WO2024087127A1 - Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation - Google Patents

Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation Download PDF

Info

Publication number
WO2024087127A1
WO2024087127A1 PCT/CN2022/128099 CN2022128099W WO2024087127A1 WO 2024087127 A1 WO2024087127 A1 WO 2024087127A1 CN 2022128099 W CN2022128099 W CN 2022128099W WO 2024087127 A1 WO2024087127 A1 WO 2024087127A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
composite current
polymer substrate
thermal shrinkage
substrate layer
Prior art date
Application number
PCT/CN2022/128099
Other languages
English (en)
Chinese (zh)
Inventor
唐皞
张宇航
刘科
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Priority to PCT/CN2022/128099 priority Critical patent/WO2024087127A1/fr
Priority to PCT/CN2023/127354 priority patent/WO2024088417A1/fr
Publication of WO2024087127A1 publication Critical patent/WO2024087127A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers

Definitions

  • the present application relates to the technical field of polymer materials, and in particular to a composite current collector with low thermal shrinkage, and a preparation method and application thereof.
  • Lithium-ion batteries have been widely used in consumer electronics, electric vehicles and other fields, and the market has also put forward higher requirements for the energy density, cycle life, and safety of lithium-ion batteries.
  • Composite current collectors are a new type of current collector, usually made of metal plated on the surface of a polymer substrate layer, presenting a "sandwich structure". Compared with pure metal current collectors, composite current collectors have the characteristics of low weight and small thickness, thereby transferring more space in the battery to active substances. The presence of the polymer substrate layer also allows the composite current collector to reduce the risk of battery temperature rise and thermal runaway, thereby improving the safety of the battery.
  • the thermal shrinkage of the composite current collector is higher than that of the traditional pure metal current collector.
  • the traditional composite current collector is prone to the shedding of the metal layer due to the different thermal shrinkage rates of the polymer substrate layer and the metal layer, which in turn causes the decrease in the conductivity of the composite current collector and affects the performance of the battery.
  • the low thermal shrinkage composite current collector has a low thermal shrinkage, which can reduce the risk of metal layer falling off due to the different thermal shrinkage rates of the polymer substrate layer and the metal layer in a high-temperature electrolyte environment.
  • the present application provides a low heat shrinkage composite current collector, comprising a polymer substrate layer and a conductive layer located on at least one surface of the polymer substrate layer; the polymer substrate layer comprises the following components in fractions by weight:
  • the metal oxide fibers include one or more of Al 2 O 3 fibers, ZrO 2 fibers, MgO fibers, TiO 2 fibers, ZnO fibers, and SnO 2 fibers.
  • the metal oxide fibers are metal oxide nanofibers.
  • the polymer material includes one or more of polyethylene terephthalate, polyethylene, polypropylene, polyamide, polyimide, polyvinyl chloride and polystyrene.
  • the coupling agent includes one or more of ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, maleic anhydride, and vinyltrimethoxysilane.
  • the polymer substrate layer is a heat-shrunk polymer substrate layer.
  • the present application provides a method for preparing a composite current collector with a low thermal shrinkage rate, comprising:
  • metal oxide fiber 0.01 to 1 part by weight of coupling agent, and 96 to 99.89 parts by weight of polymer material are mixed and extruded to prepare a polymer substrate layer;
  • a conductive layer is formed on at least one surface of the polymer base material layer.
  • the polymer substrate layer before forming the conductive layer, is further subjected to heat shrinkage.
  • the temperature of the heat shrinking operation is 100-200°C.
  • the tension of the polymer substrate layer during the heat shrinking operation is 20-100N.
  • the present application provides a battery, comprising any of the low thermal shrinkage composite current collectors described above or a low thermal shrinkage composite current collector prepared by any of the methods for preparing the low thermal shrinkage composite current collectors described above.
  • the present application provides an electronic product, comprising the above-mentioned battery.
  • a polymer substrate layer composed of metal oxide fibers, coupling agents and polymer materials is used.
  • the polymer substrate layer has a low heat shrinkage and is not easily deformed during vacuum plating of the metal conductive layer, thereby improving processing performance.
  • the low heat shrinkage composite current collector using the polymer substrate layer has a low heat shrinkage and can reduce the risk of the metal layer falling off due to the different heat shrinkage rates of the polymer substrate layer and the metal layer in a high-temperature electrolyte environment.
  • the method for preparing the low thermal shrinkage composite current collector can prepare a composite current collector with a lower thermal shrinkage, thereby reducing the risk of the metal layer falling off due to the different thermal shrinkage rates of the polymer substrate layer and the metal layer in a high-temperature electrolyte environment.
  • FIG. 1 is a schematic flow chart of a method for preparing a composite current collector with low thermal shrinkage provided in one embodiment of the present application.
  • An embodiment of the present application provides a low heat shrinkage composite current collector, comprising a polymer substrate layer and a conductive layer located on at least one surface of the polymer substrate layer; the polymer substrate layer comprises the following components in fractions by weight:
  • a polymer substrate layer composed of metal oxide fibers, a coupling agent and a polymer material is used.
  • the polymer substrate layer has a low heat shrinkage and is not easily deformed during vacuum plating of a metal conductive layer, thereby improving processing performance.
  • the low heat shrinkage composite current collector using the polymer substrate layer has a low heat shrinkage and can reduce the risk of the metal layer falling off due to the different heat shrinkage rates of the polymer substrate layer and the metal layer in a high-temperature electrolyte environment.
  • the metal oxide fibers include one or more of Al 2 O 3 fibers, ZrO 2 fibers, MgO fibers, TiO 2 fibers, ZnO fibers, and SnO 2 fibers.
  • the metal oxide fiber is a metal oxide nanofiber. Nanofibers have a better effect on improving the thermal shrinkage of polymer materials.
  • the metal oxide nanofibers have a diameter less than or equal to 1000 nm.
  • the polymer material includes one or more of polyethylene terephthalate, polyethylene, polypropylene, polyamide, polyimide, polyvinyl chloride, and polystyrene.
  • the coupling agent includes one or more of ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, maleic anhydride, and vinyltrimethoxysilane.
  • the polymer substrate layer is a heat-shrunk polymer substrate layer.
  • the polymer substrate layer is preheated and shrunk during processing, so that it has a lower heat shrinkage rate during actual use, and the risk of the metal layer falling off during use is lower.
  • the polymer substrate layer includes the following components in percentage by weight:
  • the raw materials of the polymer substrate layer are the following components in percentage by weight:
  • another embodiment of the present application provides a method for preparing a composite current collector with a low thermal shrinkage rate, comprising:
  • S101 0.1 to 3 parts by weight of metal oxide fiber, 0.01 to 1 part by weight of coupling agent, and 96 to 99.89 parts by weight of polymer material are mixed and extruded to prepare a polymer substrate layer;
  • the method for preparing the low thermal shrinkage composite current collector can prepare a composite current collector with a lower thermal shrinkage, thereby reducing the risk of the metal layer falling off due to the different thermal shrinkage rates of the polymer substrate layer and the metal layer in a high-temperature electrolyte environment.
  • a method for preparing a composite current collector with low thermal shrinkage comprises the following steps:
  • a conductive layer is formed on at least one surface of the polymer base material layer.
  • the preparation method of the low thermal shrinkage composite current collector is as follows:
  • a conductive layer is formed on at least one surface of the polymer base material layer.
  • the polymer substrate layer before forming the conductive layer, is further subjected to heat shrinkage.
  • the polymer substrate layer is subjected to preheat shrinkage during processing, so that it has a lower heat shrinkage rate during actual use, and the risk of the metal layer falling off during use is reduced.
  • the temperature of the heat shrinking operation is 100-200°C.
  • the pre-shrinkage range of the polymer substrate layer is appropriate, which will not affect the subsequent processing and use, and can also make the prepared composite current collector have a lower heat shrinkage rate.
  • the temperature of the heat shrinking operation is 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C or 200°C.
  • the tension of the polymer substrate layer during the heat shrinking operation is 20 to 100N.
  • the tension is the tension of the polymer substrate layer at the heat shrinking temperature.
  • the pre-shrinkage range of the polymer substrate layer is appropriate, which will not affect the subsequent processing and use, and can also make the prepared composite current collector have a lower heat shrinkage rate.
  • the tension of the polymer substrate layer during the heat shrinking operation is 20N, 30N, 40N, 50N, 60N, 70N, 80N, 90N or 100N.
  • the conductive layer is prepared by physical vapor deposition.
  • the conductive layer is prepared by magnetron sputtering or vacuum evaporation.
  • the evaporation material is heated to evaporate by vacuum evaporation, and then deposited on the surface of the polymer substrate film to form a conductive layer.
  • the material of the conductive layer includes one or more of copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, titanium, and silver.
  • the thickness of the polymer substrate layer is 2-20 ⁇ m.
  • the thickness of the polymer substrate layer is 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m or 20 ⁇ m.
  • the thickness of the conductive layer is 0.5-2 ⁇ m.
  • the thickness of the conductive layer is 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, 1.9 ⁇ m or 2 ⁇ m.
  • a method for preparing a composite current collector with low thermal shrinkage comprises the following steps:
  • a conductive layer is formed on at least one surface of the heat-shrunk polymer base material layer.
  • a method for preparing a composite current collector with low thermal shrinkage comprises the following steps:
  • a conductive layer is formed on at least one surface of the heat-shrunk polymer base material layer.
  • the preparation method of the low thermal shrinkage composite current collector is as follows:
  • a conductive layer is formed on at least one surface of the heat-shrunk polymer base material layer.
  • the present application provides a battery, comprising any of the above-mentioned low thermal shrinkage composite current collectors or a low thermal shrinkage composite current collector prepared by any of the above-mentioned methods for preparing the low thermal shrinkage composite current collectors.
  • the present application provides an electronic product, comprising the above-mentioned battery.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 100° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 20 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the tension of the polymer substrate film is 100 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • step (2) unwinding the polymer substrate film obtained in step (1), performing a preheat shrinkage treatment in an oven, and then rewinding the film, wherein the oven temperature is 150° C. and the polymer substrate film tension is 50 N;
  • step (3) Forming a 1 ⁇ m conductive layer on both surfaces of the polymer substrate film pre-shrunk in step (2) by physical vapor deposition to obtain a composite current collector, wherein the conductive layer is made of aluminum.
  • Tensile strength test The tensile speed is 50 mm/min. Five samples are taken for each example or comparative example, and the average value is taken as the test result. The length direction is required to be parallel to the axis of the fixture during measurement, and the sample is kept in a straight line. If the sample is broken in the jaws of the fixture, or there is a gap on the edge of the sample, the test result of the sample is invalid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente demande concerne un collecteur de courant composite à faible retrait thermique, un procédé de préparation et une utilisation de celui-ci. Le collecteur de courant composite à faible retrait thermique comprend une couche de matériau de base polymère et une couche conductrice située sur au moins une surface de la couche de matériau de base polymère. La couche de matériau de base polymère comprend les composants suivants en parties en masse : 0,1 à 3 parties d'une fibre d'oxyde métallique, 0,01 à 1 partie d'un agent de couplage et 96 à 99,89 parties d'un matériau polymère. Dans le collecteur de courant composite à faible retrait thermique, on utilise la couche de matériau de base polymère comprenant une fibre d'oxyde métallique, un agent de couplage et un matériau polymère, en tant que composants. La couche de matériau de base polymère a un faible retrait thermique et n'est pas sujette à une déformation pendant le placage sous vide de la couche conductrice métallique, de telle sorte que les performances de traitement sont améliorées. Le collecteur de courant composite à faible retrait thermique utilisant la couche de matériau de base polymère a un faible retrait thermique et peut réduire le risque de chute de la couche métallique en raison d'un retrait thermique différent de la couche de matériau de base polymère et de la couche métallique, dans un environnement d'électrolyte à haute température.
PCT/CN2022/128099 2022-10-28 2022-10-28 Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation WO2024087127A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/128099 WO2024087127A1 (fr) 2022-10-28 2022-10-28 Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation
PCT/CN2023/127354 WO2024088417A1 (fr) 2022-10-28 2023-10-27 Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128099 WO2024087127A1 (fr) 2022-10-28 2022-10-28 Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation

Publications (1)

Publication Number Publication Date
WO2024087127A1 true WO2024087127A1 (fr) 2024-05-02

Family

ID=90829538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128099 WO2024087127A1 (fr) 2022-10-28 2022-10-28 Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation

Country Status (1)

Country Link
WO (1) WO2024087127A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678536A (zh) * 2022-04-29 2022-06-28 扬州纳力新材料科技有限公司 集流体及其制备方法和应用
CN114899356A (zh) * 2022-06-30 2022-08-12 扬州纳力新材料科技有限公司 一种复合集流体、制备方法、电极极片、电池和电子设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678536A (zh) * 2022-04-29 2022-06-28 扬州纳力新材料科技有限公司 集流体及其制备方法和应用
CN114899356A (zh) * 2022-06-30 2022-08-12 扬州纳力新材料科技有限公司 一种复合集流体、制备方法、电极极片、电池和电子设备

Similar Documents

Publication Publication Date Title
CN115447248B (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
CN113524830B (zh) 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
WO2024000802A1 (fr) Collecteur de courant composite et son procédé de préparation, plaque d'électrode, batterie et dispositif électronique
WO2022267764A1 (fr) Collecteur de courant positif et batterie au lithium-ion
WO2023130611A1 (fr) Couche centrale de collecteur de courant flexible, collecteur de courant, feuille d'électrode, batterie et procédés de préparation pour couche centrale de collecteur de courant flexible et collecteur de courant
JP2020057585A (ja) 集電体、極シート及び電気化学デバイス
WO2023216346A1 (fr) Collecteur de courant composite à faible gonflement et son procédé de préparation
CN112164538A (zh) 一种轻质、安全的导电薄膜及其制备方法
WO2024108680A1 (fr) Film composite polymère, son procédé de préparation, collecteur de courant composite, feuille d'électrode, batterie secondaire et appareil électrique
WO2024130774A1 (fr) Film de polypropylène et son procédé de préparation, collecteur de courant composite, et utilisation associée
WO2023216348A1 (fr) Collecteur de courant à haute conductivité thermique de batterie secondaire et procédé de préparation associé
WO2024000804A1 (fr) Collecteur de courant composite à haute soudabilité et son procédé de préparation
WO2024120545A1 (fr) Feuille composite résistante à l'effet couronne pour moteur électrique de véhicule à énergie nouvelle, et son procédé de préparation
WO2023216345A1 (fr) Collecteur de courant à structure multicouche et son procédé de préparation
WO2024087127A1 (fr) Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation
WO2024104393A1 (fr) Matériau de polypropylène composite multicouche, procédé de préparation s'y rapportant et utilisation associée
WO2024088417A1 (fr) Collecteur de courant composite à faible retrait thermique, son procédé de préparation et son utilisation
WO2024092882A1 (fr) Collecteur de courant de cuivre composite et son procédé de préparation, feuille d'électrode, batterie secondaire et dispositif électrique
CN115320206B (zh) 复合聚酯膜及其制备方法与用途
CN115084536B (zh) 复合集流体及其制备方法和应用
WO2024050690A1 (fr) Film de polyester composite, procédé de préparation s'y rapportant et utilisation associée
WO2024050688A1 (fr) Film polymère composite, procédé de fabrication s'y rapportant, film polymère composite métallisé et utilisation
KR20220151898A (ko) 고분자 필름을 포함하는 집전체 및 이의 제조방법
JPH1040919A (ja) 二次電池電極用フィルム
WO2024060009A1 (fr) Film mince polymère à résistance mécanique élevée, son procédé de fabrication et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963111

Country of ref document: EP

Kind code of ref document: A1