded in the guide groove of the cleaning robot; the first electrode of the cleaning base station generates an electrical contact signal that has contacted the second electrode of the cleaning robot.
  • the conditions for generating the alignment signal combine the preliminary alignment of the infrared module, the matching of the guide member and the guide groove, and the electrical contact matching of the first electrode and the second electrode, and confirm the precise alignment position of the cleaning robot from multiple angles, improve the accuracy of the alignment of the cleaning robot, and reduce the difficulty of designing the control algorithm of the infrared alignment process, thereby reducing the product design cost.
  • a maintenance signal for the cleaning robot is generated based on the alignment signal, that is, the maintenance of the cleaning robot is started only after the cleaning robot is accurately aligned, thereby avoiding some maintenance anomalies caused by the maintenance work being triggered when the cleaning robot is not docked at the appropriate position.
  • the guide member of the cleaning base station is centrally arranged on the arc-shaped extension structure of the chamber side wall
  • the cleaning base station further comprises: at least two guide assemblies, which are arranged on the chamber side wall, and the at least two guide assemblies are symmetrically distributed on both sides of the guide member, and each of the guide assemblies comprises at least one roller, and the roller portion is exposed on the chamber side wall
  • the preset condition further comprises: detecting that the water injection end of the water injection member of the cleaning base station is embedded in the trumpet-shaped water injection port of the cleaning robot.
  • the precise alignment position of the cleaning robot can be confirmed from multiple angles, thereby improving the accuracy of the alignment of the cleaning robot.
  • the first electrode of the cleaning base station includes: a telescopic member, which can be telescopically arranged on the side wall of the chamber; a first electrical connection member, which is arranged on the end surface of the telescopic member passing through one end of the side wall of the chamber; an elastic member, which elastically connects the telescopic member to the base, and the elastic member can reset the telescopic member to a first preset position extending relative to the side wall of the chamber, and the preset condition also includes: the telescopic member of the cleaning base station is retracted to a second preset position.
  • the cleaning robot by detecting whether the telescopic member is retracted to the second preset position, combined with detecting the coordination of the guide member and the guide groove, the electrical contact coordination of the first electrode and the second electrode, and the preliminary alignment of the infrared module, the cleaning robot can be detected from multiple angles. The precise positioning position is confirmed to improve the accuracy of the cleaning robot's positioning.
  • the maintenance signal further includes: a dust collection signal, the dust collection signal is used to control the dust collection mechanism of the cleaning base station to suck the dust box of the cleaning robot through the dust collection port; a cleaning signal, the cleaning signal is used to control the cleaning mechanism of the cleaning base station to clean the cleaning parts of the cleaning robot; a water injection signal, the water injection signal is used to control the water injection mechanism of the cleaning base station to inject water into the water storage container of the cleaning robot through the water injection member; a drying signal, the drying signal is used to control the drying mechanism of the cleaning base station to dry the cleaning parts of the cleaning robot, wherein the dust collection signal, the cleaning signal, the water injection signal, the drying signal, and the charging signal are generated in sequence.
  • the dust collection signal, the cleaning signal, the water injection signal, the drying signal, and the charging signal are generated in sequence, so that during the maintenance process of the cleaning robot, it is basically carried out according to the steps of first processing dry garbage, then cleaning the cleaning robot, and then drying the cleaning robot and then charging it. On the one hand, it can reduce the occurrence of secondary pollution, and on the other hand, it can prevent the occurrence of leakage faults.
  • FIG1 is a front view schematic diagram of an embodiment of a cleaning base station of the present invention.
  • FIG2 is a cross-sectional schematic diagram of an embodiment of a cleaning base station of the present invention.
  • FIG3 is a three-dimensional schematic diagram of a cleaning robot
  • FIG4 is a cross-sectional schematic diagram of the cleaning robot just entering the cleaning base station during the alignment process
  • FIG5 is a cross-sectional schematic diagram of the guide member just entering the guide groove during the alignment process
  • FIG6 is a cross-sectional schematic diagram of the water injection member just entering the water injection port during the alignment process
  • FIG. 7 is a cross-sectional schematic diagram showing that the second electrode contacts the first electrode during the alignment process and the telescopic member of the first electrode contracts to a second preset position;
  • FIG8 is a front view schematic diagram of an embodiment of a cleaning system of the present invention.
  • FIG. 9 is a flow chart of an embodiment of a control method for cleaning a base station according to the present invention.
  • 100-clean base station 110-base; 111-open chamber; 111a-chamber side wall; 120 - first electrode; 121 - telescopic member; 122 - first electrical connection member; 123 - elastic member; 124 - contraction detection module; 130-infrared module; 140-guide member; 141-guide portion; 141a-inclined surface; 150-guiding component; 160-water injection part; 161-water injection end; 170 - dust collecting port; 171 - external expansion portion; 180-travel switch; 200 - cleaning robot; 220 - second electrode; 230 - guide groove; 240 - water injection port.
  • first, second, etc. in the present invention are only used for descriptive purposes and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • technical solutions between the various embodiments can be combined with each other, but they must be based on the ability of ordinary technicians in the field to implement them. When the combination of technical solutions is contradictory or cannot be implemented, it should be deemed that such a combination of technical solutions does not exist and is not within the scope of protection required by the present invention.
  • FIG1 is a schematic diagram of a front view of an embodiment of a cleaning base station of the present invention
  • FIG2 is a schematic diagram of a cross-section of an embodiment of a cleaning base station of the present invention, wherein the A-A line in FIG1 shows the interception position of the schematic diagram of the cross-section of FIG2.
  • the cleaning base station 100 is used to maintain a cleaning robot
  • FIG3 is a schematic diagram of a three-dimensional cleaning robot.
  • the cleaning robot 200 involved in FIG3 can be used in conjunction with the cleaning base station 100 of the embodiment of the present invention. In order to clearly show the bottom structure of the cleaning robot 200, FIG3 shows the cleaning robot 200 flipped over.
  • the cleaning base station 100 includes a base 110, a first electrode 120, an infrared module 130 and a guide 140.
  • the base 110 includes an open chamber 111 capable of accommodating at least part of the cleaning robot 200, and the open chamber 111 has a chamber side wall 111a extending substantially in an arc shape.
  • the first electrode 120 is disposed on the chamber side wall 111a, and the first electrode 120 is used to contact the second electrode 220 of the cleaning robot 200 and charge the cleaning robot 200.
  • the infrared module 130 is disposed on the chamber side wall 111a, and is used to align the cleaning robot 200.
  • the guide 140 is disposed on the chamber side wall 111a, and the guide 140 protrudes from the chamber side wall 111a, and the guide 140 can extend into the guide groove 230 of the cleaning robot 200, and the end of the guide 140 away from the chamber side wall 111a is the guide portion 141, and the cross-sectional size of the guide portion 141 gradually decreases in the direction away from the chamber side wall 111a.
  • the cleaning base station 100 includes an infrared module 130 and a guide member 140.
  • the infrared module 130 can perform preliminary alignment on the cleaning robot 200.
  • the guide member 140 is protruding from the chamber side wall 111a, and the guide member 140 can extend into the guide groove 230 of the cleaning robot 200.
  • the end of the guide member 140 away from the chamber side wall 111a is a guide portion 141. In the direction away from the chamber side wall 111a, the cross-sectional size of the guide portion 141 gradually decreases, so that the guide member 140 can be captured by the guide groove 230 of the cleaning robot 200 within a preset range.
  • the cleaning robot 200 can be further accurately aligned, thereby reducing the difficulty of designing the control algorithm of the infrared alignment process while achieving accurate alignment of the cleaning robot 200, and reducing the product design cost.
  • the guide portion 141 includes two inclined surfaces 141a disposed opposite to each other, and the two inclined surfaces 141a gradually approach each other in a direction away from the chamber side wall 111a.
  • the guide groove 230 on the cleaning robot 200 is also provided with an inclined surface matching the inclined surface 141a of the guide portion 141, and when the cleaning robot 200 moves toward the first electric When the cleaning robot 200 moves in the direction of the pole 120, the inclined surface of the guide groove 230 contacts the inclined surface 141a of the guide portion 141 so that the guide portion 141 is gradually embedded in the center of the guide groove 230, thereby guiding the cleaning robot 200 to move to a precise alignment position.
  • the guide member 140 is centrally disposed on the arc-shaped extension structure of the chamber sidewall 111a, and the cleaning base station 100 further includes at least two guide assemblies 150. At least two guide assemblies 150 are disposed on the chamber sidewall 111a, and at least two guide assemblies 150 are symmetrically distributed on both sides of the guide member 140, and each guide assembly 150 includes at least one roller, and the roller portion is exposed on the chamber sidewall 111a.
  • At least two guide assemblies 150 are symmetrically distributed on both sides of the guide member 140, so that when the cleaning robot 200 deviates to either side of the guide member 140, there is a guide assembly 150 to guide the cleaning robot 200 to the center position of the chamber side wall 111a.
  • Each guide assembly 150 includes at least one roller, which is partially exposed on the chamber side wall 111a. When the side wall of the cleaning robot 200 contacts the roller, the roller guides the cleaning robot 200 to a direction closer to the guide member 140 by rotating, thereby improving the efficiency of the cleaning robot 200 alignment process. In addition, since the roller can rotate, the wear on the cleaning robot 200 during the process of guiding the cleaning robot 200 can be reduced.
  • the cleaning base station 100 further includes a water injection member 160.
  • the water injection member 160 is disposed through the chamber side wall 111a, the extension axis of the water injection member 160 is parallel to the extension axis of the guide member 140, and one end of the water injection member 160 that passes through the chamber side wall 111a is a water injection end 161, and the water injection end 161 is in a conical shape, and the conical shape matches the trumpet-shaped water injection port 240 provided on the cleaning robot 200.
  • the extension axis of the water injection member 160 is parallel to the extension axis of the guide member 140, and the water injection end 161 of the water injection member 160 is in a conical shape, which matches the trumpet-shaped water injection port 240 provided on the cleaning robot 200.
  • the cleaning robot 200 is allowed to adjust its position within a certain error range.
  • the accuracy of the matching between the water injection end 161 of the water injection member 160 and the water injection port 240 gradually increases.
  • the cleaning robot 200 When the cleaning robot 200 reaches the preset position, the water injection end 161 of the water injection member 160 is embedded in the water injection port 240, so that the second electrode 220 of the cleaning robot 200 is accurately and stably in contact with the first electrode 120 of the cleaning base station 100.
  • the precise alignment position of the cleaning robot 200 can be confirmed from multiple angles, thereby improving the accuracy of the cleaning robot 200.
  • the first electrode 120 includes a telescopic member 121, a first electrical connector 122 and an elastic member 123.
  • the telescopic member 121 is telescopically arranged on the chamber side wall 111a.
  • the first electrical connector 122 is arranged on the end surface of the telescopic member 121 passing through one end of the chamber side wall 111a.
  • the elastic member 123 elastically connects the telescopic member 121 to the base 110, and the elastic member 123 can reset the telescopic member 121 to a first preset position extending relative to the chamber side wall 111a.
  • the first electrode 120 includes a telescopic member 121, a first electrical connector 122 and an elastic member 123.
  • the telescopic member 121 is retractable so that the first electrode 120 can be adaptively adjusted to a certain extent according to the position of the second electrode 220, and the elastic member 123 ensures that the electrical contact between the first electrode 120 and the second electrode 220 is more stable.
  • the first electrode 120 also includes a retracted position detection module 124, which is located in the base 110.
  • the retracted position detection module 124 is used to generate a retracted position signal when the telescopic member 121 is retracted to the second preset position.
  • the retracted position detection module 124 is, for example, a switch element. When the telescopic member 121 is retracted to the second preset position, the switch element is triggered as a retracted position signal.
  • the retracted position detection module 124 can also be used to confirm that the cleaning robot Whether the cleaning robot 200 reaches the precise alignment position, the retraction detection module 124 generates a retraction signal when the telescopic member 121 is retracted to the second preset position. Combined with the cooperation between the guide member 140 and the guide groove 230 and the preliminary alignment of the infrared module 130, the precise alignment position of the cleaning robot 200 can be confirmed from more angles, thereby further improving the accuracy of the positioning of the cleaning robot 200.
  • the cleaning base station 100 may further include a dust collection port 170, which is arranged to extend outward from the chamber side wall 111a.
  • the dust collection port 170 has an expansion portion 171 at one end extending outward from the chamber side wall 111a, and the dust collection port 170 is a flexible structure, such as a silicone structure.
  • the cleaning base station 100 may further include a travel switch 180, which is arranged on the chamber side wall 111a and is located at the dust collection port 170. The travel switch 180 is triggered when the dust collection port 170 is squeezed and deformed to the point where the expansion portion 171 squeezes the travel switch 180. Whether the travel switch 180 is triggered can also be used to confirm whether the cleaning robot 200 has reached the precise alignment position.
  • the cleaning robot 200 squeezes the dust collecting port 170, causing the dust collecting port 170 to deform, and deforms to the outward expansion portion 171 to squeeze the travel switch 180.
  • the travel switch 180 is triggered to generate an electrical signal, which can be used as a basis for judging whether the cleaning robot 200 has reached the precise alignment position.
  • the precise alignment position of the cleaning robot 200 can be confirmed from more angles, thereby further improving the accuracy of the positioning of the cleaning robot 200.
  • the cleaning base station 100 includes a base 110, a first electrode 120, an infrared module 130, a guide 140, at least two guide assemblies 150, a water injection member 160, and a dust collection port 170.
  • the end of the guide member 140 away from the chamber side wall 111a is a guide portion 141, and the cross-sectional size of the guide portion 141 gradually decreases in the direction away from the chamber side wall 111a.
  • the extension axis of the water injection member 160 is parallel to the extension axis of the guide member 140, and the end of the water injection member 160 that passes through the chamber side wall 111a is the water injection end 161, and the water injection end 161 is in a conical shape, and the conical shape matches the trumpet-shaped water injection port 240 provided on the cleaning robot 200.
  • the first electrode 120 includes a telescopic member 121, a first electrical connector 122, an elastic member 123, and a retracted detection module 124.
  • the extension axis of the telescopic member 121 is parallel to the extension axis of the guide member 140.
  • the retracted position detection module 124 is used to generate a retracted position signal when the telescopic member 121 is retracted to the second preset position.
  • Figure 4 is a cross-sectional schematic diagram of the cleaning robot 200 just entering the cleaning base station 100 during the alignment process.
  • the cleaning base station 100 performs preliminary alignment of the cleaning robot 200 through the infrared module 130, and guides the cleaning robot 200 to move forward along the guide disk provided on the cleaning base station 100.
  • the running wheels of the cleaning robot 200 will enter the open chamber 111 of the cleaning base station 100 along the guide path on the guide disk. After the cleaning robot 200 enters the open chamber 111, first, the cleaning robot 200 will contact the guide assembly 150.
  • Figure 5 is a cross-sectional schematic diagram of the guide member 140 just entering the guide groove 230 during the alignment process; then, during the forward movement of the cleaning robot 200, the guide groove 230 cooperates with the guide member 140, and the guide assembly 150 aligns the cleaning robot 200 with the guide member 140.
  • FIG. 6 is a cross-sectional schematic diagram of the water injection member 160 just entering the water injection port 240 during the alignment process.
  • the next step of entering the station is performed only after the guide groove 230 of the cleaning robot 200 and the guide member 140 are successfully matched, otherwise the cleaning robot 200 cannot perform the next step of operation; then, the water injection member 160 cooperates with the water injection port 240, and when the water injection member 160 reaches the preset position in the water injection port 240, the first electrode 160
  • the first electrical connector 122 of 120 can contact the second electrode 220 of the cleaning robot 200.
  • the cleaning base station 100 can receive the electrical signal sent by the cleaning robot 200 via the first electrode 120, it means that all the functional component interfaces are aligned, that is, the cleaning robot 200 has successfully entered the station.
  • the cleaning base station 100 can send an instruction to the cleaning robot 200 to stop the rotation of the walking wheels, stop the movement of the cleaning robot 200, and send work instructions to each functional component;
  • the cleaning base station 100 cannot receive the electrical signal of the cleaning robot 200 via the first electrode 120, the cleaning robot 200 is controlled to retreat a certain distance, readjust the posture, and repeat the above steps; further, in this example, it can be set to when the first electrode
  • the first electrical connector 122 of 120 is in full contact with the charging contact of the second electrode 220 of the cleaning robot 200, and the electrical signal sent by the cleaning robot 200 can be received; further, in this example, the first electrode 120 is an elastic and retractable structure.
  • the electrical signal sent by the cleaning robot 200 can be received, thereby triggering the cleaning base station 100 to instruct the cleaning robot 200 to perform work, as shown in Figure 7, which is a cross-sectional schematic diagram of the second electrode 220 contacting the first electrode 120 and the retractable member 121 of the first electrode 120 retracting to the second preset position during the alignment process.
  • the trigger mechanism uses a mechanical alignment method to achieve rapid and accurate docking of the cleaning robot 200, reduce the accuracy required by the infrared alignment method, reduce the manufacturing cost, and improve the safety of the trigger cleaning base station 100.
  • FIG. 8 is a front view schematic diagram of an embodiment of the cleaning system of the present invention.
  • the cleaning system includes a cleaning base station 100 and a cleaning robot 200 according to any of the above embodiments.
  • the cleaning base station 100 includes a base 110, a first electrode 120, an infrared module 130 and a guide member 140.
  • the base 110 includes an open chamber 111 capable of accommodating at least part of the cleaning robot 200, and the open chamber 111 has a chamber side wall 111a extending substantially in an arc shape.
  • the first electrode 120 is disposed on the chamber side wall 111a, and the first electrode 120 is used to contact the second electrode 220 of the cleaning robot 200 and charge the cleaning robot 200.
  • the infrared module 130 is disposed on the chamber side wall 111a, and is used to align the cleaning robot 200.
  • the guide member 140 is disposed on the chamber side wall 111a, and the guide member 140 protrudes from the chamber side wall 111a, and the guide member 140 can extend into the guide groove 230 of the cleaning robot 200, and the end of the guide member 140 away from the chamber side wall 111a is the guide portion 141, and the cross-sectional size of the guide portion 141 gradually decreases in the direction away from the chamber side wall 111a.
  • the cleaning robot 200 can drive to the open chamber 111 of the cleaning base station 100 .
  • the cleaning robot 200 is provided with a guide groove 230 .
  • the guide groove 230 can accommodate at least part of the guide member 140 of the cleaning base station 100 .
  • the cleaning base station 100 includes an infrared module 130 and a guide member 140.
  • the infrared module 130 can perform preliminary alignment on the cleaning robot 200.
  • the guide member 140 is arranged to protrude from the chamber side wall 111a, and the guide member 140 can extend into the guide groove 230 of the cleaning robot 200.
  • the end of the guide member 140 away from the chamber side wall 111a is a guide portion 141. In the direction away from the chamber side wall 111a, the cross-sectional size of the guide portion 141 gradually decreases, so that the guide member 140 can be captured by the guide groove 230 of the cleaning robot 200 within a preset range.
  • the cleaning robot 200 can be further accurately aligned, thereby reducing the difficulty of designing the control algorithm of the infrared alignment process while achieving accurate alignment of the cleaning robot 200, and reducing the product design cost.
  • the embodiment of the present invention further provides a control method of a cleaning base station, which can be used for the cleaning base station 100 of any of the above embodiments.
  • the cleaning base station 100 includes a base 110, a first electrode 120, an infrared module 130, and a guide 140.
  • the base 110 includes an open chamber 111 capable of accommodating at least part of the cleaning robot 200, and the open chamber 111 has a chamber side wall 111a extending substantially in an arc shape.
  • the first electrode 120 The first electrode 120 is arranged on the chamber side wall 111a, and is used to contact the second electrode 220 of the cleaning robot 200 and charge the cleaning robot 200.
  • the infrared module 130 is arranged on the chamber side wall 111a, and is used to align the cleaning robot 200.
  • the guide member 140 is arranged on the chamber side wall 111a, and the guide member 140 protrudes from the chamber side wall 111a.
  • the guide member 140 can extend into the guide groove 230 of the cleaning robot 200.
  • the end of the guide member 140 away from the chamber side wall 111a is the guide part 141, and the cross-sectional size of the guide part 141 gradually decreases along the direction away from the chamber side wall 111a.
  • FIG9 is a flow chart of an embodiment of a control method for cleaning a base station according to the present invention.
  • the control method for cleaning a base station includes steps S110 to S130.
  • step S110 the cleaning robot 200 driving toward the open chamber 111 of the cleaning base station 100 is preliminarily aligned through the infrared module 130 .
  • a registration signal is generated after it is detected that the preset conditions are met.
  • the preset conditions include: detecting that the guide member 140 of the cleaning base station 100 is embedded in the guide groove 230 of the cleaning robot 200; and the first electrode 120 of the cleaning base station 100 generates an electrical contact signal that it has contacted the second electrode 220 of the cleaning robot 200.
  • a maintenance signal for the cleaning robot 200 is generated according to the alignment signal.
  • the maintenance signal includes a charging signal.
  • the charging signal is used to control the first electrode 120 of the cleaning base station 100 to charge the cleaning robot 200 .
  • the cleaning robot 200 driving toward the open chamber 111 of the cleaning base station 100 is preliminarily aligned through the infrared module 130.
  • the control algorithm applied to the infrared module 130 is less difficult to design, and it is not necessary to use the infrared module 130 to achieve the relatively tight positioning of the cleaning robot 200.
  • the infrared module 130 can achieve the matching of the guide groove 230 of the cleaning robot 200 with the guide member 140 of the cleaning base station 100.
  • the control method includes generating an alignment signal after detecting that a preset condition has been met, wherein the preset condition includes: detecting that the guide member 140 of the cleaning base station 100 is embedded in the guide groove 230 of the cleaning robot 200; and the first electrode 120 of the cleaning base station 100 generates an electrical contact signal that has contacted the second electrode 220 of the cleaning robot 200.
  • the condition for generating the alignment signal combines the preliminary alignment of the infrared module 130, the cooperation between the guide member 140 and the guide groove 230, and the electrical contact cooperation between the first electrode 120 and the second electrode 220, so as to confirm the precise alignment position of the cleaning robot 200 from multiple angles, improve the accuracy of the alignment of the cleaning robot 200, reduce the difficulty of designing the control algorithm of the infrared alignment process, and reduce the product design cost.
  • a maintenance signal for the cleaning robot 200 is generated according to the alignment signal, that is, the maintenance of the cleaning robot 200 is started only after the accurate alignment of the cleaning robot 200 is completed, thereby avoiding some maintenance anomalies caused by the maintenance work being triggered when the cleaning robot 200 is not docked at the appropriate position.
  • the guide member 140 of the cleaning base station 100 is centrally arranged on the arc-shaped extension structure of the chamber side wall 111a.
  • the cleaning base station 100 also includes at least two guide assemblies 150, at least two guide assemblies 150 are arranged on the chamber side wall 111a, and at least two guide assemblies 150 are symmetrically distributed on both sides of the guide member 140, and each guide assembly 150 includes at least one roller, and the roller portion is exposed on the chamber side wall 111a. Therefore, in the above embodiment, in step S120, the preset conditions may also include: detecting that the water injection end 161 of the water injection member 160 of the cleaning base station 100 is embedded in the trumpet-shaped water injection port 240 of the cleaning robot 200.
  • the first electrode 120 of the cleaning base station 100 includes a telescopic member 121, a first electrical connector 122, and an elastic member 123.
  • the telescopic member 121 is telescopically arranged on the chamber side wall 111a.
  • the first electrical connector 122 is arranged on the end surface of the telescopic member 121 passing through one end of the chamber side wall 111a.
  • the elastic member 123 elastically connects the telescopic member 121 to the base 110, and the elastic member 123 can reset the telescopic member 121 to a first preset position extending relative to the chamber side wall 111a.
  • the preset condition may also include: the telescopic member 121 of the cleaning base station 100 is retracted to a second preset position. Further, the extension axis of the telescopic member 121 is parallel to the extension axis of the guide member 140.
  • the first electrode 120 may also include a retracted detection module 124, which is located in the base 110, and the retracted detection module 124 is used to generate a retracted signal when the telescopic member 121 is retracted to the second preset position.
  • the retracted-in-place detection module 124 can be used to determine whether the telescopic member 121 of the cleaning base station 100 is retracted to the second preset position, that is, in step S120, the preset condition may include: the retracted-in-place detection module 124 of the cleaning base station 100 generates a retracted-in-place signal.
  • the precise alignment position of the cleaning robot 200 can be confirmed from multiple angles, thereby improving the accuracy of the alignment of the cleaning robot 200.
  • the cleaning base station 100 further includes a dust collection port 170 and a travel switch 180.
  • the dust collection port 170 is arranged to extend outward from the chamber side wall 111a, and one end of the dust collection port 170 extending outward from the chamber side wall 111a has an expansion portion 171, and the dust collection port 170 is a flexible structure.
  • the travel switch 180 is arranged on the chamber side wall 111a and is located at the dust collection port 170. When the dust collection port 170 is squeezed and deformed to the expansion portion 171 squeezing the travel switch 180, the travel switch 180 is triggered. Therefore, in the above embodiment, in step S120, the preset condition may also include: the travel switch 180 of the cleaning base station 100 has been triggered.
  • the precise alignment position of the cleaning robot 200 can be confirmed from multiple angles, thereby improving the accuracy of the alignment of the cleaning robot 200.
  • the maintenance signal further includes a dust collection signal, a cleaning signal, a water injection signal, and a drying signal.
  • the dust collection signal is used to control the dust collection mechanism of the cleaning base station 100 to suction the dust box of the cleaning robot 200 through the dust collection port 170.
  • the cleaning signal is used to control the cleaning mechanism of the cleaning base station 100 to clean the cleaning parts of the cleaning robot 200.
  • the water injection signal is used to control the water injection mechanism of the cleaning base station 100 to inject water into the water storage container of the cleaning robot 200 through the water injection member 160.
  • the drying signal is used to control the drying mechanism of the cleaning base station 100 to dry the cleaning parts of the cleaning robot 200.
  • a dust collection signal, a cleaning signal, a water injection signal, a drying signal, and a charging signal are generated in sequence.
  • the controller of the cleaning base station 100 sends a dust collection signal to the dust collection mechanism, and the dust collection mechanism performs a suction operation on the dust box of the cleaning robot 200, and sucks the garbage in the dust box into the dust collection mechanism.
  • the controller stops the dust collection mechanism and sends a cleaning signal to the self-cleaning mechanism to clean the cleaning parts of the cleaning robot 200, such as a mop, and recycles the treated sewage.
  • the controller stops the cleaning mechanism and sends a water injection signal to the water injection mechanism to inject water into the water storage container of the cleaning robot 200 through the water injection part 160. Thereafter, the controller sends a drying signal to the drying mechanism to control the drying mechanism to dry the cleaning parts of the cleaning robot 200. Execution After the drying operation is completed, a charging signal is sent to the charging mechanism to control the charging mechanism to charge the cleaning robot 200 through the first electrode 120. Since the dust collection signal, the cleaning signal, the water injection signal, the drying signal, and the charging signal are generated in sequence, the maintenance process of the cleaning robot 200 is basically carried out according to the steps of first processing the dry garbage, then cleaning the cleaning robot 200, and then charging the cleaning robot 200 after drying. On the one hand, the phenomenon of secondary pollution can be reduced, and on the other hand, leakage faults can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

一种清洁基站(100)及其控制方法、清洁系统。清洁基站(100)包括:基座(110),基座(110)包括能够容纳至少部分清洁机器人(200)的敞口腔室(111),敞口腔室(111)具有基本呈弧状延伸的腔室侧壁(111a);第一电极(120),设置于腔室侧壁(111a),第一电极(120)用于接触清洁机器人(200)的第二电极(220)并向清洁机器人(200)充电;红外模块(130),设置于腔室侧壁(111a),用于对清洁机器人(200)进行对位;以及导向件(140),设置于腔室侧壁(111a),导向件(140)凸出于腔室侧壁(111a)设置,导向件(140)能够伸入清洁机器人(200)具有的导向槽(230),导向件(140)远离腔室侧壁(111a)的一端为导向部(141),沿远离腔室侧壁(111a)的方向,导向部(141)的横截面尺寸逐渐减小。清洁基站(100)在实现对清洁机器人(200)的精确对位的同时,降低红外对位过程的控制算法设计难度,降低产品设计成本。

Description

清洁基站及其控制方法、清洁系统
本申请要求2022年10月28日向中国国家知识产权局递交的申请号为202211331499.5,申请名称为“清洁基站及其控制方法、清洁系统”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及清洁机器人领域,特别涉及一种清洁基站及其控制方法、清洁系统。
背景技术
清洁机器人是对地面进行清洁的自动化装置,清洁机器人通常配合清洁基站使用,其中清洁基站能够对清洁机器人进行维护,例如对清洁机器人进行清洁、充电。
清洁机器人进入清洁基站后,一般通过清洁基站的红外模块对清洁机器人对位,在清洁机器人停靠至准确位置时,才能启动对清洁机器人的维护工作。然而,仅通过红外模块实现对清洁机器人的精确对位,使得红外对位过程的控制算法要求较高。
申请内容
本发明提供一种清洁基站及其控制方法、清洁系统,在实现对清洁机器人的精确对位的同时降低红外对位过程的控制算法设计难度。
第一方面,本发明实施例提供一种清洁基站,清洁基站包括:基座,所述基座包括能够容纳至少部分清洁机器人的敞口腔室,所述敞口腔室具有基本呈弧状延伸的腔室侧壁;第一电极,设置于所述腔室侧壁,所述第一电极用于接触所述清洁机器人的第二电极并向所述清洁机器人充电;红外模块,设置于所述腔室侧壁,用于对所述清洁机器人进行对位;以及导向件,设置于所述腔室侧壁,所述导向件凸出于所述腔室侧壁设置,所述导向件能够伸入所述清洁机器人具有的导向槽,所述导向件远离所述腔室侧壁的一端为导向部,沿远离所述腔室侧壁的方向,所述导向部的横截面尺寸逐渐减小。
根据本发明实施例的清洁基站,清洁基站包括红外模块以及导向件,红外模块能够对清洁机器人进行初步对位,导向件凸出于腔室侧壁设置,导向件能够伸入清洁机器人具有的导向槽。导向件远离腔室侧壁的一端为导向部,沿远离腔室侧壁的方向,导向部的横截面尺寸逐渐减小,使得导向件能够在预设范围内被清洁机器人的导向槽捕捉到,通过导向件与导向槽的配合,能够实现对清洁机器人进一步精准对位,从而在实现对清洁机器人的精确对位的同时降低红外对位过程的控制算法设计难度,降低产品设计成本。
根据本发明第一方面的前述实施方式,所述导向部包括相对设置的两个斜面,沿远离所述腔室侧壁的方向,所述两个斜面逐渐靠拢。在上述实施方式中,导向部具有两个斜面,且沿远离腔室侧壁的方向,两个斜面逐渐靠拢。清洁机器人上的导 向槽也设置有与导向部的斜面匹配的斜面,在清洁机器人朝向靠近第一电极的方向行进时,导向槽的斜面与导向部的斜面接触使得导向部逐渐居中嵌设于导向槽,从而引导清洁机器人移动至精确的对准位置。
根据本发明第一方面的前述任一实施方式,所述导向件在所述腔室侧壁的弧状延伸结构上居中设置,所述清洁基站还包括:至少两个引导组件,设置于所述腔室侧壁,所述至少两个引导组件对称分布于所述导向件的两侧,每个所述引导组件包括至少一个滚轮,所述滚轮部分外露于所述腔室侧壁。在上述实施方式中,清洁基站还包括至少两个引导组件,至少两个引导组件对称分布于导向件的两侧,使得清洁机器人偏向导向件两侧的任一一侧时,都有引导组件将清洁机器人引导向腔室侧壁的居中位置。每个引导组件包括至少一个滚轮,该滚轮部分外露于腔室侧壁,当清洁机器人的侧壁接触滚轮时,滚轮通过转动将清洁机器人向更靠近导向件的方向引导,提高清洁机器人对位过程的效率。此外由于滚轮能够转动,能够降低引导清洁机器人过程中对清洁机器人的磨损。
根据本发明第一方面的前述任一实施方式,清洁基站还包括:注水件,所述注水件穿出于所述腔室侧壁设置,所述注水件的延伸轴线平行于所述导向件的延伸轴线,所述注水件穿出所述腔室侧壁的一端为注水端部,所述注水端部呈锥面形状,所述锥面形状与所述清洁机器人设有的呈喇叭状的注水口匹配。在上述实施方式中,注水件的延伸轴线平行于导向件的延伸轴线,注水件的注水端部呈锥面形状,该锥面形状与清洁机器人设有的呈喇叭状的注水口匹配,注水件与注水口刚接触时,允许清洁机器人在一定的误差范围进行位置调整,当清洁机器人继续前进后,注水件的注水端部与注水口配合的精度逐渐提高。当清洁机器人到达预设的位置时,注水件的注水端部嵌入注水口,使得清洁机器人的第二电极与清洁基站的第一电极准确稳定接触。通过设置注水件与注水口的配合,结合导向件与导向槽的配合、红外模块的初步对位,能够从多个角度对清洁机器人的精确对位位置进行确认,从而提高清洁机器人对位的精准性。
根据本发明第一方面的前述任一实施方式,所述第一电极包括:伸缩件,可伸缩设置于所述腔室侧壁;第一电连接件,设置于所述伸缩件穿出于所述腔室侧壁一端的端面;弹性件,将所述伸缩件与所述基座弹性连接,所述弹性件能够将所述伸缩件复位至相对所述腔室侧壁外伸的第一预设位置。在上述实施方式中,第一电极包括伸缩件、第一电连接件以及弹性件,在第一电极与清洁机器人的第二电极接触时,伸缩件的可伸缩设置使得第一电极能够针对第二电极的位置进行一定程度的自适应调整,弹性件保证第一电极与第二电极之间的电接触更稳定。
第二方面,本发明实施例提供一种清洁系统,清洁系统包括:根据本发明第一方面的前述任一实施方式的清洁基站;清洁机器人,所述清洁机器人能够驶向所述清洁基站的敞口腔室,所述清洁机器人设有导向槽,所述导向槽能够容纳所述清洁基站的至少部分导向件。
根据本发明实施例的清洁系统,清洁基站包括红外模块以及导向件,红外模块能够对清洁机器人进行初步对位,导向件凸出于腔室侧壁设置,导向件能够伸入清洁机器人具有的导向槽。导向件远离腔室侧壁的一端为导向部,沿远离腔室侧壁的方向,导向部的横截面尺寸逐渐减小,使得导向件能够在预设范围内被清洁机器人 的导向槽捕捉到,通过导向件与导向槽的配合,能够实现对清洁机器人进一步精准对位,从而在实现对清洁机器人的精确对位的同时降低红外对位过程的控制算法设计难度,降低产品设计成本。
第三方面,本发明实施例提供一种清洁基站的控制方法,用于根据本发明第一方面的前述任一实施方式的清洁基站,所述清洁基站的控制方法包括:通过红外模块对驶向所述清洁基站的敞口腔室的清洁机器人进行初步对位;在检测到预设条件已满足后产生对位到位信号;以及根据所述对位到位信号,产生对清洁机器人的维护信号,所述维护信号包括充电信号,所述充电信号用于控制所述清洁基站的第一电极向所述清洁机器人充电,其中,所述预设条件包括:检测到所述清洁基站的导向件嵌入所述清洁机器人的导向槽;所述清洁基站的第一电极产生已接触到所述清洁机器人的第二电极的电接触信号。
根据本发明实施例的清洁基站的控制方法,通过红外模块对驶向清洁基站的敞口腔室的清洁机器人进行初步对位,该步骤中,应用于红外模块的控制算法设计难度较低,无须利用红外模块实现对清洁机器人较紧缺定位,红外模块能够实现引导清洁机器人的导向槽与清洁基站的导向件配合上即可。控制方法包括在检测到预设条件已满足后产生对位到位信号,其中该预设条件包括:检测到清洁基站的导向件嵌入清洁机器人的导向槽;清洁基站的第一电极产生已接触到清洁机器人的第二电极的电接触信号。在本发明实施例中,产生对位到位信号的条件结合了红外模块的初步对位、导向件与导向槽的配合、第一电极与第二电极的电接触配合,从多个角度对清洁机器人的精确对位位置进行确认,提高清洁机器人对位的精准性,并且降低红外对位过程的控制算法设计难度,降低产品设计成本。在本发明实施例的控制方法中,根据对位到位信号,产生对清洁机器人的维护信号,即在完成对清洁机器人的准确对位后,才开始对清洁机器人的维护,从而避免出现清洁机器人未停靠至合适位置就触发维护工作导致的一些维护异常。
根据本发明第三方面的前述任一实施方式,所述清洁基站的所述导向件在所述腔室侧壁的弧状延伸结构上居中设置,所述清洁基站还包括:至少两个引导组件,设置于所述腔室侧壁,所述至少两个引导组件对称分布于所述导向件的两侧,每个所述引导组件包括至少一个滚轮,所述滚轮部分外露于所述腔室侧壁,所述预设条件还包括:检测到所述清洁基站的注水件的注水端部嵌入所述清洁机器人的呈喇叭状的注水口。在上述实施方式中,通过检测注水件与注水口的配合,结合检测导向件与导向槽的配合、第一电极与第二电极的电接触配合、红外模块的初步对位,能够从多个角度对清洁机器人的精确对位位置进行确认,从而提高清洁机器人对位的精准性。
根据本发明第三方面的前述任一实施方式,所述清洁基站的所述第一电极包括:伸缩件,可伸缩设置于所述腔室侧壁;第一电连接件,设置于所述伸缩件穿出于所述腔室侧壁一端的端面;弹性件,将所述伸缩件与所述基座弹性连接,所述弹性件能够将所述伸缩件复位至相对所述腔室侧壁外伸的第一预设位置,所述预设条件还包括:所述清洁基站的伸缩件收缩至第二预设位置。在上述实施方式中,通过检测伸缩件是否收缩至第二预设位置,结合检测导向件与导向槽的配合、第一电极与第二电极的电接触配合、红外模块的初步对位,能够从多个角度对清洁机器人的 精确对位位置进行确认,从而提高清洁机器人对位的精准性。
根据本发明第三方面的前述任一实施方式,所述维护信号还包括:集尘信号,所述集尘信号用于控制所述清洁基站的集尘机构通过集尘口对所述清洁机器人的尘盒进行抽吸处理;清洁信号,所述清洁信号用于控制所述清洁基站的清洁机构对所述清洁机器人的清洁件进行清洁处理;注水信号,所述注水信号用于控制所述清洁基站的注水机构通过注水件向所述清洁机器人的储水容器注水;烘干信号,所述烘干信号用于控制所述清洁基站的烘干机构对所述清洁机器人的清洁件进行烘干处理,其中,所述集尘信号、所述清洁信号、所述注水信号、所述烘干信号、所述充电信号依次产生。在上述实施方式中,集尘信号、清洁信号、注水信号、烘干信号、充电信号依次产生,使得对清洁机器人的维护过程中,基本按照先处理干燥垃圾、再对清洁机器人清洁、再对清洁机器人烘干处理后进行充电的步骤进行,一方面能够降低二次污染的现象出现,另一方面可以防止漏电的故障发生。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明清洁基站一实施例的主视示意图;
图2为本发明清洁基站一实施例的截面示意图;
图3为一种清洁机器人的立体示意图;
图4为对位过程中清洁机器人刚驶入清洁基站的截面示意图;
图5为对位过程中导向件刚进入导向槽的截面示意图;
图6为对位过程中注水件刚进入注水口的截面示意图;
图7为对位过程中第二电极与第一电极发生接触且第一电极的伸缩件收缩至第二预设位置的截面示意图;
图8为本发明清洁系统一实施例的主视示意图;
图9为本发明清洁基站的控制方法一实施例的流程图。
图中:
100-清洁基站;
110-基座;111-敞口腔室;111a-腔室侧壁;
120-第一电极;121-伸缩件;122-第一电连接件;123-弹性件;124-收缩到位
检测模块;
130-红外模块;
140-导向件;141-导向部;141a-斜面;
150-引导组件;
160-注水件;161-注水端部;
170-集尘口;171-外扩部;
180-行程开关;
200-清洁机器人;220-第二电极;230-导向槽;240-注水口。
本发明目的的实现、功能特点及优点将结合实施例,参阅附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
图1为本发明清洁基站一实施例的主视示意图,图2为本发明清洁基站一实施例的截面示意图,其中,图1中A‐A线示出图2截面示意图的截取位置。清洁基站100用于对清洁机器人进行维护,图3为一种清洁机器人的立体示意图,图3涉及的清洁机器人200能够与本发明实施例的清洁基站100配合使用,为清楚示出清洁机器人200的底部结构,图3将将清洁机器人200翻转绘示。
清洁基站100包括基座110、第一电极120、红外模块130以及导向件140。基座110包括能够容纳至少部分清洁机器人200的敞口腔室111,敞口腔室111具有基本呈弧状延伸的腔室侧壁111a。第一电极120设置于腔室侧壁111a,第一电极120用于接触清洁机器人200的第二电极220并向清洁机器人200充电。红外模块130设置于腔室侧壁111a,用于对清洁机器人200进行对位。导向件140设置于腔室侧壁111a,导向件140凸出于腔室侧壁111a设置,导向件140能够伸入清洁机器人200具有的导向槽230,导向件140远离腔室侧壁111a的一端为导向部141,沿远离腔室侧壁111a的方向,导向部141的横截面尺寸逐渐减小。
根据本发明实施例的清洁基站100,清洁基站100包括红外模块130以及导向件140,红外模块130能够对清洁机器人200进行初步对位,导向件140凸出于腔室侧壁111a设置,导向件140能够伸入清洁机器人200具有的导向槽230。导向件140远离腔室侧壁111a的一端为导向部141,沿远离腔室侧壁111a的方向,导向部141的横截面尺寸逐渐减小,使得导向件140能够在预设范围内被清洁机器人200的导向槽230捕捉到,通过导向件140与导向槽230的配合,能够实现对清洁机器人200进一步精准对位,从而在实现对清洁机器人200的精确对位的同时降低红外对位过程的控制算法设计难度,降低产品设计成本。
如图2,在一些实施例中,导向部141包括相对设置的两个斜面141a,沿远离腔室侧壁111a的方向,两个斜面141a逐渐靠拢。清洁机器人200上的导向槽230也设置有与导向部141的斜面141a匹配的斜面,在清洁机器人200朝向靠近第一电 极120的方向行进时,导向槽230的斜面与导向部141的斜面141a接触使得导向部141逐渐居中嵌设于导向槽230,从而引导清洁机器人200移动至精确的对准位置。
在一些实施例中,导向件140在腔室侧壁111a的弧状延伸结构上居中设置,清洁基站100还包括至少两个引导组件150。至少两个引导组件150设置于腔室侧壁111a,至少两个引导组件150对称分布于导向件140的两侧,每个引导组件150包括至少一个滚轮,滚轮部分外露于腔室侧壁111a。
在上述实施例中,至少两个引导组件150对称分布于导向件140的两侧,使得清洁机器人200偏向导向件140两侧的任一一侧时,都有引导组件150将清洁机器人200引导向腔室侧壁111a的居中位置。每个引导组件150包括至少一个滚轮,该滚轮部分外露于腔室侧壁111a,当清洁机器人200的侧壁接触滚轮时,滚轮通过转动将清洁机器人200向更靠近导向件140的方向引导,提高清洁机器人200对位过程的效率。此外由于滚轮能够转动,能够降低引导清洁机器人200过程中对清洁机器人200的磨损。
在一些实施例中,清洁基站100还包括注水件160。注水件160穿出于腔室侧壁111a设置,注水件160的延伸轴线平行于导向件140的延伸轴线,注水件160穿出腔室侧壁111a的一端为注水端部161,注水端部161呈锥面形状,锥面形状与清洁机器人200设有的呈喇叭状的注水口240匹配。
在上述实施例中,注水件160的延伸轴线平行于导向件140的延伸轴线,注水件160的注水端部161呈锥面形状,该锥面形状与清洁机器人200设有的呈喇叭状的注水口240匹配,注水件160与注水口240刚接触时,允许清洁机器人200在一定的误差范围进行位置调整,当清洁机器人200继续前进后,注水件160的注水端部161与注水口240配合的精度逐渐提高。当清洁机器人200到达预设的位置时,注水件160的注水端部161嵌入注水口240,使得清洁机器人200的第二电极220与清洁基站100的第一电极120准确稳定接触。通过设置注水件160与注水口240的配合,结合导向件140与导向槽230的配合、红外模块130的初步对位,能够从多个角度对清洁机器人200的精确对位位置进行确认,从而提高清洁机器人200对位的精准性。
在一些实施例中,第一电极120包括伸缩件121、第一电连接件122以及弹性件123。伸缩件121可伸缩设置于腔室侧壁111a。第一电连接件122设置于伸缩件121穿出于腔室侧壁111a一端的端面。弹性件123将伸缩件121与基座110弹性连接,弹性件123能够将伸缩件121复位至相对腔室侧壁111a外伸的第一预设位置。在上述实施例中,第一电极120包括伸缩件121、第一电连接件122以及弹性件123,在第一电极120与清洁机器人200的第二电极220接触时,伸缩件121的可伸缩设置使得第一电极120能够针对第二电极220的位置进行一定程度的自适应调整,弹性件123保证第一电极120与第二电极220之间的电接触更稳定。
在一些实施例中,伸缩件121的延伸轴线平行于导向件140的延伸轴线。第一电极120还包括收缩到位检测模块124,收缩到位检测模块124位于基座110内。收缩到位检测模块124用于在伸缩件121收缩至第二预设位置时产生收缩到位信号。收缩到位检测模块124例如是开关元件,在伸缩件121收缩至第二预设位置时,开关元件触发,作为收缩到位信号。收缩到位检测模块124也能用于确认清洁机器人 200是否到达精确对位位置,收缩到位检测模块124在伸缩件121收缩至第二预设位置时产生收缩到位信号,结合导向件140与导向槽230的配合、红外模块130的初步对位,能够从更多角度对清洁机器人200的精确对位位置进行确认,从而进一步提高清洁机器人200对位的精准性。
清洁基站100还可以包括集尘口170,集尘口170外伸于腔室侧壁111a设置。可选地,集尘口170外伸于腔室侧壁111a的一端具有外扩部171,集尘口170为柔性结构,例如是硅胶结构。在一些实施例中,清洁基站100还可以包括行程开关180,行程开关180设置于腔室侧壁111a,并位于集尘口170处。集尘口170受到挤压形变至外扩部171挤压行程开关180时触发行程开关180。行程开关180是否触发也能用于确认清洁机器人200是否到达精确对位位置。在清洁机器人200行进至精确对位位置时,清洁机器人200挤压集尘口170,使得集尘口170形变,并且形变至外扩部171挤压行程开关180,此时行程开关180触发产生电信号,能够作为判断清洁机器人200是否到达精确对位位置的依据,结合导向件140与导向槽230的配合、红外模块130的初步对位,能够从更多角度对清洁机器人200的精确对位位置进行确认,从而进一步提高清洁机器人200对位的精准性。
在一个示例中,清洁基站100包括基座110、第一电极120、红外模块130、导向件140、至少两个引导组件150、注水件160、集尘口170。导向件140远离腔室侧壁111a的一端为导向部141,沿远离腔室侧壁111a的方向,导向部141的横截面尺寸逐渐减小。注水件160的延伸轴线平行于导向件140的延伸轴线,注水件160穿出腔室侧壁111a的一端为注水端部161,注水端部161呈锥面形状,锥面形状与清洁机器人200设有的呈喇叭状的注水口240匹配。第一电极120包括伸缩件121、第一电连接件122、弹性件123、收缩到位检测模块124。伸缩件121的延伸轴线平行于导向件140的延伸轴线。收缩到位检测模块124用于在伸缩件121收缩至第二预设位置时产生收缩到位信号。
以下将结合图4至图7对上述示例的清洁基站100用于对清洁机器人200进行维护时的具体过程进行说明。图4为对位过程中清洁机器人200刚驶入清洁基站100的截面示意图,当清洁机器人200驶向清洁基站100的敞口腔室111时,清洁基站100通过红外模块130对清洁机器人200进行初步对位,引导清洁机器人200沿着清洁基站100设有的引导盘前进,清洁机器人200的行走轮会沿着引导盘上的指引路径进入至清洁基站100的敞口腔室111。清洁机器人200进入至敞口腔室111后,首先,清洁机器人200会与引导组件150接触,在红外模块130的初步对位的引导下,清洁机器人200会一边前进,一边不断调整自身的位姿,从而使清洁机器人200调整到合适的位置,并找准导向件140初步位置,如图5,图5为对位过程中导向件140刚进入导向槽230的截面示意图;接着,在清洁机器人200前进过程中,导向槽230与导向件140进行配合,引导组件150对清洁机器人200引导限位,从而引导清洁机器人200定位至预设的位置上,实现清洁机器人200的注水口240与注水件160的延伸轴线上的对准,如图6,图6为对位过程中注水件160刚进入注水口240的截面示意图,在清洁机器人200导向槽230与导向件140配合成功后才进行下一步的进站,否则清洁机器人200无法进行下一步操作;再接着,注水件160与注水口240进行配合,当注水件160到达注水口240内的预设位置后,第一电极 120的第一电连接件122能与清洁机器人200的第二电极220接触,当清洁基站100可经由第一电极120接收到清洁机器人200发出的电信号,说明所有的功能部件接口都实现对准,即反应清洁机器人200已进站成功,此时清洁基站100可向清洁机器人200发送停止行走轮转动的指令,停止清洁机器人200的移动,并向各功能部件发出工作的指令;当清洁基站100无法经由第一电极120接收到清洁机器人200的电信号时,控制清洁机器人200后退一定距离,重新对位姿进行调整,再重复上述步骤;进一步地,在本示例中,可以设置为当第一电极120的第一电连接件122与清洁机器人200的第二电极220的充电触点发生充分接触,才能接收到清洁机器人200发出的电信号;进一步地,在本示例中,第一电极120为弹性可伸缩的结构,当满足清洁机器人200的第二电极220与第一电极120发生接触且第一电极120的伸缩件121收缩至第二预设位置时,才能接收到清洁机器人200发出的电信号,从而触发清洁基站100对清洁机器人200执行工作的指令,如图7,图7为对位过程中第二电极220与第一电极120发生接触且第一电极120的伸缩件121收缩至第二预设位置的截面示意图。该触发机制是利用机械对位的方式,实现清洁机器人200快速、准确的停靠到位,降低红外对位方式所要求的精度,降低制造的成本,还提高触发清洁基站100工作使用的安全性。
本发明实施例提供一种清洁系统,图8为本发明清洁系统一实施例的主视示意图。清洁系统包括前述任一实施方式的清洁基站100以及清洁机器人200。
清洁基站100包括基座110、第一电极120、红外模块130以及导向件140。基座110包括能够容纳至少部分清洁机器人200的敞口腔室111,敞口腔室111具有基本呈弧状延伸的腔室侧壁111a。第一电极120设置于腔室侧壁111a,第一电极120用于接触清洁机器人200的第二电极220并向清洁机器人200充电。红外模块130设置于腔室侧壁111a,用于对清洁机器人200进行对位。导向件140设置于腔室侧壁111a,导向件140凸出于腔室侧壁111a设置,导向件140能够伸入清洁机器人200具有的导向槽230,导向件140远离腔室侧壁111a的一端为导向部141,沿远离腔室侧壁111a的方向,导向部141的横截面尺寸逐渐减小。
清洁机器人200能够驶向清洁基站100的敞口腔室111,清洁机器人200设有导向槽230,导向槽230能够容纳清洁基站100的至少部分导向件140。
根据本发明实施例的清洁系统,清洁基站100包括红外模块130以及导向件140,红外模块130能够对清洁机器人200进行初步对位,导向件140凸出于腔室侧壁111a设置,导向件140能够伸入清洁机器人200具有的导向槽230。导向件140远离腔室侧壁111a的一端为导向部141,沿远离腔室侧壁111a的方向,导向部141的横截面尺寸逐渐减小,使得导向件140能够在预设范围内被清洁机器人200的导向槽230捕捉到,通过导向件140与导向槽230的配合,能够实现对清洁机器人200进一步精准对位,从而在实现对清洁机器人200的精确对位的同时降低红外对位过程的控制算法设计难度,降低产品设计成本。
本发明实施例还提供一种清洁基站的控制方法,该清洁基站的控制方法能够用于前述任一实施方式的清洁基站100。该清洁基站100包括基座110、第一电极120、红外模块130以及导向件140。基座110包括能够容纳至少部分清洁机器人200的敞口腔室111,敞口腔室111具有基本呈弧状延伸的腔室侧壁111a。第一电极120 设置于腔室侧壁111a,第一电极120用于接触清洁机器人200的第二电极220并向清洁机器人200充电。红外模块130设置于腔室侧壁111a,用于对清洁机器人200进行对位。导向件140设置于腔室侧壁111a,导向件140凸出于腔室侧壁111a设置,导向件140能够伸入清洁机器人200具有的导向槽230,导向件140远离腔室侧壁111a的一端为导向部141,沿远离腔室侧壁111a的方向,导向部141的横截面尺寸逐渐减小。
图9为本发明清洁基站的控制方法一实施例的流程图,本实施例中,清洁基站的控制方法包括步骤S110至步骤S130。
在步骤S110中,通过红外模块130对驶向清洁基站100的敞口腔室111的清洁机器人200进行初步对位。
在步骤S120中,在检测到预设条件已满足后产生对位到位信号。本实施例中,预设条件包括:检测到清洁基站100的导向件140嵌入清洁机器人200的导向槽230;以及清洁基站100的第一电极120产生已接触到清洁机器人200的第二电极220的电接触信号。
在步骤S130中,根据对位到位信号,产生对清洁机器人200的维护信号,维护信号包括充电信号,充电信号用于控制清洁基站100的第一电极120向清洁机器人200充电。
根据本发明实施例的清洁基站的控制方法,通过红外模块130对驶向清洁基站100的敞口腔室111的清洁机器人200进行初步对位,该步骤中,应用于红外模块130的控制算法设计难度较低,无须利用红外模块130实现对清洁机器人200较紧缺定位,红外模块130能够实现引导清洁机器人200的导向槽230与清洁基站100的导向件140配合上即可。控制方法包括在检测到预设条件已满足后产生对位到位信号,其中该预设条件包括:检测到清洁基站100的导向件140嵌入清洁机器人200的导向槽230;清洁基站100的第一电极120产生已接触到清洁机器人200的第二电极220的电接触信号。在本发明实施例中,产生对位到位信号的条件结合了红外模块130的初步对位、导向件140与导向槽230的配合、第一电极120与第二电极220的电接触配合,从多个角度对清洁机器人200的精确对位位置进行确认,提高清洁机器人200对位的精准性,并且降低红外对位过程的控制算法设计难度,降低产品设计成本。在本发明实施例的控制方法中,根据对位到位信号,产生对清洁机器人200的维护信号,即在完成对清洁机器人200的准确对位后,才开始对清洁机器人200的维护,从而避免出现清洁机器人200未停靠至合适位置就触发维护工作导致的一些维护异常。
在一些实施例中,清洁基站100的导向件140在腔室侧壁111a的弧状延伸结构上居中设置。清洁基站100还包括至少两个引导组件150,至少两个引导组件150设置于腔室侧壁111a,至少两个引导组件150对称分布于导向件140的两侧,每个引导组件150包括至少一个滚轮,滚轮部分外露于腔室侧壁111a。因此,在上述实施例中,在步骤S120中,预设条件还可以包括:检测到清洁基站100的注水件160的注水端部161嵌入清洁机器人200的呈喇叭状的注水口240。此时,通过检测注水件160与注水口240的配合,结合检测导向件140与导向槽230的配合、第一电极120与第二电极220的电接触配合、红外模块130的初步对位,能够从多个角度 对清洁机器人200的精确对位位置进行确认,从而提高清洁机器人200对位的精准性。
在一些实施例中,清洁基站100的第一电极120包括伸缩件121、第一电连接件122、弹性件123。伸缩件121可伸缩设置于腔室侧壁111a。第一电连接件122设置于伸缩件121穿出于腔室侧壁111a一端的端面。弹性件123将伸缩件121与基座110弹性连接,弹性件123能够将伸缩件121复位至相对腔室侧壁111a外伸的第一预设位置。在上述实施例中,在步骤S120中,预设条件还可以包括:清洁基站100的伸缩件121收缩至第二预设位置。进一步地,伸缩件121的延伸轴线平行于导向件140的延伸轴线。第一电极120还可以包括收缩到位检测模块124,到位检测模块124位于基座110内,收缩到位检测模块124用于在伸缩件121收缩至第二预设位置时产生收缩到位信号。因此,在上述实施例中,可以通过收缩到位检测模块124判断清洁基站100的伸缩件121是否收缩至第二预设位置,即在步骤S120中,预设条件可以包括:清洁基站100的收缩到位检测模块124产生收缩到位信号。此时,通过检测伸缩件121是否收缩至第二预设位置,结合检测导向件140与导向槽230的配合、第一电极120与第二电极220的电接触配合、红外模块130的初步对位,能够从多个角度对清洁机器人200的精确对位位置进行确认,从而提高清洁机器人200对位的精准性。
在一些实施例中,清洁基站100还包括集尘口170以及行程开关180。集尘口170外伸于腔室侧壁111a设置,集尘口170外伸于腔室侧壁111a的一端具有外扩部171,集尘口170为柔性结构。行程开关180设置于腔室侧壁111a,并位于集尘口170处,集尘口170受到挤压形变至外扩部171挤压行程开关180时触发行程开关180。因此,在上述实施例中,在步骤S120中,预设条件还可以包括:清洁基站100的行程开关180已触发。此时,通过检测集尘口170处的行程开关180是否触发,结合检测导向件140与导向槽230的配合、第一电极120与第二电极220的电接触配合、红外模块130的初步对位,能够从多个角度对清洁机器人200的精确对位位置进行确认,从而提高清洁机器人200对位的精准性。
在一些实施例中,在步骤S130中,维护信号还包括集尘信号、清洁信号、注水信号、烘干信号。集尘信号用于控制清洁基站100的集尘机构通过集尘口170对清洁机器人200的尘盒进行抽吸处理。清洁信号用于控制清洁基站100的清洁机构对清洁机器人200的清洁件进行清洁处理。注水信号用于控制清洁基站100的注水机构通过注水件160向清洁机器人200的储水容器注水。烘干信号用于控制清洁基站100的烘干机构对清洁机器人200的清洁件进行烘干处理。
在本实施例中,集尘信号、清洁信号、注水信号、烘干信号、充电信号依次产生。具体地,清洁基站100的控制器向集尘机构发送集尘信号,集尘机构执行对清洁机器人200的尘盒进行抽吸操作,将尘盒内的垃圾抽吸至集尘机构内。执行完集尘操作后,控制器停止集尘机构的工作,向自清洁机构发送清洁信号,对清洁机器人200的清洁件进行清洁处理,清洁机器人200的清洁件例如是拖布,并对处理后的污水进行回收。执行完清洁处理后,控制器停止清洁机构工作,向注水机构发送注水信号,通过注水件160向清洁机器人200的储水容器注水。此后控制器向烘干机构发送烘干信号,控制烘干机构对清洁机器人200的清洁件进行烘干处理。执行 完烘干处理操作后,向充电机构发送充电信号,控制充电机构通过第一电极120对清洁机器人200进行充电。由于集尘信号、清洁信号、注水信号、烘干信号、充电信号依次产生,使得对清洁机器人200的维护过程中,基本按照先处理干燥垃圾、再对清洁机器人200清洁、再对清洁机器人200烘干处理后进行充电的步骤进行,一方面能够降低二次污染的现象出现,另一方面可以防止漏电的故障发生。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种清洁基站,其特征在于,包括:
    基座,所述基座包括能够容纳至少部分清洁机器人的敞口腔室,所述敞口腔室具有基本呈弧状延伸的腔室侧壁;
    第一电极,设置于所述腔室侧壁,所述第一电极用于接触所述清洁机器人的第二电极并向所述清洁机器人充电;
    红外模块,设置于所述腔室侧壁,用于对所述清洁机器人进行对位;以及
    导向件,设置于所述腔室侧壁,所述导向件凸出于所述腔室侧壁设置,所述导向件能够伸入所述清洁机器人具有的导向槽,所述导向件远离所述腔室侧壁的一端为导向部,沿远离所述腔室侧壁的方向,所述导向部的横截面尺寸逐渐减小。
  2. 如权利要求1所述的清洁基站,其特征在于,所述导向部包括相对设置的两个斜面,沿远离所述腔室侧壁的方向,所述两个斜面逐渐靠拢。
  3. 如权利要求1所述的清洁基站,其特征在于,所述导向件在所述腔室侧壁的弧状延伸结构上居中设置,所述清洁基站还包括:
    至少两个引导组件,设置于所述腔室侧壁,所述至少两个引导组件对称分布于所述导向件的两侧,每个所述引导组件包括至少一个滚轮,所述滚轮部分外露于所述腔室侧壁。
  4. 如权利要求1所述的清洁基站,其特征在于,还包括:
    注水件,所述注水件穿出于所述腔室侧壁设置,所述注水件的延伸轴线平行于所述导向件的延伸轴线,所述注水件穿出所述腔室侧壁的一端为注水端部,所述注水端部呈锥面形状,所述锥面形状与所述清洁机器人设有的呈喇叭状的注水口匹配。
  5. 如权利要求1所述的清洁基站,其特征在于,所述第一电极包括:
    伸缩件,可伸缩设置于所述腔室侧壁;
    第一电连接件,设置于所述伸缩件穿出于所述腔室侧壁一端的端面;
    弹性件,将所述伸缩件与所述基座弹性连接,所述弹性件能够将所述伸缩件复位至相对所述腔室侧壁外伸的第一预设位置。
  6. 一种清洁系统,其特征在于,包括:
    如权利要求1至5任一项所述的清洁基站;
    清洁机器人,所述清洁机器人能够驶向所述清洁基站的敞口腔室,所述清洁机器人设有导向槽,所述导向槽能够容纳所述清洁基站的至少部分导向件。
  7. 一种清洁基站的控制方法,其特征在于,用于如权利要求1至5任一项所述的清洁基站,所述清洁基站的控制方法包括:
    通过红外模块对驶向所述清洁基站的敞口腔室的清洁机器人进行初步对位;
    在检测到预设条件已满足后产生对位到位信号;以及
    根据所述对位到位信号,产生对清洁机器人的维护信号,所述维护信号包括充电信号,所述充电信号用于控制所述清洁基站的第一电极向所述清洁机器人充电,
    其中,所述预设条件包括:
    检测到所述清洁基站的导向件嵌入所述清洁机器人的导向槽;
    所述清洁基站的第一电极产生已接触到所述清洁机器人的第二电极的电接触信号。
  8. 如权利要求7所述的清洁基站的控制方法,其特征在于,所述清洁基站为如权利要求3所述的清洁基站,所述预设条件还包括:
    检测到所述清洁基站的注水件的注水端部嵌入所述清洁机器人的呈喇叭状的注水口。
  9. 如权利要求7所述的清洁基站的控制方法,其特征在于,所述清洁基站为如权利要求5所述的清洁基站,所述预设条件还包括:
    所述清洁基站的伸缩件收缩至第二预设位置。
  10. 如权利要求7所述的清洁基站的控制方法,其特征在于,所述维护信号还包括:
    集尘信号,所述集尘信号用于控制所述清洁基站的集尘机构通过集尘口对所述清洁机器人的尘盒进行抽吸处理;
    清洁信号,所述清洁信号用于控制所述清洁基站的清洁机构对所述清洁机器人的清洁件进行清洁处理;
    注水信号,所述注水信号用于控制所述清洁基站的注水机构通过注水件向所述清洁机器人的储水容器注水;
    烘干信号,所述烘干信号用于控制所述清洁基站的烘干机构对所述清洁机器人的清洁件进行烘干处理;
    其中,所述集尘信号、所述清洁信号、所述注水信号、所述烘干信号、所述充电信号依次产生。
PCT/CN2023/096942 2022-10-28 2023-05-29 清洁基站及其控制方法、清洁系统 WO2024087619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211331499.5A CN117941994A (zh) 2022-10-28 2022-10-28 清洁基站及其控制方法、清洁系统
CN202211331499.5 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024087619A1 true WO2024087619A1 (zh) 2024-05-02

Family

ID=90800587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096942 WO2024087619A1 (zh) 2022-10-28 2023-05-29 清洁基站及其控制方法、清洁系统

Country Status (3)

Country Link
US (1) US20240138645A1 (zh)
CN (1) CN117941994A (zh)
WO (1) WO2024087619A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015974A (ja) * 2014-07-04 2016-02-01 株式会社東芝 電気掃除機
CN112006615A (zh) * 2020-07-30 2020-12-01 杭州匠龙机器人科技有限公司 一种清洁机器人的集成站
CN113287980A (zh) * 2021-04-27 2021-08-24 苏州三六零机器人科技有限公司 基站和清洁系统
CN215272536U (zh) * 2021-04-29 2021-12-24 杭州匠龙机器人科技有限公司 一种基站的引导结构
KR102370649B1 (ko) * 2021-08-30 2022-03-07 이에스산업 주식회사 로봇 청소시스템
CN215959662U (zh) * 2021-09-23 2022-03-08 成都全景智能科技有限公司 基站和清洁系统
CN217310145U (zh) * 2022-04-08 2022-08-30 北京小米移动软件有限公司 基站、清洁设备及清洁系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015974A (ja) * 2014-07-04 2016-02-01 株式会社東芝 電気掃除機
CN112006615A (zh) * 2020-07-30 2020-12-01 杭州匠龙机器人科技有限公司 一种清洁机器人的集成站
CN113287980A (zh) * 2021-04-27 2021-08-24 苏州三六零机器人科技有限公司 基站和清洁系统
CN215272536U (zh) * 2021-04-29 2021-12-24 杭州匠龙机器人科技有限公司 一种基站的引导结构
KR102370649B1 (ko) * 2021-08-30 2022-03-07 이에스산업 주식회사 로봇 청소시스템
CN215959662U (zh) * 2021-09-23 2022-03-08 成都全景智能科技有限公司 基站和清洁系统
CN217310145U (zh) * 2022-04-08 2022-08-30 北京小米移动软件有限公司 基站、清洁设备及清洁系统

Also Published As

Publication number Publication date
CN117941994A (zh) 2024-04-30
US20240138645A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
US9414734B2 (en) Side brush assembly, robot cleaner and control method of robot cleaner
KR102324204B1 (ko) 로봇 청소기 및 그 제어방법
CN103054516A (zh) 机器人吸尘器以及用于机器人吸尘器的控制方法
CN107396680B (zh) 自动工作系统及充电站及智能割草机回归充电站的方法
US20240130597A1 (en) Base station of cleaning device and cleaning system
EP3725202B1 (de) Sich selbsttätig fortbewegender saugroboter sowie system aus einem sich selbsttätig fortbewegenden saugroboter und einem externen saugreinigungsgerät
TWI675528B (zh) 便於回歸對位的機器人系統
WO2024087619A1 (zh) 清洁基站及其控制方法、清洁系统
WO2018123321A1 (ja) 自律走行型掃除機
CN112971624B (zh) 一种清洁设备集尘系统及其集尘方法
CN109301625B (zh) 充电装置及充电站
CN107037807B (zh) 自移动机器人位姿校准系统和方法
EP4085811A1 (en) Charging station for robot cleaner
JP2009038880A (ja) 自律走行装置およびプログラム
KR100575668B1 (ko) 로봇 청소기의 충전장치
CN216784985U (zh) 手爪装置
CN213354217U (zh) 一种巡视车的回充结构
JP6513973B2 (ja) 電極ユニットおよび走行装置
KR100837662B1 (ko) 로봇청소기 장치 및 그에 따른 제어방법
TWI554239B (zh) Automatic return charging method for self - propelled cleaning device
CN217524937U (zh) 清洁系统、自移动设备和基站
CN215078050U (zh) 一种清洁设备集尘系统
CN216750478U (zh) 电性连接装置及草地作业设备
CN114831542B (zh) 清洁系统、清洁设备、基站以及对位方法
CN220695155U (zh) 清洁系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881211

Country of ref document: EP

Kind code of ref document: A1