WO2024077434A1 - 压裂系统 - Google Patents
压裂系统 Download PDFInfo
- Publication number
- WO2024077434A1 WO2024077434A1 PCT/CN2022/124305 CN2022124305W WO2024077434A1 WO 2024077434 A1 WO2024077434 A1 WO 2024077434A1 CN 2022124305 W CN2022124305 W CN 2022124305W WO 2024077434 A1 WO2024077434 A1 WO 2024077434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fracturing
- guide rail
- pressure
- pipeline
- working device
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 59
- 239000007788 liquid Substances 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 14
- 230000035939 shock Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 abstract description 10
- 238000007689 inspection Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 16
- 230000015654 memory Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 9
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 210000004907 gland Anatomy 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101000860173 Myxococcus xanthus C-factor Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
Definitions
- At least one embodiment of the present disclosure relates to a fracturing system.
- the hydraulic end of the plunger pump is an important component of the plunger pump. It can achieve low-pressure liquid suction and high-pressure liquid discharge through its internal structure. During the actual well site fracturing operation, the high-pressure sand-carrying fluid will erode the hydraulic end and its internal valve body, valve seat and other components. Therefore, the hydraulic end and other components need to be replaced regularly. At present, the replacement of the hydraulic end is completed manually through the collaboration of multiple people. The replacement cycle is long, the work intensity of personnel is high, and the equipment replacement space is limited. The replacement equipment is heavy, which is prone to safety accidents such as personnel being hit.
- plunger pumps In actual operation at the well site, plunger pumps are usually operated for a long time and at high intensity. Equipment failures and other abnormalities are inevitable during the operation. Because the plunger pump operation area is a high-pressure dangerous area, personnel cannot conduct real-time inspections of the equipment in the high-pressure area, and therefore cannot discover and repair equipment failures in the first place, which will affect the service life of the equipment and even cause operational accidents.
- At least one embodiment of the present disclosure provides a fracturing system, which includes: a fracturing device, a high- and low-pressure manifold skid, a high- and low-pressure manifold skid, a high- and low-pressure manifold skid, and a main driving mechanism.
- the fracturing device has a hydraulic end;
- the high- and low-pressure manifold skid includes a main pipeline extending along a first direction and a main pipeline support supporting the main pipeline, the fracturing device is located at least on one side of the high- and low-pressure manifold skid in a second direction perpendicular to the first direction, and the main pipeline is connected to the hydraulic end of the fracturing device;
- a guide rail is located above the high- and low-pressure manifold skid and extends along the first direction;
- an intelligent working device includes a main body mounted on the guide rail; and the main driving mechanism is connected to the main body of the intelligent working device to drive the main body of the intelligent working device to move at least along the guide rail.
- the guide rail and the high- and low-pressure manifold skid at least partially overlap in a third direction perpendicular to both the first direction and the second direction.
- the fracturing system includes a plurality of the fracturing devices, and the plurality of the fracturing devices are located on at least one side of the guide rail in the second direction and are arranged at intervals from each other in the first direction;
- the intelligent working device is configured to: under the drive of the main driving mechanism, move to the target position on the guide rail to perform operations on the target device at the target position;
- the target position includes a position directly opposite to each of the plurality of the fracturing devices, and the target device includes each of the fracturing devices.
- the main driving mechanism is further configured to drive the intelligent working device to rotate on the guide rail, and the rotation angle range of the rotation is 0 to 360°.
- the intelligent working device also includes a first robotic arm, a first driving mechanism and a second driving mechanism;
- the first robotic arm includes a connecting end connected to the main body and a working end away from the main body;
- the working end is configured to be detachably connected to a working component, respectively, and the working component includes at least one of a rotating component, a pulling component and a clamping component, and the execution operation includes at least one of a rotating operation, a pulling operation and a clamping operation;
- the first driving mechanism is connected to the connecting end of the first robotic arm and is configured to drive the first robotic arm to move in a three-dimensional space;
- the second driving mechanism is configured to drive the working component connected to the working end to work.
- the fracturing system provided in at least one embodiment of the present disclosure also includes a working component accommodating device, which is arranged along the guide rail and connected to the guide rail bracket; the working component accommodating device is configured to accommodate a spare working component, and the intelligent working device moves on the guide rail to enable the working end of the first robotic arm to reach the working component accommodating device and connect with the working component.
- a working component accommodating device which is arranged along the guide rail and connected to the guide rail bracket; the working component accommodating device is configured to accommodate a spare working component, and the intelligent working device moves on the guide rail to enable the working end of the first robotic arm to reach the working component accommodating device and connect with the working component.
- the fracturing system provided by at least one embodiment of the present disclosure also includes a control system, which is communicatively connected to the main driving mechanism, the first driving mechanism and the second driving mechanism respectively; the control system is configured to: control the main driving mechanism to drive the intelligent working device to at least move along the guide rail to the target position and drive the intelligent working device to rotate, is configured to control the first driving mechanism to drive the first mechanical arm to move to the hydraulic end, and is configured to control the second driving mechanism to drive the working member connected to the working end to disassemble or install the functional components of the hydraulic end.
- the fracturing system provided in at least one embodiment of the present disclosure also includes a guide rail bracket, which extends along the first direction, is connected to the main pipe bracket and is located on a side of the main pipe bracket away from the ground; the guide rail is mounted on the guide rail bracket, and the guide rail is located on a side of the main pipe away from the ground.
- the fracturing system provided by at least one embodiment of the present disclosure further includes a conductive cable receiving device and a conductive cable.
- the conductive cable receiving device is located on the guide rail, the guide rail has a first side away from the main pipeline and a second side facing the main pipeline in the third direction, the intelligent working device is located on the first side of the guide rail, and the cable receiving device is located on the second side of the guide rail; the conductive cable is located in the conductive cable receiving device and is electrically connected to the intelligent working device.
- the fracturing system provided in at least one embodiment of the present disclosure further includes a shock absorbing structure, which is disposed on the guide rail bracket and is configured to reduce vibration caused to the guide rail during operation of the fracturing equipment.
- the intelligent working device includes an image acquisition device, which is connected to the control system signal and is configured to: acquire image information of the surrounding environment while the intelligent working device moves on the guide rail, and acquire image information of the target device during the process of performing operations on the target device at the target position, and transmit the image information to the control system; the control system is configured to determine the target position based on the image information of the surrounding environment and the image information of the target device, and the target position includes the position where the faulty target device is located.
- the intelligent working device includes a positioning module, which is connected to the control system signal and is configured to: transmit position information of the intelligent working device to the control system, and the control system is configured to determine whether the target position has been reached based on the position information.
- the intelligent working device is configured to move along a patrol route;
- the positioning module is configured to: record the route position information of the intelligent working device in real time during the movement of the intelligent working device, and send the route position information to the control system, the control system is also configured to receive and record the route position information, the route position information constitutes the patrol route, and the control system controls the intelligent working device to move along the patrol route according to the patrol route; or, the control system includes the position information in the patrol route and is configured to control the intelligent working device to move along the patrol route according to the position information in the patrol route, the positioning module is configured to obtain the real-time route position information of the intelligent working device during the movement of the patrol route and send it to the control system, and the control system determines whether the route position information is correct.
- the intelligent working device includes an infrared sensor, which is configured to perform infrared sensing of the surrounding environment during the movement of the intelligent working device and send the infrared sensing result to the control system; the control system is configured to control the position of the intelligent working device according to the infrared sensing result.
- the intelligent working device includes a flame sensor, which is configured to sense the temperature of the surrounding environment during the movement of the intelligent working device and send the temperature sensing result to the control system, and the control system is configured to determine whether flame is needed based on the temperature sensing result.
- the fracturing system provided in at least one embodiment of the present disclosure also includes a fracturing equipment positioning structure, which is detachably connected to the main pipe support and at least partially protrudes from the main pipe support toward the fracturing equipment, and the position of the positioning device on the main pipe support along the first direction is adjustable.
- a fracturing equipment positioning structure which is detachably connected to the main pipe support and at least partially protrudes from the main pipe support toward the fracturing equipment, and the position of the positioning device on the main pipe support along the first direction is adjustable.
- the fracturing equipment positioning structure has an adjustable part, and the fracturing equipment positioning structure has an expanded state and a folded state; in the expanded state, the adjustable part extends along the second direction and protrudes from the main pipe support toward the fracturing equipment; the length of the adjustable part along the second direction is reduced to allow the high and low pressure manifold skid to be converted to the folded state, in which at least part of the fracturing equipment positioning structure is stored so as not to protrude from the main pipe support in the second direction.
- the fracturing equipment includes a fracturing device, the fracturing device includes the hydraulic end and the power end connected to the hydraulic end, and the fracturing equipment also includes a motor and a reduction gearbox; the motor is connected to the power end through the reduction gearbox, the motor and the fracturing device are located on the same side of the reduction gearbox, and the motor and the fracturing device are arranged in a direction perpendicular to the extension direction of the motor shaft of the motor.
- the motor and the fracturing device are located on the same side of the reduction gearbox in the first direction and are arranged along the second direction, and the motor shaft of the motor extends along the first direction;
- the fracturing system includes a plurality of the fracturing devices, and the plurality of fracturing devices are located on at least one side of the main pipeline in the second direction and are arranged spaced apart from each other along the first direction.
- the hydraulic end has an inlet and an outlet
- the main pipeline includes a low-pressure main pipeline and a high-pressure main pipeline, the low-pressure main pipeline and the high-pressure main pipeline both extend along the first direction and are arranged in the third direction
- the low-pressure main pipeline is configured to provide low-pressure liquid to the hydraulic end
- the high-pressure main pipeline is configured to receive the high-pressure liquid output by the hydraulic end
- the hydraulic end is located on the side of the power end close to the main pipeline
- the fracturing system also includes a sub-pipeline corresponding to each of the fracturing devices, and the sub-pipeline is located between the guide rail and the main pipeline support.
- the sub-pipeline includes a low-pressure sub-pipeline and a high-pressure sub-pipeline.
- the low-pressure sub-pipeline is connected to the low-pressure main pipeline and the inlet of the corresponding hydraulic end of the fracturing equipment;
- the high-pressure sub-pipeline is connected to the high-pressure main pipeline and the outlet of the corresponding hydraulic end of the fracturing equipment;
- at least one of the low-pressure sub-pipeline and the high-pressure sub-pipeline includes a retractable pipeline structure, and the retractable pipeline structure includes a retractable pipeline and a flexible high-pressure hose;
- the retractable pipeline and the high-pressure hose both extend along the second direction and are connected to each other, the first end of the high-pressure hose is connected to the hydraulic end, and the second end of the high-pressure hose is connected to the retractable pipeline, and the length of the retractable pipeline in the second direction is adjustable.
- the high-pressure hose in the second direction, is located on a side of the retractable pipe close to the hydraulic end of the fracturing equipment.
- the low-pressure sub-pipeline and/or the high-pressure sub-pipeline including the retractable pipe structure are/is respectively a single pipe.
- FIG1 is a schematic plan view of a fracturing system provided by an embodiment of the present disclosure
- FIG2A is a partial schematic diagram 1 of a fracturing system including a high- and low-pressure manifold skid, a guide rail, and an intelligent working device provided by an embodiment of the present disclosure;
- FIG2B is a second partial schematic diagram of a fracturing system including a high- and low-pressure manifold skid, a guide rail, and an intelligent working device provided by an embodiment of the present disclosure
- FIG2C is a third partial schematic diagram of a fracturing system including a high- and low-pressure manifold skid, a guide rail, and an intelligent working device provided by an embodiment of the present disclosure;
- 3A is a schematic diagram of the structural relationship between a working component, a first mechanical arm, a first driving mechanism, and a second driving mechanism of a fracturing system provided by an embodiment of the present disclosure
- FIG3B is a schematic diagram of the structure of a plunger pump of a fracturing device of a fracturing system provided by an embodiment of the present disclosure
- FIG3C is a schematic diagram of the connection relationship between a control system and some working components of a fracturing system provided by an embodiment of the present disclosure
- FIG3D is a patrol logic diagram of an intelligent working device of a fracturing system provided by an embodiment of the present disclosure
- FIG4 is a schematic structural diagram of a fracturing equipment positioning structure of a fracturing system provided by an embodiment of the present disclosure
- FIG5 is a schematic structural diagram of a fracturing device including a motor and a reduction gearbox of a fracturing system provided by an embodiment of the present disclosure
- FIG6 is a schematic structural diagram of a retractable pipe structure P of a fracturing system provided in an embodiment of the present disclosure.
- the hydraulic end of the plunger pump is an important component of the plunger pump. It can achieve low-pressure liquid suction and high-pressure liquid discharge through its internal structure. During the actual well site fracturing operation, the high-pressure sand-carrying fluid will erode the hydraulic end and its internal valve body, valve seat and other components. Therefore, the hydraulic end and other components need to be replaced regularly. At present, the replacement of the hydraulic end is completed manually through the collaboration of multiple people. The replacement cycle is long and the work intensity of personnel is high. In addition, the equipment replacement space is limited and the replacement equipment is heavy, which is prone to safety accidents such as personnel being hit. In addition, the space between pipelines in the actual well site is limited, which requires improving the space utilization rate of each equipment and satisfying the functional coordination of each equipment.
- At least one embodiment of the present disclosure provides a fracturing system, which includes: a fracturing device, a high and low pressure manifold skid, a high and low pressure manifold skid, a high and low pressure manifold skid and a main driving mechanism.
- the fracturing device has a hydraulic end;
- the high and low pressure manifold skid includes a main pipeline extending in a first direction and a main pipeline support carrying the main pipeline, the fracturing device is located at least on one side of the high and low pressure manifold skid in a second direction perpendicular to the first direction, and the main pipeline is connected to the hydraulic end of the fracturing device;
- the guide rail is located above the high and low pressure manifold skid and extends in the first direction;
- the intelligent working device includes a main body installed on the guide rail;
- the main driving mechanism is connected to the main body of the intelligent working device to drive the main body of the intelligent working device to move at least along the guide rail.
- the fracturing system provided by the embodiment of the present disclosure is convenient for using the intelligent working device to detect and maintain the fracturing equipment arranged on both sides of the high and low pressure manifold skid in the second direction, and is also very convenient for detecting and maintaining the main pipeline.
- the intelligent working device can inspect the well site along the direction where the high and low pressure manifold skid is located; and it can avoid setting up the guide rail to occupy additional space, thereby improving the space utilization rate of the fracturing system.
- FIG1 is a schematic plan view of a fracturing system provided in one embodiment of the present disclosure
- FIG2A is a partial schematic view 1 of a fracturing system including a high- and low-pressure manifold skid, a guide rail, and an intelligent working device provided in one embodiment of the present disclosure
- FIG2B is a partial schematic view 2 of a fracturing system including a high- and low-pressure manifold skid, a guide rail, and an intelligent working device provided in one embodiment of the present disclosure
- FIG2C is a partial schematic view 3 of a fracturing system including a high- and low-pressure manifold skid, a guide rail, and an intelligent working device provided in one embodiment of the present disclosure.
- the fracturing system 10 includes: a fracturing device 1, a high- and low-pressure manifold skid 2, a guide rail 3, an intelligent working device 4, and a main driving mechanism 42.
- the fracturing equipment 1 has a hydraulic end 11; the high and low pressure manifold skid 2 includes a main pipeline 21 extending along a first direction D1 and a main pipeline support 22 supporting the main pipeline 21.
- the fracturing equipment 1 is located on at least one side of the high and low pressure manifold skid 2 in a second direction D2 perpendicular to the first direction D1, and the main pipeline 21 is connected to the hydraulic end 11 of the fracturing equipment 1;
- the guide rail 3 is located above the high and low pressure manifold skid 2 (the side away from the ground) and extends along the first direction D1;
- the intelligent working device 4 includes a main body 41 installed on the guide rail 3; the main body driving mechanism 42 is connected to the intelligent working device 4 and is configured to drive the intelligent working device 4 to move at least along the guide rail 3.
- the guide rail 3 is arranged above the high and low pressure manifold skid 2, and the guide rail 3 and the high and low pressure manifold skid 2 both extend along the first direction D1, so as to utilize the position where the high and low pressure manifold skid 2 is located to set the guide rail 3 for installing the intelligent working device 4.
- the space between the fracturing equipment 1 and the high and low pressure manifold skid 2 is full of pipelines, which makes space utilization difficult and is not conducive to the daily maintenance of the pipelines.
- the guide rail 3 and the intelligent working device 4 do not need to design a separate placement space for the high and low pressure manifold skid 2 in the fracturing well site; on the other hand, usually, the area where the high and low pressure manifold skid 2 is located and extends along the first direction D1 is the core position of the well site, and the fracturing equipment 1 is located on one side or both sides of the high and low pressure manifold skid 2 in the second direction D2, and, The main pipeline 21 and the hydraulic end 11 of the fracturing equipment 1 are prone to failure, or parts need regular maintenance or replacement.
- the design of the guide rail 3 and the intelligent working device 4 facilitates the intelligent working device 4 to move along the extended position of the high and low pressure manifold skid 2.
- the intelligent working device 4 can inspect the well site along the direction of the high and low pressure manifold skid 2. In addition, it can avoid setting up the guide rail 3 to occupy additional space. For an actual fracturing well site, the space between pipelines is limited, it is difficult to set up tracks, and space utilization is difficult. In this case, the design of the guide rail 3 and the intelligent working device 4 in the embodiment of the present disclosure can improve the space utilization rate of the fracturing system.
- the intelligent working device after the intelligent working device is installed, it can be hoisted and transported together with the high and low pressure manifold skids without the need for frequent disassembly and assembly.
- the guide rail 3 at least partially overlaps with the high and low pressure manifold skid 2 in a third direction D3 that is perpendicular to both the first direction D1 and the second direction D2.
- the guide rail 3 is centrally fixedly installed directly above the high and low pressure manifold skid 2 to further avoid the guide rail 3 occupying too much additional space.
- the fracturing system 10 includes a plurality of fracturing devices 1, and the plurality of fracturing devices 1 are located on both sides of the guide rail 3 in the second direction D2 and are arranged at intervals from each other in the first direction D1; of course, in other embodiments, the plurality of fracturing devices 1 may also be arranged on only one side of the guide rail 3 in the second direction D2.
- the intelligent working device 4 is configured to move to a target position on the guide rail 3 under the drive of the main driving mechanism 42 to perform operations on a target device at the target position.
- the target position includes a position directly opposite to each of the plurality of fracturing devices 1, and the target device includes each fracturing device 1, so that the intelligent working device 4 can move along the guide rail 3 to move to the position of each fracturing device 1 in turn, and the operations performed on each fracturing device 1 include maintenance and inspection of the fracturing device 1, replacement of parts, and the like.
- the target device may also include other structures, such as sub-pipelines arranged along the main pipeline 21, the ground, and the space of the fracturing well site, so that the intelligent working device 4 can move along the guide rail 3 to perform maintenance and parts replacement on the main pipeline 21 and sub-pipelines, such as the low-pressure sub-pipeline L1 and the high-pressure sub-pipeline H1, such as replacing valve plugs and retractable structures of the main pipeline and sub-pipelines, to improve the degree of automation and efficiency.
- sub-pipelines such as the low-pressure sub-pipeline L1 and the high-pressure sub-pipeline H1
- guide rails of different lengths for setting up intelligent working devices can be set up.
- the intelligent working device 4 is an industrial robot, such as a KUKA robot, etc., which is fixed on the existing manifold skid at the well site by designing a dedicated robot moving track and using a dedicated mounting bracket. Depending on the number of fracturing equipment in the well site, robot tracks of different lengths can be set up.
- the guide rails of the embodiments of the present disclosure may have various styles, including but not limited to (ball screw rails, dovetail groove slide rails, rack and pinion guide rails, load-bearing roller sets + U-groove guide rails).
- the main driving mechanism 42 is also configured to drive the intelligent working device 4 to rotate on the guide rail 3, and the rotation angle range is 0 to 360 degrees, so that the intelligent working device 4 can detect the space and equipment in all directions around it.
- the detection here includes the detection of whether the equipment has failed and the detection of whether the surrounding environment is safe, such as whether there are pedestrians or fire, etc., to enhance automatic safety monitoring protection.
- the intelligent working device 4 includes a main body 41 mounted on the guide rail 3, and a main body driving mechanism 42 is connected to the main body 41 of the intelligent working device 4 to drive the main body 41 of the intelligent working device 4 to move at least along the guide rail 3.
- the fracturing system 10 further includes a cable chain 47, which is connected to the main body driving mechanism 42 and the main body 41 to transmit power and provide power to the intelligent working device 4.
- FIG3A is a schematic diagram of the structural relationship between a working component, a first mechanical arm, a first driving mechanism, and a second driving mechanism of a fracturing system provided by an embodiment of the present disclosure.
- the intelligent working device 4 further includes: a first mechanical arm 01, a first driving mechanism D1, and a second driving mechanism D2.
- the first robotic arm 01 includes a connecting end 01a connected to the main body 41 and a working end 01b away from the main body 41, the working end 01b is configured to be detachably connected to the working components, the working components include at least one of a rotating component, a pulling component and a clamping component, and the executed operation includes at least one of a rotating operation, a pulling operation and a clamping operation;
- the first driving mechanism D1 is connected to the connecting end 01a of the first robotic arm 01 and is configured to drive the first robotic arm 01 to move in a three-dimensional space;
- the second driving mechanism D2 is configured to drive the working component connected to the working end 01b to work, for example, to complete the disassembly and installation of multiple functional components, so that it takes less time to replace the components of the hydraulic end of the plunger pump using the intelligent working device 4 moving along the guide rail 3, especially when replacing components that are difficult to disassemble such as the valve seat spring sleeve, the valve seat and the plunger, the time-saving and labor-
- Fig. 3B is a schematic diagram of the structure of a plunger pump of a fracturing device of a fracturing system provided by an embodiment of the present disclosure.
- the plunger pump includes a hydraulic end 100, and the hydraulic end includes a first cavity 01A and a plurality of first functional components located in the first cavity 01A.
- FIG3C is a schematic diagram of the connection relationship between a control system and some working components of a fracturing system provided by an embodiment of the present disclosure.
- the fracturing system further includes a control system C.
- the control system C is also connected to the main driving mechanism 42, the first driving mechanism D1 and the second driving mechanism D2 in communication, and the control system C is configured to: control the main driving mechanism 42 to drive the intelligent working device 4 to move at least along the guide rail 3 to the target position and drive the intelligent working device 4 to rotate, and is configured to control the first driving mechanism D1 to drive the first mechanical arm 01 to move to the hydraulic end 11, and is configured to control the second driving mechanism D2 to drive the working member connected to the working end 01b to disassemble or install the functional components of the hydraulic end 11.
- control system C is configured to control the first driving mechanism D1 to drive the first mechanical arm 01 to move in the extension direction of the first cavity 01A, and control the first mechanical arm 01 to drive multiple working members to enter the first cavity 01A, and is configured to control the matching connection with multiple first functional components in the first cavity 01A respectively, so as to disassemble or install multiple first functional components in the first cavity 01A.
- the hydraulic end also includes a second cavity 02A and a plurality of second functional components located in the second cavity 02A.
- the control system is also configured to control the first driving mechanism to drive the first robotic arm 01 to move in the extension direction of the second cavity 02A, and to control the first robotic arm 01 to drive a plurality of working components to enter the second cavity 02A, and to match and connect with the plurality of second functional components in the second cavity 02A, respectively, so as to disassemble or install the plurality of second functional components in the second cavity 02A.
- the second drive mechanism D2 may be located at the working end 01b of the first mechanical arm 01, and include a motor, for example, the second drive mechanism may be detachably connected to the working end 01b of the first mechanical arm 01.
- the second drive mechanism may be manually installed on the working end 01b of the first mechanical arm 01; or, the working end 01b of the first mechanical arm 01 includes a hollow shell, and the second drive mechanism is located in the shell of the working end 01b.
- the communication connection between the control system C and the first drive mechanism D1 and the second drive mechanism D2 can be a wired connection or a wireless connection.
- the control system can be arranged on the first mechanical arm 01, for example, in the housing of the working end 01b, so as to facilitate the wired electrical connection with the first mechanical arm 01, and the wires or circuit boards used to electrically connect the two can be arranged in the housing of the working end 01b.
- the present disclosure does not limit the specific setting method of the control system and the communication connection method between the control system and the first drive mechanism and the second drive mechanism, and those skilled in the art can design it using the commonly used techniques in the field.
- the first cavity 01A intersects and communicates with the second cavity 02A, the first cavity 01A extends in the transverse direction, the second cavity 02A extends in the longitudinal direction, the first cavity 01A has a first end and a second end opposite to each other in the transverse direction, and the second cavity 02A has a first end and a second end opposite to each other in the longitudinal direction.
- the longitudinal direction is perpendicular to the transverse direction.
- the first functional component in the working state of the plunger pump, includes a first pressure cap 01a, a first pressure cover 01b and a plunger 01c.
- the first pressure cap 01a is located at the first end of the first cavity 01A; the plunger 01c extends in the transverse direction and is located at the second end of the first cavity 01A.
- the second functional component includes a second pressure cap 02a, a second pressure cover 02b, a first valve spring seat 02f, a first valve spring 02g, a first valve body 02h, a first valve body seat 02i, a valve spring seat sleeve 02e, a second valve spring seat 02j, a second valve spring 02k, a second valve body 02c and a second valve body seat 02d.
- the second pressure cap 02a is located at the first end 02A of the second cavity 02A; the valve spring seat sleeve 02e is located on one side of the plunger 01c in the horizontal direction and has a hollow shell.
- the first valve spring seat 02f is detachably connected to the first valve spring 02g and is located on the side of the shell close to the second end 02B of the second cavity 02A in the longitudinal direction; the valve spring seat sleeve 02e is located on one side of the plunger 01c in the horizontal direction and has a hollow shell that is clamped at the intersection of the first cavity 01A and the second cavity 02A, and the first pressure cap 01b is in contact with the valve spring seat sleeve 02e.
- the first pressure cap 01b and the first pressure cap 01a seal the first end of the first cavity 01A, and fix the valve spring seat sleeve 02e together with the plunger 01c and the cavity wall.
- the housing of the valve spring seat sleeve 02e has a right opening e2 facing the first end of the first cavity 01A, a left opening e1 facing the second end of the first cavity 01A, and a lower opening e3 facing the second end of the second cavity 02A.
- the first valve spring 02g is sleeved on the first valve spring seat 02f and can be telescopic in the longitudinal direction.
- the first valve spring seat 02f is located on the side of the housing of the valve spring seat sleeve 02e with the lower opening e3 and has a through hole 02j-1 that penetrates the first valve spring seat 02f in the longitudinal direction, and the through hole 02j-1 is connected to the lower opening e3 of the first valve spring seat 02f.
- the first valve body 02h is installed on the first valve body seat 02i.
- the second valve spring 02k is sleeved on the second valve spring seat 02j and can be telescopic in the longitudinal direction.
- the second valve body 02c is installed on the second valve body seat 02d.
- the second valve spring seat 02j is integrally formed with the second valve body 02c or is separately provided; or the second valve spring seat 02j is integrally formed with the first gland 02b or is separately provided.
- the second gland 02b is connected to the second valve spring seat 02j, and the second gland 02a and the second gland 02b seal the first end of the second cavity 02A and fix the second valve spring seat 02j.
- the intelligent working device 4 can be used to move along the guide rail 3 to the position of the hydraulic end of the corresponding fracturing equipment to detect each fracturing equipment, including the hydraulic end of the plunger pump of the fracturing equipment, so as to determine whether the suction plug of the hydraulic end (pump head) of the plunger pump is blocked, whether the discharge plug is blocked, and determine the parts that need to be replaced or repaired, and assist the maintenance personnel to disassemble the various structures of the hydraulic end of the plunger pump.
- the first mechanical arm 01 of the intelligent working device 4 can also act as a crane to assist in the disassembly and installation of the various structures of the hydraulic end of the plunger pump.
- the intelligent working device 4 can move to the end of the guide rail 3 by itself, lift and transport the new pump head to the maintenance position, and assist in the replacement of the various structures of the hydraulic end of the plunger pump.
- the intelligent working device 4 can realize the automatic disassembly of the suction plug, discharge plug, and end cover of the hydraulic end (or pump head) of the plunger pump by quickly replacing different end execution tools, and assist personnel to replace the valve seat, reducing the workload of personnel pump inspection.
- the first robot arm 01 of the intelligent working device 4 is connected to each functional component to disassemble and install each component in the corresponding first cavity 01A and second cavity 02A of the hydraulic end of the plunger pump, or the intelligent working device 4 includes multiple robot arms, and the multiple robot arms are respectively installed with different functional components, and the multiple robot arms work together to complete the disassembly and installation of each component in the corresponding first cavity and second cavity of the hydraulic end of the plunger pump.
- the hydraulic end 100 of the plunger pump may also include only the first cavity 01A or only the second cavity 02A.
- the case where the hydraulic end 100 of the plunger pump includes the first cavity 01A and the second cavity 02A shown in FIG. 3B is taken as an example to introduce the automatic disassembly and installation system of the plunger pump and the method for automatically disassembling and installing the hydraulic end 100 of the plunger pump.
- the fracturing system 10 further includes a working member accommodating device 5, which is arranged along the guide rail 3 to facilitate the working end of the robot to reach the working member accommodating device 5.
- the working member accommodating device 5 is located at at least one end of the guide rail 3 in the first direction D1, or a working member accommodating device 5 is arranged at a position corresponding to each fracturing device 1 along the guide rail 3.
- the working member accommodating device 5 is configured to accommodate a spare working member, and the intelligent working device 4 moves on the guide rail 3 so that the working end 01b of the first robot arm 01 reaches the working member accommodating device 5 and connects with the working member.
- the working member accommodating device 5 can be connected to the guide rail bracket 31 to increase the height, so that the length of the first manipulator of the robot does not need to be very long, and its working end can reach the working member accommodating device 5, which is more convenient for the working end of the robot to reach the working member accommodating device 5.
- the working member accommodating device 5 can also be not connected to the guide rail bracket 31 and set on the ground, which simplifies the structure and reasonably utilizes the blank ground space.
- the working component accommodating device 5 includes multiple accommodating grooves matching multiple working components, respectively accommodating multiple working components, and the connecting end of the working component for connecting with the working end 01b of the first robotic arm 01 is exposed, and the working end 01b of the first robotic arm 01 can reach the connecting end of the working component and connect with the working component.
- the fracturing system 10 further includes a guide rail bracket 31, which extends along a first direction D1, is connected to the main pipe bracket 22 and is located on a side of the main pipe bracket 22 away from the ground, and the guide rail 3 is mounted on the guide rail bracket 31, and the guide rail 3 is located on a side of the main pipe 21 away from the ground.
- the guide rail bracket 31 includes a plurality of legs 310, which are mounted on the main pipe bracket 22, and are quickly positioned by positioning pins, and are installed and fastened by bolts.
- the main pipe bracket 22, the guide rail bracket 31 and the guide rail 3 cooperate with each other to achieve efficient and stable arrangement of the guide rail 3 above the main pipe 21 without affecting the layout of the main pipe 21.
- the fracturing system 10 further includes: a conductive cable receiving device and a conductive cable.
- the conductive cable receiving device is located on the guide rail 3, and the guide rail 3 has a first side away from the main pipeline 21 and a second side facing the main pipeline 21 (i.e., below the guide rail 3) in the third direction D3.
- the intelligent working device 4 is located on the first side of the guide rail 3, and the cable receiving device is located on the second side of the guide rail 3; the conductive cable is located in the conductive cable receiving device and is electrically connected to the intelligent working device 4.
- the conductive cable receiving device is a cable trough, a cable rack, etc.; for example, the conductive cable receiving device is located in the middle part of the guide rail 3 in the first direction D1, or is set at a position along the entire length of the guide rail 3 in the first direction D1.
- the cable receiving device is located below the guide rail 3 and is a cable trough, and a cable bridge is laid below the guide rail 3 to ensure that the wires are arranged below the guide rail 3 and above the main pipeline 21, without occupying other space, thereby improving space utilization and extending the service life of the cable.
- the fracturing system 10 further includes a shock absorbing structure 8, which is disposed on the guide rail bracket 31 and is configured to reduce the vibration caused to the guide rail 3 during the working process of the fracturing device 1.
- the shock absorbing structure 8 is located on at least one leg 310 of the guide rail bracket 31.
- a shock absorbing structure 8 is disposed on each leg 310 to reduce the influence of the movement of the intelligent working device 4 on the guide rail 3 and the vibration generated during the working process on the stability of the guide rail bracket 31, the main pipeline bracket 22 and the main pipeline 21, so as to enhance the stability of the overall structure composed of the main pipeline bracket 22, the main pipeline 21, the guide rail bracket 31, the guide rail 3 and the intelligent working device 4; and the shock absorbing structure 8 can reduce the influence of the vibration of the fracturing equipment on the intelligent working device 4 during the fracturing operation.
- the shock absorbing structure 8 is a rubber vibration damping pad, a wire rope vibration isolator, etc., and the specific type of the shock absorbing structure is not limited in the embodiment of the present disclosure.
- the intelligent working device 4 includes an image acquisition device 43.
- an infrared sensor 45 is disposed at the working end 01b of the first robot 01, exposed on the surface of the working end 01b, and connected to the control system C signal, and the infrared sensor 45 is configured to: acquire image information of the surrounding environment during the movement of the intelligent working device 4 on the guide rail 3, and acquire image information of the target device during the operation of the target device at the target position, and transmit the image information to the control system C.
- the control system C is configured to determine the target position based on the image information of the surrounding environment and the image information of the target device, and the target position includes the position of the target device where the fault occurs. The operator determines the abnormal situation through the image information and carries out the next step accurately and timely.
- the image acquisition upper device 43 includes a high-definition camera, which acquires image information of the surrounding environment by taking pictures, scanning codes, or identifying RFID.
- the image acquisition upper device 43 can be used to record the consumables being carried. Through the visual recognition system equipped with a camera, the robot can determine the installation position of the replaced valve body, valve seat and other consumables, record the data information of each consumable, and transmit the information to the storage device, which is convenient for big data statistics and plunger pump maintenance information query.
- the intelligent working device 4 includes a positioning module 44 , which is connected to the control system C signal and is configured to transmit the position information of the intelligent working device 4 to the control system C, and the control system C is configured to determine whether the target position has been reached based on the position information.
- a positioning module 44 which is connected to the control system C signal and is configured to transmit the position information of the intelligent working device 4 to the control system C, and the control system C is configured to determine whether the target position has been reached based on the position information.
- the intelligent working device 4 is configured to move along a patrol route.
- the intelligent working device 4 can move along a set patrol route under remote control by personnel.
- the positioning module 44 is configured to: record the route position information of the intelligent working device 4 in real time during the movement of the intelligent working device 4, and send the route position information to the control system C, the control system C is also configured to receive and record the route position information, the route position information constitutes the patrol route, the control system C controls the intelligent working device to move along the patrol route according to the patrol route; or, the control system C includes the position information in the patrol route, and is configured to control the intelligent working device to move along the patrol route according to the position information in the patrol route, the positioning module 44 is configured to obtain the real-time route position information of the intelligent working device during the movement of the patrol route and send it to the control system C, the control system C determines whether the route position information is correct.
- the intelligent working device 4 includes an infrared sensor 45, which is configured to perform infrared sensing of the surrounding environment during the movement of the intelligent working device 4, and send the infrared sensing result to the control system C, and the control system C is configured to control the position of the intelligent working device 4 according to the infrared sensing result.
- the infrared sensor 45 is arranged at the working end 01b of the first mechanical arm 01, so as to perform infrared sensing of the surrounding environment as the working end 01b moves, thereby achieving a large detection range.
- the control system when the infrared sensor 45 detects a pedestrian, the control system includes a first judgment module, which makes a judgment based on the information transmitted by the infrared sensor 45, thereby controlling the infrared alarm to send a first alarm signal to warn the pedestrian to avoid the working parts such as the manipulator of the intelligent working device.
- the intelligent working device 4 includes a flame sensor 46, which is configured to sense the temperature of the surrounding environment during the movement of the intelligent working device 4, and send the result of the temperature sensing to the control system C, wherein the control system C is configured to determine whether a flame is required to exist based on the result of the temperature sensing.
- the flame sensor 46 is arranged at the working end 01b of the first robot 01, so that the flame sensor 46 can sense the temperature of the surrounding environment as the working end 01b moves, thereby achieving a large detection range.
- the flame sensor 46 is, for example, a temperature sensor.
- the flame sensor 46 detects a high temperature signal
- the control system includes a second judgment module, which makes a judgment based on the information transmitted by the flame sensor 46, thereby controlling the high temperature alarm to send a second alarm signal to issue a fire warning.
- the intelligent working device performs inspection work according to the inspection logic diagram shown in FIG3D , and the inspection route and various steps are as described above.
- control system C may include a processor and a memory
- the processor may be, but is not limited to: a central processing unit, a single-chip microcomputer, a microprocessor or a programmable logic device.
- the memory may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
- the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory may be a random access memory (RAM), which is used as an external cache.
- RAM Static RAM
- DRAM Dynamic RAM
- SDRAM Synchronous DRAM
- DDRSDRAM Double Data Rate SDRAM
- ESDRAM Enhanced SDRAM
- SLDRAM Synchlink DRAM
- DRRAM Direct Rambus RAM
- Memory is intended to include, but is not limited to, these and any other suitable types of memory.
- the memory stores the following elements, executable modules or data structures, or their subsets, or their extensions: operating systems and applications, and corresponding execution modules such as evaluation modules and determination modules, wherein the operating system includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
- the application includes various application programs, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
- the program for implementing the method of the embodiment of the present disclosure may be included in the application.
- the fracturing system 10 further includes a fracturing equipment positioning structure 6, which is detachably connected to the main pipeline support 22, at least partially protruding from the main pipeline support 22 toward the fracturing equipment 1, and the position of the positioning device on the main pipeline support 22 along the first direction D1 is adjustable.
- the positioning structure 6 realizes the function of a positioning scale.
- a plurality of fracturing devices 1 and a plurality of positioning structures 6 correspond to each other one by one, are spaced apart from each other by a preset distance, and are aligned.
- FIG4 is a schematic diagram of the structure of a fracturing equipment positioning structure of a fracturing system provided by an embodiment of the present disclosure.
- the fracturing equipment positioning structure 6 has an adjustable portion 61
- the fracturing equipment positioning structure 6 has an unfolded state and a folded state; in the unfolded state, the adjustable portion 61 extends along the second direction D2 and protrudes from the main pipe support 22 toward the fracturing equipment 1; the length of the adjustable portion 61 along the second direction D2 is reduced to convert the high-low pressure manifold skid 2 to the folded state, in which at least part of the fracturing equipment positioning structure 6 is received and attached to the main pipe support 22, that is, it does not protrude from the main pipe support 22.
- the adjustable portion 61 is rotated along the pin axis and folded, and in the folded state, the fracturing equipment positioning structure 6 is attached to the side of the main pipe support 22.
- the fracturing equipment positioning structure 6 includes a main body 60 and an adjustable part 61 movably connected to the main body 60, and the adjustable part 61 includes a first part 61a and a second part 61b, and the first part 61a is movably connected to the second part 61b; for example, the first part 61a is movably connected to the second part 61b through a pin (such as an R-type pin); for example, a limit plate is provided at the end of the first part 61a close to the second part 61b to limit the position of the first part 61a.
- a pin such as an R-type pin
- the first part 61a and the second part 61b both extend along the second direction D2 and protrude from the adjustable part 61; the first part 61a can be rotated along the pin shaft of the pin to be folded, and the second part 61b can be folded to fit on the main body 60 to switch to the folded state.
- the main body 60 is fixed on the side of the main pipe support 22, so that in the folded state, the fracturing equipment positioning structure 6 fits on the side of the main pipe support 22.
- the fracturing equipment positioning structure 6 when used to position the fracturing equipment, the fracturing equipment positioning structure 6 is unfolded to be in an unfolded state, and the position of each fracturing equipment 1 is set by aligning the position of the fracturing equipment positioning structure 6. After the fracturing equipment 1 is installed at the corresponding position, the fracturing equipment positioning structure 6 is folded to a folded state, which does not occupy space and avoids damage to the non-fracturing equipment positioning structure 6. For example, the positions of multiple fracturing equipment positioning structures 6 can be moved along the first direction D1 to set the position of the fracturing equipment as needed.
- the fracturing equipment positioning structure is not limited to being folded on the side of the main pipe support.
- the fracturing equipment positioning structure can also be folded under the main pipe support (the side of the main pipe support 22 away from the guide rail 3 in the third direction D3), as long as the fracturing equipment positioning structure can be hidden and stored in the folded state.
- FIG5 is a schematic diagram of the structure of a fracturing device including a motor and a reduction gearbox of a fracturing system provided by an embodiment of the present disclosure.
- the fracturing device 1 includes a fracturing device, the fracturing device includes a hydraulic end 11 and a power end connected to the hydraulic end 11, and the fracturing device 1 also includes a motor 13 and a reduction gearbox 14; the motor 13 is connected to the power end through the reduction gearbox 14, the motor 13 and the fracturing device are located on the same side of the reduction gearbox 14, and the motor 13 and the fracturing device are arranged in a direction perpendicular to the extension direction of the motor shaft of the motor 13.
- the motor 13 and the fracturing device are located on the same side of the reduction box 14 in the first direction D1 and are arranged along the second direction D2, and the motor shaft 130 of the motor 13 extends along the first direction D1;
- the fracturing system 10 includes a plurality of fracturing devices 1, and the plurality of fracturing devices 1 are located on at least one side of the main pipeline 21 in the second direction D2, and are arranged at intervals from each other along the first direction D1, so as to reduce the space occupied by each fracturing device 1 in the first direction D1, that is, the arrangement direction of the plurality of fracturing devices 1, so as to improve the space utilization rate of the fracturing well site.
- the hydraulic end 11 has an inlet and an outlet
- the main pipeline 21 includes a low-pressure main pipeline L and a high-pressure main pipeline H.
- the low-pressure main pipeline L and the high-pressure main pipeline H both extend along the first direction D1 and are arranged in the third direction D3.
- the orthographic projection of the low-pressure main pipeline L on the ground and the orthographic projection of the high-pressure main pipeline H on the ground at least partially overlap.
- the low-pressure main pipeline L is configured to provide low-pressure liquid to the hydraulic end 11, and the high-pressure main pipeline H is configured to receive the high-pressure liquid output by the hydraulic end 11; for each fracturing device 1, in the second direction D2, the hydraulic end 11 is located on the side of the power end close to the main pipeline 21; the fracturing system 10 also includes a sub-pipeline corresponding to each fracturing device 1, and the sub-pipeline is located between the guide rail 3 and the main pipeline support 22, so as to facilitate connection with the sub-pipeline and reduce the complexity of the pipeline.
- the sub-pipeline includes a low-pressure sub-pipeline L1 and a high-pressure sub-pipeline H1.
- the low-pressure sub-pipeline L1 is connected to the inlet of the low-pressure main pipeline L and the corresponding hydraulic end 11 of the fracturing equipment 1;
- the high-pressure sub-pipeline H1 is connected to the outlet of the high-pressure main pipeline H and the corresponding hydraulic end 11 of the fracturing equipment 1;
- at least one of the low-pressure sub-pipeline L1 and the high-pressure sub-pipeline H1 includes a telescopic pipeline structure P, and the telescopic pipeline structure P includes a telescopic pipeline P1 and a flexible high-pressure hose P2;
- the telescopic pipeline P1 and the high-pressure hose P2 both extend along the second direction D2 and are connected to each other, the first end of the high-pressure hose P2 is connected to the hydraulic end 11, and the second end of the high-pressure hose P2 is connected to the tele
- a rigid hard pipe is used to connect the high and low pressure manifold skid and the hydraulic end, and complex pipelines are laid between the hydraulic end and the high and low pressure manifold skid, making space utilization difficult and not conducive to daily maintenance of the pipelines.
- the solution of combining the above-mentioned retractable pipeline P1 and the flexible high-pressure hose P2 provided in the embodiment of the present disclosure can not only use a single pipeline to greatly simplify the pipeline structure, but also facilitate the adjustment of the length of the pipeline.
- each low-pressure sub-pipeline L1 and each high-pressure sub-pipeline H1 includes a retractable pipe structure P, and the upper limit of the liquid pressure that the high-pressure hose P2 of the low-pressure sub-pipeline L1 can withstand is less than or equal to the upper limit of the liquid pressure that the high-pressure hose P2 of the high-pressure sub-pipeline H1 can withstand, so that the high-pressure sub-pipeline and the low-pressure sub-pipeline can match the liquid pressures they respectively transport.
- the upper limit of the pressure value that the high-pressure hose can withstand is greater than or equal to 150Mpa to meet the requirements for conveying high-pressure fracturing fluid.
- the upper limit of the pressure value that the high-pressure hose can withstand is in the range of 50Mpa to 200Mpa, so that the selection of a suitable pressure value is easy to implement and reduces the manufacturing requirements of the high-pressure hose.
- the embodiment of the present disclosure does not limit the range of pressure values that the high-pressure hose can withstand.
- the high-pressure hose P2 is located on the side of the telescopic pipe P1 close to the hydraulic end 11 of the fracturing equipment 1. Since the high-pressure hose P2 has a high pressure resistance, the high-pressure hose P2 is arranged on the side of the telescopic pipe P1 close to the hydraulic end 11 of the fracturing equipment 1, so that the high-pressure hose P2 can first receive the high-pressure fracturing fluid (for example, a solid-liquid mixture) input from the hydraulic end 11 of the fracturing equipment 1, so as to reduce the impact of the high-pressure liquid entering the end of the pipe close to the hydraulic end from the hydraulic end 11 on the telescopic pipe P1. Therefore, the overall structure combining the high-pressure hose P2 and the telescopic pipe P1 can ensure the stability of the pipe to withstand the high-pressure fracturing fluid while achieving the adjustable length of the pipe.
- the high-pressure hose P2 has a high pressure resistance
- the high-pressure hose P2 is
- the length of the high-pressure hose P2 in the second direction D2 is greater than the minimum length of the telescopic pipe P1 in the second direction D2; further, for example, the length of the high-pressure hose P2 in the second direction D2 is greater than the maximum length of the telescopic pipe P1 in the second direction D2 after extension, which is conducive to making full use of the high-pressure hose to enhance the high-pressure resistance of the pipeline and improve the life of the pipeline.
- the low-pressure sub-pipeline L1 and/or the high-pressure sub-pipeline H1 of the telescopic pipeline structure P are each a single pipeline.
- single pipeline means only one pipeline as shown in the figure, rather than a complex pipeline structure formed by connecting multiple branch pipelines.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
一种压裂系统,该压裂系统包括:压裂设备、高低压管汇撬和主体驱动机构。压裂设备具有液力端;高低压管汇撬包括沿第一方向延伸的主管道和承载主管道的主管道支架,压裂设备在与第一方向垂直的第二方向上位于高低压管汇撬的至少一侧,主管道与压裂设备的液力端连接;导轨位于高低压管汇撬上方且沿第一方向延伸;智能工作装置,包括安装于导轨上的主体;主体驱动机构与智能工作装置的主体连接以驱动智能工作装置的主体至少沿导轨移动。该压裂系统便于利用智能工作装置对设置在高低压管汇撬两侧的压裂设备进行检测和维护操作,也便于对主管道进行检测和维护,并且能够避免设置导轨占用额外空间,提高压裂系统的空间利用率。
Description
本公开至少一实施例涉及一种压裂系统。
柱塞泵的液力端是柱塞泵的重要组成部件,通过其内部结构实现低压液体吸入、高压液体排出。实际井场压裂作业时,高压携砂液会对液力端及其内部的凡尔体、凡尔座等部件进行冲蚀,因此,需要定期更换液力端等部件。现阶段液力端更换是通过多人协作手动完成,更换周期长、人员作业强度大,且设备更换空间有限、更换设备较重,容易发生人员砸伤等安全事故。
柱塞泵在井场实际作业中,通常是长时间、高强度作业,作业过程中不可避免的会出现设备故障等异常,因柱塞泵作业区为高压危险区域,人员无法在高压区内对设备进行实时巡检,因而不能第一时间对设备故障进行发现、修复,会对影响设备使用寿命甚至造成作业事故。
发明内容
本公开至少一实施例提供一种压裂系统,该压裂系统包括:压裂设备、高低压管汇撬、高低压管汇撬、高低压管汇撬和主体驱动机构。压裂设备具有液力端;高低压管汇撬包括沿第一方向延伸的主管道和承载所述主管道的主管道支架,所述压裂设备在与所述第一方向垂直的第二方向上位于所述高低压管汇撬的至少一侧,所述主管道与所述压裂设备的液力端连接;导轨位于所述高低压管汇撬上方且沿所述第一方向延伸;智能工作装置,包括安装于所述导轨上的主体;主体驱动机构与所述智能工作装置的主体连接以驱动所述智能工作装置的主体至少沿所述导轨移动。
例如,本公开至少一实施例提供的压裂系统中,所述导轨与所述高低压管汇撬在与所述第一方向和所述第二方向均垂直的第三方向上至少部分交叠。
例如,本公开至少一实施例提供的压裂系统中,所述压裂系统包括多个所述压裂设备,多个所述压裂设备位于所述导轨在所述第二方向上的至少一侧,且在所述第一方向上彼此间隔排列;所述智能工作装置被配置为:在所述主体驱动机构的驱动下,在所述导轨上移动至目标位置以对目标位置处的目标装置执行操作;所述目标位置包括与多个所述压裂设备中的每个压裂设备正对的位置,所述目标装置包括所述每个压裂设备。
例如,本公开至少一实施例提供的压裂系统中,所述主体驱动机构还被配置为驱动所述智能工作装置在所述导轨上旋转,所述旋转的旋转角度范围为0~360°。
例如,本公开至少一实施例提供的压裂系统中,所述智能工作装置还包括第一机械臂、第一驱动机构和第二驱动机构;第一机械臂包括与所述主体连接的连接端和远离所述主体的工作端;所述工作端被配置为可分别与工作构件可拆卸连接,所述工作构件包括旋转构件、拉拔构件和夹取构件中的至少一个,所述执行操作包括旋转操作、拉拔操作和夹取操作中的至少一种;第一驱动机构与所述第一机械臂的连接端连接并被配置为驱动所述第一机械臂在三维空间内运动;第二驱动机构配置为驱动与所述工作端相连的所述工作构件进行工作。
例如,本公开至少一实施例提供的压裂系统还包括工作构件容纳装置,工作构件容纳装置沿所述导轨设置,与所述导轨支架连接;所述工作构件容纳装置被配置为容纳备用的所述工作构件,所述智能工作装置通过在所述导轨上移动而使所述第一机械臂的工作端到达所述工作构件容纳装置内与所述工作构件连接。
例如,本公开至少一实施例提供的压裂系统还包括控制系统,与所述主体驱动机构、所述第一驱动机构和所述第二驱动机构分别通信相连;所述控制系统被配置为:控制所述主体驱动机构驱动所述智能工作装置至少沿所述导轨移动到所述目标位置以及驱动所述智能工作装置旋转,被配置为控制所述第一驱动机构驱动所述第一机械臂移动至所述液力端,以及被配置为控制所述第二驱动机构驱动与所述工作端相连的所述工作构件对所述液力端的功能部件进行拆卸或安装。
例如,本公开至少一实施例提供的压裂系统还包括导轨支架,导轨支架沿所述第一方向延伸,与所述主管道支架连接且位于所述主管道支架的远离地面的一侧;所述导轨架设在所述导轨支架上,所述导轨位于所述主管道的远离地面的一侧。
例如,本公开至少一实施例提供的压裂系统还包括导电线缆容至装置和导电线缆。电线缆容至装置位于所述导轨上,所述导轨在所述第三方向上具有背离所述主管道的第一侧和面向所述主管道的第二侧,所述智能工作装置位于所述导轨第一侧,所述线缆容至装置位于所述导轨的第二侧;导电线缆位于所述导电线缆容至装置中,且与所述智能工作装置电连接。
例如,本公开至少一实施例提供的压裂系统还包括减震结构,减震结构设置在所述导轨支架上且配置为减小在所述压裂设备工作过程对所述导轨造成的震动。
例如,本公开至少一实施例提供的压裂系统中,所述智能工作装置包括图像获取装置,图像获取装置与所述控制系统信号连接,且被配置为:在所述智能工作装置在所述导轨上移动过程中获取周边环境的图像信息,以及在所述目标位置对所述目标装置执行操作的过程中获取所述目标装置的图像信息,并将所述图像信息传输给所述控制系统;所述控制系统配置为根据所述周边环境的图像信息和所述目标装置的图像信息判断所述目标位置,所述目标位置包括出现故障的所述目标装置所在的位置。
例如,本公开至少一实施例提供的压裂系统中,所述智能工作装置包括定位模块,定位模块与所述控制系统信号连接,且被配置为:向所述控制系统传输所述智能工作装置的位置信息,所述控制系统配置为根据所述位置信息判断是否到达所述目标位置。
例如,本公开至少一实施例提供的压裂系统中,所述智能工作装置被配置为按照巡视路线移动;所述定位模块被配置为:在所述智能工作装置移动过程中实时记录所述智能工作装置的路线位置信息,并将所述路线位置信息发送给所述控制系统,所述控制系统还被配置为接收并记录所述路线位置信息,所述路线位置信息构成所述巡视路线,所述控制系统根据所述巡视路线来控制所述智能工作设备按所述巡视路线移动;或者,所述控制系统包括所 述巡视路线中的位置信息,且被配置为按照所述巡视路线中的位置信息来控制所述智能工作设备按所述巡视路线移动,所述定位模块被配置为获取所述智能工作设备按照所述巡视路线移动过程中的实时路线位置信息并将其发送给所述控制系统,所述控制系统判断所述路线位置信息是否正确。
例如,本公开至少一实施例提供的压裂系统中,所述智能工作装置包括红外传感器,红外传感器被配置为在所述智能工作装置移动的过程中对周围环境进行红外感测,并将所述红外感测的结果发送给所述控制系统;所述控制系统配置为根据所述红外感测的结果控制所述智能工作装置的位置。
例如,本公开至少一实施例提供的压裂系统中,所述智能工作装置包括火焰传感器,火焰传感器被配置为在所述智能工作装置移动的过程中周围环境进行温度感测,并将所述温度感测的结果发送给所述控制系统,所述控制系统配置为根据所述温度感测的结果判断是否需要有火焰存在。
例如,本公开至少一实施例提供的压裂系统还包括压裂设备定位结构,压裂设备定位结构与所述主管道支架可拆卸连接,至少部分从所述主管道支架上朝向所述压裂设备突出于所述主管道支架,所述定位装置在所述主管道支架上沿所述第一方向上的位置可调。
例如,本公开至少一实施例提供的压裂系统中,所述压裂设备定位结构具有可调节部分,所述压裂设备定位结构具有展开状态和折叠状态;在所述展开状态,所述可调节部分沿所述第二方向延伸且朝向所述压裂设备突出于所述主管道支架;所述可调节部分沿所述第二方向的长度减小以使所述高低压管汇撬转换至所述折叠状态,在所述折叠状态,至少部分所述压裂设备定位结构被收纳以在所述第二方向上不突出于所述主管道支架。
例如,本公开至少一实施例提供的压裂系统中,所述压裂设备包括压裂装置,所述压裂装置包括所述液力端和与所述液力端连接的动力端,所述压裂设备还包括电机和减速箱;所述电机通过所述减速箱与所述动力端连接,所述电机和所述压裂装置位于所述减速箱的同一侧,且所述电机和所述压裂装置在与所述电机的电机轴的延伸方向垂直的方向上排列。
例如,本公开至少一实施例提供的压裂系统中,所述电机和所述压裂装置在所述第一方向上位于所述减速箱的同一侧且沿所述第二方向排列,所述 电机的电机轴沿所述第一方向延伸;所述压裂系统包括多个所述压裂设备,所述多个压裂设备位于所述主管道的在所述第二方向上的至少一侧,且沿所述第一方向彼此间隔排列。
例如,本公开至少一实施例提供的压裂系统中,所述液力端具有入口和出口,所述主管道包括低压主管道和高压主管道,所述低压主管道与所述高压主管道均沿所述第一方向延伸且在所述第三方向上排列;所述低压主管道被配置向所述液力端提供低压液体,所述高压主管道被配置为接收所述液力端输出的高压液体;对于每个所述压裂设备,在所述第二方向上,所述液力端位于所述动力端的靠近所述主管道的一侧;所述压裂系统还包括与每个所述压裂设备对应的子管道,所述子管道位于所述导轨与所述主管道支架之间。
例如,本公开至少一实施例提供的压裂系统中,所述子管道包括低压子管道和高压子管道。低压子管道与所述低压主管道和对应的所述压裂设备的液力端的入口连接;高压子管道与所述高压主管道和对应的所述压裂设备的液力端的出口连接;所述低压子管道和所述高压子管道两者中的至少一者包括可伸缩管道结构,所述可伸缩管道结构包括可伸缩管道和柔性的高压软管;所述可伸缩管道和所述高压软管均沿所述第二方向延伸且彼此连通,所述高压软管的第一端与所述液力端连接,所述高压软管的第二端与所述可伸缩管道连接,所述可伸缩管道在所述第二方向上的长度是可调节的。
例如,本公开至少一实施例提供的压裂系统中,在所述第二方向上,所述高压软管位于所述可伸缩管道的靠近所述压裂设备的液力端的一侧。
例如,本公开至少一实施例提供的压裂系统中,包括所述可伸缩管道结构的所述低压子管道和/或所述高压子管道分别为单条管道。
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种压裂系统的平面示意图;
图2A为本公开一实施例提供的一种压裂系统的包括高低压管汇撬、导 轨和智能工作装置的局部示意图一;
图2B为本公开一实施例提供的一种压裂系统的包括高低压管汇撬、导轨和智能工作装置的局部示意图二;
图2C为本公开一实施例提供的一种压裂系统的包括高低压管汇撬、导轨和智能工作装置的局部示意图三;
图3A为本公开一实施例提供的一种压裂系统的工作构件、第一机械臂、第一驱动机构和第二驱动机构之间的结构关系示意图;
图3B为本公开一实施例提供的一种压裂系统的压裂设备的柱塞泵的结构示意图;
图3C为本公开一实施例提供的一种压裂系统的控制系统与一些工作部件的连接关系示意图;
图3D为本公开一实施例提供的一种压裂系统的智能工作装置的巡检逻辑图;
图4为本公开一实施例提供的一种压裂系统的压裂设备定位结构的结构示意图;
图5为本公开一实施例提供的一种压裂系统的包括电机和减速箱的压裂设备的结构示意图;
图6为本公开一实施例提供的一种压裂系统的可伸缩管道结构P的结构示意图。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。以下所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分 不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现在该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
柱塞泵的液力端是柱塞泵的重要组成部件,通过其内部结构实现低压液体吸入、高压液体排出。实际井场压裂作业时,高压携砂液会对液力端及其内部的凡尔体、凡尔座等部件进行冲蚀,因此,需要定期更换液力端等部件。现阶段液力端更换是通过多人协作手动完成,更换周期长、人员作业强度大,且设备更换空间有限、更换设备较重,容易发生人员砸伤等安全事故。并且,实际井场中管道之间的空间有限,要求提高各个设备的空间利用率并满足各个设备在功能上的配合。
例如,本公开至少一实施例提供一种压裂系统,该压裂系统包括:压裂设备、高低压管汇撬、高低压管汇撬、高低压管汇撬和主体驱动机构。压裂设备具有液力端;高低压管汇撬包括沿第一方向延伸的主管道和承载主管道的主管道支架,压裂设备在与第一方向垂直的第二方向上位于高低压管汇撬的至少一侧,主管道与压裂设备的液力端连接;导轨位于高低压管汇撬上方且沿第一方向延伸;智能工作装置,包括安装于导轨上的主体;主体驱动机构与智能工作装置的主体连接以驱动智能工作装置的主体至少沿导轨移动。本公开实施例提供的压裂系统便于利用智能工作装置对设置在高低压管汇撬在第二方向上的两侧的压裂设备进行检测和维护操作,也非常便于对主管道进行检测和维护,同时,能够使智能工作装置沿高低压管汇撬所在的方向对井场进行巡查;并且,能够避免设置导轨占用额外空间,提高压裂系统的空间利用率。
示例性地,图1为本公开一实施例提供的一种压裂系统的平面示意图;图2A为本公开一实施例提供的一种压裂系统的包括高低压管汇撬、导轨和智能工作装置的局部示意图一;图2B为本公开一实施例提供的一种压裂系统的包括高低压管汇撬、导轨和智能工作装置的局部示意图二;图2C为本 公开一实施例提供的一种压裂系统的包括高低压管汇撬、导轨和智能工作装置的局部示意图三。如图1和图2A-2C所示,本公开至少一实施例提供一种压裂系统10,压裂系统10包括:压裂设备1、高低压管汇撬2、导轨3、智能工作装置4和主体驱动机构42。压裂设备1具有液力端11;高低压管汇撬2包括沿第一方向D1延伸的主管道21和承载主管道21的主管道支架22,压裂设备1在与第一方向D1垂直的第二方向D2上位于高低压管汇撬2的至少一侧,主管道21与压裂设备1的液力端11连接;导轨3位于高低压管汇撬2上方(远离地面的一侧)且沿第一方向D1延伸;智能工作装置4包括安装于导轨3上的主体41;主体驱动机构42与智能工作装置4连接,且被配置为驱动智能工作装置4至少沿导轨3移动。在本公开实施例提供的压裂系统10中,将导轨3设置于高低压管汇撬2上方,并且,导轨3和高低压管汇撬2均沿第一方向D1延伸,以利用高低压管汇撬2所在的位置设置用于安装智能工作装置4的导轨3,一方面,由于压裂井场设备众多,各设备彼此之间管线连接复杂,通常压裂设备1和高低压管汇撬2之间布满了管线,空间利用困难且不利于管线的日常维保,如此设计导轨3和智能工作装置4不需要另外在压裂井场中另外给高低压管汇撬2设计安放空间;另一方面,通常,高低压管汇撬2所在的沿第一方向D1延伸的区域为井场的核心位置,压裂设备1位于高低压管汇撬2在第二方向D2上的一侧或者两侧,并且,主管道21和压裂设备1的液力端11容易发生故障,或者零部件需要定期维检或更换,如此设计导轨3和智能工作装置4便于智能工作装置4沿着高低压管汇撬2的延伸位置移动,非常便于利用智能工作装置4对设置在高低压管汇撬2在第二方向D2上的两侧的压裂设备1进行检测和维护操作,也非常便于对主管道21进行检测和维护,同时,能够使智能工作装置4沿高低压管汇撬2所在的方向对井场进行巡查,并且,能够避免设置导轨3占用额外空间,对于实际的压裂井场,管道之间空间有限,难以架设轨道,空间利用困难,在这种情况下,本公开实施例中导轨3和智能工作装置4的设计可以提高压裂系统的空间利用率。
在本公开实施例中,智能工作装置安装完毕后可随高低压管汇橇一同吊装转运,无须频繁拆装。
例如,如图1和图2A-2B所示,导轨3与高低压管汇撬2在与第一方向D1和第二方向D2均垂直的第三方向D3上至少部分交叠,例如,导轨3居中固定安装在高低压管汇橇2的正上方,以进一步避免设置导轨3占用过多额外空间。
例如,如图1所示,压裂系统10包括多个压裂设备1,多个压裂设备1位于导轨3在第二方向D2上的两侧,且在第一方向D1上彼此间隔排列;当然,在其他实施例中,多个压裂设备1也可以只设置在导轨3在第二方向D2上的一侧。智能工作装置4被配置为:在主体驱动机构42的驱动下,在导轨3上移动至目标位置以对目标位置处的目标装置执行操作。例如,目标位置包括与多个压裂设备1中的每个压裂设备1正对的位置,目标装置包括每个压裂设备1,从而,智能工作装置4可沿导轨3移动以依次移动至每个压裂设备1所在的位置,对每个压裂设备1执行的执行操作包括对压裂设备1进行维检、更换零部件等等。
例如,目标装置还可以包括其他结构,例如包括沿主管道21设置的子管道、地面、压裂井场的空间等,从而,智能工作装置4可沿导轨3移动以对主管道21和子管道,例如低压子管道L1和高压子管道H1,进行维检和零部件更换,例如更换主管道和子管道的阀塞、可伸缩结构等,提高自动化程度,提高效率。根据压裂井场中压裂设备的数量,可架设不同长度的用于设置智能工作装置的导轨。
例如,智能工作装置4是工业用型机器人,如:KUKA机器人等,通过设计专用的机器人移动轨道,利用专用的安装支架固定在井场已有的管汇橇上方。根据井场中压裂设备的数量,可架设不同长度的机器人轨道。
例如,本公开实施例的导轨可以有多种样式,包括但不限于(滚珠丝杠轨道、燕尾槽滑轨、齿轮齿条导轨、承重滚轮组+U槽导轨)。
例如,主体驱动机构42还被配置为驱动智能工作装置4在导轨3上旋转,旋转的旋转角度范围为0~360°,以便于智能工作装置4对周围各个方向上的空间和设备进行检测。这里的检测包括对设备是否出现故障的检测、对周围环境是否安全的检测,例如是否有行人、是否存在火情等,以增强自动安全监控保障。
例如,如图2A-2B所示,智能工作装置4包括安装于导轨3上的主体41, 主体驱动机构42与智能工作装置4的主体41连接以驱动智能工作装置4的主体41至少沿导轨3移动。例如,在图2A所示的实施例中,压裂系统10还包括电缆链条47,电缆链条47与主体驱动机构42和主体41连接,以传输动力,给智能工作装置4提供电力。
图3A为本公开一实施例提供的一种压裂系统的工作构件、第一机械臂、第一驱动机构和第二驱动机构之间的结构关系示意图。例如,结合图2A-2B和图3A,智能工作装置4还包括:第一机械臂01、第一驱动机构D1和第二驱动机构D2。第一机械臂01包括与主体41连接的连接端01a和远离主体41的工作端01b,工作端01b被配置为可分别与工作构件可拆卸连接,工作构件包括旋转构件、拉拔构件和夹取构件中的至少一个,执行操作包括旋转操作、拉拔操作和夹取操作中的至少一种;第一驱动机构D1与第一机械臂01的连接端01a连接并被配置为驱动第一机械臂01在三维空间内运动;第二驱动机构D2配置为驱动与工作端01b相连的工作构件进行工作,例如,以完成多个功能部件的拆卸和安装,如此,利用沿导轨3移动的智能工作装置4更换柱塞泵的液力端的部件时需要用时较短,尤其是更换凡尔座弹簧套、凡尔座和柱塞等拆卸难度大的部件时,省时省力的效果明显,并且可以避免在人工手动更换液力端的部件的过程中,发生工作人员被部件砸脚、扭伤腰等安全事故。
图3B为本公开一实施例提供的一种压裂系统的压裂设备的柱塞泵的结构示意图。如图3B所示,柱塞泵包括液力端100,液力端包括第一腔体01A和位于第一腔体01A内的多个第一功能部件。
图3C为本公开一实施例提供的一种压裂系统的控制系统与一些工作部件的连接关系示意图。如图3C所示,压裂系统还包括控制系统C。例如,如图3B所示,控制系统C还与主体驱动机构42、第一驱动机构D1和第二驱动机构D2分别通信相连,控制系统C被配置为:控制主体驱动机构42驱动智能工作装置4至少沿导轨3移动到目标位置以及驱动智能工作装置4旋转,被配置为控制第一驱动机构D1驱动第一机械臂01移动至液力端11,以及被配置为控制第二驱动机构D2驱动与工作端01b相连的工作构件对液力端11的功能部件进行拆卸或安装。结合图3B,控制系统C被配置为控制第一驱动机构D1驱动第一机械臂01在第一腔体01A的延伸方向上运动,并 控制第一机械臂01驱动多个工作构件进入第一腔体01A,并被配置为控制分别与第一腔体01A中的多个第一功能部件匹配连接,以将第一腔体01A中的多个第一功能部件拆卸或安装。
例如,液力端还包括第二腔体02A和位于第二腔体02A内的多个第二功能部件,控制系统还被配置为控制第一驱动机构驱动第一机械臂01在第二腔体02A的延伸方向上运动,并控制第一机械臂01驱动多个工作构件进入第二腔体02A,并分别与第二腔体02A中的多个第二功能部件匹配连接,以将第二腔体02A中的多个第二功能部件拆卸或安装。
例如,第二驱动机构D2可以位于第一机械臂01的工作端01b,包括电机、例如第二驱动机构可拆卸地与第一机械臂01的工作端01b连接。在对柱塞泵进行拆卸或进行安装之前,可以人工手动将第二驱动机构安装于第一机械臂01的工作端01b;或者,第一机械臂01的工作端01b包括中空的壳体,第二驱动机构位于工作端01b的壳体内。
例如,控制系统C与第一驱动机构D1和第二驱动机构D2的通信连接可以是有线连接或无线连接。例如控制系统可设置于第一机械臂01上,例如位于工作端01b的壳体内,便于与第一机械臂01有线电连接,用于使两者电连接的电线或电路板可布置于工作端01b的壳体内。本公开对控制系统的具体设置方式以及其与第一驱动机构和第二驱动机构的通信连接方式不作限定,本领域技术人员可采用本领域常用技术进行设计。
参考图3B,例如,第一腔体01A与第二腔体02A相交且连通,第一腔体01A沿横向延伸,第二腔体02A沿纵向延伸,第一腔体01A具有在横向上彼此相对的第一端和第二端,第二腔体02A具有在纵向上彼此相对的第一端和第二端。例如纵向与横向垂直。例如,在柱塞泵的工作状态下,第一功能部件包括第一压帽01a、第一压盖01b和柱塞01c。第一压帽01a位于第一腔体01A的第一端;柱塞01c沿横向延伸,且位于第一腔体01A的第二端。第二功能部件包括第二压帽02a、第二压盖02b、第一凡尔弹簧座02f、第一凡尔弹簧02g、第一凡尔体02h、第一凡尔体座02i、凡尔弹簧座套02e、第二凡尔弹簧座02j、第二凡尔弹簧02k、第二凡尔体02c和第二凡尔体座02d。第二压帽02a位于第二腔体02A的第一端02A;凡尔弹簧座套02e在横向上位于柱塞01c的一侧,且具有中空的壳体。第一凡尔弹簧座02f与第一凡尔 弹簧02g可拆卸地连接,在纵向上位于壳体的靠近第二腔体02A的第二端02B的一侧;凡尔弹簧座套02e在横向上位于柱塞01c的一侧,且具有中空的壳体卡接于第一腔体01A与第二腔体02A的相交处,第一压盖01b与凡尔弹簧座套02e接触,第一压盖01b和第一压帽01a密封第一腔体01A的第一端,并与柱塞01c、腔体壁共同固定凡尔弹簧座套02e。凡尔弹簧座套02e的壳体具有朝向第一腔体01A的第一端的右开口e2、朝向第一腔体01A的第二端的左开口e1以及朝向第二腔体02A的第二端的下开口e3。第一凡尔弹簧02g套设于第一凡尔弹簧座02f上且可沿纵向伸缩。第一凡尔弹簧座02f位于凡尔弹簧座套02e的壳体的具有下开口e3的一侧且具有沿纵向贯穿第一凡尔弹簧座02f的通孔02j-1,该通孔02j-1与第一凡尔弹簧座02f的下开口e3连通。第一凡尔体02h安装于第一凡尔体座02i上。第二凡尔弹簧02k套设于第二凡尔弹簧座02j上且可沿纵向伸缩。第二凡尔体02c安装于第二凡尔体座02d上。例如,第二凡尔弹簧座02j与第二凡尔体02c一体成型或分别单独设置;或者,第二凡尔弹簧座02j与第一压盖02b一体成型或分别单独设置。第二压盖02b与第二凡尔弹簧座02j连接,第二压帽02a和第二压盖02b密封第二腔体02A的第一端,并固定第二凡尔弹簧座02j。
可以利用智能工作装置4沿导轨3移动到相应的压裂设备的液力端的位置,以对各个压裂设备进行检测,包括对压裂设备的柱塞泵的液力端进行检测,从而确定柱塞泵液力端(泵头)吸入堵头是否发生堵塞、排出堵头是否发生堵塞,以及确定需要更换或维修的部件,辅助检修人员将上述柱塞泵液力端的各个结构拆卸。例如,智能工作装置4的第一机械臂01还可以充当吊车辅助上述柱塞泵液力端的各个结构拆卸和安装。拆卸完毕后,智能工作装置4可自行移动到导轨3末端,吊起、转运新泵头到维修位置,协助完成柱塞泵液力端的各个结构的更换。智能工作装置4可以通过快速更换不同的末端执行工具,实现柱塞泵液力端(或泵头)的吸入堵头、排出堵头、端盖的自动拆卸,辅助人员实现凡儿座更换,减少人员检泵工作量。
智能工作装置4的第一机械臂01与各个功能部件连接以对柱塞泵液力端的相应的上述第一腔体01A和第二腔体02A内的各个部件进行拆卸和安装,或者,智能工作装置4包括多个机械臂,多个机械臂分别安装不同的功能部件,多个机械臂共同协作来完成对柱塞泵液力端的相应的上述第一腔体和第 二腔体内的各个部件的拆卸和安装。
当然,在一些实施例中,柱塞泵的液力端100也可以仅包括第一腔体01A或仅包括第二腔体02A。这里以柱塞泵的液力端100包括图3B所示的第一腔体01A和第二腔体02A的情况作为示例,来介绍柱塞泵自动拆卸安装系统以及对柱塞泵的液力端100进行自动拆卸和安装的方法。
例如,如图2A-2B所示,压裂系统10还包括工作构件容纳装置5,工作构件容纳装置5沿导轨3设置,便于机器人的工作端到达工作构件容纳装置5。例如,工作构件容纳装置5位于导轨3在第一方向D1上的至少一端,或者沿导轨3在对应于每台压裂设备1的位置处设置一个工作构件容纳装置5。工作构件容纳装置5被配置为容纳备用的工作构件,智能工作装置4通过在导轨3上移动而使第一机械臂01的工作端01b到达工作构件容纳装置5内与工作构件连接。
例如,工作构件容纳装置5可以与导轨支架31连接,以提高的高度,机器人的第一机械手的长度不需要很长,其工作端即可到达工作构件容纳装置5,更加便于机器人的工作端到达工作构件容纳装置5。当然,工作构件容纳装置5也可以不与导轨支架31连接,设置在地面上,简化了结构,合理利用空白的地面空间。
例如,工作构件容纳装置5包括多种工作构件匹配的多个容置槽,分别容纳多种工作构件,工作构件的用于与第一机械臂01的工作端01b连接的连接端被暴露,第一机械臂01的工作端01b可到达工作构件的连接端而与工作构件连接。
例如,结合图1和图2A-2B,压裂系统10还包括导轨支架31,导轨支架31沿第一方向D1延伸,与主管道支架22连接且位于主管道支架22的远离地面的一侧,导轨3架设在导轨支架31上,导轨3位于主管道21的远离地面的一侧。导轨支架31包括多个支腿310,多个支腿310架设在主管道支架22上,通过定位销轴实现快速定位,利用螺栓实现安装紧固。主管道支架22、导轨支架31和导轨3的互相配合,以实现在主管道21的上方高效、稳定地设置导轨3,且不影响主管道21的布置。
例如,压裂系统10还包括:导电线缆容至装置和导电线缆。导电线缆容至装置位于导轨3上,导轨3在第三方向D3上具有背离主管道21的第一侧 和面向主管道21的第二侧(即导轨3的下方),智能工作装置4位于导轨3第一侧,线缆容至装置位于导轨3的第二侧;导电线缆位于导电线缆容至装置中,且与智能工作装置4电连接。例如,导电线缆容至装置为缆线槽、线缆架等等;例如导电线缆容至装置位于导轨3在第一方向D1上的中间部分,或者设置在导轨3在第一方向D1上整个长度的位置。例如,线缆容至装置位于导轨3的下方,为电缆线槽,并且,在导轨3的下方铺设线缆桥架,确保电线都布置在导轨3的下方、主管道21上方,不占用其他空间,提高空间利用率、提升线缆使用寿命。
例如,如图2A所示,压裂系统10还包括减震结构8,减震结构8设置在导轨支架31上且配置为减小在压裂设备1工作过程对导轨3造成的震动。例如,减震结构8位于导轨支架31的至少一个支腿310上。例如在每个支腿310上均设置有减震结构8,以减轻由于智能工作装置4在导轨3上的运动以及工作过程中产生的震动对导轨支架31、主管道支架22和主管道21的稳定性的影响,以增强由主管道支架22、主管道21、导轨支架31、导轨3和智能工作装置4构成的整体结构的稳定性;并且,减震结构8能够减轻压裂作业过程中压裂设备的震动对智能工作装置4的影响。例如,减震结构8为橡胶减振垫、钢丝绳隔振器等,本公开实施例对减震结构的具体类型不作限定。
例如,如图3C所示,智能工作装置4包括图像获取上装置43。例如,如图2C所示,红外传感器45设置在第一机械臂01的工作端01b,暴露于工作端01b的表面,与控制系统C信号连接,且红外传感器45被配置为:在智能工作装置4在导轨3上移动过程中获取周边环境的图像信息,以及在目标位置对目标装置执行操作的过程中获取目标装置的图像信息,并将图像信息传输给控制系统C。控制系统C配置为根据周边环境的图像信息和目标装置的图像信息判断目标位置,目标位置包括出现故障的目标装置所在的位置。操作人员通过图像信息判断异常情况,准确及时的开展下一步动作。
例如,图像获取上装置43包括高清摄像头,通过拍照或扫码或识别RFID等原理,以获取周边环境的图像信息。例如,可以通过图像获取上装置43实现对所搬运的耗材进行记录,通过配备摄像头的视觉识别系统,机器人可以确定更换的凡儿体、凡儿座等耗材的安装位置,记录每个耗材的数据信息,并将信息传输到存储器中,便于大数据统计和柱塞泵维保信息查询。
例如,如图3C所示,智能工作装置4包括定位模块44,定位模块44与控制系统C信号连接,且被配置为:向控制系统C传输智能工作装置4的位置信息,控制系统C配置为根据位置信息判断是否到达目标位置。
例如,智能工作装置4被配置为按照巡视路线移动。例如,智能工作装置4可在人员遥控下沿设定的巡视路线移动。定位模块44被配置为:在智能工作装置4移动过程中实时记录智能工作装置4的路线位置信息,并将路线位置信息发送给控制系统C,控制系统C还被配置为接收并记录路线位置信息,路线位置信息构成巡视路线,控制系统C根据巡视路线来控制智能工作设备按巡视路线移动;或者,控制系统C包括巡视路线中的位置信息,且被配置为按照巡视路线中的位置信息来控制智能工作设备按巡视路线移动,定位模块44被配置为获取智能工作设备按照巡视路线移动过程中的实时路线位置信息并将其发送给控制系统C,控制系统C判断路线位置信息是否正确。
例如,如图3C所示,智能工作装置4包括红外传感器45,红外传感器45配置为在智能工作装置4移动的过程中对周围环境进行红外感测,并将红外感测的结果发送给控制系统C,控制系统C配置为根据红外感测的结果控制智能工作装置4的位置。例如,如图2C所示,红外传感器45设置在第一机械臂01的工作端01b,以便于随着工作端01b的移动以对周围环境进行红外感测,实现大的探测范围。例如,红外传感器45探测到有行人,控制系统包括第一判断模块,第一判断模块根据红外传感器45传输的信息进行判断,从而控制红外报警器发出第一报警信号,以警示行人注意避让智能工作装置的机械手等作业部件。
例如,如图2C所示,智能工作装置4包括火焰传感器46,火焰传感器46配置为在智能工作装置4移动的过程中周围环境进行温度感测,并将温度感测的结果发送给控制系统C,其中,控制系统C配置为根据温度感测的结果判断是否需要有火焰存在。例如,火焰传感器46设置在第一机械臂01的工作端01b,以便于火焰传感器46随着工作端01b的移动以对周围环境进行温度感测,实现大的探测范围。火焰传感器46例如为温度传感器。例如,火焰传感器46探测到有高温信号,控制系统包括第二判断模块,第二判断模块根据火焰传感器46传输的信息进行判断,从而控制高温报警器发出第二报警信号,以发出火灾预警。同时还可结合图像信息来判断是否具有火苗。
例如,智能工作装置按照图3D所示的巡检逻辑图进行巡检工作,巡检路线和各个步骤如上所述。
本公开实施例中,控制系统C可以包括处理器和存储器,处理器可以是但不限于:中央处理器、单片机、微处理器或者可编程逻辑器件。
可以理解,存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。存储器旨在包括但不限于这些和任意其它适合类型的存储器。
例如,存储器存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统和应用程序,相应的执行的模块例如:评估模块和判定模块,其中,操作系统,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序中。
例如,如图2A-2B所示,压裂系统10还包括压裂设备定位结构6,压裂设备定位结构6与主管道支架22可拆卸连接,至少部分从主管道支架22上朝向压裂设备1突出于主管道支架22,定位装置在主管道支架22上沿第一方向D1上的位置可调。从而,可调节地确定压裂设备1在第一方向D1上和第二方向D2上相对于主管道21的位置。定位结构6实现定位标尺的功能。
例如,多个压裂设备1和多个定位结构6(定位标尺)一一对应,彼此间隔开预设距离,并对齐设置。
图4为本公开一实施例提供的一种压裂系统的压裂设备定位结构的结构示意图。结合图2B和图4,例如,压裂设备定位结构6具有可调节部分61,压裂设备定位结构6具有展开状态和折叠状态;在展开状态,可调节部分61沿第二方向D2延伸且朝向压裂设备1突出于主管道支架22;可调节部分61沿第二方向D2的长度减小以使高低压管汇撬2转换至折叠状态,在折叠状态,至少部分压裂设备定位结构6被收纳于贴合在主管道支架22上,即不从主管道支架22上突出。例如,如图2B所示,例如,可调节部分61沿销轴为轴旋转而被折叠,在折叠状态,压裂设备定位结构6贴合在主管道支架22的侧面上。例如,压裂设备定位结构6包括主体部分60和与主体部分60活动连接的可调节部分61,可调节部分61包括第一部分61a和第二部分61b,第一部分61a与第二部分61b活动连接;例如,第一部分61a通过销钉(例如R型销)与第二部分61b活动连接;例如,在第一部分61a的靠近第二部分61b的端部设置有限位板以限制第一部分61a的位置。在展开状态,第一部分61a与第二部分61b均沿第二方向D2延伸而突出于可调节部分61;第一部分61a可沿销钉的销轴旋转而折叠,第二部分61b可折叠于贴合至主体部分60上,以转换到折叠状态。主体部分60固定在主管道支架22的侧面上,从而使得在折叠状态下,压裂设备定位结构6贴合在主管道支架22的侧面上。如此,在使用压裂设备定位结构6对压裂设备进行定位时,将压裂设备定位结构6展开以使其处于展开状态,以对齐压裂设备定位结构6的位置来设置各个压裂设备1的位置,将压裂设备1安装到对应位置后,将压裂设备定位结构6折叠至折叠状态,不占用空间,且避免不压裂设备定位结构6受到损坏。例如,沿第一方向D1可移动多个压裂设备定位结构6的位置来根据需要设定压裂设备的位置。
当然,不限于压裂设备定位结构可被折叠于主管道支架的侧面,例如,也可以将压裂设备定位结构折叠于主管道支架的下方(主管道支架22的在第三方向D3上远离导轨3的一侧),只要在折叠状态下可将压裂设备定位结构隐藏收纳即可。
图5为本公开一实施例提供的一种压裂系统的包括电机和减速箱的压裂 设备的结构示意图。例如,如图5所示,压裂设备1包括压裂装置,压裂装置包括液力端11和与液力端11连接的动力端,压裂设备1还包括电机13和减速箱14;电机13通过减速箱14与动力端连接,电机13和压裂装置位于减速箱14的同一侧,且电机13和压裂装置在与电机13的电机轴的延伸方向垂直的方向上排列。
例如,如图1和图5所示,电机13和压裂装置在第一方向D1上位于减速箱14的同一侧且沿第二方向D2排列,电机13的电机轴130沿第一方向D1延伸;压裂系统10包括多个压裂设备1,多个压裂设备1位于主管道21的在第二方向D2上的至少一侧,且沿第一方向D1彼此间隔排列,以减小每台压裂设备1在第一方向D1,也即多个压裂设备1的排列方向,上所占用的空间,以提高压裂井场的空间利用率。
例如,液力端11具有入口和出口,主管道21包括低压主管道L和高压主管道H,低压主管道L与高压主管道H均沿第一方向D1延伸且在第三方向D3上排列,例如低压主管道L在地面上的正投影和高压主管道H在地面上的正投影至少部分重叠。低压主管道L被配置向液力端11提供低压液体,高压主管道H被配置为接收液力端11输出的高压液体;对于每个压裂设备1,在第二方向D2上,液力端11位于动力端的靠近主管道21的一侧;压裂系统10还包括与每个压裂设备1对应的子管道,子管道位于导轨3与主管道支架22之间,以便于与子管道连接,降低管道复杂程度。
例如,如图1所示,子管道包括低压子管道L1和高压子管道H1。低压子管道L1与低压主管道L和对应的压裂设备1的液力端11的入口连接;高压子管道H1与高压主管道H和对应的压裂设备1的液力端11的出口连接;低压子管道L1和高压子管道H1两者中的至少一者包括可伸缩管道结构P,可伸缩管道结构P包括可伸缩管道P1和柔性的高压软管P2;可伸缩管道P1和高压软管P2均沿第二方向D2延伸且彼此连通,高压软管P2的第一端与液力端11连接,高压软管P2的第二端与可伸缩管道P1连接,可伸缩管道P1在第二方向D2上的长度是可调节的。通常,采用刚性的硬管连接高低压管汇撬和液力端,在液力端和高低压管汇撬之间布满了复杂的管线,空间利用困难且不利于管线日常维保,而采用本公开实施例提供的上述可伸缩管道P1和柔性的高压软管P2相结合的方案,不仅可以采用单条管道以大大简化 管道结构,还可以方便地调节管道的长度。
例如,每条低压子管道L1和每条高压子管道H1均包括可伸缩管道结构P,低压子管道L1的高压软管P2可承受的液体压力的上限小于等于高压子管道H1的高压软管P2可承受的液体压力的上限,以使得高压子管道和低压子管道能够与各自输送的液体压力相匹配。
例如,高压软管能够承受的压力值上限的范围是大于等于150Mpa,以满足对输送高压压裂液的要求。进一步地,例如,高压软管能够承受的压力值上限的范围是50Mpa~200Mpa,以选择合适的压力值,易于实现,降低高压软管的制作要求。当然,本公开实施例对高压软管能够承受的压力值范围不作限定。
例如,如图1和6所示,在第二方向D2上,高压软管P2位于可伸缩管道P1的靠近压裂设备1的液力端11的一侧。由于高压软管P2的抗压能力较高,将高压软管P2设置于可伸缩管道P1的靠近压裂设备1的液力端11的一侧,能够使得高压软管P2先承接来自压裂设备1的液力端11的输入的高压压裂液(例如为固液混合物),以减小使高压液体从液力端11进入管道的靠近液力端的端部对可伸缩管道P1造成的冲击,因此,采用高压软管P2与可伸缩管道P1相结合的整体结构能够在实现管道长度可调节的同时,保障管道承受高压压裂液的稳定性。
并且,例如,对于每条包括伸缩管道结构P的管道,高压软管P2在第二方向D2上的长度大于可伸缩管道P1的在第二方向D2上的最小长度;进一步地,例如高压软管P2在第二方向D2上的长度大于可伸缩管道P1伸展后在第二方向D2上的最大长度,有利于充分利用高压软管增强管道的抗高压能力,提高管道寿命。
例如,在压裂系统10中,包括可伸缩管道结构P的低压子管道L1和/或高压子管道H1分别为单条管道。这里,“单条管道”是指只有如图所示的一条管路,而不是通过多个分支管道连接而成的错综复杂的管路结构。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围根据权利要求书所界定的范围确定。
Claims (23)
- 一种压裂系统,包括:压裂设备,具有液力端;高低压管汇撬,包括沿第一方向延伸的主管道和承载所述主管道的主管道支架,其中,所述压裂设备在与所述第一方向垂直的第二方向上位于所述高低压管汇撬的至少一侧,所述主管道与所述压裂设备的液力端连接;以及导轨,位于所述高低压管汇撬上方且沿所述第一方向延伸;智能工作装置,包括安装于所述导轨上的主体;以及主体驱动机构,与所述智能工作装置的主体连接以驱动所述智能工作装置的主体至少沿所述导轨移动。
- 根据权利要求1所述的压裂系统,其中,所述导轨与所述高低压管汇撬在与所述第一方向和所述第二方向均垂直的第三方向上至少部分交叠。
- 根据权利要求1所述的压裂系统,其中,所述压裂系统包括多个所述压裂设备,多个所述压裂设备位于所述导轨在所述第二方向上的至少一侧,且在所述第一方向上彼此间隔排列;所述智能工作装置被配置为:在所述主体驱动机构的驱动下,在所述导轨上移动至目标位置以对目标位置处的目标装置执行操作;所述目标位置包括与多个所述压裂设备中的每个压裂设备正对的位置,所述目标装置包括所述每个压裂设备。
- 根据权利要求3所述的压裂系统,其中,所述主体驱动机构还被配置为驱动所述智能工作装置在所述导轨上旋转,所述旋转的旋转角度范围为0~360°。
- 根据权利要求3所述的压裂系统,其中,所述智能工作装置还包括:第一机械臂,包括与所述主体连接的连接端和远离所述主体的工作端,其中,所述工作端被配置为可分别与工作构件可拆卸连接,所述工作构件包括旋转构件、拉拔构件和夹取构件中的至少一个,所述执行操作包括旋转操作、拉拔操作和夹取操作中的至少一种;第一驱动机构,与所述第一机械臂的连接端连接并被配置为驱动所述第 一机械臂在三维空间内运动;以及第二驱动机构,配置为驱动与所述工作端相连的所述工作构件进行工作。
- 根据权利要求5所述的压裂系统,还包括:工作构件容纳装置,沿所述导轨设置,与所述导轨支架连接,其中,所述工作构件容纳装置被配置为容纳备用的所述工作构件,所述智能工作装置通过在所述导轨上移动而使所述第一机械臂的工作端到达所述工作构件容纳装置内与所述工作构件连接。
- 根据权利要求5所述的压裂系统,还包括:控制系统,与所述主体驱动机构、所述第一驱动机构和所述第二驱动机构分别通信相连,其中,所述控制系统被配置为:控制所述主体驱动机构驱动所述智能工作装置至少沿所述导轨移动到所述目标位置以及驱动所述智能工作装置旋转,被配置为控制所述第一驱动机构驱动所述第一机械臂移动至所述液力端,以及被配置为控制所述第二驱动机构驱动与所述工作端相连的所述工作构件对所述液力端的功能部件进行拆卸或安装。
- 根据权利要求1所述的压裂系统,还包括:导轨支架,沿所述第一方向延伸,与所述主管道支架连接且位于所述主管道支架的远离地面的一侧,其中,所述导轨架设在所述导轨支架上,所述导轨位于所述主管道的远离地面的一侧。
- 根据权利要求1所述的压裂系统,还包括:导电线缆容至装置,位于所述导轨上,其中,所述导轨在所述第三方向上具有背离所述主管道的第一侧和面向所述主管道的第二侧,所述智能工作装置位于所述导轨第一侧,所述线缆容至装置位于所述导轨的第二侧;以及导电线缆,位于所述导电线缆容至装置中,且与所述智能工作装置电连接。
- 根据权利要求8所述的压裂系统,还包括:减震结构,设置在所述导轨支架上且配置为减小在所述压裂设备工作过程对所述导轨造成的震动。
- 根据权利要求7所述的压裂系统,其中,所述智能工作装置包括:图像获取装置,与所述控制系统信号连接,且被配置为:在所述智能工作装置在所述导轨上移动过程中获取周边环境的图像信息,以及在所述目标位置对所述目标装置执行操作的过程中获取所述目标装置的图像信息,并将所述图像信息传输给所述控制系统,其中,所述控制系统配置为根据所述周边环境的图像信息和所述目标装置的图像信息判断所述目标位置,所述目标位置包括出现故障的所述目标装置所在的位置。
- 根据权利要求11所述的压裂系统,其中,所述智能工作装置包括:定位模块,与所述控制系统信号连接,且被配置为:向所述控制系统传输所述智能工作装置的位置信息,其中,所述控制系统配置为根据所述位置信息判断是否到达所述目标位置。
- 根据权利要求12所述的压裂系统,其中,所述智能工作装置被配置为按照巡视路线移动;所述定位模块被配置为:在所述智能工作装置移动过程中实时记录所述智能工作装置的路线位置信息,并将所述路线位置信息发送给所述控制系统,所述控制系统还被配置为接收并记录所述路线位置信息,所述路线位置信息构成所述巡视路线,所述控制系统根据所述巡视路线来控制所述智能工作设备按所述巡视路线移动;或者,所述控制系统包括所述巡视路线中的位置信息,且被配置为按照所述巡视路线中的位置信息来控制所述智能工作设备按所述巡视路线移动,所述定位模块被配置为获取所述智能工作设备按照所述巡视路线移动过程中的实时路线位置信息并将其发送给所述控制系统,所述控制系统判断所述路线位置信息是否正确。
- 根据权利要求7所述的压裂系统,其中,所述智能工作装置包括:红外传感器,被配置为在所述智能工作装置移动的过程中对周围环境进行红外感测,并将所述红外感测的结果发送给所述控制系统,其中,所述控制系统配置为根据所述红外感测的结果控制所述智能工作装置的位置。
- 根据权利要求7所述的压裂系统,其中,所述智能工作装置包括:火焰传感器,被配置为在所述智能工作装置移动的过程中周围环境进行温度感测,并将所述温度感测的结果发送给所述控制系统,其中,所述控制系统配置为根据所述温度感测的结果判断是否需要有火焰存在。
- 根据权利要求1所述的压裂系统,还包括:压裂设备定位结构,与所述主管道支架可拆卸连接,至少部分从所述主管道支架上朝向所述压裂设备突出于所述主管道支架,其中,所述定位装置在所述主管道支架上沿所述第一方向上的位置可调。
- 根据权利要求16所述的压裂系统,其中,所述压裂设备定位结构具有可调节部分,所述压裂设备定位结构具有展开状态和折叠状态;在所述展开状态,所述可调节部分沿所述第二方向延伸且朝向所述压裂设备突出于所述主管道支架;所述可调节部分沿所述第二方向的长度减小以使所述高低压管汇撬转换至所述折叠状态,在所述折叠状态,至少部分所述压裂设备定位结构被收纳以在所述第二方向上不突出于所述主管道支架。
- 根据权利要求1所述的压裂系统,其中,所述压裂设备包括压裂装置,所述压裂装置包括所述液力端和与所述液力端连接的动力端,所述压裂设备还包括电机和减速箱;所述电机通过所述减速箱与所述动力端连接,所述电机和所述压裂装置位于所述减速箱的同一侧,且所述电机和所述压裂装置在与所述电机的电机轴的延伸方向垂直的方向上排列。
- 根据权利要求18所述的压裂系统,其中,所述电机和所述压裂装置在所述第一方向上位于所述减速箱的同一侧且沿所述第二方向排列,所述电机的电机轴沿所述第一方向延伸;所述压裂系统包括多个所述压裂设备,多个所述压裂设备位于所述主管道的在所述第二方向上的至少一侧,且沿所述第一方向彼此间隔排列。
- 根据权利要求3所述的压裂系统,其中,所述液力端具有入口和出口,所述主管道包括低压主管道和高压主管道,所述低压主管道与所述高压主管道均沿所述第一方向延伸且在所述第三方向上排列;所述低压主管道被配置向所述液力端提供低压液体,所述高压主管道被配置为接收所述液力端 输出的高压液体;对于每个所述压裂设备,在所述第二方向上,所述液力端位于所述动力端的靠近所述主管道的一侧;所述压裂系统还包括与每个所述压裂设备对应的子管道,所述子管道位于所述导轨与所述主管道支架之间。
- 根据权利要求20所述的压裂系统,其中,所述子管道包括:低压子管道,与所述低压主管道和对应的所述压裂设备的液力端的入口连接;以及高压子管道,与所述高压主管道和对应的所述压裂设备的液力端的出口连接;所述低压子管道和所述高压子管道两者中的至少一者包括可伸缩管道结构,所述可伸缩管道结构包括可伸缩管道和柔性的高压软管;所述可伸缩管道和所述高压软管均沿所述第二方向延伸且彼此连通,所述高压软管的第一端与所述液力端连接,所述高压软管的第二端与所述可伸缩管道连接,所述可伸缩管道在所述第二方向上的长度是可调节的。
- 根据权利要求21所述的压裂系统,其中,在所述第二方向上,所述高压软管位于所述可伸缩管道的靠近所述压裂设备的液力端的一侧。
- 根据权利要求21所述的压裂系统,其中,包括所述可伸缩管道结构的所述低压子管道和/或所述高压子管道分别为单条管道。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/124305 WO2024077434A1 (zh) | 2022-10-10 | 2022-10-10 | 压裂系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/124305 WO2024077434A1 (zh) | 2022-10-10 | 2022-10-10 | 压裂系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024077434A1 true WO2024077434A1 (zh) | 2024-04-18 |
Family
ID=90668506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/124305 WO2024077434A1 (zh) | 2022-10-10 | 2022-10-10 | 压裂系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024077434A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202785384U (zh) * | 2012-08-02 | 2013-03-13 | 中国船舶重工集团公司第七〇四研究所 | 固定式多功能机械手 |
CN203463092U (zh) * | 2013-09-17 | 2014-03-05 | 兰州城临石油钻采设备有限公司 | 一种工厂化规模压裂带自增压灌注的新型管汇车/撬 |
US20180281207A1 (en) * | 2017-04-04 | 2018-10-04 | Kabushiki Kaisha Toshiba | Holding mechanism, transfer device, picking device, and handling robot system |
CN112628607A (zh) * | 2020-12-17 | 2021-04-09 | 四川宏华石油设备有限公司 | 一种具有大通径旁通管汇底撬的压裂高低压管汇系统 |
CN214264388U (zh) * | 2020-11-24 | 2021-09-24 | 广州优尼冲压有限公司 | 汽车配件焊接用的传送机构 |
CN113714766A (zh) * | 2021-09-27 | 2021-11-30 | 烟台杰瑞石油装备技术有限公司 | 柱塞泵的自动拆卸和安装系统及方法 |
CN215145963U (zh) * | 2021-04-21 | 2021-12-14 | 上海君屹工业自动化股份有限公司 | 机器人焊接站及机器人多工位焊接站 |
CN114658406A (zh) * | 2022-05-25 | 2022-06-24 | 四川宏华电气有限责任公司 | 一种多井位压裂管汇装置 |
-
2022
- 2022-10-10 WO PCT/CN2022/124305 patent/WO2024077434A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202785384U (zh) * | 2012-08-02 | 2013-03-13 | 中国船舶重工集团公司第七〇四研究所 | 固定式多功能机械手 |
CN203463092U (zh) * | 2013-09-17 | 2014-03-05 | 兰州城临石油钻采设备有限公司 | 一种工厂化规模压裂带自增压灌注的新型管汇车/撬 |
US20180281207A1 (en) * | 2017-04-04 | 2018-10-04 | Kabushiki Kaisha Toshiba | Holding mechanism, transfer device, picking device, and handling robot system |
CN214264388U (zh) * | 2020-11-24 | 2021-09-24 | 广州优尼冲压有限公司 | 汽车配件焊接用的传送机构 |
CN112628607A (zh) * | 2020-12-17 | 2021-04-09 | 四川宏华石油设备有限公司 | 一种具有大通径旁通管汇底撬的压裂高低压管汇系统 |
CN215145963U (zh) * | 2021-04-21 | 2021-12-14 | 上海君屹工业自动化股份有限公司 | 机器人焊接站及机器人多工位焊接站 |
CN113714766A (zh) * | 2021-09-27 | 2021-11-30 | 烟台杰瑞石油装备技术有限公司 | 柱塞泵的自动拆卸和安装系统及方法 |
CN114658406A (zh) * | 2022-05-25 | 2022-06-24 | 四川宏华电气有限责任公司 | 一种多井位压裂管汇装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9847147B2 (en) | Articulated manipulator | |
US12122003B2 (en) | Automated bolt tensioning robot | |
CN206509716U (zh) | 大型风电设备大螺栓大螺母机器人自动把紧系统 | |
CN102672644A (zh) | 管子夹持装置以及装配机 | |
CN103912015B (zh) | 管节拉合系统 | |
WO2024077434A1 (zh) | 压裂系统 | |
CN101722417A (zh) | 一种螺栓拧紧机 | |
CN111571194B (zh) | 一种快速连接自校正螺栓旋拧机构 | |
CN104624595A (zh) | 清洗机械手 | |
CN206717867U (zh) | 风电轮毂螺栓机器人自动把紧系统 | |
CN217359644U (zh) | 一种可调式三轴电焊机及焊缝缺陷检测装置 | |
CN105415714A (zh) | 合模控制装置 | |
CN203348221U (zh) | 一种液压系统故障诊断用测试机 | |
CN203310327U (zh) | 用于乘用车顶蓬产品检测的检具结构 | |
CN208780191U (zh) | 可除尘的矿用图像测量标靶 | |
CN104668928B (zh) | 一种真空助力器的制动主缸装配线 | |
CN204195215U (zh) | 可变位拧紧机构 | |
CN114603047B (zh) | 一种可实现稳定控压的快速换模系统 | |
CN204637403U (zh) | 用于室内栓的半自动试压机 | |
CN204486426U (zh) | 清洗机械手 | |
CN220967230U (zh) | 一种用于清洁机器人的工作站以及清洁系统 | |
CN220956237U (zh) | 一种新型智能液动执行器 | |
CN215333758U (zh) | 一种无管无线的全自动一体化智能钢支撑系统 | |
CN113715004A (zh) | 一种基于bim排布的管道安装设备及方法 | |
CN104455907B (zh) | 一种管道堵漏整体装备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22961630 Country of ref document: EP Kind code of ref document: A1 |