WO2024082243A1 - 一种烹饪设备及其制冷装置 - Google Patents

一种烹饪设备及其制冷装置 Download PDF

Info

Publication number
WO2024082243A1
WO2024082243A1 PCT/CN2022/126539 CN2022126539W WO2024082243A1 WO 2024082243 A1 WO2024082243 A1 WO 2024082243A1 CN 2022126539 W CN2022126539 W CN 2022126539W WO 2024082243 A1 WO2024082243 A1 WO 2024082243A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
channel
heat dissipation
heat
cooling fan
Prior art date
Application number
PCT/CN2022/126539
Other languages
English (en)
French (fr)
Inventor
朱良
许桦
黄对
范未强
Original Assignee
深圳市虎一科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市虎一科技有限公司 filed Critical 深圳市虎一科技有限公司
Priority to PCT/CN2022/126539 priority Critical patent/WO2024082243A1/zh
Publication of WO2024082243A1 publication Critical patent/WO2024082243A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/24Warming devices

Definitions

  • the present application relates to the technical field of cooking equipment, and in particular to a cooking equipment and a refrigeration device thereof.
  • Cooking equipment usually includes a cooking cavity, and users can put food into the cooking cavity for cooking. Some cooking equipment also includes a heat conductor and a heat dissipation fan. The heat from the heat source is conducted out through the heat conductor, and an airflow is generated through the heat dissipation fan through the heat conductor.
  • the airflow may be sucked in again by the heat dissipation fan after passing through the heat conductor, resulting in reduced heat dissipation efficiency.
  • the main purpose of the present invention is to provide a cooking device with higher heat dissipation efficiency.
  • an embodiment provides a cooking device, comprising:
  • a main body wherein the main body has a cooking cavity
  • a heat conductor the heat conductor is arranged on the side of the main body, the heat conductor is used to conduct heat from a heat source, the heat conductor has a heat dissipation channel, and the heat dissipation channel has an air inlet and an air outlet;
  • cooling fan the cooling fan being arranged at the air inlet of the heat conductor, the cooling fan being used to generate an airflow, the airflow generated by the cooling fan entering the cooling channel from the air inlet and being discharged from the cooling channel from the air outlet;
  • the guide structure has a guide channel, the guide channel has a first part and a second part, the first part cooperates with the air outlet, and the second part extends in the direction away from the cooling fan; the first part has a guide inlet, and the second part has a guide outlet, the airflow discharged from the air outlet enters the guide channel from the guide inlet, and is discharged from the guide channel from the guide outlet.
  • an embodiment provides a refrigeration device, comprising:
  • a heat exchange cavity the heat exchange cavity is used to selectively communicate with and be sealed off from a cooking cavity of a cooking device
  • a semiconductor refrigeration element wherein the semiconductor refrigeration element has a cold end and a hot end, the semiconductor refrigeration element is arranged on the side of the heat exchange cavity, and the cold end is located in the heat exchange cavity;
  • a heat conductor the heat conductor is in contact with the hot end, the heat conductor has a heat dissipation channel, and the heat dissipation channel has an air inlet and an air outlet;
  • cooling fan the cooling fan being arranged at the air inlet of the heat conductor, the cooling fan being used to generate an airflow, the airflow generated by the cooling fan entering the cooling channel from the air inlet and being discharged from the cooling channel from the air outlet;
  • the guide structure has a guide channel, the guide channel has a first part and a second part, the first part cooperates with the air outlet, and the second part extends in the direction away from the cooling fan; the first part has a guide inlet, and the second part has a guide outlet, the airflow discharged from the air outlet enters the guide channel from the guide inlet, and is discharged from the guide channel from the guide outlet.
  • an embodiment provides a cooking device, comprising:
  • a main body wherein the main body has a cooking cavity
  • a heat conductor the heat conductor is arranged on the side of the main body, the heat conductor is used to conduct heat from a heat source, the heat conductor has a heat dissipation channel, and the heat dissipation channel has an air inlet and an air outlet;
  • cooling fan the cooling fan being arranged at the air inlet of the heat conductor, the cooling fan being used to generate an airflow, the airflow generated by the cooling fan entering the cooling channel from the air inlet and being discharged from the cooling channel from the air outlet;
  • the guide structure has a guide flow channel, the guide flow channel has a guide inlet and a guide outlet; the airflow discharged from the outlet enters the guide flow channel from the guide inlet and is discharged from the guide flow channel from the guide outlet; the guide structure has a blocking portion on the side close to the cooling fan, and the blocking portion is used to block the airflow discharged from the guide outlet from merging into the airflow generated by the cooling fan.
  • an embodiment provides a refrigeration device, comprising:
  • a heat exchange cavity the heat exchange cavity is used to selectively communicate with and be sealed off from a cooking cavity of a cooking device
  • a semiconductor refrigeration element wherein the semiconductor refrigeration element has a cold end and a hot end, the semiconductor refrigeration element is arranged on the side of the heat exchange cavity, and the cold end is located in the heat exchange cavity;
  • a heat conductor the heat conductor is in contact with the hot end, the heat conductor has a heat dissipation channel, and the heat dissipation channel has an air inlet and an air outlet;
  • cooling fan the cooling fan being arranged at the air inlet of the heat conductor, the cooling fan being used to generate an airflow, the airflow generated by the cooling fan entering the cooling channel from the air inlet and being discharged from the cooling channel from the air outlet;
  • the guide structure has a guide channel, and the guide channel has a guide inlet and a guide outlet; the airflow discharged from the outlet enters the guide channel from the guide inlet and is discharged from the guide channel from the guide outlet; the guide structure has a blocking portion on the side close to the cooling fan, and the blocking portion is used to block the airflow discharged from the guide outlet from merging into the airflow generated by the cooling fan.
  • the cooking device comprises a main body, a heat conductor, a heat dissipation fan and a guide structure.
  • the main body has a cooking cavity
  • the heat conductor is arranged at the side of the main body, the heat conductor is used to conduct the heat of the heat source, the heat conductor has a heat dissipation channel, and the heat dissipation channel has an air inlet and an air outlet.
  • the heat dissipation fan is arranged at the air inlet of the heat conductor, the heat dissipation fan is used to generate airflow, the airflow generated by the heat dissipation fan enters the heat dissipation channel from the air inlet, and is discharged from the heat dissipation channel from the air outlet.
  • the guide structure has a guide channel, the guide channel has a first part and a second part, the first part cooperates with the air outlet, and the second part extends in a direction away from the heat dissipation fan.
  • the first part has a guide inlet, and the second part has a guide outlet, the airflow discharged from the air outlet enters the guide channel from the guide inlet, and is discharged from the guide channel from the guide outlet.
  • the airflow first passes through the heat dissipation channel, then enters the guide channel from the guide inlet, then flows in a direction away from the heat dissipation fan under the guidance of the guide channel, and finally is discharged from the guide outlet. Since the guide flow channel guides the airflow to a position away from the cooling fan, the possibility of the airflow discharged from the guide flow channel being sucked back into the cooling fan is reduced, which helps to avoid the risk of reduced cooling efficiency.
  • FIG1 is a schematic diagram of the structure of a cooking device from a front view in one embodiment of the present application
  • FIG2 is a schematic structural diagram of a cooking device from a side view in one embodiment of the present application.
  • FIG3 is a schematic structural diagram of a refrigeration device in one embodiment of the present application.
  • FIG4 is a schematic structural diagram of a refrigeration device with a hidden flow guide structure in one embodiment of the present application.
  • FIG5 is an enlarged view of point A in FIG4 ;
  • FIG6 is a cross-sectional view of a refrigeration device in one embodiment of the present application.
  • FIG7 is a schematic structural diagram of a diversion structure from a three-dimensional perspective in one embodiment of the present application.
  • FIG8 is a schematic structural diagram of a flow guide structure in an embodiment of the present application from a front view perspective
  • Fig. 9 is a cross-sectional view along the A-A direction in Fig. 8;
  • Fig. 10 is a cross-sectional view along the B-B direction in Fig. 8;
  • FIG11 is a schematic structural diagram of a diversion structure from a three-dimensional perspective in another embodiment of the present application.
  • FIG12 is a schematic structural diagram of a flow guide structure in another embodiment of the present application from a front view perspective;
  • Fig. 13 is a cross-sectional view along the C-C direction in Fig. 12;
  • Fig. 14 is a cross-sectional view along the D-D direction in Fig. 12;
  • FIG15 is a schematic structural diagram of a guide structure in a third embodiment of the present application from a side view
  • Figure numerals 100, main body; 110, cooking cavity; 120, taking and placing opening; 200, heat conductor; 210, heat dissipation channel; 211, air inlet; 212, air outlet; 220, contact plate; 230, heat conduction fins; 300, cooling fan; 400, guide structure; 410, guide channel; 411, first part; 4111, guide inlet; 412, second part; 4121, guide outlet; 4122, blocking part; 420, serrated structure; 430, plate-like structure; 440, partition plate; 500, refrigeration device; 510, heat exchange cavity; 520, semiconductor refrigeration element.
  • connection and “coupling” mentioned in this application include direct and indirect connections (couplings) unless otherwise specified.
  • This embodiment provides a cooking device.
  • the cooking device includes a main body 100 , a heat conductor 200 , a heat dissipation fan 300 and a flow guide structure 400 .
  • the main body 100 has a cooking cavity 110, and the heat conductor 200 is arranged on the side of the main body 100.
  • the heat conductor 200 is used to conduct heat from the heat source.
  • the heat conductor 200 has a heat dissipation channel 210, and the heat dissipation channel 210 has an air inlet 211 and an air outlet 212.
  • the heat dissipation fan 300 is arranged at the air inlet 211 of the heat conductor 200.
  • the heat dissipation fan 300 is used to generate airflow.
  • the airflow generated by the heat dissipation fan 300 enters the heat dissipation channel 210 from the air inlet 211 and is discharged from the heat dissipation channel 210 from the air outlet 212.
  • the guide structure 400 has a guide channel 410, and the guide channel 410 has a first part 411 and a second part 412.
  • the first part 411 cooperates with the air outlet 212, and the second part 412 extends in a direction away from the heat dissipation fan 300.
  • the first portion 411 has a guide inlet 4111
  • the second portion 412 has a guide outlet 4121 .
  • the airflow discharged from the air outlet 212 enters the guide channel 410 from the guide inlet 4111 , and is discharged from the guide channel 410 from the guide outlet 4121 .
  • the airflow When the cooling fan 300 is working, the airflow first passes through the cooling channel 210, then enters the guide channel 410 from the guide inlet 4111, then flows in a direction away from the cooling fan 300 under the guidance of the guide channel 410, and finally is discharged from the guide outlet 4121. Since the guide channel 410 guides the airflow to a position away from the cooling fan 300, the possibility of the airflow discharged from the guide channel 410 being sucked in again by the cooling fan 300 is reduced, which helps to avoid the risk of reduced cooling efficiency.
  • the second portion 412 extends in a direction away from the cooling fan 300 ” can be understood in a more specific and quantifiable manner, for example, it can be understood from the range of angle values of the angle between the second portion 412 and the first portion 411 .
  • the main body 100 has a first side and a second side that are arranged opposite to each other.
  • the first side has a take-in and take-out opening 120, and the take-in and take-out opening 120 connects the cooking cavity 110 with the outside.
  • the heat dissipation channel 210 extends from the plane where the first side is located to the plane where the second side is located.
  • the heat dissipation channel 210 has an air outlet 212 at one end close to the first side, and an air inlet 211 is provided in the middle of the heat dissipation channel 210.
  • the extension direction of the first part 411 is the same as the extension direction of the heat dissipation channel 210, and the included angle between the extension direction of the second part 412 and the extension direction of the first part 411 is an obtuse angle, so that the second part 412 extends in a direction away from the heat dissipation fan 300.
  • the extension direction of the first part 411 is the same as that of the heat dissipation channel 210, the airflow discharged from the heat dissipation channel 210 can enter the guide inlet 4111 of the first part 411 without hindrance, which is conducive to reducing the flow resistance of the airflow entering the guide channel 410, thereby facilitating the improvement of the heat dissipation effect.
  • the angle between the extension direction of the second part 412 and the extension direction of the first part 411 is an obtuse angle, the second part 412 can extend in a direction away from the heat dissipation fan 300, thereby facilitating the airflow to be directed to a position away from the heat dissipation fan 300 and then discharged from the guide outlet 4121.
  • the shape of the guide structure 400 can be a straight line, an arc shape, a combination of a straight line and an arc shape, or various irregular shapes.
  • the following takes the two cases where the guide structure 400 is a straight line and the guide structure 400 is a combination of a straight line and an arc shape as examples to further illustrate the meaning of "the angle between the extension direction of the second part 412 and the extension direction of the first part 411 is an obtuse angle".
  • the center line a1 of the first part 411 is a straight line extending from the first side of the main body 100 to the second side of the main body 100
  • the center line a2 of the second part 412 is an arc.
  • the angle between the tangent b at any position on the arc a2 of the second part 412 and the center line a1 of the first part 411 is an obtuse angle, so as to achieve an obtuse angle between the extension direction of the second part 412 and the extension direction of the first part 411.
  • the center line a1 of the first part 411 is a straight line extending from the first side of the main body 100 to the second side of the main body 100
  • the center line a2 of the second part 412 is a straight line.
  • the angle between the center line a2 of the second part 412 and the center line a1 of the first part 411 is an obtuse angle, so as to achieve an obtuse angle between the extension direction of the second part 412 and the extension direction of the first part 411.
  • the guide structure 400 can also block the airflow from flowing in the direction of the cooling fan 300. The combination of the two can further reduce the possibility of the airflow being sucked back into the cooling fan 300.
  • the second portion 412 has a blocking portion 4122 protruding from the first portion 411 on one side close to the cooling fan 300.
  • the blocking portion 4122 is used to block the airflow discharged from the guide outlet 4121 from merging into the airflow generated by the cooling fan 300.
  • the blocking portion 4122 blocks the airflow from flowing in the direction of the cooling fan 300, thereby further reducing the possibility of the airflow being sucked in again by the cooling fan 300.
  • the final exhaust direction of the cooling airflow should not be vertically toward the side of the cooking device for user operation, which is usually the side where the access opening 120 of the cooking device is located.
  • the main body 100 has a first side and a second side that are arranged opposite to each other.
  • the first side has a take-in opening 120, and the take-in opening 120 connects the cooking cavity 110 with the outside.
  • the direction of the diversion outlet 4121 is not perpendicular to the plane where the first side is located.
  • the orientation of the guide outlet 4121 is not perpendicular to the plane where the first side is located, the airflow discharged from the guide outlet 4121 will not blow directly toward the user operating the cooking device, thereby preventing the direct blowing airflow from interfering with the user's operation.
  • the orientation of the guide outlet 4121 can form an angle less than 90° with the plane where the first side is located, for example, 30°, 50° or 70°, and the orientation of the guide outlet 4121 can also form an angle greater than 90° with the plane where the first side is located, for example, 120°, 140° or 160°.
  • the airflow interferes with the user to a minimum.
  • the direction of the air guide outlet 4121 is perpendicular to the extension direction of the heat dissipation channel. The airflow discharged from the air guide outlet 4121 will neither blow directly toward the user nor blow obliquely toward the user, thereby minimizing the interference of the airflow to the user.
  • the air outlet 212 of the air guide structure 400 has a continuously undulating sawtooth structure 420.
  • the sawtooth structure 420 provided at the air outlet 212 is conducive to reducing the noise generated when the airflow is discharged from the air outlet 212, thereby reducing the interference of the airflow noise to the user.
  • the air outlet 212 of the air guide structure 400 has a flat plate-shaped structure 430 .
  • the plate-like structure 430 can be used to fix the guide structure 400, for example, the guide structure 400 is fixed by screws penetrating the plate-like structure 430.
  • the plate-like structure 430 is easier to open the mold than the sawtooth structure 420, so it is helpful to reduce the production cost of the guide structure 400, and the structural strength of the plate-like structure 430 is higher than that of the sawtooth structure 420.
  • the flow guiding structure 400 includes a partition plate 440 .
  • the partition plate 440 is disposed in the flow guiding channel 410 to divide the flow guiding channel 410 into a plurality of channels.
  • the guide channel 410 is divided into a plurality of channels by the partition plate 440. On the one hand, it is helpful to enhance the guiding effect of the guide structure 400 on the airflow. On the other hand, it is helpful to avoid the possibility of the airflow forming vortices in the guide channel 410 when the guide channel 410 is too wide.
  • the guide structure 400 includes a plurality of mutually parallel partition plates 440, and the partition plates 440 are parallel to the extension direction of the heat dissipation channel 210.
  • the partition plates 440 are parallel to the extension direction of the heat dissipation channel 210, it is helpful to reduce the flow resistance of the airflow of the heat dissipation channel 210 entering the guide channel 410, thereby helping to improve the heat dissipation effect.
  • the number and arrangement of the partition plates 440 can be flexibly selected according to actual conditions.
  • the number of the partition plates 440 is multiple, and the multiple partition plates 440 are arranged at equal intervals along a direction perpendicular to the guide channel.
  • the number of the partition plates 440 can also be two, and the two partition plates 440 are located in the middle of the guide structure 400.
  • the heat conductor 200 includes a contact plate 220 and a plurality of heat-conducting fins 230.
  • the contact plate 220 is used to contact the heat source.
  • the heat-conducting fins 230 are connected to the contact plate 220.
  • the gaps between adjacent heat-conducting fins 230 form a heat dissipation channel 210.
  • the contact area between the heat conductor 200 and the heat source is increased by the contact plate 220, which is beneficial to improving the heat conduction effect of the heat conductor 200.
  • the heat dissipation channel 210 is formed through the gap between adjacent heat-conducting fins 230 to increase the contact area between the heat conductor 200 and the air, which is beneficial to improving the heat dissipation effect of the heat conductor 200.
  • the heat dissipation fan 300 may be disposed in the middle of the heat conducting fin 230 to form an air inlet 211 in the middle of the heat dissipation channel 210 and an air outlet 212 at the end of the heat dissipation channel 210.
  • the number of the heat dissipation fans 300 is two. In other embodiments, the number of the heat dissipation fans 300 may be one, three, or other suitable numbers depending on the specific sizes of the heat conductor 200 and the heat dissipation fan 300.
  • the cooking device further includes a refrigeration device 500, which is disposed on the side of the main body 100.
  • the refrigeration device 500 includes a heat exchange cavity 510 and a semiconductor refrigeration element 520.
  • the heat exchange cavity 510 and the cooking cavity 110 can be selectively connected and closed, and the cold end of the semiconductor refrigeration element 520 is located in the heat exchange cavity 510.
  • the heat source is the hot end of the semiconductor refrigeration element 520, and the heat conductor 200 is in contact with the hot end of the semiconductor refrigeration element 520.
  • the environment of the heat exchange cavity 510 is cooled by the cold end of the semiconductor refrigeration element 520, and the heat exchange cavity 510 is connected with the cooking cavity 110, and the heat exchange cavity 510 can cool the cooking cavity 110 through air convection.
  • the heat exchange cavity 510 and the cooking cavity 110 are closed to prevent the high temperature of the cooking cavity 110 from damaging the refrigeration element in the heat exchange cavity 510.
  • the heat source may not be the hot end of the semiconductor cooling element 520 , but other heating elements on the main body 100 , such as an electric control module on the main body 100 .
  • this embodiment further provides a refrigeration device 500, which can be applied to the above-mentioned cooking equipment.
  • the refrigeration device 500 includes a heat exchange cavity 510 , a semiconductor refrigeration element 520 , a heat conductor 200 , a heat dissipation fan 300 and a flow guide structure 400 .
  • the heat exchange cavity 510 is used to selectively communicate with and close the cooking cavity 110 of the cooking device.
  • the semiconductor refrigeration element 520 has a cold end and a hot end.
  • the semiconductor refrigeration element 520 is arranged on the side of the heat exchange cavity 510, and the cold end is located in the heat exchange cavity 510.
  • the heat conductor 200 is in contact with the hot end.
  • the heat conductor 200 has a heat dissipation channel 210.
  • the heat dissipation channel 210 has an air inlet 211 and an air outlet 212.
  • the heat dissipation fan 300 is arranged at the air inlet 211 of the heat conductor 200.
  • the heat dissipation fan 300 is used to generate airflow.
  • the airflow generated by the heat dissipation fan 300 enters the heat dissipation channel 210 from the air inlet 211 and is discharged from the heat dissipation channel 210 from the air outlet 212.
  • the guide structure 400 has a guide channel 410.
  • the guide channel 410 has a first part 411 and a second part 412.
  • the first part 411 cooperates with the air outlet 212, and the second part 412 extends in a direction away from the heat dissipation fan 300.
  • the first portion 411 has a guide inlet 4111
  • the second portion 412 has a guide outlet 4121 .
  • the airflow discharged from the air outlet 212 enters the guide channel 410 from the guide inlet 4111 , and is discharged from the guide channel 410 from the guide outlet 4121 .
  • the heat exchange cavity 510 has a front side and a rear side that are oppositely arranged.
  • the front side of the heat exchange cavity 510 refers to the side of the heat exchange cavity 510 that faces the user. More specifically, referring to FIG. 1 , when the refrigeration device 500 and the main body 100 are arranged side by side, the front side of the heat exchange cavity 510 and the first side of the main body 100 are the same side. Therefore, the position or direction reference object of some structures can also be replaced from the first side and the second side of the main body 100 to the front side and the rear side of the heat exchange cavity 510.
  • the heat dissipation channel 210 extends from the plane where the first side of the main body 100 is located to the plane where the second side of the main body 100 is located
  • the heat dissipation channel 210 extends from the plane where the front side of the heat exchange cavity 510 is located to the plane where the rear side of the heat exchange cavity 510 is located.
  • the guide structure 400 of the above embodiment is mainly designed to "guide the airflow away from the cooling fan 300" to prevent the airflow from being sucked in again by the fan.
  • the guide structure 400 may also be mainly designed to "block the airflow from flowing in the direction of the cooling fan 300".
  • the cooking device includes a main body 100 , a heat conductor 200 , a heat dissipation fan 300 , and a flow guide structure 400 .
  • the main body 100 has a cooking cavity 110.
  • the heat conductor 200 is arranged on the side of the main body 100.
  • the heat conductor 200 is used to conduct heat from the heat source.
  • the heat conductor 200 has a heat dissipation channel 210.
  • the heat dissipation channel 210 has an air inlet 211 and an air outlet 212.
  • the heat dissipation fan 300 is arranged at the air inlet 211 of the heat conductor 200.
  • the heat dissipation fan 300 is used to generate airflow.
  • the airflow generated by the heat dissipation fan 300 enters the heat dissipation channel 210 from the air inlet 211 and is discharged from the heat dissipation channel 210 from the air outlet 212.
  • the guide structure 400 has a guide channel 410.
  • the guide channel 410 has a guide inlet 4111 and a guide outlet 4121.
  • the airflow discharged from the air outlet 212 enters the guide channel 410 from the guide inlet 4111 and is discharged from the guide channel 410 from the guide outlet 4121.
  • the air guide structure 400 has a blocking portion 4122 on one side close to the heat dissipation fan 300 .
  • the blocking portion 4122 is used to block the airflow discharged from the air guide outlet 4121 from merging into the airflow generated by the heat dissipation fan 300 .
  • the airflow first passes through the cooling channel 210, then enters the guide channel 410 from the guide inlet 4111, and is then discharged from the guide outlet 4121 under the guidance of the guide channel 410. Since the guide structure 400 has a blocking portion 4122 on the side close to the cooling fan 300, the blocking portion 4122 can block the airflow flowing toward the cooling fan 300, thereby reducing the possibility of the airflow discharged from the guide channel 410 being sucked back into the cooling fan 300, which is beneficial to avoiding the risk of reduced cooling efficiency.
  • this embodiment also provides a refrigeration device 500, which can be applied to the above-mentioned cooking equipment.
  • the refrigeration device 500 includes a heat exchange cavity 510 , a semiconductor refrigeration element 520 , a heat conductor 200 , a heat dissipation fan 300 and a flow guide structure 400 .
  • the heat exchange cavity 510 is used to selectively communicate with and close the cooking cavity 110 of the cooking device.
  • the semiconductor refrigeration element 520 has a cold end and a hot end.
  • the semiconductor refrigeration element 520 is arranged on the side of the heat exchange cavity 510, and the cold end is located in the heat exchange cavity 510.
  • the heat conductor 200 is in contact with the hot end.
  • the heat conductor 200 has a heat dissipation channel 210.
  • the heat dissipation channel 210 has an air inlet 211 and an air outlet 212.
  • the heat dissipation fan 300 is arranged at the air inlet 211 of the heat conductor 200.
  • the heat dissipation fan 300 is used to generate airflow.
  • the airflow generated by the heat dissipation fan 300 enters the heat dissipation channel 210 from the air inlet 211 and is discharged from the heat dissipation channel 210 from the air outlet 212.
  • the flow guide structure 400 has a flow guide channel 410.
  • the flow guide channel 410 has a flow guide inlet 4111 and a flow guide outlet 4121.
  • the airflow discharged from the air outlet 212 enters the guide channel 410 from the guide inlet 4111 and is discharged from the guide channel 410 from the guide outlet 4121.
  • the guide structure 400 has a blocking portion 4122 on one side close to the cooling fan 300, which is used to block the airflow discharged from the guide outlet 4121 from merging into the airflow generated by the cooling fan 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

一种烹饪设备及其制冷装置,烹饪设备包括主体部(100)、导热体(200)、散热风扇(300)和导流结构(400)。主体部(100)具有烹饪腔体(110),导热体(200)设置于主体部(100)的侧部,导热体(200)具有散热流道(210),散热流道(210)具有进风口(211)和出风口(212)。散热风扇(300)设置于导热体(200)的进风口(211),散热风扇(300)用于产生气流,散热风扇(300)产生的气流从进风口(211)进入散热流道(210),并从出风口(212)排出散热流道(210)。导流结构(400)具有导流流道(410),导流流道(410)具有第一部分(411)和第二部分(412),第一部分(411)与出风口(212)配合,第二部分(412)向远离散热风扇(300)的方向延伸。第一部分(411)具有导流入口(4111),第二部分(412)具有导流出口(4121)。由于导流流道(410)将气流导向了远离散热风扇(300)的位置,从而降低了导流流道(410)排出的气流被散热风扇(300)再次吸入可能性,进而有利于规避散热效率降低的风险。

Description

一种烹饪设备及其制冷装置 技术领域
本申请涉及烹饪设备技术领域,具体涉及一种烹饪设备及其制冷装置。
背景技术
随着人们生活质量的提高,市场上用于加热食物的烹饪装置的种类越来越多,如蒸箱、烤箱、空气炸锅、蒸烤箱等等。烹饪设备通常包括烹饪腔体,用户可以将食品放入烹饪腔体内烹饪。有的烹饪设备还包括导热体和散热风扇,通过导热体传导出热源的热量,通过散热风扇产生通过导热体的气流。但是,由于导热体自身散热流道的方向固定,在实际使用过程中,出于设计空间和用户体验要求(如出风口一般不宜朝向用户操作侧)的限制,气流通过导热体后,可能会被散热风扇再次吸入,从而导致散热效率降低。
发明内容
本发明主要目的是提供一种散热效率更高的烹饪设备。
第一方面,一种实施例中提供一种烹饪设备,包括:
主体部,所述主体部具有烹饪腔体;
导热体,所述导热体设置于所述主体部的侧部,所述导热体用于传导热源的热量,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
以及导流结构,所述导流结构具有导流流道,所述导流流道具有第一部分和第二部分,所述第一部分与所述出风口配合,所述第二部分向远离所述散热风扇的方向延伸;所述第一部分具有导流入口,所述第二部分具有导流出口,所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道。
第二方面,一种实施例中提供一种制冷装置,包括:
换热腔体,所述换热腔体用于与烹饪设备的烹饪腔体可选择性地连通和封闭;
半导体制冷元件,所述半导体制冷元件具有冷端和热端,所述半导体制冷元件设置于所述换热腔体的侧部,且所述冷端位于所述换热腔体内;
导热体,所述导热体与所述热端接触,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
以及导流结构,所述导流结构具有导流流道,所述导流流道具有第一部分和第二部分,所述第一部分与所述出风口配合,所述第二部分向远离所述散热风扇的方向延伸;所述第一部分具有导流入口,所述第二部分具有导流出口,所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道。
第三方面,一种实施例中提供一种烹饪设备,包括:
主体部,所述主体部具有烹饪腔体;
导热体,所述导热体设置于所述主体部的侧部,所述导热体用于传导热源的热量,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
以及导流结构,所述导流结构具有导流流道,所述导流流道具有导流入口和导流出口;所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道;所述导流结构靠近所述散热风扇的一侧具有阻拦部,所述阻拦部用于阻拦所述导流出口排出的气流汇入所述散热风扇产生的气流。
第四方面,一种实施例中提供一种制冷装置,包括:
换热腔体,所述换热腔体用于与烹饪设备的烹饪腔体可选择性地连通和封闭;
半导体制冷元件,所述半导体制冷元件具有冷端和热端,所述半导体制冷元件设置于所述换热腔体的侧部,且所述冷端位于所述换热腔体内;
导热体,所述导热体与所述热端接触,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
以及导流结构,所述导流结构具有导流流道,所述导流流道具有导流入口和导流出口;所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道;所述导流结构靠近所述 散热风扇的一侧具有阻拦部,所述阻拦部用于阻拦所述导流出口排出的气流汇入所述散热风扇产生的气流。
依据上述实施例的烹饪设备及其制冷装置,该烹饪设备包括主体部、导热体、散热风扇和导流结构。主体部具有烹饪腔体,导热体设置于主体部的侧部,导热体用于传导热源的热量,导热体具有散热流道,散热流道具有进风口和出风口。散热风扇设置于导热体的进风口,散热风扇用于产生气流,散热风扇产生的气流从进风口进入散热流道,并从出风口排出散热流道。导流结构具有导流流道,导流流道具有第一部分和第二部分,第一部分与出风口配合,第二部分向远离散热风扇的方向延伸。第一部分具有导流入口,第二部分具有导流出口,出风口排出的气流从导流入口进入导流流道,并从导流出口排出导流流道。当散热风扇工作时,气流先经过散热流道,再从导流入口进入导流流道,接着在导流流道的引导下向远离散热风扇的方向流动,最后从导流出口排出。由于导流流道将气流导向了远离散热风扇的位置,从而降低了导流流道排出的气流被散热风扇再次吸入可能性,进而有利于规避散热效率降低的风险。
附图说明
图1为本申请一种实施例中烹饪设备正面视角的结构示意图;
图2为本申请一种实施例中烹饪设备侧面视角的结构示意图;
图3为本申请一种实施例中制冷装置的结构示意图;
图4为本申请一种实施例中隐藏导流结构后制冷装置的结构示意图;
图5为图4中A处的放大图;
图6为本申请一种实施例中制冷装置的剖视图;
图7为本申请一种实施例中导流结构立体视角的结构示意图;
图8为本申请一种实施例中导流结构正视视角的结构示意图;
图9为图8中沿A-A方向的剖视图;
图10为图8中沿B-B方向的剖视图;
图11为本申请另一种实施例中导流结构的立体视角的结构示意图;
图12为本申请另一种实施例中导流结构的正视视角的结构示意图;
图13为图12中沿C-C方向的剖视图;
图14为图12中沿D-D方向的剖视图;
图15为本申请第三种实施例中导流结构侧视视角的结构示意图;
附图标记:100、主体部;110、烹饪腔体;120、取放开口;200、导热体;210、散热流道;211、进风口;212、出风口;220、接触板;230、导热翅片;300、散热风扇;400、导流结构;410、导流流道;411、第一部分;4111、导流入口;412、第二部分;4121、导流出口;4122、阻拦部;420、锯齿结构;430、板状结构;440、分隔板;500、制冷装 置;510、换热腔体;520、半导体制冷元件。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
请参考图1-15,本实施例提供一种烹饪设备。
请参考图1-10,该烹饪设备包括主体部100、导热体200、散热风扇300和导流结构400。
主体部100具有烹饪腔体110,导热体200设置于主体部100的侧部,导热体200用于传导热源的热量,导热体200具有散热流道210,散热流道210具有进风口211和出风口212。散热风扇300设置于导热体200的进风口211,散热风扇300用于产生气流,散热风扇300产生的气流从进风口211进入散热流道210,并从出风口212排出散热流道210。导流结构400具有导流流道410,导流流道410具有第一部分411和第二部分412,第一部分411与出风口212配合,第二部分412向远离散热风扇300的方向延伸。第一部分411具有导流入口4111,第二部分412具有导流出口4121,出风口212排出的气流从导流入口4111进入导流流道410,并从导流出口4121排出导流流道410。
当散热风扇300工作时,气流先经过散热流道210,再从导流入口4111进入导流流道410,接着在导流流道410的引导下向远离散热风扇300的方向流动,最后从导流出口4121排出。由于导流流道410将气流导向了远离散热风扇300的位置,从而降低了导流流道410排出的气流 被散热风扇300再次吸入可能性,进而有利于规避散热效率降低的风险。
需要说明的是,“第二部分412向远离散热风扇300的方向延伸”可以作更具体和可量化的理解,例如,可以从第二部分412与第一部分411之间的夹角的角度取值范围来理解。
具体地,请参考图1-10,在一种实施例中,主体部100具有相对设置的第一侧和第二侧,第一侧具有取放开口120,取放开口120将烹饪腔体110与外界连通。散热流道210从第一侧所在的平面向第二侧所在的平面延伸,散热流道210靠近第一侧的一端具有出风口212,散热流道210的中部具有进风口211。第一部分411的延伸方向与散热流道210的延伸方向相同,第二部分412的延伸方向与第一部分411的延伸方向之间的夹角成钝角,以使第二部分412向远离散热风扇300的方向延伸。
由于第一部分411的延伸方向与散热流道210的延伸方向相同,使得散热流道210排出的气流能够不受阻碍地进入第一部分411的导流入口4111,这有利于减小气流进入导流流道410内的流阻,从而有利于提升散热效果。而由于第二部分412的延伸方向与第一部分411的延伸方向之间的夹角成钝角,使得第二部分412能够向远离散热风扇300的方向延伸,从而有利于将气流导向远离散热风扇300的位置,再从导流出口4121排出。
在实际的应用场景中,导流结构400的形状可以是直线形、弧线形、直线形与弧线形的结合或各种不规则的形状,下面以导流结构400为直线形和导流结构400为直线和弧线形的结合两种情况为例进一步说明“第二部分412的延伸方向与第一部分411的延伸方向之间的夹角成钝角”的含义。
当导流结构400为直线形和弧线形的结合时,请参考图10,在一种实施例中,第一部分411的中心线a1为从主体部100的第一侧向主体部100的第二侧延伸的直线,第二部分412的中心线a2为弧线,第二部分412的弧线a2上任一位置的切线b与第一部分411的中心线a1的夹角均为钝角,以实现第二部分412的延伸方向与第一部分411的延伸方向之间的夹角成钝角。
当导流结构400为直线形时,请参考图15,在一种实施例中,第一部分411的中心线a1为从主体部100的第一侧向主体部100的第二侧延伸的直线,第二部分412的中心线a2为直线,第二部分412的中心线a2与第一部分411的中心线a1的夹角为钝角,以实现第二部分412的延伸方向与第一部分411的延伸方向之间的夹角成钝角。
导流结构400除了能够将气流导向远离散热风扇300的位置外,还可以具有阻拦气流向散热风扇300所在方向流动的功能,二者结合可以进一步降低气流被散热风扇300再次吸入的可能性。
具体地,请参考图6-10,在一种实施例中,第二部分412靠近散热风扇300的一侧具有凸出于第一部分411的阻拦部4122,阻拦部4122用于阻拦导流出口4121排出的气流汇入散热风扇300产生的气流。通过阻拦部4122阻拦气流向散热风扇300所在方向流动,从而有利于进一步降低气流被散热风扇300再次吸入的可能性。
在实际的产品设计中,通常要避免散热气流向操作产品的使用者直吹,以防止直吹气流干扰使用者的操作。也即,散热气流最终的排出方向不应当垂直地朝向烹饪设备供使用者操作的一侧,这一侧通常是烹饪设备的取放开口120所在的一侧。
具体地,请参考图1-3和6,在一种实施例中,主体部100具有相对设置的第一侧和第二侧,第一侧具有取放开口120,取放开口120将烹饪腔体110与外界连通。导流出口4121的朝向不垂直于第一侧所在的平面。
由于导流出口4121的朝向不与第一侧所在的平面垂直,使得从导流出口4121排出的气流不会向操作烹饪设备的使用者直吹,从而有利于防止直吹气流干扰使用者的操作。具体地,导流出口4121的朝向可以与第一侧所在的平面成小于90°的夹角,例如,30°、50°或70°,导流出口4121的朝向也可以与第一侧所在的平面成大于90°的夹角,例如,120°、140°或160°。
优选地,当气流的流向作为一种矢量在朝向使用者的一侧上分量为0时,气流对使用者的干扰最小。具体地,请参考图1,在一种实施例中,导流出口4121的朝向与散热通道的延伸方向垂直。使得从导流出口4121排出的气流既不会向使用者直吹,也不会向使用者斜吹,将气流对使用者的干扰降到最低。
请参考图7-10,在一种实施例中,导流结构400的出风口212具有连续起伏的锯齿结构420。设置在出风口212的锯齿结构420有利于降低气流排出出风口212时产生的噪音,从而降低气流噪音对使用者的干扰。
请参考图11-14,在一种实施例中,导流结构400的出风口212具有平整的板状结构430。
一方面,板状结构430可以用于导流结构400的固定,例如,通过贯穿板状结构430的螺丝固定导流结构400。另一方面,在生产过程中,板状结构430相比锯齿结构420更易于开模,因此有利于降低导流结构400的生产成本,且板状结构430的结构强度高于锯齿结构420。
请参考图7和11,在一种实施例中,导流结构400包括分隔板440,分隔板440设置于导流流道410内,用于将导流流道410分隔为多个流道。
通过分隔板440将导流流道410分隔为多个流道,一方面,有利于增强导流结构400对气流的引导作用,另一方面,有利于避免当导流流道410过宽时,气流在导流流道410内形成涡流的可能性。
请参考图7和11,在一种实施例中,导流结构400包括多个相互平行的分隔板440,且分隔板440与散热流道210的延伸方向平行。当分隔板440与散热流道210的延伸方向平行时,有利于降低散热流道210的气流进入导流流道410内的流阻,从而有利于提升散热效果。
需要说明的是,分隔板440的数量和排布方式可以根据实际情况灵活选择,例如,请参考图7,在一种实施例中,分隔板440的数量为多个,且多个分隔板440沿垂直于导流通道的方向等间距地设置。请参考图11,在一种实施例中,分隔板440的数量也可以是两个,两个分隔板440位于导流结构400的中部。
请参考图3-5,在一种实施例中,导热体200包括接触板220和多个导热翅片230,接触板220用于与热源接触,导热翅片230连接于接触板220,相邻的导热翅片230之间的间隙形成散热流道210。
通过接触板220提升导热体200与热源的接触面积,从而有利于提升导热体200的导热效果,通过相邻的导热翅片230之间的间隙形成散热流道210,以增大导热体200与空气的接触面积,从而有利于提升导热体200的散热效果。
具体地,请参考图3-5,散热风扇300可以设置在导热翅片230的中部,以在散热流道210的中部形成进风口211,在散热流道210的端部形成出风口212。本实施例中散热风扇300的数量为两个,在其他实施例中,根据导热体200和散热风扇300具体尺寸的不同,散热风扇300的数量也可以是一个、三个或其他合适的数量。
请参考图3-6,在一种实施例中,烹饪设备还包括制冷装置500,制冷装置500设置于主体部100的侧部,制冷装置500包括换热腔体510和半导体制冷元件520。换热腔体510与烹饪腔体110可选择性地连通和封闭,半导体制冷元件520的冷端位于换热腔体510。热源为半导体制冷元件520的热端,导热体200与半导体制冷元件520的热端接触。
当需要冷藏食品时,通过半导体制冷元件520的冷端对换热腔体510的环境进行制冷,并将换热腔体510与烹饪腔体110连通,换热腔体510可以通过空气对流实现对烹饪腔体110的制冷。当烹饪腔体110需要加热食品时,将换热腔体510与烹饪腔体110封闭,避免烹饪腔体110的高温造成换热腔体510内制冷元件的损坏。
当然,在其他实施例中,热源也可以不是半导体制冷元件520的热端,而是主体部100上的其他发热元件,例如,主体部100上的电控模块等。
另一方面,本实施例还提供一种制冷装置500,该制冷装置500可以应用于上述的烹饪设备。
请参考图1-10,该制冷装置500包括换热腔体510、半导体制冷元件520、导热体200、散热风扇300和导流结构400。
换热腔体510用于与烹饪设备的烹饪腔体110可选择性地连通和封闭,半导体制冷元件520具有冷端和热端,半导体制冷元件520设置于换热腔体510的侧部,且冷端位于换热腔体510内。导热体200与热端接触,导热体200具有散热流道210,散热流道210具有进风口211和出风口212。散热风扇300设置于导热体200的进风口211,散热风扇300用于产生气流,散热风扇300产生的气流从进风口211进入散热流道210,并从出风口212排出散热流道210。导流结构400具有导流流道410,导流流道410具有第一部分411和第二部分412,第一部分411与出风口212配合,第二部分412向远离散热风扇300的方向延伸。第一部分411具有导流入口4111,第二部分412具有导流出口4121,出风口212排出的气流从导流入口4111进入导流流道410,并从导流出口4121排出导流流道410。
请参考图1-10,在一种实施例中,换热腔体510具有相对设置的前侧和后侧。
需要说明的是,换热腔体510的前侧指的是换热腔体510用于朝向使用者的一侧。更具体地,请参考图1,当制冷装置500与主体部100并排设置时,换热腔体510的前侧与主体部100的第一侧为同一侧。因此,也可以将一些结构的位置或方向参考对象从主体部100的第一侧和第二侧替换为换热腔体510的前侧和后侧。
例如,可以理解的是,在一些实施例中,“散热流道210从主体部100的第一侧所在的平面向主体部100的第二侧所在的平面延伸”也可以表述为“散热流道210从换热腔体510的前侧所在的平面向换热腔体510的后侧所在的平面延伸”。
上述实施例的导流结构400以“将气流导向远离散热风扇300的位置”为避免气流被风扇再次吸入的主要思路。在其他实施例中,导流结构400也可以以“阻拦气流向散热风扇300所在方向的流动”为主要思路。
例如,请参考图1-10,在一种实施例中,烹饪设备包括主体部100、导热体200、散热风扇300和导流结构400。
主体部100具有烹饪腔体110,导热体200设置于主体部100的侧部,导热体200用于传导热源的热量,导热体200具有散热流道210,散热流道210具有进风口211和出风口212。散热风扇300设置于导热体200的进风口211,散热风扇300用于产生气流,散热风扇300产生 的气流从进风口211进入散热流道210,并从出风口212排出散热流道210。导流结构400具有导流流道410,导流流道410具有导流入口4111和导流出口4121。出风口212排出的气流从导流入口4111进入导流流道410,并从导流出口4121排出导流流道410。导流结构400靠近散热风扇300的一侧具有阻拦部4122,阻拦部4122用于阻拦导流出口4121排出的气流汇入散热风扇300产生的气流。
当散热风扇300工作时,气流先经过散热流道210,再从导流入口4111进入导流流道410,接着在导流流道410的引导下从导流出口4121排出,由于导流结构400靠近散热风扇300的一侧具有阻拦部4122,阻拦部4122可以对向散热风扇300流动的气流起阻拦作用,从而降低了导流流道410排出的气流被散热风扇300再次吸入可能性,进而有利于规避散热效率降低的风险。
同理,本实施还提供一种制冷装置500,该制冷装置500可以应用于上述的烹饪设备。
请参考图1-10,该制冷装置500包括换热腔体510、半导体制冷元件520、导热体200、散热风扇300和导流结构400。
换热腔体510用于与烹饪设备的烹饪腔体110可选择性地连通和封闭,半导体制冷元件520具有冷端和热端,半导体制冷元件520设置于换热腔体510的侧部,且冷端位于换热腔体510内。导热体200与热端接触,导热体200具有散热流道210,散热流道210具有进风口211和出风口212。散热风扇300设置于导热体200的进风口211,散热风扇300用于产生气流,散热风扇300产生的气流从进风口211进入散热流道210,并从出风口212排出散热流道210。导流结构400具有导流流道410,导流流道410具有导流入口4111和导流出口4121。出风口212排出的气流从导流入口4111进入导流流道410,并从导流出口4121排出导流流道410。导流结构400靠近散热风扇300的一侧具有阻拦部4122,阻拦部4122用于阻拦导流出口4121排出的气流汇入散热风扇300产生的气流。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (31)

  1. 一种烹饪设备,其特征在于,包括:
    主体部,所述主体部具有烹饪腔体;
    导热体,所述导热体设置于所述主体部的侧部,所述导热体用于传导热源的热量,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
    散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
    以及导流结构,所述导流结构具有导流流道,所述导流流道具有第一部分和第二部分,所述第一部分与所述出风口配合,所述第二部分向远离所述散热风扇的方向延伸;所述第一部分具有导流入口,所述第二部分具有导流出口,所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道。
  2. 如权利要求1所述的烹饪设备,其特征在于,所述主体部具有相对设置的第一侧和第二侧,所述第一侧具有取放开口,所述取放开口将所述烹饪腔体与外界连通;所述散热流道从所述第一侧所在的平面向所述第二侧所在的平面延伸,所述散热流道靠近所述第一侧的一端具有所述出风口,所述散热流道的中部具有所述进风口;所述第一部分的延伸方向与所述散热流道的延伸方向相同,所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角,以使所述第二部分向远离所述散热风扇的方向延伸。
  3. 如权利要求2所述的烹饪设备,其特征在于,所述第一部分的中心线为从所述主体部的第一侧向主体部的第二侧延伸的直线,所述第二部分的中心线为弧线,所述第二部分的弧线上任一位置的切线与所述第一部分的中心线的夹角均为钝角,以实现所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角。
  4. 如权利要求2所述的烹饪设备,其特征在于,所述第一部分的中心线为从所述主体部的第一侧向主体部的第二侧延伸的直线,所述第二部分的中心线为直线,所述第二部分的中心线与所述第一部分的中心线的夹角为钝角,以实现所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角。
  5. 如权利要求1所述的烹饪设备,其特征在于,所述导流出口的朝向与所述散热通道的延伸方向垂直。
  6. 如权利要求1所述的烹饪设备,其特征在于,所述主体部具有相对设置的第一侧和第二侧,所述第一侧具有取放开口,所述取放开口将所述烹饪腔体与外界连通;所述导流出口的朝向不垂直于所述第一侧所在的平面。
  7. 如权利要求1所述的烹饪设备,其特征在于,所述第二部分靠近所述散热风扇的一侧具有凸出于所述第一部分的阻拦部,所述阻拦部用于阻拦所述导流出口排出的气流汇入所述散热风扇产生的气流。
  8. 如权利要求1所述的烹饪设备,其特征在于,所述导流结构的出风口具有连续起伏的锯齿结构。
  9. 如权利要求1所述的烹饪设备,其特征在于,所述导流结构包括分隔板,所述分隔板设置于所述导流流道内,用于将所述导流流道分隔为多个流道。
  10. 如权利要求9所述的烹饪设备,其特征在于,所述导流结构包括多个相互平行的分隔板,且所述分隔板与所述散热流道的延伸方向平行。
  11. 如权利要求1-10任一项所述的烹饪设备,其特征在于,所述导热体包括接触板和多个导热翅片,所述接触板用于与热源接触,所述导热翅片连接于所述接触板,相邻的所述导热翅片之间的间隙形成所述散热流道。
  12. 如权利要求1-10任一项所述的烹饪设备,其特征在于,还包括制冷装置,所述制冷装置设置于所述主体部的侧部,所述制冷装置包括换热腔体和半导体制冷元件;所述换热腔体与所述烹饪腔体可选择性地连通和封闭,所述半导体制冷元件的冷端位于所述换热腔体;所述热源为所述半导体制冷元件的热端,所述导热体与所述半导体制冷元件的热端接触。
  13. 一种制冷装置,其特征在于,包括:
    换热腔体,所述换热腔体用于与烹饪设备的烹饪腔体可选择性地连通和封闭;
    半导体制冷元件,所述半导体制冷元件具有冷端和热端,所述半导体制冷元件设置于所述换热腔体的侧部,且所述冷端位于所述换热腔体 内;
    导热体,所述导热体与所述热端接触,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
    散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
    以及导流结构,所述导流结构具有导流流道,所述导流流道具有第一部分和第二部分,所述第一部分与所述出风口配合,所述第二部分向远离所述散热风扇的方向延伸;所述第一部分具有导流入口,所述第二部分具有导流出口,所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道。
  14. 如权利要求13所述的制冷装置,其特征在于,所述换热腔体具有相对设置的前侧和后侧,所述散热流道从所述前侧所在的平面向所述后侧所在的平面延伸,所述散热流道靠近所述前侧的一端具有所述出风口,所述散热流道的中部具有所述进风口;所述第一部分的延伸方向与所述散热流道的延伸方向相同,所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角,以使所述第二部分向远离所述散热风扇的方向延伸。
  15. 如权利要求14所述的制冷装置,其特征在于,所述第一部分的中心线为从所述换热腔体的前侧向换热腔体的后侧延伸的直线,所述第二部分的中心线为弧线,所述第二部分的弧线上任一位置的切线与所述第一部分的中心线的夹角均为钝角,以实现所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角。
  16. 如权利要求14所述的制冷装置,其特征在于,所述第一部分的中心线为从所述换热腔体的前侧向换热腔体的后侧延伸的直线,所述第二部分的中心线为直线,所述第二部分的中心线与所述第一部分的中心线的夹角为钝角,以实现所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角。
  17. 如权利要求13所述的制冷装置,其特征在于,所述导流出口的朝向与所述散热通道的延伸方向垂直。
  18. 如权利要求13所述的制冷装置,其特征在于,所述换热腔体具有相对设置的前侧和后侧;所述导流出口的朝向不垂直于所述第一侧 所在的平面。
  19. 如权利要求13所述的制冷装置,其特征在于,所述第二部分靠近所述散热风扇的一侧具有凸出于所述第一部分的阻拦部,所述阻拦部用于阻拦所述导流出口排出的气流汇入所述散热风扇产生的气流。
  20. 如权利要求13所述的制冷装置,其特征在于,所述导流结构的出风口具有连续起伏的锯齿结构。
  21. 如权利要求13所述的制冷装置,其特征在于,所述导流结构包括分隔板,所述分隔板设置于所述导流流道内,用于将所述导流流道分隔为多个流道。
  22. 如权利要求13所述的制冷装置,其特征在于,所述导流结构包括多个相互平行的分隔板,且所述分隔板与所述散热流道的延伸方向平行。
  23. 如权利要求13-22所述的制冷装置,其特征在于,所述导热体包括接触板和多个导热翅片,所述接触板用于与所述热端接触,所述导热翅片连接于所述接触板,相邻的所述导热翅片之间的间隙形成所述散热流道。
  24. 一种烹饪设备,其特征在于,包括:
    主体部,所述主体部具有烹饪腔体;
    导热体,所述导热体设置于所述主体部的侧部,所述导热体用于传导热源的热量,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
    散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
    以及导流结构,所述导流结构具有导流流道,所述导流流道具有导流入口和导流出口;所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道;所述导流结构靠近所述散热风扇的一侧具有阻拦部,所述阻拦部用于阻拦所述导流出口排出的气流汇入所述散热风扇产生的气流。
  25. 如权利要求24所述的烹饪设备,其特征在于,所述主体部具有相对设置的第一侧和第二侧,所述第一侧具有取放开口,所述取放开口将所述烹饪腔体与外界连通;所述散热流道从所述第一侧所在的平面 向所述第二侧所在的平面延伸,所述散热流道靠近所述第一侧的一端具有所述出风口,所述散热流道的中部具有所述进风口;所述第一部分的延伸方向与所述散热流道的延伸方向相同,所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角,以使所述第二部分向远离所述散热风扇的方向延伸。
  26. 如权利要求24所述的烹饪设备,其特征在于,所述导流结构的出风口具有连续起伏的锯齿结构。
  27. 如权利要求24所述的烹饪设备,其特征在于,所述导流结构包括分隔板,所述分隔板设置于所述导流流道内,用于将所述导流流道分隔为多个流道。
  28. 一种制冷装置,其特征在于,包括:
    换热腔体,所述换热腔体用于与烹饪设备的烹饪腔体可选择性地连通和封闭;
    半导体制冷元件,所述半导体制冷元件具有冷端和热端,所述半导体制冷元件设置于所述换热腔体的侧部,且所述冷端位于所述换热腔体内;
    导热体,所述导热体与所述热端接触,所述导热体具有散热流道,所述散热流道具有进风口和出风口;
    散热风扇,所述散热风扇设置于所述导热体的进风口,所述散热风扇用于产生气流,所述散热风扇产生的气流从进风口进入所述散热流道,并从所述出风口排出所述散热流道;
    以及导流结构,所述导流结构具有导流流道,所述导流流道具有导流入口和导流出口;所述出风口排出的气流从所述导流入口进入所述导流流道,并从所述导流出口排出所述导流流道;所述导流结构靠近所述散热风扇的一侧具有阻拦部,所述阻拦部用于阻拦所述导流出口排出的气流汇入所述散热风扇产生的气流。
  29. 如权利要求28所述的制冷装置,其特征在于,所述换热腔体具有相对设置的前侧和后侧,所述散热流道从所述前侧所在的平面向所述后侧所在的平面延伸,所述散热流道靠近所述前侧的一端具有所述出风口,所述散热流道的中部具有所述进风口;所述第一部分的延伸方向与所述散热流道的延伸方向相同,所述第二部分的延伸方向与所述第一部分的延伸方向之间的夹角成钝角,以使所述第二部分向远离所述散热风 扇的方向延伸。
  30. 如权利要求28所述的制冷装置,其特征在于,所述导流结构的出风口具有连续起伏的锯齿结构。
  31. 如权利要求28所述的制冷装置,其特征在于,所述导流结构包括分隔板,所述分隔板设置于所述导流流道内,用于将所述导流流道分隔为多个流道。
PCT/CN2022/126539 2022-10-20 2022-10-20 一种烹饪设备及其制冷装置 WO2024082243A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126539 WO2024082243A1 (zh) 2022-10-20 2022-10-20 一种烹饪设备及其制冷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126539 WO2024082243A1 (zh) 2022-10-20 2022-10-20 一种烹饪设备及其制冷装置

Publications (1)

Publication Number Publication Date
WO2024082243A1 true WO2024082243A1 (zh) 2024-04-25

Family

ID=90736547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126539 WO2024082243A1 (zh) 2022-10-20 2022-10-20 一种烹饪设备及其制冷装置

Country Status (1)

Country Link
WO (1) WO2024082243A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080021937A (ko) * 2006-09-05 2008-03-10 엘지전자 주식회사 조리기기
CN204378859U (zh) * 2015-01-26 2015-06-10 佛山市顺德区美的电热电器制造有限公司 烹饪电器
CN105054812A (zh) * 2015-09-10 2015-11-18 东莞市金河田实业有限公司 一种具有冷藏保鲜功能的烤箱
CN109645847A (zh) * 2019-02-15 2019-04-19 广东美的厨房电器制造有限公司 烹饪装置
CN215062571U (zh) * 2021-06-30 2021-12-07 广东美的环境电器制造有限公司 冷风扇
US20220082266A1 (en) * 2020-09-14 2022-03-17 Electrolux Home Products, Inc. Ventilation system for a cooking appliance
DE102020212824A1 (de) * 2020-10-09 2022-04-14 Wilhelm Bruckbauer Vorrichtung zum Reinigen von Wrasen
CN216569607U (zh) * 2021-09-09 2022-05-24 宁波嘉乐智能科技股份有限公司 一种散热良好的空气炸锅
CN217447441U (zh) * 2022-02-28 2022-09-20 广东美的厨房电器制造有限公司 烹饪电器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080021937A (ko) * 2006-09-05 2008-03-10 엘지전자 주식회사 조리기기
CN204378859U (zh) * 2015-01-26 2015-06-10 佛山市顺德区美的电热电器制造有限公司 烹饪电器
CN105054812A (zh) * 2015-09-10 2015-11-18 东莞市金河田实业有限公司 一种具有冷藏保鲜功能的烤箱
CN109645847A (zh) * 2019-02-15 2019-04-19 广东美的厨房电器制造有限公司 烹饪装置
US20220082266A1 (en) * 2020-09-14 2022-03-17 Electrolux Home Products, Inc. Ventilation system for a cooking appliance
DE102020212824A1 (de) * 2020-10-09 2022-04-14 Wilhelm Bruckbauer Vorrichtung zum Reinigen von Wrasen
CN215062571U (zh) * 2021-06-30 2021-12-07 广东美的环境电器制造有限公司 冷风扇
CN216569607U (zh) * 2021-09-09 2022-05-24 宁波嘉乐智能科技股份有限公司 一种散热良好的空气炸锅
CN217447441U (zh) * 2022-02-28 2022-09-20 广东美的厨房电器制造有限公司 烹饪电器

Similar Documents

Publication Publication Date Title
US7140423B2 (en) Finned heat dissipation module having flow guide
CN100456913C (zh) 散热装置
US20070256812A1 (en) Multidirectional heat dissipating structure
CN210446763U (zh) 散热系统及烤箱
US20120079948A1 (en) Cooking appliance
WO2021239119A1 (zh) 家用电器
WO2024082243A1 (zh) 一种烹饪设备及其制冷装置
JP2014204453A (ja) 冷却フィンおよび該冷却フィンを具備する電力変換装置
US20200191406A1 (en) Cooking appliance having cooling system
CN106595165B (zh) 一种冰箱
CN106839086B (zh) 一种风机盘管机组
US20220167472A1 (en) Drawer type microwave oven
JP2008202855A (ja) 空冷ヒートポンプチラー
CN213178854U (zh) 一种风冷降温的燃烧器及燃气热水器
EP3382287B1 (en) Fan coil unit
JP2008202857A (ja) 空冷ヒートポンプチラー
CN207365123U (zh) 烹饪器具的散热结构
CN211876415U (zh) 制冷装置以及烟机
JP6602980B2 (ja) 電子レンジ
CN112888250B (zh) 一种模块化数据中心
KR100532689B1 (ko) 슬림형 열교환기 및 그 제조방법, 이 열교환기를 이용한 컴퓨터의 수냉식 냉각장치 및 에어컨디셔너
CN102724851A (zh) 散热装置及散热系统
CN207304354U (zh) 一种机箱和变频器
CN101772230B (zh) 高频热辊加热控制柜
CN213746895U (zh) 一种电磁炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962430

Country of ref document: EP

Kind code of ref document: A1