WO2024087069A1 - 一种接收发送唤醒信号的方法、装置及可读存储介质 - Google Patents

一种接收发送唤醒信号的方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2024087069A1
WO2024087069A1 PCT/CN2022/127771 CN2022127771W WO2024087069A1 WO 2024087069 A1 WO2024087069 A1 WO 2024087069A1 CN 2022127771 W CN2022127771 W CN 2022127771W WO 2024087069 A1 WO2024087069 A1 WO 2024087069A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
wake
measurement
wus
capability
Prior art date
Application number
PCT/CN2022/127771
Other languages
English (en)
French (fr)
Inventor
胡子泉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280004570.0A priority Critical patent/CN118266258A/zh
Priority to PCT/CN2022/127771 priority patent/WO2024087069A1/zh
Publication of WO2024087069A1 publication Critical patent/WO2024087069A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular to a method, device and readable storage medium for receiving and sending a wake-up signal.
  • power saving signals in the connected state are introduced, such as the wake-up signal (WUS) or the downlink control information for power saving (DCP).
  • WUS wake-up signal
  • DCP downlink control information for power saving
  • UE user equipment
  • PDCCH physical downlink control channel
  • R17 for the discontinuous reception (DRX) scenario in idle state, power saving signals such as Paging Early Indication (PEI) are usually configured before the paging occasion (PO).
  • Paging DCI Paging Early Indication
  • the UE will monitor the paging DCI (Paging DCI) only when it detects PEI, otherwise it will skip the Paging DCI.
  • Paging DCI Paging Early Indication
  • R17 also introduced a skip monitoring PDCCH mechanism.
  • the network notifies the UE through DCI to skip PDCCH monitoring for a period of time or switch the search space group.
  • a low power wake-up signal (LP WUS) is introduced.
  • the UE can use a separate low power wake-up receiver (LP WUR) to monitor and receive LP WUS, while the main receiver (modem or main radio) is in sleep mode. After the low power receiver receives LP WUS, the main receiver is woken up to send and receive data, thereby achieving energy saving for the UE.
  • the measurement method for this wake-up scenario needs to be provided.
  • the present disclosure provides a method, device and readable storage medium for receiving and sending a wake-up signal.
  • the present disclosure provides a method for receiving a wake-up signal, which is performed by a user equipment, and the method includes:
  • the measurements are performed either by the low power transceiver or by the main receiver.
  • the user equipment may perform measurement through the low-power transceiver or the main receiver, thereby achieving effective measurement in the scenario where the low-power transceiver is introduced.
  • performing the measurement by the low power consumption transceiver or the main receiver includes:
  • the measurement quantity of the WUS is measured by the low power consumption transceiver.
  • measuring the measurement quantity of the WUS by the low power consumption transceiver includes:
  • the low power consumption transceiver measures the measurement quantity of the WUS in each measurement cycle of the WUS.
  • the method further includes:
  • the measurement period of the WUS is determined according to the period of the WUS, the number of sampling points and the constant time.
  • measuring the measurement quantity of the WUS by the low power consumption transceiver includes:
  • the measurement quantity of the WUS is measured once by the low power consumption transceiver.
  • the method further includes:
  • First indication information sent by the network device is received, where the first indication information is used to indicate the measurement amount.
  • the method further includes:
  • the threshold corresponding to the measurement quantity is defined by a protocol.
  • the method further includes:
  • capability information of the user equipment indicates at least one of the following:
  • a threshold of the measurement quantity supported by the user equipment capability is
  • the method further includes:
  • the user equipment receives second indication information sent by the network equipment, where the second indication information is used to indicate a threshold corresponding to the measurement amount.
  • the measured quantity is at least one of the following:
  • performing the measurement by the low power consumption transceiver or the main receiver includes:
  • the primary receiver performs, within the extended period, a first measurement result reporting corresponding to the reference signal measurement after wake-up.
  • the method further includes:
  • the extension period is determined according to the extension coefficient and the reference period.
  • the expansion factor is defined by a protocol.
  • the method further includes:
  • the reference period includes: a measurement period corresponding to the reference signal measurement; or, the reference period includes: an identification period and a measurement period corresponding to the reference signal measurement.
  • performing the measurement by the low power consumption transceiver or the main receiver includes:
  • the measurement of the reference signal is performed by the primary receiver.
  • the wake-up delay is defined by a protocol.
  • the wake-up delay corresponding to different user equipment capabilities is defined by a protocol; or,
  • the wake-up delay of each user equipment capability in different sleep states is defined by a protocol.
  • the method further includes:
  • the user equipment capability is applicable to all frequency bands supported by the user equipment, or the user equipment capability is applicable to a partial combination of frequency bands.
  • the present disclosure provides a method for sending a wake-up signal, which is performed by a network device, and the method includes:
  • a wake-up signal WUS is sent to the user equipment.
  • sending a wake-up signal WUS to the user equipment includes:
  • a broadcast message is sent, wherein the broadcast message includes the WUS.
  • the method further includes:
  • the method further includes:
  • capability information indicates a capability of the user equipment and/or a threshold value of a measurement amount supported by the capability of the user equipment
  • the method further includes:
  • the method further includes:
  • the user equipment is scheduled after the wake-up delay.
  • the wake-up delay is defined by a protocol.
  • the wake-up delay corresponding to different user equipment capabilities is defined by a protocol; or,
  • the wake-up delay of each user equipment capability in different sleep states is defined by a protocol.
  • the method further includes:
  • the scheduling the user equipment after the wake-up delay includes:
  • the user equipment is scheduled after the wake-up delay corresponding to the user equipment capability.
  • the present disclosure provides a device for receiving a wake-up signal, which may be used to execute the steps performed by a user device in the first aspect or any possible design of the first aspect.
  • the user device may implement the functions of the above methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module and a processing module coupled to each other, wherein the transceiver module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • the transceiver module can be used to support the communication device to communicate
  • the processing module can be used for the communication device to perform processing operations, such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • the transceiver module is configured to receive a wake-up signal WUS sent by the network device; the processing module is configured to perform measurement through the low-power transceiver or the main receiver.
  • the present disclosure provides a device for sending a wake-up signal, which can be used to execute the steps performed by a network device in the second aspect or any possible design of the second aspect.
  • the network device can implement each function in the above methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module, wherein the transceiver module can be used to support the communication device to communicate.
  • the transceiver module is configured to send a wake-up signal WUS to the user equipment.
  • the present disclosure provides a communication device, comprising a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or any possible design of the first aspect.
  • the present disclosure provides a communication device, comprising a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the second aspect or any possible design of the second aspect.
  • the present disclosure provides a computer-readable storage medium, which stores instructions (or computer programs, programs), which, when called and executed on a computer, enable the computer to execute the above-mentioned first aspect or any possible design of the first aspect.
  • the present disclosure provides a computer-readable storage medium, in which instructions (or computer programs, programs) are stored.
  • instructions or computer programs, programs
  • the computer executes the above-mentioned second aspect or any possible design of the second aspect.
  • FIG1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure.
  • FIG2 is a flow chart showing a method for receiving and sending a wake-up signal according to an exemplary embodiment
  • FIG3 is a flow chart showing a method for receiving a wake-up signal according to an exemplary embodiment
  • FIG4 is a flow chart showing another method for receiving a wake-up signal according to an exemplary embodiment
  • FIG5 is a flow chart showing another method for receiving a wake-up signal according to an exemplary embodiment
  • FIG6 is a flow chart showing another method for receiving a wake-up signal according to an exemplary embodiment
  • FIG7 is a flow chart showing a method for sending a wake-up signal according to an exemplary embodiment
  • FIG8 is a flow chart showing another method for sending a wake-up signal according to an exemplary embodiment
  • FIG9 is a block diagram of a device for receiving a wake-up signal according to an exemplary embodiment
  • FIG10 is a block diagram of a user equipment according to an exemplary embodiment
  • FIG11 is a block diagram of a device for sending a wake-up signal according to an exemplary embodiment
  • Fig. 12 is a block diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as “at” or "when” or "in response to determination".
  • a method for transmitting indication information may be applied to a wireless communication system 100, which may include a user equipment 101 and a network device 102.
  • the user equipment 101 is configured to support carrier aggregation and may be connected to multiple carrier components of the network device 102, including a primary carrier component and one or more secondary carrier components.
  • the application scenarios of the wireless communication system 100 include, but are not limited to, long-term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, worldwide interoperability for microwave access (WiMAX) communication system, cloud radio access network (CRAN) system, future fifth-generation (5G) system, new radio (NR) communication system or future evolved public land mobile network (PLMN) system, etc.
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • WiMAX worldwide interoperability for microwave access
  • CDRF cloud radio access network
  • 5G fifth-generation
  • NR new radio
  • PLMN future evolved public land mobile network
  • the user equipment 101 shown above may be a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal, a wireless communication device, a terminal agent or a terminal device, etc.
  • the user equipment 101 may have a wireless transceiver function, and it can communicate with one or more network devices of one or more communication systems (such as wireless communication) and receive network services provided by the network devices, where the network devices include but are not limited to the network device 102 shown in the figure.
  • the user equipment 101 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved PLMN network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 102 may be an access network device (or access network point).
  • the access network device refers to a device that provides network access functions, such as a radio access network (RAN) base station, etc.
  • the network device 102 may specifically include a base station (BS), or a base station and a wireless resource management device for controlling the base station, etc.
  • the network device 102 may also include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, etc.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip with a communication module.
  • the network device 102 includes, but is not limited to, a next-generation base station (gnodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in an LTE system, a radio network controller (radio network controller, RNC), a node B (node B, NB) in a WCDMA system, a wireless controller under a CRAN system, a base station controller (base station controller, BSC), a base transceiver station (base transceiver station, BTS) in a GSM system or a CDMA system, a home base station (for example, home evolved nodeB, or home node B, HNB), a baseband unit (baseband unit, BBU), a transmitting point (transmitting and receiving point, TRP), a transmitting point (transmitting point, TP) or a mobile switching center, etc.
  • a next-generation base station gNB
  • eNB evolved node B
  • RNC radio network controller
  • FIG. 2 is a method for receiving and sending a wake-up signal according to an exemplary embodiment. As shown in FIG. 2 , the method includes steps S201 to S202, specifically:
  • Step S201 the network device 102 sends a wake-up signal WUS to the user equipment 101 .
  • Step S202 the user equipment 101 performs measurement through the low power transceiver or the main receiver according to the received WUS.
  • the wake-up signal WUS is a low power wake-up signal LP WUS.
  • the network device 102 sends the LP WUS by sending a broadcast message.
  • the network device 102 indicates an identifier of the user equipment 101 to be awakened.
  • the network device 102 carries the identification of at least one user device 101 in the LP WUS, or carries the identification of at least one user device 101 in the configuration information corresponding to the LP WUS.
  • the user device 101 with the corresponding identification monitors and receives the LP WUS, and performs wake-up after receiving the LP WUS.
  • the network device 102 may send the configuration information of the LP WUS before sending the LP WUS.
  • the user device 101 obtains the time-frequency resources of the LP WUS according to the configuration information of the LP WUS, so as to monitor and receive the LP WUS at an accurate time-frequency position.
  • the user equipment 101 supports dual transceivers, that is, the user equipment 101 includes a low-power transceiver and a main receiver.
  • the low-power transceiver is used to monitor and receive WUS, and before receiving WUS, the main receiver is in a sleep state to achieve energy saving; after receiving WUS, the main receiver wakes up, that is, switches from the sleep state to the working state, and performs operations such as data transmission and reception.
  • the user equipment 101 may be in a radio resource control connected state (Radio Resource Control Connected, RRC Connected), or in an RRC idle state (RRC idle), or in an RRC inactive state (RRC inactive).
  • RRC Connected Radio Resource Control Connected
  • RRC idle RRC idle
  • RRC inactive RRC inactive
  • the measurements performed by the user device 101 include: measurements of the WUS, and/or measurements of a reference signal (RS) configured by the network device 102.
  • RS reference signal
  • the user equipment 101 performs the measurement of the WUS via a low power consumption transceiver.
  • the user equipment 101 performs RS measurement via a primary receiver.
  • the user equipment 101 may perform measurement through the low power transceiver or the main receiver, thereby achieving effective measurement in the scenario where the low power transceiver is introduced.
  • FIG. 3 is a method for receiving a wake-up signal according to an exemplary embodiment. As shown in FIG. 3 , the method includes steps S301 to S302, specifically:
  • Step S301 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S302 the user equipment 101 performs measurement via the low power consumption transceiver or the main receiver.
  • step S301 and step S302 are only for illustration and not limitation.
  • step S301 and step S302 may be performed synchronously.
  • the wake-up signal WUS is a low power wake-up signal LP WUS.
  • the user equipment 101 includes a low-power transceiver and a main receiver.
  • the low-power transceiver is used to monitor and receive WUS, and before receiving WUS, the main receiver is in a sleep state to save energy; after receiving WUS, the main receiver wakes up, that is, switches from the sleep state to the working state, and performs data transmission and reception.
  • the user equipment 101 wakes up the main receiver within the wake-up delay T after receiving the WUS.
  • the network device 102 performs UE scheduling after the wake-up delay.
  • the wake-up delay T is protocol defined.
  • the protocol defines the wake-up delays corresponding to different user equipment capabilities.
  • the user equipment 101 reports the supported capabilities to the network device 102, and the network device 102 determines the wake-up delay corresponding to the capabilities of the user equipment 101 according to the protocol and the capabilities reported by the user equipment 101, and performs UE scheduling after the wake-up delay.
  • the capabilities of the user equipment 101 include a first capability and a second capability, and the protocol defines the wake-up delays corresponding to the first capability and the second capability, respectively.
  • the user equipment 101 may be in an RRC connected state, or in an RRC idle state, or in an RRC inactive state.
  • the measurement performed by the user equipment 101 includes: measurement of the WUS, and/or measurement of the RS configured by the network device 102 .
  • the measurement quantity when the user device 101 performs measurement can be based on the configuration of the network device 102.
  • the user equipment 101 performs the measurement of WUS through the low power transceiver.
  • the measurement quantity of the WUS measurement may include at least one of the following: Receive Signal Strength Indication (RSSI), Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Interference plus Noise Ratio (SINR).
  • RSSI Receive Signal Strength Indication
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • the user equipment 101 performs RS measurement through a primary receiver.
  • the measurement quantity of the RS measurement may include at least one of the following: RSSI, RSRP, RSRQ, and SINR.
  • the user equipment 101 may perform measurement through the low power transceiver or through the main receiver, thereby achieving effective measurement in the scenario where the low power transceiver is introduced.
  • FIG. 4 is a method for receiving a wake-up signal according to an exemplary embodiment. As shown in FIG. 4 , the method includes steps S401 to S402, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S402 the user equipment 101 measures the measurement quantity of the WUS through the low power consumption transceiver.
  • step S401 and step S402 may be executed simultaneously.
  • the user equipment 101 before the primary receiver wakes up, that is, when the primary receiver is in a sleep state, the user equipment 101 performs the measurement of the WUS through the low power transceiver.
  • the measurement quantity of the WUS may be configured by the network device 102 .
  • the measured quantity is at least one of the following:
  • the user equipment 101 measures the RSSI of the WUS through a low power transceiver.
  • the user equipment 101 may monitor and receive the WUS through a low power transceiver and perform measurement of the WUS.
  • the embodiment of the present disclosure provides a method for receiving a wake-up signal, which is performed by a user equipment 101.
  • the method includes steps S401 to S402-1, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S402-1 the user equipment 101 measures the measurement amount of the WUS through the low power transceiver in each measurement period of the WUS.
  • step S401 and step S402-1 are for illustration only and is not intended to be limiting.
  • the user equipment 101 may synchronously perform the measurement related to step S402-1.
  • the measurement quantity of the WUS may be configured by the network device 102 .
  • the measured quantity is at least one of the following:
  • the WUS is a periodic signal, and the user equipment 101 periodically measures the WUS according to a measurement period.
  • the user equipment 101 may perform multiple samplings in one measurement period, and obtain a measurement result in each measurement period.
  • the user equipment 101 may perform periodic measurement on the WUS through a low power consumption transceiver.
  • the embodiment of the present disclosure provides a method for receiving a wake-up signal, which is performed by a user equipment 101.
  • the method includes steps S401, S402 and S402-1, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • step S400 the user device 101 determines the measurement period of the WUS according to the period of the WUS, the number of sampling points (sample number) and the constant time (constant time).
  • Step S402-1 the user equipment 101 measures the measurement amount of the WUS through the low power transceiver in each measurement period of the WUS.
  • steps S401, S400 and S402-1 is for illustration only and not limitation.
  • the user equipment 101 may determine the measurement period of WUS in advance according to step S400, and then synchronously perform the measurement of step S402-1 when monitoring and receiving WUS in step S401.
  • the WUS is a periodic signal, and the period of the WUS may be defined according to a protocol or configured by the network device 102 .
  • the user equipment 101 determines the measurement period of the WUS in the following manner: the measurement period of the WUS is: max (constant time, number of sampling points ⁇ period of the WUS).
  • the constant time is 400 ms
  • the number of sampling points is 4, and the period of WUS is 200 ms.
  • the user equipment 101 can measure the measurement amount of the WUS four times within each measurement period of 800 ms through the low power transceiver to obtain a measurement result of the measurement period.
  • the user equipment 101 determines a measurement period for measuring the WUS based on the period of the WUS, performs WUS measurement in each measurement period, and obtains a WUS measurement result in each measurement period.
  • the embodiment of the present disclosure provides a method for receiving a wake-up signal, which is performed by a user equipment 101.
  • the method includes steps S401 to S402-2, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S402-2 the user equipment 101 measures the measurement quantity of the WUS at one time through the low power consumption transceiver.
  • step S401 and step S402-2 are for illustration only and is not intended to be limiting.
  • the user equipment 101 may synchronously perform the measurement related to step S402-2.
  • the one-shot measurement is a measurement of a WUS signal sampling point.
  • the user equipment 101 performs a one-time measurement on the WUS, and the one-time measurement can obtain a one-time measurement result.
  • An embodiment of the present disclosure provides a method for receiving a wake-up signal, which is executed by a user equipment 101 .
  • the method includes steps S401, S402-11 and S402-12, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by the network equipment 102 .
  • Step S402-11 the user equipment 101 receives first indication information sent by the network equipment 102, where the first indication information is used to indicate a measurement amount.
  • Step S402-12 the user equipment 101 measures the measurement amount of the WUS through the low power transceiver in each measurement period of the WUS.
  • the method includes steps S401, S402-21 and S402-22, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by the network equipment 102 .
  • Step S402-21 the user equipment 101 receives first indication information sent by the network equipment 102, where the first indication information is used to indicate a measurement amount.
  • Step S402-22 the user equipment 101 measures the measurement quantity of the WUS at one time through the low power consumption transceiver.
  • the network device 102 may send configuration information of the WUS, where the configuration information includes first indication information to synchronously indicate the WUS measurement amount.
  • the network device 102 carries the first indication information via RRC signaling or DCI sent down.
  • the measurement quantity is at least one of the following: RSSI, RSRP, RSRQ, SINR.
  • the user equipment 101 measures the measurement quantity corresponding to the WUS according to the configuration of the network device 102 .
  • An embodiment of the present disclosure provides a method for receiving a wake-up signal, which is executed by a user equipment 101 .
  • the method includes steps S401, S402-12 and S402-13, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by the network equipment 102 .
  • Step S402-12 the user equipment 101 measures the measurement amount of the WUS through the low power transceiver in each measurement period of the WUS.
  • Step S402-13 the user equipment 101 determines whether to wake up the primary receiver according to the measurement result of the measurement quantity and the threshold value corresponding to the measurement quantity.
  • the method includes steps S401, S402-22 and S402-23, specifically:
  • Step S401 the user equipment 101 receives a wake-up signal WUS sent by the network equipment 102 .
  • Step S402-22 the user equipment 101 measures the measurement quantity of the WUS at one time through the low power consumption transceiver.
  • Step S402-23 the user equipment 101 determines whether to wake up the main receiver according to the measurement result of the measurement quantity and the threshold value corresponding to the measurement quantity.
  • the measurement quantity is at least one of the following: RSSI, RSRP, RSRQ, SINR.
  • each measurement quantity has a corresponding threshold.
  • a measurement cycle may include multiple sampling points, and the measurement result of a measurement cycle corresponds to the filtering of the sampling results of the multiple sampling points.
  • the user equipment 101 determines that the signal quality of the WUS is good and determines to wake up the main receiver. Otherwise, the user equipment 101 does not wake up the main receiver.
  • the user equipment 101 may perform mobility measurement through the primary receiver, such as measuring a reference signal RS of a neighboring cell, or measuring an RS configured by the network device 102 .
  • the measurement result may be compared with a threshold corresponding to the measurement amount.
  • the user equipment 101 determines that the signal quality of the WUS is good and determines to wake up the main receiver. Otherwise, the user equipment 101 does not wake up the main receiver.
  • the user equipment 101 may perform the next one-time measurement.
  • the threshold corresponding to the measurement quantity is defined by a protocol.
  • the threshold corresponding to the measurement quantity is configured by the network device 102 .
  • the network device 102 configures a threshold corresponding to the measurement amount according to capability information of the user equipment.
  • the user equipment may report capability information of the user equipment to the network device, where the capability information indicates at least one of the following:
  • a threshold of the measurement quantity supported by the user equipment capability is
  • the capability information may include both the user equipment capability and the threshold of the measurement quantity supported by the user equipment capability.
  • step S402-13 or step S402-23 the method may further include the following steps S41 to S42, specifically:
  • Step S41 the user equipment 101 reports the capability information of the user equipment to the network device 102, where the capability information includes the user equipment capability.
  • Step S42 The user equipment 101 receives second indication information sent by the network device 102, where the second indication information is used to indicate a threshold corresponding to the measurement amount.
  • the user equipment capability may represent a capability type of the user equipment.
  • the corresponding relationship between different capability types and measurement thresholds can be defined by a protocol.
  • the network device 102 determines the measurement threshold corresponding to the user equipment capability according to the corresponding relationship.
  • the network device 102 can also choose to send second indication information indicating the threshold to the user equipment 101.
  • the network device 102 configures thresholds of measurement quantities according to different capability types.
  • the capability type of the user equipment may be divided into a first type (type 1) and a second type (type 2).
  • the measurement quantity RSSI is used as an example for explanation, the RSSI threshold corresponding to type1 is a constant value R1, and the RSSI threshold corresponding to type2 is R2. Alternatively, the RSSI threshold corresponding to type1 includes multiple values.
  • the network device 102 determines a threshold of a corresponding measurement amount according to the capability reported by the user equipment 101 .
  • step S402-13 or step S402-23, the method may further include the following steps S41' to S42, specifically:
  • Step S41' the user equipment 101 reports the capability information of the user equipment to the network device 102.
  • the capability information includes the threshold value of the measurement quantity supported by the user equipment capability.
  • Step S42 The user equipment 101 receives second indication information sent by the network device 102, where the second indication information is used to indicate a threshold corresponding to the measurement amount.
  • the threshold configured by the network device 102 through the second indication information may be the same as or different from the threshold reported by the user equipment 101.
  • the network device 102 reasonably configures the threshold of the measurement amount when measuring WUS with reference to the threshold supported by the UE capability reported by the user equipment 101.
  • the threshold may be the same as the threshold supported by the UE capability reported by the user equipment 101, or another threshold may be configured with reference to the threshold supported by the UE capability reported by the user equipment 101.
  • the user equipment 101 measures the WUS through the low power transceiver, and determines whether to wake up the main receiver according to the measurement result of the WUS measurement. Therefore, when the WUS signal quality is poor, the main receiver of the user equipment 101 may not be awakened to maintain energy saving, and when the WUS signal quality is good, the main receiver is awakened to perform data transmission and reception in time.
  • FIG. 5 is a method for receiving a wake-up signal according to an exemplary embodiment. As shown in FIG. 5 , the method includes steps S501 to S502, specifically:
  • Step S501 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S502 The user equipment 101 performs the first measurement result reporting corresponding to the reference signal measurement after wake-up within the extended period through the primary receiver.
  • the measurements performed by the primary receiver are RS-based measurements.
  • the main receiver performs measurement after waking up, that is, switching from a sleep state to a working state.
  • the low power transceiver of the user equipment 101 wakes up the main receiver after receiving the WUS.
  • the low power consumption transceiver of the user equipment 101 wakes up the main receiver when receiving a WUS and the measurement value of the WUS is greater than or equal to a threshold corresponding to the measurement value.
  • the network device 102 may configure the RS to be measured for the user equipment 101, for example, a synchronization signal block (Synchronization Signal Block, SSB) of a neighboring cell, or a channel state information reference signal (Channel-State-Information Reference Signal, CSI-RS).
  • a synchronization signal block Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the user equipment 101 may determine an extended period based on a measurement period of the RS during the mobility measurement process, wherein the extended period is extended or prolonged on the measurement period of the RS.
  • the first measurement result may be obtained based on the first measurement of the primary receiver after waking up, or may be obtained based on the Nth measurement after the primary receiver wakes up. It is worth noting that during the RS measurement process, the primary receiver will report the measurement result to the network device 102 only after it meets the relevant accuracy requirements.
  • the extended period may be invalid, that is, the extended period is only applicable to the first measurement result report after the primary receiver is awakened.
  • the extended period is only applicable to the first measurement.
  • the measurement period requirement is relaxed for the first measurement result report after the main receiver wakes up, that is, considering the time when the main receiver may be in a sleep state, the main receiver can complete the first measurement result report within a longer extended period.
  • the embodiment of the present disclosure provides a method for receiving a wake-up signal, which is performed by a user device 101.
  • the method includes steps S501, S500 and S502, specifically:
  • Step S501 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S500 The user equipment 101 determines an extension period according to the extension coefficient and the reference period.
  • Step S502 The user equipment 101 performs the first measurement result reporting corresponding to the reference signal measurement after wake-up within the extended period through the primary receiver.
  • the expansion factor is protocol defined.
  • the expansion factor is configured by the network device 102 .
  • the reference period is a parameter related to the measurement period of the RS.
  • the reference period includes: a measurement period corresponding to the reference signal measurement; or, the reference period includes: an identification period and a measurement period corresponding to the reference signal measurement.
  • the reference period includes the measurement period corresponding to the RS.
  • the measurement period of the RS can be determined by the number of sampling points of the RS and the period of the RS.
  • the neighboring cell corresponding to the RS may become an unknown cell for the user equipment 101.
  • the reference period includes the measurement period corresponding to the RS and the identification period of the cell.
  • the identification period of the cell includes: the detection period of the primary synchronization signal PSS or the detection period of the secondary synchronization signal SSS + the detection period of the SSB index.
  • the user equipment 101 may extend the measurement period of the RS in combination with the extension factor, so as to perform measurement in a longer measurement period to implement the reporting of the first measurement result.
  • the embodiment of the present disclosure provides a method for receiving a wake-up signal, which is performed by a user equipment 101.
  • the method includes steps S501, S500-1, S500-2 and S502, specifically:
  • Step S501 the user equipment 101 receives a wake-up signal WUS sent by the network equipment 102 .
  • Step S500-1 The user equipment 101 receives third indication information sent by the network equipment 102, where the third indication information is used to indicate an expansion factor.
  • Step S500-2 The user equipment 101 determines an extension period according to the extension coefficient and the reference period.
  • Step S502 The user equipment 101 performs the first measurement result reporting corresponding to the reference signal measurement after wake-up within the extended period through the primary receiver.
  • the network device 102 may dynamically indicate the expansion factor via DCI.
  • the user equipment 101 determines an extension period according to an extension factor configured by the network device, and completes reporting of the first measurement result after wake-up within the extension period.
  • FIG. 6 is a method for receiving a wake-up signal according to an exemplary embodiment. As shown in FIG. 6 , the method includes steps S601 to S603, specifically:
  • Step S601 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S602 Wake up the main receiver within the wake-up delay after receiving the WUS.
  • Step S603 measuring a reference signal through the primary receiver.
  • the start time of the wake-up delay is the time when the UE receives the WUS.
  • the start time of the wake-up delay is the end time of the transmission time interval (TTI) in which the WUS message is located.
  • TTI transmission time interval
  • the UE does not need to transmit an uplink signal or receive a downlink signal through the primary receiver within the wake-up delay.
  • the main receiver wake-up may be the main receiver power-on process; or the main receiver may be able to perform uplink and downlink transmission, that is, convert to a working state, at which time the main receiver needs to perform a main receiver synchronization process. Therefore, the end time of the wake-up delay includes the completion time of the main receiver power-on process or the completion time of the main receiver synchronization process.
  • the main receiver synchronization may be the measurement of several reference signals.
  • the wake-up delay is defined by a protocol.
  • the wake-up delay is a fixed value T.
  • the main receiver wakes up.
  • the RS measurement can be performed according to the configuration of the network device 102.
  • the wake-up delays corresponding to different user equipment capabilities are defined through a protocol.
  • the user equipment capability includes a first capability and a second capability
  • the protocol may define a wake-up delay corresponding to each capability, see Table 1.
  • the wake-up delay of each user equipment capability in different sleep states is defined by a protocol.
  • the sleep states of the main receiver include, from deep to shallow: Ultra deep sleep, Deep sleep, Light sleep, and Micro sleep.
  • the protocol may define its wake-up delay in different sleep states, as shown in Table 2. For user equipments with different capabilities, their wake-up delays in the same sleep state are different; for user equipments with one capability, their wake-up delays in different sleep states are also different.
  • the network device 102 may schedule the UE after the wake-up delay, for example, configuring mobility-related measurement configuration for the UE, or performing data scheduling.
  • the first measurement requirement after the primary receiver of the UE wakes up from a sleep state includes extending the original measurement period, and performing measurement in the period after the extension.
  • the extended period meets the following requirements: wake-up delay + detection period or identification period required by the protocol.
  • the selection and reselection requirements (Nserv_LPWUS) of the serving cell during the first measurement or the extended period meets the following Table 3, where the unit of Nserv_LPWUS or the extended period is: the number of DRX cycles, T is the wake-up delay, N1 is the expansion factor, M1 is the coefficient introduced by the protocol to resolve the conflict between the reference signal measurement and the paging message, and M1 can be equal to 1 or 2.
  • a method for receiving a wake-up signal provided in an embodiment of the present disclosure may include the following steps S601, S602-1, S602-2, and S603. Specifically:
  • Step S601 the user equipment 101 receives a wake-up signal WUS sent by a network device.
  • Step S602-1 waking up the main receiver within the wake-up delay of receiving the WUS.
  • Step S602-2 Send capability information of the user equipment to the network device, where the capability information includes the user equipment capability.
  • Step S603 measuring a reference signal through the primary receiver.
  • the user equipment 101 may send the capability information by sending an RRC message.
  • the user equipment 101 sends UECapabilityInformation to report the user equipment capability.
  • the capability information in step S41, the capability information in step S41', and the capability information in step S602-2 may be the same capability information. Different information fields or different bits of the capability information respectively indicate the user equipment capability corresponding to step S41, the threshold supported by the user equipment capability corresponding to step S41', and the user equipment capability corresponding to S602-2.
  • the protocol defines wake-up delays corresponding to different user equipment capabilities. Therefore, after the user equipment 101 reports capability information to the network device 102, the network device 102 can determine the wake-up delay corresponding to the capability of the user equipment 101 according to the protocol and the capability reported by the user equipment 101, and perform UE scheduling after the wake-up delay.
  • step S602-2 may adopt the following step S602-2', specifically:
  • Step S602-2' sending the sleep state and capability information of the user equipment to the network device, wherein the capability information includes the user equipment capability.
  • the network device 102 can determine the corresponding wake-up delay of the user equipment 101 in the capability and the sleep state according to the capability reported by the user equipment 101 in the protocol, and perform UE scheduling after the wake-up delay.
  • the user equipment capability is applicable to all frequency bands supported by the user equipment, or the user equipment capability is applicable to a partial frequency band combination.
  • the user equipment capability when the user equipment capability is applicable to all supported frequency bands, the user equipment capability is a specific level (UE specific) capability.
  • the network device 102 can determine the corresponding wake-up delay according to the user equipment capability within the frequency band supported by the UE.
  • the corresponding wake-up delay can be determined only according to the user equipment capability, or according to the user equipment capability and the UE sleep state.
  • the user equipment may declare support for partial bands, such as support for a first band, or support for a second band.
  • the corresponding wake-up delay can be determined in combination with the user equipment capability, but in other frequency bands, the wake-up delay cannot be determined based on the user equipment capability.
  • the corresponding wake-up delay can be determined only based on the user equipment capability, or based on the user equipment capability and the UE sleep state.
  • FIG. 7 is a method for sending a wake-up signal according to an exemplary embodiment. As shown in FIG. 7 , the method includes step S701, specifically:
  • Step S701 the network device 102 sends a wake-up signal WUS to the user equipment 101 .
  • the wake-up signal WUS is a low power wake-up signal LP WUS.
  • the network device 102 indicates an identifier of the user equipment 101 to be awakened.
  • the network device 102 carries the identification of at least one user device 101 in the LP WUS, or carries the identification of at least one user device 101 in the configuration information corresponding to the LP WUS.
  • the user device 101 with the corresponding identification monitors and receives the LP WUS, and performs wake-up after receiving the LP WUS.
  • the network device 102 may send the configuration information of the LP WUS before sending the LP WUS.
  • the user device 101 obtains the time-frequency resources of the LP WUS according to the configuration information of the LP WUS, so as to monitor and receive the LP WUS at an accurate time-frequency position.
  • the network device 102 may also receive a measurement report sent by the user equipment 101 .
  • the measurement report is a measurement report of the low power consumption transceiver of the user equipment 101 based on WUS measurement, and the measurement report includes the measurement result of the WUS.
  • the measurement report is a measurement report of the primary receiver of the user equipment 101 based on the RS, and the measurement report includes the first measurement result after the primary receiver wakes up.
  • the network device 102 sends a WUS to the user device 101, so that after receiving the WUS, the user device 101 can perform measurements on the WUS based on the low power transceiver, or perform measurements on the RS based on the awakened main receiver.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal, which is performed by the network device 102.
  • the method includes step S701', specifically:
  • Step S701' the network device 102 sends a broadcast message, and the broadcast message includes WUS.
  • the network device 102 may send the WUS by means of a broadcast message, so that more UEs may obtain the WUS by receiving the broadcast message.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal, which is performed by the network device 102.
  • the method includes steps S701 to S702, specifically:
  • Step S701 the network device 102 sends a wake-up signal WUS to the user equipment 101 .
  • Step S702 The network device 102 sends first indication information to the user equipment 101, where the first indication information is used to indicate a measurement amount when the user equipment performs WUS measurement.
  • steps S701 and S702 are for illustration only and is not intended to be limiting.
  • S702 may be performed first, or both steps may be performed simultaneously.
  • the measurement quantity measured for the WUS may include at least one of the following: received signal strength indication RSSI, reference signal received power RSRP, reference signal received quality RSRQ, and signal to interference plus noise ratio SINR.
  • the first indication information indicates that the measurement quantity during the WUS measurement is RSSI.
  • the network device 102 may configure the measurement quantity of the WUS measurement for the user equipment 101 .
  • the embodiment of the present disclosure provides a method for sending a wake-up signal, which is performed by the network device 102.
  • the method includes steps S701, S703, S704 and S705, specifically:
  • Step S701 the network device 102 sends a wake-up signal WUS to the user equipment 101 .
  • Step S703 The network device 102 receives capability information reported by the user equipment, where the capability information indicates the user equipment capability and/or a threshold value of a measurement quantity supported by the user equipment capability.
  • Step S704 The network device 102 determines second indication information according to the capability information, where the second indication information is used to indicate a threshold value corresponding to the measurement amount.
  • Step S705 the network device 102 sends second indication information to the user equipment 101 .
  • the network device 102 may also configure the measurement quantity of the WUS.
  • the protocol defines a correspondence between user equipment capabilities and measurement amount thresholds, so the network device 102 may determine the measurement amount threshold to be configured according to the user equipment capabilities reported by the user equipment 101 .
  • the user equipment 101 reports a threshold value supported by itself, and the network device 102 configures the threshold value of the measurement amount with reference to the reported information.
  • the network device 102 adaptively configures a threshold corresponding to the measurement amount for the user equipment 101 according to the user equipment capability reported by the user equipment 101 or the threshold supported by the user equipment capability.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal, which is performed by the network device 102.
  • the method includes steps S701 and S706, specifically:
  • Step S701 the network device 102 sends a wake-up signal WUS to the user equipment 101 .
  • Step S706 The network device 102 sends third indication information to the user equipment, where the third indication information is used to indicate an expansion factor.
  • the expansion factor is applied to a scenario in which the primary receiver of the user equipment 101 measures.
  • the network device 102 may dynamically configure the expansion factor corresponding to each main receiver sleep state through DCI.
  • the expansion factor >1.
  • the network device 102 configures an extension coefficient for the user equipment 101, so that the user equipment 101 determines an extension period according to the extension coefficient, thereby completing the first measurement result reporting after wake-up within the extension period.
  • FIG. 8 is a method for sending a wake-up signal according to an exemplary embodiment. As shown in FIG. 8 , the method includes steps S801 to S802, specifically:
  • Step S801 the network device 102 sends a wake-up signal WUS to the user equipment 101 .
  • Step S802 Schedule the user equipment after the wake-up delay.
  • the moment when the WUS sent by the network device 102 is received by the UE is the starting moment of the wake-up delay, that is, after the wake-up delay T starting from the starting moment, the network device 102 considers that the main receiver of the UE has been awakened.
  • the scheduling of the UE by the network device 102 includes: configuring the reference signal to be measured and measurement configuration information for the UE.
  • the UE may perform mobility measurement according to the configuration of the network device 102, such as measuring the RSSI of the RS.
  • the wake-up delay is defined by a protocol.
  • the wake-up delay is a fixed value T.
  • the network device 102 After the WUS sent by the network device 102 is received by the user equipment 101 for a time period of T, the network device 102 considers that the main receiver has been awakened and schedules the UE.
  • the wake-up delays corresponding to different user equipment capabilities are defined through a protocol.
  • the user equipment capability includes a first capability and a second capability.
  • the protocol may define a wake-up delay corresponding to each capability.
  • the wake-up delay of each user equipment capability in different sleep states is defined by a protocol.
  • the user equipment capability includes a first capability and a second capability.
  • the protocol may define a wake-up delay for each capability in different sleep states.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal, the method comprising the following steps S801, S800-1, S800-2 and S802', specifically:
  • Step S801 the network device 102 sends a wake-up signal WUS to the user equipment 101 .
  • Step S800-1 receiving capability information sent by a user equipment, wherein the capability information includes user equipment capabilities.
  • Step S800-2 determine the wake-up delay corresponding to the user equipment capability.
  • Step S802' scheduling the user equipment after the wake-up delay corresponding to the user equipment capability.
  • the protocol defines wake-up delays corresponding to different user equipment capabilities. Therefore, after the user equipment 101 reports capability information to the network device 102, the network device 102 can determine the wake-up delay corresponding to the capability of the user equipment 101 according to the protocol and the capability reported by the user equipment 101, and perform UE scheduling after the wake-up delay.
  • the protocol defines the wake-up delay of each user equipment capability in different sleep states.
  • the user equipment 101 can report the sleep state in addition to the capability information.
  • the network device 102 can determine the corresponding wake-up delay of the user equipment 101 in the capability and the sleep state in the protocol according to the capability and sleep state reported by the user equipment 101, and perform UE scheduling after the wake-up delay.
  • the user equipment capability is applicable to all frequency bands supported by the user equipment, or the user equipment capability is applicable to a partial frequency band combination.
  • the network device 102 can determine the corresponding wake-up delay in combination with the user equipment capability when scheduling in the first frequency band, and cannot determine the wake-up delay based on the user equipment capability in other frequency bands.
  • the corresponding wake-up delay can be determined only according to the user equipment capability, or according to the user equipment capability and the UE sleep state.
  • the network device 102 can determine the corresponding wake-up delay according to the user equipment capability within the frequency band supported by the UE.
  • the corresponding wake-up delay can be determined only according to the user equipment capability, or according to the user equipment capability and the UE sleep state.
  • the embodiment of the present disclosure also provides a device for receiving a wake-up signal, which may have the functions of the user equipment 101 in the above method embodiment, and may be used to execute the steps performed by the user equipment 101 provided in the above method embodiment.
  • the function may be implemented by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 900 shown in FIG9 may be used as the user equipment 101 involved in the above method embodiment, and execute the steps executed by the user equipment 101 in the above method embodiment.
  • the device 900 may include a transceiver module 901 and a processing module 902 coupled to each other, the transceiver module 901 may be used to support the communication device to communicate, and the processing module 902 may be used for the communication device to perform processing operations, such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • the transceiver module 901 When executing the steps implemented by the network device 102, the transceiver module 901 is configured to receive a wake-up signal WUS sent by the network device; the processing module 902 is configured to perform measurement through a low-power transceiver or a main receiver.
  • the processing module 902 is further configured to measure the measurement quantity of the WUS through the low power consumption transceiver.
  • the processing module 902 is further configured to measure the measurement quantity of the WUS in each measurement cycle of the WUS by using the low power consumption transceiver.
  • the processing module 902 is further configured to determine a measurement period of the WUS according to a period of the WUS, the number of sampling points, and a constant time.
  • the processing module 902 is further configured to measure the measurement quantity of the WUS once through the low power consumption transceiver.
  • the transceiver module 901 is further configured to receive first indication information sent by the network device, where the first indication information is used to indicate the measurement amount.
  • the processing module 902 is further configured to determine whether to wake up the main receiver according to a measurement result of the measurement quantity and a threshold value corresponding to the measurement quantity.
  • the threshold corresponding to the measurement quantity is defined by a protocol.
  • the transceiver module 901 is further configured to report capability information of the user equipment to the network device, where the capability information indicates at least one of the following:
  • the threshold of the measurement quantity supported by the user equipment capability is the threshold of the measurement quantity supported by the user equipment capability.
  • the transceiver module 901 is further configured to enable the user equipment to receive second indication information sent by the network equipment, where the second indication information is used to indicate a threshold corresponding to the measurement amount.
  • the measured quantity is at least one of the following:
  • the processing module 902 is further configured to perform, through the primary receiver, a first measurement result reporting corresponding to the post-wake-up reference signal measurement within the extended period.
  • the processing module 902 is further configured to determine an extension period according to the extension coefficient and the reference period.
  • the expansion factor is protocol defined.
  • the transceiver module 901 is further configured to receive third indication information sent by the network device, where the third indication information is used to indicate an expansion factor.
  • the reference period includes: a measurement period corresponding to the reference signal measurement; or, the reference period includes: an identification period and a measurement period corresponding to the reference signal measurement.
  • the processing module 902 is further configured to wake up the main receiver within a wake-up delay after receiving the WUS; and perform measurement of the reference signal through the main receiver.
  • the wake-up delay is defined by a protocol.
  • the wake-up delay corresponding to different user equipment capabilities is defined by a protocol; or,
  • the wake-up delay of each user equipment capability in different sleep states is defined by a protocol.
  • the transceiver module 901 is further configured to send capability information of the user equipment to the network device, wherein the capability information includes the user equipment capability.
  • the user equipment capability is all frequency bands supported by the user equipment, or the user equipment capability is applicable to a combination of some frequency bands.
  • the device 1000 may include one or more of the following components: a processing component 1002, a memory 1004, a power component 1006, a multimedia component 1008, an audio component 1010, an input/output (I/O) interface 1012, a sensor component 1014, and a communication component 1016.
  • the processing component 1002 generally controls the overall operation of the device 1000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1002 may include one or more processors 1020 to execute instructions to perform all or part of the steps of the above-mentioned method.
  • the processing component 1002 may include one or more modules to facilitate the interaction between the processing component 1002 and other components.
  • the processing component 1002 may include a multimedia module to facilitate the interaction between the multimedia component 1008 and the processing component 1002.
  • the memory 1004 is configured to store various types of data to support operations on the device 1000. Examples of such data include instructions for any application or method operating on the device 1000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 1006 provides power to the various components of the device 1000.
  • the power supply component 1006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 1000.
  • the multimedia component 1008 includes a screen that provides an output interface between the device 1000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the device 1000 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 1010 is configured to output and/or input audio signals.
  • the audio component 1010 includes a microphone (MIC), and when the device 1000 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 1004 or sent via the communication component 1016.
  • the audio component 1010 also includes a speaker for outputting audio signals.
  • I/O interface 1012 provides an interface between processing component 1002 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 1014 includes one or more sensors for providing various aspects of status assessment for the device 1000.
  • the sensor assembly 1014 can detect the open/closed state of the device 1000, the relative positioning of components, such as the display and keypad of the device 1000, the sensor assembly 1014 can also detect the position change of the device 1000 or a component of the device 1000, the presence or absence of user contact with the device 1000, the orientation or acceleration/deceleration of the device 1000 and the temperature change of the device 1000.
  • the sensor assembly 1014 can include a proximity sensor configured to detect the presence of a nearby object without any physical contact.
  • the sensor assembly 1014 can also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1014 can also include an accelerometer, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1016 is configured to facilitate wired or wireless communication between the device 1000 and other devices.
  • the device 1000 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1016 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 1000 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above-described methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors, or other electronic components to perform the above-described methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 1004 including instructions, and the instructions can be executed by the processor 1020 of the device 1000 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the embodiment of the present disclosure also provides a device for sending a wake-up signal, which can have the function of the network device 102 in the above method embodiment, and can be used to execute the steps performed by the network device 102 provided by the above method embodiment.
  • the function can be implemented by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1100 shown in FIG11 may be used as the network device 102 involved in the above method embodiment, and execute the steps performed by the network device 102 in the above method embodiment.
  • the device 1100 may include a transceiver module 1101, wherein the transceiver module 1101 may be used to support the communication device to communicate, and the transceiver module 1101 may have a wireless communication function, for example, being able to communicate wirelessly with other communication devices through a wireless air interface.
  • the transceiver module 1101 When executing the steps implemented by the network device 102, the transceiver module 1101 is configured to send a wake-up signal WUS to the user equipment.
  • the transceiver module 1101 is further configured to send a broadcast message, where the broadcast message includes the WUS.
  • the transceiver module 1101 is further configured to send first indication information to the user equipment, where the first indication information is used to indicate a measurement amount when the user equipment performs WUS measurement.
  • the transceiver module 1101 is further configured to receive capability information reported by the user equipment, where the capability information indicates the user equipment capability and/or a threshold value of a measurement amount supported by the user equipment capability.
  • the apparatus 1100 further includes a processing module coupled to the transceiver module 1101 , wherein the processing module is configured to determine second indication information according to the capability information, where the second indication information is used to indicate a threshold corresponding to the measurement amount.
  • the transceiver module 1101 is further configured to send second indication information to the user equipment.
  • the transceiver module 1101 is further configured to send third indication information to the user equipment, where the third indication information is used to indicate the expansion factor.
  • the processing module is further configured to schedule the user equipment after the wake-up delay.
  • the wake-up delay is defined by a protocol.
  • the wake-up delay corresponding to different user equipment capabilities is defined by a protocol; or,
  • the wake-up delay of each user equipment capability in different sleep states is defined by a protocol.
  • the transceiver module 1101 is further configured to receive capability information sent by the user equipment, wherein the capability information includes the user equipment capability;
  • the processing module is further configured to determine a wake-up delay corresponding to the user equipment capability.
  • the processing module is further configured to schedule the user equipment after the wake-up delay corresponding to the user equipment capability.
  • the communication device When the communication device is a network device 102, its structure can also be shown in Figure 12. Take the base station as an example to illustrate the structure of the communication device.
  • the device 1200 includes a memory 1201, a processor 1202, a transceiver component 1203, and a power supply component 1206.
  • the memory 1201 is coupled to the processor 1202, and can be used to store the programs and data necessary for the communication device 1200 to implement various functions.
  • the processor 1202 is configured to support the communication device 1200 to perform the corresponding functions in the above method, and the functions can be implemented by calling the program stored in the memory 1201.
  • the transceiver component 1203 can be a wireless transceiver, which can be used to support the communication device 1200 to receive signaling and/or data through a wireless air interface, and send signaling and/or data.
  • the transceiver component 1203 may also be referred to as a transceiver unit or a communication unit.
  • the transceiver component 1203 may include a radio frequency component 1204 and one or more antennas 1205, wherein the radio frequency component 1204 may be a remote radio unit (RRU), which may be specifically used for transmission of radio frequency signals and conversion of radio frequency signals into baseband signals, and the one or more antennas 1205 may be specifically used for radiation and reception of radio frequency signals.
  • RRU remote radio unit
  • the processor 1202 can perform baseband processing on the data to be sent, and then output the baseband signal to the RF unit.
  • the RF unit performs RF processing on the baseband signal and then sends the RF signal in the form of electromagnetic waves through the antenna.
  • the RF unit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1202.
  • the processor 1202 converts the baseband signal into data and processes the data.
  • the user equipment may perform measurement through the low-power transceiver or the main receiver, thereby achieving effective measurement in the scenario where the low-power transceiver is introduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种接收发送唤醒信号的方法、装置及可读存储介质,所述方法包括:接收网络设备发送的唤醒信号WUS;通过低功耗收发机或者主接收机执行测量。本公开的方法中,用户设备在接收到网络设备发送的WUS后,既可能通过低功耗收发机执行测量,也可能通过主接收机执行测量,从而在引入低功耗收发机的场景下实现有效测量。

Description

一种接收发送唤醒信号的方法、装置及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种接收发送唤醒信号的方法、装置及可读存储介质。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的版本16(Release 16,R16)中引入了连接态下的省电信号,如,唤醒信号(Wake Up Signal,WUS)或者省电下行控制信息(Downlink Control Information for Power saving,DCP)。其中,用户设备(User Equipment,UE)检测到WUS信号时,才会监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),否则会跳过(skip)PDCCH的监听。
在R17中,针对空闲态的不连续接收(Discontinuous Reception,DRX)场景,省电信号如寻呼提前指示(Paging Early Indication,PEI)通常配置于寻呼时机(Paging Occasion,PO)之前。UE在检测到PEI时才会监听寻呼DCI(Paging DCI),否则会跳过Paging DCI。同时在R17中还引入了跳过监听PDCCH机制,网络通过DCI通知UE跳过一段时间的PDCCH监听或者进行搜索空间组的切换。
在R18中引入了低功耗唤醒信号(Low Power Wake Up Signal,LP WUS),UE可以使用单独的低功耗收发机(Low Power Wake Up Receiver,LP WUR)监听和接收LP WUS,主接收机(Modem或main radio)处于睡眠状态。待低功耗接收机接收到LP WUS后再唤醒主接收机进行数据收发,从而实现UE的节能。需提供此唤醒场景下的测量方法。
发明内容
本公开提供了一种接收发送唤醒信号的方法、装置及可读存储介质。
第一方面,本公开提供一种接收唤醒信号的方法,被用户设备执行,所述方法包括:
接收网络设备发送的唤醒信号WUS;
通过低功耗收发机或者主接收机执行测量。
本公开的方法中,用户设备在接收到网络设备发送的WUS后,既可能通过低功耗收发机执行测量,也可能通过主接收机执行测量,从而在引入低功耗收发机的场景下实现有效测量。
在一些可能的实施方式中,所述通过低功耗收发机或者主接收机执行测量,包括:
通过所述低功耗收发机测量所述WUS的测量量。
在一些可能的实施方式中,所述通过所述低功耗收发机测量所述WUS的测量量,包括:
通过所述低功耗收发机在每个WUS的测量周期,测量所述WUS的测量量。
在一些可能的实施方式中,所述方法还包括:
根据所述WUS的周期、采样点数量以及常量时间,确定所述WUS的测量周期。
在一些可能的实施方式中,所述通过所述低功耗收发机测量所述WUS的测量量,包括:
通过所述低功耗收发机一次性测量所述WUS的测量量。
在一些可能的实施方式中,所述方法还包括:
接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述测量量。
在一些可能的实施方式中,所述方法还包括:
根据所述测量量的测量结果与所述测量量对应的阈值,确定是否唤醒所述主接收机。
在一些可能的实施方式中,所述测量量对应的阈值为协议定义的。
在一些可能的实施方式中,所述方法还包括:
向所述网络设备上报用户设备的能力信息,所述能力信息指示以下中的至少一项:
用户设备能力。
所述用户设备能力支持的所述测量量的阈值。
在一些可能的实施方式中,所述方法还包括:
用户设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述测量量对应的阈值。
在一些可能的实施方式中,所述测量量为以下中的至少一种:
接收信号强度指示RSSI;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号与干扰加噪声比SINR。
在一些可能的实施方式中,所述通过低功耗收发机或者主接收机执行测量,包括:
通过所述主接收机在扩展周期内,执行唤醒后参考信号测量对应的第一次测量结果上报。
在一些可能的实施方式中,所述方法还包括:
根据扩展系数以及参考周期,确定所述扩展周期。
在一些可能的实施方式中,所述扩展系数为协议定义的。
在一些可能的实施方式中,所述方法还包括:
接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述扩展系数。
在一些可能的实施方式中,所述参考周期包括:所述参考信号测量对应的测量周期;或者,所述参考周期包括:所述参考信号测量对应的识别周期和测量周期。
在一些可能的实施方式中,所述通过低功耗收发机或者主接收机执行测量,包括:
在接收到所述WUS的唤醒时延内唤醒主接收机;
通过主接收机执行参考信号的测量。
在一些可能的实施方式中,通过协议定义所述唤醒时延。
在一些可能的实施方式中,通过协议定义不同用户设备能力对应的所述唤醒时延;或者,
通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
在一些可能的实施方式中,所述方法还包括:
向所述网络设备发送用户设备的能力信息,其中,所述能力信息包括所述用户设备能力。
在一些可能的实施方式中,所述用户设备能力适用于所述用户设备支持的全部频段,或者用户设备能力适用于部分频段组合。
第二方面,本公开提供一种发送唤醒信号的方法,被网络设备执行,所述方法包括:
向用户设备发送唤醒信号WUS。
在一些可能的实施方式中,所述向用户设备发送唤醒信号WUS,包括:
发送广播消息,所述广播消息中包括所述WUS。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送第一指示信息,所述第一指示信息用于指示所述用户设备进行WUS测量时的测量量。
在一些可能的实施方式中,所述方法还包括:
接收所述用户设备上报的能力信息,所述能力信息指示用户设备能力和/或用户设备能力支持的测量量的阈值;
根据所述能力信息,确定第二指示信息,所述第二指示信息用于指示测量量对应的阈值;
向所述用户设备发送第二指示信息。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送第三指示信息,所述第三指示信息用于指示扩展系数。
在一些可能的实施方式中,所述方法还包括:
在唤醒时延之后对所述用户设备进行调度。
在一些可能的实施方式中,通过协议定义所述唤醒时延。
在一些可能的实施方式中,通过协议定义不同用户设备能力对应的所述唤醒时延;或者,
通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
在一些可能的实施方式中,所述方法还包括:
接收所述用户设备发送的能力信息,其中,所述能力信息包括所述用户设备能力;
确定所述用户设备能力对应的唤醒时延。
在一些可能的实施方式中,所述在唤醒时延之后对所述用户设备进行调度,包括:
在所述用户设备能力对应的所述唤醒时延后,对所述用户设备进行调度。
第三方面,本公开提供一种接收唤醒信号的装置,该装置可用于执行上述第一方面或第一方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第三方面所示装置时,该装置可包括相互耦合的收发模块以及处理模块,其中,收发模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第一方面所述步骤时,收发模块被配置为,接收网络设备发送的唤醒信号WUS;处理模块被配置为,通过低功耗收发机或者主接收机执行测量。
第四方面,本公开提供一种发送唤醒信号的装置,该装置可用于执行上述第二方面或第二方面的任一可能的设计中由网络设备执行的步骤。该网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第四方面所示装置时,该装置可包括收发模块,其中,收发模块可用于支持通信装置进行通信。
在执行上述第二方面所述步骤时,收发模块被配置为,向用户设备发送唤醒信号WUS。
第五方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施 例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种接收发送唤醒信号的方法的流程图;
图3是根据一示例性实施例示出的一种接收唤醒信号的方法的流程图;
图4是根据一示例性实施例示出的另一种接收唤醒信号的方法的流程图;
图5是根据一示例性实施例示出的另一种接收唤醒信号的方法的流程图;
图6是根据一示例性实施例示出的另一种接收唤醒信号的方法的流程图;
图7是根据一示例性实施例示出的一种发送唤醒信号的方法的流程图;
图8是根据一示例性实施例示出的另一种发送唤醒信号的方法的流程图;
图9是根据一示例性实施例示出的一种接收唤醒信号的装置的框图;
图10是根据一示例性实施例示出的用户设备的框图;
图11是根据一示例性实施例示出的一种发送唤醒信号的装置的框图;
图12是根据一示例性实施例示出的通信装置的框图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种传输指示信息的方法可应用于无线通信系统 100,该无线通信系统可以包括用户设备101和网络设备102。其中,用户设备101被配置为支持载波聚合,并可连接至网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备101可以是终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该用户设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,用户设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(base station controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
本公开实施例提供一种接收发送唤醒信号的方法,参照图2,图2是根据一示例性实 施例示出的一种接收发送唤醒信号的方法,如图2所示,该方法包括步骤S201~S202,具体的:
步骤S201,网络设备102向用户设备101发送唤醒信号WUS。
步骤S202,用户设备101根据接收的WUS,通过低功耗收发机或者主接收机执行测量。
在一些可能的实施方式中,唤醒信号WUS为低功耗唤醒信号LP WUS。
在一些可能的实施方式中,网络设备102通过发送广播消息的方式发送LP WUS。
在一些可能的实施方式中,网络设备102指示待唤醒用户设备101的标识。
例如,网络设备102在LP WUS中携带至少一个用户设备101的标识,或者,在LP WUS对应的配置信息中携带至少一个用户设备101的标识。对应标识的用户设备101监听和接收LP WUS,在接收到LP WUS执行唤醒。
在一些可能的实施方式中,网络设备102在发送LP WUS之前,可先发送LP WUS的配置信息。用户设备101根据LP WUS的配置信息,获知LP WUS的时频资源,以在准确的时频位置监听和接收LP WUS。
在一些可能的实施方式中,用户设备101支持双收发机,即用户设备101包括低功耗收发机和主接收机。其中,低功耗收发机用于监听和接收WUS,在未接收到WUS之前,主接收机处于睡眠状态以实现节能;在接收到WUS后,主接收机唤醒即从睡眠状态转换为工作状态,进行数据收发等操作。
在一些可能的实施方式中,用户设备101可以是处于无线资源控制连接态(Radio Resource Control Connected,RRC Connected),或者,处于RRC空闲态(RRC idle),或者RRC非激活态(RRC inactive)。
在一些可能的实施方式中,用户设备101所执行的测量包括:对WUS的测量,和/或对网络设备102配置的参考信号(Reference Signal,RS)的测量。
在一些可能的实施方式中,用户设备101通过低功耗收发机执行WUS的测量。
在一些可能的实施方式中,用户设备101通过主接收机执行RS的测量。
本公开实施例中,用户设备101在接收到网络设备102发送的WUS后,既可能通过低功耗收发机执行测量,也可能通过主接收机执行测量,从而在引入低功耗收发机的场景下实现有效测量。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。参照图3,图3是根据一示例性实施例示出的一种接收唤醒信号的方法,如图3所示,该方法包括步骤S301~S302,具体的:
步骤S301,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S302,用户设备101通过低功耗收发机或者主接收机执行测量。
值得说明的是,步骤S301和步骤S302的顺序仅作示意而非限定,例如,在通过低功耗接收机执行测量时,步骤S301和步骤S302可以是同步执行的。
在一些可能的实施方式中,唤醒信号WUS为低功耗唤醒信号LP WUS。
在一些可能的实施方式中,用户设备101包括低功耗收发机和主接收机。其中,低功耗收发机用于监听和接收WUS,在未接收到WUS之前,主接收机处于睡眠状态以实现节能;在接收到WUS后,主接收机唤醒即从睡眠状态转换为工作状态,进行数据收发。
在一些可能的实施方式中,用户设备101接收到WUS的唤醒时延T之内,唤醒主接收机。网络设备102在唤醒时延之后再进行UE调度。
在一示例中,唤醒时延T是协议定义的。
在一示例中,协议中定义了不同用户设备能力对应的唤醒时延。用户设备101向网络设备102上报支持的能力,网络设备102根据协议以及用户设备101上报的能力,确定用户设备101的能力对应的唤醒时延,在唤醒时延之后再进行UE调度。例如,用户设备101能力包括第一能力和第二能力,协议定义了第一能力和第二能力分别对应的唤醒时延。
在一些可能的实施方式中,用户设备101可以是处于RRC连接态,或者,处于RRC空闲态,或者RRC非激活态。
在一些可能的实施方式中,用户设备101所执行的测量包括:对WUS的测量,和/或对网络设备102配置的RS的测量。
在一些可能的实施方式中,用户设备101执行测量时的测量量(measurement quantity)可以根据网络设备102的配置。
在一示例中,用户设备101通过低功耗收发机执行WUS的测量。对WUS测量的测量量可以包括以下中的至少一种:接收信号强度指示(Receive Signal Strength Indication,RSSI),参考信号接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ),以及信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
在一示例中,用户设备101通过主接收机执行RS的测量。对RS测量的测量量可以包括以下中的至少一种:RSSI,RSRP,RSRQ,以及SINR。
本公开实施例中,用户设备101在接收到网络设备102发送的WUS后,既可能通过低功耗收发机执行测量,也可能通过主接收机执行测量,从而在引入低功耗收发机的场景下实现有效测量。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。参照图4,图4是根据一示例性实施例示出的一种接收唤醒信号的方法,如图4所示,该方法包括步骤S401~S402,具体的:
步骤S401,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S402,用户设备101通过低功耗收发机测量WUS的测量量。
其中,步骤S401和步骤S402可以是同时执行的。
在一些可能的实施方式中,在主接收机唤醒之前,即在主接收机处于睡眠状态时,用户设备101通过低功耗收发机执行WUS的测量。
在一些可能的实施方式中,WUS的测量量可以是网络设备102配置的。
在一些可能的实施方式中,测量量为以下中的至少一种:
接收信号强度指示RSSI;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号与干扰加噪声比SINR。
在一示例中,根据网络设备102的配置,用户设备101通过低功耗收发机测量WUS的RSSI。
本公开实施例中,用户设备101在接收到WUS后,可通过低功耗收发机对WUS进行监听接收,并执行WUS的测量。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。该方法包括步骤S401~S402-1,具体的:
步骤S401,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S402-1,用户设备101通过低功耗收发机在每个WUS的测量周期,测量WUS的测量量。
其中,步骤S401和步骤S402-1的顺序仅作示意而非限定,例如,用户设备101在步骤S401接收到WUS时,即可同步执行步骤S402-1相关的测量。
在一些可能的实施方式中,WUS的测量量可以是网络设备102配置的。
在一些可能的实施方式中,测量量为以下中的至少一种:
接收信号强度指示RSSI;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号与干扰加噪声比SINR。
在一些可能的实施方式中,WUS为周期性信号,用户设备101按照测量周期,周期性的测量WUS。
在一些可能的实施方式中,用户设备101在一个测量周期可以进行多次采样,每个测量周期获得一次测量结果。
本公开实施例中,用户设备101可以通过低功耗收发机对WUS执行周期性的测量。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。该方法包括步骤S401、S400以及S402-1,具体的:
步骤S401,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S400,用户设备101根据WUS的周期、采样点数量(sample number)以及常量时间(constant time),确定WUS的测量周期。
步骤S402-1,用户设备101通过低功耗收发机在每个WUS的测量周期,测量WUS的测量量。
其中,步骤S401、S400和S402-1的顺序仅作示意而非限定,例如,用户设备101可以预先根据步骤S400确定WUS的测量周期,然后在步骤S401监听和接收到WUS时,同步执行步骤S402-1的测量。
在一些可能的实施方式中,WUS为周期性信号,WUS的周期可依据协议定义,或者网络设备102配置。
在一些可能的实施方式中,用户设备101参考如下方式确定WUS的测量周期:WUS的测量周期为:max(常量时间,采样点数量×WUS的周期)。
在一示例中,常量时间为400ms,采样点数量为4,WUS的周期为200ms。用户设备101确定WUS的测量周期为max(400ms,4×200ms)=800ms。
本示例中,用户设备101通过低功耗收发机在每个测量周期800ms内,可测量4次WUS的测量量,获得该测量周期的一个测量结果。
本公开实施例中,用户设备101基于WUS的周期,确定对WUS测量时的测量周期,在每个测量周期内进行WUS的测量,每个测量周期即可获得一次WUS的测量结果。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。该方法包括步骤S401~S402-2,具体的:
步骤S401,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S402-2,用户设备101通过低功耗收发机一次性测量WUS的测量量。
其中,步骤S401和步骤S402-2的顺序仅作示意而非限定,例如,用户设备101在步骤S401接收到WUS时,即可同步执行步骤S402-2相关的测量。
在一些可能的实施方式中,在对WUS进行一次性(one shot)测量时,该一次性测量即对一个WUS信号采样点的测量。
本公开实施例中,用户设备101对WUS进行一次性测量,该一次性测量即可获得一次测量结果。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。
该方法包括步骤S401、S402-11以及S402-12,具体的:
步骤S401,用户设备101接收网络设备102发送的唤醒信号WUS。
步骤S402-11,用户设备101接收网络设备102发送的第一指示信息,第一指示信息用于指示测量量。
步骤S402-12,用户设备101通过低功耗收发机在每个WUS的测量周期,测量WUS的测量量。
或者,该方法包括步骤S401、S402-21以及S402-22,具体的:
步骤S401,用户设备101接收网络设备102发送的唤醒信号WUS。
步骤S402-21,用户设备101接收网络设备102发送的第一指示信息,第一指示信息用于指示测量量。
步骤S402-22,用户设备101通过低功耗收发机一次性测量WUS的测量量。
在一些可能的实施方式中,网络设备102可以发送WUS的配置信息,配置信息中包括第一指示信息,以同步指示WUS测量量。
在一些可能的实施方式中,网络设备102通过下发的RRC信令或DCI,携带第一指示信息。
在一些可能的实施方式中,测量量为以下中的至少一种:RSSI,RSRP,RSRQ,SINR。
本公开实施例中,用户设备101根据网络设备102的配置,测量WUS对应的测量量。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。
该方法包括步骤S401、S402-12以及S402-13,具体的:
步骤S401,用户设备101接收网络设备102发送的唤醒信号WUS。
步骤S402-12,用户设备101通过低功耗收发机在每个WUS的测量周期,测量WUS的测量量。
步骤S402-13,用户设备101根据测量量的测量结果与测量量对应的阈值,确定是否唤醒主接收机。
或者,该方法包括步骤S401、S402-22以及S402-23,具体的:
步骤S401,用户设备101接收网络设备102发送的唤醒信号WUS。
步骤S402-22,用户设备101通过低功耗收发机一次性测量WUS的测量量。
步骤S402-23,用户设备101根据测量量的测量结果与测量量对应的阈值,确定是否唤醒主接收机。
在一些可能的实施方式中,测量量为以下中的至少一种:RSSI,RSRP,RSRQ,SINR。
在一些可能的实施方式中,每一种测量量具有对应的阈值。
在一些可能的实施方式中,在按照测量周期测量WUS的场景中,用户设备101获得一个测量周期的测量结果,根据一个测量周期的测量结果,与测量量对应的阈值对比。其中,一个测量周期可包含多个采样点,一个测量周期的测量结果对应于多个采样点采样结果的滤波。
在一些可能的实施方式中,当一个测量周期得到的测量结果的平均值,大于或等于测量量对应的阈值时,用户设备101确定WUS的信号质量好,确定唤醒主接收机。否则,用户设备101不唤醒主接收机。
在一些可能的实施方式中,在唤醒主接收机后,用户设备101可通过主接收机进行移动性测量,如测量邻区的参考信号RS,或者测量网络设备102配置的RS。
在一些可能的实施方式中,在一次性测量WUS的场景中,用户设备101每执行一次性测量获得测量结果后,可将测量结果与测量量对应的阈值对比。
例如,当测量结果大于或等于测量量对应的阈值时,用户设备101确定WUS的信号质量好,确定唤醒主接收机。否则,用户设备101不唤醒主接收机。
再例如,当测量结果小于测量量对应的阈值时,用户设备101可执行下一次的一次性测量。
在一些可能的实施方式中,测量量对应的阈值为协议定义的。
在一些可能的实施方式中,测量量对应的阈值是网络设备102配置的。
在一些可能的实施方式中,网络设备102根据用户设备的能力信息,配置测量量对应的阈值。
在一些可能的实施方式中,在步骤S402-13或者步骤S402-23之前,用户设备可以向网络设备上报用户设备的能力信息,能力信息指示以下中的至少一项:
用户设备能力;
用户设备能力支持的所述测量量的阈值。
在一些可能的实施方式中,能力信息中可以同时包括用户设备能力和用户设备能力支持的测量量的阈值。
以下列举能力信息指示用户设备能力或者用户设备能力支持的测量量的阈值的实施方式。
在一些可能的实施方式中,在步骤S402-13或者步骤S402-23之前,该方法还可以包括如下步骤S41~S42,具体的:
步骤S41,用户设备101向网络设备102上报用户设备的能力信息,能力信息包括用户设备能力。
步骤S42,用户设备101接收网络设备102发送的第二指示信息,第二指示信息用于指示测量量对应的阈值。
在一示例中,用户设备能力可以表征用户设备的能力类型。
在一示例中,可通过协议定义不同能力类型与测量量阈值的对应关系。其中,网络设备102根据对应关系,确定用户设备能力所对应的测量量的阈值。网络设备102还可选择为用户设备101发送指示该阈值的第二指示信息。
在一示例中,网络设备102根据不同的能力类型,对应配置测量量的阈值。
在一示例中,用户设备的能力类型例如可以分为第一类型(type1)和第二类型(type2)。
本示例中,以测量量为RSSI为例进行说明,type1对应的RSSI的阈值为定值R1,type2对应的RSSI的阈值为R2。或者,type1对应的RSSI的阈值包括多个。
此实施方式中,网络设备102根据用户设备101上报的能力,确定对应的测量量的阈值。
在一些可能的实施方式中,在步骤S402-13或者步骤S402-23之前,该方法还可以包括如下步骤S41’~S42,具体的:
步骤S41’,用户设备101向网络设备102上报用户设备的能力信息,能力信息包括用户设备能力支持的测量量的阈值。
步骤S42,用户设备101接收网络设备102发送的第二指示信息,第二指示信息用于指示测量量对应的阈值。
在一些可能的实施方式中,网络设备102通过第二指示信息所配置的阈值,可能与用户设备101上报的阈值相同或不同。
此实施方式中,网络设备102参考用户设备101上报的UE能力支持的阈值,合理配置测量WUS时测量量的阈值。该阈值可以和用户设备101上报的UE能力支持的阈值相同,也可以参考该用户设备101上报的UE能力支持的阈值而配置另一个阈值。
本公开实施例中,用户设备101通过低功耗收发机进行WUS的测量,并根据WUS测量的测量结果确定是否唤醒主接收机。从而在WUS信号质量不好时,用户设备101的主接收机可不唤醒以保持节能,在WUS信号质量好时在执行主接收机唤醒,以及时进行数据收发。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。参照图5,图5是根据一示例性实施例示出的一种接收唤醒信号的方法,如图5所示,该方法包括步骤S501~S502,具体的:
步骤S501,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S502,用户设备101通过主接收机在扩展周期内,执行唤醒后参考信号测量对应的第一次测量结果上报。
在一些可能的实施方式中,主接收机执行的测量是基于RS的测量。
在一些可能的实施方式中,主接收机在唤醒后,即从睡眠状态转换为工作状态后,才会执行测量。
在一示例中,用户设备101的低功耗收发机在接收到WUS后,唤醒主接收机。
在一示例中,用户设备101的低功耗收发机在接收到WUS,且WUS的测量量大于或等于测量量对应的阈值时,唤醒主接收机。
在一些可能的实施方式中,网络设备102可为用户设备101配置待测量的RS,例如,邻区的同步信号块(Synchronization Signal Block,SSB),或者信道状态信息参考信号(Channel-State-Information Reference Signal,CSI-RS)。
在一些可能的实施方式中,用户设备101可基于移动性测量过程中RS的测量周期,确定扩展周期。其中,扩展周期在RS的测量周期上扩展或延长。
在一些可能的实施方式中,第一次测量结果可能是基于主接收机在唤醒后首次测量获得的,也可能是基于主接收机唤醒后第N次测量获得的。值得说明的是,主接收机在对RS测量过程中,测量结果满足相关精度要求后才会向网络设备102上报。
在一些可能的实施方式中,在上报第一次测量结果后,扩展周期可失效,即扩展周期仅适用主接收机唤醒后的第一次测量结果上报。
例如,若第一次测量结果是主接收机在唤醒后的首次测量获得的,则扩展周期仅适用于该首次测量。
本公开实施例中,对主接收机唤醒之后的第一次测量结果上报,放松测量周期的要求。即考虑主接收机可能处于睡眠状态的时间,主接收机在更长的扩展周期内完成第一次测量结果上报即可。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。该方法包括步骤S501、S500以及S502,具体的:
步骤S501,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S500,用户设备101根据扩展系数以及参考周期,确定扩展周期。
步骤S502,用户设备101通过主接收机在扩展周期内,执行唤醒后参考信号测量对应的第一次测量结果上报。
在一些可能的实施方式中,扩展周期T满足:T=K*T1,其中,K为扩展系数,T1为参考周期,K>1。
在一些可能的实施方式中,扩展系数为协议定义的。
在一些可能的实施方式中,扩展系数是网络设备102配置的。
在一些可能的实施方式中,参考周期是与RS的测量周期相关的参数。
在一些可能的实施方式中,参考周期包括:参考信号测量对应的测量周期;或者,参考周期包括:参考信号测量对应的识别周期和测量周期。
在一示例中,若主接收机睡眠时间较短,或者RS对应的邻区,对于用户设备101而言仍是已知小区。此时参考周期包括RS对应的测量周期。其中,RS的测量周期可通过RS的采样点数量及RS的周期确定。
在一示例中,若主接收机睡眠时间较长(如大于5秒),RS对应的邻区,对于用户设备101而言可能变成未知小区。此时参考周期包括RS对应的测量周期以及小区的识别周期。其中,小区的识别周期包括:主同步信号PSS的检测周期或者辅同步信号SSS的检测周期+SSB index的检测周期。
本公开实施例中,用户设备101可结合扩展系数对RS的测量周期进行扩展,从而在更长的测量周期内进行测量,以实现第一测量结果上报。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。该方法包括步骤S501、S500-1、S500-2以及S502,具体的:
步骤S501,用户设备101接收网络设备102发送的唤醒信号WUS。
步骤S500-1,用户设备101接收网络设备102发送的第三指示信息,第三指示信息用于指示扩展系数。
步骤S500-2,用户设备101根据扩展系数以及参考周期,确定扩展周期。
步骤S502,用户设备101通过主接收机在扩展周期内,执行唤醒后参考信号测量对应的第一次测量结果上报。
在一些可能的实施方式中,网络设备102可通过DCI动态指示扩展系数。
本公开实施例中,用户设备101根据网络设备配置的扩展系数,确定扩展周期,并在 扩展周期内完成唤醒后的第一次测量结果上报。
本公开实施例提供一种接收唤醒信号的方法,该方法被用户设备101执行。参照图6,图6是根据一示例性实施例示出的一种接收唤醒信号的方法,如图6所示,该方法包括步骤S601~S603,具体的:
步骤S601,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S602,在接收到所述WUS的唤醒时延内唤醒主接收机。
步骤S603,通过主接收机执行参考信号的测量。
在一些可能的实施方式中,唤醒时延的起始时刻为UE接收到WUS的时刻。
在一些可能的实施方式中,唤醒时延的起始时刻为WUS消息所在的传输时间间隔(Transmission Time Interval,TTI)的结束时刻。
在一些可能的实施方式中,在唤醒时延内UE不需要通过主接收机进行上行信号的传输或者下行信号的接收。
在一些可能的实施方式中,主接收机唤醒可能是主接收机进行上电(power on)过程;也可能是主接收机可以进行上下行传输即转换为工作状态,此时主接收机需要进行主接收机同步过程。因此,唤醒时延的结束时刻包括主接收机的上电过程的完成时刻或者主接收机同步过程的完成时刻。主接收机同步可以是若干个参考信号的测量。
在一些可能的实施方式中,唤醒时延是通过协议定义的。
例如,唤醒时延是一个定值T。用户设备101在接收到WUS后的T时长后,主接收机唤醒。主接收机唤醒后,可依据网络设备102的配置执行RS的测量。
在一些可能的实施方式中,通过协议定义不同用户设备能力对应的唤醒时延。
例如,用户设备能力包括第一能力和第二能力,协议可定义每种能力对应的唤醒时延,参考表1。
表1
  第一能力(Type1) 第二能力(Type2)
唤醒时延[毫秒ms] T1 T2
在一些可能的实施方式中,通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
例如,主接收机所处的睡眠状态由深至浅依次包括:超深度睡眠(Ultra deep sleep)、深度睡眠(Deep sleep)、轻睡眠(Light sleep)和浅睡眠(Micro sleep)。
当用户设备能力包括第一能力和第二能力,协议可以定义其在不同睡眠状态下的唤醒时延,参考表2所示。对于不同能力的用户设备,其在相同睡眠状态下的唤醒时延不同;对于一种能力的用户设备,其在不同睡眠状态下的唤醒时延也不同。
值得说明的是,表2中的时延数值仅作为示意而非限定。
表2
Figure PCTCN2022127771-appb-000001
在一些可能的实施方式中,网络设备102可在唤醒时延之后对UE进行调度,例如为UE配置移动性相关测量配置,或者进行数据调度。
在一些可能的实施方式中,UE的主接收机从睡眠状态唤醒后的第一次测量要求,包括对原测量周期的扩展,在扩展之后的周期内执行测量。
在一示例中,扩展之后的周期满足如下要求:唤醒时延+协议要求的检测周期或者识别周期。例如,如表3所示,UE从睡眠状态进入空闲态或者非激活态,第一次测量过程中服务小区的选择和重选要求(Nserv_LPWUS)或者说扩展之后的周期满足下表3,其中,Nserv_LPWUS或者扩展之后的周期的单位为:DRX周期个数,T为唤醒时延,N1为扩展因子,M1是协议为解决参考信号测量与寻呼消息冲突引入的系数,M1可以等于1或2。
表3
Figure PCTCN2022127771-appb-000002
本公开实施例中提供的一种接收唤醒信号的方法,该方法可以包括如下步骤S601、S602-1、S602-2以及S603,具体的:
步骤S601,用户设备101接收网络设备发送的唤醒信号WUS。
步骤S602-1,在接收到所述WUS的唤醒时延内唤醒主接收机。
步骤S602-2,向网络设备发送用户设备的能力信息,其中,能力信息包括用户设备能力。
步骤S603,通过主接收机执行参考信号的测量。
在一些可能的实施方式中,用户设备101可通过发送RRC消息发送能力信息。例如,用户设备101发送UECapabilityInformation,以上报用户设备能力。
在一些可能的实施方式中,步骤S41中的能力信息、步骤S41’中的能力信息以及步骤S602-2中的能力信息,可以是同一个能力信息。在该能力信息的不同信息域或者不同 比特位,分别指示步骤S41对应的用户设备能力,步骤S41’对应的用户设备能力支持的阈值以及S602-2对应的用户设备能力。
在一些可能的实施方式中,参考表1,协议定义了不同用户设备能力对应的唤醒时延。因此,用户设备101在向网络设备102上报能力信息后,网络设备102可根据协议以及用户设备101上报的能力,确定用户设备101的能力对应的唤醒时延,在该唤醒时延之后再进行UE调度。
在一些可能的实施方式中,参考表2,协议定义了每种用户设备能力在不同睡眠状态下的唤醒时延。此时,步骤S602-2可以采用如下步骤S602-2’,具体的:
步骤S602-2’,向网络设备发送用户设备的睡眠状态以及能力信息,其中,能力信息包括用户设备能力。
此时,网络设备102可以根据用户设备101上报的能力以及睡眠状态,在协议中确定用户设备101该能力及该睡眠状态下对应的唤醒时延,在该唤醒时延之后再进行UE调度。
在一些可能的实施方式中,用户设备能力适用于用户设备支持的全部频段,或者用户设备能力适用于部分频段组合。
在一示例中,在用户设备能力适用于支持的全部频段时,即用户设备能力是特定级别(UE specific)的能力。
此时,网络设备102在UE支持的频段内,均可通过用户设备能力确定对应的唤醒时延。本示例中,可以仅根据用户设备能力确定对应的唤醒时延,也可以是根据用户设备能力以及UE睡眠状态确定对应的唤醒时延。
在另一示例中,在用户设备能力适用于部分频段组合(Band Combination)时,用户设备可以声明支持部分频段,比如支持第一频段,或者支持第二频段。
此时,网络设备102在该第一频段或第二频段下调度时,可结合用户设备能力确定对应的唤醒时延,在其他频段时则不能依据该用户设备能力确定唤醒时延。本示例中,可以仅根据用户设备能力确定对应的唤醒时延,也可以是根据用户设备能力以及UE睡眠状态确定对应的唤醒时延。
本公开实施例提供一种发送唤醒信号的方法,该方法被网络设备102执行。参照图7,图7是根据一示例性实施例示出的一种发送唤醒信号的方法,如图7所示,该方法包括步骤S701,具体的:
步骤S701,网络设备102向用户设备101发送唤醒信号WUS。
在一些可能的实施方式中,唤醒信号WUS为低功耗唤醒信号LP WUS。
在一些可能的实施方式中,网络设备102指示待唤醒用户设备101的标识。
例如,网络设备102在LP WUS中携带至少一个用户设备101的标识,或者,在LP WUS对应的配置信息中携带至少一个用户设备101的标识。对应标识的用户设备101监听和接收LP WUS,在接收到LP WUS执行唤醒。
在一些可能的实施方式中,网络设备102在发送LP WUS之前,可先发送LP WUS的配置信息。用户设备101根据LP WUS的配置信息,获知LP WUS的时频资源,以在准确的时频位置监听和接收LP WUS。
在一些可能的实施方式中,网络设备102还可以接收用户设备101发送的测量报告。
在一示例中,该测量报告是用户设备101的低功耗收发机基于WUS测量的测量报告,该测量报告中包括WUS的测量结果。
在一示例中,该测量报告是用户设备101的主接收机基于RS的测量报告,该测量报告包括主接收机唤醒后的第一次测量结果。
本公开实施例中,网络设备102向用户设备101发送WUS,以便于用户设备101在接收到WUS后,可基于低功耗收发机对WUS执行测量,或者基于唤醒后的主接收机对RS执行测量。
本公开实施例提供一种发送唤醒信号的方法,该方法被网络设备102执行。该方法包括步骤S701’,具体的:
步骤S701’,网络设备102发送广播消息,广播消息中包括WUS。
本公开实施例中,网络设备102可通过广播消息的方式发送WUS,从而更多的UE可以通过接收广播消息获取到WUS。
本公开实施例提供一种发送唤醒信号的方法,该方法被网络设备102执行。该方法包括步骤S701~S702,具体的:
步骤S701,网络设备102向用户设备101发送唤醒信号WUS。
步骤S702,网络设备102向用户设备101发送第一指示信息,第一指示信息用于指示用户设备进行WUS测量时的测量量。
其中,步骤S701和S702的顺序仅作示意而非限定,如还可先执行S702,或者二者同步执行。
在一些可能的实施方式中,对WUS测量的测量量可以包括以下中的至少一种:接收信号强度指示RSSI,参考信号接收功率RSRP,参考信号接收质量RSRQ,以及信号与干扰加噪声比SINR。
在一示例中,第一指示信息指示WUS测量时的测量量为RSSI。
本公开实施例中,在用户设备101基于低功耗收发机对WUS进行测量的场景中,网络设备102可为用户设备101配置WUS测量的测量量。
本公开实施例提供一种发送唤醒信号的方法,该方法被网络设备102执行。该方法包括步骤S701、S703、S704及S705,具体的:
步骤S701,网络设备102向用户设备101发送唤醒信号WUS。
步骤S703,网络设备102接收用户设备上报的能力信息,能力信息指示用户设备能力和/或用户设备能力支持的测量量的阈值。
步骤S704,网络设备102根据能力信息,确定第二指示信息,第二指示信息用于指 示测量量对应的阈值。
步骤S705,网络设备102向用户设备101发送第二指示信息。
在一些可能的实施方式中,网络设备102还可以配置WUS的测量量。
在一些可能的实施方式中,协议定义了用户设备能力与测量量阈值的对应关系,因此网络设备102可以根据用户设备101上报的用户设备能力,确定需配置的测量量的阈值。
在一些可能的实施方式中,用户设备101上报自身支持的阈值,网络设备102参考其上报的信息配置测量量的阈值。
本公开实施例中,网络设备102根据用户设备101上报的用户设备能力,或者用户设备能力支持的阈值,适应性的为用户设备101配置测量量对应的阈值。
本公开实施例提供一种发送唤醒信号的方法,该方法被网络设备102执行。该方法包括步骤S701及S706,具体的:
步骤S701,网络设备102向用户设备101发送唤醒信号WUS。
步骤S706,网络设备102向用户设备发送第三指示信息,第三指示信息用于指示扩展系数。
在一些可能的实施方式中,扩展系数应用于用户设备101主接收机测量的场景中。
在一些可能的实施方式中,网络设备102可通过DCI动态配置每次主接收机睡眠状态对应的扩展系数。
在一些可能的实施方式中,扩展系数>1。
本公开实施例中,网络设备102为用户设备101配置扩展系数,以便于用户设备101根据扩展系数确定扩展周期,从而在扩展周期内完成唤醒后的第一次测量结果上报。
本公开实施例提供一种发送唤醒信号的方法,该方法被网络设备102执行。参照图8,图8是根据一示例性实施例示出的一种发送唤醒信号的方法,如图8所示,该方法包括步骤S801~S802,具体的:
步骤S801,网络设备102向用户设备101发送唤醒信号WUS。
步骤S802,在唤醒时延之后对用户设备进行调度。
在一些可能的实施方式中,网络设备102所发送的WUS被UE接收到的时刻,为唤醒时延的起始时刻,即从该起始时刻开始的唤醒时延T之后,网络设备102认为UE的主接收机已唤醒。
在一些可能的实施方式中,网络设备102对UE的调度包括:为UE配置待测量的参考信号以及测量配置信息。UE可依据网络设备102的配置进行移动性测量,如测量RS的RSSI。
在一些可能的实施方式中,通过协议定义所述唤醒时延。
例如,唤醒时延是一个定值T。网络设备102在发送的WUS被用户设备101接收到的T时长后,认为主接收机已唤醒,对UE进行调度。
在一些可能的实施方式中,通过协议定义不同用户设备能力对应的所述唤醒时延。
此实施方式可参见前述实施例中的表1,用户设备能力包括第一能力和第二能力,协议可定义每种能力对应的唤醒时延。
在一些可能的实施方式中,通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
此实施方式可参见前述实施例中的表2,用户设备能力包括第一能力和第二能力,协议可以定义每种能力在不同睡眠状态下的唤醒时延。
本公开实施例提供一种发送唤醒信号的方法,该方法包括如下步骤S801、S800-1、S800-2以及S802’,具体的:
步骤S801,网络设备102向用户设备101发送唤醒信号WUS。
步骤S800-1,接收所用户设备发送的能力信息,其中,能力信息包括用户设备能力。
步骤S800-2,确定用户设备能力对应的唤醒时延。
步骤S802’,在用户设备能力对应的唤醒时延后,对用户设备进行调度。
在一些可能的实施方式中,参考表1,协议定义了不同用户设备能力对应的唤醒时延。因此,用户设备101在向网络设备102上报能力信息后,网络设备102可根据协议以及用户设备101上报的能力,确定用户设备101的能力对应的唤醒时延,在该唤醒时延之后再进行UE调度。
在一些可能的实施方式中,参考表2,协议定义了每种用户设备能力在不同睡眠状态下的唤醒时延。此时,步骤S800-1中用户设备101除上报能力信息外,还可以上报睡眠状态。网络设备102可以根据用户设备101上报的能力以及睡眠状态,在协议中确定用户设备101该能力及该睡眠状态下对应的唤醒时延,在该唤醒时延之后再进行UE调度。
在一些可能的实施方式中,用户设备能力适用于用户设备支持的全部频段,或者用户设备能力适用于部分频段组合。
在一示例中,在用户设备能力适用于部分频段组合时,例如适应于第一频段时,网络设备102在该第一频段下调度时,才可结合用户设备能力确定对应的唤醒时延,在其他频段时则不能依据该用户设备能力确定唤醒时延。本示例中,可以仅根据用户设备能力确定对应的唤醒时延,也可以是根据用户设备能力以及UE睡眠状态确定对应的唤醒时延。
在另一示例中,在用户设备能力适用于支持的全部频段时,网络设备102在UE支持的频段内,均可通过用户设备能力确定对应的唤醒时延。本示例中,可以仅根据用户设备能力确定对应的唤醒时延,也可以是根据用户设备能力以及UE睡眠状态确定对应的唤醒时延。
基于与以上方法实施例相同的构思,本公开实施例还提供一种接收唤醒信号的装置,该装置可具备上述方法实施例中的用户设备101的功能,并可用于执行上述方法实施例提供的由用户设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图9所示的装置900可作为上述方法实施例所涉及的用户设备101,并执行上述方法实施例中由用户设备101执行的步骤。如图9所示,该装置900可包括相互耦合的收发模块901以及处理模块902,收发模块901可用于支持通信装置进行通信,处理模块902可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行由网络设备102实施的步骤时,收发模块901被配置为,接收网络设备发送的唤醒信号WUS;处理模块902被配置为,通过低功耗收发机或者主接收机执行测量。
在一些可能的实施方式中,处理模块902还被配置为,通过低功耗收发机测量WUS的测量量。
在一些可能的实施方式中,处理模块902还被配置为,通过低功耗收发机在每个WUS的测量周期,测量WUS的测量量。
在一些可能的实施方式中,处理模块902还被配置为,根据WUS的周期、采样点数量以及常量时间,确定WUS的测量周期。
在一些可能的实施方式中,处理模块902还被配置为,通过低功耗收发机一次性测量WUS的测量量。
在一些可能的实施方式中,收发模块901还被配置为,接收网络设备发送的第一指示信息,第一指示信息用于指示测量量。
在一些可能的实施方式中,处理模块902还被配置为,根据测量量的测量结果与测量量对应的阈值,确定是否唤醒主接收机。
在一些可能的实施方式中,测量量对应的阈值为协议定义的。
在一些可能的实施方式中,收发模块901还被配置为,向网络设备上报用户设备的能力信息,能力信息指示以下中的至少一项:
用户设备能力;
用户设备能力支持的测量量的阈值。
在一些可能的实施方式中,收发模块901还被配置为,用户设备接收网络设备发送的第二指示信息,第二指示信息用于指示测量量对应的阈值。
在一些可能的实施方式中,测量量为以下中的至少一种:
接收信号强度指示RSSI;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号与干扰加噪声比SINR。
在一些可能的实施方式中,处理模块902还被配置为,通过主接收机在扩展周期内,执行唤醒后参考信号测量对应的第一次测量结果上报。
在一些可能的实施方式中,处理模块902还被配置为,根据扩展系数以及参考周期,确定扩展周期。
在一些可能的实施方式中,扩展系数为协议定义的。
在一些可能的实施方式中,收发模块901还被配置为,接收网络设备发送的第三指示信息,第三指示信息用于指示扩展系数。
在一些可能的实施方式中,参考周期包括:参考信号测量对应的测量周期;或者,参考周期包括:参考信号测量对应的识别周期和测量周期。
在一些可能的实施方式中,处理模块902还被配置为,在接收到所述WUS的唤醒时延内唤醒主接收机;通过主接收机执行参考信号的测量。
在一些可能的实施方式中,通过协议定义所述唤醒时延。
在一些可能的实施方式中,通过协议定义不同用户设备能力对应的所述唤醒时延;或者,
通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
在一些可能的实施方式中,收发模块901还被配置为,向所述网络设备发送用户设备的能力信息,其中,所述能力信息包括所述用户设备能力。
在一些可能的实施方式中,所述用户设备能力用户设备支持的全部频段,或者用户设备能力适用于部分频段组合。
当该通信装置为用户设备101时,其结构还可如图10所示。参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)的接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其他组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在设备1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包括电源管理系统,一个或多个电源,及其他与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在装置1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸 传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当设备1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1014可以检测到设备1000的打开/关闭状态,组件的相对定位,例如组件为装置1000的显示器和小键盘,传感器组件1014还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于装置1000和其他设备之间有线或无线方式的通信。装置1000可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种发送唤醒信号的装置,该装置可具备上述方法实施例中的网络设备102的功能,并可用于执行上述方法实施例提供的由网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图11所示的装置1100可作为上述方法实施例所涉及的网络设备102,并执行上述方法实施例中由网络设备102执行的步骤。如图11所示,该装置1100可包括收发模块1101,其中,收发模块1101可用于支持通信装置进行通信,收发模块1101可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。
在执行由网络设备102实施的步骤时,收发模块1101被配置为,向用户设备发送唤醒信号WUS。
在一些可能的实施方式中,收发模块1101还被配置为,发送广播消息,广播消息中包括WUS。
在一些可能的实施方式中,收发模块1101还被配置为,向用户设备发送第一指示信息,第一指示信息用于指示用户设备进行WUS测量时的测量量。
在一些可能的实施方式中,收发模块1101还被配置为,接收用户设备上报的能力信息,能力信息指示用户设备能力和/或用户设备能力支持的测量量的阈值。
装置1100还包括与收发模块1101耦合的处理模块,其中,处理模块被配置为,根据能力信息,确定第二指示信息,第二指示信息用于指示测量量对应的阈值。
收发模块1101还被配置为,向用户设备发送第二指示信息。
在一些可能的实施方式中,收发模块1101还被配置为,向用户设备发送第三指示信息,第三指示信息用于指示扩展系数。
在一些可能的实施方式中,处理模块还被配置为,在唤醒时延之后对所述用户设备进行调度。
在一些可能的实施方式中,通过协议定义所述唤醒时延。
在一些可能的实施方式中,通过协议定义不同用户设备能力对应的所述唤醒时延;或者,
通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
在一些可能的实施方式中,收发模块1101还被配置为,接收所述用户设备发送的能力信息,其中,所述能力信息包括所述用户设备能力;
处理模块还被配置为,确定所述用户设备能力对应的唤醒时延。
在一些可能的实施方式中,处理模块还被配置为,在所述用户设备能力对应的所述唤醒时延后,对所述用户设备进行调度。
当该通信装置为网络设备102时,其结构还可如图12所示。以基站为例说明通信装置的结构。如图12所示,装置1200包括存储器1201、处理器1202、收发组件1203、电 源组件1206。其中,存储器1201与处理器1202耦合,可用于保存通信装置1200实现各功能所必要的程序和数据。该处理器1202被配置为支持通信装置1200执行上述方法中相应的功能,所述功能可通过调用存储器1201存储的程序实现。收发组件1203可以是无线收发器,可用于支持通信装置1200通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1203也可被称为收发单元或通信单元,收发组件1203可包括射频组件1204以及一个或多个天线1205,其中,射频组件1204可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1205具体可用于进行射频信号的辐射和接收。
当通信装置1200需要发送数据时,处理器1202可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1200时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1202,处理器1202将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本公开旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开的方法中,用户设备在接收到网络设备发送的WUS后,既可能通过低功耗收发机执行测量,也可能通过主接收机执行测量,从而在引入低功耗收发机的场景下实现有效测量。

Claims (37)

  1. 一种接收唤醒信号的方法,被用户设备执行,所述方法包括:
    接收网络设备发送的唤醒信号WUS;
    通过低功耗收发机或者主接收机执行测量。
  2. 如权利要求1所述的方法,其中,所述通过低功耗收发机或者主接收机执行测量,包括:
    通过所述低功耗收发机测量所述WUS的测量量。
  3. 如权利要求2所述的方法,其中,所述通过所述低功耗收发机测量所述WUS的测量量,包括:
    通过所述低功耗收发机在每个WUS的测量周期,测量所述WUS的测量量。
  4. 如权利要求3所述的方法,其中,所述方法还包括:
    根据所述WUS的周期、采样点数量以及常量时间,确定所述WUS的测量周期。
  5. 如权利要求2所述的方法,其中,所述通过所述低功耗收发机测量所述WUS的测量量,包括:
    通过所述低功耗收发机一次性测量所述WUS的测量量。
  6. 如权利要求2至5任一项所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述测量量。
  7. 如权利要求2至5任一项所述的方法,其中,所述方法还包括:
    根据所述测量量的测量结果与所述测量量对应的阈值,确定是否唤醒所述主接收机。
  8. 如权利要求7所述的方法,其中,所述测量量对应的阈值为协议定义的。
  9. 如权利要求7所述的方法,其中,所述方法还包括:向所述网络设备上报用户设备的能力信息,所述能力信息指示以下中的至少一项:
    用户设备能力;
    所述用户设备能力支持的所述测量量的阈值。
  10. 如权利要求9所述的方法,其中,所述方法还包括:
    用户设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述测量量对应的阈值。
  11. 如权利要求2至10任一项所述的方法,其中,所述测量量为以下中的至少一种:
    接收信号强度指示RSSI;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    信号与干扰加噪声比SINR。
  12. 如权利要求1所述的方法,其中,所述通过低功耗收发机或者主接收机执行测量,包括:
    通过所述主接收机在扩展周期内,执行唤醒后参考信号测量对应的第一次测量结果 上报。
  13. 如权利要求12所述的方法,其中,所述方法还包括:
    根据扩展系数以及参考周期,确定所述扩展周期。
  14. 如权利要求13所述的方法,其中,所述扩展系数为协议定义的。
  15. 如权利要求13所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述扩展系数。
  16. 如权利要求13所述的方法,其中,所述参考周期包括:所述参考信号测量对应的测量周期;或者,所述参考周期包括:所述参考信号测量对应的识别周期和测量周期。
  17. 如权利要求1所述的方法,其中,所述通过低功耗收发机或者主接收机执行测量,包括:
    在接收到所述WUS的唤醒时延内唤醒主接收机;
    通过主接收机执行参考信号的测量。
  18. 如权利要求17所述的方法,其中,通过协议定义所述唤醒时延。
  19. 如权利要求17所述的方法,其中,通过协议定义不同用户设备能力对应的所述唤醒时延;或者,
    通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
  20. 如权利要求17所述的方法,其中,所述方法还包括:
    向所述网络设备发送用户设备的能力信息,其中,所述能力信息包括所述用户设备能力。
  21. 如权利要求20所述的方法,其中,所述用户设备能力适用于所述用户设备支持的全部频段,或者所述用户设备能力适用于部分频段组合。
  22. 一种发送唤醒信号的方法,被网络设备执行,所述方法包括:
    向用户设备发送唤醒信号WUS。
  23. 如权利要求22所述的方法,其中,所述向用户设备发送唤醒信号WUS,包括:
    发送广播消息,所述广播消息中包括所述WUS。
  24. 如权利要求22所述的方法,其中,所述方法还包括:
    向所述用户设备发送第一指示信息,所述第一指示信息用于指示所述用户设备进行WUS测量时的测量量。
  25. 如权利要求22所述的方法,其中,所述方法还包括:
    接收所述用户设备上报的能力信息,所述能力信息指示用户设备能力和/或用户设备能力支持的测量量的阈值;
    根据所述能力信息,确定第二指示信息,所述第二指示信息用于指示测量量对应的阈值;
    向所述用户设备发送第二指示信息。
  26. 如权利要求22所述的方法,其中,所述方法还包括:
    向所述用户设备发送第三指示信息,所述第三指示信息用于指示扩展系数。
  27. 如权利要求22所述的方法,其中,所述方法还包括:
    在唤醒时延之后对所述用户设备进行调度。
  28. 如权利要求27所述的方法,其中,通过协议定义所述唤醒时延。
  29. 如权利要求27所述的方法,其中,通过协议定义不同用户设备能力对应的所述唤醒时延;或者,
    通过协议定义每种用户设备能力在不同睡眠状态下的所述唤醒时延。
  30. 如权利要求29所述的方法,其中,所述方法还包括:
    接收所述用户设备发送的能力信息,其中,所述能力信息包括所述用户设备能力;
    确定所述用户设备能力对应的唤醒时延。
  31. 如权利要求30所述的方法,其中,所述在唤醒时延之后对所述用户设备进行调度,包括:
    在所述用户设备能力对应的所述唤醒时延后,对所述用户设备进行调度。
  32. 一种接收唤醒信号的装置,被配置于用户设备,所述装置包括:
    收发模块,用于接收网络设备发送的唤醒信号WUS;
    处理模块,用于通过低功耗收发机或者主接收机执行测量。
  33. 一种发送唤醒信号的装置,被配置于网络设备,所述装置包括:
    收发模块,用于向用户设备发送唤醒信号WUS。
  34. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-21中任一项所述的方法。
  35. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求21-31中任一项所述的方法。
  36. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-21中任一项所述的方法。
  37. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求22-31中任一项所述的方法。
PCT/CN2022/127771 2022-10-26 2022-10-26 一种接收发送唤醒信号的方法、装置及可读存储介质 WO2024087069A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004570.0A CN118266258A (zh) 2022-10-26 2022-10-26 一种接收发送唤醒信号的方法、装置及可读存储介质
PCT/CN2022/127771 WO2024087069A1 (zh) 2022-10-26 2022-10-26 一种接收发送唤醒信号的方法、装置及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127771 WO2024087069A1 (zh) 2022-10-26 2022-10-26 一种接收发送唤醒信号的方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024087069A1 true WO2024087069A1 (zh) 2024-05-02

Family

ID=90829758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127771 WO2024087069A1 (zh) 2022-10-26 2022-10-26 一种接收发送唤醒信号的方法、装置及可读存储介质

Country Status (2)

Country Link
CN (1) CN118266258A (zh)
WO (1) WO2024087069A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155973A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
CN109842937A (zh) * 2017-09-20 2019-06-04 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
CN110557809A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种接收机配置信息的确定方法、终端及网络设备
US20210360529A1 (en) * 2018-09-28 2021-11-18 Zte Corporation Wake up signal sending method, wake up signal receiving method, base station and terminal
CN114503682A (zh) * 2019-09-30 2022-05-13 华为技术有限公司 一种信号测量方法及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842937A (zh) * 2017-09-20 2019-06-04 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
CN110557809A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种接收机配置信息的确定方法、终端及网络设备
CN109155973A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
US20210360529A1 (en) * 2018-09-28 2021-11-18 Zte Corporation Wake up signal sending method, wake up signal receiving method, base station and terminal
CN114503682A (zh) * 2019-09-30 2022-05-13 华为技术有限公司 一种信号测量方法及通信装置

Also Published As

Publication number Publication date
CN118266258A (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
WO2024007338A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024087069A1 (zh) 一种接收发送唤醒信号的方法、装置及可读存储介质
WO2024077610A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024103314A1 (zh) 一种唤醒网络设备的方法、装置、设备及可读存储介质
WO2024077624A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024130495A1 (zh) 一种传输唤醒信号的方法、装置及可读存储介质
WO2024113381A1 (zh) 一种传输寻呼消息的方法、装置及可读存储介质
WO2024082147A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024060029A1 (zh) 一种传输系统消息的方法、装置以及可读存储介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质
WO2024065204A1 (zh) 一种发送或监听下行控制信息的方法、装置、设备及介质
WO2023178696A1 (zh) 一种传输寻呼搜索空间配置信息的方法、装置及存储介质
WO2023231016A1 (zh) 一种唤醒网络设备的方法、装置、设备及存储介质
WO2024130496A1 (zh) 一种监听系统信息的方法、装置及可读存储介质
WO2024045137A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024098300A1 (zh) 一种传输配置信息的方法、装置及可读存储介质
WO2024152212A1 (zh) 一种发送上行信息的方法、装置以及可读存储介质
WO2023178698A1 (zh) 一种传输寻呼下行控制信息的方法、装置及存储介质
WO2024103358A1 (zh) 一种传输指示信息的方法、装置及可读存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2024082289A1 (zh) 一种监听或发送信息的方法、装置、设备以及存储介质
WO2023159443A1 (zh) 一种传输唤醒信号的方法、装置及可读存储介质
WO2023193185A1 (zh) 一种传输同步信号功率信息的方法、装置及可读存储介质
WO2024098389A1 (zh) 一种唤醒网络设备的方法、装置、设备及存储介质
WO2024168547A1 (zh) 一种通信方法、装置以及可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004570.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963053

Country of ref document: EP

Kind code of ref document: A1