WO2024078379A1 - 多普勒测量方法、装置及通信设备 - Google Patents

多普勒测量方法、装置及通信设备 Download PDF

Info

Publication number
WO2024078379A1
WO2024078379A1 PCT/CN2023/123171 CN2023123171W WO2024078379A1 WO 2024078379 A1 WO2024078379 A1 WO 2024078379A1 CN 2023123171 W CN2023123171 W CN 2023123171W WO 2024078379 A1 WO2024078379 A1 WO 2024078379A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal
doppler
frequency shift
sent
Prior art date
Application number
PCT/CN2023/123171
Other languages
English (en)
French (fr)
Inventor
姚健
秦飞
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024078379A1 publication Critical patent/WO2024078379A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a Doppler measurement method, device and communication equipment.
  • the frequency offset information calculated based on the received signal includes not only the Doppler frequency offset caused by channel mobility, but also the transmit and receive clock deviation.
  • Perception services usually need to obtain the channel Doppler information and detect dynamic targets in the environment based on it.
  • the embodiments of the present application provide a Doppler measurement method, apparatus and communication equipment, which can solve the problem of how to accurately obtain channel Doppler frequency shift information.
  • a Doppler measurement method comprising:
  • the first device acquires the first information and the second information
  • the first device obtains target information according to the first information and the second information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a Doppler measurement method comprising:
  • the third device obtains the first signal sent by the second device
  • the third device obtains first information according to the first signal and sends the first information to the first device;
  • the third device sends a second signal to the second device, where the second signal is used to obtain second information
  • the first information and the second information are used to obtain target information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a Doppler measurement method comprising:
  • the second device sends a first signal to the third device, where the first signal is used to obtain first information
  • the second device acquires, by the second signal sent by the third device
  • the second device obtains second information according to the second signal and sends the second information to a third device, wherein the first information and the second information are used to obtain target information;
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a Doppler measurement device which is applied to a first device and includes:
  • a first acquisition module used to acquire first information and second information
  • a second acquisition module used to obtain target information according to the first information and the second information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a Doppler measurement device is provided, which is applied to a third device, including:
  • a third acquisition module used to acquire a first signal sent by a second device
  • a first processing module configured to obtain first information according to the first signal and send the first information to a first device
  • a first sending module configured to send a second signal to the second device, where the second signal is used to obtain second information
  • the first information and the second information are used to obtain target information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a Doppler measurement device which is applied to a second device, including:
  • a second sending module used for sending a first signal to a third device, where the first signal is used for acquiring first information
  • a fourth acquisition module used to acquire a second signal sent by the third device
  • a second processing module is used to obtain second information according to the second signal and send the second information to a third device, wherein the first information and the second information are used to obtain target information;
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a terminal (third device) is provided, the terminal comprising a processor and a memory, the memory A program or instruction that can be run on the processor is stored, and when the program or instruction is executed by the processor, the steps of the method described in the second aspect are implemented.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to obtain a first signal sent by a second device; the processor is used to obtain first information according to the first signal and send it to the first device through the communication interface; the communication interface is used to send a second signal to the second device, and the second signal is used to obtain second information;
  • the first information and the second information are used to obtain target information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a network side device (a first device or a second device) which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the first aspect or the third aspect are implemented.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to obtain first information and second information; the processor is used to obtain target information according to the first information and the second information;
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • the communication interface is used to send a first signal to a third device, the first signal is used to obtain first information; obtain a second signal sent by the third device; the processor is used to obtain second information according to the second signal, and send the second information to the third device through the communication interface, the first information and the second information are used to obtain target information;
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • a Doppler measurement system comprising: a first device, a second device and a third device, wherein the first device can be used to execute the steps of the method described in the first aspect, the second device can be used to execute the steps of the method described in the third aspect, and the third device can be used to execute the steps of the method described in the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect or the third aspect are implemented.
  • a chip comprising a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run a program or instruction to implement the method as described in the first aspect, or to implement the method as described in the first aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, the second aspect or the third aspect.
  • a first device acquires first information and second information; the first device obtains target information based on the first information and the second information; wherein the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device, and the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the second device and the third device, and improve the accuracy of the Doppler measurement.
  • FIG1 is a structural diagram of a communication system applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram showing one of the flow charts of the Doppler measurement method according to an embodiment of the present application.
  • FIG3 is a schematic diagram showing one of the first signal and the second signal in an embodiment of the present application.
  • FIG4 shows a second schematic diagram of the first signal and the second signal in an embodiment of the present application
  • FIG5 is a schematic diagram showing SNR calculation of a one-dimensional graph in an embodiment of the present application.
  • FIG6 is a second flow chart of the Doppler measurement method according to an embodiment of the present application.
  • FIG7 is a third flow chart of the Doppler measurement method according to an embodiment of the present application.
  • FIG8 is a schematic diagram showing one of the modules of the Doppler measurement device according to an embodiment of the present application.
  • FIG9 shows a second schematic diagram of a module of the Doppler measurement device according to an embodiment of the present application.
  • FIG10 is a third schematic diagram of a module of the Doppler measurement device according to an embodiment of the present application.
  • FIG11 is a block diagram showing a structure of a communication device according to an embodiment of the present application.
  • FIG12 is a block diagram showing a structure of a terminal according to an embodiment of the present application.
  • FIG13 shows one of the structural block diagrams of the network side device according to an embodiment of the present application.
  • FIG. 14 shows a second structural block diagram of the network side device according to an embodiment of the present application.
  • first, second, etc. in the specification and claims of this application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way can be interchangeable under appropriate circumstances. So that the embodiments of the present application can be implemented in an order other than those illustrated or described herein, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims means at least one of the connected objects, and the character “/” generally means that the objects connected before and after are in an “or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may be a mobile phone, a tablet computer, a laptop computer or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device (Wearable Device), a vehicle user equipment (VUE), a pedestrian terminal (Pedestrian User Equipment, PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch, a smart bracelet, a smart headset, a smart glasses, smart jewelry (
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device may include a base station, a wireless local area network (WLAN) access point or a WiFi node, etc.
  • WLAN wireless local area network
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmission reception point (TRP) or some other suitable term in the field.
  • eNB evolved node B
  • BTS basic service set
  • ESS extended service set
  • TRP transmission reception point
  • the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network device may include but is not limited to at least one of the following: a core network node, a core network function, a mobile management entity (Mobility Management Entity, MME), Access and Mobility Management Function (Access and Mobility Management Function, AMF), Session Management Function (Session Management Function, SMF), User Plane Function (User Plane Function, UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (Policy and Charging Rules Function, PCRF), Edge Application Server Discovery Function (Edge Application Server Discovery Function, EASDF), Unified Data Management (Unified Data Management, UDM), Unified Data Repository (Unified Data Repository, UDR), Home Subscriber Server (Home Subscriber Server, HSS), Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), Application Function (Application Function, AF), etc. It should
  • Perception capability refers to the ability of one or more devices with perception capabilities to perceive the direction, distance, speed and other information of the target object through the transmission and reception of wireless signals, or to detect, track, identify, and image the target object, event or environment.
  • the perception resolution will be significantly improved compared to centimeter waves, enabling 6G networks to provide more sophisticated perception services.
  • Typical perception functions and application scenarios are shown in Table 1.
  • Communication and perception integration means realizing the integrated design of communication and perception functions through spectrum sharing and hardware sharing in the same system. While transmitting information, the system can perceive information such as direction, distance, speed, and detect, track, and identify target objects or events.
  • the communication system and the perception system complement each other to achieve overall performance improvement and bring a better service experience.
  • radar and communication systems are a typical communication perception fusion application.
  • radar systems and communication systems were The two systems are strictly distinguished due to their different research objects and focuses, and in most scenarios, they are studied separately.
  • radar and communication systems are also typical ways of sending, acquiring, processing and exchanging information. There are many similarities in terms of working principles, system architecture and frequency bands.
  • both the communication system and the perception system are based on electromagnetic wave theory, and use the transmission and reception of electromagnetic waves to complete the acquisition and transmission of information;
  • both the communication system and the perception system have structures such as antennas, transmitters, receivers, and signal processors, and there is a great overlap in hardware resources; with the development of technology, the two have more and more overlaps in working frequency bands; in addition, there are similarities in key technologies such as signal modulation and reception detection, waveform design, etc.
  • the integration of communication and radar systems can bring many advantages, such as saving costs, reducing size, reducing power consumption, improving spectrum efficiency, reducing mutual interference, etc., thereby improving the overall performance of the system.
  • each perception link described below takes a sending node and a receiving node as an example.
  • different perception links can be selected according to different perception requirements.
  • Each perception link can have one or more sending nodes and receiving nodes, and the actual perception system can include multiple different perception links.
  • Base station echo sensing In this mode, the base station sends a sensing signal and obtains the sensing result by receiving the echo of the sensing signal.
  • base station 2 receives the sensing signal sent by base station 1 and obtains the sensing result.
  • Uplink air interface perception At this time, the base station receives the perception signal sent by the terminal equipment (UE) and obtains the perception result.
  • UE terminal equipment
  • Downlink air interface perception At this time, the UE receives the perception signal sent by the base station and obtains the perception result.
  • Terminal echo perception At this time, the UE sends a perception signal and obtains a perception result by receiving the echo of the perception signal.
  • UE 2 receives the perception signal sent by UE 1 and obtains the perception result.
  • the corresponding carrier needs to be generated at both the transmitting and receiving ends to complete the corresponding up-conversion and down-conversion operations.
  • the transmitting end needs to move the transmitted signal to a specific frequency point for transmission through up-conversion, while the receiving end needs to down-convert the received signal to the baseband for subsequent processing.
  • the transmitting and receiving clocks are usually not guaranteed to be completely consistent.
  • the transmitting and receiving crystal oscillators have their own accuracy, which causes the carrier signal frequency generated by the system to deviate from the ideal frequency. This deviation is one of the main sources of carrier frequency offset of the received signal.
  • channel mobility can also cause carrier frequency offset.
  • the frequency offset information calculated based on the received signal not only includes the Doppler frequency offset caused by channel mobility, but also includes the transmit and receive clock deviation.
  • the transmit and receive clock deviation For communication services, it is usually not necessary to distinguish between the two. It is only necessary to compensate the frequency offset of the received signal as a whole to meet the demodulation performance.
  • perception services usually need to obtain channel Doppler information to detect dynamic targets in the environment.
  • the transmitted signal is s(t)
  • H reflectors there are H reflectors in the channel
  • the receiving end is down-converted
  • the baseband received signal is:
  • the receiving end can obtain the channel Doppler frequency shift information by detecting the phase change in the time domain dimension (time domain fast Fourier transform (FFT)).
  • FFT time domain fast Fourier transform
  • the clocks of the transmitting and receiving devices cannot be guaranteed to be completely consistent, that is, there is a frequency deviation between the transmitting and receiving devices. Assume that the carrier frequency of the transmitting end is ft, the carrier frequency of the receiving end is fr, and ft ⁇ fr.
  • the baseband received signal is:
  • the receiving end cannot obtain the original channel Doppler frequency shift information by detecting the phase change in the time domain dimension, such as performing a time domain FFT operation.
  • an embodiment of the present application provides a Doppler measurement method, including:
  • Step 201 The first device obtains first information and second information.
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device.
  • the first device obtains the first information sent by the third device, and obtains the second information sent by the second device.
  • the first device in the present application may be a core network perception network function device
  • the second device may be a network side device, such as a base station
  • the third device may specifically be a terminal.
  • the network side device sends the first signal through a downlink time slot, and the terminal sends the second signal through an uplink time slot.
  • Step 202 The first device obtains target information according to the first information and the second information, wherein the target information is used to indicate Doppler frequency shift information between the second device and the third device, and the Doppler frequency shift information is Doppler frequency shift information associated with the motion of the perceived target in the channel.
  • the Doppler frequency shift information is Doppler frequency shift information associated with the motion of the perceived target in the channel. That is, the Doppler frequency shift information is the Doppler frequency shift information caused by the motion of the perceived target in the channel.
  • a preset algorithm (such as adding two Doppler measurement results and dividing by 2) is used to offset the transmit and receive clock deviation to obtain target information, that is, the Doppler frequency shift information between the second device and the third device.
  • the second device sends a first signal to the third device, the third device measures to obtain first information and sends it to the first device; the third device sends a second signal to the second device, the second device measures the second signal to obtain second information and sends it to the first device; the first device obtains target information according to the first information and the second information, specifically of:
  • the transmission signal s(t) (i.e., the first signal) of the second device is expressed as follows after up-conversion:
  • the received signal after the third device down-converts the received first signal is represented as:
  • the third device sends the first information to the first device, and sends the second signal s2(t) to the second device:
  • the second device receives s2(t) and down-converts it to obtain:
  • the influence of the transmit-receive clock frequency deviation is offset when the two Doppler measurement results (the first information and the second information) are combined (that is, fr - ft is offset), and the obtained target information is not affected by the transmit-receive clock frequency deviation.
  • the Doppler frequency shift information in the embodiment of the present application includes the Doppler frequency shift information caused by the motion of at least one sensing target in the channel.
  • the sensing target is at least one of the reflectors.
  • a first device acquires first information and second information; the first device obtains target information based on the first information and the second information; wherein the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device, and the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the second device and the third device, and improve the accuracy of the Doppler measurement.
  • the first signal and the second signal have the same time domain resource format
  • the time domain resource format includes a time domain resource length and a time domain resource interval.
  • the first signal and the second signal have the same time domain resource format, which can ensure that the first signal and the second signal have the same Doppler measurement performance.
  • the first signal and the second signal have the same time domain resource length, and/or the first signal and the second signal have the same time domain resource interval.
  • time domain resource length of the first signal and the time domain resource length of the second signal are associated with Doppler resolution
  • the time domain resource interval of the first signal and the time domain resource interval of the second signal are associated with a maximum unambiguous Doppler frequency shift.
  • the time domain resource length T of the first signal and the second signal satisfies the following formula: T ⁇ 1/ ⁇ f d ;
  • T represents the time domain resource length
  • ⁇ f d represents the Doppler resolution
  • the time domain resource interval of the first signal and the time domain resource interval ⁇ T of the second signal satisfy the following formula: ⁇ T ⁇ 1/f d max ;
  • ⁇ T the direction of the target moving speed in the channel is not considered, it satisfies: ⁇ T ⁇ 1/f d max ; if the direction of the target moving speed in the channel is considered, it satisfies: ⁇ T ⁇ 1/(2
  • 2 ⁇ f d ⁇ T ⁇ 2 ⁇
  • 2 ⁇ f d ⁇ T ⁇ 2 ⁇
  • the relationship between the maximum unambiguous Doppler shift and the signal time domain interval is ⁇ T ⁇ 1/(f d max )
  • the Doppler resolution and the maximum unambiguous Doppler frequency shift are obtained according to a perception requirement, and the perception requirement is acquired by the first device.
  • the perceived need includes at least one of the following:
  • Perception services divided by type or specific to a certain service, such as environment reconstruction, breathing or heartbeat detection, positioning or trajectory tracking, action recognition, weather monitoring, radar ranging/speed/angle measurement, etc.;
  • Perception target area refers to the location area where the perception object may exist, or the location area where imaging or environmental reconstruction is required;
  • Perception object type The perception objects are classified according to their possible motion characteristics. Each perception object type contains information such as the motion speed, motion acceleration, and typical RCS of typical perception objects.
  • Perception QoS Performance indicators for perceiving the target area or object, including at least one of the following:
  • Perception resolution (further divided into: ranging resolution, angle resolution, velocity resolution, imaging resolution, etc.);
  • Perception accuracy (further divided into: ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.);
  • Perception range (further divided into: distance measurement range, speed measurement range, angle measurement range, imaging range, etc.);
  • Perception latency (the time interval from the sending of the perception signal to the acquisition of the perception result, or the time interval from the initiation of the perception demand to the acquisition of the perception result);
  • Perception update rate (the time interval between two consecutive perception operations and the acquisition of perception results);
  • detection probability the probability of correctly detecting the perceived object when it exists
  • False alarm probability the probability of erroneously detecting a perceived target when the perceived object does not exist
  • the method before the first device acquires the first information and the second information, the method further includes:
  • the first device sends a first request to the second device and sends a second request to the third device, the first request is used to request the second device to perform Doppler measurement, and the second request is used to request the third device to perform Doppler measurement.
  • the first device obtains a first response sent by the second device and a second response sent by the third device;
  • the first response is used to instruct the second device to participate in the Doppler measurement, or to indicate that the second device refuses to participate in the Doppler measurement and/or the reason for refusing to participate in the Doppler measurement;
  • the second response is used to instruct the third device to participate in the Doppler measurement, or to indicate that the third device refuses to participate in the Doppler measurement and/or the reason for refusing to participate in the Doppler measurement;
  • the first information is obtained when the first response indicates that the third device participates in the Doppler measurement
  • the second information is obtained if the second response indicates that the second device participates in the Doppler measurement.
  • the first request carries identification information of the third device, or carries identification information of the second device and the third device
  • the second request carries identification information of the second device, or carries identification information of the second device and the third device.
  • the first device may send the first request and the second request simultaneously, or send the first request and the second request separately in sequence.
  • the second device and the third device may determine whether to participate in the Doppler measurement according to at least one of their own mobility information, location information, power information and sending resource information, and send response information.
  • the first device reselects the second device
  • the first device reselects the third device.
  • the method further comprises:
  • the device information includes at least one of the following:
  • Clock frequency error or frequency stability information specifically refers to the change relative to the nominal clock frequency, which can be expressed in units of ppm;
  • Available resource information including sending resources and/or receiving resources
  • Supported sensing measurement methods such as self-transmission and self-reception, A transmits and B receives;
  • the first device obtains the above-mentioned device information, and selects the second device and the third device according to the above-mentioned device information, and/or determines a calculation method for obtaining target information based on the first information and the second information according to the above-mentioned device information.
  • the first device sends an information acquisition request to the second device and/or the third device, and the second device and/or the third device feeds back device information to the first device according to the information acquisition request.
  • the method of the embodiment of the present application further includes:
  • the first device sends configuration information of the first signal to the second device and the third device;
  • the first device sends configuration information of the first signal to the second device so that the second device sends the first signal according to the configuration information of the first signal
  • the first device sends configuration information of the first signal to the third device so that the third device receives the first signal according to the configuration information of the first signal
  • the configuration information of the first signal includes at least one of the following:
  • the configuration identification information is used to distinguish signal configuration information of different first signals
  • the above waveform can be Orthogonal frequency division multiplexing (OFDM), Single-carrier Frequency-Division Multiple Access (SC-FDMA), Orthogonal Time Frequency Space (OTFS), Frequency Modulated Continuous Wave (FMCW), pulse signal, etc.;
  • OFDM Orthogonal frequency division multiplexing
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • pulse signal etc.
  • the above subcarrier spacing may be the subcarrier spacing of an OFDM system, such as 30 KHz.
  • the above-mentioned guard interval is the time interval from the moment when the signal ends to the moment when the latest echo signal of the signal is received; this parameter is proportional to the maximum perception distance; for example, it can be calculated by c/(2R max ), R max is the maximum perception distance (belonging to the perception requirement information), for example, for a self-transmitted and self-received perception signal, R max represents the maximum distance from the perception signal receiving and transmitting point to the signal transmitting point; in some cases, the OFDM signal cyclic prefix (CP) can play the role of the minimum guard interval; c is the speed of light.
  • the above-mentioned frequency domain starting position refers to the starting frequency point, and can also be the index of the starting resource element (Resource Element, RE) or the starting resource block (Resource Block, RB).
  • the frequency domain resource length refers to the frequency domain bandwidth, which is inversely proportional to the distance resolution.
  • the frequency domain bandwidth B of each first signal is ⁇ c/(2 ⁇ R), where c is the speed of light and ⁇ R is the distance resolution.
  • the frequency domain resource spacing is inversely proportional to the maximum unambiguous distance/delay, wherein for an OFDM system when subcarriers are continuously mapped, the frequency domain spacing is equal to the subcarrier spacing;
  • time domain starting position refers to the starting time point, and may also be a starting symbol, time slot, or frame index;
  • time domain resource length is also called burst duration, and the time domain resource length is inversely proportional to the Doppler resolution (which belongs to the sensing requirement information);
  • the above-mentioned time domain resource interval is the time interval between two adjacent signals.
  • the above signal power can take a value from -20dBm to 23dBm at an interval of 2dBm.
  • the above sequence information includes the generated sequence information (ZC sequence or PN sequence) and the generation method.
  • the above-mentioned signal direction includes angle information or beam information of signal transmission.
  • the method of the embodiment of the present application further includes:
  • the first device sends first indication information to the third device, where the first indication information is used to instruct the third device to process the first signal and/or provide information feedback;
  • the first indication information includes at least one of the following:
  • first threshold information where the first threshold information is associated with performance indicator information of a first signal sent by the second device
  • a crystal oscillator frequency adjustment indication wherein the crystal oscillator frequency adjustment indication is used to prohibit the third device from adjusting the crystal oscillator frequency, or to instruct the third device to send adjusted crystal oscillator frequency information.
  • the crystal oscillator frequency adjustment indication is used to prohibit the third device from adjusting the crystal oscillator frequency
  • the third device down-converts the first signal based on the first frequency and up-converts the second signal based on the second frequency, the first frequency and the second frequency are the same
  • the crystal oscillator frequency adjustment indication is used to instruct the third device to send adjusted crystal oscillator frequency information
  • the third device adjusts the crystal oscillator frequency, that is, the first frequency and the second frequency are different, then the third device feeds back the adjusted crystal oscillator frequency information to the first device or the second device, such as the difference between the first frequency and the second frequency.
  • the method of the embodiment of the present application further includes:
  • the first device obtains first performance indicator information sent by the third device, where the first performance indicator information is performance indicator information of the first signal; when the first performance indicator information does not meet the first threshold information, adjust the signal configuration information of the first signal;
  • the first device obtains third indication information sent by a third device, where the third indication information is used to indicate that performance indicator information of the first signal does not meet first threshold information, and/or is used to instruct the first device to adjust the first signal; the first device adjusts signal configuration information of the first signal according to the third indication information;
  • the first information is a measurement result corresponding to the adjusted first signal.
  • the third device measures the first signal and can also obtain the above-mentioned first performance indicator information.
  • the third device can feed back the above-mentioned first performance indicator information to the first device, so that when the first device determines that the first performance indicator information of the first signal does not meet the first threshold information, it can adjust the configuration information of the first signal or determine that the measurement has failed, and feed back a failure indication to the initiator of the perception demand, so as to re-perform the Doppler measurement.
  • the third device sends the above-mentioned third indication information to the first device, so that the first device adjusts the signal configuration information of the first signal, so as to re-perform the Doppler measurement.
  • the first device determines the measurement failure based on the third indication information. If the request fails, a failure indication is fed back to the initiator of the perception demand.
  • the first threshold information may be pre-agreed or indicated by the first indication information.
  • the method of the embodiment of the present application further includes:
  • the first device sends signal configuration information of a second signal to the second device and the third device.
  • the method of the embodiment of the present application further includes:
  • the first device acquires signal configuration information of a second signal sent by the second device
  • the first device sends signal configuration information of the second signal to the third device.
  • the method of the embodiment of the present application further includes:
  • the first device sends signal configuration recommendation information of the second signal to the second device;
  • the signal configuration information of the second signal is determined according to the signal configuration recommendation information.
  • the signal configuration recommendation information includes part or all of the signal configuration information of the second signal.
  • the first device determines the signal configuration information of the second signal according to the signal configuration recommendation information, and sends it to the third device and the second device.
  • the method of the embodiment of the present application further includes:
  • the first device sends second indication information to the second device, where the second indication information is used to instruct the second device to process the second signal and/or provide information feedback;
  • the second indication information includes at least one of the following:
  • the second threshold information is associated with performance indicator information of a second signal sent by a third device
  • a crystal oscillator frequency adjustment indication where the crystal oscillator frequency adjustment indication is used to prohibit the second device from adjusting the crystal oscillator frequency, or to instruct the second device to send adjusted crystal oscillator frequency information.
  • the crystal oscillator frequency adjustment indication is used to prohibit the second device from adjusting the crystal oscillator frequency
  • the second device up-converts the first signal based on the third frequency and down-converts the second signal based on the fourth frequency
  • the third frequency and the fourth frequency are the same
  • the crystal oscillator frequency adjustment indication is used to instruct the second device to send adjusted crystal oscillator frequency information
  • the second device adjusts the crystal oscillator frequency, that is, the third frequency and the fourth frequency are different, then the second device feeds back the adjusted crystal oscillator frequency information to the first device or the third device, such as the difference between the third frequency and the fourth frequency.
  • the method of the embodiment of the present application further includes:
  • the first device obtains fourth indication information sent by the second device, where the fourth indication information is used to indicate that the second performance indicator information does not meet the second threshold information, and/or is used to instruct the first device to adjust the configuration information of the second signal; the first device adjusts the signal configuration information of the second signal according to the fourth indication information;
  • the second information is a measurement result corresponding to the adjusted second signal.
  • the second device measures the second signal and can also obtain the above-mentioned second performance indicator information.
  • the second device can feed back the above-mentioned second performance indicator information to the first device, so that when the first device determines that the second performance indicator information of the second signal does not meet the second threshold information, it adjusts the configuration information of the second signal or determines that the measurement fails, and feeds back a failure indication to the initiator of the perception demand, so as to re-perform the Doppler measurement.
  • the second device after the second device obtains the second performance indicator information, it sends the above-mentioned fourth indication information to the first device, so that the first device adjusts the signal configuration information of the second signal, so as to re-perform the Doppler measurement.
  • the first device determines that the measurement fails according to the fourth indication information, and feeds back a failure indication to the initiator of the perception demand.
  • the configuration information of the second signal includes at least one of the following:
  • the relative time domain position relationship information between the first signal and the second signal is the relative time domain position relationship information between the first signal and the second signal.
  • the relative time domain position relationship information includes at least one of the following:
  • the time domain resources for sending the second signal are associated with the channel stabilization time, that is, the time interval ( TRTD ) between the starting position of the first signal in the time domain and the ending position of the second signal in the time domain is less than or equal to the channel stabilization time, and the channel stabilization time is the time when the channel Doppler is approximately unchanged.
  • the relationship between the time domain resource position of the second signal sending and the time domain resource position of the first signal is shown in Figure 3.
  • the first signal and the second signal may be sent sequentially or alternately in the time domain, as shown in FIG4 .
  • the relative time domain position relationship between the first signal and the second signal does not include T offset2 and T offset3 .
  • the configuration information of the first signal and/or the second signal configuration information and/or the related measurement feedback process may be agreed upon in advance.
  • the second device and the third device detect the Doppler measurement request, they may send the first signal and the second signal, and feedback the first information and the second information according to the agreed content.
  • the performance indicator information includes at least one of the following:
  • Signal strength information for example, Received Signal Strength Indication (RSSI) or Reference Signal Received Power (RSRP);
  • RSSI Received Signal Strength Indication
  • RSRP Reference Signal Received Power
  • SINR Signal to Interference and Noise Ratio
  • SNR Signal to Noise Ratio
  • the first signal or the second signal includes at least one of the following:
  • DMRS Demodulation Reference Signal
  • CSI-RS Downlink Channel State Information Reference Signal
  • PRS Positioning Reference Signal
  • Synchronization signals e.g., Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS);
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • Perceptual signals such as Chirp signals
  • Synaesthesia signal that is, a signal that can be used for perception and communication at the same time.
  • the method of the embodiment of the present application further includes:
  • a perception result is obtained according to the target information.
  • the first device after the first device obtains the target information, it can obtain a perception result based on the target information.
  • the perception result is a perception result corresponding to a perception service with Doppler as the basic measurement quantity, including but not limited to: movement speed, movement direction, whether a target exists or the number of targets, movement trajectory, movements, gestures, vital signs (breathing, heartbeat, etc.).
  • the first device in the embodiment of the present application may be specifically a sensing network function device, which may also be called a sensing network element or a sensing management function (Sensing Management Function, Sensing MF), which may be located on the radio access network (Radio Access Network, RAN) side or the core network side, and refers to a network node in the core network and/or RAN that is responsible for at least one function such as sensing request processing, sensing resource scheduling, sensing information interaction, and sensing data processing. It may be based on the AMF or location management function (Location Management Function, LMF) upgrade in the 5G network, or it may be other network nodes or newly defined network nodes.
  • the functional characteristics of the sensing network function/sensing network element may include at least one of the following:
  • a wireless signal sending device and/or a wireless signal measuring device including a target terminal or a serving base station of the target terminal or a base station associated with a target area
  • the target information includes a sensing processing request, sensing capability, sensing auxiliary data, a sensing measurement quantity type, sensing resource configuration information, etc., so as to obtain a value of a target sensing result or a sensing measurement quantity (uplink measurement quantity or downlink measurement quantity) sent by the wireless signal measuring device; wherein the wireless signal may also be referred to as a sensing signal.
  • the sensing method to be used is determined based on factors such as the type of sensing service, sensing service consumer information, required sensing service quality (QoS) requirement information, the sensing capability of the wireless signal transmitting device, and the sensing capability of the wireless signal measuring device.
  • the sensing method may include: base station A sends and base station B receives, or the base station sends and the terminal receives, or base station A sends and receives by itself, or the terminal sends and the base station receives, or the terminal sends and receives by itself, or terminal A sends and terminal B receives, etc.
  • the perception device serving the perception service based on factors such as the type of perception service, information about the perception service consumer, required perception QoS requirement information, the perception capability of the wireless signal sending device, and the perception capability of the wireless signal measuring device, wherein the perception device includes a wireless signal sending device and/or a wireless signal measuring device.
  • the perceived SNR may be a ratio of the perceived target associated signal power to the noise power, and the perceived SNR may be a ratio of the perceived target associated signal power to the sum of the powers of noise and interference.
  • the method for acquiring the power of the perceived target associated signal may be at least one of the following options:
  • Constant False Alarm Rate Detector CFAR
  • FFT Fast Fourier Transform
  • CFAR Constant False Alarm Rate Detector
  • CFAR is performed based on the Doppler one-dimensional image obtained by slow time dimension FFT processing of the echo signal, and the maximum amplitude sample point of CFAR over the threshold is used as the target sample point, and its amplitude is used as the target signal amplitude to calculate the perceived target associated signal power, as shown in Figure 5;
  • CFAR is performed, and the maximum amplitude sample point of CFAR over the threshold is taken as the target sample point, and its amplitude is taken as the target signal amplitude to calculate the perceived target associated signal power;
  • CFAR is performed based on the delay-Doppler-angle three-dimensional graph obtained by 3D-FFT processing of the echo signal, and the maximum amplitude sample point of CFAR over the threshold is used as the target sample point, and its amplitude is used as the target signal amplitude to calculate the perceived target associated signal power;
  • the method of determining the target signal amplitude can also be to use the maximum amplitude sample point of CFAR over-threshold and the average of several of its nearest over-threshold sample points as the target signal amplitude to calculate the perceived target associated signal power.
  • the method for obtaining the SNR/SINR of the echo signal may be at least one of the following options:
  • CFAR is performed based on the time delay one-dimensional graph obtained by fast time dimension FFT processing of the echo signal.
  • the maximum amplitude sample point of CFAR over the threshold is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • All sample points in the one-dimensional graph other than ⁇ sample points from the target sample point are taken as interference/noise sample points, and their average interference/amplitude is counted as the interference/noise signal amplitude, as shown in Figure 5.
  • the SNR/SINR is calculated using the target signal amplitude and the interference/noise signal amplitude.
  • CFAR is performed based on the Doppler one-dimensional image obtained by slow time dimension FFT processing of the echo signal.
  • the maximum amplitude sample point of the CFAR threshold is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • All sample points in the one-dimensional image other than ⁇ sample points from the target sample point are taken as interference/noise sample points, and their average amplitude is counted as the interference/noise signal amplitude.
  • the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude.
  • CFAR Based on the delay-Doppler two-dimensional map obtained by 2D-FFT processing of the echo signal, CFAR is performed.
  • the maximum amplitude sample point that exceeds the threshold of CFAR is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • All sample points in the two-dimensional map that are ⁇ (fast time dimension) and ⁇ (slow time dimension) away from the target sample point are taken as interference/noise sample points, and their average amplitude is counted as the interference/noise signal amplitude.
  • the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude;
  • CFAR is performed based on the delay-Doppler-angle three-dimensional graph obtained by 3D-FFT processing of the echo signal.
  • the maximum amplitude sample point that exceeds the CFAR threshold is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • All sample points in the three-dimensional graph that are ⁇ (fast time dimension), ⁇ (slow time dimension) and ⁇ (angle dimension) away from the target sample point are taken as interference/noise sample points, and their average amplitude is counted as the interference/noise signal amplitude.
  • the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude.
  • the method of determining the target signal amplitude may also be to use the maximum amplitude sample point of CFAR over-threshold and the average of several adjacent over-threshold sample points as the target signal amplitude;
  • the method for determining the interference/noise sample points can also be further screening based on the interference/noise sample points determined above, and the screening method is: for the one-dimensional delay graph, remove several sample points near the delay of 0, and use the remaining interference/noise sample points as noise sample points; for the one-dimensional Doppler graph, remove several sample points near the Doppler of 0, and use the remaining interference/noise sample points as interference/noise sample points; for the two-dimensional delay-Doppler graph, remove the interference/noise sample points in the strip range composed of several points near the delay of 0 and the entire Doppler range, and use the remaining noise sample points as interference/noise sample points; for the three-dimensional delay-Doppler-angle graph, remove the interference/noise sample points in the slice range composed of several points near the time dimension 0, the entire Doppler range and the entire angle range, and use the remaining interference/noise sample points as interference/noise sample points.
  • a first device acquires first information and second information; the first device obtains target information based on the first information and the second information; wherein the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device, and the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the second device and the third device, and improve the accuracy of the Doppler measurement.
  • the embodiment of the present application further provides a Doppler measurement method, including:
  • Step 601 The third device obtains a first signal sent by the second device
  • Step 602 The third device obtains first information according to the first signal and sends the first information to the first device;
  • Step 603 The third device sends a second signal to the second device, where the second signal is used to obtain second information;
  • the first information and the second information are used to obtain target information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • the first device in the present application may be a core network perception network function device
  • the second device may be a network side device, such as a base station
  • the third device may specifically be a terminal.
  • the first information is obtained by a third device measuring the first signal.
  • the second information is obtained by a second device measuring the second signal.
  • the network side device sends the first signal through a downlink time slot, and the terminal sends the second signal through an uplink time slot.
  • a third device obtains a first signal sent by a second device; the third device obtains first information based on the first signal and sends it to the first device; the third device sends a second signal to the second device, and the second signal is used to obtain second information; wherein the first information and the second information are used to obtain target information, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the first device and the second device, and improve the accuracy of the Doppler measurement.
  • the third device sending a second signal to the second device includes:
  • the third device obtains a second request sent by the first device, wherein the second request includes identification information of the second device and identification information of the third device, or includes identification information of the second device;
  • the third device In case of determining to participate in Doppler measurement, the third device sends a second signal to the second device.
  • the method further includes:
  • the third device sends a second response to the first device, where the second response is used to instruct the third device to participate in the Doppler measurement, or to indicate that the third device refuses to participate in the Doppler measurement and/or the reason for refusing to participate in the Doppler measurement.
  • the third device sending a second signal to the second device includes:
  • the third device acquires the first signal sent by the second device, including:
  • the third device acquires signal configuration information of the first signal
  • the method of the embodiment of the present application further includes:
  • the third device acquires first indication information sent by the first device, where the first indication information is used to instruct the third device to process the first signal and/or provide information feedback;
  • the first indication information includes at least one of the following:
  • first threshold information where the first threshold information is associated with performance indicator information of a first signal sent by the second device
  • a crystal oscillator frequency adjustment indication wherein the crystal oscillator frequency adjustment indication is used to prohibit the third device from adjusting the crystal oscillator frequency, or to instruct the third device to send adjusted crystal oscillator frequency information.
  • the method of the embodiment of the present application further includes:
  • first performance indicator information is performance indicator information of the first signal
  • fourth indication information or third indication information is sent to the first device, where the third indication information is used to indicate that the first performance indicator information does not meet the first threshold information, and/or is used to instruct the first device to adjust the first signal;
  • the first information is a measurement result corresponding to the adjusted first signal.
  • the method in the embodiment of the present application before the third device acquires the first signal sent by the second device, further includes:
  • the third device sends device information of the third device to the first device, where the device information includes at least one of the following:
  • a third device obtains a first signal sent by a second device; the third device obtains first information based on the first signal and sends it to the first device; the third device sends a second signal to the second device, and the second signal is used to obtain second information; wherein the first information and the second information are used to obtain target information, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the first device and the second device, and improve the accuracy of the Doppler measurement.
  • the embodiment of the present application further provides a Doppler measurement method, including:
  • Step 701 The second device sends a first signal to a third device, where the first signal is used to obtain first information.
  • Step 702 The second device obtains a second signal sent by the third device.
  • Step 703 the second device obtains second information according to the second signal, and sends the second information to a third device, where the first information and the second information are used to obtain target information;
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • the second device sends a first signal to the third device, and the first signal is used to obtain the first information; the second device obtains the second signal sent by the third device; the second device obtains the second information according to the second signal and sends it to the third device, and the first information and the second information are used to obtain the target information, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the first device and the second device, and improve the accuracy of the Doppler measurement.
  • the Doppler measurement method performed by the second device or the third device is a method corresponding to the Doppler measurement method performed by the first device.
  • the specific interaction process has been described in detail in the method embodiment on the first device side and will not be repeated here.
  • the Doppler measurement method provided in the embodiment of the present application may be performed by a Doppler measurement device.
  • the Doppler measurement device performing the Doppler measurement method is taken as an example to illustrate the Doppler measurement device provided in the embodiment of the present application.
  • an embodiment of the present application provides a Doppler measurement device 800, which is applied to a first device and includes:
  • a first acquisition module 801 is used to acquire first information and second information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • the first signal and the second signal have the same time domain resource format
  • the time domain resource format includes a time domain resource length and a time domain resource interval.
  • time domain resource length of the first signal and the time domain resource length of the second signal are associated with Doppler resolution
  • the time domain resource interval of the first signal and the time domain resource interval of the second signal are associated with a maximum unambiguous Doppler frequency shift.
  • the device in the embodiment of the present application further includes:
  • a third sending module is used to send a first request to the second device and a second request to the third device before the first acquiring module acquires the first information and the second information, wherein the first request is used to request the second device to perform Doppler measurement, and the second request is used to request the third device to perform Doppler measurement;
  • a fourth acquisition module used to acquire a first response sent by the second device and a second response sent by the third device
  • the first response is used to instruct the second device to participate in the Doppler measurement, or to indicate that the second device refuses to participate in the Doppler measurement and/or the reason for refusing to participate in the Doppler measurement;
  • the second response is used to instruct the third device to participate in the Doppler measurement, or to indicate that the third device refuses to participate in the Doppler measurement and/or the reason for refusing to participate in the Doppler measurement;
  • the first information is obtained when the first response indicates that the third device participates in the Doppler measurement
  • the second information is obtained if the second response indicates that the second device participates in the Doppler measurement.
  • the device of the embodiment of the present application further includes:
  • An acquisition module used to acquire device information sent by the candidate second device and device information sent by the candidate third device
  • a first determining module configured to determine the second device and the third device according to the device information
  • the device information includes at least one of the following:
  • the device of the embodiment of the present application further includes:
  • a fourth sending module configured to send configuration information of the first signal to the second device and the third device
  • the configuration information of the first signal includes at least one of the following:
  • the device in the embodiment of the present application further includes:
  • a fifth sending module configured to send first indication information to a third device, where the first indication information is used to instruct the third device to process the first signal and/or provide information feedback;
  • the first indication information includes at least one of the following:
  • first threshold information where the first threshold information is associated with performance indicator information of a first signal sent by the second device
  • a crystal oscillator frequency adjustment indication wherein the crystal oscillator frequency adjustment indication is used to prohibit the third device from adjusting the crystal oscillator frequency, or to instruct the third device to send adjusted crystal oscillator frequency information.
  • the device of the embodiment of the present application further includes:
  • a fifth acquisition module configured to acquire first performance indicator information sent by a third device, where the first performance indicator information is performance indicator information of a first signal; and a first adjustment module, configured to adjust signal configuration information of the first signal when the first performance indicator information does not meet the first threshold information.
  • it further includes: a sixth acquisition module, configured to acquire third indication information sent by a third device, wherein the third indication information is used to indicate that the first performance indicator information does not meet the first threshold information, and/or is used to instruct the first device to adjust the first signal; a second adjustment module, configured to adjust the signal configuration information of the first signal according to the third indication information;
  • the first information is a measurement result corresponding to the adjusted first signal.
  • the device in the embodiment of the present application further includes:
  • a sixth sending module is used to send signal configuration information of the second signal to the second device and the third device.
  • the device of the embodiment of the present application further includes:
  • a seventh acquisition module used to acquire signal configuration information of a second signal sent by a second device
  • a seventh sending module is used to send the signal configuration information of the second signal to the third device.
  • the device of the embodiment of the present application further includes:
  • An eighth sending module configured to send signal configuration recommendation information of the second signal to a second device
  • the signal configuration information of the second signal is determined according to the signal configuration recommendation information.
  • the device of the embodiment of the present application further includes:
  • a ninth sending module configured to send second indication information to the second device, where the second indication information is used to instruct the second device to process the second signal and/or provide information feedback;
  • the second indication information includes at least one of the following:
  • the second threshold information is associated with performance indicator information of a second signal sent by a third device
  • a crystal oscillator frequency adjustment indication where the crystal oscillator frequency adjustment indication is used to prohibit the second device from adjusting the crystal oscillator frequency, or to instruct the second device to send adjusted crystal oscillator frequency information.
  • the device of the embodiment of the present application further includes:
  • an eighth acquisition module configured to acquire second performance indicator information sent by the second device, where the second performance indicator information is performance indicator information of the second signal
  • a third adjustment module configured to adjust the signal configuration information of the second signal when the second performance indicator information does not meet the second threshold information
  • it further includes: a ninth acquisition module, configured to acquire fourth indication information sent by the second device, the fourth indication information being used to indicate that the second performance indicator information does not meet the second threshold information, and/or being used to instruct the first device to adjust the configuration information of the second signal; a fourth adjustment module, configured to adjust the signal configuration information of the second signal according to the fourth indication information;
  • the second information is a measurement result corresponding to the adjusted second signal.
  • the configuration information of the second signal includes at least one of the following:
  • the relative time domain position relationship information between the first signal and the second signal is the relative time domain position relationship information between the first signal and the second signal.
  • the relative time domain position relationship information includes at least one of the following:
  • the time interval between the time domain start position of the first signal and the time domain end position of the second signal is the time interval between the time domain start position of the first signal and the time domain end position of the second signal.
  • the performance indicator information includes at least one of the following:
  • the first signal or the second signal includes at least one of the following:
  • the device of the embodiment of the present application further includes:
  • the tenth acquisition module is used to obtain the perception result according to the target information.
  • the first device obtains the first information and the second information; the first device obtains the target information according to the first information and the second information; wherein the first information is the Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device, and the second information is the Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device.
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the first information contains the clock frequency deviation of the transceiver device
  • the second information also contains the clock frequency deviation of the transceiver device
  • the transceiver devices corresponding to the first information and the second information are relative
  • a certain algorithm based on the first information and the second information can offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the second device and the third device, and improve the accuracy of Doppler measurement.
  • the embodiment of the present application further provides a Doppler measurement device 900, which is applied to a third device and includes:
  • a third acquisition module 901 is used to acquire a first signal sent by a second device
  • a first processing module 902 configured to obtain first information according to the first signal and send the first information to a first device
  • a first sending module 903, configured to send a second signal to the second device, where the second signal is used to obtain second information
  • the first information and the second information are used to obtain target information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • the first sending module includes:
  • a first acquisition submodule used for acquiring a second request sent by the first device, where the second request is used for requesting the third device to perform Doppler measurement;
  • the first sending submodule is used to send a second signal to the second device when it is determined to participate in the Doppler measurement.
  • the first sending module further includes:
  • the second sending submodule is used to send a second response to the first device after the first obtaining submodule obtains the second request sent by the first device, and the second response is used to indicate that the third device participates in the Doppler measurement, or to indicate that the third device refuses to participate in the Doppler measurement and/or the reason for refusing to participate in the Doppler measurement.
  • the first sending module includes:
  • a second acquisition submodule used to acquire configuration information of the second signal
  • the third sending submodule is used to send the second signal to the second device according to the configuration information of the second signal.
  • the third acquisition module includes:
  • a third acquisition submodule used to acquire signal configuration information of the first signal
  • the fourth acquisition submodule is used to acquire the first signal sent by the second device according to the signal configuration information of the first signal.
  • the device of the embodiment of the present application further includes:
  • an eleventh obtaining module configured to obtain first indication information sent by the first device, where the first indication information is used to instruct the third device to process the first signal and/or provide information feedback;
  • the first indication information includes at least one of the following:
  • first threshold information where the first threshold information is associated with performance indicator information of a first signal sent by the second device
  • a crystal oscillator frequency adjustment indication wherein the crystal oscillator frequency adjustment indication is used to prohibit the third device from adjusting the crystal oscillator frequency, or to instruct the third device to send adjusted crystal oscillator frequency information.
  • the device in the embodiment of the present application further includes:
  • a tenth sending module configured to send first performance indicator information to the first device, where the first performance indicator information is performance indicator information of the first signal;
  • fourth indication information or third indication information is sent to the first device, where the third indication information is used to indicate that the first performance indicator information does not meet the first threshold information, and/or is used to instruct the first device to adjust the first signal;
  • the first information is a measurement result corresponding to the adjusted first signal.
  • the device in the embodiment of the present application further includes:
  • An eleventh sending module is configured to send device information to the first device, where the device information includes at least one of the following:
  • the third device obtains a first signal sent by the second device; the third device obtains first information according to the first signal and sends it to the first device; the third device sends a second signal to the second device, and the second signal is used to obtain second information; wherein the first information and the second information are used to obtain target information,
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the first information contains the clock frequency deviation of the transceiver device
  • the second information also contains the clock frequency deviation of the transceiver device
  • the transceiver devices corresponding to the first information and the second information are relative, therefore, a certain algorithm based on the first information and the second information can offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the first device and the second device, and improve the accuracy of Doppler measurement.
  • the embodiment of the present application further provides a Doppler measurement device 1000, which is applied to a second device and includes:
  • the second sending module 1001 is used to send a first signal to a third device, where the first signal is used to obtain first information;
  • a fourth acquisition module 1002 is used to acquire a second signal sent by the third device
  • a second processing module 1003 is used to obtain second information according to the second signal and send the second information to a third device, where the first information and the second information are used to obtain target information;
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • the second device sends a first signal to the third device, and the first signal is used to obtain the first information; the second device obtains the second signal sent by the third device; the second device obtains the second information according to the second signal and sends it to the third device, and the first information and the second information are used to obtain the target information, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the first device and the second device, and improve the accuracy of the Doppler measurement.
  • the Doppler measurement device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the Doppler measurement device provided in the embodiment of the present application can implement each process implemented by the method embodiments of Figures 2 to 7 and achieve the same technical effect. To avoid repetition, it will not be described here.
  • the embodiment of the present application further provides a communication device 1100, including a processor 1101 and a memory 1102, wherein the memory 1102 stores a program or instruction that can be run on the processor 1101.
  • the communication device 1100 is a first device
  • the program or instruction is executed by the processor 1101 to implement each step of the Doppler measurement method embodiment executed by the first device, and can achieve the same technical effect.
  • the communication device 1100 is When the communication device 1100 is a second device, the program or instruction is executed by the processor 1101 to implement the various steps of the Doppler measurement method embodiment executed by the second device, and can achieve the same technical effect.
  • the communication device 1100 is a third device, the program or instruction is executed by the processor 1101 to implement the various steps of the Doppler measurement method embodiment executed by the third device, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a third device, including a processor and a communication interface, the communication interface is used to obtain a first signal sent by a second device; the processor is used to obtain first information according to the first signal; the communication interface sends the first information to the first device and sends a second signal to the second device, and the second signal is used to obtain the second information; wherein the first information and the second information are used to obtain target information, the first information is the Doppler shift information obtained by the third device by measuring the first signal sent by the second device, the second information is the Doppler shift information obtained by the second device by measuring the second signal sent by the third device, and the target information is used to indicate the Doppler shift information between the second device and the third device, and the Doppler shift information is the Doppler shift information associated with the motion of the perceived target in the channel.
  • a third device including a processor and a communication interface, the communication interface is used to obtain a first signal sent by a second device; the processor is used to obtain first information according to the first
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209 and at least some of the components of the processor 1210.
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1210 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1204 may include a graphics processing unit (GPU) 12041 and a microphone 12042, and the graphics processor 12041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1206 may include a display panel 12061, and the display panel 12061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1207 includes a touch panel 12071 and at least one of other input devices 12072.
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1201 can transmit the data to the processor 1210 for processing; in addition, the RF unit 1201 can send uplink data to the network side device.
  • the RF unit 1201 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1209 can be used to store software programs or instructions and various data.
  • the memory 1209 can mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area can store an operating system, Applications or instructions required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1209 may include a volatile memory or a non-volatile memory, or the memory 1209 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1209 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1210.
  • the radio frequency unit 1201 is used to obtain a first signal sent by a second device; the processor 1210 is used to obtain first information according to the first signal and send it to the first device through the radio frequency unit 1201; the radio frequency unit 1201 is used to send a second signal to the second device, and the second signal is used to obtain second information;
  • the first information and the second information are used to obtain target information
  • the first information is Doppler frequency shift information obtained by the third device by measuring the first signal sent by the second device
  • the second information is Doppler frequency shift information obtained by the second device by measuring the second signal sent by the third device
  • the target information is used to indicate the Doppler frequency shift information between the second device and the third device
  • the Doppler frequency shift information is Doppler frequency shift information associated with the movement of the perceived target in the channel.
  • the radio frequency unit 1201 is further configured to:
  • a second signal is sent to the second device.
  • the radio frequency unit 1201 is further configured to:
  • a second response is sent to the first device, where the second response is used to instruct the third device to participate in the Doppler measurement, or to indicate that the third device refuses to participate in the Doppler measurement and/or the reason for refusing to participate in the Doppler measurement.
  • the radio frequency unit 1201 is further configured to:
  • the radio frequency unit 1201 is further configured to:
  • the radio frequency unit 1201 is further configured to:
  • the first indication information includes at least one of the following:
  • first threshold information where the first threshold information is associated with performance indicator information of a first signal sent by the second device
  • a crystal oscillator frequency adjustment indication wherein the crystal oscillator frequency adjustment indication is used to prohibit the third device from adjusting the crystal oscillator frequency, or to instruct the third device to send adjusted crystal oscillator frequency information.
  • the radio frequency unit 1201 is further configured to:
  • first performance indicator information is performance indicator information of the first signal
  • fourth indication information or third indication information is sent to the first device, where the third indication information is used to indicate that the first performance indicator information does not meet the first threshold information, and/or is used to instruct the first device to adjust the first signal;
  • the first information is a measurement result corresponding to the adjusted first signal.
  • the radio frequency unit 1201 is further configured to:
  • a third device obtains a first signal sent by a second device; the third device obtains first information based on the first signal and sends it to the first device; the third device sends a second signal to the second device, and the second signal is used to obtain second information; wherein the first information and the second information are used to obtain target information, and the target information is used to indicate the Doppler frequency shift information between the second device and the third device.
  • the second information also contains the clock frequency deviation of the transceiver device, and the transceiver devices corresponding to the first information and the second information are relative, therefore, based on the above-mentioned first information and the second information, a certain algorithm can be used to offset the transceiver clock frequency deviation, accurately obtain the Doppler frequency shift information between the first device and the second device, and improve the accuracy of the Doppler measurement.
  • the embodiment of the present application also provides a network side device (first device), including a processor and a communication interface, the communication interface is used to obtain first information and second information; the processor is used to obtain target information according to the first information and the second information; wherein the first information is the Doppler shift information obtained by the third device by measuring the first signal sent by the second device, the second information is the Doppler shift information obtained by the second device by measuring the second signal sent by the third device, the target information is used to indicate the Doppler shift information between the second device and the third device, and the Doppler shift information is the Doppler shift information associated with the motion of the perceived target in the channel.
  • This network side device embodiment corresponds to the above-mentioned first device method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device (second device), including a processor and a communication interface, the communication interface is used to send a first signal to a third device, the first signal is used to obtain first information; obtain a second signal sent by the third device; the processor is used to obtain second information according to the second signal, and send it to the third device through the communication interface, the first information and the second information are used to obtain target information; wherein, the first information is the Doppler shift information obtained by the third device by measuring the first signal sent by the second device, the second information is the Doppler shift information obtained by the second device by measuring the second signal sent by the third device, the target information is used to indicate the Doppler shift information between the second device and the third device, and the Doppler shift information is the Doppler shift information associated with the motion of the perceived target in the channel.
  • This network side device embodiment corresponds to the above-mentioned second device method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side
  • the embodiment of the present application also provides a network side device.
  • the network side device 1300 includes: an antenna 131, a radio frequency device 132, a baseband device 133, a processor 134 and a memory 135.
  • the antenna 131 is connected to the radio frequency device 132.
  • the radio frequency device 132 receives information through the antenna 131 and sends the received information to the baseband device 133 for processing.
  • the baseband device 133 processes the information to be sent and sends it to the radio frequency device 132.
  • the radio frequency device 132 processes the received information and sends it out through the antenna 131.
  • the method executed by the second device in the above embodiment may be implemented in the baseband device 133, which includes a baseband processor.
  • the baseband device 133 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG13 , one of the chips is, for example, a baseband processor, which is connected to the memory 135 via a bus interface to call the memory.
  • the program in 135 executes the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 136, which is, for example, a common public radio interface (CPRI).
  • a network interface 136 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1300 of the embodiment of the present application also includes: instructions or programs stored in the memory 135 and executable on the processor 134.
  • the processor 134 calls the instructions or programs in the memory 135 to execute the methods executed by the modules shown in Figure 10 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a network side device.
  • the network side device 1400 includes: a processor 1401, a network interface 1402, and a memory 1403.
  • the network interface 1402 is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1400 of the embodiment of the present application also includes: instructions or programs stored in the memory 1403 and executable on the processor 1401.
  • the processor 1401 calls the instructions or programs in the memory 1403 to execute the method executed by each module shown in Figure 8 and achieves the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the program or instruction is executed by a processor, each process of the above-mentioned Doppler measurement method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned Doppler measurement method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiment of the present application further provides a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned Doppler measurement method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a Doppler measurement system, including: a first device, a second device and a third device, wherein the first device can be used to execute the steps of the method executed by the first device as described above, the second device can be used to execute the steps of the method executed by the second device as described above, and the third device can be used to execute the steps of the method executed by the third device as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种多普勒测量方法、装置及通信设备,属于通信技术领域,本申请实施例的多普勒测量方法包括:第一设备获取第一信息和第二信息;所述第一设备根据所述第一信息和第二信息,得到目标信息,其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。

Description

多普勒测量方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年10月10日在中国提交的中国专利申请No.202211237040.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种多普勒测量方法、装置及通信设备。
背景技术
相关技术中,基于接收信号计算得到的频率偏移信息不仅包含信道移动性带来的多普勒频率偏移,还包括收发时钟偏差,对于通信业务而言,通常不需要对两者进行区分,仅需对接收信号整体进行频偏补偿,满足解调性能即可,而感知业务通常需要得到信道多普勒信息,并基于此对环境中动态目标的检测,而如何准确地得到信道的多普勒频移信息相关技术中还没有明确方案。
发明内容
本申请实施例提供一种多普勒测量方法、装置及通信设备,能够解决如何准确地得到信道多普勒频移信息的问题。
第一方面,提供了一种多普勒测量方法,包括:
第一设备获取第一信息和第二信息;
所述第一设备根据所述第一信息和第二信息,得到目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第二方面,提供了一种多普勒测量方法,包括:
第三设备获取第二设备发送的第一信号;
所述第三设备根据所述第一信号,得到第一信息并发送给第一设备;
所述第三设备向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第三方面,提供了一种多普勒测量方法,包括:
第二设备向第三设备发送第一信号,所述第一信号用于获取第一信息;
所述第二设备获取所述第三设备发送的第二信号;
所述第二设备根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第四方面,提供了一种多普勒测量装置,应用于第一设备,包括:
第一获取模块,用于获取第一信息和第二信息;
第二获取模块,用于根据所述第一信息和第二信息,得到目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第五方面,提供了一种多普勒测量装置,应用于第三设备,包括:
第三获取模块,用于获取第二设备发送的第一信号;
第一处理模块,用于根据所述第一信号,得到第一信息并发送给第一设备;
第一发送模块,用于向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第六方面,提供了一种多普勒测量装置,应用于第二设备,包括:
第二发送模块,用于向第三设备发送第一信号,所述第一信号用于获取第一信息;
第四获取模块,用于获取所述第三设备发送的第二信号;
第二处理模块,用于根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第七方面,提供了一种终端(第三设备),该终端包括处理器和存储器,所述存储器 存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种终端(第三设备),包括处理器及通信接口,其中,所述通信接口用于获取第二设备发送的第一信号;处理器用于根据所述第一信号,得到第一信息并通过通信接口发送给第一设备;通信接口用于向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第九方面,提供了一种网络侧设备(第一设备或第二设备),该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,通信接口用于获取第一信息和第二信息;处理器用于根据所述第一信息和第二信息,得到目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
或者,通信接口用于向第三设备发送第一信号,所述第一信号用于获取第一信息;获取所述第三设备发送的第二信号;处理器用于根据所述第二信号,得到第二信息,并通过通信接口发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
第十一方面,提供了一种多普勒测量系统,包括:第一设备、第二设备及第三设备,所述第一设备可用于执行如第一方面所述的方法的步骤,所述第二设备可用于执行如第三方面所述的方法的步骤,所述第三设备可用于执行如第二方面所述的方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面或第三方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如 第二方面或第三方面所述的方法。
第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面、第二方面或第三方面所述的方法的步骤。
在本申请实施例中,第一设备获取第一信息和第二信息;所述第一设备根据所述第一信息和第二信息,得到目标信息;其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第二设备和所述第三设备之间的多普勒频移信息,提升了多普勒测量的准确性。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示本申请实施例的多普勒测量方法的流程示意图之一;
图3表示本申请实施例中第一信号和第二信号的示意图之一;
图4表示本申请实施例中第一信号和第二信号的示意图之二;
图5表示本申请实施例中一维图的SNR计算示意图;
图6表示本申请实施例的多普勒测量方法的流程示意图之二;
图7表示本申请实施例的多普勒测量方法的流程示意图之三;
图8表示本申请实施例的多普勒测量装置的模块示意图之一;
图9表示本申请实施例的多普勒测量装置的模块示意图之二;
图10表示本申请实施例的多普勒测量装置的模块示意图之三;
图11表示本申请实施例的通信设备的结构框图;
图12表示本申请实施例的终端的结构框图;
图13表示本申请实施例的网络侧设备的结构框图之一;
图14表示本申请实施例的网络侧设备的结构框图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换, 以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体 (Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。
未来移动通信系统例如超五代(Beyond 5th Generation,B5G)系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。典型的感知功能与应用场景如表1所示。
表1
通信感知一体化即在同一系统中通过频谱共享与硬件共享,实现通信、感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标物体或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带来更好的服务体验。
通信与雷达的一体化属于典型的通信感知融合应用,在过去,雷达系统与通信系统由 于研究对象与关注重点不同而被严格地区分,大部分场景下两系统被分发研究。事实上,雷达与通信系统同样作为信息发送、获取、处理和交换的典型方式,不论工作原理还是系统架构以及频段上存在着不少相似之处。通信与雷达一体化的设计具有较大的可行性,主要体现在以下几个方面:首先,通信系统与感知系统均基于电磁波理论,利用电磁波的发射和接收来完成信息的获取和传递;其次,通信系统与感知系统均具备天线、发送端、接收端、信号处理器等结构,在硬件资源上有很大重叠;随着技术的发展,两者在工作频段上也有越来越多的重合;另外,在信号调制与接收检测、波形设计等关键技术上存在相似性。通信与雷达系统融合能够带来许多优势,例如节约成本、减小尺寸、降低功耗、提升频谱效率、减小互干扰等,从而提升系统整体性能。
根据感知信号发送节点和接收节点的不同,分为以下6种感知链路,需要注意的是,下面描述每种感知链路都以一个发送节点和一个接收节点作为例子,实际系统中,根据不同的感知需求可以选择不同的感知链路,每种感知链路的发送节点和接收节点可以有一个或多个,且实际感知系统可以包括多种不同的感知链路。
1)基站回波感知。这种方式下基站发送感知信号,并通过接收该感知信号的回波来获得感知结果。
2)基站间空口感知。此时,基站2接收基站1发送的感知信号,获得感知结果。
3)上行空口感知。此时,基站接收终端设备(UE)发送的感知信号,获得感知结果。
4)下行空口感知。此时,UE接收基站发送的感知信号,获得感知结果。
5)终端回波感知。此时,UE发送感知信号,并通过接收该感知信号的回波来获得感知结果。
6)终端间旁链(Sidelink)感知。例如,UE 2接收UE 1发送的感知信号,获得感知结果。
在实际执行感知业务的过程中,通常存在硬件非理想因素,会对感知测量准确性造成影响,尤其是上述6种方式中收发设备不同的情况,在发送端和接收端都需要产生相应的载波以完成相应的上变频和下变频操作。发端需要通过上变频将发射信号搬移到特定频点进行发送,而接收端则需要将接收信号下变频到基带以方便后续处理。收发时钟通常无法保证完全一致,收发晶体振荡器都有各自的准确度,造成了系统所产生的载波信号频率与理想频率存在偏差,该偏差是接收信号载波频率偏移的主要来源之一。此外,信道移动性也会导致载波频率偏移。
根据上述描述可知,基于接收信号计算得到的频率偏移信息不仅包含信道移动性带来的多普勒频率偏移,还包括收发时钟偏差,对于通信业务而言,通常不需要对两者进行区分,仅需对接收信号整体进行频偏补偿,满足解调性能即可,而感知业务通常需要得到信道多普勒信息,从而进行对环境中动态目标的检测。收发时钟偏差对多普勒测量的影响具体解释如下:
假设不存在收发频偏,发送信号为s(t),信道中存在H个反射体,接收端经过下变频 后得到基带接收信号为:
其中,表示随机相位旋转,为白高斯噪声,bh为幅度衰减因子,fD,h为信道第h个反射体对应的多普勒频移信息,τh为第h个反射体对应的时延。
此时,接收端通过检测时域维度的相位变化(时域快速傅里叶变换(fast Fourier transform,FFT))即可得到信道多普勒频移信息。但实际系统中,收发设备时钟无法保证完全一致,即存在收发频偏,假设发端载波频率为ft,接收端载波频率为fr,且ft≠fr。
则接收端经过下变频后存在残余频差ft-fr,即基带接收信号为:
此时,接收端通过检测时域维度的相位变化,例如进行时域FFT运算,无法得到原始信道多普勒频移信息。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的多普勒测量方法进行详细地说明。
如图2所示,本申请实施例提供了一种多普勒测量方法,包括:
步骤201:第一设备获取第一信息和第二信息。
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息。
本步骤中,第一设备获取第三设备发送的第一信息,并获取第二设备发送的第二信息。
本申请中的第一设备可以是核心网感知网络功能设备,第二设备可以是网络侧设备,如基站,第三设备可具体为终端。
可选地,本申请实施例中,网络侧设备通过下行时隙发送第一信号,终端通过上行时隙发送第二信号。
步骤202:所述第一设备根据所述第一信息和第二信息,得到目标信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。即多普勒频移信息是由信道中感知目标的运动引起的多普勒频移信息。
可选地,基于上述第一信息和第二信息采用预设算法(如将两个多普勒测量结果相加后除以2)来抵消掉收发时钟偏差,得到目标信息,即所述第二设备和所述第三设备之间的多普勒频移信息。
本申请实施例中,第二设备发送第一信号给第三设备,第三设备进行测量得到第一信息并发送给第一设备;第三设备发送第二信号给第二设备,第二设备对第二信号进行测量得到第二信息并发送给第一设备;第一设备根据第一信息和第二信息得到目标信息,具体 的:
在一实现方式中,第二设备的发送信号s(t)(即第一信号)经过上变频后表示为:
第三设备对接收到的第一信号经过下变频后的接收信号表示为:
第三设备基于r(t)计算得到第一信息:
fD1,h=fD,h+(ft-fr)h=0,1,...,H-1;
第三设备向第一设备发送第一信息,并向第二设备发送第二信号s2(t):
第二设备接收s2(t)并下变频得到:
第二设备基于r2(t)得到第二信息并发送给第一设备:
fD2,h=fD,h+(fr-ft)h=0,1,...,H-1;
基于第一信息和第二信息得到目标信息:
即经过第二设备和第三设备双向发送测量信号进行多普勒测量后,两次多普勒测量结果(第一信息和第二信息)合并时收发时钟频率偏差的影响被抵消掉(即fr-ft被抵消掉),得到的目标信息不受到收发时钟频率偏差的影响。
需要说明的是,本申请实施例中的多普勒频移信息包括由信道中的至少一个感知目标的运动引起的多普勒频移信息。作为一种实现方式,上述感知目标为上述反射体中的至少一个。
本申请实施例中,第一设备获取第一信息和第二信息;所述第一设备根据所述第一信息和第二信息,得到目标信息;其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第二设备和所述第三设备之间的多普勒频移信息,提升了多普勒测量的准确性。
可选地,所述第一信号和所述第二信号具有相同的时域资源格式;
其中,所述时域资源格式包括时域资源长度和时域资源间隔。
这里,第一信号和所述第二信号具有相同的时域资源格式,能够保证第一信号和所述第二信号具有相同的多普勒测量性能。
可选地,所述第一信号和所述第二信号具有相同的时域资源长度,和/或,所述第一信号和所述第二信号具有相同的时域资源间隔。
可选地,所述第一信号的时域资源长度和所述第二信号的时域资源长度与多普勒分辨率关联;
和/或,所述第一信号的时域资源间隔和所述第二信号的时域资源间隔与最大无模糊多普勒频移关联。
在本申请的实施例中,第一信号和第二信号的时域资源长度T满足以下公式:
T≥1/Δfd
其中,T表示时域资源长度,Δfd表示多普勒分辨率。
在本申请的实施例中,所述第一信号的时域资源间隔和所述第二信号的时域资源间隔ΔT满足以下公式:
ΔT≤1/fd max
若不考虑信道中目标运动速度方向,满足:ΔT≤1/fd max;若考虑信道中目标运动速度方向,满足:ΔT≤1/(2|fd max|);其中,ΔT为时域资源间隔,fd max为最大无模糊多普勒频移。
需要说明的是,接收端多普勒的计算需要基于信号时域相位变化,即2πfdΔT=θ,其中θ为ΔT时间感知信号时域相位变化,在不考虑速度方向时,为了保证不发生多普勒模糊,需要满足θ=2πfdΔT≤2π,即最大无模糊多普勒频移与信号时域间隔关系为ΔT≤1/(fd max),最大不模糊速度与最大无模糊多普勒频移关系为vmax=fd maxc/2fc,因此最大不模糊速度与信号时域间隔关系为ΔT≤c/(2fcvmax);考虑速度方向时,为保证不发生多普勒模糊,需要满足θ=|2πfdΔT|≤π,即最大无模糊多普勒频移与感知信号时域间隔关系为ΔT1≤1/(2|fd max|),最大不模糊速度与感知信号时域间隔关系为ΔT1≤c/(4fc|vmax|)。
可选地,所述多普勒分辨率和最大无模糊多普勒频移是根据感知需求得到的,感知需求是第一设备获取的。
可选地,所述感知需求包括以下至少一项:
a)感知业务,按类型划分或具体到某项业务,例如环境重构、呼吸或心跳检测、定位或轨迹追踪、动作识别、天气监测、雷达测距/测速/测角等;
b)感知目标区域:是指感知对象可能存在位置区域,或者,需要进行成像或环境重构的位置区域;
c)感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型RCS等信息;
d)感知QoS:对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:
(1)感知分辨率(进一步可分为:测距分辨率、测角分辨率、测速分辨率、成像分辨率)等;
(2)感知精度(进一步可分为:测距精度、测角精度、测速精度、定位精度等);
(3)感知范围(进一步可分为:测距范围、测速范围、测角范围、成像范围等);
(4)感知时延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔);
(5)感知更新速率(相邻两次执行感知并获得感知结果的时间间隔);
(6)检测概率(在感知对象存在的情况下被正确检测出来的概率);
(7)虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率);
(8)可感知的最大目标个数。
可选地,所述第一设备获取第一信息和第二信息之前,还包括:
所述第一设备向所述第二设备发送第一请求,并向所述第三设备发送第二请求,所述第一请求用于请求第二设备进行多普勒测量,所述第二请求用于请求所述第三设备进行多普勒测量。
所述第一设备获取第二设备发送的第一响应和第三设备发送的第二响应;
其中,所述第一响应用于指示所述第二设备参与多普勒测量,或者,用于指示所述第二设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因;
所述第二响应用于指示所述第三设备参与多普勒测量,或者,用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因;
所述第一信息是在所述第一响应指示所述第三设备参与所述多普勒测量的情况下获取的;
所述第二信息是在所述第二响应指示所述第二设备参与所述多普勒测量的情况下获取的。
可选地,该第一请求中携带第三设备的标识信息,或者,携带第二设备和第三设备的标识信息,该第二请求中携带第二设备的标识信息,或者,携带第二设备和第三设备的标识信息。第一设备可以同时发送上述第一请求和第二请求,也可以先后分别发送上述第一请求和第二请求。
第二设备和第三设备收到上述请求后,可以根据自身移动性信息、位置信息、电量信息和发送资源信息中的至少一项,确定是否参与多普勒测量,并发送响应信息。
需要说明的是,若所述第一响应用于指示所述第二设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因,则第一设备重选选择第二设备;
若所述第二响应用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因,则第一设备重选选择第三设备。
可选地,所述方法还包括:
获取候选第二设备发送的设备信息和候选第三设备发送的设备信息;
根据所述设备信息,确定所述第二设备和所述第三设备;
其中,所述设备信息包括以下至少一项:
时钟频率误差或频率稳定度信息,具体是指相对标称时钟频率的变化量,可以用单位ppm表示;
位置信息;
移动性信息;
电量信息;
温度信息;
可用资源信息,该可用资源信息包括发送资源和/或接收资源;
故障信息;
支持的感知测量方式,例如,自发自收、A发B收;
支持的感知业务;
支持的感知测量量;
支持的感知波形或通信波形;
工作频段;
工作带宽;
发射功率;
天线配置信息。
本申请实施例中,第一设备获取上述设备信息,并根据上述设备信息来选择第二设备和第三设备,和/或,根据上述设备信息确定基于第一信息和第二信息得到目标信息的计算方式。
可选地,第一设备向第二设备和/或第三设备发送信息获取请求,第二设备和/或第三设备根据该信息获取请求向第一设备反馈设备信息。
可选地,本申请实施例的方法,还包括:
所述第一设备向所述第二设备和所述第三设备发送所述第一信号的配置信息;
这里,第一设备向第二设备发送第一信号的配置信息,以使第二设备根据该第一信号的配置信息发送第一信号,第一设备向第三设备发送第一信号的配置信息,以使第三设备根据该第一信号的配置信息接收第一信号。
其中,所述第一信号的配置信息包括以下至少一项:
配置标识信息;
波形;
子载波间隔;
保护间隔;
频域起始位置;
频域资源长度;
频域资源间隔;
时域起始位置;
时域资源长度;
时域资源间隔;
信号功率;
序列信息;
信号方向。
其中,所述配置标识信息用于区分不同的第一信号的信号配置信息;
上述波形可以为正交频分复用(Orthogonal frequency division multiplex,OFDM),单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),正交时频空间(Orthogonal Time Frequency Space,OTFS),调频连续波(Frequency Modulated Continuous Wave,FMCW),脉冲信号等;
上述子载波间隔可以是OFDM系统的子载波间隔,如为30KHz。
上述保护间隔为从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过c/(2Rmax)计算得到,Rmax为最大感知距离(属于感知需求信息),例如对于自发自收的感知信号,Rmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(CP)可以起到最小保护间隔的作用;c是光速。
上述频域起始位置是指起始频点,也可以是起始资源元素(Resource Element,RE)或起始资源块(Resource Block,RB)的索引。
上述频域资源长度是指频域带宽,所述频域带宽反比于距离分辨率,每个所述第一信号的频域带宽B≥c/(2ΔR),其中,c为光速,ΔR为距离分辨率;
上述频域资源间隔反比于最大无模糊距离/时延,其中,对于OFDM系统当子载波采用连续映射时频域间隔等于子载波间隔;
上述时域起始位置是指起始时间点,也可以是起始符号、时隙、帧索引;
上述时域资源长度,也称为突发(burst)持续时间,时域资源长度反比于多普勒分辨率(属于感知需求信息);
上述时域资源间隔是相邻的两个信号之间的时间间隔。
上述信号功率可以从-20dBm到23dBm每隔2dBm取一个值。
上述序列信息包括采用的生成序列信息(ZC序列或PN序列),以及生成方式。
上述信号方向包括信号发送的角度信息或波束信息。
可选地,本申请实施例的方法,还包括:
所述第一设备向第三设备发送第一指示信息,所述第一指示信息用于指示所述第三设备对所述第一信号进行处理和/或进行信息反馈;
其中,所述第一指示信息包括以下至少一项:
第一信号的配置标识信息;
测量量;
第一门限信息,所述第一门限信息与所述第二设备发送的第一信号的性能指标信息关联;
晶振频率调整指示,所述晶振频率调整指示用于禁止所述第三设备进行晶振频率调整,或者,用于指示第三设备发送调整的晶振频率信息。
例如,在晶振频率调整指示用于禁止所述第三设备进行晶振频率调整的情况下,若第三设备基于第一频率对第一信号进行下变频,基于第二频率对第二信号进行上变频,则第一频率和第二频率相同;在晶振频率调整指示用于指示第三设备发送调整的晶振频率信息的情况下,若第三设备进行了晶振频率调整,即上述第一频率和第二频率不同,则第三设备向第一设备或第二设备反馈调整的晶振频率信息,如第一频率和第二频率的差值。
在一实现方式中,第三设备将第一频率和第二频率的差值△f发送给第一设备,第一设备计算目标信息时将△f的影响消除,即第一设备收到第一信息fD1,h=fD,h+(ft-fr)和第二信息f'D2,h=fD,h+(fr'-ft),第一设备根据该△f、第一信息和第二信息获取fD,h,其中,fD2,h=f'D2,h-Δf=fD,h+(fr-ft)。
在另一实现方式中,第三设备将△f发给第二设备,第二设备计算第二信息时将△f消除,再上报给第一设备,即第二设备计算得到f'D2,h=fD,h+(fr'-ft),根据△f可以得到fD2,h=f'D2,h-Δf=fD,h+(fr-ft)再将fD2,h发送给第一设备。
可选地,本申请实施例的方法,还包括:
所述第一设备获取第三设备发送的第一性能指标信息,所述第一性能指标信息为第一信号的性能指标信息;在所述第一性能指标信息不满足第一门限信息的情况下,对所述第一信号的信号配置信息进行调整;
或者,所述第一设备获取第三设备发送的第三指示信息,所述第三指示信息用于指示所述第一信号的性能指标信息不满足第一门限信息,和/或,用于指示所述第一设备对所述第一信号进行调整;所述第一设备根据所述第三指示信息,对所述第一信号的信号配置信息进行调整;
其中,所述第一信息是调整后的第一信号对应的测量结果。
本申请实施例中,第三设备对第一信号进行测量,还可以得到上述第一性能指标信息,第三设备可以将上述第一性能指标信息反馈给第一设备,以使第一设备在确定第一信号的第一性能指标信息不满足第一门限信息的情况下,对第一信号的配置信息进行调整或判定测量失败,向感知需求发起方反馈失败指示,以便于重新进行多普勒测量。或者,第三设备得到第一性能指标信息后,向第一设备发送上述第三指示信息,以使第一设备对第一信号的信号配置信息进行调整,从而重新进行多普勒测量。例如,增加第一信号的发射功率或时频域密度,并重新进行多普勒测量。或者,第一设备根据该第三指示信息判定测量失 败,向感知需求发起方反馈失败指示。
可选地,上述第一门限信息可以是预先约定好的,也可以是第一指示信息指示的。
可选地,本申请实施例的方法,还包括:
所述第一设备向所述第二设备和所述第三设备发送第二信号的信号配置信息。
可选地,本申请实施例的方法,还包括:
所述第一设备获取第二设备发送的第二信号的信号配置信息;
所述第一设备将所述第二信号的信号配置信息发送给所述第三设备。
可选地,本申请实施例的方法,还包括:
所述第一设备向第二设备发送所述第二信号的信号配置推荐信息;
所述第二信号的信号配置信息是根据所述信号配置推荐信息确定的。
作为一种实现方式,上述信号配置推荐信息包括第二信号的部分或全部信号配置信息。第一设备根据该信号配置推荐信息确定所述第二信号的信号配置信息,并发送给第三设备和第二设备。
可选地,本申请实施例的方法还包括:
所述第一设备向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第二设备对所述第二信号进行处理和/或进行信息反馈;
其中,所述第二指示信息包括以下至少一项:
第二信号的配置标识信息;
测量量;
第二门限信息,所述第二门限信息与第三设备发送的第二信号的性能指标信息关联;
晶振频率调整指示,所述晶振频率调整指示用于禁止所述第二设备进行晶振频率调整,或者,用于指示第二设备发送调整的晶振频率信息。
例如,在晶振频率调整指示用于禁止所述第二设备进行晶振频率调整的情况下,若第二设备基于第三频率对第一信号进行上变频,基于第四频率对第二信号进行下变频,则第三频率和第四频率相同;在晶振频率调整指示用于指示第二设备发送调整的晶振频率信息的情况下,若第二设备进行了晶振频率调整,即上述第三频率和第四频率不同,则第二设备向第一设备或第三设备反馈调整的晶振频率信息,如第三频率和第四频率的差值。
可选地,本申请实施例的方法,还包括:
获取第二设备发送的第二性能指标信息,所述第二性能指标信息为所述第二信号的性能指标信息;在所述第二性能指标信息不满足第二门限信息的情况下,对所述第二信号的信号配置信息进行调整;
或者,所述第一设备获取第二设备发送的第四指示信息,所述第四指示信息用于指示所述第二性能指标信息不满足第二门限信息,和/或,用于指示所述第一设备对所述第二信号的配置信息进行调整;所述第一设备根据所述第四指示信息,对所述第二信号的信号配置信息进行调整;
其中,所述第二信息是调整后的第二信号对应的测量结果。
本申请实施例中,第二设备对第二信号进行测量,还可以得到上述第二性能指标信息,第二设备可以将上述第二性能指标信息反馈给第一设备,以使第一设备在确定第二信号的第二性能指标信息不满足第二门限信息的情况下,对第二信号的配置信息进行调整或判定测量失败,向感知需求发起方反馈失败指示,以便于重新进行多普勒测量。或者,第二设备得到第二性能指标信息后,向第一设备发送上述第四指示信息,以使第一设备对第二信号的信号配置信息进行调整,以便于重新进行多普勒测量。例如,增加第二信号的发射功率或时频域密度,并重新进行多普勒测量。或者,第一设备根据该第四指示信息判定测量失败,向感知需求发起方反馈失败指示。
可选地,所述第二信号的配置信息包括以下至少一项:
配置标识信息;
波形;
子载波间隔;
保护间隔;
频域起始位置;
频域资源长度;
频域资源间隔;
时域起始位置;
时域资源长度;
时域资源间隔;
信号功率;
序列信息;
信号方向;
第一信号与第二信号的相对时域位置关系信息。
可选地,所述相对时域位置关系信息包括以下至少一项:
第一信号的时域起始位置与第二信号的时域起始位置的时间间隔Toffset1
第一信号的时域结束位置与第二信号的时域起始位置的时间间隔Toffset2
第一信号的时域结束位置与第二信号的时域结束位置的时间间隔Toffset3
第一信号的时域起始位置与第二信号的时域结束位置的时间间隔TRTD
需要说明的是,第二信号发送的时域资源与信道稳定时间关联,即第一信号时域起始位置与第二信号时域结束位置的时间间隔(TRTD)小于或等于信道稳定时间,所述信道稳定时间即信道多普勒近似不变的时间,具体的,所述第二信号发送时域资源位置与第一信号时域资源位置关系如图3所示。
第一信号和第二信号在时域上可以是分先后发送的,也可以交替发送的,如图4所示,此时,所述第一信号与第二信号的相对时域位置关系不包括Toffset2和Toffset3
可选的,第一信号的配置信息和/或第二信号配置信息和/或相关测量反馈流程可以是提前约定好的,第二设备和第三设备检测到所述多普勒测量请求后,可按约定内容进行第一信号、第二信号的发送,以及第一信息和第二信息的反馈。
可选地,所述性能指标信息包括以下至少一项:
信号强度信息,例如,接收信号强度指示(Received Signal Strength Indication,RSSI)或参考信号接收功率(Reference Signal Received Power,RSRP);
信号与干扰和噪声比(SINR)或信噪比(SNR)信息;
感知SNR或SINR信息。
可选地,所述第一信号或所述第二信号包括以下至少一项:
参考信号,例如,解调参考信号(Demodulation Reference Signal,DMRS),下行信道状态信息参考信号(Channel-State-Information Reference Signal,CSI-RS),定位参考信息(Positioning Reference Signal,PRS)等;
通信数据信号;
同步信号,例如,主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS);
感知信号,例如,Chirp信号;
通感一体化信号,即可以同时用于感知和通信的信号。
可选地,本申请实施例的方法,还包括:
根据所述目标信息,得到感知结果。
本申请实施例中,第一设备得到所述目标信息后,可以基于所述目标信息得到感知结果,所述感知结果为以多普勒为基本测量量的感知业务对应的感知结果,包括但不限于:运动速度、运动方向、目标是否存在或目标数量、运动轨迹、动作、手势、生命体征(呼吸、心跳等)。
本申请实施例中的第一设备可具体为感知网络功能设备,也可以叫做感知网元或者感知管理功能(Sensing Management Function,Sensing MF),可以处于无线接入网(Radio Access Network,RAN)侧或核心网侧,是指核心网和/或RAN中负责感知请求处理、感知资源调度、感知信息交互、感知数据处理等至少一项功能的网络节点,可以是基于5G网络中AMF或定位管理功能(Location Management Function,LMF)升级,也可以是其他网络节点或新定义的网络节点,具体的,感知网络功能/感知网元的功能特性可以包括以下至少一项:
(1)与无线信号发送设备和/或无线信号测量设备(包括目标终端或者目标终端的服务基站或者目标区域关联的基站)进行目标信息交互,其中,目标信息包括感知处理请求,感知能力,感知辅助数据,感知测量量类型,感知资源配置信息等,以获得无线信号测量设备发送目标感知结果或感知测量量(上行测量量或下行测量量)的值;其中,无线信号也可以称作感知信号。
(2)根据感知业务的类型、感知业务消费者信息、所需的感知服务质量(Quality of Service,QoS)要求信息、无线信号发送设备的感知能力、无线信号测量设备的感知能力等因素来决定使用的感知方法,该感知方法可以包括:基站A发基站B收,或者基站发终端收,或者基站A自发自收,或者终端发基站收,或者终端自发自收,或者终端A发终端B收等。
(3)根据感知业务的类型、感知业务消费者的信息、所需的感知QoS要求信息、无线信号发送设备的感知能力、无线信号测量设备的感知能力等因素,来决定为感知业务服务的感知设备,其中,感知设备包括无线信号发送设备和/或无线信号测量设备。
(4)管理感知业务所需资源的整体协调和调度,如对基站和/或终端的感知资源进行相应的配置;
(5)对感知测量量的值进行数据处理,或进行计算获得感知结果。进一步地,验证感知结果,估计感知精度等。
本申请实施例中,感知SNR可以是感知目标关联信号功率与噪声功率的比值,感知SNR可以是感知目标关联信号功率与噪声和干扰的功率之和的比值。
以雷达检测为例,感知目标关联信号功率的获取方法,可以是以下选项中的至少一项:
基于回波信号快时间维快速傅里叶变换(Fast Fourier Transform,FFT)处理得到的时延一维图进行恒虚警检测(Constant False Alarm Rate Detector,CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算感知目标关联信号功率,如图5所示。
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算感知目标关联信号功率,同图5所示;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算感知目标关联信号功率;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算感知目标关联信号功率;
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度来计算感知目标关联信号功率。
其中,回波信号的SNR/SINR的获取方法可以是以下选项中的至少一项:
基于回波信号快时间维FFT处理得到的时延一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±ε个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均干扰/幅度为干扰/噪声信号幅度,如图5所示,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±η个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以二维图中距离目标样值点±ε(快时间维)和±η(慢时间维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以三维图中距离目标样值点±ε(快时间维)、±η(慢时间维)和±δ(角度维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度;
干扰/噪声样值点的确定方法还可以是根据上述确定的干扰/噪声样值点进一步筛选,筛选方法是:对于时延一维图,去除时延为0附近的若干个样值点,以剩下的干扰/噪声样值点作为噪声样值点;对于多普勒一维图,去除多普勒为0附近的若干个样值点,以剩下的干扰/噪声样值点为干扰/噪声样值点;对于时延-多普勒二维图,去除以时延为0附近若干个点、全部多普勒范围构成的条状范围的干扰/噪声样值点,以剩下的噪声样值点作为干扰/噪声样值点;对于时延-多普勒-角度三维图,去除以时间维0附件若干个点、全部多普勒范围和全部角度范围构成的切片状范围的干扰/噪声样值点,以剩下的干扰/噪声样值点作为干扰/噪声样值点。
本申请实施例中,第一设备获取第一信息和第二信息;所述第一设备根据所述第一信息和第二信息,得到目标信息;其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第二设备和所述第三设备之间的多普勒频移信息,提升了多普勒测量的准确性。
如图6所示,本申请实施例还提供了一种多普勒测量方法,包括:
步骤601:第三设备获取第二设备发送的第一信号;
步骤602:所述第三设备根据所述第一信号,得到第一信息并发送给第一设备;
步骤603:所述第三设备向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
本申请实施例中,本申请中的第一设备可以是核心网感知网络功能设备,第二设备可以是网络侧设备,如基站,第三设备可具体为终端。
可选地,所述第一信息是第三设备对所述第一信号进行测量得到的。所述第二信息是第二设备对所述第二信号进行测量得到的。
可选地,本申请实施例中,网络侧设备通过下行时隙发送第一信号,终端通过上行时隙发送第二信号。
本申请实施例中,第三设备获取第二设备发送的第一信号;第三设备根据所述第一信号,得到第一信息并发送给第一设备;所述第三设备向所述第二设备发送第二信号,所述第二信号用于获取第二信息;其中,所述第一信息和所述第二信息用于获取目标信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第一设备和所述第二设备之间的多普勒频移信息,提升了多普勒测量的准确性。
可选地,所述第三设备向所述第二设备发送第二信号,包括:
所述第三设备获取第一设备发送的第二请求,所述第三设备获取第一设备发送的第二请求,所述第二请求中包括所述第二设备的标识信息和所述第三设备的标识信息,或者,包括所述第二设备的标识信息;
在确定参与多普勒测量的情况下,所述第三设备向所述第二设备发送第二信号。
可选地,所述第三设备获取第一设备发送的第二请求之后,还包括:
所述第三设备向所述第一设备发送第二响应,所述第二响应用于指示所述第三设备参与多普勒测量,或者,用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因。
可选地,所述第三设备向所述第二设备发送第二信号,包括:
获取所述第二信号的配置信息;
根据所述第二信号的配置信息,向第二设备发送第二信号。
可选地,所述第三设备获取第二设备发送的第一信号,包括:
所述第三设备获取所述第一信号的信号配置信息;
根据所述第一信号的信号配置信息,获取第二设备发送的第一信号。
可选地,本申请实施例的方法,还包括:
所述第三设备获取所述第一设备发送的第一指示信息,所述第一指示信息用于指示所述第三设备对所述第一信号进行处理和/或进行信息反馈;
其中,所述第一指示信息包括以下至少一项:
第一信号的配置标识信息;
测量量;
第一门限信息,所述第一门限信息与所述第二设备发送的第一信号的性能指标信息关联;
晶振频率调整指示,所述晶振频率调整指示用于禁止所述第三设备进行晶振频率调整,或者,用于指示第三设备发送调整的晶振频率信息。
可选地,本申请实施例的方法,还包括:
向所述第一设备发送第一性能指标信息,所述第一性能指标信息为第一信号的性能指标信息;
或者,向所述第一设备发送第四指示信息第三指示信息,所述第三指示信息用于指示所述第一性能指标信息不满足第一门限信息,和/或,用于指示所述第一设备对所述第一信号进行调整;
其中,所述第一信息是调整后的第一信号对应的测量结果。
可选地,本申请实施例的方法,所述第三设备获取第二设备发送的第一信号之前,还包括:
所述第三设备向所述第一设备发送所述第三设备的设备信息,所述设备信息包括以下至少一项:
时钟频率误差或频率稳定度信息;
位置信息;
移动性信息;
电量信息;
温度信息;
可用资源信息;
故障信息;
支持的感知测量方式;
支持的感知业务;
支持的感知测量量;
支持的感知波形或通信波形;
工作频段;
工作带宽;
发射功率;
天线配置信息。
本申请实施例中,第三设备获取第二设备发送的第一信号;第三设备根据所述第一信号,得到第一信息并发送给第一设备;所述第三设备向所述第二设备发送第二信号,所述第二信号用于获取第二信息;其中,所述第一信息和所述第二信息用于获取目标信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第一设备和所述第二设备之间的多普勒频移信息,提升了多普勒测量的准确性。
如图7所示,本申请实施例还提供了一种多普勒测量方法,包括:
步骤701:第二设备向第三设备发送第一信号,所述第一信号用于获取第一信息。
步骤702:所述第二设备获取所述第三设备发送的第二信号。
步骤703:所述第二设备根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
本申请实施例中,第二设备向第三设备发送第一信号,所述第一信号用于获取第一信息;第二设备获取所述第三设备发送的第二信号;第二设备根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第一设备和所述第二设备之间的多普勒频移信息,提升了多普勒测量的准确性。
需要说明的是,第二设备或第三设备执行的多普勒测量方法是与第一设备执行的多普勒测量方法对应的方法,具体的交互流程已在第一设备侧的方法实施例中进行详细说明,此处不再赘述。
本申请实施例提供的多普勒测量方法,执行主体可以为多普勒测量装置。本申请实施例中以多普勒测量装置执行多普勒测量方法为例,说明本申请实施例提供的多普勒测量装置。
如图8所示,本申请实施例提供了一种多普勒测量装置800,应用于第一设备,包括:
第一获取模块801,用于获取第一信息和第二信息;
第二获取模块802,用于根据所述第一信息和第二信息,得到目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
可选地,所述第一信号和所述第二信号具有相同的时域资源格式;
其中,所述时域资源格式包括时域资源长度和时域资源间隔。
可选地,所述第一信号的时域资源长度和所述第二信号的时域资源长度与多普勒分辨率关联;
和/或,所述第一信号的时域资源间隔和所述第二信号的时域资源间隔与最大无模糊多普勒频移关联。
可选地,本申请实施例的装置还包括:
第三发送模块,用于在第一获取模块获取第一信息和第二信息之前,向所述第二设备发送第一请求,并向所述第三设备发送第二请求,所述第一请求用于请求第二设备进行多普勒测量,所述第二请求用于请求所述第三设备进行多普勒测量;
第四获取模块,用于获取第二设备发送的第一响应和第三设备发送的第二响应;
其中,所述第一响应用于指示所述第二设备参与多普勒测量,或者,用于指示所述第二设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因;
所述第二响应用于指示所述第三设备参与多普勒测量,或者,用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因;
所述第一信息是在所述第一响应指示所述第三设备参与所述多普勒测量的情况下获取的;
所述第二信息是在所述第二响应指示所述第二设备参与所述多普勒测量的情况下获取的。
可选地,本申请实施例的装置,还包括:
获取模块,用于获取候选第二设备发送的设备信息和候选第三设备发送的设备信息;
第一确定模块,用于根据所述设备信息,确定所述第二设备和所述第三设备;
其中,所述设备信息包括以下至少一项:
时钟频率误差或频率稳定度信息;
位置信息;
移动性信息;
电量信息;
温度信息;
可用资源信息;
故障信息;
支持的感知测量方式;
支持的感知业务;
支持的感知测量量;
支持的感知波形或通信波形;
工作频段;
工作带宽;
发射功率;
天线配置信息。
可选地,本申请实施例的装置,还包括:
第四发送模块,用于向所述第二设备和所述第三设备发送所述第一信号的配置信息;
其中,所述第一信号的配置信息包括以下至少一项:
配置标识信息;
波形;
子载波间隔;
保护间隔;
频域起始位置;
频域资源长度;
频域资源间隔;
时域起始位置;
时域资源长度;
时域资源间隔;
信号功率;
序列信息;
信号方向。
可选地,本申请实施例的装置还包括:
第五发送模块,用于向第三设备发送第一指示信息,所述第一指示信息用于指示所述第三设备对所述第一信号进行处理和/或进行信息反馈;
其中,所述第一指示信息包括以下至少一项:
第一信号的配置标识信息;
测量量;
第一门限信息,所述第一门限信息与所述第二设备发送的第一信号的性能指标信息关联;
晶振频率调整指示,所述晶振频率调整指示用于禁止所述第三设备进行晶振频率调整,或者,用于指示第三设备发送调整的晶振频率信息。
可选地,本申请实施例的装置还包括:
第五获取模块,用于获取第三设备发送的第一性能指标信息,所述第一性能指标信息为第一信号的性能指标信息;第一调整模块,用于在所述第一性能指标信息不满足第一门限信息的情况下,对所述第一信号的信号配置信息进行调整;
或者,还包括:第六获取模块,用于获取第三设备发送的第三指示信息,所述第三指示信息用于指示所述第一性能指标信息不满足第一门限信息,和/或,用于指示所述第一设备对所述第一信号进行调整;第二调整模块,用于根据所述第三指示信息,对所述第一信号的信号配置信息进行调整;
其中,所述第一信息是调整后的第一信号对应的测量结果。
可选地,本申请实施例的装置还包括:
第六发送模块,用于向所述第二设备和所述第三设备发送第二信号的信号配置信息。
可选地,本申请实施例的装置还包括:
第七获取模块,用于获取第二设备发送的第二信号的信号配置信息;
第七发送模块,用于将所述第二信号的信号配置信息发送给所述第三设备。
可选地,本申请实施例的装置,还包括:
第八发送模块,用于向第二设备发送所述第二信号的信号配置推荐信息;
所述第二信号的信号配置信息是根据所述信号配置推荐信息确定的。
可选地,本申请实施例的装置,还包括:
第九发送模块,用于向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第二设备对所述第二信号进行处理和/或进行信息反馈;
其中,所述第二指示信息包括以下至少一项:
第二信号的配置标识信息;
测量量;
第二门限信息,所述第二门限信息与第三设备发送的第二信号的性能指标信息关联;
晶振频率调整指示,所述晶振频率调整指示用于禁止所述第二设备进行晶振频率调整,或者,用于指示第二设备发送调整的晶振频率信息。
可选地,本申请实施例的装置,还包括:
第八获取模块,用于获取第二设备发送的第二性能指标信息,所述第二性能指标信息为所述第二信号的性能指标信息;第三调整模块,用于在所述第二性能指标信息不满足第二门限信息的情况下,对所述第二信号的信号配置信息进行调整;
或者,还包括:第九获取模块,用于获取第二设备发送的第四指示信息,所述第四指示信息用于指示所述第二性能指标信息不满足第二门限信息,和/或,用于指示所述第一设备对所述第二信号的配置信息进行调整;第四调整模块,用于根据所述第四指示信息,对所述第二信号的信号配置信息进行调整;
其中,所述第二信息是调整后的第二信号对应的测量结果。
可选地,所述第二信号的配置信息包括以下至少一项:
配置标识信息;
波形;
子载波间隔;
保护间隔;
频域起始位置;
频域资源长度;
频域资源间隔;
时域起始位置;
时域资源长度;
时域资源间隔;
信号功率;
序列信息;
信号方向;
第一信号与第二信号的相对时域位置关系信息。
可选地,所述相对时域位置关系信息包括以下至少一项:
第一信号的时域起始位置与第二信号的时域起始位置的时间间隔;
第一信号的时域结束位置与第二信号的时域起始位置的时间间隔;
第一信号的时域结束位置与第二信号的时域结束位置的时间间隔;
第一信号的时域起始位置与第二信号的时域结束位置的时间间隔。
可选地,所述性能指标信息包括以下至少一项:
信号强度信息;
信号与干扰和噪声比SINR或信噪比SNR信息;
感知SNR或SINR信息。
可选地,所述第一信号或所述第二信号包括以下至少一项:
参考信号;
通信数据信号;
同步信号;
感知信号;
通感一体化信号。
可选地,本申请实施例的装置,还包括:
第十获取模块,用于根据所述目标信息,得到感知结果。
本申请实施例中,第一设备获取第一信息和第二信息;所述第一设备根据所述第一信息和第二信息,得到目标信息;其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二 信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第二设备和所述第三设备之间的多普勒频移信息,提升了多普勒测量的准确性。
如图9所示,本申请实施例还提供了一种多普勒测量装置900,应用于第三设备,包括:
第三获取模块901,用于获取第二设备发送的第一信号;
第一处理模块902,用于根据所述第一信号,得到第一信息并发送给第一设备;
第一发送模块903,用于向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
可选地,所述第一发送模块包括:
第一获取子模块,用于获取第一设备发送的第二请求,第二请求用于请求所述第三设备进行多普勒测量;
第一发送子模块,用于在确定参与多普勒测量的情况下,向所述第二设备发送第二信号。
可选地,本申请实施例的装置,所述第一发送模块还包括:
第二发送子模块,用于在第一获取子模块获取第一设备发送的第二请求之后,向所述第一设备发送第二响应,所述第二响应用于指示所述第三设备参与多普勒测量,或者,用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因。
可选地,所述第一发送模块包括:
第二获取子模块,用于获取所述第二信号的配置信息;
第三发送子模块,用于根据所述第二信号的配置信息,向第二设备发送第二信号。
可选地,所述第三获取模块包括:
第三获取子模块,用于获取所述第一信号的信号配置信息;
第四获取子模块,用于根据所述第一信号的信号配置信息,获取第二设备发送的第一信号。
可选地,本申请实施例的装置,还包括:
第十一获取模块,用于获取所述第一设备发送的第一指示信息,所述第一指示信息用于指示所述第三设备对所述第一信号进行处理和/或进行信息反馈;
其中,所述第一指示信息包括以下至少一项:
第一信号的配置标识信息;
测量量;
第一门限信息,所述第一门限信息与所述第二设备发送的第一信号的性能指标信息关联;
晶振频率调整指示,所述晶振频率调整指示用于禁止所述第三设备进行晶振频率调整,或者,用于指示第三设备发送调整的晶振频率信息。
可选地,本申请实施例的装置还包括:
第十发送模块,用于向所述第一设备发送第一性能指标信息,所述第一性能指标信息为第一信号的性能指标信息;
或者,向所述第一设备发送第四指示信息第三指示信息,所述第三指示信息用于指示所述第一性能指标信息不满足第一门限信息,和/或,用于指示所述第一设备对所述第一信号进行调整;
其中,所述第一信息是调整后的第一信号对应的测量结果。
可选地,本申请实施例的装置还包括:
第十一发送模块,用于向所述第一设备发送设备信息,所述设备信息包括以下至少一项:
时钟频率误差或频率稳定度信息;
位置信息;
移动性信息;
电量信息;
温度信息;
可用资源信息;
故障信息;
支持的感知测量方式;
支持的感知业务;
支持的感知测量量;
支持的感知波形或通信波形;
工作频段;
工作带宽;
发射功率;
天线配置信息。
本申请实施例中,第三设备获取第二设备发送的第一信号;第三设备根据所述第一信号,得到第一信息并发送给第一设备;所述第三设备向所述第二设备发送第二信号,所述第二信号用于获取第二信息;其中,所述第一信息和所述第二信息用于获取目标信息,所 述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第一设备和所述第二设备之间的多普勒频移信息,提升了多普勒测量的准确性。
如图10所示,本申请实施例还提供了一种多普勒测量装置1000,应用于第二设备,包括:
第二发送模块1001,用于向第三设备发送第一信号,所述第一信号用于获取第一信息;
第四获取模块1002,用于获取所述第三设备发送的第二信号;
第二处理模块1003,用于根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;
其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
本申请实施例中,第二设备向第三设备发送第一信号,所述第一信号用于获取第一信息;第二设备获取所述第三设备发送的第二信号;第二设备根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第一设备和所述第二设备之间的多普勒频移信息,提升了多普勒测量的准确性。
本申请实施例中的多普勒测量装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的多普勒测量装置能够实现图2至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备1100,包括处理器1101和存储器1102,存储器1102上存储有可在所述处理器1101上运行的程序或指令,例如,该通信设备1100为第一设备时,该程序或指令被处理器1101执行时实现上述第一设备执行的多普勒测量方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1100为 第二设备时,该程序或指令被处理器1101执行时实现上述第二设备执行的多普勒测量方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1100为第三设备时,该程序或指令被处理器1101执行时实现上述第三设备执行的多普勒测量方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种第三设备,包括处理器和通信接口,通信接口用于获取第二设备发送的第一信号;处理器用于根据所述第一信号,得到第一信息;通信接口将第一信息发送给第一设备,向所述第二设备发送第二信号,所述第二信号用于获取第二信息;其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。上述方法实施例的各个实施过程和实现方式均可适用于该实施例中,且能达到相同的技术效果。具体地,图12为实现本申请实施例的一种第三设备(具体为终端)的硬件结构示意图。
该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209以及处理器1210等中的至少部分部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理单元(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072中的至少一种。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201接收来自网络侧设备的下行数据后,可以传输给处理器1210进行处理;另外,射频单元1201可以向网络侧设备发送上行数据。通常,射频单元1201包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、 至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括易失性存储器或非易失性存储器,或者,存储器1209可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1209包括但不限于这些和任意其它适合类型的存储器。
处理器1210可包括一个或多个处理单元;可选的,处理器1210集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
其中,射频单元1201,用于获取第二设备发送的第一信号;处理器1210,用于根据所述第一信号,得到第一信息并通过射频单元1201发送给第一设备;射频单元1201,用于向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
可选地,射频单元1201,还用于:
获取第一设备发送的第二请求,所述第二请求用于请求所述第三设备进行多普勒测量;
在确定参与多普勒测量的情况下,向所述第二设备发送第二信号。
可选地,射频单元1201,还用于:
向所述第一设备发送第二响应,所述第二响应用于指示所述第三设备参与多普勒测量,或者,用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因。
可选地,射频单元1201,还用于:
获取所述第二信号的配置信息;
根据所述第二信号的配置信息,向第二设备发送第二信号。
可选地,射频单元1201,还用于:
获取所述第一信号的信号配置信息;
根据所述第一信号的信号配置信息,获取第二设备发送的第一信号。
可选地,射频单元1201,还用于:
获取所述第一设备发送的第一指示信息,所述第一指示信息用于指示所述第三设备对所述第一信号进行处理和/或进行信息反馈;
其中,所述第一指示信息包括以下至少一项:
第一信号的配置标识信息;
测量量;
第一门限信息,所述第一门限信息与所述第二设备发送的第一信号的性能指标信息关联;
晶振频率调整指示,所述晶振频率调整指示用于禁止所述第三设备进行晶振频率调整,或者,用于指示第三设备发送调整的晶振频率信息。
可选地,射频单元1201,还用于:
向所述第一设备发送第一性能指标信息,所述第一性能指标信息为第一信号的性能指标信息;
或者,向所述第一设备发送第四指示信息第三指示信息,所述第三指示信息用于指示所述第一性能指标信息不满足第一门限信息,和/或,用于指示所述第一设备对所述第一信号进行调整;
其中,所述第一信息是调整后的第一信号对应的测量结果。
可选地,射频单元1201,还用于:
向所述第一设备发送所述第三设备的设备信息,所述设备信息包括以下至少一项:
时钟频率误差或频率稳定度信息;
位置信息;
移动性信息;
电量信息;
温度信息;
可用资源信息;
故障信息;
支持的感知测量方式;
支持的感知业务;
支持的感知测量量;
支持的感知波形或通信波形;
工作频段;
工作带宽;
发射功率;
天线配置信息。
本申请实施例中,第三设备获取第二设备发送的第一信号;第三设备根据所述第一信号,得到第一信息并发送给第一设备;所述第三设备向所述第二设备发送第二信号,所述第二信号用于获取第二信息;其中,所述第一信息和所述第二信息用于获取目标信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息。由于上述第一信息中包含有收发设备的时钟频率偏差,第二信息中也包含有收发设备的时钟频率偏差,而且第一信息和第二信息所对应的收发设备是相对的,因此,基于上述第一信息和第二信息采用一定的算法能够抵消掉收发时钟频率偏差,准确地得到第一设备和所述第二设备之间的多普勒频移信息,提升了多普勒测量的准确性。
本申请实施例还提供一种网络侧设备(第一设备),包括处理器和通信接口,通信接口用于获取第一信息和第二信息;处理器用于根据所述第一信息和第二信息,得到目标信息;其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。该网络侧设备实施例与上述第一设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种网络侧设备(第二设备),包括处理器和通信接口,通信接口用于向第三设备发送第一信号,所述第一信号用于获取第一信息;获取所述第三设备发送的第二信号;处理器用于根据所述第二信号,得到第二信息,并通过通信接口发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。该网络侧设备实施例与上述第二设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图13所示,该网络侧设备1300包括:天线131、射频装置132、基带装置133、处理器134和存储器135。天线131与射频装置132连接。在上行方向上,射频装置132通过天线131接收信息,将接收的信息发送给基带装置133进行处理。在下行方向上,基带装置133对要发送的信息进行处理,并发送给射频装置132,射频装置132对收到的信息进行处理后经过天线131发送出去。
以上实施例中第二设备执行的方法可以在基带装置133中实现,该基带装置133包括基带处理器。
基带装置133例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为基带处理器,通过总线接口与存储器135连接,以调用存储器 135中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口136,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1300还包括:存储在存储器135上并可在处理器134上运行的指令或程序,处理器134调用存储器135中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图14所示,该网络侧设备1400包括:处理器1401、网络接口1402和存储器1403。其中,网络接口1402例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1400还包括:存储在存储器1403上并可在处理器1401上运行的指令或程序,处理器1401调用存储器1403中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述多普勒测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述多普勒测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述多普勒测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种多普勒测量系统,包括:第一设备、第二设备和第三设备,所述第一设备可用于执行如上所述的第一设备执行的方法的步骤,所述第二设备可用于执行如上所述的第二设备执行的方法的步骤,所述第三设备可用于执行如上所述的第三设备执行的方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的 是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种多普勒测量方法,包括:
    第一设备获取第一信息和第二信息;
    所述第一设备根据所述第一信息和第二信息,得到目标信息;
    其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
  2. 根据权利要求1所述的方法,其中,所述第一信号和所述第二信号具有相同的时域资源格式;
    其中,所述时域资源格式包括时域资源长度和时域资源间隔。
  3. 根据权利要求1或2所述的方法,其中,所述第一信号的时域资源长度和所述第二信号的时域资源长度与多普勒分辨率关联;
    和/或,所述第一信号的时域资源间隔和所述第二信号的时域资源间隔与最大无模糊多普勒频移关联。
  4. 根据权利要求1所述的方法,其中,所述第一设备获取第一信息和第二信息之前,还包括:
    所述第一设备向所述第二设备发送第一请求,并向所述第三设备发送第二请求,所述第一请求用于请求第二设备进行多普勒测量,所述第二请求用于请求所述第三设备进行多普勒测量;
    所述第一设备获取第二设备发送的第一响应和第三设备发送的第二响应;
    其中,所述第一响应用于指示所述第二设备参与多普勒测量,或者,用于指示所述第二设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因;
    所述第二响应用于指示所述第三设备参与多普勒测量,或者,用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因;
    所述第一信息是在所述第一响应指示所述第三设备参与所述多普勒测量的情况下获取的;
    所述第二信息是在所述第二响应指示所述第二设备参与所述多普勒测量的情况下获取的。
  5. 根据权利要求4所述的方法,其中,还包括:
    获取候选第二设备发送的设备信息和候选第三设备发送的设备信息;
    根据所述设备信息,确定所述第二设备和所述第三设备;
    其中,所述设备信息包括以下至少一项:
    时钟频率误差或频率稳定度信息;
    位置信息;
    移动性信息;
    电量信息;
    温度信息;
    可用资源信息;
    故障信息;
    支持的感知测量方式;
    支持的感知业务;
    支持的感知测量量;
    支持的感知波形或通信波形;
    工作频段;
    工作带宽;
    发射功率;
    天线配置信息。
  6. 根据权利要求1所述的方法,其中,还包括:
    所述第一设备向所述第二设备和所述第三设备发送所述第一信号的配置信息;
    其中,所述第一信号的配置信息包括以下至少一项:
    配置标识信息;
    波形;
    子载波间隔;
    保护间隔;
    频域起始位置;
    频域资源长度;
    频域资源间隔;
    时域起始位置;
    时域资源长度;
    时域资源间隔;
    信号功率;
    序列信息;
    信号方向。
  7. 根据权利要求1或6所述的方法,其中,还包括:
    所述第一设备向第三设备发送第一指示信息,所述第一指示信息用于指示所述第三设备对所述第一信号进行处理和/或进行信息反馈;
    其中,所述第一指示信息包括以下至少一项:
    第一信号的配置标识信息;
    测量量;
    第一门限信息,所述第一门限信息与所述第二设备发送的第一信号的性能指标信息关联;
    晶振频率调整指示,所述晶振频率调整指示用于禁止所述第三设备进行晶振频率调整,或者,用于指示第三设备发送调整的晶振频率信息。
  8. 根据权利要求7所述的方法,其中,还包括:
    所述第一设备获取第三设备发送的第一性能指标信息,所述第一性能指标信息为第一信号的性能指标信息;在所述第一性能指标信息不满足第一门限信息的情况下,对所述第一信号的信号配置信息进行调整;
    或者,所述第一设备获取第三设备发送的第三指示信息,所述第三指示信息用于指示所述第一性能指标信息不满足第一门限信息,和/或,用于指示所述第一设备对所述第一信号进行调整;所述第一设备根据所述第三指示信息,对所述第一信号的信号配置信息进行调整;
    其中,所述第一信息是调整后的第一信号对应的测量结果。
  9. 根据权利要求1所述的方法,其中,还包括:
    所述第一设备向所述第二设备和所述第三设备发送第二信号的信号配置信息。
  10. 根据权利要求1所述的方法,其中,还包括:
    所述第一设备获取第二设备发送的第二信号的信号配置信息;
    所述第一设备将所述第二信号的信号配置信息发送给所述第三设备。
  11. 根据权利要求9或10所述的方法,其中,还包括:
    所述第一设备向第二设备发送所述第二信号的信号配置推荐信息;
    所述第二信号的信号配置信息是根据所述信号配置推荐信息确定的。
  12. 根据权利要求9至11任一项所述的方法,其中,所述方法还包括:
    所述第一设备向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第二设备对所述第二信号进行处理和/或进行信息反馈;
    其中,所述第二指示信息包括以下至少一项:
    第二信号的配置标识信息;
    测量量;
    第二门限信息,所述第二门限信息与第三设备发送的第二信号的性能指标信息关联;
    晶振频率调整指示,所述晶振频率调整指示用于禁止所述第二设备进行晶振频率调整,或者,用于指示第二设备发送调整的晶振频率信息。
  13. 根据权利要求12所述的方法,其中,还包括:
    所述第一设备获取第二设备发送的第二性能指标信息,所述第二性能指标信息为所述第二信号的性能指标信息;在所述第二性能指标信息不满足第二门限信息的情况下,对所述第二信号的信号配置信息进行调整;
    或者,所述第一设备获取第二设备发送的第四指示信息,所述第四指示信息用于指示所述第二性能指标信息不满足第二门限信息,和/或,用于指示所述第一设备对所述第二信号的配置信息进行调整;所述第一设备根据所述第四指示信息,对所述第二信号的信号配置信息进行调整;
    其中,所述第二信息是调整后的第二信号对应的测量结果。
  14. 根据权利要求9至13任一项所述的方法,其中,所述第二信号的配置信息包括以下至少一项:
    配置标识信息;
    波形;
    子载波间隔;
    保护间隔;
    频域起始位置;
    频域资源长度;
    频域资源间隔;
    时域起始位置;
    时域资源长度;
    时域资源间隔;
    信号功率;
    序列信息;
    信号方向;
    第一信号与第二信号的相对时域位置关系信息。
  15. 根据权利要求14所述的方法,其中,所述相对时域位置关系信息包括以下至少一项:
    第一信号的时域起始位置与第二信号的时域起始位置的时间间隔;
    第一信号的时域结束位置与第二信号的时域起始位置的时间间隔;
    第一信号的时域结束位置与第二信号的时域结束位置的时间间隔;
    第一信号的时域起始位置与第二信号的时域结束位置的时间间隔。
  16. 根据权利要求7、8、12或13所述的方法,其中,所述性能指标信息包括以下至少一项:
    信号强度信息;
    信号与干扰和噪声比SINR或信噪比SNR信息;
    感知SNR或SINR信息。
  17. 根据权利要求1所述的方法,其中,所述第一信号或所述第二信号包括以下至少一项:
    参考信号;
    通信数据信号;
    同步信号;
    感知信号;
    通感一体化信号。
  18. 根据权利要求1所述的方法,其中,还包括:
    根据所述目标信息,得到感知结果。
  19. 一种多普勒测量方法,包括:
    第三设备获取第二设备发送的第一信号;
    所述第三设备根据所述第一信号,得到第一信息并发送给第一设备;
    所述第三设备向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
    其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
  20. 根据权利要求19所述的方法,其中,所述第三设备向所述第二设备发送第二信号,包括:
    所述第三设备获取第一设备发送的第二请求,所述第二请求用于请求所述第三设备进行多普勒测量;
    在确定参与多普勒测量的情况下,所述第三设备向所述第二设备发送第二信号。
  21. 根据权利要求20所述的方法,其中,所述第三设备获取第一设备发送的第二请求之后,还包括:
    所述第三设备向所述第一设备发送第二响应,所述第二响应用于指示所述第三设备参与多普勒测量,或者,用于指示所述第三设备拒绝参与多普勒测量和/或拒绝参与多普勒测量的原因。
  22. 根据权利要求19所述的方法,其中,所述第三设备向所述第二设备发送第二信号,包括:
    获取所述第二信号的配置信息;
    根据所述第二信号的配置信息,向第二设备发送第二信号。
  23. 根据权利要求19所述的方法,其中,所述第三设备获取第二设备发送的第一信号,包括:
    所述第三设备获取所述第一信号的信号配置信息;
    根据所述第一信号的信号配置信息,获取第二设备发送的第一信号。
  24. 根据权利要求19所述的方法,其中,还包括:
    所述第三设备获取所述第一设备发送的第一指示信息,所述第一指示信息用于指示所 述第三设备对所述第一信号进行处理和/或进行信息反馈;
    其中,所述第一指示信息包括以下至少一项:
    第一信号的配置标识信息;
    测量量;
    第一门限信息,所述第一门限信息与所述第二设备发送的第一信号的性能指标信息关联;
    晶振频率调整指示,所述晶振频率调整指示用于禁止所述第三设备进行晶振频率调整,或者,用于指示第三设备发送调整的晶振频率信息。
  25. 根据权利要求24所述的方法,其中,还包括:
    向所述第一设备发送第一性能指标信息,所述第一性能指标信息为第一信号的性能指标信息;
    或者,向所述第一设备发送第四指示信息第三指示信息,所述第三指示信息用于指示所述第一信号的性能指标信息不满足第一门限信息,和/或,用于指示所述第一设备对所述第一信号进行调整;
    其中,所述第一信息是调整后的第一信号对应的测量结果。
  26. 根据权利要求19所述的方法,其中,所述第三设备获取第二设备发送的第一信号之前,还包括:
    所述第三设备向所述第一设备发送所述第三设备的设备信息,所述设备信息包括以下至少一项:
    时钟频率误差或频率稳定度信息;
    位置信息;
    移动性信息;
    电量信息;
    温度信息;
    可用资源信息;
    故障信息;
    支持的感知测量方式;
    支持的感知业务;
    支持的感知测量量;
    支持的感知波形或通信波形;
    工作频段;
    工作带宽;
    发射功率;
    天线配置信息。
  27. 一种多普勒测量方法,包括:
    第二设备向第三设备发送第一信号,所述第一信号用于获取第一信息;
    所述第二设备获取所述第三设备发送的第二信号;
    所述第二设备根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;
    其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
  28. 一种多普勒测量装置,应用于第一设备,包括:
    第一获取模块,用于获取第一信息和第二信息;
    第二获取模块,用于根据所述第一信息和第二信息,得到目标信息;
    其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
  29. 一种多普勒测量装置,应用于第三设备,包括:
    第三获取模块,用于获取第二设备发送的第一信号;
    第一处理模块,用于根据所述第一信号,得到第一信息并发送给第一设备;
    第一发送模块,用于向所述第二设备发送第二信号,所述第二信号用于获取第二信息;
    其中,所述第一信息和所述第二信息用于获取目标信息,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
  30. 一种多普勒测量装置,应用于第二设备,包括:
    第二发送模块,用于向第三设备发送第一信号,所述第一信号用于获取第一信息;
    第四获取模块,用于获取所述第三设备发送的第二信号;
    第二处理模块,用于根据所述第二信号,得到第二信息,并发送给第三设备,所述第一信息和所述第二信息用于获取目标信息;
    其中,所述第一信息是第三设备通过测量第二设备发送的第一信号得到的多普勒频移信息,所述第二信息是第二设备通过测量第三设备发送的第二信号得到的多普勒频移信息,所述目标信息用于指示所述第二设备和所述第三设备之间的多普勒频移信息,所述多普勒频移信息是与信道中感知目标的运动关联的多普勒频移信息。
  31. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的 多普勒测量方法的步骤,或者,实现如权利要求19至26任一项所述的多普勒测量方法的步骤,或者,实现如权利要求27所述的多普勒测量方法的步骤。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至18任一项所述的多普勒测量方法的步骤,或者,实现如权利要求19至26任一项所述的多普勒测量方法的步骤,或者,实现如权利要求27所述的多普勒测量方法的步骤。
PCT/CN2023/123171 2022-10-10 2023-10-07 多普勒测量方法、装置及通信设备 WO2024078379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211237040.9 2022-10-10
CN202211237040.9A CN117914423A (zh) 2022-10-10 2022-10-10 多普勒测量方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2024078379A1 true WO2024078379A1 (zh) 2024-04-18

Family

ID=90668817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123171 WO2024078379A1 (zh) 2022-10-10 2023-10-07 多普勒测量方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117914423A (zh)
WO (1) WO2024078379A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020151297A1 (en) * 2000-10-14 2002-10-17 Donald Remboski Context aware wireless communication device and method
CN112540388A (zh) * 2020-11-24 2021-03-23 湖北三江航天险峰电子信息有限公司 一种卫星通信模组及其上行信号多普勒补偿方法
CN112714086A (zh) * 2019-10-25 2021-04-27 大唐移动通信设备有限公司 一种频偏估计方法及基站
CN114325679A (zh) * 2021-10-21 2022-04-12 南方科技大学 基于时延多普勒域信号处理的感知通信一体化方法
CN114599086A (zh) * 2022-03-04 2022-06-07 北京邮电大学 一种通信感知一体化方法、装置、基站及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020151297A1 (en) * 2000-10-14 2002-10-17 Donald Remboski Context aware wireless communication device and method
CN112714086A (zh) * 2019-10-25 2021-04-27 大唐移动通信设备有限公司 一种频偏估计方法及基站
CN112540388A (zh) * 2020-11-24 2021-03-23 湖北三江航天险峰电子信息有限公司 一种卫星通信模组及其上行信号多普勒补偿方法
CN114325679A (zh) * 2021-10-21 2022-04-12 南方科技大学 基于时延多普勒域信号处理的感知通信一体化方法
CN114599086A (zh) * 2022-03-04 2022-06-07 北京邮电大学 一种通信感知一体化方法、装置、基站及系统

Also Published As

Publication number Publication date
CN117914423A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
EP4376469A1 (en) Sensing signal measurement method and apparatus, network device, and terminal
WO2023001179A1 (zh) 通信感知方法、装置及设备
CN115442756A (zh) 消息传输方法、信号发送方法、装置及通信设备
CN115604728A (zh) 通信感知方法、装置及网络设备
CN115442006A (zh) 消息传输方法、信号发送方法、装置及通信设备
WO2023072210A1 (zh) 感知方法、装置及通信设备
WO2024078379A1 (zh) 多普勒测量方法、装置及通信设备
WO2024078382A1 (zh) 多普勒测量方法、装置及通信设备
WO2024078378A1 (zh) 多普勒测量方法、装置及通信设备
WO2024114460A1 (zh) 测量方法、装置及设备
WO2024169815A1 (zh) 感知信号发送方法、感知信号测量方法、装置及设备
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2024046195A1 (zh) 感知信号处理方法、装置及通信设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2024099153A1 (zh) 信息传输方法、装置及通信设备
WO2023231840A1 (zh) 测量处理方法、装置、通信设备及可读存储介质
WO2023186123A1 (zh) 感知信号处理方法、设备及可读存储介质
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2023186098A1 (zh) 感知信号处理方法、设备及可读存储介质
WO2024149185A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2024149184A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023083131A1 (zh) 感知方法、装置及通信设备
WO2024061066A1 (zh) 波束恢复方法、装置及终端
WO2024099126A1 (zh) 测量信息发送方法、接收方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876582

Country of ref document: EP

Kind code of ref document: A1