WO2024075803A1 - 脳神経疾患の検査、治療もしくは予防のための方法 - Google Patents

脳神経疾患の検査、治療もしくは予防のための方法 Download PDF

Info

Publication number
WO2024075803A1
WO2024075803A1 PCT/JP2023/036304 JP2023036304W WO2024075803A1 WO 2024075803 A1 WO2024075803 A1 WO 2024075803A1 JP 2023036304 W JP2023036304 W JP 2023036304W WO 2024075803 A1 WO2024075803 A1 WO 2024075803A1
Authority
WO
WIPO (PCT)
Prior art keywords
autoantibody
polypeptide
antibody
autoantibodies
nrxn1α
Prior art date
Application number
PCT/JP2023/036304
Other languages
English (en)
French (fr)
Inventor
裕紀 塩飽
英彦 高橋
均 岡澤
Original Assignee
国立大学法人 東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京医科歯科大学 filed Critical 国立大学法人 東京医科歯科大学
Publication of WO2024075803A1 publication Critical patent/WO2024075803A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present disclosure relates to a marker useful for testing for cranial nerve diseases or susceptibility to cranial nerve diseases, as well as a testing method and kit using the same. More specifically, the present disclosure relates to a testing method and kit using a specific autoantibody as a marker. The present disclosure also relates to a method for treating or preventing cranial nerve diseases.
  • Schizophrenia is a neurological disease that develops during adolescence and young adulthood and presents with chronic and progressive psychiatric symptoms. Its main symptoms are positive symptoms (hallucinations, delusions, disorganized speech and behavior, etc.), negative symptoms (flattened emotions, poor thinking, decreased motivation, etc.), and cognitive disorders (attention disorders, decreased working memory, impaired executive function, etc.). Schizophrenia patients are symptomatically and genetically heterogeneous, and various pathological mechanisms are thought to be behind them (Non-Patent Document 1). However, there are no biomarkers for these heterozygous subgroups, and the pathological mechanisms underlying treatment resistance in patients and symptoms have not been fully elucidated.
  • Autoantibodies are a major factor in autoimmunity. In fact, autoantibodies specific to molecules in synaptic membranes have been found in patients with encephalitis. Some of these molecule-specific autoantibodies cause symptoms of neurological disorders in patients with encephalitis. The most widely studied form of autoantibody-mediated encephalitis is anti-N-methyl-d-aspartate (NMDA) receptor antibody encephalitis, which is associated with schizophrenia-related symptoms (Non-Patent Document 2). Anti-GABA A R ⁇ 1 receptor antibody encephalitis also causes symptoms of neurological disorders (Non-Patent Document 3). These autoantibodies are also present in patients with schizophrenia, but it is unclear whether they are involved in the symptoms of schizophrenia.
  • NMDA N-methyl-d-aspartate
  • Pettingill P., Kramer, H.B., Coebergh, J.A., Pettingill, R., Maxwell, S., Nibber, A., Malaspina, A., Jacob, A., Irani, S.R., Buckley, C., et al.(2015).
  • Antibodies to GABAA receptor a1 and g2 subunits clinical and serologic characterization. Neurology 84, 1233-1241.
  • the inventors analyzed biological samples isolated from subjects in order to find biomarkers specific to neurological disorders such as schizophrenia.
  • the target antigen there are several prerequisites for the target antigen: (1) a membrane molecule expressed in the nervous system (autoantibodies do not normally enter living cells); and (2) the target antigen must be a molecule involved in schizophrenia and whose function is affected by the autoantibody or at least involved in synaptic function. From this perspective, the inventors used a cell-based assay and ELISA to successfully identify multiple novel autoantibodies that are thought to contribute to the pathophysiology of schizophrenia.
  • the inventors have identified multiple autoantibodies specific to patient-derived samples. More specifically, the inventors have demonstrated that autoantibodies against NCAM1 and other proteins derived from schizophrenia patients induce schizophrenia-related behaviors and changes in spines and synapses in mice. These autoantibodies can induce symptoms of neurological disorders such as schizophrenia, and therefore can be considered as therapeutic targets in patients who are positive for autoantibodies such as anti-NCAM1 autoantibodies.
  • NCAM1 also binds to glial cell line-derived neurotrophic factor (GDNF) and contributes to synapse formation.
  • GDNF glial cell line-derived neurotrophic factor
  • NCAM1 knockout mice and dominant-negative transgenic mice show changes in schizophrenia-related behavior.
  • the inventors have identified anti-NCAM1 autoantibodies in schizophrenia patients. Using a disease model in which immunoglobulin G (IgG) purified from schizophrenia patients was administered to mice, they have demonstrated that anti-NCAM1 autoantibodies inhibit spine and synapse formation in the frontal cortex and induce schizophrenia-related behavior.
  • IgG immunoglobulin G
  • a method for testing a cranial nerve disease or a susceptibility to a cranial nerve disease in a subject comprising: i) providing a sample isolated from a subject; ii) determining the presence or absence of autoantibodies in said sample,
  • the autoantibody is at least one autoantibody selected from the group consisting of an anti-NRXN1 ⁇ antibody, an anti-NRG1 antibody, an anti-NLGN2 antibody, an anti-NLGN3 antibody, an anti-ephrin B1 antibody, and an anti-TRPA1 antibody;
  • the method, wherein the presence of the autoantibody in the sample is indicative of the subject having a neurological disorder or a susceptibility to a neurological disorder.
  • Aspect 2 The method according to aspect 1, wherein the neurological disease is selected from the group consisting of schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder and encephalitis.
  • Aspect 3 The method according to aspect 1, which is carried out in vitro.
  • Embodiment 4 The method according to embodiment 1, wherein the sample is blood, plasma, serum or cerebrospinal fluid.
  • step of determining the presence or absence of an autoantibody comprises performing ELISA, CLEIA (chemiluminescent enzyme immunoassay), CLIA (chemiluminescent immunoassay), latex agglutination, radioimmunoassay, immunoblotting, immunoprecipitation, immunochromatography, or cell-based assay (CBA).
  • ELISA ELISA
  • CLEIA chemiluminescent enzyme immunoassay
  • CLIA chemiluminescent immunoassay
  • latex agglutination e.g., radioimmunoassay, immunoblotting, immunoprecipitation, immunochromatography, or cell-based assay (CBA).
  • kits for use in testing a subject for a cranial nerve disease or susceptibility to a cranial nerve disease comprising at least one of the following 1) to 3): 1) an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide; a fragment of an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide having binding activity with an anti-NRXN1 ⁇ antibody, an anti-NRG1 antibody, an anti-NLGN2 antibody, an anti-NLGN3 antibody, an anti-ephrin B1 antibody, and/or an anti-TRPA1 antibody; or a polypeptide comprising an epitope recognized by an anti-
  • kits according to aspect 8 wherein the neurological disease is selected from the group consisting of schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder, and encephalitis.
  • the polypeptide is immobilized on a substrate.
  • the substrate is a test strip, a bead, a multiwell plate or a microchip.
  • the kit according to aspect 8 comprising an expression vector containing a nucleic acid encoding the polypeptide.
  • kits according to embodiment 8 further comprising an antibody for detection that binds to anti-NRXN1 ⁇ autoantibody, anti-NRG1 autoantibody, anti-NLGN2 autoantibody, anti-NLGN3 autoantibody, anti-ephrin B1 autoantibody, and/or anti-TRPA1 autoantibody.
  • Aspect 14 Use of anti-NRXN1 ⁇ autoantibodies, anti-NRG1 autoantibodies, anti-NLGN2 autoantibodies, anti-NLGN3 autoantibodies, anti-ephrin B1 autoantibodies, and/or anti-TRPA1 autoantibodies as biomarkers for assessing a cranial nerve disease or susceptibility to a cranial nerve disease in a subject.
  • Aspect 15 The use according to Aspect 14, wherein the brain and nervous system disease is selected from the group consisting of schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder and encephalitis.
  • a method for treating or preventing a neurological disease in a subject comprising a step of removing, reducing, sequestering, inactivating or decomposing anti-NRXN1 ⁇ autoantibodies, anti-NRG1 autoantibodies, anti-NLGN2 autoantibodies, anti-NLGN3 autoantibodies, anti-ephrin B1 autoantibodies, and/or anti-TRPA1 autoantibodies in the subject.
  • the neurological disease is selected from the group consisting of schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder and encephalitis.
  • the method according to aspect 16 comprising a step of performing plasma exchange.
  • a method for treating blood, plasma, serum or cerebrospinal fluid isolated from a subject having or susceptible to a cranial nerve disease comprising treating the blood, plasma, serum or cerebrospinal fluid with a NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide; a fragment of an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide having binding activity with an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody; or an anti-NRXN1
  • a method for removing or reducing anti-NRXN1 ⁇ autoantibodies, anti-NRG1 autoantibodies, anti-NLGN2 autoantibodies, anti-NLGN3 autoantibodies, anti-ephrin B1 autoantibodies, and/or anti-TRPA1 autoantibodies contained in the blood, plasma, serum, or cerebrospinal fluid by contacting a substrate with at least one selected from the group consisting of a polypeptide containing an epitope recognized by anti-TRPA1 autoantibodies and/or anti-NRXN1 ⁇ autoantibodies, anti-NRG1 autoantibodies, anti-NLGN2 autoantibodies, anti-NLGN3 autoantibodies, anti-ephrin B1 autoantibodies, and/or anti-TRPA1 autoantibodies.
  • a pharmaceutical composition for use in the treatment or prevention of a brain and nervous system disease comprising an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide; or a fragment thereof having binding activity with an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody; or a polypeptide comprising an epitope recognized by an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody.
  • a method for treating or preventing a cranial nerve disease in a subject comprising: i) providing a sample isolated from a subject; ii) determining the presence or absence of an autoantibody in the sample, wherein the autoantibody is at least one autoantibody selected from the group consisting of an anti-NRXN1 ⁇ antibody, an anti-NRG1 antibody, an anti-NLGN2 antibody, an anti-NLGN3 antibody, an anti-ephrin B1 antibody, and an anti-TRPA1 antibody; iii) When the autoantibody is present in the sample, the subject is subjected to at least one of the following methods selected from the group consisting of 1) to 6): 1) Immunoglobulin therapy, 2) steroid therapy, 3) administration of immunosuppressants
  • the method further comprises a step of determining the presence or absence of an additional autoantibody in the sample, wherein the additional autoantibody is at least one autoantibody selected from the group consisting of an anti-NMDA receptor antibody, an anti-GABA A R ⁇ 1 antibody, and an anti-NCAM1 antibody, and when the autoantibody is present in the sample,
  • the additional autoantibody is at least one autoantibody selected from the group consisting of an anti-NMDA receptor antibody, an anti-GABA A R ⁇ 1 antibody, and an anti-NCAM1 antibody, and when the autoantibody is present in the sample.
  • the subject is administered an antigen polypeptide corresponding to the autoantibody whose presence has been confirmed, an antigen polypeptide fragment having binding activity with the autoantibody, or a polypeptide including an epitope recognized by the autoantibody.
  • B Immunocytochemistry results using a commercial anti-NCAM1 antibody, serum and CSF from schizophrenia patient 1, and serum from a healthy control. NCAM1 and EGFP were expressed from plasmids. Confocal images show antibodies bound to the membrane of EGFP-positive HeLa cells. Similar results were obtained for all anti-NCAM1 antibody-positive schizophrenia patients.
  • Serum antibodies did not react with EGFP, since (1) they did not react with EGFP in the nucleus, and (2) they did not react with cells transfected with an empty plasmid expressing only EGFP. Scale bar: 10 ⁇ m, Ab: antibody, Sz: schizophrenia.
  • A Structure of NCAM1 deletion constructs.
  • B Immunocytochemistry results using serum from schizophrenia patient 1 who was positive for anti-NCAM1 autoantibodies. NCAM1 deletion constructs and EGFP were expressed from plasmids.
  • AAV1-SYN1-EGFP and AAV2-VAMP2-mCherry were injected into the frontal cortex of 6-week-old mice, and purified IgG was injected into the CSF of 8-week-old mice. Molecular, histological, two-photon microscopic, and behavioral analyses were performed in 9-week-old mice.
  • IHC immunohistochemistry
  • IP immunoprecipitation
  • WB western blot.
  • B Immunoprecipitation analysis of mouse frontal cortex tissues revealed that anti-NCAM1 autoantibodies obtained from schizophrenia patients inhibited NCAM1-Fyn interaction.
  • CT computed tomography.
  • A Experimental protocol for IgG injection of anti-NCAM1 autoantibodies from schizophrenia patients. AAV1-SYN1-EGFP and AAV2-VAMP2-mCherry were injected into the frontal cortex of 6-week-old mice, and purified IgG was injected into the CSF of 8-week-old mice. Two-photon microscopy and behavioral analysis were performed in 9-week-old mice.
  • B Immunocytochemical staining using a commercial anti-NRXN1 ⁇ antibody, serum and CSF from schizophrenia patient 1, and serum from a healthy control. Bar: 10 ⁇ m.
  • D Schematic diagram of NRXN1 ⁇ deletion construct.
  • NRXN1-NLGN1 and NRXN1-NLGN2 interactions were inhibited by anti-NRXN1 autoantibodies present in schizophrenia patients.
  • A Representative mEPSC traces recorded from frontal cortical pyramidal neurons.
  • B Cumulative distribution of inter-event intervals for each group. Recording times ranged from 7.5 to 15 min (a total of 34,523 inter-events detected) for healthy controls and patient 1 with schizophrenia, respectively, and 9.5 to 10 min (a total of 27640 inter-events detected).
  • Nine cells from three mice were analyzed per group. **p ⁇ 0.01; Kolmogorov-Smirnov and Mann-Whitney tests.
  • C Cumulative distribution of amplitudes per group.
  • A Experimental protocol for IgG injection of autoantibodies from schizophrenia patients.
  • AAV1-SYN1-EGFP and AAV2-VAMP2-mCherry were injected into the frontal cortex of 6-week-old mice, and purified IgG was injected into the CSF of 8-week-old mice. Two-photon microscopy and behavioral analysis were performed in 9-week-old mice.
  • B Two-photon microscopy of dendritic spines in layer I of the frontal cortex of mice injected with AAV1-SYN1-EGFP and purified IgG from healthy controls, schizophrenia patient 2, and schizophrenia patient 3.
  • Anti-NLGN3 autoantibodies were positive in 2 of 122 patients with schizophrenia and none of 250 healthy controls.
  • Anti-Ephrin B1 autoantibodies were positive in 2 of 122 schizophrenia patients and in none of 250 healthy controls.
  • the presence of autoantibodies against TRPA1 in samples from patients with pain disorders was examined by cell-based assay. The results show that sera from patients with pain disorders react with cells expressing TRPA1. 13 is a photograph showing that anti-NLGN2 autoantibodies were positive in patients who had been misdiagnosed with schizophrenia.
  • FIG. 1 shows electroencephalograms of a patient with anti-NLGN2 autoantibody-positive autoimmune-mediated encephalopathy who had been misdiagnosed as having schizophrenia, before and after plasma exchange.
  • the first aspect of the present disclosure relates to a method for testing cranial nerve disease or cranial nerve disease susceptibility in a subject.
  • the method can include, for example, i) preparing a sample isolated from a subject, and ii) determining the presence or absence of a specific autoantibody in the sample, and the presence of a specific autoantibody in the sample can be used as an indicator that the subject has schizophrenia or a susceptibility to schizophrenia.
  • the testing method according to the present disclosure is useful as a means for determining whether or not a subject suffers from or has developed a cranial nerve disease such as schizophrenia, or as a means for determining the possibility of developing a cranial nerve disease such as schizophrenia in the future, and can provide information useful for diagnosing a cranial nerve disease such as schizophrenia.
  • the cranial nerve disease can be a cranial nerve disease that exhibits psychiatric symptoms.
  • the cranial nerve disease can be a cranial nerve disease caused by an autoantibody.
  • the subject is a human, particularly a patient with a neurological disease or a patient suspected of having a neurological disease, or a subject suspected of having a susceptibility to a neurological disease.
  • the diagnosis can be judged based on the objective indicator of the presence or absence of a specific autoantibody, and can be used as information to assist or support a conventional diagnosis. Such information is useful for determining a more appropriate treatment policy, and can promote improvement of the treatment effect and improvement of the patient's QOL.
  • the method according to the present disclosure can be used to monitor the disease state to prevent the disease from becoming intractable, becoming severe, recurring, etc.
  • Subjects who are estimated to be at high risk of developing a neurological disease such as schizophrenia (high-risk subjects) based on family background, etc. are also suitable subjects. Applying the method according to the present disclosure to such subjects before the symptoms of a neurological disease such as schizophrenia appear makes it possible to prevent or delay the onset of the disease or to intervene in the treatment early.
  • the method according to the present disclosure is also useful for identifying those at high risk of developing a neurological disease such as schizophrenia, that is, those who are susceptible to the disease.
  • Such identification makes it possible to reduce the likelihood of developing (possibility of contracting) the disease, for example, by taking preventive measures or improving lifestyle habits.
  • Those who have no subjective symptoms and for whom it is impossible or difficult to determine whether they have a neurological disease using conventional diagnostic methods are also suitable targets for the method disclosed herein. This testing method may also be carried out as one item in a health check.
  • Neurological disorders include, but are not limited to, schizophrenia, pain disorders, encephalopathy, epilepsy, psychotic disorders, mood disorders, and encephalitis.
  • the presence of a specific autoantibody in a sample obtained from a subject is an indicator that the subject has a neurological disorder, and can be used, for example, as a basis for differential diagnosis from other disorders with similar symptoms.
  • the neurological disorder is schizophrenia.
  • "Schizophrenia" is a mental disorder that causes a disorder in the integration of brain function and presents hallucinations, delusions, negative symptoms, and cognitive decline.
  • the target disease is not limited to schizophrenia, but can also be applied to a wide range of psychiatric disorders, i.e., other neurological disorders such as pain disorders, encephalopathy, epilepsy, psychotic disorders, mood disorders, and encephalitis.
  • Pain disorder is defined as pain at one or more anatomical locations severe enough to cause distress or impairment in social, occupational, or other important areas of functioning.
  • the current diagnosis is based on medical history and exclusion of physical disorders that adequately explain the pain and its severity, duration, and degree of impairment.
  • Encephalopathy is a condition in which the patient exhibits neurological symptoms also seen in encephalitis, such as abnormal electroencephalograms, impaired consciousness, and mental symptoms, but no obvious inflammation is found within the brain tissue.
  • Epilepsy is a group of non-communicable neurological disorders characterized by recurrent seizures. It refers to a neurological disorder or condition that causes epileptic seizures due to abnormal neural activity ("epileptic discharges") occurring in cells in the brain. Epileptic seizures can vary from brief, barely detectable episodes to prolonged, violent, shaking episodes due to abnormal electrical activity in the brain.
  • Symptoms include delusions and hallucinations, among others, but other symptoms include incoherent speech and behaving inappropriately in a given situation. There may also be sleep disorders, social withdrawal, lack of motivation, and difficulty carrying out daily activities.
  • Mood disorders also known as affective disorders, are conditions in which a person experiences distress or experiences significant impairment in daily life due to mood (emotion) changes that last for a certain period of time. Mood disorders are classified according to the World Health Organization's (WHO) International Classification of Diseases, 10th edition, ICD-10, and the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 5th edition, DSM-5.
  • WHO World Health Organization's
  • Encephalitis is a general term for inflammatory diseases of the brain, and acute encephalitis refers to a condition in which inflammation in the brain parenchyma causes acute symptoms such as fever, headache, impaired consciousness, and paralysis. Complications may include convulsions, hallucinations, speech disorders, memory disorders, and hearing impairments.
  • susceptibility to a neurological disease refers to a tendency to be susceptible to a neurological disease or a state of being at high risk of developing a neurological disease.
  • the presence of a specific autoantibody in a sample obtained from a subject is an indicator that the subject is susceptible to a neurological disease, and for example, even if the subject does not develop a neurological disease at the time of testing, it can be determined that the subject is at high risk of developing a neurological disease in the future.
  • a testing method refers to an in vitro analysis of components in a sample obtained from a subject to obtain some kind of measurement result.
  • the obtained measurement result i.e., the presence of autoantibodies in the sample
  • the testing method according to the present disclosure can also be considered an in vitro test method for cranial nerve disease or susceptibility to a cranial nerve disease in a subject.
  • the method according to the present disclosure can also be considered a method for obtaining an indicator of the possibility of a cranial nerve disease or a susceptibility to a cranial nerve disease in a subject, or a method for testing the presence or absence of a cranial nerve disease or the likelihood of developing a cranial nerve disease in a subject.
  • the step of preparing a sample isolated from a subject should be understood to mean the step of preparing a sample after it has been taken from a human subject, and should not be understood to include the step of performing an invasive procedure on a human subject, such as surgically harvesting tissue or blood, unless expressly specified.
  • the methods of this disclosure may, in some embodiments, be expressly specified as including the step of harvesting a biological sample from a subject.
  • the sample may be a biological sample derived from a subject, such as, but not limited to, blood, plasma, serum, or cerebrospinal fluid.
  • the sample obtained from the subject may be pre-treated or stored (including frozen, thawed) prior to being analyzed for the presence or absence of a particular autoantibody.
  • the step of determining the presence or absence of a specific autoantibody in a sample can include, but is not limited to, performing, for example, ELISA, CLEIA (chemiluminescent enzyme immunoassay), CLIA (chemiluminescent immunoassay), latex agglutination, radioimmunoassay, immunoblotting, immunoprecipitation, immunochromatography, or cell-based assay (CBA). Note that it is not essential to strictly quantify the amount of autoantibodies present in a sample, and it is sufficient to be able to detect the level of autoantibodies to the extent that the possibility of developing a neurological disease can be determined.
  • the presence of an autoantibody is determined when the measured value of a specific autoantibody in a sample, for example, measured values by ELISA, CLEIA (chemiluminescent enzyme immunoassay), CLIA (chemiluminescent immunoassay), latex agglutination, radioimmunoassay, immunoblot, immunoprecipitation, immunochromatography, or cell-based assay (CBA), exceeds a predetermined value or a control measured value.
  • the predetermined value or control measured value can be determined, for example, based on the measured value of a sample derived from a healthy individual or a sample known not to contain the autoantibody being tested, but is not limited thereto.
  • a positive autoantibody can be defined as a value exceeding two standard deviations from the average value of a measured value such as absorbance. Note that the determination here can be made automatically or mechanically without relying on the judgment of a person with specialized knowledge, such as a physician or laboratory technician, as is clear from the criteria for determination.
  • the ELISA method has many advantages, including high detection sensitivity, high specificity, excellent quantitative performance, simple operation, and suitability for simultaneous processing of multiple samples.
  • An example of a specific operation method when using the ELISA method is shown below.
  • a polypeptide to which a specific autoantibody binds is immobilized on a solid substrate.
  • the surface of a microplate is coated with an autoantibody-binding polypeptide.
  • a sample is then brought into contact with the immobilized polypeptide.
  • an autoantibody that recognizes the immobilized antigen is present in the sample, an immune complex is formed.
  • an enzyme-linked secondary antibody is added to label the immune complex, which is then reacted with the enzyme substrate to produce color, and the amount of color produced is used as an indicator to detect the immune complex.
  • a commercially available kit may be used when performing the ELISA method.
  • the autoantibody is an anti-NCAM1 (Neural Cell Adhesion Molecule 1) antibody.
  • the autoantibody is at least one autoantibody selected from the group consisting of an anti-NRXN1 ⁇ (Neurexin-1-alpha) antibody, an anti-NRG1 (Neureglin-1) antibody, an anti-NLGN2 (Neuroligin-2) antibody, an anti-NLGN3 (Neuroligin-3) antibody, an anti-Ephrin B1 antibody, and an anti-TRPA1 antibody.
  • the autoantibody is at least one autoantibody selected from the group consisting of an anti-NCAM1, an anti-NRXN1 ⁇ antibody, an anti-NRG1 antibody, an anti-NLGN2 antibody, an anti-NLGN3 antibody, an anti-Ephrin B1 antibody, and an anti-TRPA1 antibody.
  • These autoantibodies may recognize naturally occurring subtypes, isoforms, or variants of each of the above proteins.
  • those skilled in the art can easily obtain the gene sequence and amino acid sequence of the appropriate subtype, isoform, or variant of each of the above proteins, and can express them in cells using known techniques.
  • the expressed proteins may be further isolated and purified.
  • NCAM1 also known as CD56, is a cell adhesion molecule belonging to the immunoglobulin superfamily and is expressed primarily in human neurons, glial cells, skeletal muscle cells, NK cells and a subset of T cells. There are three subtypes of NCAM1: a 140/180 kD transmembrane molecule and a 120 kD GPI-anchored molecule. Each isoform is generated by alternative splicing.
  • NRXN1 ⁇ is a single-pass transmembrane protein that is expressed at high levels in the brain and is present at the presynaptic terminal. It binds to the postsynaptic membrane protein Neuroligin in the synaptic cleft and is involved in synapse construction and the release mechanism of neurotransmitters. There are many splice variants, and it is thought to affect the selection of glutamatergic and GABAergic neuronal synapse construction.
  • NRG1 Neuroglin-1
  • NRG2 is a member of the EGF family of proteins and forms a family with the structurally related proteins NRG2, NRG3, and NRG4. Multiple isoforms of NRG1 are generated by alternative splicing and can exert a variety of functions. NRG1 is essential for normal development of the nervous system and heart.
  • NLGN2 Neuron-2
  • NLGN1 NLGN2, NLGN3, NLGN4, and NLGN4Y
  • NLGN2 encodes a member of a family of neuronal cell surface proteins that act as splice-site-specific ligands for ⁇ -neurexins (NRXNs) and are thought to be involved in the formation and remodeling of synapses in the central nervous system.
  • NRXNs ⁇ -neurexins
  • NLGN3 Neuroligin-3 is one of five neuroligin genes (NLGN1, NLGN2, NLGN3, NLGN4, NLGN4Y) in humans.
  • Neuroligins are single-pass transmembrane proteins present in the postsynaptic domain and are endogenous ligands for neurexins (NRXNs) present in presynaptic terminals, regulating synaptic maturation and function.
  • NLGN3 is abundant in the brain, and NLGN3 protein levels increase during postnatal development, coinciding with the peak of synapse formation.
  • Ephrin B1 is one of eight mammalian ephrins (Ephrin A1-A5 and Ephrin B1-B3).
  • B-type ephrins are type I membrane proteins with molecular weights of 30-45 kDa, consisting of an extracellular domain, a transmembrane domain, and an intracellular domain with a PDZ-binding sequence at the C-terminus.
  • Ephrin B1 is encoded by the EFNB1 gene.
  • the encoded protein is a ligand for Eph-related receptor tyrosine kinases. It is involved in cell adhesion and may function in the development and maintenance of the nervous system.
  • TRPA1 is an ion channel present in the plasma membrane of many human and animal cells. This ion channel is known as a pain, cold, and itch sensor in humans and other mammals, as well as a sensor of environmental irritants that elicit other protective responses (tears, airway resistance, coughing).
  • multiple autoantibodies may be measured simultaneously or consecutively.
  • two or more autoantibodies for example, 2, 3, 4, 5, 6, or 7 autoantibodies selected from the group consisting of anti-NCAM1 antibody, anti-NRXN1 ⁇ antibody, anti-NRG1 antibody, anti-NLGN2 antibody, anti-NLGN3 antibody, anti-Ephrin B1 antibody, and anti-TRPA1 antibody, may be measured in any combination.
  • the autoantibody to be analyzed may further include anti-NMDA receptor antibody and anti-GABA A R ⁇ 1 antibody.
  • Kit for use in testing for cranial nerve disease or cranial nerve disease susceptibility A second aspect of the present disclosure relates to a kit for use in testing for cranial nerve disease or cranial nerve disease susceptibility in a subject.
  • the cranial nerve disease may be a cranial nerve disease that presents psychiatric symptoms.
  • the cranial nerve disease may be a cranial nerve disease caused by an autoantibody.
  • the kit may include, for example, at least one of the following 1) to 3): 1) an antigen polypeptide of a specific autoantibody, a fragment of an antigen polypeptide having binding activity with a specific autoantibody, or a polypeptide containing an epitope recognized by a specific autoantibody; 2) a nucleic acid encoding the polypeptide described in 1) above; or 3) a cell expressing the polypeptide described in 1) above.
  • the neurological disorder may be selected from the group consisting of, but is not limited to, schizophrenia, pain disorders, encephalopathy, epilepsy, psychotic disorders, mood disorders, and encephalitis.
  • the kit can include, for example, at least one of the following 1) to 3): 1) an NCAM1 polypeptide, an NCAM1 polypeptide fragment having binding activity with an anti-NCAM1 autoantibody, or a polypeptide containing an epitope recognized by an anti-NCAM1 autoantibody; 2) a nucleic acid encoding the polypeptide described in 1) above; or 3) a cell expressing the polypeptide described in 1) above.
  • the kit may include at least one of the following items 1) to 3): 1) an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide; a fragment of an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide having binding activity with an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody; or a polypeptide comprising an epitope recognized by an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an
  • the antigen polypeptide of the autoantibody may be a full-length wild-type polypeptide.
  • the antigen polypeptide of the autoantibody may include a mutation or variation compared to the wild-type sequence, such as the addition of a tag sequence to facilitate purification or fixation, or other substitutions, deletions, or additions.
  • the mutation or variation may be naturally occurring or non-naturally occurring.
  • the antigen polypeptide of the autoantibody may be derived from an organism other than a human, provided that the organism is useful for the intended application.
  • the antigen polypeptide may be a fusion protein, such as with GST, beta-galactosidase, maltose binding protein, or a histidine (His) tag.
  • the kit according to the present disclosure may include a fragment of an antigen polypeptide having binding activity with an autoantibody.
  • the fragment of an antigen polypeptide having binding activity with an autoantibody includes an epitope recognized by the autoantibody.
  • the kit according to the present disclosure may include a polypeptide including an epitope recognized by an autoantibody.
  • the inventors have found that the epitope recognized by anti-NCAM1 autoantibody is present in the Ig1 domain of NCAM1.
  • the inventors have also found that the epitope recognized by anti-NRXN1 ⁇ autoantibody is present in the LNS6 domain of NRXN1 ⁇ .
  • the polypeptide may be immobilized on a substrate.
  • the substrate may be, for example, but is not limited to, a test strip, beads, a multi-well plate, or a microchip.
  • a plurality of types of autoantibody-binding polypeptides may be immobilized on the substrate.
  • the substrate may be, for example, a solid-phase substrate made of a resin such as polystyrene resin, polycarbonate resin, silicone resin, or nylon resin, or a water-insoluble substance such as glass.
  • the antigen polypeptide may be supported on the substrate by, for example, physical or chemical adsorption.
  • kits disclosed herein may include a nucleic acid encoding a polypeptide that binds to the autoantibody.
  • the nucleic acid encoding the polypeptide may be used to generate the polypeptide in a cell or in vitro.
  • the kits disclosed herein may include an expression vector that includes a nucleic acid encoding the polypeptide. The expression vector may be used, for example, by transfecting a cell.
  • the kit of the present disclosure may include cells expressing a polypeptide that binds to the autoantibody.
  • the cells may include prokaryotic or eukaryotic cells, such as human cells, non-human mammalian cells, insect cells, fungal cells, etc.
  • the cells may secrete the polypeptide or express it on the cell membrane.
  • cells expressing the polypeptide may be used in cell-based assays (CBAs), etc.
  • kits of the present disclosure may further include an antibody for detection that binds to the autoantibody.
  • an antibody may include, for example, an antibody that recognizes the constant region of a human antibody.
  • the antibody for detection may be labeled with, for example, an enzyme such as peroxidase, microperoxidase, horseradish peroxidase (HRP), alkaline phosphatase, ⁇ -D-galactosidase, glucose oxidase, and glucose-6-phosphate dehydrogenase; a fluorescent substance such as fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and europium; a chemiluminescent substance such as luminol, isoluminol, and acridinium derivatives; a coenzyme such as NAD; biotin; and a radioactive substance such as 131I and 125I.
  • an enzyme such as peroxidase, micro
  • Kits according to the present disclosure will typically be accompanied by instructions for use.
  • Other reagents e.g., buffers, blocking reagents, enzyme substrates, color reagents, etc.
  • devices or instruments e.g., containers, reaction devices, spectrophotometers, fluorescence readers, etc.
  • the kit may also include a container containing a known concentration or amount of antibody as a standard sample.
  • Biomarkers for Evaluating Neurological Disease or Neurological Disease Susceptibility The third aspect of the present disclosure relates to the use of autoantibodies as biomarkers for evaluating neurological diseases or neurological disease susceptibility in a subject.
  • the neurological disease may be a neurological disease that exhibits psychiatric symptoms.
  • the neurological disease may also be a neurological disease caused by an autoantibody.
  • a biomarker refers to a substance (biological indicator compound) that is an indicator of the presence or absence of a disease, changes in the condition, or the effect of treatment.
  • the levels of each biomarker can be detected to such an extent that the possibility of developing a neurological disease can be determined.
  • detection can be performed so that it can be determined whether the level of each biomarker in a sample exceeds a predetermined reference value.
  • the detection of the biomarkers can be performed using the methods described herein or any method known to those skilled in the art.
  • the autoantibody is an anti-NCAM1 autoantibody. In some embodiments, the autoantibody is at least one autoantibody selected from the group consisting of anti-NRXN1 ⁇ autoantibody, anti-NRG1 autoantibody, anti-NLGN2 autoantibody, anti-NLGN3 autoantibody, anti-Ephrin B1 autoantibody, and anti-TRPA1 autoantibody.
  • At least one autoantibody selected from the group consisting of anti-NCAM1 autoantibody, anti-NRXN1 ⁇ autoantibody, anti-NRG1 autoantibody, anti-NLGN2 autoantibody, anti-NLGN3 autoantibody, anti-Ephrin B1 autoantibody, and anti-TRPA1 autoantibody may be used as a biomarker for evaluating a cranial nerve disease or a cranial nerve disease susceptibility. A plurality of these biomarkers may be combined and used as a biomarker set.
  • the biomarker or biomarker set according to the present disclosure is useful in testing for the presence or absence of a cranial nerve disease such as schizophrenia or for susceptibility to a cranial nerve disease, and may be used to determine and evaluate a current pathology or a future possibility of developing the disease.
  • the neurological disorders with which the biomarkers are associated include, but are not limited to, schizophrenia, pain disorders, encephalopathy, epilepsy, psychotic disorders, mood disorders, and encephalitis.
  • the biomarkers of the present disclosure may be useful in distinguishing subgroups of neurological disorders such as schizophrenia.
  • the fourth aspect of the present disclosure relates to a method for treating or preventing cranial nerve disease in a subject, which may include, for example, a step of removing, reducing, isolating, inactivating or decomposing a specific autoantibody in a subject.
  • the cranial nerve disease may be a cranial nerve disease that exhibits a psychiatric symptom.
  • the cranial nerve disease may be a cranial nerve disease caused by an autoantibody.
  • the neurological disease for which the treatment or prevention method according to the present disclosure is used may be selected from the group consisting of schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder, and encephalitis, but is not limited thereto.
  • the autoantibody identified by the present inventors damages the central nervous system of the patient by binding to the protein that the antibody recognizes, causing neurological diseases such as schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder, and encephalitis, and that removing, reducing, isolating, inactivating, or decomposing the antibody is believed to lead to the improvement or prevention of the neurological disease.
  • the examples in this specification clearly show that removing the autoantibody identified by the present inventors prevents the induction of symptoms of the neurological disease.
  • the method for treating or preventing a neurological disease according to the present disclosure may include a step of performing plasma exchange.
  • plasma exchange By performing plasma exchange, autoantibodies that cause a neurological disease in a subject can be removed or reduced.
  • Immunological interventions such as plasma exchange and immunoglobulin therapy are used to treat autoantibody encephalitis, and are considered to be effectively used in the method for treating or preventing a neurological disease according to the present disclosure.
  • steroid therapy, administration of immunosuppressants, administration of plasma preparations, and the like, which are used to treat diseases caused by autoantibodies, are also considered to be effectively used in the method for treating or preventing a neurological disease according to the present disclosure.
  • the method for treating or preventing a neurological disease may include a step of removing, reducing, isolating, inactivating, or decomposing at least one autoantibody selected from the group consisting of anti-NCAM1 autoantibody, anti-NRXN1 ⁇ autoantibody, anti-NRG1 autoantibody, anti-NLGN2 autoantibody, anti-NLGN3 autoantibody, anti-Ephrin B1 autoantibody, and anti-TRPA1 autoantibody in a subject.
  • Some embodiments relate to a method for treating blood, plasma, serum, or cerebrospinal fluid isolated from a subject with or susceptible to a cranial nerve disease, comprising contacting the blood, plasma, serum, or cerebrospinal fluid with a substrate having immobilized thereon at least one selected from the group consisting of a specific polypeptide, a fragment of a specific polypeptide having binding activity with a specific autoantibody, or a polypeptide containing an epitope recognized by a specific autoantibody, thereby removing or reducing a specific autoantibody contained in the blood, plasma, serum, or cerebrospinal fluid.
  • the specific polypeptide is selected from the group consisting of an NCAM1 polypeptide, an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and a TRPA1 polypeptide
  • the specific autoantibody may be selected from the group consisting of an anti-NCAM1 autoantibody, an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and an anti-TRPA1 autoantibody.
  • some embodiments relate to a method for treating blood, plasma, serum, or cerebrospinal fluid isolated from a subject with a cranial nerve disease or a susceptibility to a cranial nerve disease, comprising contacting the blood, plasma, serum, or cerebrospinal fluid with a substrate on which at least one selected from the group consisting of an NCAM1 polypeptide, an NCAM1 polypeptide fragment having binding activity with an anti-NCAM1 autoantibody, or a polypeptide containing an epitope recognized by an anti-NCAM1 autoantibody is immobilized, thereby removing or reducing anti-NCAM1 autoantibodies contained in the blood, plasma, serum, or cerebrospinal fluid.
  • Some embodiments also relate to a method for treating blood, plasma, serum or cerebrospinal fluid isolated from a subject having or susceptible to a cranial nerve disease, comprising: treating the blood, plasma, serum or cerebrospinal fluid with an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide, an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody.
  • the present invention also relates to a method for removing or reducing anti-NRXN1 ⁇ autoantibodies, anti-NRG1 autoantibodies, anti-NLGN2 autoantibodies, anti-NLGN3 autoantibodies, anti-Ephrin B1 autoantibodies, and/or anti-TRPA1 autoantibodies contained in blood, plasma, serum, or cerebrospinal fluid by contacting a substrate with at least one selected from the group consisting of a polypeptide, a fragment of an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide, or a polypeptide containing an epitope recognized by an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody, said method comprising the steps of:
  • the sequestration, inactivation, or degradation of a specific autoantibody can be achieved, for example, by allowing a substance that binds to the specific autoantibody to interact with the autoantibody.
  • the sequestration of a specific autoantibody can be achieved, but is not limited to, by targeting a complex of the autoantibody and a substance that binds to the specific autoantibody to a specific organ or tissue.
  • the inactivation of a specific autoantibody can be achieved, but is not limited to, by forming a complex between the autoantibody and a substance that binds to the specific autoantibody, thereby inhibiting the antigen-binding ability of the autoantibody.
  • the destruction of a specific autoantibody can be achieved, but is not limited to, by forming a complex between the autoantibody and a substance that binds to the specific autoantibody, thereby directing the complex to a proteolytic mechanism.
  • Some embodiments relate to a pharmaceutical composition for use in treating or preventing a neurological disease, comprising a specific polypeptide or a fragment thereof having binding activity with a specific autoantibody, or a polypeptide comprising an epitope recognized by a specific autoantibody. Some embodiments also relate to the use of a specific polypeptide or a fragment thereof having binding activity with a specific autoantibody, or a polypeptide comprising an epitope recognized by a specific autoantibody, in the manufacture of a medicament for use in treating or preventing a neurological disease.
  • the specific polypeptide is selected from the group consisting of an NCAM1 polypeptide, an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and a TRPA1 polypeptide
  • the specific autoantibody may be selected from the group consisting of an anti-NCAM1 autoantibody, an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and an anti-TRPA1 autoantibody.
  • some embodiments also relate to a pharmaceutical composition for use in treating or preventing a brain and nerve disease, comprising an NCAM1 polypeptide or a fragment thereof having binding activity with an anti-NCAM1 autoantibody, or a polypeptide comprising an epitope recognized by an anti-NCAM1 autoantibody.
  • Some embodiments also relate to a pharmaceutical composition for use in treating or preventing a neurological disease, comprising an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide, or a fragment thereof having binding activity with an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody, or a polypeptide comprising an epitope recognized by an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and/or an anti-TRPA1 autoantibody.
  • the neurological disorders for which the pharmaceutical compositions disclosed herein are used include, but are not limited to, schizophrenia, pain disorders, encephalopathy, epilepsy, psychotic disorders, mood disorders, and encephalitis.
  • Some embodiments provide a method for treating or preventing a neurological disease in a subject, comprising: i) providing a sample isolated from a subject; ii) determining the presence or absence of specific autoantibodies in said sample, iii) When the autoantibody is present in the sample, a subject is subjected to at least one of the following procedures selected from the group consisting of 1) to 6): 1) Immunoglobulin therapy, 2) steroid therapy, 3) administration of immunosuppressants; 4) administration of plasma products; 5) Plasma exchange, or 6) Administration of a specific polypeptide, a specific polypeptide fragment having binding activity with a specific autoantibody, or a polypeptide containing an epitope recognized by a specific autoantibody.
  • Immunoglobulin therapy is a treatment in which IgG with Fc activity is administered intravenously, intramuscularly, or subcutaneously, and is used to treat autoimmune diseases (see, for example, Nature Reviews Immunology vol. 13, pp. 176-189 (2013)). Depending on the disease, high-dose immunoglobulin therapy is performed by administering large amounts of the drug.
  • the administered preparation contains polyvalent IgG (immunoglobulin G) extracted from the plasma of more than 1,000 blood donors, and the effect of IVIG lasts for several weeks.
  • Steroid therapy is a treatment used to suppress the body's immune system by administering steroids, which are corticosteroids made by the adrenal glands (located at the top of both kidneys).
  • steroids which are corticosteroids made by the adrenal glands (located at the top of both kidneys).
  • Prednisolone for example, may be used in steroid therapy.
  • Immunosuppressants are drugs used to suppress excessive and abnormal immune responses in the body.
  • Immunosuppressants that can be used include cyclosporine, mizoribine, cyclophosphamide, azathioprine, tacrolimus, and mycophenolate mofetil.
  • Plasma preparations are preparations that use plasma, a liquid that is obtained by centrifuging blood to remove red blood cells, white blood cells, platelets, and other cellular components. Furthermore, products that separate and extract proteins contained in plasma, such as albumin, immunoglobulins, and blood coagulation factors, are also called plasma fraction preparations.
  • Plasma exchange is a treatment in which blood is separated into blood cell and plasma components using a plasma separator, the plasma containing disease-causing substances such as autoantibodies is discarded, and an equal amount of healthy plasma (fresh frozen plasma) is added to replace it.
  • Double filtration plasma exchange (DFPP) is also used, in which after blood cells and plasma are separated using a plasma separation membrane, the plasma is passed through a secondary separation membrane to further remove only substances of a specific size.
  • the specific polypeptide may be selected from the group consisting of an NCAM1 polypeptide, an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and a TRPA1 polypeptide
  • the specific autoantibody may be selected from the group consisting of an anti-NCAM1 autoantibody, an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and an anti-TRPA1 autoantibody.
  • some embodiments provide a method for treating or preventing a neurological disease in a subject, comprising: i) providing a sample isolated from a subject; ii) determining the presence or absence of an autoantibody in the sample, wherein the autoantibody is an anti-NCAM1 antibody; iii) A method for performing at least one of the following steps 1) to 6) on a subject when the autoantibody is present in the sample: 1) Immunoglobulin therapy, 2) steroid therapy, 3) administration of immunosuppressants; 4) administration of plasma products; 5) Plasma exchange, or 6) Administration of an NCAM1 polypeptide, an NCAM1 polypeptide fragment having binding activity with an anti-NCAM1 autoantibody, or a polypeptide containing an epitope recognized by an anti-NCAM1 autoantibody.
  • some embodiments provide a method for treating or preventing a neurological disease in a subject, comprising: i) providing a sample isolated from a subject; ii) determining the presence or absence of autoantibodies in the sample, wherein the autoantibodies are selected from the group consisting of anti-NRXN1 ⁇ autoantibodies, anti-NRG1 autoantibodies, anti-NLGN2 autoantibodies, anti-NLGN3 autoantibodies, anti-Ephrin B1 autoantibodies, and anti-TRPA1 autoantibodies; iii) When the autoantibody is present in the sample, a subject is subjected to at least one of the following procedures selected from the group consisting of 1) to 6): 1) Immunoglobulin therapy, 2) steroid therapy, 3) administration of immunosuppressants; 4) administration of plasma products; 5) Plasma exchange, or 6) Administration of an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN
  • the method for treating or preventing a cranial nerve disease according to the present disclosure further comprises a step of determining the presence or absence of an additional autoantibody in the sample, wherein the additional autoantibody is at least one autoantibody selected from the group consisting of an anti-NMDA receptor antibody, an anti-GABA A R ⁇ 1 antibody, an anti-NCAM1 autoantibody, an anti-NRXN1 ⁇ antibody, an anti-NRG1 antibody, an anti-NLGN2 antibody, an anti-NLGN3 antibody, an anti-Ephrin B1 antibody, and an anti-TRPA1 antibody, and when the autoantibody is present in the sample,
  • the subject may be administered an antigen polypeptide corresponding to the autoantibody whose presence has been confirmed, an antigen polypeptide fragment having binding activity with the autoantibody, or a polypeptide containing an epitope recognized by the autoantibody.
  • the neurological disease to which the above-mentioned method for treating or preventing a neurological disease is applied may be selected from the group consisting of schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder, and encephalitis.
  • Some embodiments provide a pharmaceutical composition for use in treating or preventing a neurological disease in a subject in whom the presence of a specific autoantibody has been confirmed in blood, plasma, serum, or cerebrospinal fluid, comprising: Immunoglobulin preparations, Steroid preparations, Immunosuppressants,
  • the present invention also relates to a plasma preparation, or a pharmaceutical composition comprising a specific polypeptide, a specific polypeptide fragment having binding activity with a specific autoantibody, or a polypeptide containing an epitope recognized by a specific autoantibody.
  • Some embodiments relate to a pharmaceutical for use in treating or preventing a neurological disease in a subject in which the presence of a specific autoantibody has been confirmed in blood, plasma, serum, or cerebrospinal fluid, Immunoglobulin preparations, Steroid preparations, Immunosuppressants,
  • the present invention also relates to the use of plasma preparations, or specific polypeptides, specific polypeptide fragments having binding activity with specific autoantibodies, or polypeptides containing an epitope recognized by a specific autoantibody.
  • the specific polypeptide may be selected from the group consisting of an NCAM1 polypeptide, an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and a TRPA1 polypeptide
  • the specific autoantibody may be selected from the group consisting of an anti-NCAM1 autoantibody, an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 autoantibody, an anti-NLGN3 autoantibody, an anti-Ephrin B1 autoantibody, and an anti-TRPA1 autoantibody.
  • some embodiments provide a pharmaceutical composition for use in treating or preventing a cranial nerve disease in a subject in whom the presence of an anti-NCAM1 autoantibody has been confirmed in the blood, plasma, serum, or cerebrospinal fluid, comprising: Immunoglobulin preparations, Steroid preparations, Immunosuppressants,
  • the present invention relates to a plasma preparation, or a pharmaceutical composition comprising an NCAM1 polypeptide, an NCAM1 polypeptide fragment having binding activity with an anti-NCAM1 autoantibody, or a polypeptide containing an epitope recognized by an anti-NCAM1 autoantibody.
  • the present invention relates to a pharmaceutical composition for use in treating or preventing a cranial nerve disease in a subject in whom the presence of anti-NRXN1 ⁇ autoantibody, anti-NRG1 autoantibody, anti-NLGN2 autoantibody, anti-NLGN3 autoantibody, anti-Ephrin B1 autoantibody, and/or anti-TRPA1 autoantibody has been confirmed in blood, plasma, serum, or cerebrospinal fluid, comprising: Immunoglobulin preparations, Steroid preparations, Immunosuppressants,
  • the present invention relates to a plasma preparation, or a pharmaceutical composition comprising a fragment of an NRXN1 ⁇ polypeptide, an NRG1 polypeptide, an NLGN2 polypeptide, an NLGN3 polypeptide, an Ephrin B1 polypeptide, and/or a TRPA1 polypeptide having binding activity with an anti-NRXN1 ⁇ autoantibody, an anti-NRG1 autoantibody, an anti-NLGN2 auto
  • the neurological disease to which the pharmaceutical composition is applied may be selected from the group consisting of schizophrenia, pain disorder, encephalopathy, epilepsy, psychotic disorder, mood disorder, and encephalitis, but is not limited thereto.
  • the pharmaceutical composition according to the present disclosure may take any form, such as a tablet, powder, liquid, or semisolid, but is preferably a liquid.
  • the pharmaceutical composition according to the present disclosure may be prepared by blending various main ingredients with a base.
  • the pharmaceutical composition according to the present disclosure may contain pharma- ceutical acceptable excipients, additives, buffers, salts for adjusting isotonicity, antioxidants, preservatives, drug stabilizers, and the like.
  • excipients include, but are not limited to, water, purified water, alcohol, glycerin, lactose, starch, dextrin, sucrose, precipitated silica, honey, rice starch, and tragacanth.
  • the pharmaceutical composition according to the present disclosure may also contain other active ingredients.
  • the amount of each ingredient to be blended may be appropriately determined within a medicament-acceptable range.
  • the dosage of the composition may also be appropriately determined depending on the type of drug used and the subject to which it is administered.
  • the active ingredient may be 0.01 to 15% by weight, for example, 0.1 to 5% by weight.
  • the route of administration can also be appropriately determined depending on the type of drug used and the subject to which it is administered.
  • the method of administration of the pharmaceutical composition according to the present disclosure is not particularly limited, but suitable examples include intravascular administration (preferably intravenous administration), intrathecal administration, intraperitoneal administration, intraintestinal administration, subcutaneous administration, intradermal administration, intramuscular administration, and eye drops, with intravenous administration being a more suitable example.
  • the dosage can be determined appropriately depending on the type of drug used and the recipient.
  • the route of administration can also be determined appropriately depending on the type of drug used and the recipient.
  • Preferred routes of administration include subcutaneous injection of liquid, intravenous injection, intrathecal injection, eye drops, solid preparations, and oral administration of liquid preparations.
  • Example 1 Identification of anti-NCAM1 autoantibodies in patients with schizophrenia Serum samples were obtained from 201 healthy controls (125 men, 76 women, age 22-90 years, median 48 years) and 223 patients with schizophrenia (112 men, 111 women, age 16-84 years, median 52 years). Schizophrenia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5). There were no significant differences between groups with regard to age. All samples were tested by ELISA and cell-based assays. ELISA analysis detected anti-NCAM1 autoantibody positivity in 15 patients with schizophrenia. Autoantibody positivity was defined as >2 standard deviations from the mean absorbance (Fig. 1A).
  • ELISA for anti-NCAM1 autoantibodies was performed as follows. First, polystyrene microtiter plates were coated with 100 mL of NCAM1 recombinant protein (2 mg/mL) dissolved in TBS buffer and incubated overnight at 4°C. The plates were washed three times with TBS, and TBS containing 1% BSA (100 mL/well) was added to block non-specific binding, and incubated at 24°C for 1 h. Then, 100 mL of each dilution of serum and CSF samples (1:50 for serum and 1:1 for CSF in TBS containing 1% BSA) was added and incubated at 24°C for 1 h.
  • anti-human IgG alkaline phosphatase (1:50000; purchased from Sigma-Aldrich) was incubated in TBS containing 0.1% Tween 20 for 1 h at room temperature. After washing with TBS, 1 mg/mL p-nitrophenyl phosphate in substrate buffer was added to each well and absorbance was read at 405 nm using a microplate reader.
  • Cell-based assays were performed as follows: HeLa cells and primary cortical neurons were fixed in 2% paraformaldehyde (prepared in phosphate buffer) for 30 min at room temperature, treated with 0.1% Triton X-100 in PBS for 10 min, blocked with 10% FBS or 1% BSA in PBS for 30 min at room temperature, and incubated with serum or primary antibody diluted in blocking buffer.
  • sera with autoantibody titers ⁇ 1:30 were defined as positive for autoantibodies.
  • Previous studies have shown that titers of NMDA receptor and GABA receptor autoantibodies are usually higher than 1:30.
  • diluting serum has the advantage of preventing nonspecific staining.
  • NCAM1 is highly expressed in the nervous system. Western blot analysis was performed to confirm the expression of NCAM1 in mouse brain, and indeed, it was expressed at a much higher level than in peripheral organs.
  • NCAM1 is a synaptic cell adhesion molecule with a transmembrane domain. The extracellular domain of NCAM1 is cleaved by ADAM10 and ADAM17, and a small amount of its soluble form is found in serum. Since changes in soluble NCAM1 have been reported in schizophrenia patients, the inventors examined whether autoantibodies against NCAM1 affect soluble NCAM1 in serum. ELISA was performed to analyze soluble NCAM1 in serum, and it was found that soluble NCAM1 was significantly reduced in schizophrenia patients (Figure 1D).
  • Example 2 The main epitope recognized by anti-NCAM1 antibodies in schizophrenia is located within the Ig1 domain.
  • Fig. 2A The extracellular region of NCAM1 consists of five N-terminal immunoglobulin domains (Ig1-Ig5) and two fibronectin type III domains (FN3).
  • Sera from 12 schizophrenia patients reacted with the truncated forms ⁇ Ig2 and ⁇ Ig2-5, which lack the Ig2 and Ig2-5 domains, respectively, but not with the truncated forms ⁇ Ig1 and ⁇ Ig1-5, which lack the Ig1 and Ig1-5 domains, respectively (Fig. 2B, 2C).
  • Fig. 2D Western blotting
  • Polysialylated NCAM1 (PSA-NCAM) is abundant in the developing nervous system and is associated with cell migration and axonal elongation. Polysialylation occurs on the Ig5 domain of NCAM1. Therefore, it was hypothesized that anti-NCAM1 autoantibodies also detect PSA-NCAM.
  • Western blot analysis using the cerebral cortex of postnatal day 0 mice revealed that anti-NCAM1 autoantibodies detect both NCAM1 and PSA-NCAM. There are approximately 500 molecules that contain Ig domains. Therefore, we analyzed whether anti-NCAM1 autoantibodies cross-react with other molecules that contain Ig domains, such as NCAM2, L1CAM, and TAG1. It was found that the anti-NCAM1 autoantibodies of 12 patients identified by cell-based assay did not react with any of these molecules. These results suggest that anti-NCAM1 autoantibodies react with NCAM1-specific sequences.
  • Example 3 Anti-NCAM1 autoantibodies inhibit NCAM1-NCAM1 and NCAM1-GDNF interactions
  • NCAM1 forms synapses by homophilic binding via immunoglobulin domains including the Ig1 domain. Furthermore, GDNF promotes spine development by binding to NCAM1. Therefore, it was hypothesized that anti-NCAM1 autoantibodies inhibit NCAM1-NCAM1 and NCAM1-GDNF interactions. Pull-down assays showed that IgG purified from schizophrenia patient 1 inhibited NCAM1-NCAM1 and NCAM1-GDNF interactions, whereas IgG purified from a healthy control did not ( Figures 3A and 3B). Pull-down assays also showed that IgG purified from schizophrenia patients 2 and 3 inhibited NCAM1-NCAM1 and NCAM1-GDNF interactions.
  • Example 4 Anti-NCAM1 autoantibodies from schizophrenia patients inhibit the NCAM1-Fyn-FAK-MEK1-ERK1 pathway in miceIf the anti-NCAM1 antibodies found in schizophrenia patients inhibit the NCAM1-GCAM1 and NCAM1-GDNF interactions, it was assumed that they would also cause abnormal molecular signaling, abnormal formation of spines and synapses, and schizophrenia-related behavior in mice.
  • IgG was purified from a schizophrenia patient (patient 1) and an age- and sex-matched healthy individual, and injected into the CSF of mice (8 weeks old). Molecular signaling, spine and synapse formation, and behavior of 9-week-old mice were then analyzed (Figure 4A).
  • Example 5 Anti-NCAM1 autoantibodies from schizophrenia patients reduce the number of spines and synapses in the frontal cortex of mice Anti-NCAM1 autoantibodies inhibited phosphorylation of FAK, ERK1, and MEK1, disrupting pre- and post-synaptic trans-homophilic NCAM1 interactions, a process that maintains synapses, suggesting that they lead to changes in spines and synapses.
  • AAV1-EGFP adeno-associated virus 1
  • AAV1-SYN-EGFP adeno-associated virus 1
  • Example 6 Anti-NCAM1 autoantibodies from schizophrenia patients induce schizophrenia-related behaviors in mice To verify whether anti-NCAM1 autoantibodies induce schizophrenia symptoms, we performed behavioral analysis of autoantibody-treated mice. Administration of purified IgG from schizophrenia patient 1 impaired cognitive function in the Y-maze test (Fig. 4G). Furthermore, mice administered IgG from schizophrenia patients exhibited a deficit in prepulse inhibition, an established endophenotype of schizophrenia (Fig. 4H). Mice administered IgG from healthy controls had normal prepulse inhibition. Mice administered IgG from schizophrenia patient 1 showed no abnormalities in locomotor activity, anxiety behavior, or social interaction, but showed abnormalities in the open field test, elevated plus maze test, and three-chamber test, respectively.
  • Example 7 Adsorption and removal of anti-NCAM1 antibody improved molecular, spinal cord, and behavioral changes
  • anti-NCAM1 antibodies inhibit phosphorylation, reduce the number of spines and synapses, and induce schizophrenia-related behaviors in IgG purified from schizophrenia patient 1
  • Adsorption and removal of anti-NCAM1 antibodies by glutathione S-transferase (GST) pull-down were confirmed by cell-based assays and immunohistochemistry. Phosphorylation, spines and synapses, and behaviors were improved after the adsorption experiment ( Figures 4B–4H).
  • Example 8 Anti-NCAM1 autoantibodies derived from schizophrenia patients were found to induce schizophrenia-related behaviors and synaptic changes in mice. To confirm that the results of schizophrenia patient 1 could be observed in other patients with positive anti-NCAM1 autoantibodies, we performed two-photon and behavioral analyses using purified IgG from schizophrenia patients 2 and 3 (Fig. 5A). IgG from these patients also reduced spine and synapse numbers in the frontal cortex and induced cognitive impairment and deficits in prepulse inhibition (Fig. 5B–5E).
  • Example 9 Identification of anti-NRXN1 ⁇ autoantibodies in patients with schizophrenia. Serum samples were collected from 362 healthy control subjects (181 men, 181 women, age 22-90 years, median 49 years) and 387 patients with schizophrenia (195 men, 192 women, age 16-84 years, median 51 years). Schizophrenia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders (DSM5). There were no significant differences between the groups with regard to age. All samples were tested by enzyme-linked immunosorbent assay (ELISA) and cell-based assay.
  • ELISA enzyme-linked immunosorbent assay
  • Anti-NRXN1 ⁇ autoantibodies were also detected in the cerebrospinal fluid (CSF) of anti-NRXN1 ⁇ autoantibody-positive schizophrenic patients (Fig. 6B). The protein concentrations and white blood cell counts in the CSF of these patients were normal.
  • NRXN1 ⁇ truncated forms of NRXN1 ⁇ (Fig. 6D).
  • the extracellular domain of NRXN1 ⁇ is composed of six laminin, neurexin, and sex hormone binding protein (LNS) domains.
  • LNS sex hormone binding protein
  • Example 10 Anti-NRXN1 ⁇ autoantibodies inhibit NRXN1 ⁇ -NLGN1 and NRXN1 ⁇ -NLGN2 interactions NRXN1 ⁇ is highly expressed in the nervous system. Western blot analysis was performed to confirm the expression of NRXN1 ⁇ in mouse brains, and it was found that NRXN1 ⁇ was indeed expressed at a much higher level than in peripheral organs.
  • NRXN1 ⁇ is a presynaptic cell adhesion molecule that interacts with NLGN (postsynaptic cell adhesion molecule) via the LNS6 domain to form synapses.
  • NRXN1 ⁇ functions as a platform and hub for synaptic molecular interactions and signals.
  • Example 11 Decreased mEPSC frequency by anti-NRXN1 ⁇ autoantibodies NRXN1 ⁇ knockout mice had reduced miniature excitatory postsynaptic current (mEPSC) frequency. If anti-NRXN1 ⁇ autoantibodies found in schizophrenia patients inhibit NRXN1 ⁇ -NLGN1 and NRXN1 ⁇ -NLGN2 interactions, we speculated that the electrophysiological properties of synapses would be altered in mice. To test this, we performed electrophysiological analysis of mEPSCs in the frontal cortex. The results showed that the frequency of mEPSCs was significantly reduced in mice treated with anti-NRXN1 ⁇ antibodies ( Figures 8A, 8B). However, the amplitude of mEPSCs was unchanged ( Figures 8A, 8C). These data are consistent with previous findings in knockout mice and confirm that anti-NRXN1 ⁇ autoantibodies alter electrophysiological synaptic properties.
  • mEPSC miniature excitatory postsynaptic current
  • Example 12 Decreased synapses and spines by anti-NRXN1 ⁇ autoantibodies The interaction between NRXN1 ⁇ and NLGN is necessary for synapse formation and maintenance. These previous findings indicate that anti-NRXN1 ⁇ autoantibodies may induce changes in spines and synapses.
  • Example 14 Anti-NRXN1 ⁇ autoantibodies induce schizophrenia-related behaviors and synaptic changes in miceTo confirm that the results from schizophrenia patient 1 could be observed in other patients who tested positive for anti-NRXN1 ⁇ autoantibodies, we performed two-photon and behavioral analyses using purified IgG from schizophrenia patients 2 and 3 (Figure 10A). IgG from these patients also reduced the number of spines and synapses in the frontal cortex of mice, as well as induced cognitive impairment, deficits in prepulse inhibition, and impaired social novelty preference ( Figures 10B-10E).
  • Example 15 Other autoantibodies identified in schizophrenia patients
  • the present inventors also identified autoantibodies against NLGN2, NRG1, NLGN3, and Ephrin B1 as biomarkers for schizophrenia.
  • Figure 11 shows the results of cell-based assays to determine the presence of autoantibodies against NRXN1 ⁇ , NLGN2, NRG1, NLGN3, and Ephrin B1 in samples obtained from schizophrenia patients.
  • Anti-NRXN1 ⁇ autoantibodies were positive in 7 of 380 schizophrenia patients and none of 250 healthy controls.
  • Anti-NLGN2 autoantibodies were positive in 7 of 120 schizophrenia patients and 2 of 201 healthy controls.
  • Anti-NRG1 autoantibodies were positive in 9 of 223 schizophrenia patients and 2 of 201 healthy controls.
  • Anti-NLGN3 autoantibodies were positive in 2 of 122 schizophrenia patients and none of 250 healthy controls.
  • Anti-Ephrin B1 autoantibodies were positive in 2 of 122 schizophrenia patients and none of 250 healthy controls. These autoantibodies can also be used in the testing method, treatment, or prevention method of the present disclosure.
  • Example 16 Other autoantibodies identified in patients with pain disorders
  • the present inventors have also identified autoantibodies against TRPA1 as a biomarker for pain disorders.
  • the present inventors have collected and analyzed the serum of more than 280 patients with pain disorders.
  • Figure 12 shows the results of a cell-based assay to determine the presence of autoantibodies against TRPA1 in samples obtained from patients with pain disorders. The results show that this autoantibody can also be utilized in the diagnostic, testing, therapeutic or preventive methods of the present disclosure.
  • Example 17 Cases where autoantibody-induced encephalopathy was identified from cases misdiagnosed as schizophrenia, and patients positive for novel autoantibodies were treated with plasma exchange. Retrospectively, we verified whether the novel autoantibody of the present invention was the cause of encephalitis that had already been treated for which the cause was unknown. Among nine cases of encephalitis with unknown causes over the past 10 years, one case positive for anti-NRG1 autoantibody and one case positive for anti-NLGN2 autoantibody were found. The patient who tested positive for anti-NLGN2 autoantibodies had been admitted to a psychiatric hospital with schizophrenia after acute psychosis, and was diagnosed as resistant to antipsychotic drugs.
  • the testing method disclosed herein enables highly accurate identification of neurological diseases such as schizophrenia.
  • the testing method disclosed herein is useful as a means for determining whether or not a neurological disease such as schizophrenia has developed. It is also useful as a means for understanding the possibility of developing a neurological disease in the future.
  • This disclosure also provides methods for preventing and treating neurological diseases, as well as pharmaceutical compositions used therein. It is expected that early detection using the testing method disclosed herein and early treatment using the treatment method disclosed herein will prevent neurological diseases from becoming difficult to treat, becoming severe (progression of the disease), or recurring.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Pain & Pain Management (AREA)
  • Developmental Biology & Embryology (AREA)
  • Toxicology (AREA)

Abstract

本発明の課題は、統合失調症などの脳神経疾患の検査方法、または脳神経疾患感受性の検査方法、ならびに検査に用いるための試薬およびキットを提供すること。また、統合失調症などの脳神経疾患の治療もしくは予防方法を提供することにある。 本明細書において、i)対象から単離された試料を準備する工程、ii)前記試料中における特定の自己抗体の存在の有無を判定する工程を含む、対象における脳神経疾患または脳神経疾患感受性の検査方法が開示される。前記試料中に前記自己抗体が存在することが、前記対象が脳神経疾患または脳神経疾患感受性を有することの指標となる。また、特定の自己抗体を患者から取り除くことによる脳神経疾患の治療、予防方法も開示される。

Description

脳神経疾患の検査、治療もしくは予防のための方法
 本開示は、脳神経疾患または脳神経疾患感受性の検査に有用なマーカーならびにそれを用いた検査方法およびキットに関する。より具体的には、本開示は、特定の自己抗体をマーカーとして用いる検査方法およびキットに関する。また、本開示は、脳神経疾患の治療もしくは予防のための方法にも関する。
 統合失調症は、思春期・青年期に発症する慢性・進行性の精神症状を呈する脳神経疾患であり、陽性症状(幻覚や妄想、まとまりに欠ける会話や行動など)、陰性症状(感情の平板化、思考の貧困、意欲の低下など)及び認知障害(注意障害、作業記憶の低下、実行機能障害など)を主な症状とする。統合失調症患者は症状的にも遺伝的にも不均一であり、様々な病態メカニズムが背景にあると考えられている(非特許文献1)。しかし、これらのヘテロ接合性のサブグループに対するバイオマーカーはなく、患者や症状における治療抵抗性の基盤となる病態メカニズムの解明は十分ではない。統合失調症の遺伝子解析により、シナプス、クロマチン修飾、免疫系に関連するリスク遺伝子が明らかになっている。特に、主要組織適合性複合体(MHC)領域の変異は統合失調症のリスクが最も高いことが分かっている。実際、統合失調症と自己免疫の間には疫学的な関係がある。 しかし、統合失調症における自己免疫反応の役割は依然として不明な点が多く残されている。
 自己抗体は、自己免疫の主要な要因である。実際、シナプス膜の分子に特異的な自己抗体が脳炎患者で見つかっている。これらの分子に特異的な自己抗体の中には、脳炎患者において脳神経疾患の症状を引き起こすものもある。自己抗体を介した脳炎の中で最も広く研究されているものに、統合失調症関連症状を伴う抗N-methyl-d-aspartate(NMDA)受容体抗体脳炎がある(非特許文献2)。また、抗GABAARα1受容体抗体脳炎は、脳神経疾患の症状を引き起こす(非特許文献3)。これらの自己抗体も統合失調症患者に存在するが、統合失調症の症状に関与しているかどうかは不明である。
 現状、統合失調症などの脳神経疾患の病態生理には依然として不明な部分が多く、生化学的な検査を基にした診断法には改善が必要とされている。
Meyer-Lindenberg, A. (2010). From maps to mechanisms through neuroimaging of schizophrenia. Nature 468, 194-202. Pollak, T.A., Lennox, B.R., Muller, S., Benros, M.E., Pruss, H., Tebartz van Elst, L., Klein, H., Steiner, J., Frodl, T., Bogerts, B., et al. (2020). Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet. Psychiatry 7, 93-108. Pettingill, P., Kramer, H.B., Coebergh, J.A., Pettingill, R., Maxwell, S., Nibber, A., Malaspina, A., Jacob, A., Irani, S.R., Buckley, C., et al. (2015). Antibodies to GABAA receptor a1 and g2 subunits: clinical and serologic characterization. Neurology 84, 1233-1241.
 本開示は、統合失調症などの脳神経疾患の検査方法、または脳神経疾患感受性の検査方法、ならびに検査に用いるための試薬およびキットを提供することを目的の1つとする。また、本開示は、統合失調症などの脳神経疾患の治療もしくは予防方法を提供することも目的の1つとする。
 本発明者らは、統合失調症などの脳神経疾患に特異的なバイオマーカーを見出すべく、対象から単離された生体試料の分析を行った。統合失調症の病態に関連する自己抗体を探索する場合、その標的抗原は、(1)神経系に発現する膜分子(通常、自己抗体は生体の細胞内には侵入しない)、(2)統合失調症に関与し、自己抗体によってその機能が影響を受けるか、少なくともシナプスの機能に関わる分子でなければならないといった前提条件がいくつかある。この観点から、本発明者らはセルベースアッセイとELISAを用いて、統合失調症の病態生理に寄与すると考えられる新規の自己抗体を複数同定することに成功した。
 上記のように、本発明者らは、患者由来の試料に特異的な自己抗体を複数同定した。より具体的には、本発明者らは、統合失調症患者由来のNCAM1等に対する自己抗体が、マウスにおいて統合失調症関連行動やスパインおよびシナプスの変化を引き起こすことを明らかにした。これらの自己抗体は、統合失調症などの脳神経疾患の症状を引き起こしうるため、抗NCAM1自己抗体などの自己抗体が陽性である患者における治療標的とみなされうる。
 例えば、NCAM1は、グリア細胞由来神経栄養因子(GDNF)とも結合し、シナプスの形成に寄与している。さらに、NCAM1のノックアウトマウスやドミナントネガティブ型のトランスジェニックマウスは、統合失調症関連行動の変化を示す。本発明者らは、統合失調症患者において抗NCAM1自己抗体を同定した。統合失調症患者から精製した免疫グロブリンG(IgG)をマウスに投与した疾患モデルを用いて、抗NCAM1自己抗体が前頭葉皮質のスパインおよびシナプス形成を阻害し、統合失調症関連行動を誘発することを明らかにした。
 本開示は、このような知見に基づくものであり、例示的には、以下の態様が含まれる。
[態様1] 対象における脳神経疾患または脳神経疾患感受性の検査方法であって、
 i)対象から単離された試料を準備する工程、
 ii)前記試料中における自己抗体の存在の有無を判定する工程
を含み、
 前記自己抗体が抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および抗TRPA1抗体からなる群から選択される少なくとも1つの自己抗体であり、
 前記試料中に前記自己抗体が存在することが、前記対象が脳神経疾患または脳神経疾患感受性を有することの指標となる、方法。
[態様2] 脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、態様1に記載の方法。
[態様3] in vitroで行われる、態様1に記載の方法。
[態様4] 試料が血液、血漿、血清または髄液である、態様1に記載の方法。
[態様5] 自己抗体の存在の有無を判定する工程がELISA、CLEIA(化学発光酵素免疫測定法)、CLIA(化学発光免疫測定法)、ラテックス凝集法、放射免疫測定法、免疫ブロット法、免疫沈降法、イムノクロマト法またはセルベースアッセイ(CBA)を行うことを含む、態様1記載の方法。
[態様6] ELISA、CLEIA(化学発光酵素免疫測定法)、CLIA(化学発光免疫測定法)、ラテックス凝集法、放射免疫測定法、免疫ブロット法、免疫沈降法、イムノクロマト法またはセルベースアッセイ(CBA)の測定値が、所定の値または対照の測定値を超える場合に自己抗体が存在すると判定される、態様5に記載の方法。
[態様7] 前記試料中における追加の自己抗体の存在の有無を判定する工程をさらに含み、前記追加の自己抗体が抗NMDA受容体抗体、抗GABAARα1抗体、および抗NCAM1抗体からなる群から選択される少なくとも1つの自己抗体である、態様1に記載の方法。
[態様8] 対象における脳神経疾患または脳神経疾患感受性の検査に用いるためのキットであって、以下の1)~3)の少なくともいずれか1つを含む、キット。
 1)NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および/もしくは抗TRPA1抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片;または抗NRXN1抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および/もしくは抗TRPA1抗体が認識するエピトープを含むポリペプチド、
 2)前記1)記載のポリペプチドをコードする核酸、または
 3)前記1)記載のポリペプチドを発現する細胞
[態様9] 脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、態様8に記載のキット。
[態様10] 前記ポリペプチドが基質上に固定されている、態様8に記載のキット。
[態様11]前記基質が試験片、ビーズ、マルチウェルプレート又はマイクロチップである、態様10に記載のキット。
[態様12] 前記ポリペプチドをコードする核酸を含む発現ベクターを含む、態様8に記載のキット。
[態様13] 抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体に結合する、検出のための抗体をさらに含む、態様8に記載のキット。
[態様14] 対象における脳神経疾患または脳神経疾患感受性の評価のための抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体のバイオマーカーとしての使用。
[態様15] 脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、態様14に記載の使用。
[態様16] 対象における脳神経疾患の治療または予防方法であって、対象における抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体を除去、低減、隔離、不活性化または分解する工程を含む、方法。
[態様17] 脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、態様16に記載の方法。
[態様18] 血漿交換を行う工程を含む、態様16に記載の方法。
[態様19] 脳神経疾患または脳神経疾患感受性を有する対象から単離された血液、血漿、血清また髄液の処理方法であって、当該血液、血漿、血清また髄液を、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドからなる群から選択される少なくとも1つを固定化した基質に接触させ、当該血液、血漿、血清また髄液に含まれる抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体を除去または低減する方法。
[態様20] NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するその断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドを含む、脳神経疾患の治療または予防に用いるための医薬組成物。
[態様21] 脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、態様20に記載の医薬組成物。
[態様22] 対象における脳神経疾患の治療または予防方法であって、
 i)対象から単離された試料を準備する工程、
 ii)前記試料中における自己抗体の存在の有無を判定する工程
を含み、前記自己抗体が抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および抗TRPA1抗体からなる群から選択される少なくとも1つの自己抗体であり、
iii)前記試料中に前記自己抗体が存在する場合に、対象に、以下の1)から6)からなる群から選択される少なくとも1つを行う方法:
1)免疫グロブリン療法、
2)ステロイド療法、
3)免疫抑制剤の投与、
4)血漿製剤の投与、
5)血漿交換 または、
6)NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するその断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドの投与。
[態様23] 前記試料中における追加の自己抗体の存在の有無を判定する工程をさらに含み、前記追加の自己抗体が抗NMDA受容体抗体、抗GABAARα1抗体、および抗NCAM1抗体からなる群から選択される少なくとも1つの自己抗体であり、当該試料中に前記自己抗体が存在する場合に、
 対象に、iii)に合わせて、存在が確認された自己抗体に対応する抗原ポリペプチド、当該自己抗体との結合活性を有する抗原ポリペプチド断片、もしくは当該自己抗体が認識するエピトープを含むポリペプチドの投与を行う、態様22に記載の方法。
[態様24] 脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、態様22または23に記載の方法。
[態様25] 血液、血漿、血清または髄液に抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体の存在が確認された対象に対し、脳神経疾患の治療または予防に用いるための医薬組成物であって、
 免疫グロブリン製剤、
 ステロイド製剤
 免疫抑制剤
 血漿製剤、または
 NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するその断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドを含む、医薬組成物。
[態様26] 脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、態様25に記載の医薬組成物。
(A)抗NCAM1自己抗体の同定に関して、 ELISA法による血清中の抗NCAM1自己抗体の力価を示している。**p<0.01(n=201、対照健常者;n=223、統合失調症患者;マン・ホイットニーのU検定)。(B) 市販の抗NCAM1抗体、統合失調症患者1の血清とCSF、健常対照者の血清を用いた免疫細胞化学の結果を示している。NCAM1およびEGFPはプラスミドから発現させた。共焦点画像は、EGFP陽性のHeLa細胞の膜に結合した抗体を示している。同様の結果が、抗NCAM1抗体陽性の統合失調症患者全員について得られた。血清中の抗体は、(1)核内のEGFPと反応せず、(2)EGFPのみを発現する空のプラスミドでトランスフェクトした細胞とは反応しなかったため、EGFPとは反応しなかった。スケールバー:10μm、Ab:抗体、Sz:統合失調症。(C) セルベースアッセイによる血清中の抗NCAM1自己抗体の力価を示している。**p<0.01 (n=201, 健常対照者; n=223, 統合失調症患者; マン・ホイットニーのU検定)。 (A) NCAM1欠失コンストラクトの構造を示している。(B) 抗NCAM1自己抗体陽性の統合失調症患者1からの血清を用いた免疫細胞化学の結果を示している。NCAM1欠失コンストラクトとEGFPはプラスミドから発現させた。抗NCAM1抗体陽性のすべての統合失調症患者から同様の結果が得られた。スケールバー :10μm。(C) 市販の抗NCAM1抗体を用いたNCAM1ΔIg1およびNCAM1ΔIg1~5の発現を免疫細胞化学的に確認した結果を示している。スケールバー:10μm。 (D) HeLa細胞にトランスフェクトしたNCAM1の欠失コンストラクトのウエスタンブロット解析の結果を示している。抗NCAM1自己抗体によって認識される主なエピトープはIg1ドメインにあることが判明した。 (A) 抗NCAM1自己抗体陽性の統合失調症患者から精製したIgGがNCAM1-NCAM1相互作用を阻害することを確認するプルダウンアッセイの結果を示している。Hisタグ付きタンパク質はNi-NTA-アガロースで、GSTタグ付きタンパク質はグルタチオンセファロースでプルダウンした。(B) 抗NCAM1自己抗体陽性の統合失調症患者から精製したIgGがNCAM1-GDNF相互作用を阻害することを示すプルダウンアッセイの結果を示している。Hisタグ付きタンパク質はNi-NTA-アガロースで、GSTタグ付きタンパク質はグルタチオンセファロースでプルダウンした。 (A) 統合失調症患者由来の抗NCAM1自己抗体のマウスへの注入に関する IgG注入の実験プロトコルを示している。AAV1-SYN1-EGFPおよびAAV2-VAMP2-mCherryを6週齢のマウスの前頭葉皮質に注入し、精製IgGを8週齢のマウスのCSFに注入した。分子生物学的、組織学的、二光子顕微鏡的、および行動学的解析は、9週齢のマウスで実施した。IHC:免疫組織化学、IP:免疫沈降、WB:ウエスタンブロット。(B)マウスの前頭葉皮質の組織の免疫沈降分析の結果を示している。統合失調症患者から取得した抗NCAM1自己抗体によってNCAM1-Fyn相互作用が阻害されることが明らかになった。CT:コンピュータ断層撮影。(C) 統合失調症患者1より精製したIgGが前頭葉皮質のFAK, MEK1, ERK1のリン酸化に及ぼす影響を示している。精製IgGから抗NCAM1抗体を除去すると、pFAK、pMEK、およびpERK1の減少が反転した。 (A) 統合失調症患者由来の抗NCAM1自己抗体に関するIgG注入の実験プロトコルを示している。AAV1- SYN1-EGFP と AAV2-VAMP2-mCherry を6週齢のマウスの前頭葉に注射し、精製 IgG を8週齢のマウスのCSFに注射した。9週齢のマウスで二光子顕微鏡観察および行動解析を行った。(B) AAV1-SYN1-EGFPと対照健常者、統合失調症患者2および患者3から精製したIgGを注入したマウスの前頭葉皮質第1層における樹状突起スパインの2光子顕微鏡による解析結果を示している。**p<0.01(1群あたりn=5 のマウス;50 樹状突起/マウス、500スパイン/マウス;テューキーの HSD 検定)。データは平均値±SEMで表した。(C) AAV2-VAMP2- mCherry、AAV1-SYN1-EGFP、および対照健常者、統合失調症患者2および患者3から精製したIgGを注入したマウスの前頭葉皮質の第一層におけるスパインと合流した軸索端の二光子顕微鏡による分析結果を示している。**p<0.01(1群あたりn=5 のマウス;50 樹状突起/マウス、500スパイン/マウス;テューキーの HSD 検定)。データは平均値±SEMで表した。スケールバー:5μm。(D) 対照健常者、統合失調症患者2および患者3から精製したIgGを注射した後のY迷路試験における変化率を示している。**p<0.01(1群あたりn=9 のマウス;テューキーの HSD 検定)。データは平均値±SEMで表した。(E) 対照健常者、統合失調症患者2および患者3から精製したIgGを注射したマウスのプレパルス抑制率を示している。*p<0.05 および **p<0.01(1群あたりn=9 のマウス;テューキーの HSD 検定)。データは平均値±SEMで表した。 (A)抗NRXN1α自己抗体の同定に関して、ELISAによる血清中の抗NRXN1α自己抗体の力価を示している。**p<0.01(N=362;対照健常者、N=387;統合失調症患者、マン・ホイットニーのU検定)。(B)市販の抗NRXN1α抗体、統合失調症患者1の血清とCSF、対照健常者の血清を用いた免疫細胞化学的染色を示している。バー:10μm。(C)セルベースアッセイによる血清中の抗NRXN1α自己抗体の力価を示している。**p<0.01 (対照健常者:N=362、統合失調症患者:N=387、マン・ホイットニーのU検定)。(D)NRXN1α欠失コンストラクトの模式図である。(E)抗NRXN1α自己抗体陽性の統合失調症患者1からの血清を用いた免疫細胞化学分析の結果を示している。NRXN1α欠失コンストラクトとEGFPはプラスミドから発現させた。抗NRXN1α抗体陽性のすべての統合失調症患者から同様の結果が得られた。バー:10μm。(F)市販の抗NRXN1α抗体を用いたNRXN1αΔLNS1-6の発現の免疫細胞化学的確認について示している。バー:10μm。 (A)抗NRXN1自己抗体陽性の統合失調症患者1から精製したIgGがNRXN1-NLGN1相互作用を阻害することを確認するプルダウンアッセイの結果を示している。Hisタグ付きタンパク質はNi-NTA-アガロースで、Mycタグ付きタンパク質は抗Mycタグビーズでプルダウンした。(B)抗NRXN1自己抗体陽性の統合失調症患者1から精製したIgGがNRXN1-NLGN2相互作用を阻害することを確認するためのプルダウンアッセイの結果を示している。Hisタグ付きタンパク質はNi-NTA-アガロースで、Mycタグ付きタンパク質は抗Mycタグビーズでプルダウンした。(C)IgG注入と免疫沈降の実験プロトコルを示している。精製IgGを8週齢のマウスのCSFに注入し、9週齢の時点で免疫沈降解析を行った。(D)マウスの前頭葉組織の免疫沈降解析の結果を示している。NRXN1-NLGN1およびNRXN1-NLGN2相互作用が、統合失調症患者に存在する抗NRXN1自己抗体により阻害されることが判明した。 (A)前頭葉皮質錐体ニューロンで記録された代表的なmEPSCトレースを示している。(B)各群の事象間間隔の累積分布を示している。記録時間は対照健常者と統合失調症患者1でそれぞれ7.5~15分(合計34,523個の事象間が検出された)、9.5~10分(合計27640個の事象間が検出された)であった。1群につき3匹のマウスから9個の細胞を解析した。**p<0.01;コルモゴロフ・スミルノフ検定および マン・ホイットニー検定。(C)群ごとの振幅の累積分布を示している。対照健常群:34532振幅、患者1:27649振幅。1群3匹のマウスから9個の細胞を分析した。**p<0.01;コルモゴロフ・スミルノフ検定および マン・ホイットニー検定。(D)IgG注入の実験プロトコルを示している。AAV1-SYN1-EGFPおよびAAV2-VAMP2-mCherryを6週齢のマウスの前頭葉皮質に注射し、精製IgGを8週齢のマウスのCSFに注射した。二光子顕微鏡による解析は、9週齢のマウスで行った。(E)AAV1-SYN1-EGFPと統合失調症患者1から精製したIgGまたは対照健常者から精製したIgGを注入したマウスの前頭葉皮質第1層における樹状突起スパインの2光子顕微鏡画像を示している。精製IgGから抗NRXN1抗体を除去すると、スパイン数の減少が反転した。右のグラフは、スパイン数の定量分析である。**p<0.01(1群あたりn=5 のマウス;50 樹状突起/マウス、500スパイン/マウス;テューキーの HSD 検定)。データは平均値±s.e.m.で表した。バー:5μm。(F)AAV2-VAMP2-mCherry、AAV1-SYN1-EGFP、統合失調症患者1から精製したIgG、または対照健常者のIgGを注入したマウスの前頭皮質の第1層における軸索端末と樹状突起スパインの接触を示す2光子顕微鏡画像である。右のグラフは、スパインと合流した軸索端の定量分析である。**p<0.01(1群あたりn=5 のマウス;50 樹状突起/マウス、500スパイン/マウス;テューキーの HSD 検定)。データは平均値±s.e.m.で表した(バー:5μm)。 (A)統合失調症患者の抗NRXN1自己抗体に関するIgG注入の実験プロトコルを示している。精製IgGを8週齢のマウスのCSFに注射し、9週齢で行動解析を行った。(B)統合失調症患者および対照健常者群から精製したIgGを注入した後のY迷路テストにおける変化率を示している。精製IgGから抗NRXN1抗体を除去すると、変化率の減少が逆転した。**p< 0.01(1群あたりN=10 のマウス、テューキーの HSD 検定)。データは平均値±s.e.m.として表した。(C)統合失調症患者1または対照健常者から精製したIgGを注射したマウスのプレパルス抑制率を示している。精製IgGから抗NRXN1α抗体を除去すると、前パルス抑制の欠損が回復した。*p<0.05、** p<0.01(1群あたりN=10 のマウス、テューキーの HSD 検定)。データは平均値±s.e.m.として表した。(D)3室試験における社交性と社会的新奇性嗜好性の結果を示している。新たなマウスの入ったカップに近づくのにかかった時間(絶対値(左)および割合(右))と、両方のカップに近づくのにかかった時間とを調査した。精製IgGから抗NRXN1α抗体を除去すると、社会的新規性選好の低下が回復した。**p<0.01(1群あたりN=10 ~14のマウス、テューキーの HSD 検定)。(E)新規物体認識テストの結果を示している。群間に有意差はなかった(1群あたりN=10のマウス;テューキーの HSD 検定)。 (A)統合失調症患者の自己抗体に関するIgG注入の実験プロトコルを示している。AAV1-SYN1-EGFPおよびAAV2-VAMP2-mCherryを6週齢のマウスの前頭葉皮質に注射し、精製IgGを8週齢のマウスのCSFに注射した。9週齢のマウスで二光子顕微鏡検査と行動解析を行った。(B)AAV1-SYN1-EGFPと対照健常者、統合失調症患者2、統合失調症患者3から精製したIgGを注入したマウスの前頭葉皮質の第一層の樹状突起スパインの二光子顕微鏡解析の結果を示している。**p<0.01(1群あたりn=5 のマウス; 50 樹状突起/マウス、500スパイン/マウス;テューキーの HSD 検定)。データは平均値±s.e.m.として表した。(C)AAV2-VAMP2-mCherry、AAV1-SYN1-EGFP、および対照健常者、統合失調症患者2、統合失調症患者3から精製したIgGを注入したマウスの前頭葉皮質の第1層でスパインと合流した軸索端の二光子顕微鏡による解析の結果を示している。**p<0.01(1群あたりn=5 のマウス; 50 樹状突起/マウス、500スパイン/マウス;テューキーの HSD 検定)データは平均値±s.e.m.で表した。バー: 5μm。(D)対照健常者、統合失調症患者2および統合失調症患者3から精製したIgGを注射した後のY字迷路試験における変化率を示している。**p<0.01(1群あたりn=9のマウス、テューキーの HSD 検定)。データは平均値±s.e.m.として表した。(E)対照健常者、統合失調症患者2、統合失調症患者3から精製したIgGを注射したマウスのプレパルス抑制率を示している。*p<0.05、** p<0.01(1群あたりn=9のマウス、テューキーの HSD 検定)。データは平均値±s.e.m.として表した。(F)対照健常群、統合失調症患者2および統合失調症患者3から精製したIgGを注射したマウスの3室試験における社交性と社会的新奇性嗜好の結果を示している。**p<0.01(1群あたりN=10~14マウス;テューキーの HSD 検定)。(G)新奇物体認識テストの結果を示している。群間に有意差はなかった(1群あたりN=10のマウス;テューキーの HSD 検定)。 統合失調症の患者から得られた試料中におけるNRXN1α、NLGN2、NRG1、NLGN3、およびEphrin B1に対する自己抗体の存在をセルベースアッセイで調べた結果を示している。抗NRXN1α自己抗体は、統合失調症の患者380人中7人で陽性であり、対照の健常者では250人中、陽性は無かった。抗NLGN2自己抗体は、統合失調症の患者120人中7人で陽性であり、対照の健常者では201人中2人が陽性であった。抗NRG1自己抗体は、統合失調症の患者223人中9人で陽性であり、対照の健常者では201人中2人が陽性であった。抗NLGN3自己抗体は、統合失調症の患者122人中2人で陽性であり、対照の健常者では250人中、陽性は無かった。抗Ephrin B1自己抗体は、統合失調症の患者122人中2人で陽性であり、対照の健常者では250人中、陽性は無かった。 疼痛性障害の患者から得られた試料中におけるTRPA1に対する自己抗体の存在をセルベースアッセイで調べた結果を示している。結果は、TRPA1を発現させた細胞に疼痛性障害の患者由来の血清が反応することを示している。 統合失調症と誤診されていた症例の患者において抗NLGN2自己抗体が陽性であったことを示す写真である。 統合失調症と誤診されていた抗NLGN2自己抗体陽性の自己免疫介在性脳症の症例の患者に対して血漿交換を行った前後における患者の脳波を示す図である。
1.脳神経疾患または脳神経疾患感受性の検査方法
 本開示の第1の局面は、対象における脳神経疾患または脳神経疾患感受性の検査方法に関する。本方法は、例えば、i)対象から単離された試料を準備する工程、およびii)前記試料中における特定の自己抗体の存在の有無を判定する工程を含むことができ、試料中に特定の自己抗体が存在することが、対象が統合失調症または統合失調症感受性を有することの指標として用いられうる。本開示に係る検査方法は、統合失調症などの脳神経疾患を罹患ないし発症しているか否かを判定するための手段として、あるいは統合失調症などの脳神経疾患を将来発症する可能性を判定するための手段として有用であり、統合失調症などの脳神経疾患を診断するために有用な情報を与えることができる。ここで、脳神経疾患は、精神症状を呈する脳神経疾患でありうる。また、脳神経疾患は、自己抗体が引き起こす脳神経疾患でありうる。
 いくつかの実施形態において、対象はヒト、特に脳神経疾患の患者もしくは脳神経疾患の疑われる患者、または脳神経疾患感受性を有する可能性の疑われる対象である。例えば、医師の問診などによって統合失調症などの脳神経疾患であると診断された患者に対して本開示に係る方法を適用した場合、特定の自己抗体の存在の有無という客観的な指標に基づいて診断の当否を判定することができ、従来の診断を補助あるいは裏付ける情報として活用できる。このような情報は、より適切な治療方針の決定に有益であり、治療効果の向上や患者のQOLの向上を促すことができる。また、罹患状態のモニターに本開示に係る方法を利用し、難治化、重篤化、再発等の防止を図ることもできる。家族背景などから統合失調症などの脳神経疾患の罹患リスクが高いと推定される対象(高リスク対象)も好適な対象となる。このような対象に対して統合失調症などの脳神経疾患の症状が現れる前に本開示に係る方法を適用することは、発症の阻止または遅延あるいは早期の治療介入を可能にする。統合失調症などの脳神経疾患の罹患リスクが高い者、つまり、疾患感受性を有する者を特定する目的にも本開示に係る方法は有用である。このような特定は、例えば、予防的措置や生活習慣の改善等による発症可能性(罹患可能性)の低下を可能にする。自覚症状がない者など、従来の診断では脳神経疾患であるか否かの判定が不能または困難であった者も本開示に係る方法の好適な対象となる。なお、健康診断の一項目として本検査方法を実施することにしてもよい。
 脳神経疾患は、統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎を含むが、これらに限定はされない。本開示の方法に係るいくつかの実施形態においては、対象から得られた試料中に特定の自己抗体が存在することが、対象が脳神経疾患を有することの指標となり、例えば、症状の類似した他の疾患との鑑別診断を行う上での判断材料として用いられうる。特定の実施形態においては、脳神経疾患は統合失調症である。「統合失調症」とは、脳機能の統合障害を生じる疾患であり、幻覚妄想、陰性症状、認知機能低下を呈する精神疾患である。現在使われている精神疾患の診断基準には、世界保健機関(WHO)の「ICD-10」(『国際疾病分類』第10版)とアメリカ精神医学会の「DSM-5」(「精神疾患の診断・統計マニュアル」第5版)の2つがある。特定の理論に縛られることを意図するものではないが、本発明者らが同定した自己抗体は、当該抗体が認識するタンパク質に結合することで、患者の中枢神経系に障害を与え、統合失調症をはじめ、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎などの脳神経疾患を引き起こすと考えられる。自己抗体は一般的に脳症および脳炎の原因となること、神経機能の障害につながれば、幅広い精神症状が呈されうることから、当業者であれば、本明細書の実施例に記載の統合失調症の患者で得られた結果に基づき、対象となる疾患が統合失調症に限定されず、幅広い精神疾患が対象になること、すなわち、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎といった他の脳神経疾患にも適用可能であると合理的に理解するであろう。
 疼痛性障害は、苦痛や社会的、職業的、その他重要な機能領域における障害を引き起こすほど重度の疼痛が、1カ所以上の解剖学的部位に生じるものをいう。現状の診断は、疼痛とその重症度、持続期間、および障害の程度を適切に説明する身体疾患を除外した上で、病歴に基づいてなされている。
 脳症とは、脳波異常、意識障害、精神症状などの脳炎にもみられる脳神経症状を示すにもかかわらず、脳実質内にあきらかな炎症が認められない状態のことである。
 てんかんは、発作の再発を特徴とする非伝染性の神経疾患群であり、脳内の細胞に発生する異常な神経活動(「てんかん放電」)によって、てんかん発作をきたす神経疾患、あるいは症状を指す。てんかん発作は、脳の異常な電気活動により、ほとんど検出できない短い時間から激しく震える長い時間までさまざまでありうる。
 精神病性障害は、何が現実で何が現実でないかを判断するのが困難な、心の異常な状態をいう。症状には、特に妄想や幻覚が含まれ、その他の症状には、支離滅裂な話し方や与えられた状況に対して不適切な行動などがある。また、睡眠障害、社会的引きこもり、意欲の欠如が生じたり、日常活動を行うことが困難になったりすることもある。
 気分障害は、感情障害としても知られ、ある程度の期間にわたって持続する気分(感情)の変調により、苦痛を感じたり、日常生活に著しい支障をきたしたりする状態のことをいう。気分障害の分類は、世界保健機関(WHO)の「ICD-10」(『国際疾病分類』第10版)とアメリカ精神医学会の「DSM-5」(「精神疾患の診断・統計マニュアル」第5版)に基づいてなされる。
 脳炎は、脳の炎症性疾患の総称であり、急性脳炎は脳実質に生じた炎症によって、発熱、頭痛、意識障害、麻痺などの急性症状を呈した状態を指す。合併症として、けいれん、幻覚、会話障害、記憶障害、聴覚障害などが起こることがある。
 本明細書の文脈において、脳神経疾患感受性とは、脳神経疾患に罹りやすい傾向、あるいは脳神経疾患を発症するリスクが高い状態を指す。本開示の方法に係るいくつかの実施形態においては、対象から得られた試料中に特定の自己抗体が存在することが、対象が脳神経疾患感受性を有することの指標となり、例えば、検査の時点において脳神経疾患を発症していなくとも、将来的に発症するリスクが高いと判断されうる。
 本明細書の文脈において、検査方法とは、対象から得られた試料中の成分をin vitroで分析し、何らかの測定結果を得ることをいう。得られた測定結果は、つまり、試料中に自己抗体が存在することは、対象が脳神経疾患または脳神経疾患感受性を有することの指標として用いられうるが、本検査方法は、医療従事者による診断行為を含むものではないと解されるべきである。本開示に係る検査方法は、言い換えれば、対象における脳神経疾患または脳神経疾患感受性のin vitro試験方法とも言える。また、本開示に係る方法は、対象における脳神経疾患または脳神経疾患感受性の可能性の指標を得る方法、または対象における脳神経疾患の有無またはその発症しやすさを試験する方法とも言える。
 本開示の文脈において、対象から単離された試料を準備する工程は、ヒト対象から採取された後の試料を用意する工程を意味し、明示的に規定されない限り、外科的な組織の採取や採血などのヒト対象に対する侵襲的な処置の工程を含むものではないと解されるべきである。ただし、本開示に係る方法は、いくつかの実施形態においては、対象から生体試料を採取する工程を含むと明示的に規定されていてもよい。
 いくつかの実施形態において、試料は、対象に由来する生体試料、例えば、血液、血漿、血清または髄液でありうるが、これらに限定はされない。対象から得られた試料は、特定の自己抗体の存在の有無を分析する前に、前処理または保存(凍結、解凍を含む)されてもよい。
 いくつかの実施形態において、試料中における特定の自己抗体の存在の有無を判定する工程は、例えば、ELISA、CLEIA(化学発光酵素免疫測定法)、CLIA(化学発光免疫測定法)、ラテックス凝集法、放射免疫測定法、免疫ブロット法、免疫沈降法、イムノクロマト法またはセルベースアッセイ(CBA)を行うこと含むことができるが、これらに限定はされない。なお、試料中における自己抗体の存在量を厳密に定量することは必須でなく、脳神経疾患の発症可能性が判定可能となる程度に自己抗体のレベルが検出できればよい。
 いくつかの実施形態においては、試料中における特定の自己抗体の測定値、例えば、ELISA、CLEIA(化学発光酵素免疫測定法)、CLIA(化学発光免疫測定法)、ラテックス凝集法、放射免疫測定法、免疫ブロット法、免疫沈降法、イムノクロマト法またはセルベースアッセイ(CBA)の測定値が、所定の値または対照の測定値を超える場合に自己抗体が存在すると判定される。所定の値または対照の測定値は、例えば、健常人に由来する試料または試験対象の自己抗体を含まないことが既知の試料の測定値をもとに決定することができるが、これらに限定はされない。例えば、自己抗体陽性の定義は、吸光度などの測定値の平均値から2標準偏差を上回る場合とすることができる。なお、ここでの判定は、その判定基準から明らかな通り、医師または検査技師など専門知識を有する者の判断によらずとも自動的または機械的に行うことが可能である。
 ELISA法は検出感度が高いこと、特異性が高いこと、定量性に優れること、操作が簡便であること、多検体の同時処理に適することなど、多くの利点を有する。ELISA法を利用する場合の具体的な操作法の一例を以下に示す。
 まず、特定の自己抗体が結合するポリペプチドを固相基質上に固定化する。具体的には例えばマイクロプレートの表面を自己抗体結合性ポリペプチドでコーティングする。このように固相化したポリペプチドに対して試料を接触させる。この操作の結果、固相化した抗原を認識する自己抗体が試料中に存在していれば免疫複合体が形成される。洗浄操作によって非特異的結合成分を除去した後、酵素を結合させた二次抗体を添加することで免疫複合体を標識し、次いで酵素の基質を反応させて発色させ、発色量を指標として免疫複合体を検出する。なお、ELISA法を実施する際には市販のキットを用いてもよい。
 いくつかの実施形態においては、自己抗体は、抗NCAM1(Neural Cell Adhesion Molecule 1)抗体である。また、いくつかの実施形態においては、自己抗体は、抗NRXN1α(Neurexin-1-alpha)抗体、抗NRG1(Neureglin-1)抗体、抗NLGN2(Neuroligin-2)抗体、抗NLGN3(Neuroligin-3)抗体、抗Ephrin B1抗体、および抗TRPA1抗体からなる群から選択される少なくとも1つの自己抗体である。よって、いくつかの実施形態においては、自己抗体は、抗NCAM1、抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗Ephrin B1抗体、および抗TRPA1抗体からなる群から選択される少なくとも1つの自己抗体である。なお、これらの自己抗体は、上記の各タンパク質の天然に存在するサブタイプ、アイソフォームまたはバリアントを認識するものでありうる。また、当業者であれば、上記の各タンパク質の適切なサブタイプ、アイソフォームまたはバリアントの遺伝子配列およびアミノ酸配列を容易に入手することができ、公知の技術を用いて、細胞で発現させることができる。発現されたタンパク質はさらに単離、精製されてもよい。当業者による適切なサブタイプ、アイソフォームまたはバリアントの選択は、例えば、発現部位や発現量を考慮して行われうる。また、本開示に係る診断、検査、治療、予防において使用される上記の各タンパク質のサブタイプ、アイソフォームもしくはバリアント、またはその断片、誘導体もしくは変異体は、当業者であれば適宜選択することができるであろう。
 NCAM1は、CD56としても知られている免疫グロブリンスーパーファミリーに属する細胞接着分子であり、主にヒトニューロン、グリア細胞、骨格筋細胞、NK細胞およびT細胞のサブセットで発現している。NCAM1には3つのサブタイプがあり、140/180 kDの分子は膜貫通型、120 kDの分子はGPIアンカー型である。各アイソフォームは選択的スプライシングによって生成される。
 NRXN1αは、脳において高レベルで発現し、シナプス前末端に存在する1回膜貫通型タンパク質であり、シナプス後部の膜タンパク質であるニューロリギン(Neuroligin)とシナプス間隙で結合し、シナプス構築や神経伝達物質の放出機構などに関わっている。多くのスプライス変異体が存在し、グルタミン酸作動性、GABA作動性神経シナプスの構築の選別に影響すると考えられている。
 NRG1(Neureglin-1)は、EGFファミリーに属するタンパク質であり、構造的に関連したNRG2、NRG3およびNRG4とファミリーを形成している。NRG1は、選択的スプライシングによって多数のアイソフォームが生成され、さまざまな機能を発揮することができ、神経系や心臓の正常な発達にとって必須とされている。
 NLGN2(Neuroligin-2)は、ヒトが有する5つのニューロリギン遺伝子(NLGN1、NLGN2、NLGN3、NLGN4、NLGN4Y)のうちの1つである。NLGN2は、神経細胞表面タンパク質のファミリーのメンバーをコードしているが、このファミリーのメンバーは、β-ニューレキシン(NRXN)のスプライス部位特異的リガンドとして働き、中枢神経系のシナプスの形成やリモデリングに関与していると考えられる。
 NLGN3(Neuroligin-3)は、ヒトが有する5つのニューロリギン遺伝子(NLGN1、NLGN2、NLGN3、NLGN4、NLGN4Y)のうちの1つである。ニューロリギンはシナプス後部に存在する1回膜貫通型タンパク質であり、シナプス前末端に存在するニューレキシン(NRXN)の内因性リガンドであり、シナプスの成熟や機能を調整している。NLGN3は脳に豊富に存在し、シナプス形成のピークと一致する生後発育期にNLGN3タンパク質レベルが増加する。
 Ephrin B1は、哺乳類に存在する8種類のエフリン(Ephrin A1~A5およびEphrin B1~B3)のうちの1つである。B型エフリンは分子量が30~45 kDaであり、細胞外領域、膜貫通領域、そしてC末端にPDZ結合配列を有する細胞内領域によって構成されるI型膜タンパク質である。Ephrin B1は、ヒトではEFNB1遺伝子にコードされる。コードされたタンパク質は、Eph関連受容体チロシンキナーゼのリガンドである。細胞接着に関与し、神経系の発生や維持に機能している可能性がある。
 TRPA1は、多くのヒトおよび動物細胞の細胞膜に存在するイオンチャネルである。このイオンチャネルは、ヒトや他の哺乳類の痛み、寒さ、かゆみのセンサーとして、また、他の保護反応(涙、気道抵抗、咳)を生じさせる環境刺激物のセンサーとして知られている。
 いくつかの実施形態においては、複数の自己抗体が同時に、または連続的に測定されてもよい。よって、いくつかの実施形態においては、抗NCAM1抗体、抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗Ephrin B1抗体、および抗TRPA1抗体からなる群から任意の組み合わせで選択される2以上の自己抗体、例えば、2、3、4、5、6、または7個の自己抗体が測定されてもよい。いくつかの実施形態においては、分析対象の自己抗体はさらに、抗NMDA受容体抗体および抗GABAARα1抗体を含んでいてもよい。複数の抗体を同時に、または連続的に試験することで、原因の異なる脳神経疾患について幅広く検査を行うことができる。
2.脳神経疾患または脳神経疾患感受性の検査に用いるためのキット
 本開示の第2の局面は、対象における脳神経疾患または脳神経疾患感受性の検査に用いるためのキットに関する。ここで、脳神経疾患は、精神症状を呈する脳神経疾患でありうる。また、脳神経疾患は、自己抗体が引き起こす脳神経疾患でありうる。いくつかの実施形態において、本キットは、例えば、以下の1)~3)の少なくともいずれか1つを含むことができる:
 1)特定の自己抗体の抗原ポリペプチド、特定の自己抗体との結合活性を有する抗原ポリペプチドの断片、もしくは特定の自己抗体が認識するエピトープを含むポリペプチド、
 2)前記1)記載のポリペプチドをコードする核酸、または
 3)前記1)記載のポリペプチドを発現する細胞。
 いくつかの実施形態において、脳神経疾患は、統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択されうるが、これらに限定はされない。
 より具体的ないくつかの実施形態において、本キットは、例えば、以下の1)~3)の少なくともいずれか1つを含むことができる:
 1)NCAM1ポリペプチド、抗NCAM1自己抗体との結合活性を有するNCAM1ポリペプチド断片、もしくは抗NCAM1自己抗体が認識するエピトープを含むポリペプチド、
 2)前記1)記載のポリペプチドをコードする核酸、または
 3)前記1)記載のポリペプチドを発現する細胞。
 また、いくつかの実施形態において、本キットは、例えば、以下の1)~3)の少なくともいずれか1つを含むことができる:
 1)NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチド、
 2)前記1)記載のポリペプチドをコードする核酸、または
 3)前記1)記載のポリペプチドを発現する細胞。
 いくつかの実施形態において、自己抗体の抗原ポリペプチドは、野生型の全長ポリペプチドでありうる。また、いくつかの実施形態において、自己抗体の抗原ポリペプチドは、野生型の配列に比較して何らかの変異もしくはバリエーション、例えば、精製または固定を容易にするためのタグ配列の追加や、その他の置換、欠失または追加を含むものであってもよい。いくつかの実施形態において、変異もしくはバリエーションは、天然に存在するものでも、または天然には存在しないものであってもよい。いくつかの実施形態において、自己抗体の抗原ポリペプチドは、目的の用途に有用なものであれば、ヒト以外の生物に由来するものであってもよい。いくつかの実施形態では、抗原ポリペプチドは、例えば、GST、βガラクトシダーゼ、マルトース結合タンパク質、またはヒスチジン(His)タグ等との融合タンパク質であってもよい。
 また、いくつかの実施形態において、本開示に係るキットには、自己抗体との結合活性を有する抗原ポリペプチドの断片が含まれていてもよい。自己抗体との結合活性を有する抗原ポリペプチドの断片には、自己抗体が認識するエピトープが含まれている。よって、いくつかの実施形態において、本開示に係るキットには、自己抗体が認識するエピトープを含むポリペプチドが含まれていてもよい。例えば、抗NCAM1自己抗体が認識するエピトープは、NCAM1のIg1ドメイン中に存在していることを本発明者らは見出している。また、抗NRXN1α自己抗体が認識するエピトープが、NRXN1αのLNS6ドメイン内に存在することも本発明者らは見出している。
 いくつかの実施形態では、上記のポリペプチドは、基質上に固定されていてもよい。基質は例えば、試験片、ビーズ、マルチウェルプレートまたはマイクロチップでありうるが、これらに限定はされない。いくつかの実施形態では、基質には複数の種類の自己抗体結合性ポリペプチドが固定されていてもよい。基質は例えば、ポリスチレン樹脂、ポリカーボネート樹脂、シリコン樹脂、ナイロン樹脂等の樹脂、またはガラス等の水に不溶性の物質からなる固相基質を用いることができる。基質への抗原ポリペプチドの担持は、例えば、物理吸着または化学吸着によって行うことができる。
 いくつかの実施形態において、本開示に係るキットには、上記の自己抗体に結合するポリペプチドをコードする核酸が含まれていてもよい。例えば、上記のポリペプチドをコードする核酸は、上記のポリペプチドを細胞内またはin vitroで生成するために使用されうる。いくつかの実施形態において、本開示に係るキットには、上記ポリペプチドをコードする核酸を含む発現ベクターが含まれていてもよい。発現ベクターは、例えば、細胞にトランスフェクトされて使用されうる。
 いくつかの実施形態において、本開示に係るキットには、上記の自己抗体に結合するポリペプチドを発現する細胞が含まれていてもよい。細胞には、原核細胞または真核細胞、例えば、ヒト細胞、非ヒト哺乳動物細胞、昆虫細胞、真菌細胞などが含まれうる。細胞は、ホリペプチドを分泌するものでも、細胞膜上に発現するものであってもよい。例えば、上記のポリペプチドを発現する細胞は、セルベースアッセイ(CBA)等に使用することができる。
 いくつかの実施形態において、本開示に係るキットには、自己抗体に結合する、検出のための抗体をさらに含まれていてもよい。そのような抗体には、例えば、ヒト抗体の定常領域を認識する抗体が含まれうる。検出のための抗体は、例えば、ペルオキシダーゼ、マイクロペルオキシダーゼ、ホースラディッシュペルオキシダーゼ(HRP)、アルカリホスファターゼ、β-D-ガラクトシダーゼ、グルコースオキシダーゼ、およびグルコース-6-リン酸脱水素酵素などの酵素、フルオレセインイソチオシアネート(FITC)、テトラメチルローダミンイソチオシアネート(TRITC)、およびユーロピウムなどの蛍光物質、ルミノール、イソルミノール、およびアクリジニウム誘導体などの化学発光物質、NADなどの補酵素、ビオチン、ならびに131Iおよび125Iなどの放射性物質で標識されていてもよい。
 本開示に係るキットには、通常、取り扱い説明書が添付される。検査方法を実施する際に使用するその他の試薬(緩衝液、ブロッキング用試薬、酵素の基質、発色試薬など)および/または装置ないし器具(容器、反応装置、吸光度計や蛍光リーダーなど)がキットに含められていてもよい。また、標準試料として、既知の濃度または量の抗体を含む容器がキットに含められていてもよい。
3.脳神経疾患または脳神経疾患感受性の評価のためのバイオマーカー
 本開示の第3の局面は、対象における脳神経疾患または脳神経疾患感受性の評価のための自己抗体のバイオマーカーとしての使用に関する。ここで、脳神経疾患は、精神症状を呈する脳神経疾患でありうる。また、脳神経疾患は、自己抗体が引き起こす脳神経疾患でありうる。本明細書の文脈において、バイオマーカーとは、疾患の有無、病状の変化や治療の効果の指標となる物質(生物指標化合物)を指す。なお、本開示に係るバイオマーカーのレベルを厳密に定量することは必須でなく、脳神経疾患の発症可能性が判定可能となる程度に各バイオマーカーのレベルが検出できればよい。例えば、試料中の各バイオマーカーのレベルが所定の基準値を超えるか否かが判別可能なように検出を行うことができる。バイオマーカーの検出には、本明細書に記載の手法または当業者に知られている任意の手法を用いることができる。
 いくつかの実施形態において、自己抗体は、抗NCAM1自己抗体である。また、いくつかの実施形態において、自己抗体は、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体からなる群から選択される少なくとも1つの自己抗体である。よって、いくつかの実施形態においては、抗NCAM1自己抗体、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体からなる群から選択される少なくとも1つの自己抗体が、脳神経疾患または脳神経疾患感受性の評価のためのバイオマーカーとして用いられうる。これらのバイオマーカーは、複数を組み合わせて、バイオマーカーセットとして用いられてもよい。本開示に係るバイオマーカーまたはバイオマーカーセットは、統合失調症などの脳神経疾患の有無または脳神経疾患感受性の検査において有用であり、現在の病態または将来の発症可能性を判定、評価するために用いられうる。いくつかの実施形態において、バイオマーカーが関連付けられる脳神経疾患は、統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎を含むが、これらに限定はされない。本開示に係るバイオマーカーは、統合失調症などの脳神経疾患のサブグループを区別する上で有用となりうる。
4.脳神経疾患の治療または予防方法
 本開示の第4の局面は、対象における脳神経疾患の治療または予防方法に関し、本方法は、例えば、対象における特定の自己抗体を除去、低減、隔離、不活性化または分解する工程を含むことができる。ここで、脳神経疾患は、精神症状を呈する脳神経疾患でありうる。また、脳神経疾患は、自己抗体が引き起こす脳神経疾患でありうる。
 いくつかの実施形態において、本開示に係る治療方法または予防方法が用いられる脳神経疾患は、統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択されうるが、これらに限定はされない。特定の理論に縛られることを意図するものではないが、本発明者らが同定した自己抗体は、当該抗体が認識するタンパク質に結合することで、患者の中枢神経系に障害を与え、統合失調症をはじめ、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎などの脳神経疾患を引き起こすと考えられ、当該抗体を除去、低減、隔離、不活性化または分解することは、脳神経疾患の改善または予防を導くと考えられる。実際、本明細書の実施例においては、本発明者らが同定した自己抗体を除去することで、脳神経疾患の症状が誘導されなくなることが明確に示されている。
 いくつかの実施形態において、本開示に係る脳神経疾患の治療または予防方法は、血漿交換を行う工程を含んでいてもよい。血漿交換を行うことにより、対象における脳神経疾患の原因となる自己抗体を除去または低減することができる。血漿交換や免疫グロブリン療法などの免疫学的介入は、自己抗体脳炎の治療に用いられており、本開示に係る脳神経疾患の治療または予防方法においても有効に用いられると考えられる。同様に、自己抗体に起因する疾患の治療に用いられるステロイド療法、免疫抑制剤の投与、血漿製剤の投与なども本開示に係る脳神経疾患の治療または予防方法においても有効に用いられると考えられる。
 いくつかの実施形態において、自己抗体は、抗NCAM1自己抗体でありうる。また、いくつかの実施形態において、自己抗体は、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体からなる群から選択される少なくとも1つの自己抗体でありうる。よって、いくつかの実施形態において、本開示に係る脳神経疾患の治療または予防方法は、対象における抗NCAM1自己抗体、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体からなる群から選択される少なくとも1つの自己抗体を除去、低減、隔離、不活性化または分解する工程を含むことができる。
 いくつかの実施形態は、脳神経疾患または脳神経疾患感受性を有する対象から単離された血液、血漿、血清また髄液の処理方法であって、当該血液、血漿、血清また髄液を、特定のポリペプチド、特定の自己抗体との結合活性を有する特定のポリペプチドの断片、もしくは、特定の自己抗体が認識するエピトープを含むポリペプチドからなる群から選択される少なくとも1つを固定化した基質に接触させ、当該血液、血漿、血清また髄液に含まれる特定の自己抗体を除去または低減する方法にも関する。いくつかの実施形態では、特定のポリペプチドは、NCAM1ポリペプチド、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、およびTRPA1ポリペプチドから成る群から選択され、また、特定の自己抗体は、抗NCAM1自己抗体、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体から成る群から選択されうる。
 よって、いくつかの実施形態は、脳神経疾患または脳神経疾患感受性を有する対象から単離された血液、血漿、血清また髄液の処理方法であって、当該血液、血漿、血清また髄液を、NCAM1ポリペプチド、抗NCAM1自己抗体との結合活性を有するNCAM1ポリペプチド断片、もしくは、抗NCAM1自己抗体が認識するエピトープを含むポリペプチドからなる群から選択される少なくとも1つを固定化した基質に接触させ、当該血液、血漿、血清また髄液に含まれる抗NCAM1自己抗体を除去または低減する方法にも関する。
 また、いくつかの実施形態は、脳神経疾患または脳神経疾患感受性を有する対象から単離された血液、血漿、血清また髄液の処理方法であって、当該血液、血漿、血清また髄液を、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片、もしくは、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドからなる群から選択される少なくとも1つを固定化した基質に接触させ、当該血液、血漿、血清また髄液に含まれる抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体を除去または低減する方法にも関する。
 いくつかの実施形態において、特定の自己抗体の隔離、不活性化または分解は、例えば、特定の自己抗体に結合する物質を自己抗体と相互作用させることにより行うことができる。例えば、特定の自己抗体の隔離は、特定の自己抗体に結合する物質と自己抗体との複合体を特定の臓器または組織に標的化することにより行うことができるが、これに限定はされない。また、例えば、特定の自己抗体の不活化は、特定の自己抗体に結合する物質と自己抗体との複合体を形成させて、自己抗体の抗原結合能を阻害することにより行うことができるが、これに限定はされない。さらに、例えば、特定の自己抗体の破壊は、特定の自己抗体に結合する物質と自己抗体との複合体を形成させて、複合体をタンパク質分解機構へと誘導することにより行うことができるが、これに限定はされない。
 いくつかの実施形態は、特定のポリペプチドもしくは特定の自己抗体との結合活性を有するその断片、もしくは特定の自己抗体が認識するエピトープを含むポリペプチドを含む、脳神経疾患の治療または予防に用いるための医薬組成物に関する。また、いくつかの実施形態は、脳神経疾患の治療または予防に用いるための医薬の製造における、特定のポリペプチドもしくは特定の自己抗体との結合活性を有するその断片、もしくは特定の自己抗体が認識するエピトープを含むポリペプチドの使用に関する。いくつかの実施形態では、特定のポリペプチドは、NCAM1ポリペプチド、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、およびTRPA1ポリペプチドから成る群から選択され、また、特定の自己抗体は、抗NCAM1自己抗体、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体から成る群から選択されうる。
 よって、いくつかの実施形態は、NCAM1ポリペプチドもしくは抗NCAM1自己抗体との結合活性を有するその断片、もしくは抗NCAM1自己抗体が認識するエピトープを含むポリペプチドを含む、脳神経疾患の治療または予防に用いるための医薬組成物にも関する。
 また、いくつかの実施形態は、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド、または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するその断片、または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドを含む、脳神経疾患の治療または予防に用いるための医薬組成物にも関する。
 いくつかの実施形態において、本開示に係る医薬組成物が用いられる脳神経疾患は、統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎を含むが、これらに限定はされない。
 いくつかの実施形態は、対象における脳神経疾患の治療または予防方法であって、
 i)対象から単離された試料を準備する工程、
 ii)前記試料中における特定の自己抗体の存在の有無を判定する工程
を含み、
 iii)前記試料中に前記自己抗体が存在する場合に、対象に、以下の1)から6)からなる群から選択される少なくとも1つを行う方法に関する:
 1)免疫グロブリン療法、
 2)ステロイド療法、
 3)免疫抑制剤の投与、
 4)血漿製剤の投与、
 5)血漿交換、または、
 6)特定のポリペプチド、特定の自己抗体との結合活性を有する特定のポリペプチド断片もしくは特定の自己抗体が認識するエピトープを含むポリペプチドの投与。
 免疫グロブリン療法とは、Fc活性をもつIgGを静脈、筋肉あるいは皮下に投与する治療法であり、自己免疫疾患の治療に用いられている(例えば、Nature Reviews Immunology vol.13, pp.176-189 (2013)を参照)。疾患によっては、大量投与による免疫グロブリン大量療法が行われる。投与される製剤には1000人を超える献血者の血漿から抽出された多価IgG(免疫グロブリンG)が含まれており、IVIGの効果は数週間続く。
 ステロイド療法は、体の免疫力を抑制するために用いられる治療法であり、副腎(両方の腎臓の上端にあります)から作られる副腎皮質ホルモンであるステロイドの投与により治療が行われる。ステロイド療法には、例えば、プレドニゾロンが用いられうる。
 免疫抑制剤は、体内で過剰に起こっている異常な免疫反応を抑えるために用いられる薬剤である。免疫抑制剤としては、シクロスポリン、ミゾリビン、シクロフォスファミド、アザチオプリン、タクロリムス、およびミコフェノール酸モフェチルなどが用いられうる。
 血漿製剤は、血液から赤血球,白血球,血小板,そのほかの細胞成分を遠心により取り除いた液体である血漿を製剤として用いるものである。さらに、血漿に含まれるアルブミン、免疫グロブリン、血液凝固因子等のタンパク質を分離し取り出したものは血漿分画製剤とも呼ばれる。
 血漿交換は、血液を血漿分離器で血球成分と血漿成分に分離した後に、自己抗体などの病因物質を含む血漿を廃棄して、それと同じ量の健常人の血漿(新鮮凍結血漿)を入れて置き換える治療法である。血漿分離膜で血球と血漿に分離した後に、その血漿を二次分離膜に通すことにより、さらに特別なサイズの物質だけを取り除くことができる二重ろ過血漿交換(DFPP)なども用いられている。
 いくつかの実施形態では、特定のポリペプチドは、NCAM1ポリペプチド、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、およびTRPA1ポリペプチドから成る群から選択され、また、特定の自己抗体は、抗NCAM1自己抗体、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体から成る群から選択されうる。
 よって、いくつかの実施形態は、対象における脳神経疾患の治療または予防方法であって、
 i)対象から単離された試料を準備する工程、
 ii)前記試料中における自己抗体の存在の有無を判定する工程
を含み、前記自己抗体が抗NCAM1抗体であり、
iii)前記試料中に前記自己抗体が存在する場合に、対象に、以下の1)から6)からなる群から選択される少なくとも1つを行う方法に関する。
1)免疫グロブリン療法、
2)ステロイド療法、
3)免疫抑制剤の投与、
4)血漿製剤の投与、
5)血漿交換、または、
6)NCAM1ポリペプチド、抗NCAM1自己抗体との結合活性を有するNCAM1ポリペプチド断片もしくは抗NCAM1自己抗体が認識するエピトープを含むポリペプチドの投与。
 また、いくつかの実施形態は、対象における脳神経疾患の治療または予防方法であって、
 i)対象から単離された試料を準備する工程、
 ii)前記試料中における自己抗体の存在の有無を判定する工程
を含み、前記自己抗体が、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体から成る群から選択され、
iii)前記試料中に前記自己抗体が存在する場合に、対象に、以下の1)から6)からなる群から選択される少なくとも1つを行う方法に関する:
1)免疫グロブリン療法、
2)ステロイド療法、
3)免疫抑制剤の投与、
4)血漿製剤の投与、
5)血漿交換、または、
6)NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片;または、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドの投与。
 いくつかの実施形態では、上述の本開示に係る脳神経疾患の治療または予防方法は、試料中における追加の自己抗体の存在の有無を判定する工程をさらに含み、前記追加の自己抗体が抗NMDA受容体抗体、抗GABAARα1抗体、抗NCAM1自己抗体、抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗Ephrin B1抗体、および抗TRPA1抗体からなる群から選択される少なくとも1つの自己抗体であり、当該試料中に前記自己抗体が存在する場合に、
 対象に、前記工程iii)に合わせて、存在が確認された自己抗体に対応する抗原ポリペプチド、当該自己抗体との結合活性を有する抗原ポリペプチド断片、もしくは当該自己抗体が認識するエピトープを含むポリペプチドの投与を行うものであってもよい。
 いくつかの実施形態において、上記の脳神経疾患の治療または予防方法が適用される脳神経疾患は、統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択されうる。
 いくつかの実施形態は、血液、血漿、血清または髄液に特定の自己抗体の存在が確認された対象に対し、脳神経疾患の治療または予防に用いるための医薬組成物であって、
 免疫グロブリン製剤、
 ステロイド製剤、
 免疫抑制剤、
 血漿製剤、または
 特定のポリペプチド、特定の自己抗体との結合活性を有する特定のポリペプチド断片、もしくは特定の自己抗体が認識するエピトープを含むポリペプチドを含む、医薬組成物にも関する。
 いくつかの実施形態は、血液、血漿、血清または髄液に特定の自己抗体の存在が確認された対象において脳神経疾患の治療または予防に用いるための医薬における、
 免疫グロブリン製剤、
 ステロイド製剤、
 免疫抑制剤、
 血漿製剤、または
 特定のポリペプチド、特定の自己抗体との結合活性を有する特定のポリペプチド断片、もしくは特定の自己抗体が認識するエピトープを含むポリペプチドの使用にも関する。
 いくつかの実施形態では、特定のポリペプチドは、NCAM1ポリペプチド、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、およびTRPA1ポリペプチドから成る群から選択され、また、特定の自己抗体は、抗NCAM1自己抗体、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および抗TRPA1自己抗体から成る群から選択されうる。
 よって、いくつかの実施形態は、血液、血漿、血清または髄液に抗NCAM1自己抗体の存在が確認された対象に対し、脳神経疾患の治療または予防に用いるための医薬組成物であって、
 免疫グロブリン製剤、
 ステロイド製剤、
 免疫抑制剤、
 血漿製剤、または
 NCAM1ポリペプチド、抗NCAM1自己抗体との結合活性を有するNCAM1ポリペプチド断片、もしくは抗NCAM1自己抗体が認識するエピトープを含むポリペプチドを含む、医薬組成物に関する。
 また、いくつかの実施形態は、血液、血漿、血清または髄液に抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体の存在が確認された対象に対し、脳神経疾患の治療または予防に用いるための医薬組成物であって、
 免疫グロブリン製剤、
 ステロイド製剤、
 免疫抑制剤、
 血漿製剤、または
 NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド、抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片、または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗Ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドを含む、医薬組成物に関する。
 いくつかの実施形態において、上記の医薬組成物が適用される脳神経疾患は、統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択されうるが、これらに限定はされない。
 本開示に係る本開示に係る医薬組成物は、錠剤、粉末、液体、半固体などの任意の形態をとることができるが、好ましくは液体である。本開示に係る医薬組成物は、基剤に各種の主剤を配合して調製されうる。本開示に係る医薬組成物は、上記の有効成分に加えて、薬学的に許容可能な賦形剤、添加剤、緩衝剤、等張調節のための塩類、抗酸化剤、保存剤、薬剤安定剤等を含みうる。賦形剤としては、例えば、水、精製水、アルコール、グリセリン、乳糖、デンプン、デキストリン、白糖、沈降シリカ、蜂蜜、コメデンプン、トラガントが挙げられるが、これらに限定はされない。また、本開示に係る医薬組成物には、他の活性成分が配合されていてもよい。各成分の配合量は、医薬として許容される範囲で適宜決定することができる。また、組成物の投与量は、使用する薬剤の種類、投与する対象に応じて、適宜決定することができる。例えば、有効成分は、0.01~15重量%、例えば、0.1~5重量%とすることもできる。
 投与経路についても、使用する薬剤の種類、投与する対象に応じて、適宜決定することができる。本開示に係る医薬組成物の投与方法としては特に制限されないが、血管内投与(好ましくは静脈内投与)、髄腔内投与、腹腔内投与、腸管内投与、皮下投与、皮内投与、筋肉内投与、点眼等を好適に例示することができ、中でも、静脈内投与をより好適に例示することができる。
 投与量は、使用する薬剤の種類、投与する対象に応じて、適宜決定することができる。投与経路についても、使用する薬剤の種類、投与する対象に応じて、適宜決定することができる。好ましい投与経路としては、液剤の皮下注射、静脈内注射、髄腔内注射、点眼、固形剤、液剤の経口投与を挙げることができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
例1.統合失調症患者における抗NCAM1自己抗体の同定 
 対照健常者201名(男性125名、女性76名、年齢22~90歳、中央値48歳)および統合失調症患者223名(男性112名、女性111名、年齢16~84歳、中央値52歳)から血清試料を入手した。患者の統合失調症はDSM-5(Diagnostic and Statistical Manual of Mental Disorders)に従って診断された。年齢に関して、群間に有意差はなかった。すべてのサンプルをELISA法とセルベースアッセイ法で検査した。ELISA分析では、統合失調症患者15人が抗NCAM1自己抗体陽性として検出された。自己抗体陽性の定義は吸光度の平均値から2標準偏差を上回る場合とした(図1A)。
 抗NCAM1自己抗体のELISAは、以下のようにして行った。まず、ポリスチレン製マイクロタイタープレートをTBSバッファーに溶解したNCAM1組み換えタンパク質100 mL(2 mg/mL)でコーティングし、4℃で一晩インキュベートした。プレートをTBSで3回洗浄し、非特異的な結合をブロックするために1%のBSAを含むTBS(100 mL/ウェル)を加え、24℃で1時間インキュベートした。その後、血清およびCSFサンプルの各希釈液100 mL(血清は1:50、CSFは1:1、1%のBSA含有TBS)を加え、24℃で1時間インキュベートした。0.1% Tween 20 含有 TBS で 3 回洗浄後、抗ヒト IgG アルカリホスファターゼ (1:50000;Sigma-Aldrich社より購入) を 0.1% Tween 20 含有 TBS で 1 時間室温でインキュベートした。TBSで洗浄した後、基質バッファー中1 mg/mLのp-ニトロフェニルホスフェートを各ウェルに添加し、マイクロプレートリーダーで405 nmの吸光度を読み取った。 
 セルベースアッセイは、以下のようにして行った。HeLa細胞および一次皮質神経細胞を2%パラホルムアルデヒド(リン酸バッファーで調製)中、室温で30分間固定し、PBS中の0.1% Triton X-100で10分間処理した後、10% FBSまたは1% BSA含有PBSにより室温で30分間ブロッキングし、ブロッキングバッファーで希釈した血清または一次抗体とインキュベートした。セルベースアッセイでは、自己抗体価≧1:30の血清を自己抗体陽性と定義した。これまでの研究で、NMDA受容体自己抗体とGABA受容体自己抗体の力価は通常1:30より高いことが示されている。さらに、血清を希釈することには、非特異的な染色を防ぐという利点もある。
 対照の健常者では、ELISA法において抗NCAM1自己抗体が陽性となったものはなかった。統合失調症患者の抗体価は、対照健常者の抗体価と比較して有意に高かった(図1A)。HeLa細胞を用いたセルベースアッセイでは、ヒトNCAM1とEGFPをプラスミドから発現させ、EGFPを発現したすべてのトランスフェクト細胞でNCAM1の外来発現を認めた(図1B)。12人の統合失調症患者(5.4%)が抗NCAM1自己抗体陽性であった(図1B、1C、表1)。これらの患者が他のシナプス分子に対する自己抗体も有しているかどうかを調べるために、同じセルベースアッセイ法でNLGN1、NLGN2、NLGN3、NLGN4、NRXN1α、NRXN3、Ephrin B1~B3、ERBB4、NRG1、NR1、NR2、GABAARα1の発現を誘導してみた。しかし、抗NCAM1自己抗体を有するこれら12人の統合失調症患者には、これらの分子に対する自己抗体は認められなかった。これら12人の患者のうち、11人の統合失調症患者がELISAとセルベースアッセイの両方で抗NCAM1自己抗体陽性であることが検出された。対照の健康者2名(男性:26歳、抗体価1:30、乳癌の既往がある女性:46歳、抗体価1:100)が、セルベースアッセイで抗NCAM1抗体陽性(1.0%)であった。統合失調症患者の抗体価は、健常対照者の抗体価と比較して有意に高かった(すなわち、1:1,000~10,000;図1C)。抗NCAM1自己抗体陽性統合失調症患者の脳脊髄液(CSF)にも抗NCAM1自己抗体が存在した(図1B、表1)。これらの患者のCSFのタンパク質濃度および白血球数は正常であった。
Figure JPOXMLDOC01-appb-T000001
 NCAM1は神経系で高発現している。マウス脳におけるNCAM1の発現を確認するためにウエスタンブロット解析を行ったところ、確かに末梢臓器と比較して非常に高いレベルで発現していた。NCAM1は膜貫通領域を持つシナプスの細胞接着分子である。NCAM1の細胞外領域はADAM10とADAM17によって切断され、血清中にはその可溶型が少量見出される。統合失調症患者では可溶型NCAM1の変化が報告されていることから、本発明者らはNCAM1に対する自己抗体が血清中の可溶型NCAM1に影響を与えるかどうかを検証した。血清中の可溶性NCAM1を分析するためにELISAを行ったところ、統合失調症患者では可溶性NCAM1が有意に減少していることがわかった(図1D)。さらに、セルベースアッセイで抗NCAM1自己抗体が検出された統合失調症患者では、抗NCAM1自己抗体のない患者と比較して、血清中の可溶性NCAM1が有意に減少していた(図1E)。また、抗NCAM1自己抗体陰性の統合失調症患者の血清可溶性NCAM濃度は、対照の健常者のそれよりもやはり有意に低いことが注目される(図1F)。これらの結果は、抗NCAM1自己抗体と可溶性NCAMの関連を示しているが、ELISAによるNCAM1の力価と可溶性NCAMの濃度の散布図解析では、有意な関係は示されなかった。従って、免疫複合体の結果は予想以上に複雑である可能性がある。  
 セルベースアッセイで抗NCAM1自己抗体が検出された12名の患者の臨床的特徴を表1に示す。これらの患者では、他の患者と比較して、せん妄や脳炎を含む明瞭な精神・神経症状は認められなかった。さらに、がんや自己免疫疾患など、患者間で共通する過去の病歴もなかった。しかし、これらの患者の幻覚や妄想などの精神症状は、抗精神病薬に抵抗性であった。
例2:統合失調症における抗NCAM1抗体によって認識される主なエピトープはIg1ドメイン内に存在する 
 抗NCAM1抗体によって認識されるエピトープを同定するために、本発明者らはNCAM1のトランケート体を構築した(図2A)。NCAM1の細胞外領域は、5つのN末端免疫グロブリンドメイン(Ig1~Ig5)と2つのフィブロネクチンIII型ドメイン(FN3)から構成されている。統合失調症患者12名の血清は、Ig2ドメインとIg2~5ドメインをそれぞれ欠いたΔIg2とΔIg2~5のトランケート体と反応したが、Ig1ドメインとIg1~5ドメインをそれぞれ欠いたΔIg1とΔIg1~5のものとは反応しなかった(図2B、2C)。これらの結合様式はウエスタンブロッティングで確認された(図2D)。これらのデータは、主要なエピトープ領域がIg1ドメイン内に存在することを示している。
 ポリシアリル化されたNCAM1(PSA-NCAM)は、神経系の発生段階において豊富に存在し、細胞移動と軸索伸長に関連している。ポリシアリル化はNCAM1のIg5ドメイン上で起こる。したがって、抗NCAM1自己抗体はPSA-NCAMも検出すると仮定された。生後0日目のマウスの大脳皮質を用いたウエスタンブロット解析により、抗NCAM1自己抗体がNCAM1とPSA-NCAMの両方を検出することが明らかになった。Igドメインを含む分子は約500種類ある。そこで、抗NCAM1自己抗体がNCAM2、L1CAM、TAG1などのIgドメインを含む他の分子と交差反応するかどうかを分析した。セルベースアッセイにより同定された12人の患者の抗NCAM1自己抗体は、いずれもこれらの分子と反応しないことが判明した。これらの結果は、抗NCAM1自己抗体がNCAM1特異的な配列と反応することを示唆している。
例3:抗NCAM1自己抗体はNCAM1-NCAM1およびNCAM1-GDNF相互作用を阻害する
  NCAM1はIg1ドメインを含む免疫グロブリンドメインを介して同種親和性の結合によりシナプスを形成する。さらにGDNFはNCAM1への結合によりスパインの発生を促進する。 従って、抗NCAM1自己抗体がNCAM1-NCAM1とNCAM1-GDNF相互作用を阻害すると仮定された。プルダウンアッセイにより、統合失調症患者1から精製したIgGはNCAM1-NCAM1およびNCAM1-GDNF相互作用を阻害したが、対照の健常者から精製したIgGは阻害しなかった(図3Aおよび図3B)。プルダウンアッセイでは、統合失調症患者2および3から精製したIgGもNCAM1-NCAM1およびNCAM1-GDNF相互作用を阻害した。
例4:統合失調症患者由来の抗NCAM1自己抗体はマウスのNCAM1-Fyn-FAK-MEK1-ERK1経路を阻害する
 もし統合失調症患者から見つかった抗NCAM1抗体がNCAM1-GCAM1およびNCAM1-GDNF相互作用を阻害するなら、マウスにおいても分子シグナルの異常、スパインやシナプスの異常形成、統合失調症関連行動を引き起こすだろうと想定された。これを検証するために、統合失調症患者(患者1)と年齢および性別をマッチさせた健常者からIgGを精製し、マウス(8週齢)のCSFに注入した。そして、9週齢のマウスの分子シグナル伝達、スパインやシナプスの形成、行動などを解析した(図4A)。統合失調症患者由来の抗NCAM1自己抗体は、初代培養神経細胞およびマウスの前頭葉皮質で発現するNCAM1と反応することが確認された。以前の研究で、神経系内の特異的抗原に対してマウスに投与した抗体は1週間以上脳内に留まると報告されている。しかし、CSFに注入した非特異的IgGは1日以内に血清に移行する。これらの既報と一致して、本発明者らが行った免疫組織化学分析では、統合失調症患者からの抗NCAM1自己抗体の髄腔内投与は9週齢になってもマウス内に存在していることが確認された。ミクログリア活性化または脳炎の証拠はなかった。NCAM1-NCAM1相互作用およびGDNF-NCAM相互作用は、NCAM1の細胞質ドメインとFynの接触を誘導する。そこで、患者1由来のIgGをマウスに投与し、NCAM1-Fyn相互作用、FAK、MEK1、ERK1のリン酸化といったシグナル伝達を阻害するかどうかを検証した。患者1由来のIgGをマウスに投与し、免疫沈降法を用いて、NCAM1と共沈するFynの量を解析した。その結果、患者1由来のIgGを投与したマウスでは、NCAM1-Fynの相互作用が低下していることが明らかとなった(図4B)。さらに、統合失調症患者1から精製したIgGは、FAK、MEK1、ERK1のリン酸化を抑制したが、健常者から精製したIgGは抑制しなかった(図4Cおよび図4D)。これらの結果は、抗NCAM1自己抗体によるNCAM1-NCAM1およびNCAM1-GDNF相互作用の阻害が、NCAM1-Fynの相互作用を損ない、FAK、MEK1およびERK1のリン酸化を低下させることを示している。   
例5:統合失調症患者由来の抗 NCAM1 自己抗体により、マウスの前頭葉皮質におけるスパインとシナプスの数が減少する 
 抗NCAM1自己抗体は、FAK、ERK1、MEK1のリン酸化を阻害し、シナプスを維持するプロセスであるシナプス前後のトランスホモフィリックNCAM1相互作用を中断することから、スパインとシナプスに変化をもたらすことが示唆された。これを調べるために、患者のIgGを髄腔内に投与したマウスの二光子解析を実施した。神経突起とスパインは、シナプシンIプロモーターによって駆動されるアデノ随伴ウイルス1(AAV1)-EGFP(AAV1-SYN-EGFP)を用いて可視化した。スパインと接触している軸索端は、AAV2-VAMP2-mCherryを用いて可視化された(図4A)。予想通り、統合失調症患者1からのIgGを投与したマウスは、前頭皮質においてスパインとシナプスの減少を示した。これらの変化は、健常者からのIgGを投与したマウスには見られなかった(図4E、4F)。   
例6:統合失調症患者由来の抗NCAM1自己抗体はマウスに統合失調症関連行動を引き起こす 
 抗NCAM1自己抗体が統合失調症の症状を引き起こすかどうかを検証するために、自己抗体投与マウスの行動解析を行った。統合失調症患者1から精製したIgGを投与すると、Y迷路試験において認知機能が低下した(図4G)。さらに、統合失調症患者のIgGを投与したマウスは、統合失調症のエンドフェノタイプとして確立しているプレパルス抑制が欠損していた(図4H)。健常者のIgGを投与したマウスは、プレパルス抑制が正常であった。統合失調症患者1のIgGを投与したマウスは、運動活性、不安行動、社会的相互作用には異常が見られなかったが、それぞれオープンフィールド試験、高架式十字迷路試験、3室試験で異常が見られた。
例7:抗NCAM1抗体の吸着、除去により、分子、脊髄、行動の変化が改善された 
 統合失調症患者1から精製したIgGのうち、抗NCAM1抗体がリン酸化を阻害し、スパインやシナプスの数を減少させ、統合失調症関連行動を誘発することを確認するため、マウスへの投与前に、統合失調症患者1から精製したIgGから抗NCAM1抗体を除去する吸着実験(吸着SZ IgG)を実施した。グルタチオンS-トランスフェラーゼ(GST)プルダウンによる抗NCAM1抗体の吸着と除去は、セルベースアッセイと免疫組織化学で確認した。リン酸化、スパインおよびシナプス、ならびに行動は、吸着実験後に改善された(図4B~4H)。これらの結果は、患者1からの抗NCAM1抗体がリン酸化を変化させ、マウスにおいてシナプスの変化と統合失調症関連行動を誘発することを確認するものである。
例8:統合失調症を患者由来の抗NCAM1自己抗体により、マウスに統合失調症関連の行動とシナプスの変化が生じることが確認された 
 統合失調症患者1の結果が抗NCAM1自己抗体陽性の他の患者でも観察できることを確認するために、統合失調症患者2および3から精製したIgGを用いて二光子解析と行動解析を行った(図5A)。これらの患者からのIgGも、前頭葉皮質のスパインとシナプス数も減少させ、認知障害とプレパルス抑制の欠損を誘発した(図5B~5E)。
例9:統合失調症患者における抗NRXN1α自己抗体の同定
 対照健康者362名(男性181名、女性181名、年齢22-90歳、中央値49歳)と統合失調症患者387名(男性195名、女性192名、年齢16-84歳、中央値51歳)から血清試料を採取した。患者の統合失調症はDSM5(Diagnostic and Statistical Manual of Mental Disorders)に従って診断された。年齢に関して、群間に有意差はなかった。すべてのサンプルを酵素結合免疫吸着法(ELISA)およびセルベースアッセイで検査した。ELISA分析では、8人の統合失調症患者(2.1%)が抗NRXN1α自己抗体陽性として検出され、吸光度の平均値から2標準偏差を上回った場合をこの自己抗体の陽性とした(図6A)。対照の健常者では、ELISA法において抗NRXN1α自己抗体が陽性となった者はいなかった。統合失調症患者の抗体価は、対照健常者の抗体価と比較して有意に高かった(図6A)。HeLa細胞を用いたセルベースアッセイでは、ヒトNRXN1αとEGFPをプラスミドから発現させ、EGFPを発現したすべてのトランスフェクト細胞でNRXN1αの外来発現を認めた(図6B)。同じ統合失調症患者8名(2.1%)が抗NRXN1α自己抗体陽性であった(図6B、6C)。これらの患者が他のシナプス分子に対する自己抗体も有しているかどうかを調べるために、同じセルベースアッセイ法でNCAM1、NLGN1、NLGN2、NLGN3、NLGN4、Ephrin B1~B3、ERBB4、NRG1、NR1、NR2およびGABAAR1αの発現を誘導して調べた。しかし、抗NRXN1α自己抗体を持つこれら8人の統合失調症患者には、これらの分子に対する自己抗体は見つからなかった。また、対照の健常者では抗NRXN1α自己抗体が陽性となる者はいなかった。統合失調症患者の抗体価は対照健常者の抗体価と比較して有意に高かった(図6C)。抗NRXN1α自己抗体陽性統合失調症患者の脳脊髄液(CSF)にも抗NRXN1α自己抗体が認められた(図6B)。これらの患者のCSFのタンパク質濃度および白血球数は正常であった。
 セルベースアッセイで抗NRXN1α自己抗体が検出された患者8名の臨床的特徴を表1に示す。これらの患者には、他の患者と比較して明確な精神症状や神経症状は見られなかった。さらに、がんや自己免疫疾患など、患者間で共通する過去の病歴はなかった。しかし、これらの患者の幻覚や妄想を含む精神症状は、抗精神病薬に抵抗性であった。
 抗NRXN1α自己抗体によって認識されるエピトープを同定するために、本発明者らはNRXN1αのトランケート体を作製した(図6D)。NRXN1αの細胞外領域は、6つのラミニン、ニューレキシン、性ホルモン結合タンパク質(LNS)ドメインから構成されている。セルベースアッセイにおいて、統合失調症患者8名の血清は、LNS1~3ドメインを欠くΔLNS1-3およびΔLNS1-5ドメインの両方と反応したが、LNS1~6ドメインを欠くΔLNS1-6とは反応しなかった(図6E、6F)。これらのデータから、エピトープ領域はLNS6ドメイン内に存在することが示唆された。
 抗NRXN1α自己抗体が、NRXN3やCASPR2のようなLSNドメインを含む他の分子と交差反応を起こすかどうかを解析した。セルベースアッセイにより同定された8人の患者の抗NRXN1α自己抗体は、いずれもこれらの分子と反応しないことが判明した。これらの結果は、抗NRXN1α自己抗体がNRXN1α特異的な配列に反応することを示唆している。
例10:抗NRXN1α自己抗体は、NRXN1α-NLGN1およびNRXN1α-NLGN2相互作用を阻害する
 NRXN1α は神経系で高発現している。マウスの脳におけるNRXN1αの発現を確認するためにウエスタンブロット解析を行ったところ、NRXN1αは末梢臓器に比べて確かに非常に高いレベルで発現していることがわかった。NRXN1αはシナプス前細胞接着分子であり、LNS6ドメインを介してNLGN(シナプス後細胞接着分子)と相互作用してシナプスを形成する。NRXN1αは、シナプス分子の相互作用とシグナルのプラットフォームおよびハブとして機能する。したがって、抗NRXN1α自己抗体がNRXN1α-NLGNs相互作用を阻害すると仮定された。プルダウンアッセイにより、抗NRXN1α自己抗体陽性の統合失調症患者(患者1)から精製したIgGはNRXN1α-NLGN1およびNRXN1α-NLGN2相互作用を阻害したが、対照の健常者から精製したIgGは阻害しなかった(図7A、7B)。抗NRXN1α抗体がin vivoでこれらの相互作用を阻害することを確認するために、抗NRXN1α自己抗体陽性の統合失調症患者、および年齢と性別をマッチさせた健常者からIgGを分離した。そして、これらの抗体をマウス(8週齢)のCSFに注入し、9週齢で免疫沈降解析を行った(図7C)。統合失調症患者由来の抗NRXN1α自己抗体が、初代培養神経細胞およびマウス前頭葉皮質に発現するNRXN1αと反応することが確認された。免疫組織化学的解析により、統合失調症患者から得た抗NRXN1α自己抗体の髄腔内投与は、9週齢のマウスにも残存していることが確認された。ミクログリア活性化や脳炎の証拠はなかった。プルダウンアッセイから得られた知見と一致して、抗NRXN1α自己抗体はNRXN1α-NLGN1およびNRXN1α-NLGN2相互作用を阻害した(図7D)。プルダウンアッセイと免疫沈降解析により、統合失調症患者2および3から精製したIgGもNRXN1α-NLGN1およびNRXN1α-NLGN2相互作用を阻害した。
例11:抗NRXN1α自己抗体によるmEPSC頻度の低下
 NRXN1αノックアウトマウスでは、小型興奮性シナプス後電流(mEPSC)頻度が減少していた。統合失調症患者に見られる抗NRXN1α自己抗体がNRXN1α-NLGN1およびNRXN1α-NLGN2相互作用を阻害するなら、マウスでもシナプスの電気生理学的特性が変化すると推測された。これを検証するために、前頭葉皮質におけるmEPSCの電気生理学的解析を行った。その結果、抗NRXN1α抗体を投与したマウスでは、mEPSCの周波数が著しく低下していることがわかった(図8A、8B)。しかし、mEPSCの振幅には変化がなかった(図8A、8C)。これらのデータは、ノックアウトマウスにおける過去の知見と一致し、抗NRXN1α自己抗体が電気生理学的なシナプスの特性を変化させることを確認している。
例12:抗NRXN1α自己抗体によるシナプスとスパインの減少
 NRXN1αとNLGNの相互作用は、シナプスの形成と維持に必要である。これらの以前の知見は、抗NRXN1α自己抗体が、スパインとシナプスの変化を誘発する可能性を示している。これを調べるために、患者のIgGを髄腔内に投与したマウスの二光子解析を実施した。神経突起とスパインは、シナプシンIプロモーターで駆動するAAV1-EGFP(AAV1-SYN-EGFP)を用いて可視化し、スパインと接触する軸索端はAAV2-VAMP2-mCherryを用いて可視化した(図8D)。予想通り、統合失調症患者1のIgGを投与したマウスは、前頭葉皮質においてスパインとシナプスの数が減少していた。これらの変化は、健常者のIgGを投与したマウスには見られなかった(図8E、8F)。
 マウスのスパインやシナプスの数を減少させたものが、患者1から精製したIgGの中の抗NRXN1α抗体であることを確認するために、マウスに投与する前に統合失調症患者1から精製したIgGから抗NRXN1α抗体を除去する吸着実験を行った(吸着Sz IgG)。Mycプルダウンによる抗NRXN1α抗体の吸着、除去は、セルベースのアッセイと免疫組織化学で確認した。スパインとシナプスの数の減少は、吸着実験後には逆転した(図8E、8F)。これらの結果は、抗NRXN1α抗体がマウスのシナプス変化を誘発することを確認するものである。
例13:抗NRXN1α自己抗体はマウスにおいて統合失調症関連行動を引き起こす
 抗NRXN1α自己抗体がマウスに統合失調症関連行動を引き起こすかどうかを調べるために、自己抗体投与マウスの行動解析を行った(図9A)。統合失調症患者1から精製したIgGをマウスに投与すると、Y迷路試験において認知機能が低下した(図9B)。さらに、これらのマウスは、統合失調症のエンドフェノタイプとして確立されているプレパルス抑制を欠損していた(図9C)。このことが記憶障害によるものではないことを確認するために、新奇物体認識テストを行った。3チャンバーテストと同じ実験時間で行った新奇物体認識テストでは、自己抗体投与マウスと対照マウスの間に差はなかった(図9E)。このことは、社会的新規性嗜好の低下は、記憶障害によるものではないことを示している。この解釈は、一部の疾患モデルマウスが3室試験では正常な社会的新規性選好行動を示すが、Y迷路試験では認知機能の低下を示すという事実とも一致する。これらの行動は、投与前に統合失調症患者1より精製したIgGから抗NRXN1α抗体を除去した吸着実験後に改善した(図9B、9E)。なお、統合失調症患者由来のIgGを投与したマウスでは、オープンフィールド試験および高架式十字迷路試験においては、それぞれ運動活性および不安行動の異常は認められなかった。
例14:抗NRXN1α自己抗体により、マウスに統合失調症関連行動とシナプスの変化が起こる
 統合失調症患者1の結果が、抗NRXN1α自己抗体が陽性の他の患者でも観察できることを確認するために、統合失調症患者2および3から精製したIgGを用いて二光子解析と行動解析を行った(図10A)。これらの患者からのIgGも、マウスの前頭葉皮質におけるスパインとシナプスの数を減少させるとともに、認知障害、プレパルス抑制の欠損、社会的新奇嗜好性の障害を誘発した(図10B~10E)。
例15:統合失調症患者において同定された他の自己抗体
 実施例1~14に記載の抗NCAM1自己抗体と抗NRXN1α自己抗体に加え、本発明者らは、統合失調症のバイオマーカーとして、NLGN2、NRG1、NLGN3、Ephrin B1に対する自己抗体も同定した。図11は、統合失調症の患者から得られた試料中におけるNRXN1α、NLGN2、NRG1、NLGN3、およびEphrin B1に対する自己抗体の存在をセルベースアッセイで調べた結果を示している。抗NRXN1α自己抗体は、統合失調症の患者380人中7人で陽性であり、対照の健常者では250人中、陽性は無かった。抗NLGN2自己抗体は、統合失調症の患者120人中7人で陽性であり、対照の健常者では201人中2人が陽性であった。抗NRG1自己抗体は、統合失調症の患者223人中9人で陽性であり、対照の健常者では201人中2人が陽性であった。抗NLGN3自己抗体は、統合失調症の患者122人中2人で陽性であり、対照の健常者では250人中、陽性は無かった。抗Ephrin B1自己抗体は、統合失調症の患者122人中2人で陽性であり、対照の健常者では250人中、陽性は無かった。これらの自己抗体もまた、本開示に係る検査方法、治療もしくは予防方法において、活用されうる。
例16:疼痛性障害の患者において同定された他の自己抗体
 本発明者らはさらに、疼痛性障害のバイオマーカーとして、TRPA1に対する自己抗体も同定した。本発明者らは280人以上の疼痛性障害患者の血清を収集し、分析を行った。図12は、疼痛性障害の患者から得られた試料中におけるTRPA1に対する自己抗体の存在をセルベースアッセイで調べた結果を示している。結果は、この自己抗体もまた、本開示に係る診断、検査、治療もしくは予防方法において、活用されうることを示している。
例17:統合失調症と誤診されていた症例から自己抗体性脳症を識別し、新規自己抗体陽性患者に対して血漿交換による治療を行った例
 後方視的に、すでに加療された原因不明の脳炎の中から、本発明の新規自己抗体が原因になるものがあるかどうかを検証した。過去10年間で原因不明であった脳炎9例に対して、抗NRG1自己抗体、抗NLGN2自己抗体陽性例を1例ずつ発見した。
 抗NLGN2自己抗体陽性であった患者は、急性精神病から統合失調症として精神科単科病院に入院していた患者で、抗精神病薬に治療抵抗性の患者として診断されたが、脳波の徐波化・微熱をきっかけに抗NLGN2自己抗体陽性が判明した例である(図13)。従来の診断体系では、血液髄液検査は異常がなく、脳画像所見も脳炎を示唆しなかったため、難治性の統合失調症として扱われ、精神科単科病院で長期入院となったであろう症例であるが、抗NLGN2自己抗体が検出されたことから脳波の徐波化や意識障害と合わせて自己免疫介在性脳症と診断された。その後、血漿交換等で脳波や症状は改善し(図14)、自己抗体が病態を形成していることが確かめられた。
 本開示に係る検査方法は統合失調症などの脳神経疾患の高精度な判別を可能にする。本開示に係る検査方法は、統合失調症などの脳神経疾患を発症しているか否かを判定するための手段として有用である。また、脳神経疾患を将来発症する可能性を把握するための手段としても有用である。また、本開示は、脳神経疾患の予防方法および治療方法、ならびにそれに用いる医薬組成物も提供する。本開示に係る検査方法を利用した早期発見、本開示に係る治療方法を利用した早期治療によって、脳神経疾患の難治化、重篤化(病勢の進行)、再発等の防止を図ることが期待される。
 以上、本発明について具体例を挙げて説明したが、以上の具体例はあくまでも例示であり、本発明は特許請求の範囲を逸脱しない範囲において、任意の変更を加えて実施することが可能である。上記の各所で言及されている本発明の様々な特徴および態様は、適宜、必要な変更を加えて、他の部分の記載にも適用されうる。したがって、ある態様において特定されている特徴は、適宜、他の態様で特定されている機能と組み合わせられうる。特許、特許出願、論文、教科書、および配列アクセッション番号を含む、本明細書で引用された全ての参考文献、およびそこに引用された参考文献は、参照によりその全体が本明細書に組み込まれる。組み込まれた文献および同様な資料の1つまたは複数が、定義された用語、用語の使用法、説明された技法などを含むがこれらに限定されない点につき、本願と異なるか、または矛盾する場合、本願の記載が優先される。

 

Claims (26)

  1.  対象における脳神経疾患または脳神経疾患感受性の検査方法であって、
     i)対象から単離された試料を準備する工程、
     ii)前記試料中における自己抗体の存在の有無を判定する工程
    を含み、
     前記自己抗体が抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および抗TRPA1抗体からなる群から選択される少なくとも1つの自己抗体であり、
     前記試料中に前記自己抗体が存在することが、前記対象が脳神経疾患または脳神経疾患感受性を有することの指標となる、方法。
  2.  脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、請求項1に記載の方法。
  3.  in vitroで行われる、請求項1に記載の方法。
  4.  試料が血液、血漿、血清または髄液である、請求項1に記載の方法。
  5.  自己抗体の存在の有無を判定する工程がELISA、CLEIA(化学発光酵素免疫測定法)、CLIA(化学発光免疫測定法)、ラテックス凝集法、放射免疫測定法、免疫ブロット法、免疫沈降法、イムノクロマト法またはセルベースアッセイ(CBA)を行うことを含む、請求項1記載の方法。
  6.  ELISA、CLEIA(化学発光酵素免疫測定法)、CLIA(化学発光免疫測定法)、ラテックス凝集法、放射免疫測定法、免疫ブロット法、免疫沈降法、イムノクロマト法またはセルベースアッセイ(CBA)の測定値が、所定の値または対照の測定値を超える場合に自己抗体が存在すると判定される、請求項5に記載の方法。
  7.  前記試料中における追加の自己抗体の存在の有無を判定する工程をさらに含み、前記追加の自己抗体が抗NMDA受容体抗体、抗GABAARα1抗体、および抗NCAM1抗体からなる群から選択される少なくとも1つの自己抗体である、請求項1に記載の方法。
  8.  対象における脳神経疾患または脳神経疾患感受性の検査に用いるためのキットであって、以下の1)~3)の少なくともいずれか1つを含む、キット。
     1)NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および/もしくは抗TRPA1抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片;または抗NRXN1抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および/もしくは抗TRPA1抗体が認識するエピトープを含むポリペプチド、
     2)前記1)記載のポリペプチドをコードする核酸、または
     3)前記1)記載のポリペプチドを発現する細胞
  9.  脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、請求項8に記載のキット。
  10.  前記ポリペプチドが基質上に固定されている、請求項8に記載のキット。
  11. 前記基質が試験片、ビーズ、マルチウェルプレート又はマイクロチップである、請求項10に記載のキット。
  12.  前記ポリペプチドをコードする核酸を含む発現ベクターを含む、請求項8に記載のキット。
  13.  抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体に結合する、検出のための抗体をさらに含む、請求項8に記載のキット。
  14.  対象における脳神経疾患または脳神経疾患感受性の評価のための抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体のバイオマーカーとしての使用。
  15.  脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、請求項14に記載の使用。
  16.  対象における脳神経疾患の治療または予防方法であって、対象における抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体を除去、低減、隔離、不活性化または分解する工程を含む、方法。
  17.  脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、請求項16に記載の方法。
  18.  血漿交換を行う工程を含む、請求項16に記載の方法。
  19.  脳神経疾患または脳神経疾患感受性を有する対象から単離された血液、血漿、血清また髄液の処理方法であって、当該血液、血漿、血清また髄液を、NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するNRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチドの断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドからなる群から選択される少なくとも1つを固定化した基質に接触させ、当該血液、血漿、血清また髄液に含まれる抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体を除去または低減する方法。
  20.  NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するその断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドを含む、脳神経疾患の治療または予防に用いるための医薬組成物。
  21.  脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、請求項20に記載の医薬組成物。
  22.  対象における脳神経疾患の治療または予防方法であって、
     i)対象から単離された試料を準備する工程、
     ii)前記試料中における自己抗体の存在の有無を判定する工程
    を含み、前記自己抗体が抗NRXN1α抗体、抗NRG1抗体、抗NLGN2抗体、抗NLGN3抗体、抗ephrin B1抗体、および抗TRPA1抗体からなる群から選択される少なくとも1つの自己抗体であり、
    iii)前記試料中に前記自己抗体が存在する場合に、対象に、以下の1)から6)からなる群から選択される少なくとも1つを行う方法:
    1)免疫グロブリン療法、
    2)ステロイド療法、
    3)免疫抑制剤の投与、
    4)血漿製剤の投与、
    5)血漿交換 または、
    6)NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するその断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドの投与。
  23.  前記試料中における追加の自己抗体の存在の有無を判定する工程をさらに含み、前記追加の自己抗体が抗NMDA受容体抗体、抗GABAARα1抗体、および抗NCAM1抗体からなる群から選択される少なくとも1つの自己抗体であり、当該試料中に前記自己抗体が存在する場合に、
     対象に、iii)に合わせて、存在が確認された自己抗体に対応する抗原ポリペプチド、当該自己抗体との結合活性を有する抗原ポリペプチド断片、もしくは当該自己抗体が認識するエピトープを含むポリペプチドの投与を行う、請求項22に記載の方法。
  24.  脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、請求項22または23に記載の方法。
  25.  血液、血漿、血清または髄液に抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体の存在が確認された対象に対し、脳神経疾患の治療または予防に用いるための医薬組成物であって、
     免疫グロブリン製剤、
     ステロイド製剤
     免疫抑制剤
     血漿製剤、または
     NRXN1αポリペプチド、NRG1ポリペプチド、NLGN2ポリペプチド、NLGN3ポリペプチド、Ephrin B1ポリペプチド、および/もしくはTRPA1ポリペプチド;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体との結合活性を有するその断片;または抗NRXN1α自己抗体、抗NRG1自己抗体、抗NLGN2自己抗体、抗NLGN3自己抗体、抗ephrin B1自己抗体、および/もしくは抗TRPA1自己抗体が認識するエピトープを含むポリペプチドを含む、医薬組成物。
  26.  脳神経疾患が統合失調症、疼痛性障害、脳症、てんかん、精神病性障害、気分障害および脳炎からなる群から選択される、請求項25に記載の医薬組成物。

     
PCT/JP2023/036304 2022-10-06 2023-10-05 脳神経疾患の検査、治療もしくは予防のための方法 WO2024075803A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-161399 2022-10-06
JP2022161399 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075803A1 true WO2024075803A1 (ja) 2024-04-11

Family

ID=90608113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036304 WO2024075803A1 (ja) 2022-10-06 2023-10-05 脳神経疾患の検査、治療もしくは予防のための方法

Country Status (1)

Country Link
WO (1) WO2024075803A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528799A (ja) * 2010-05-13 2013-07-11 ユニバーシティ オブ メディスン アンド デンティストリー オブ ニュー ジャージー 神経変性疾患の検知および診断のための診断用自己抗体プロファイル
JP2022540913A (ja) * 2019-07-16 2022-09-20 ドイチェス ツェントラム フューア ノイロデジェネラティヴ エアクランクンゲン エー. ファウ.(ディーゼットエヌイー) Nmdar自己抗体を検出及び単離するためのnmda受容体コンストラクト

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528799A (ja) * 2010-05-13 2013-07-11 ユニバーシティ オブ メディスン アンド デンティストリー オブ ニュー ジャージー 神経変性疾患の検知および診断のための診断用自己抗体プロファイル
JP2022540913A (ja) * 2019-07-16 2022-09-20 ドイチェス ツェントラム フューア ノイロデジェネラティヴ エアクランクンゲン エー. ファウ.(ディーゼットエヌイー) Nmdar自己抗体を検出及び単離するためのnmda受容体コンストラクト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROKI SHIWAKU: "Analyzing schizophrenia-related phenotypes in mice caused by autoantibodies against NRXN1α in schizophrenia", BRAIN, BEHAVIOR AND IMMUNITY., ACADEMIC PRESS, SAN DIEGO, CA, US, vol. 111, 1 July 2023 (2023-07-01), US , pages 32 - 45, XP093156990, ISSN: 0889-1591, DOI: 10.1016/j.bbi.2023.03.028 *

Similar Documents

Publication Publication Date Title
Reindl et al. Myelin oligodendrocyte glycoprotein antibodies in neurological disease
Van Pelt et al. Neuromyelitis optica spectrum disorders: comparison of clinical and magnetic resonance imaging characteristics of AQP4‐IgG versus MOG‐IgG seropositive cases in the Netherlands
Ohkawa et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors
JP4880001B2 (ja) 神経変性疾患もしくは病態の検出方法
US7972796B2 (en) Methods for diagnosis of encephalitis
ES2550880T3 (es) Trastornos autoinmunitarios neurológicos
AU2018201249A1 (en) Processes and kits to detect and monitor for diagnostic biomarkers for post traumatic stress disorder (ptsd) and to differentiate between suicidal and non-suicidal form of the disorder
KR101873247B1 (ko) 치매진단용 자가항체 바이오마커 및 이를 이용한 치매진단 방법
EP3633372A1 (en) Biomarker for alzheimer's disease
US7771957B2 (en) Method for diagnosing alzheimer's disease
WO2022181333A1 (ja) 軽度認知障害検査
Jang et al. Plasma carbonic anhydrase II protein is elevated in Alzheimer's disease
GB2565045A (en) Biomarker
JP5249420B2 (ja) アルツハイマー病の診断、モニタリングおよび/または病期診断のための、バイオマーカー、キットおよび方法
Johari et al. Adult‐onset dominant muscular dystrophy in Greek families caused by annexin A11
Stanga et al. Searching for predictive blood biomarkers: misfolded p53 in mild cognitive impairment
Lilek et al. Accumulation of pTau231 at the postsynaptic density in early Alzheimer’s disease
WO2024075803A1 (ja) 脳神経疾患の検査、治療もしくは予防のための方法
WO2016117618A1 (ja) 慢性炎症性脱髄性多発神経炎の診断方法、キット及びバイオマーカー
CN113970643B (zh) 检测抗uch-l1表位的自身抗体的试剂在制备sle血清诊断相关产品中的应用
JP2024054886A (ja) 脳神経疾患の検査、治療もしくは予防のための方法
WO2021256550A1 (ja) シナプス機能不全に起因する疾病、又はシナプス機能不全を付随する疾病の判定方法
TWI542877B (zh) Diagnostic kit, diagnostic marker, and detection method for Alzheimer's type dementia based on sugar chain determination of complement C3 protein
Guo et al. Autoantibody against the Rab6A/Rab6B in primary autoimmune cerebellar ataxia associated with Sjogren's syndrome: A case report
Wójtowicz et al. Brain-derived neurotrophic factor (bdnf) concentration levels in cerebrospinal fluid and plasma in patients with glioblastoma: a prospective, observational, controlled study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874928

Country of ref document: EP

Kind code of ref document: A1