WO2024080385A1 - 情報処理装置、情報処理方法、及び情報処理プログラム - Google Patents

情報処理装置、情報処理方法、及び情報処理プログラム Download PDF

Info

Publication number
WO2024080385A1
WO2024080385A1 PCT/JP2023/037455 JP2023037455W WO2024080385A1 WO 2024080385 A1 WO2024080385 A1 WO 2024080385A1 JP 2023037455 W JP2023037455 W JP 2023037455W WO 2024080385 A1 WO2024080385 A1 WO 2024080385A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
unit
specimen
information terminal
image
Prior art date
Application number
PCT/JP2023/037455
Other languages
English (en)
French (fr)
Inventor
淳史 中尾
浩司 藤本
真也 中嶋
Original Assignee
アークレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アークレイ株式会社 filed Critical アークレイ株式会社
Publication of WO2024080385A1 publication Critical patent/WO2024080385A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • This disclosure relates to an information processing device, an information processing method, and an information processing program.
  • JP2016-522880 describes a microscopic method for classifying particles as two-dimensional objects within a field of view, comprising the steps of: a) illuminating the field of view with a first electromagnetic radiation source; b) projecting the image obtained onto an image sensor to obtain a first digital image of the field of view; c) using the first digital image to identify a first object within the first digital image; d) defining an area of the first object contained within the first digital image using contour coordinates of a contour of the first object, and determining a boundary line of the area of the first object; and e) determining one or more object characteristics of the first object.
  • the present disclosure has been made in consideration of the above points, and aims to provide an information processing device, an information processing method, and an information processing program that make it possible to inexpensively measure formed elements contained in a sample.
  • an information processing device includes an acquisition unit that acquires an image of a sample captured by a camera provided in a mobile information terminal, and an output unit that outputs the acquired image to a processing device that performs processing related to a measurement process that measures formed elements contained in the sample based on the captured image.
  • the present disclosure has the effect of making it possible to inexpensively measure formed elements contained in a sample.
  • FIG. 1 is a configuration diagram of a measurement system according to a first embodiment.
  • 1 is a configuration diagram showing a hardware configuration of a portable information terminal according to a first embodiment.
  • FIG. 2 is a configuration diagram showing a functional configuration of the portable information terminal according to the first embodiment.
  • 4 is a flowchart of information processing executed by the portable information terminal according to the first embodiment.
  • FIG. 11 is a configuration diagram of a measurement system according to a second embodiment.
  • FIG. 11 is a configuration diagram showing a hardware configuration of a server according to a second embodiment.
  • 10 is a flowchart of a measurement process executed by a portable information terminal according to a second embodiment.
  • 10 is a flowchart of a measurement process executed by a server according to the second embodiment.
  • FIG. 13 is a configuration diagram of a measurement system according to a third embodiment.
  • FIG. 13 is a configuration diagram of a measurement system according to a fourth embodiment.
  • FIG. 13 is a top view of an inspection device according to a fourth embodiment. This is a cross-sectional view of AA in Figure 11A.
  • 13 is a flowchart of a measurement process executed by a portable information terminal according to a fourth embodiment.
  • FIG. 1 shows the configuration of the measurement system 10 according to this embodiment.
  • the measurement system 10 includes a mobile information terminal 20 and an inspection device 30.
  • the mobile information terminal 20 is a mobile information terminal with a camera, such as a smartphone, that is equipped with a camera 21 and a communication unit 22.
  • the inspection device 30 includes a stage 31, a drive unit 32, a light source 33, an optical system 34, a communication unit 35, and a control unit 36.
  • a preparation 38 on which a specimen 37 to be measured is set is placed on the stage 31.
  • the preparation 38 is composed of a cover glass 39 and a glass slide 40.
  • the specimen 37 is set on the glass slide 40 and is covered with the cover glass 39.
  • the preparation 38 is used as a chamber in which the specimen 37 is set is described, but this is not limited to the preparation 38, and other chambers such as a flow cell may also be used.
  • a light source 33 is provided on the bottom surface of the housing 30A of the inspection device 30.
  • the light source 33 emits light in the Z-axis direction in FIG. 1.
  • the light source 33 is controlled by the control unit 36.
  • a through hole 31A is provided in the center of the stage 31 to allow the light L emitted from the light source 33 to pass through.
  • a preparation 38 on which a specimen 37 is set is set at the position of this through hole 31A. The light L emitted from the light source 33 passes through the through hole 31A, is transmitted through the specimen 37 of the preparation 38, and enters the optical system 34.
  • the optical system 34 includes optical components such as lenses (not shown).
  • a through hole 30B is provided on the side of the exit port from which the light L of the optical system 34 is emitted.
  • the portable information terminal 20 is set on the top surface of the housing 30A so that the position of the camera 21 of the portable information terminal 20 coincides with the position of the through hole 30B.
  • the stage 31 is driven by the drive unit 32.
  • the drive unit 32 drives the stage 31 in the mutually orthogonal X, Y, and Z directions according to instructions from the control unit 36.
  • a communication unit 35 is provided on the side of the housing 30A.
  • the communication unit 22 of the portable information terminal 20 and the communication unit 35 of the testing device 30 are connected by a communication cable 41.
  • the portable information terminal 20 and the testing device 30 may be connected wirelessly.
  • FIG. 2 is a block diagram showing the hardware configuration of the mobile information terminal 20. As shown in FIG. 2, the mobile information terminal 20 includes a controller 50.
  • the controller 50 comprises a CPU (Central Processing Unit) 50A, a ROM (Read Only Memory) 50B, a RAM (Random Access Memory) 50C, and an input/output interface (I/O) 50D.
  • the CPU 50A, ROM 50B, RAM 50C, and I/O 50D are connected to each other via a bus 50E.
  • the bus 50E includes a control bus, an address bus, and a data bus.
  • the camera 21, the communication unit 22, the operation display unit 23, and the memory unit 24 are connected to the I/O 50D.
  • the camera 21 includes an imaging element such as a CCD (Charge Coupled Device).
  • CCD Charge Coupled Device
  • the communication unit 22 is an interface for data communication with external devices such as the inspection device 30.
  • the operation display unit 23 includes, for example, a touch panel.
  • the storage unit 24 is composed of, for example, a non-volatile memory. As shown in FIG. 2, the storage unit 24 stores an information processing program 24A and measurement results 24B of formed components of the specimen 37.
  • CPU 50A is an example of a processor.
  • the term "processor” here refers to a processor in a broad sense, and includes a general-purpose processor (e.g., a CPU) or a dedicated processor (e.g., a GPU: Graphics Processing Unit, an ASIC: Application Specific Integrated Circuit, an FPGA: Field Programmable Gate Array, a programmable logic device, etc.).
  • the information processing program 24A may be stored in a non-volatile, non-transient recording medium or distributed via a network and installed appropriately on the mobile information terminal 20.
  • non-volatile, non-transient recording media examples include CD-ROMs (Compact Disc Read Only Memory), optical magnetic disks, HDDs (hard disk drives), DVD-ROMs (Digital Versatile Disc Read Only Memory), flash memory, and memory cards.
  • FIG. 3 is a block diagram showing the functional configuration of the CPU 50A of the mobile information terminal 20.
  • the CPU 50A functionally comprises the functional units of an acquisition unit 51, an output unit 52, and a measurement unit 53.
  • the CPU 50A functions as each functional unit by reading and executing the information processing program 24A stored in the storage unit 24.
  • the acquisition unit 51 acquires the image of the specimen 37 captured by the camera 21.
  • the output unit 52 outputs the captured image acquired by the acquisition unit 51 to a measurement unit 53, which is an example of a processing unit that performs processing related to a measurement process that measures formed elements contained in the specimen 37 based on the captured image.
  • the output unit 52 also outputs an instruction signal to the inspection device 30 to instruct it to drive at least one of the light source 33 and the drive unit 32.
  • the measurement unit 53 measures the formed elements contained in the specimen 37 based on the captured image acquired by the acquisition unit 51.
  • the specimen 37 is a urine specimen, and a case will be described in which formed elements in the urine specimen are measured.
  • a urine specimen contains multiple types of formed elements. Examples of the types of formed elements include red blood cells, white blood cells, epithelial cells, casts, bacteria, etc. Note that in this embodiment, a case will be described in which a urine specimen is used as an example of specimen 37 to measure formed elements in urine, but the technology disclosed herein can also be applied to cases in which formed elements are measured using specimens such as blood, cells, and body fluids.
  • FIG. 4 is a flowchart showing an example of the processing flow of the information processing program 24A according to this embodiment.
  • the information processing shown in FIG. 4 is executed when the user performs an operation to instruct the execution of the information processing program 24A from the menu of the mobile information terminal 20. Note that prior to the execution of the information processing program 24A, the user places the slide 38 on which the specimen 37 is set, on the stage 31. The user also sets the mobile information terminal 20 on the top surface of the housing 30A of the inspection device 30 so that the position of the camera 21 coincides with the position of the passage hole 30B of the inspection device 30.
  • step S100 the CPU 50A displays a measurement start button on the operation display unit 23.
  • step S101 the CPU 50A determines whether or not the measurement start button has been pressed. If the measurement start button has been pressed, the process proceeds to step S102, and if the measurement start button has not been pressed, the process waits until the measurement start button is pressed.
  • step S102 the CPU 50A outputs an instruction signal to the inspection device 30 to turn on the light source 33. This causes the control unit 36 of the inspection device 30 to turn on the light source 33.
  • step S103 the CPU 50A outputs an instruction signal to the inspection device 30 to drive the stage 31. This causes the control unit 36 of the inspection device 30 to control the drive unit 32, and drives the stage 31 so that the preparation 38 is positioned on the optical axis of the light L.
  • step S104 the CPU 50A instructs the camera 21 to take an image. This causes the camera 21 to take an image of the specimen 37.
  • step S105 the CPU 50A acquires the image captured by the camera 21.
  • step S106 the CPU 50A outputs an instruction signal to the inspection device 30 to turn off the light source 33. This causes the control unit 36 of the inspection device 30 to turn off the light source 33.
  • step S107 the CPU 50A measures the components in the specimen 37 based on the captured image acquired in step S105.
  • Various known methods can be used to measure the components based on the captured image. For example, a known image analysis method is used to extract component images contained in the captured image, and features such as size and contrast are analyzed for each extracted component image, and the components are classified into predetermined classification items based on the analyzed features. Then, for each classified component, the concentration of the component is calculated based on the number and size of the component images to obtain a measurement result.
  • step S108 the CPU 50A stores the measurement results of step S107 in the memory unit 24 and displays them on the operation display unit 23.
  • the formed elements of the specimen 37 are measured using a mobile information terminal 20 equipped with a camera. This eliminates the need to use a camera designed specifically for the testing device 30, and allows the formed elements contained in the specimen 37 to be measured inexpensively.
  • the portable information terminal 20 measures the sediment components of the specimen 37 .
  • a server connected to the portable information terminal 20 via a network measures the sediment components of the specimen 37 is described.
  • FIG. 5 shows the configuration of a measurement system 10A according to the second embodiment.
  • the measurement system 10A according to the second embodiment includes a mobile information terminal 20, an inspection device 30, and a server 60.
  • the server 60 is connected to the mobile information terminal 20 via a network N.
  • the mobile information terminal 20 has the functions of the acquisition unit 51 and the output unit 52 shown in FIG. 3, and the server 60 has the functions of the measurement unit 53 shown in FIG. 3.
  • the server 60 is an example of a management device of the present disclosure.
  • FIG. 6 is a block diagram showing the hardware configuration of the server 60. As shown in FIG. 6, the server 60 includes a controller 61.
  • the controller 61 includes a CPU (Central Processing Unit) 61A, a ROM (Read Only Memory) 61B, a RAM (Random Access Memory) 61C, and an input/output interface (I/O) 61D.
  • the CPU 61A, ROM 61B, RAM 61C, and I/O 61D are connected to each other via a bus 61E.
  • the bus 61E includes a control bus, an address bus, and a data bus.
  • a communication unit 62 and a memory unit 63 are connected to the I/O 61D.
  • the communication unit 62 is an interface for performing data communication with external devices such as the mobile information terminal 20.
  • the storage unit 63 is configured, for example, with a non-volatile memory. As shown in FIG. 6, the storage unit 63 stores a measurement program 63A.
  • the CPU 61A is an example of a processor, as described in the first embodiment.
  • the measurement program 63A may be stored in a non-volatile non-transitive recording medium, or distributed via a network, and appropriately installed in the server 60, as described in the first embodiment.
  • FIG. 7 is a flowchart showing an example of the flow of processing by the information processing program 24A according to the second embodiment executed in the mobile information terminal 20.
  • the information processing shown in FIG. 7 differs from the information processing shown in FIG. 4 in the processing of steps S107A and S107B, but the processing of the other steps is similar to the information processing shown in FIG. 4, and therefore description thereof will be omitted.
  • step S107A the CPU 50A transmits the captured image acquired in step S105 to the server 60.
  • step S107B the CPU 50A receives the measurement results of the formed components of the specimen 37 from the server 60.
  • FIG. 8 is a flowchart showing an example of the processing flow of the measurement program 63A executed by the CPU 61A of the server 60.
  • step S200 the CPU 61A determines whether or not a captured image transmitted from the mobile information terminal 20 has been received. If a captured image transmitted from the mobile information terminal 20 has been received, the process proceeds to step S201. On the other hand, if a captured image transmitted from the mobile information terminal 20 has not been received, the process waits until a captured image is received.
  • step S201 the CPU 61A measures the formed elements of the specimen 37 based on the captured image received in step S200. This process is similar to the process in step S107 in FIG. 4, so a description thereof will be omitted.
  • step S202 the CPU 61A transmits the measurement results of step S201 to the mobile information terminal 20.
  • the portable information terminal 20 transmits a captured image of the specimen 37 to the server 60, and the server 60 measures the formed components of the specimen 37. This reduces the processing load on the portable information terminal 20.
  • a photographed image of the specimen 37 is provided to an analyst who analyzes the formed elements contained in the specimen 37 based on the photographed image of the specimen 37, and the analyst analyzes the formed elements contained in the specimen 37.
  • FIG. 9 shows the configuration of a measurement system 10B according to the third embodiment.
  • the measurement system 10B according to the third embodiment includes a mobile information terminal 20, an inspection device 30, a server 60, and an analyst terminal device 70.
  • the analyst terminal device 70 is an example of a reception device of the present disclosure.
  • the analyst terminal device 70 is configured, for example, as a general personal computer, and has the functions of the measurement unit 53 described in the first embodiment.
  • the mobile information terminal 20 executes the information processing shown in FIG. 7 described in the second embodiment, but differs in that the destination when transmitting the captured image in step S107A is the analyst terminal device 70 instead of the server 60, and in that the measurement results are received from the analyst terminal device 70 in step S107B.
  • the analyst terminal device 70 executes the same processes as steps S200 and S201 in FIG. 8 described in the second embodiment. That is, when it receives a captured image from the mobile information terminal 20, it measures the sediment components of the specimen 37 based on the received captured image. Here, the analyst refers to the measurement results of the sediment components of the specimen 37 and performs additional analysis. The analyst then inputs the additional analysis results into the analyst terminal device 70. When the analyst terminal device 70 receives the additional analysis results from the analyst, it transmits the received analysis results to the mobile information terminal 20. The additional analysis results may also be transmitted to the server 60 for storage.
  • the analyst performs additional analysis on the measurement results of the formed components of the specimen 37. This can improve the accuracy of the measurement results of the formed components of the specimen 37.
  • FIG. 10 shows an inspection device 30X according to the fourth embodiment. Note that the same parts as those in the inspection device 30 in FIG. 1 are given the same reference numerals, and detailed descriptions are omitted.
  • the inspection device 30 in FIG. 1 is configured so that light L from a light source 33 is emitted from below to above a preparation 38, and an image is taken from above the preparation 38.
  • the formed components of the specimen 37 may have a tendency to settle, it may be preferable to photograph the specimen 37 from below. Also, when focusing on an area where a large number of components are concentrated, photographing from below may shorten the time it takes to achieve focus.
  • the inspection device 30X of this embodiment shown in FIG. 10 is configured so that light L from the light source 33 is emitted downward from above the preparation 38, and an image is taken from below the preparation 38.
  • a light source 33 is provided on the ceiling side of the inspection device 30X.
  • Light L emitted from the light source 33 is emitted from above downward along the Z axis in FIG. 1 and enters the preparation 38.
  • the light L that passes through the preparation 38 passes through an optical system 80 including an objective lens and is reflected by a reflecting mirror 81 to the right along the X axis in FIG. 1.
  • the light L reflected by the reflector 81 passes through an optical system 82 including an imaging lens and is reflected upward along the Z axis in FIG. 1 by the reflector 83.
  • the light L reflected by the reflector 83 passes through an optical system 84 including an eyepiece lens and through the passage hole 30B and enters the camera 21 of the mobile information terminal 20.
  • the color of the light L from the light source 33 may be either white or incandescent.
  • a light source that emits light of one of the single wavelengths R (red), G (green), and B (blue) may be used, or a light source that emits light that is a combination of two wavelengths may be used.
  • the specimen 37 that can be held by the commonly used preparation 38 is approximately 46 ⁇ m thick, but the procedure of placing a cover glass 39 on top of a glass slide 40 poses issues such as differences in technique depending on the technician and the large number of steps required.
  • the stage 31 may be configured to selectively mount not only the slide 38 but also other holding members such as a cuvette as a holding member for holding the specimen 37, and may be configured to be capable of mounting two or more types of holding members with specimen 37 of different thicknesses.
  • a holding member that can hold a thin specimen 37 is suitable for specimens 37 with a high component concentration, in that there is no overlap or refraction of the components of the specimen 37 compared to a holding member that can hold a thick specimen 37. It is also possible to focus on a specimen 37 that contains components that do not sink easily. Conversely, a holding member that can hold a thick specimen 37 is suitable for specimens 37 with a low component concentration, since the amount of components per unit area increases with sedimentation. Therefore, by configuring the holding member to be capable of holding two or more types of holding members with different thicknesses for the specimen 37 that can be held, it is possible to use an appropriate holding member depending on the component concentration of the specimen 37.
  • FIG. 11A shows a top view of the inspection device 30X.
  • FIG. 11B is a cross-sectional view taken along the line A-A in FIG. 11A.
  • the top surface of the inspection device 30X is provided with a rectangular recessed mounting section 84 that matches the shape of the mobile information terminal 20.
  • a passing hole 30B is provided at the position of the camera 21 when the mobile information terminal 20 is placed on the mounting section 84.
  • Groove sections 85 are provided in the areas along the X-axis and Y-axis directions through which the transmitted light 30B passes. Depending on the type of mobile information terminal 20, protrusions may be present, but by providing the groove sections 85, it is possible to prevent the mobile information terminal 20 from tilting even if a protruding part is present on the mobile information terminal 20.
  • the mounting portion 84 is made of a material other than metal to avoid interference with wireless communication.
  • the mounting portion 84 is made of a resin that allows radio waves to pass easily, or that the mounting portion 84 has a structure with appropriate holes.
  • the passage holes 30B may be blocked with a transparent material to prevent dust and the like. In that case, the material and thickness of the transparent material are selected taking into consideration the refractive index of light, etc.
  • the mounting section 84 is shaped so that the mobile information terminal 20 is placed parallel to the top surface of the inspection device 30, and the light L is incident on the mobile information terminal 20 at a right angle.
  • the mounting section 30 may be shaped so that the mobile information terminal 20 is inclined with respect to the top surface of the inspection device 30.
  • the camera 21 of the mobile information terminal 20 also has an autofocus function. Although the autofocus function is usually turned on, there are cases where it is difficult to focus on the specimen 37.
  • the output unit 52 turns off the autofocus function of the camera 21 before capturing an image with the camera 21, and then outputs an instruction signal to the drive unit 32 to drive the stage 31 so that the specimen 37 is in focus.
  • FIG. 12 is a flowchart showing an example of the flow of information processing by the information processing program 24A according to this embodiment. Note that the same reference numerals are used for steps that perform the same processing as in the information processing shown in FIG. 4, and detailed explanations will be omitted.
  • the information processing shown in FIG. 12 differs from the information processing shown in FIG. 4 in that steps S101A, S103A, and S105A have been added.
  • step S101A the CPU 50A turns off the focus position adjustment function of the camera 21. This fixes the focus position of the camera 21 at a predetermined position.
  • step S103A the CPU 50A determines whether the image captured by the camera 21 is in focus, i.e., whether the specimen 37 is in focus.
  • the focus is determined using a known method such as a phase difference method or a contrast method.
  • step S104 If the specimen 37 is in focus, the process proceeds to step S104. On the other hand, if the specimen 37 is not in focus, the process proceeds to step S103.
  • step S103 the CPU 50A detects focus information and sends this focus information to the control unit 36 of the inspection device 10. As a result, the control unit 36 sends a drive instruction signal to the drive unit 32 to move the stage 31 a predetermined amount in the Z-axis direction. In this way, the processes of steps S103 and S103A are repeated until the specimen 37 is in focus. In other words, autofocus is performed by moving and adjusting the stage 31 in the Z-axis direction, rather than by adjusting the focus of the camera 21.
  • step S105A the CPU 50A determines whether or not the entire range of the specimen 37 has been photographed. If the entire range of the specimen 37 has been photographed, the process proceeds to step S106. On the other hand, if the entire range of the specimen 37 has not been photographed, the process proceeds to step S103. In this case, in step S103, the CPU 50A drives the drive unit 31 so that the stage 31 moves in at least one of the X-axis direction and the Y-axis direction in order to move the specimen 37 to an area that has not yet been photographed. In this way, the CPU 50A repeats the processes of steps S103 to S105A until the entire range of the specimen 37 has been photographed.
  • the autofocus function of the focal position adjustment function of the camera 21 is turned off, and the stage 31 is driven in the Z-axis direction to adjust the focus.
  • the stage 31 is driven in the Z-axis direction to adjust the focus.
  • step S103A it may be determined in step S103A whether or not the camera 21 can focus using the focal position adjustment function. If it is determined that the camera 21 cannot focus, the focal position adjustment function of the camera 21 may be turned off, and autofocusing by driving the stage 31 in the Z-axis direction to adjust the focus may be performed.
  • processor operations in the above embodiments may not only be performed by a single processor, but may also be performed by multiple processors located at physically separate locations working together.
  • the order of each processor operation is not limited to the order described in each of the above embodiments, and may be changed as appropriate.
  • the processing according to the embodiment is realized by a software configuration using a computer by executing a program, but this is not limited to this.
  • the embodiment may be realized, for example, by a hardware configuration or a combination of a hardware configuration and a software configuration.
  • the information processing device includes an acquisition unit that acquires an image of a sample captured by a camera provided in a mobile information terminal, and an output unit that outputs the acquired image to a processing unit that performs processing related to a measurement process that measures formed elements contained in the sample based on the captured image.
  • the information processing device is the information processing device according to the first aspect, in which the processing unit is a measurement unit that measures formed elements contained in the specimen based on the captured image, and the acquisition unit, output unit, and measurement unit are provided in the mobile information terminal.
  • the processing unit is a measurement unit that measures formed elements contained in the specimen based on the captured image
  • the acquisition unit, output unit, and measurement unit are provided in the mobile information terminal.
  • the information processing device is the information processing device according to the first aspect, in which the processing unit is a measurement unit that measures formed elements contained in the specimen based on the captured image, the acquisition unit and the output unit are provided in the mobile information terminal, and the measurement unit is provided in a management device that can communicate with the mobile information terminal.
  • the processing unit is a measurement unit that measures formed elements contained in the specimen based on the captured image
  • the acquisition unit and the output unit are provided in the mobile information terminal
  • the measurement unit is provided in a management device that can communicate with the mobile information terminal.
  • the processing unit is a reception device that provides the captured image to an analyst who analyzes formed elements contained in the sample based on the captured image, and receives the analysis results from the analyst.
  • the information processing device is the information processing device according to any one of the first to fourth aspects, in which the output unit outputs an instruction signal to an inspection device including a light source that irradiates light onto the specimen and a drive unit that drives a stage on which the specimen is placed, instructing the inspection device to drive at least one of the light source and the drive unit.
  • the output unit outputs an instruction signal to the drive unit to drive the stage so that the specimen is in focus after turning off the focus adjustment function of the camera before capturing an image with the camera.
  • the information processing device is an information processing device according to any one of the first to fifth aspects, in which the sample is a urine sample.
  • the information processing method executes a process in which a computer acquires an image of a sample captured by a camera provided in a mobile information terminal, and outputs the acquired image to a processing device that performs a process related to a measurement process for measuring formed elements contained in the sample based on the captured image.
  • the information processing program causes a computer to execute a process of acquiring an image of a sample captured by a camera provided in a mobile information terminal, and outputting the acquired image to a processing device that performs a process related to a measurement process for measuring formed elements contained in the sample based on the acquired image.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Analysis (AREA)

Abstract

情報処理装置は、携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得する取得部と、取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理装置に出力する出力部と、を備える。

Description

情報処理装置、情報処理方法、及び情報処理プログラム
 本開示は、情報処理装置、情報処理方法、及び情報処理プログラムに関する。
 特表2016-522880号には、視野内において粒子を2次元的物体として分類するための顕微鏡的方法であって、a)第1の電磁放射源で視野を照射する段階と、b)前記視野の第1のデジタル画像を得るために、画像センサに得られた画像を投影する段階と、c)前記第1のデジタル画像を用いて、前記第1のデジタル画像内の第1の物体を識別する段階と、d)前記第1の物体の輪郭の輪郭座標を用いて、前記第1のデジタル画像内に含まれる前記第1の物体の領域を画定し、前記第1の物体の領域の境界線を決定する段階と、e)前記第1物体の1つまたは複数の物体特性を決定する段階と、f)前記第1の物体の前記第1のデジタル画像に関して、境界から1つまたは複数の画素を差し引くことにより、接触している粒子を分離する段階と、g)前記輪郭座標を用いて、第1の物体の前記輪郭に隣接するが前記第1の物体の外側にある領域を画定し、前記第1の電磁放射源の背景照度を計算し、前記第1の物体の電磁照度からこの平均背景照度を差し引く段階と、h)前記第1の物体の前記輪郭内の領域の電磁照度を用いて、標準曲線を参照することにより、光を吸収する前記第1の物体内の粒子の特性を決定する段階と、を含む方法が開示されている。
 従来、尿等の検体の有形成分を測定する装置は、装置専用に設計されたカメラが備え付けられるのが通常であり、装置の原価が高くなる、という問題があった。
 本開示は、上記の点に鑑みてなされたものであり、検体に含まれる有形成分を安価に測定することが可能となる情報処理装置、情報処理方法、及び情報処理プログラムを提供することを目的とする。
 上記目的を達成するために、本開示の一態様に係る情報処理装置は、携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得する取得部と、取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理装置に出力する出力部と、を備える。
 本開示によれば、検体に含まれる有形成分を安価に測定することが可能となる、という効果が得られる。
第1実施形態に係る測定システムの構成図である。 第1実施形態に係る携帯情報端末のハードウエア構成を示す構成図である。 第1実施形態に係る携帯情報端末の機能構成を示す構成図である。 第1実施形態に係る携帯情報端末で実行される情報処理のフローチャートである。 第2実施形態に係る測定システムの構成図である。 第2実施形態に係るサーバのハードウエア構成を示す構成図である。 第2実施形態に係る携帯情報端末で実行される測定処理のフローチャートである。 第2実施形態に係るサーバで実行される測定処理のフローチャートである。 第3実施形態に係る測定システムの構成図である。 第4実施形態に係る測定システムの構成図である。 第4実施形態に係る検査装置の上面図である。 図11AのA-A断面図である。 第4実施形態に係る携帯情報端末で実行される測定処理のフローチャートである。
 以下、図面を参照して、本開示の技術を実施するための形態の一例について詳細に説明する。なお、動作、作用、機能が同じ働きを担う構成要素及び処理には、全図面を通して同じ符号を付与し、重複する説明を適宜省略する場合がある。各図面は、本開示の技術を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本開示の技術は、図示例のみに限定されるものではない。また、本実施形態では、本開示と直接的に関連しない構成や周知な構成については、説明を省略する場合がある。
<第1実施形態>
 図1に、本実施形態に係る測定システム10の構成を示す。
 図1に示すように、測定システム10は、携帯情報端末20及び検査装置30を備える。
 携帯情報端末20は、カメラ21及び通信部22等を備えた例えばスマートフォン等のカメラ付き携帯情報端末である。
 検査装置30は、ステージ31、駆動部32、光源33、光学系34、通信部35、及び制御部36を備える。
 ステージ31には、測定対象である検体37がセットされたプレパラート38が載置される。プレパラート38は、カバーガラス39及びスライドガラス40で構成される。検体37は、スライドガラス40上にセットされ、その上からカバーガラス39でカバーされる。なお、本実施形態では、検体37をセットするチャンバーとしてプレパラート38を用いた場合について説明するが、プレパラート38に限らず、フローセル等の他のチャンバーを用いてもよい。
 検査装置30の筐体30A内の底面には、光源33が設けられている。光源33は、図1においてZ軸方向に発光する。光源33は、制御部36によって制御される。
 ステージ31の中央には、光源33から発光された光Lを通過させる通過孔31Aが設けられている。検体37がセットされたプレパラート38は、この通過孔31Aの位置にセットされる。光源33から発光された光Lは、通過孔31Aを通ってプレパラート38の検体37を透過して光学系34に入射する。
 光学系34は、図示しないレンズ等の光学部品を含んで構成される。
 光学系34の光Lが出射する出射口側には、通過孔30Bが設けられている。検体37の測定時には、携帯情報端末20のカメラ21の位置が通過孔30Bの位置と一致するように、携帯情報端末20を筐体30Aの上面にセットする。
 ステージ31は、駆動部32によって駆動される。駆動部32は、制御部36の指示に従って、ステージ31を互いに直交するX方向、Y方向、及びZ方向に駆動する。
 また、筐体30Aの側面には、通信部35が備えられている。検体37の測定時には、携帯情報端末20の通信部22と検査装置30の通信部35とを通信ケーブル41によって接続する。なお、携帯情報端末20と検査装置30とは、無線接続されてもよい。
 図2は、携帯情報端末20のハードウエア構成を示すブロック図である。図2に示すように、携帯情報端末20は、コントローラ50を備える。
 コントローラ50は、CPU(Central Processing Unit)50A、ROM(Read Only Memory)50B、RAM(Random Access Memory)50C、及び入出力インターフェース(I/O)50Dを備える。そして、CPU50A、ROM50B、RAM50C、及びI/O50Dがバス50Eを介して各々接続されている。バス50Eは、コントロールバス、アドレスバス、及びデータバスを含む。I/O50Dには、カメラ21、通信部22、操作表示部23、及び記憶部24が接続されている。
 カメラ21は、例えばCCD(Charge Coupled Device)等の撮像素子を含んで構成される。
 通信部22は、検査装置30等の外部装置とデータ通信を行うためのインターフェースである。
 操作表示部23は、例えばタッチパネル等を含んで構成される。
 記憶部24は、例えば不揮発性メモリで構成される。図2に示すように、記憶部24は、情報処理プログラム24A及び検体37の有形成分の測定結果24B等を記憶する。
 CPU50Aは、プロセッサの一例である。ここでいうプロセッサとは、広義的なプロセッサを指し、汎用的なプロセッサ(例えば、CPU)、又は、専用のプロセッサ(例えば、GPU:Graphics Processing Unit、ASIC:Application Specific Integrated Circuit、FPGA:Field Programmable Gate Array、プログラマブル論理デバイス、等)を含むものである。
 なお、情報処理プログラム24Aは、不揮発性の非遷移的(non-transitory)記録媒体に記憶して、又はネットワークを介して配布して、携帯情報端末20に適宜インストールされてもよい。
 不揮発性の非遷移的記録媒体の例としては、CD-ROM(Compact Disc Read Only Memory)、光磁気ディスク、HDD(ハードディスクドライブ)、DVD-ROM(Digital Versatile Disc Read Only Memory)、フラッシュメモリ、メモリカード等が挙げられる。
 図3は、携帯情報端末20のCPU50Aの機能構成を示すブロック図である。図3に示すように、CPU50Aは、機能的には、取得部51、出力部52、及び測定部53の各機能部を備える。CPU50Aは、記憶部24に記憶された情報処理プログラム24Aを読み込んで実行することにより各機能部として機能する。
 取得部51は、カメラ21により撮影された検体37の撮影画像を取得する。
 出力部52は、取得部51が取得した撮影画像を、撮影画像に基づいて検体37に含まれる有形成分を測定する測定処理に関する処理を行う処理部の一例としての測定部53に出力する。
 また、出力部52は、検査装置30に対して、光源33及び駆動部32の少なくとも一方の駆動を指示する指示信号を出力する。
 測定部53は、取得部51が取得した撮影画像に基づいて検体37に含まれる有形成分を測定する。
 本実施形態では、検体37が尿検体であり、尿検体中の有形成分を測定する場合について説明する。尿検体中には、複数種類の有形成分が含まれている。この有形成分の種類としては、一例として、赤血球、白血球、上皮細胞、円柱、細菌等が挙げられる。なお、本実施形態においては、検体37の一例として、尿検体を用いて、尿中有形成分の測定を行う場合について説明するが、血液、細胞、体液等を検体とした有形成分の測定を行う場合についても本開示の技術を適用可能である。
 次に、図4を参照して、本実施形態に係る携帯情報端末20の作用を説明する。
 図4は、本実施形態に係る情報処理プログラム24Aによる処理の流れの一例を示すフローチャートである。図4に示す情報処理は、ユーザーによって携帯情報端末20のメニューから情報処理プログラム24Aの実行を指示する操作が行われることにより実行される。なお、情報処理プログラム24Aの実行に先立って、ユーザーは、検体37がセットされたプレパラート38をステージ31に載置する。また、ユーザーは、カメラ21の位置が検査装置30の通過孔30Bの位置と一致するように携帯情報端末20を検査装置30の筐体30Aの上面にセットする。
 ステップS100では、CPU50Aが、測定開始ボタンを操作表示部23に表示させる。
 ステップS101では、CPU50Aが、測定開始ボタンが押下されたか否かを判定する。そして、測定開始ボタンが押下された場合はステップS102へ移行し、測定開始ボタンが押下されていない場合は測定開始ボタンが押下されるまで待機する。
 ステップS102では、CPU50Aが、光源33を点灯するように検査装置30に指示信号を出力する。これにより、検査装置30の制御部36が光源33を点灯させる。
 ステップS103では、CPU50Aが、ステージ31を駆動するよう検査装置30に指示信号を出力する。これにより、検査装置30の制御部36が駆動部32を制御し、プレパラート38が光Lの光軸上に位置するようにステージ31を駆動する。
 ステップS104では、CPU50Aが、カメラ21に撮影を指示する。これにより、カメラ21により検体37の撮影が実行される。
 ステップS105では、CPU50Aが、カメラ21によって撮影された撮影画像を取得する。
 ステップS106では、CPU50Aが、光源33を消灯するよう検査装置30に指示信号を出力する。これにより、検査装置30の制御部36が、光源33を消灯させる。
 ステップS107では、CPU50Aが、ステップS105で取得した撮影画像に基づいて、検体37中の有形成分を測定する。撮影画像に基づく有形成分の測定は、種々公知の方法を用いることができる。例えば、公知の画像解析方法により撮影画像に含まれる有形成分画像を抽出し、抽出した有形成分画像毎にサイズ及びコントラスト等の特徴量を解析し、解析した特徴量に基づいて、有形成分を予め定めた分類項目に分類する。そして、分類された有形成分毎に、有形成分画像の数及びサイズ等に基づいて有形成分の濃度等を算出することにより測定結果を得る。
 ステップS108では、CPU50Aが、ステップS107の測定結果を記憶部24に記憶すると共に、操作表示部23に表示する。
 このように、本実施形態では、カメラ付きの携帯情報端末20を用いて検体37の有形成分を測定する。これにより、検査装置30の専用に設計されたカメラを用いる必要がなく、検体37に含まれる有形成分を安価に測定することができる。
<第2実施形態>
 次に、第2実施形態について説明する。なお、第1実施形態と同一部分には同一符号を付し、詳細な説明を省略する。
 第1実施形態では、検体37の有形成分の測定を携帯情報端末20が実行する場合について説明したが、第2実施形態では、携帯情報端末20とネットワークを介して接続されたサーバが検体37の有形成分の測定を実行する場合について説明する。
 図5に、第2実施形態に係る測定システム10Aの構成を示す。図5に示すように、第2実施形態に係る測定システム10Aは、携帯情報端末20、検査装置30、及びサーバ60を含む。サーバ60は、ネットワークNを介して携帯情報端末20と接続される。第2実施形態では、携帯情報端末20が図3に示す取得部51及び出力部52の機能を有し、サーバ60が図3に示す測定部53の機能を有する。なお、サーバ60は、本開示の管理装置の一例である。
 図6は、サーバ60のハードウエア構成を示すブロック図である。図6に示すように、サーバ60は、コントローラ61を備える。
 コントローラ61は、CPU(Central Processing Unit)61A、ROM(Read Only Memory)61B、RAM(Random Access Memory)61C、及び入出力インターフェース(I/O)61Dを備える。そして、CPU61A、ROM61B、RAM61C、及びI/O61Dがバス61Eを介して各々接続されている。バス61Eは、コントロールバス、アドレスバス、及びデータバスを含む。I/O61Dには、通信部62及び記憶部63が接続されている。
 通信部62は、携帯情報端末20等の外部装置とデータ通信を行うためのインターフェースである。
 記憶部63は、例えば不揮発性メモリで構成される。図6に示すように、記憶部63は、測定プログラム63Aを記憶する。
 CPU61Aは、第1実施形態で説明したのと同様にプロセッサの一例である。なお、測定プログラム63Aは、第1実施形態で説明したのと同様に、不揮発性の非遷移的(non-transitory)記録媒体に記憶して、又はネットワークを介して配布して、サーバ60に適宜インストールされてもよい。
 図7は、携帯情報端末20において実行される第2実施形態に係る情報処理プログラム24Aによる処理の流れの一例を示すフローチャートである。図7に示す情報処理が図4に示す情報処理と異なるのは、ステップS107A、S107Bの処理であり、その他のステップの処理は図4に示す情報処理と同様であるので説明を省略する。
 ステップS107Aでは、CPU50Aが、ステップS105で取得した撮影画像をサーバ60へ送信する。
 ステップS107Bでは、CPU50Aが、サーバ60から検体37の有形成分の測定結果を受信する。
 図8は、サーバ60のCPU61Aで実行される測定プログラム63Aによる処理の流れの一例を示すフローチャートである。
 ステップS200では、CPU61Aが、携帯情報端末20から送信された撮影画像を受信したか否かを判定する。携帯情報端末20から送信された撮影画像を受信した場合はステップS201へ移行する。一方、携帯情報端末20から送信された撮影画像を受信していない場合は、撮影画像を受信するまで待機する。
 ステップS201では、CPU61Aが、ステップS200で受信した撮影画像に基づいて、検体37の有形成分を測定する。この処理は、図4のステップS107の処理と同様であるので説明を省略する。
 ステップS202では、CPU61Aが、ステップS201の測定結果を携帯情報端末20へ送信する。
 このように、第2実施形態では、携帯情報端末20が検体37の撮影画像をサーバ60へ送信し、サーバ60が検体37の有形成分を測定する。これにより、携帯情報端末20の処理負荷を軽減することができる。
<第3実施形態>
 次に、第3実施形態について説明する。なお、第2実施形態と同一部分には同一符号を付し、詳細な説明を省略する。
 第3実施形態では、検体37の撮影画像に基づいて検体37に含まれる有形成分を解析する解析者に撮影画像を提供し、解析者が検体37に含まれる有形成分を解析する場合について説明する。
 図9に、第3実施形態に係る測定システム10Bの構成を示す。図9に示すように、第3実施形態に係る測定システム10Bは、携帯情報端末20、検査装置30、サーバ60、及び解析者端末装置70を含む。なお、解析者端末装置70は、本開示の受付装置の一例である。
 解析者端末装置70は、例えば一般のパーソナルコンピュータ等で構成され、第1実施形態で説明した測定部53の機能を有する。
 携帯情報端末20は、第2実施形態で説明した図7に示す情報処理を実行するが、ステップS107Aにおいて撮影画像を送信する際の送信先がサーバ60ではなく解析者端末装置70である点、ステップS107Bにおいて測定結果を解析者端末装置70から受信する点が異なる。
 解析者端末装置70は、第2実施形態で説明した図8のステップS200、S201の処理と同様の処理を実行する。すなわち、携帯情報端末20から撮影画像を受信すると、受信した撮影画像に基づいて、検体37の有形成分の測定を行う。ここで、解析者は、検体37の有形成分の測定結果を参照し、追加の解析を行う。そして、追加の解析結果を解析者端末装置70に入力する。解析者端末装置70は、解析者による追加の解析結果を受け付けると、受け付けた解析結果を携帯情報端末20に送信する。なお、追加の解析結果をサーバ60に送信し、記憶させてもよい。
 このように、第3実施形態では、解析者により検体37の有形成分の測定結果が追加で解析される。これにより、検体37の有形成分の測定結果の精度を高めることができる。
<第4実施形態>
 次に、第4実施形態について説明する。なお、上記各実施形態と同一部分には同一符号を付し、詳細な説明を省略する。
 図10に、第4実施形態に係る検査装置30Xを示す。なお、図1の検査装置30と同一部分については同一符号を付し、詳細な説明を省略する。
 図1の検査装置30は、光源33からの光Lがプレパラート38の下方から上方へ向けて出射され、プレパラート38の上方から撮影する構成となっている。
 ここで、例えば検体37の有形成分が沈降する性質がある場合は、検体37の下方から撮影する方が好ましい場合がある。また、成分が多く集まっている箇所に焦点を合わせる際、下方から撮影する方が、焦点が合うまでの時間が短くなる場合がある。
 そこで、本実施形態に係る図10の検査装置30Xは、光源33からの光Lがプレパラート38の上方から下方へ向けて出射され、プレパラート38の下方から撮影する構成となっている。
 図10に示すように、検査装置30Xの天井側に光源33が設けられている。光源33から出射された光Lは、図1においてZ軸に沿って上方から下方に向けて出射され、プレパラート38に入射する。プレパラート38を透過した光Lは、対物レンズを含む光学系80を通って反射鏡81によって図1においてX軸に沿って右方向に反射される。
 反射鏡81によって反射された光Lは、結像レンズを含む光学系82を通って反射鏡83によって図1においてZ軸に沿って上方に反射される。反射鏡83によって反射された光Lは、接眼レンズを含む光学系84及び通過孔30Bを通って携帯情報端末20のカメラ21に入射する。
 なお、光源33の光Lの色は、白色及び電球色の何れでも良い。また、色収差を回避するために、R(赤)、G(緑)、B(青)の単一波長のうち何れか1つの波長の光を出射する光源を用いて良いし、2つの波長の光を合せた光を出射する光源を用いてもよい。
 また、通常使用されるプレパラート38は、保持可能な検体37の厚みが約46μm程度であるが、スライドガラス40の上にカバーガラス39を載せるという運用は、技師による手技に差が発生したり、工数が多かったりする等の課題がある。
 そこで、ステージ31は、検体37を保持する保持部材として、プレパラート38だけでなく、例えばキュベット等の他の保持部材も選択的に載置可能とし、検体37の厚みが異なる2種類以上の保持部材を載置可能な構成としてもよい。
 保持可能な検体37の厚みが薄い保持部材は、保持可能な検体37の厚みが厚い保持部材と比べて、検体37の成分の重複や屈折がない点で、成分濃度の濃い検体37に適している。また、沈みにくい成分を含む検体37に焦点を合わせることができる。逆に、保持可能な検体37の厚みが厚い保持部材は、沈降に伴い、単位面積当たりの成分量が増えるために、成分濃度の薄い検体37に適している。従って、保持可能な検体37の厚みが異なる2種類以上の保持部材を載置可能な構成とすることで、検体37の成分濃度に応じて適切な保持部材を使用することができる。
 図11Aに検査装置30Xの上面図を示す。図11Bは図11AのA-A断面図である。図11A、11Bに示すように、検査装置30Xの上面には、携帯情報端末20の形状に合わせて矩形状に凹んだ載置部84が設けられている。また、携帯情報端末20を載置部84に載置した場合のカメラ21の位置に通過孔30Bが設けられている。また、通過光30Bを通るX軸方向及びY軸方向に沿った領域に溝部85が設けられている。携帯情報端末20の種類によっては突起部が存在する場合もあるが、溝部85が設けられていることにより、携帯情報端末20に突起した部分が存在する場合でも携帯情報端末20が傾くのを防ぐことができる。
 携帯情報端末20と検査装置30とをBluetooth(登録商標)等で無線接続する場合には、無線通信に障害が発生することを避けるために、載置部84の少なくとも一部を金属ではない部材とすることが好ましい。例えば載置部84は、電波を通しやすい樹脂製とするか、適宜孔の空いた構造とすることが好ましい。なお、通過孔30Bは、埃等を防ぐために透過部材で塞いでも良い。その場合は、光の屈折率等を考慮して透過部材の素材や厚みを選定する。
 なお、図11Bに示すように、載置部84は、携帯情報端末20が検査装置30の上面と平行に載置されるような形状であり、光Lが携帯情報端末20に対して直角に入射する構成となっている。しかしながら、携帯情報端末20に対して直角から若干傾いた角度で入射する方が良好に撮影できる場合もある。このような場合は、載置部30の形状を、携帯情報端末20が検査装置30の上面に対して傾斜するような形状としてもよい。
 また、本実施形態に係る携帯情報端末20のカメラ21は、オートフォーカス機能を備えている。通常オートフォーカス機能はオンとされているが、検体37にピントを合わせづらい場合もある。
 そこで、本実施形態では、出力部52は、カメラ21による撮影前に、カメラ21のオートフォーカス機能をオフしてから、検体37にピントが合うようにステージ31を駆動する指示信号を駆動部32に出力する。
 次に、図12を参照して、本実施形態に係る携帯情報端末20の作用を説明する。
 図12は、本実施形態に係る情報処理プログラム24Aによる情報処理の流れの一例を示すフローチャートである。なお、図4に示す情報処理と同一つの処理を行うステップについては同一符号を付し、詳細な説明を省略する。
 図12に示す情報処理が図4に示す情報処理と異なるのは、ステップS101A、S103A、S105Aが追加されている点である。
 ステップS101Aでは、CPU50Aが、カメラ21の焦点位置調整機能をオフする。これにより、カメラ21の焦点位置は所定位置に固定される。
 ステップS103Aでは、CPU50Aが、カメラ21からの撮像画像が合焦しているか否か、すなわち検体37にピントが合っているか否かを判定する。合焦の判定は、例えば位相差方式やコントラスト方式等の公知の手法を用いて判定する。
 そして、検体37にピントが合っている場合はステップS104へ移行する。一方、検体37にピントが合っていない場合はステップS103へ移行する。この場合、ステップS103では、CPU50Aが、ピント情報を検出し、このピント情報を検査装置10の制御部36に送る。これにより、制御部36は、駆動部32に駆動指示信号を送りステージ31をZ軸方向に所定量移動させる。このように、検体37にピントが合うまでステップS103、S103Aの処理を繰り返す。すなわち、カメラ21における焦点調節ではなく、ステージ31をZ軸方向に移動調整することでのオートフォーカスを行う。
 ステップS105Aでは、CPU50Aが、検体37の全範囲を撮影したか否かを判定する。そして、検体37の全範囲を撮影した場合はステップS106へ移行する。一方、検体37の全範囲を撮影していない場合はステップS103へ移行する。この場合、ステップS103では、CPU50Aが、未撮影の範囲に検体37を移動させるために、ステージ31がX軸方向及びY軸方向の少なくとも一方の方向に移動するよう駆動部31を駆動する。このように、CPU50Aは、検体37の全範囲の撮影が終了するまでステップS103からS105Aの処理を繰り返す。
 このように、本実施形態では、カメラ21の焦点位置調整機能でのオートフォーカス機能をオフし、ステージ31をZ軸方向に駆動することでピント合わせを行う。これにより、カメラ21の焦点位置調整機能では検体37にピントを合わせづらい場合であっても、ステージ駆動によるオートフォーカスによって検体37にピントを合わせることができる。
 また、ステップS101Aの処理を省略してカメラ21の焦点位置調整機能をオフにせず、まずステップS103Aでカメラ21の焦点位置調整機能によりピントが合うか否かを判定するようにしてもよい。これでピントが合わないと判定した場合は、カメラ21の焦点位置調整機能をオフにし、ステージ31をZ軸方向に駆動してピント合わせを行うステージ駆動によるオートフォーカスを行うようにしてもよい。
 なお、上記実施形態におけるプロセッサの動作は、1つのプロセッサによって成すのみでなく、物理的に離れた位置に存在する複数のプロセッサが協働して成すものであってもよい。また、プロセッサの各動作の順序は、上記各実施形態において記載した順序のみに限定されるものではなく、適宜変更してもよい。
 また、上記実施形態で説明した情報処理装置の構成は、一例であり、主旨を逸脱しない範囲内において状況に応じて変更してもよい。
 また、上記実施形態で説明したプログラムの処理の流れも、一例であり、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
 また、上記実施形態では、プログラムを実行することにより、実施形態に係る処理がコンピュータを利用してソフトウエア構成により実現される場合について説明したが、これに限らない。実施形態は、例えば、ハードウエア構成や、ハードウエア構成とソフトウエア構成との組み合わせによって実現してもよい。
 以上の実施形態に関し、更に以下を開示する。
 第1態様に係る情報処理装置は、携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得する取得部と、取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理部に出力する出力部と、を備える。
 第2態様に係る情報処理装置は、第1態様に係る情報処理装置において、前記処理部は、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定部であり、前記取得部、前記出力部、及び前記測定部は、前記携帯情報端末に備えられている。
 第3態様に係る情報処理装置は、第1態様に係る情報処理装置において、前記処理部は、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定部であり、前記取得部及び前記出力部は、前記携帯情報端末に備えられ、前記測定部は、前記携帯情報端末と通信可能な管理装置に備えられている。
 第4態様に係る情報処理装置は、第1態様に係る情報処理装置において、前記処理部は、前記撮影画像に基づいて前記検体に含まれる有形成分を解析する解析者に前記撮影画像を提供すると共に、前記解析者による解析結果を受け付ける受付装置である。
 第5態様に係る情報処理装置は、第1~第4態様の何れかの態様に係る情報処理装置において、前記出力部は、前記検体に光を照射する光源及び前記検体が載置されるステージを駆動する駆動部を含む検査装置に対して、前記光源及び前記駆動部の少なくとも一方の駆動を指示する指示信号を出力する。
 第6態様に係る情報処理装置は、第5態様に係る情報処理装置において、前記出力部は、前記カメラによる撮影前に、前記カメラの焦点位置調整機能をオフしてから、前記検体にピントが合うように前記ステージを駆動する指示信号を前記駆動部に出力する。
 第7態様に係る情報処理装置は、第1~第5態様の何れかの態様に係る情報処理装置において、前記検体は尿検体である。
 第8態様に係る情報処理方法は、コンピュータが、携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得し、取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理装置に出力することを含む処理を実行する。
 第9態様に係る情報処理プログラムは、コンピュータに、携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得し、取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理装置に出力する処理を実行させる。
 なお、日本国特許出願第2022-165729号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得する取得部と、
     取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理部に出力する出力部と、
     を備えた情報処理装置。
  2.  前記処理部は、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定部であり、前記取得部、前記出力部、及び前記測定部は、前記携帯情報端末に備えられている
     請求項1記載の情報処理装置。
  3.  前記処理部は、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定部であり、前記取得部及び前記出力部は、前記携帯情報端末に備えられ、前記測定部は、前記携帯情報端末と通信可能な管理装置に備えられている
     請求項1記載の情報処理装置。
  4.  前記処理部は、前記撮影画像に基づいて前記検体に含まれる有形成分を解析する解析者に前記撮影画像を提供すると共に、前記解析者による解析結果を受け付ける受付装置である
     請求項1記載の情報処理装置。
  5.  前記出力部は、前記検体に光を照射する光源及び前記検体が載置されるステージを駆動する駆動部を含む検査装置に対して、前記光源及び前記駆動部の少なくとも一方の駆動を指示する指示信号を出力する
     請求項1記載の情報処理装置。
  6.  前記出力部は、前記カメラによる撮影前に、前記カメラの焦点位置調整機能をオフしてから、前記検体にピントが合うように前記ステージを駆動する指示信号を前記駆動部に出力する
     請求項5記載の情報処理装置。
  7.  前記検体は尿検体である
     請求項1記載の情報処理装置。
  8.  コンピュータが、
     携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得し、
     取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理装置に出力する
     ことを含む処理を実行する情報処理方法。
  9.  コンピュータに、
     携帯情報端末に備えられたカメラにより撮影された検体の撮影画像を取得し、
     取得した前記撮影画像を、前記撮影画像に基づいて前記検体に含まれる有形成分を測定する測定処理に関する処理を行う処理装置に出力する
     処理を実行させる情報処理プログラム。
PCT/JP2023/037455 2022-10-14 2023-10-16 情報処理装置、情報処理方法、及び情報処理プログラム WO2024080385A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165729 2022-10-14
JP2022165729 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080385A1 true WO2024080385A1 (ja) 2024-04-18

Family

ID=90669795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037455 WO2024080385A1 (ja) 2022-10-14 2023-10-16 情報処理装置、情報処理方法、及び情報処理プログラム

Country Status (1)

Country Link
WO (1) WO2024080385A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184737A (ja) * 2016-03-31 2017-10-12 株式会社フコク Mfd検査支援システムおよびmfdを用いた検査方法
WO2018105298A1 (ja) * 2016-12-09 2018-06-14 ソニー株式会社 情報処理装置、情報処理方法及び情報処理システム
JP2019196987A (ja) * 2018-05-10 2019-11-14 富士フイルム株式会社 動物用尿検査装置、動物用尿検査システム、及び動物用尿検査プログラム
JP2020071037A (ja) * 2018-10-29 2020-05-07 アークレイ株式会社 情報処理装置、測定システム、及びプログラム
JP2021174201A (ja) * 2020-04-23 2021-11-01 合同会社H.U.グループ中央研究所 プログラム、情報処理装置、情報処理方法及び学習モデルの生成方法
WO2022041197A1 (zh) * 2020-08-31 2022-03-03 深圳迈瑞生物医疗电子股份有限公司 样本图像拍摄方法以及样本图像拍摄设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184737A (ja) * 2016-03-31 2017-10-12 株式会社フコク Mfd検査支援システムおよびmfdを用いた検査方法
WO2018105298A1 (ja) * 2016-12-09 2018-06-14 ソニー株式会社 情報処理装置、情報処理方法及び情報処理システム
JP2019196987A (ja) * 2018-05-10 2019-11-14 富士フイルム株式会社 動物用尿検査装置、動物用尿検査システム、及び動物用尿検査プログラム
JP2020071037A (ja) * 2018-10-29 2020-05-07 アークレイ株式会社 情報処理装置、測定システム、及びプログラム
JP2021174201A (ja) * 2020-04-23 2021-11-01 合同会社H.U.グループ中央研究所 プログラム、情報処理装置、情報処理方法及び学習モデルの生成方法
WO2022041197A1 (zh) * 2020-08-31 2022-03-03 深圳迈瑞生物医疗电子股份有限公司 样本图像拍摄方法以及样本图像拍摄设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IYLL-JOON DOH: "Development of a Smartphone-Integrated Reflective Scatterometer for Bacterial Identification", SENSORS, MDPI, CH, vol. 22, no. 7, 30 March 2022 (2022-03-30), CH , pages 2646, XP093157945, ISSN: 1424-8220, DOI: 10.3390/s22072646 *
PER NIKLAS HEDDE: "miniSPIM—A Miniaturized Light-Sheet Microscope", ACS SENSORS, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 7, 23 July 2021 (2021-07-23), US, pages 2654 - 2663, XP093157943, ISSN: 2379-3694, DOI: 10.1021/acssensors.1c00607 *

Similar Documents

Publication Publication Date Title
JP6796340B2 (ja) 家庭用検査装置
CA2772376C (en) Compact automated cell counter
EP2402813B1 (en) Microscope and area determination method
KR102523559B1 (ko) 디지털 스캐닝 장치
JP2020509403A5 (ja)
JP7003241B2 (ja) 貼り付けスライド判定システム
US11454781B2 (en) Real-time autofocus focusing algorithm
CA2996969C (en) Mobile microscope
US20190302093A1 (en) Analysis accuracy improvement in automated testing apparatus
US8982454B2 (en) Microscope and filter inserting method
TW200931009A (en) Inspecting apparatus and inspecting method
JP6940696B2 (ja) 二次元および三次元の固定式z走査
JP2018530823A (ja) 病理学的明視野画像における自動染色検出
CN112714888A (zh) 显微镜系统、投影单元以及图像投影方法
JP2020537173A (ja) スライドガラスの走査および処理のための対向縁部システム
US20230258918A1 (en) Digital microscope with artificial intelligence based imaging
Go et al. Learning-based automatic sensing and size classification of microparticles using smartphone holographic microscopy
WO2024080385A1 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
CN110998330B (zh) 用于分析荧光免疫斑点测定的方法和系统
US20220260823A1 (en) Re-imaging microscopy with micro-camera array
US11630063B2 (en) Fluorescence imaging device
Langford Video-enhanced microscopy for analysis of cytoskeleton structure and function
ITPS20130001A1 (it) Microscopio laser miniaturizzato per pc/tablet per rilevazione di nanoparticelle su vetrino

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877386

Country of ref document: EP

Kind code of ref document: A1