WO2024071575A1 - 하이브리드 그래핀을 포함하는 배터리용 양극 - Google Patents

하이브리드 그래핀을 포함하는 배터리용 양극 Download PDF

Info

Publication number
WO2024071575A1
WO2024071575A1 PCT/KR2023/008473 KR2023008473W WO2024071575A1 WO 2024071575 A1 WO2024071575 A1 WO 2024071575A1 KR 2023008473 W KR2023008473 W KR 2023008473W WO 2024071575 A1 WO2024071575 A1 WO 2024071575A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
lithium
positive electrode
battery
fine particles
Prior art date
Application number
PCT/KR2023/008473
Other languages
English (en)
French (fr)
Inventor
심준섭
Original Assignee
주식회사 바이오제네시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오제네시스 filed Critical 주식회사 바이오제네시스
Publication of WO2024071575A1 publication Critical patent/WO2024071575A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a battery, and more specifically, to a positive electrode containing a graphene-based composite material (hybrid graphene) as a positive electrode active material and a battery related thereto.
  • a graphene-based composite material hybrid graphene
  • lithium-ion batteries have high energy density, high output density, and an operating voltage that can withstand long charging and discharging. For this reason, it is not only used as a battery to supply power to portable mobile devices such as smart phones and net books, but is also widely used as an energy supply member to supply energy to hybrid vehicles, etc. there is.
  • Battery cathode materials are classified into LFP (lithium, iron, phosphorus), NCM (nickel, cobalt, manganese), and NCA (nickel, cobalt, aluminum) depending on the metal salt component of lithium oxide, and the specific gravity and structure of each material. Its performance is determined by its placement.
  • NCM/NCA ternary cathode materials with high energy density are widely used, and recently, LFP cathode materials, which are inexpensive, have a long lifespan, and are highly safe, are also widely used.
  • Republic of Korea Patent Publication No. 10-2014-0110572 discloses a positive electrode for a lithium air battery, specifically a catalyst layer including a catalyst supported on a first conductive material and a second conductive material supported on a binder; and a positive electrode for a lithium air battery including a current collector.
  • the first conductive material and the second conductive material are carbon materials such as graphite, Denka black, and Ketjen black.
  • the cathode material of a lithium-ion battery is a core material that accounts for about 30-35% of the total material cost. Depending on the composition of the metal salt, it is LCO (LiCoO2), NCM (LiNiCoMn), NCA (LiNiCoAlO2), LMO (LiMn2O4), LFP (LiFePO4), etc. It is divided into Currently, research is being conducted on conductive materials added to existing cathode materials to improve the performance of lithium-ion batteries.
  • Graphite a representative anode conductive material, does not have great electrical conductivity, so it takes a long time to charge and discharge, and since it requires a large amount to be mixed per unit volume, the amount of anode material that can be added in the same volume is reduced, which has the disadvantage of reducing the charging capacity of the battery. .
  • the technical problem that the present invention aims to solve is that, in conventional batteries containing graphite as a positive electrode active material layer, graphite does not have high electrical conductivity, so charging and discharging time takes a long time, and the amount that must be mixed per unit volume is large, so it cannot be added in the same volume. This solves the problem that the charging capacity of the battery decreases as the amount of cathode material decreases.
  • anode for a battery containing hybrid graphene a multilayer graphene composite structure in which metal or semiconductor particles are melted and bonded to graphene to form a three-dimensional network, and a battery containing the same are provided.
  • the present invention creates a network structure in which metal or semiconductor particles are interconnected with graphene multi-layers, creating a hybrid graphene structure in which the metal or semiconductor particles can be maintained in a stable state even after repeated charging and discharging.
  • the existing process of mixing graphene with metal or semiconductor particles is a simple mixing process with already produced graphene, so the organic adhesion between metal or semiconductor particles and graphene is insufficient.
  • the formed graphene composite is composed of multilayer graphene, metal or semiconductor fine particles are bonded to the surface or inside of the multilayer graphene, and the graphene composite layer is filled between silicon fine particles to have interconnected structural features.
  • the structure of the positive electrode active material made of a graphene composite having a mixed structure of metal or semiconductor fine particles and multilayer graphene has the following effects.
  • the multi-layer graphene layer serves as a scaffold that fixes the position of the metal or semiconductor.
  • graphene has a tensile strength 200 times stronger than steel, so it does not break easily even when bent. Therefore, when graphene is combined with metal or semiconductor microparticles to form a multilayer structure, the position of the metal or semiconductor microparticles is fixed and serves as a support that maintains a stable structure even when the shape of the metal or semiconductor changes due to charging and discharging.
  • graphene has high electron mobility and current density, it facilitates electron movement with lithium ions. Through this, metal or semiconductor fine particles and electrons move smoothly, increasing the charging and discharging speed and improving charging and discharging efficiency by the graphene metal or semiconductor composite structure.
  • SEI Solid Electrolyte Interphase
  • the present invention includes a positive electrode active material made of a graphene composite having a structure in which a plurality of micro particles and multi-layer graphene are mixed, wherein the micro particles are metal or semiconductor particles, It binds to the surface or inside of the multilayer graphene, and some of the fine particles are mutually bonded and solidified, and the surface of the fine particles is melted by photochemical, photothermal irradiation, or heat treatment process and solidified with graphene, so that the fine particles and graphene are formed into three-dimensional nanostructures. It is bonded to form a structure, and graphene is coated on the surface of some or all of the fine particles.
  • the multilayer graphene has a three-dimensional structure in which several layers of graphene are stacked and bent in a random direction. , the fine particles are bound to the surface or inside of the graphene, and some of the empty spaces between the fine particles are filled with the graphene composite to provide a positive electrode for a battery containing hybrid graphene, characterized in that the structure is interconnected. .
  • the fine particles of the present invention include lithium-nickel-cobalt-manganese composite oxide (NCM), lithium-nickel-cobalt-aluminum composite oxide (NCA), lithium-cobalt composite oxide (LCO), and lithium-nickel composite oxide.
  • NCM lithium-nickel-cobalt-manganese composite oxide
  • NCA lithium-nickel-cobalt-aluminum composite oxide
  • LCO lithium-cobalt composite oxide
  • lithium-nickel composite oxide lithium-nickel-cobalt-aluminum composite oxide
  • LCO lithium-cobalt composite oxide
  • the present invention provides a positive electrode for a battery including hybrid graphene, wherein the graphene composite is a three-dimensional porous graphene structure and has a network structure formed by interconnecting the fine particles.
  • the present invention provides a positive electrode including a positive electrode current collector and a positive electrode active material layer; solid electrolyte layer; and a positive electrode according to any one of claims 1, 2, or 3.
  • the positive electrode active material layer of the present invention includes lithium-nickel-cobalt-manganese composite oxide (NCM), lithium-nickel-cobalt-aluminum composite oxide (NCA), lithium-cobalt composite oxide (LCO), and lithium- Characterized by comprising at least one type of positive electrode active material selected from the group consisting of nickel-based composite oxide (LNO), lithium manganese-based (LMO), lithium iron phosphate (LFP), and lithium nickel-cobalt-manganese (NCM).
  • NCM lithium-nickel-cobalt-manganese composite oxide
  • NCA lithium-nickel-cobalt-aluminum composite oxide
  • LCO lithium-cobalt composite oxide
  • LNO nickel
  • a battery may include one or more types of LFP LCO (LiCoO2), NCM (LiNiCoMn), NCA (LiNiCoAlO2), LMO (LiMn2O4), and LFP (LiFePO4).
  • LFP LCO LFP LCO
  • NCM LiNiCoMn
  • NCA LiNiCoAlO2
  • LMO LiMn2O4
  • LFP LiFePO4
  • the solid electrolyte layer of the present invention is Li 2 SP 2 S 5 -LiI, Li 2 SP 2 S 5 -LiCl, Li 2 SP 2 S 5 -LiBr, Li 2 SP 2 S 5 -Li 2 O, Li 2 SP 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B2S3-LiI, Li 2 S-SiS 2 -P2S5-LiI, Li 2 SB 2 S 3 , Li 2 S-GeS 2 and Li 2 S-SiS 2 -Li 3 PO 4.
  • One selected from the group consisting of A battery comprising the above solid electrolyte is provided.
  • the positive electrode for a battery according to the present invention includes a three-dimensional porous hybrid graphene composite manufactured by photochemical, photothermal irradiation or heat treatment process as a positive electrode active material, thereby forming a stable graphene composite structure and improving charge and discharge speed and high electrical conductivity. By significantly improving efficiency and maximizing the capacity that lithium ions can combine, a lithium-ion battery with both performance and stability can be realized.
  • Figure 1a is a scanning electron microscope (SEM) photograph and conceptual diagram showing silver particles (Ag) before heat treatment, photochemical or photothermal irradiation process.
  • Figure 1b is a scanning electron microscope (SEM) photograph showing silver particles (Ag) after heat treatment, photochemical or photothermal irradiation processes.
  • Figure 1c is a scanning electron microscope (SEM) photograph showing a porous graphene structure (3D nanoporous graphene) manufactured by photochemistry, photothermal irradiation, or heat treatment without metal particles.
  • SEM scanning electron microscope
  • Figure 1d is a scanning electron microscope (SEM) photograph showing a hybrid graphene composite for an all-solid-state battery cathode active material manufactured by photochemistry, photothermal irradiation, or heat treatment in the examples herein.
  • SEM scanning electron microscope
  • Figure 1e is a conceptual diagram showing a structure in which graphene produced by photochemical, photothermal irradiation, or heat treatment reaction of (d) above is located and fixed in the empty space (b) of silver (Ag) microparticles in an example of the present application.
  • Figure 2 shows electrochemical measurements for each of a hybrid graphene complex electrode (Graphene-Ag electrode), a graphene electrode, and a metal electrode (Gold electrode) for an all-solid-state battery positive electrode active material according to the present invention.
  • This is a graph showing the current measurement results according to the concentration of the substance (PAP).
  • Figure 3 shows the hybrid graphene composite (Hybrid Graphene), graphene (Graphene), and metal (Metal (Au)) for the all-solid-state battery cathode active material according to the present invention at the same concentration (10 -3 mM) of PAP. This is a graph showing the current value compared to the current value.
  • Figure 4 shows a hybrid graphene electrode for an all-solid-state battery anode according to the present invention.
  • Figure 5 is an all-solid-state battery including an anode for an all-solid-state battery according to the present invention.
  • this is a cross-sectional schematic diagram of an all-solid-state battery including a positive electrode containing a positive electrode active material (NMC), a sulfide-based solid electrolyte layer, and a positive electrode current collector (SUS) and a positive electrode active material made of the hybrid graphene composite.
  • NMC positive electrode active material
  • SUS positive electrode current collector
  • Figure 6 is a photograph showing a cross section of the positive electrode for an all-solid-state battery containing the hybrid graphene composite of the present invention in a charged (a) and discharged (b) state.
  • Figure 7 is a photograph of the hybrid graphene anode (left) produced according to the present invention and the coin cell battery (right) produced using the same.
  • the present invention relates to a positive electrode for a battery containing hybrid graphene, and is characterized in that the positive electrode active material is a hybrid graphene composite, which is a composite material of graphene and metal particles.
  • the hybrid graphene composite is a positive electrode material that constitutes the positive electrode active material layer. It is composed of a lithium ion battery. When the battery is charged, lithium ions escape from the positive electrode and move to the negative electrode, and when the battery is discharged, lithium ions return to the positive electrode. It rotates to allow current to flow through an external circuit.
  • the graphene constituting the hybrid graphene composite plays a role in increasing the charge/discharge speed and efficiency of the lithium-ion battery because the electron supply is uniform and smooth due to its high electron mobility, and also has a high Young's coefficient (Young's coefficient). modulus), it can efficiently support the expansion of the positive electrode active material due to the combination of metal particles such as the positive electrode material particles and lithium (Li).
  • the graphene constituting the hybrid graphene composite is preferably derived from a three-dimensional porous graphene structure rather than pure graphene without defects.
  • the hybrid graphene composite has a three-dimensional nanostructure in which several layers of graphene are stacked and bent in a random direction, and the metal particles are bound to the surface or inside of the graphene by photochemistry, photothermal irradiation, or heat treatment. Some fine metal particles have an interconnected and solidified structure,
  • it may be a structure in which graphene is coated on the surface of the fine metal particles.
  • Pure graphene without defects itself has excellent physical properties such as excellent electrical conductivity and high specific surface area, but the advantage of increased specific surface area is greatly reduced due to irreversible self-aggregation.
  • a three-dimensional porous graphene structure in which pores are organically connected three-dimensionally between single and/or multi-layer graphene sheets has a relatively larger specific surface area due to reduced self-aggregation, and allows electrons and ions to flow more quickly. Because it diffuses, it exhibits relatively superior properties in electrochemical applications such as energy conversion and storage devices. Additionally, the three-dimensional porous graphene structure has the advantage of being able to control pore characteristics (position and size of pores, etc.) through control of process variables during the manufacturing process.
  • the three-dimensional porous graphene structure can control electrical properties by changing the electronic structure of graphene through chemical doping that adsorbs heterogeneous materials such as metal particles. It may be possible.
  • the manufacturing method of the three-dimensional porous graphene structure is not particularly limited, but a method using a hard template or soft template is mainly used.
  • Methods using the hard casting method include methods using spherical polymers, methods using metal oxide particles, and methods using porous substrates such as nickel foam.
  • the soft casting method involves self-assembly of surfactant molecules. Using the created micelle template, materials with controlled pore sizes can be synthesized, and it has the advantage of being relatively easy to remove the template compared to the hard casting method.
  • the polymer is poly(methyl methacrylate) (PMMA), polystyrene (PS), polyimide (PI), polyetherimide (PEI), Kapton Film.
  • PMMA poly(methyl methacrylate)
  • PS polystyrene
  • PI polyimide
  • PEI polyetherimide
  • Kapton Film Specific examples include, but are not necessarily limited to, any polymer that can serve as a carbon source that carbonizes at high temperatures to form graphene. There are no special restrictions on its structure, molecular weight, glass transition temperature, etc.
  • the metal fine particles that are complexed with the graphene to form a hybrid graphene composite are lithium-nickel-cobalt-manganese composite oxide (NCM), lithium-nickel-cobalt-aluminum composite oxide (NCA), and lithium-cobalt composite oxide.
  • These may be fine particles made of a metal or semiconductor selected from the group consisting of copper (Cu) coated with silver (Ag) and silver (Ag) whose surface is coated with copper (Cu), and further, the fine particles may be Metal or semiconductor particles including a core particle made of one type of metal or semiconductor material and a coating layer made of a material different from the core particle (e.g., silver-coated copper particles, copper-coated silver particles, oxide-coated particles) silicon particles, complex oxide-coated silicon
  • a method for producing the hybrid graphene composite by complexing graphene and metal particles includes uniformly mixing and complexing the three-dimensional porous graphene structure and metal particles through a stirring process such as ball milling. This method is possible, but more preferably, the mixture of the three-dimensional porous graphene structure and the metal particles is uniformly mixed by irradiating light such as a laser or UV or sintering the mixture through a heat treatment process to form a bond between the metal particles. It is possible to manufacture a hybrid graphene composite having a three-dimensional network structure in which interconnection, interconnection between graphene sheets, and interconnection between metal particles and graphene sheets are organically formed.
  • the present invention can also be applied to lithium ion batteries of all-solid-state batteries containing a solid electrolyte layer, and the all-solid-state batteries containing a positive electrode active material made of the hybrid graphene composite include a positive electrode including a positive electrode current collector and a positive electrode active material layer, and a solid It may include a positive electrode including an electrolyte layer and a positive electrode active material layer including a positive electrode current collector and a positive electrode active material made of the hybrid graphene composite.
  • the positive electrode active material layer is lithium-nickel-cobalt-manganese composite oxide (NCM), lithium-nickel-cobalt-aluminum composite oxide (NCA), lithium-cobalt composite oxide (LCO), and lithium-nickel composite oxide (NCM). It may contain one or more types of positive electrode active materials selected from the group consisting of complex oxide (LNO), lithium manganese (LMO), lithium iron phosphate (LFP), and lithium nickel-cobalt-manganese (NCM), but must be the above. The constituent materials are not limited to the positive electrode active material.
  • the type of solid electrolyte constituting the solid electrolyte layer is not particularly limited, but may include a sulfide-based solid electrolyte, for example, Li 2 SP 2 S 5 -LiI, Li 2 SP 2 S 5 -LiCl , Li 2 SP 2 S 5 -LiBr, Li 2 SP 2 S 5 -Li 2 O, Li 2 SP 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B2S3-LiI, Li 2 S-SiS 2 -P2S5-LiI, Li 2 SB 2 S 3 , Li 2 S -GeS 2 and Li 2 S-SiS 2 -Li 3 PO 4 It may be one or more selected from the group consisting of.
  • Figure 1a is a scanning electron microscope (SEM) photograph showing silver particles (Ag) before heat treatment, photochemical or photothermal irradiation processes for producing a hybrid graphene composite, which is a positive electrode active material included in the positive electrode for a solid battery according to the present invention. .
  • silver (Ag) particles before heat treatment, photochemical or photothermal irradiation have a spherical particle diameter of about 5 ⁇ m.
  • Figure 1b is a scanning electron microscope (SEM) photograph showing silver particles (Ag) after heat treatment, photochemical or photothermal irradiation processes.
  • Figure 1c is a scan showing a porous graphene structure (3D nanoporous graphene) before heat treatment, photochemical or photothermal irradiation process for producing a hybrid graphene composite, which is a positive electrode active material included in the positive electrode for a battery according to the present invention. This is an electron microscope (SEM) photo.
  • SEM electron microscope
  • the multilayer graphene has an overlapping or bent structure in a three-dimensional structure.
  • Figure 1d shows a hybrid graphene composite for an all-solid-state battery cathode active material according to the present invention, which was manufactured by subjecting a mixture of a three-dimensional porous graphene structure and a silver cathode material (LFP) to a heat treatment, photochemical, or photothermal irradiation process in an example herein. This is a scanning electron microscope (SEM) photo.
  • SEM scanning electron microscope
  • fine metal particles are simultaneously bound to the surface and inside of the graphene composite layer by photochemistry, photothermal irradiation, or heat treatment, and at the same time, the fine metal particles show a fixed structure that can be mutually bonded and solidified. is giving
  • Figure 1e is a conceptual diagram showing a structure in which graphene manufactured by photochemistry, photothermal irradiation, or heat treatment in d above is located and fixed in the empty space of metal or semiconductor microparticles in the embodiment of the present application.
  • Figure 1e is a conceptual diagram showing a structure in which graphene manufactured by photochemistry, photothermal irradiation, or heat treatment is located and fixed in the empty space of metal or semiconductor microparticles.
  • the metal or semiconductor fine particles may be bound inside and outside the graphene composite layer, and although not shown in the conceptual diagram, some fine metal particles may bond and solidify with each other depending on the irregular positions of the metal or semiconductor fine particles.
  • a graphene coating may be created on the surface of the metal or semiconductor fine metal particles by photochemistry, photothermal irradiation, or heat treatment.
  • a graphene coating structure is shown as a mesh on the surface of the particle.
  • Figure 2 shows electrochemical measurement materials (p-Aminophenol, This is a graph showing the current measurement results according to the concentration of PAP).
  • the size of the current signal gradually increases depending on the PAP concentration.
  • the signal of the graphene electrode which has the advantages of surface area and electron inflow and emission compared to the metal electrode, is larger, and the signal of the hybrid graphene composite electrode, which has lower resistance compared to the graphene electrode, is measured to be larger.
  • Figure 3 shows the current in PAP at the same concentration (10-3mM) for each of hybrid graphene composite, graphene, and metal (Au) for an all-solid-state battery positive electrode active material according to the present invention. This is a graph that compares values.
  • FIG. 3 it is a graph showing the difference in current signals measured for the same concentration of PAP for a hybrid graphene electrode (graphene metal composite), a metal electrode, and a graphene electrode of an electrode for an all-solid-state battery positive electrode active material. It can be seen that the size of the signal measured with the graphene metal composite electrode at the same concentration is much larger than that of the comparison electrodes. Therefore, it can be seen that the current signal of the graphene metal composite electrode of the present invention generates a larger signal than that of the comparison electrodes, and thus the signal to noise ratio (SNR) is greater than that of the comparison electrode.
  • SNR signal to noise ratio
  • Figure 4 shows a hybrid graphene electrode for an all-solid-state battery anode according to the present invention.
  • Figure 5 is an example of an all-solid-state battery including a positive electrode for an all-solid-state battery according to the present invention, a positive electrode containing a positive electrode active material (NMC), a sulfide-based solid electrolyte layer, and a positive electrode current collector (SUS) and the hybrid graphene.
  • NMC positive electrode active material
  • SUS positive electrode current collector
  • Figure 6 is a photograph showing a cross section of the positive electrode for an all-solid-state battery containing the hybrid graphene composite of the present invention in a charged (a) and discharged (b) state.
  • Figure 7 shows a hybrid graphene anode (left) produced according to the present invention and a coin cell battery (right) produced using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 복수 개의 미세입자(Micro Particle)와 다층 그래핀이 혼합된 구조를 가지는 그래핀 복합체로 이루어진 양극 활물질을 포함하되,상기 미세입자는 금속 또는 반도체 입자이며, 상기 다층 그래핀 표면 또는 내부에 결착되며, 상기 다층 그래핀은 여러 층의 그래핀이 적층되고 임의의 방향으로 굽혀져 있는 3차원 구조를 가지고,상기 미세입자는 상기 그래핀 표면 또는 내부에 결착되고,상기 미세입자 사이 빈 공간의 일부는 상기 그래핀 복합체가 채워져 상호 연결된 구조인 것을 특징으로 하는 하이브리드 그래핀을 포함하는 배터리용 양극에 관한 것이다.

Description

하이브리드 그래핀을 포함하는 배터리용 양극
본 발명은 배터리용 양극에 관한 것으로, 보다 상세하게는 그래핀(graphene) 기반 복합재료 (hybrid graphene)를 양극 활물질로 포함하는 양극 및 이와 관련된 배터리에 대한 것이다.
납축전지, 니켈-메탈 하이브리드 배터리 등 충방전이 가능한 다양한 이차전지가 있지만 그 중에서도 리튬이온전지(lithium-ion battery, LIB)는 높은 에너지 밀도, 높은 출력 밀도, 오랜 충방전을 견딜 수 있는 작동 전압 등을 이유로 스마트 폰(smart phone), 넷북(net book) 등의 휴대용 모바일 장치에 전원을 공급하는 전지로 사용될 뿐만 아니라, 하이브리드 자동차(hybrid vehicle) 등에 에너지를 공급하기 위한 에너지 공급부재 등 광범위하게 활용되고 있다.
배터리의 양극재로는 리튬산화물의 금속염 성분에 따라 LFP(리튬,철,인), NCM(니켈,코발트,망간), NCA(니켈, 코발트, 알루미늄) 등으로 구분되며, 각 재료의 비중과 구조 배치에 따라 그 성능이 결정된다.
에너지 밀도가 높은 NCM/NCA 삼원계 양극재가 널리 사용되고 있으며, 최근에는 가격이 저렴하고 수명이 길며 안전성이 높은 LFP계 양극재도 많이 사용되고 있다. 구체적인 일례로써, 대한민국 공개특허 제10-2014-0110572호에는 리튬 공기 전지용 양극이 개시된 바 있으며, 상세하게는 바인더에 담지된 제1 도전성 물질 및 제2 도전성 물질에 담지된 촉매를 포함하는 촉매층; 및전류 집전체를 포함하는 리튬 공기 전지용 양극에 관한 것이다. 이때, 상기 제1 도전성 물질 및 제2 도전성 물질은 흑연, 덴카 블랙, 케첸 블랙 등의 탄소 소재이다.
리튬이온 배터리의 양극재는 전체 재료비의 약 30~35%를 차지하는 핵심 소재로 금속염의 구성성분에 따라 LCO(LiCoO2), NCM(LiNiCoMn), NCA(LiNiCoAlO2), LMO(LiMn2O4), LFP(LiFePO4)등으로 구분된다. 현재 리튬이온전지의 성능을 향상시키기 위해 기존의 양극재에 첨가하는 도전재에 대한 연구가 진행되고 있다. 대표적인 양극 도전재인 흑연은 전기 전도성이 크지 않아서 충방전 시간이 오래 걸리고, 단위 부피당 배합해야 하는 양이 많기 때문에 동일 부피에 투입할 수 있는 양극재의 양이 적어져서 전지의 충전용량이 줄어든다는 단점이 있다.
따라서, 상기의 문제점을 해소 또는 완화해 종래 기술 대비 양극재의 특성을 향상시켜 리튬이온전지의 충전 용량과 전지 수명을 늘리고 충전 시간을 단축시킬 수 있는 새로운 양극 소재의 개발이 요구된다.
본 발명이 해결하고자 하는 기술적 과제는, 종래 흑연을 양극 활물질층으로 포함하는 배터리에서 흑연이 전기 전도성이 크지 않아서 충방전 시간이 오래 걸리고, 단위 부피당 배합해야 하는 양이 많기 때문에 동일 부피에 투입할 수 있는 양극재의 양이 적어져서 전지의 충전용량이 줄어든다는 문제점을 해결하는 것이다.
이를 위해 금속 혹은 반도체 입자가 그래핀에 용융 접합되어 3차원 네트워크를 형성하는 그래핀 복합재 다층구조의 하이브리드 그래핀을 포함하는 배터리용 양극 및 이를 포함하는 배터리를 제공하는 것이다.
본 발명에서는 이러한 문제점을 극복하기 위하여 금속 또는 반도체 입자를 그래핀 멀티 레이어와 상호 연결되는 네트워크 구조를 만들어, 충전 및 방전이 반복되어도 금속 또는 반도체 입자가 안정된 상태로 유지될 수 있는 하이브리드 그래핀 구조를 제안한다. 기존에 그래핀과 금속 또는 반도체 입자를 혼합하는 과정은 이미 생성된 그래핀과 단순 혼합하는 과정이기 때문에 금속 또는 반도체 입자와 그래핀의 유기적인 접합력이 부족하다.
본 발명에서는 그래핀을 제조하는 과정에 금속 또는 반도체 미세입자를 혼합하여 제조하기 때문에, 금속 또는 반도체 미세입자 표면이 용융되면서 그래핀과 응고되어 미세입자와 그래핀이 3차원 나노구조를 형성하며 접합된다.
또한 형성된 그래핀 복합체는 다층 그래핀으로 구성되기 때문에, 다층 구조의 그래핀의 표면 또는 내부에 금속 또는 반도체 미세입자가 결착되며 실리콘 미세입자 사이에는 그래핀 복합층이 채워져 상호 연결된 구조적 특징을 가진다.
이와 같이 금속 또는 반도체 미세입자와 다층 그래핀이 혼합된 구조를 가지는 그래핀 복합체로 이루어진 양극 활물질의 구조는 아래와 같은 효과를 가진다.
첫째, 금속 또는 반도체 미세입자의 표면이 그래핀으로 완전히 코팅되기 때문에, 금속 또는 반도체 미세입자와 리튬이온과 결합하며 발생하는 부피팽창을 효율적으로 억제한다. 이를 통해 과도한 부피팽창 및 수축과정으로 인해 발생되는 금속 또는 반도체 입자의 파괴와 전극에서 분리되는 문제를 해결할 수 있다.
둘째 다층 그래핀 레이어가 금속 또는 반도체의 위치를 고정해주는 지지대(Scaffold) 역할을 해준다. 이론적으로 그래핀은 강철보다 200배 강한 인장강도를 가지기 때문에 휘고 구부려도 쉽게 파손되지 않는다. 따라서 그래핀이 금속 또는 반도체 미세입자와 결합되어 다층구조를 형성하면 금속 또는 반도체 미세입자의 위치가 고정되어, 충방전으로 인한 금속 또는 반도체의 형태 변화에도 안정된 구조를 유지해 주는 지지대 역할을 하게 된다.
셋째, 그래핀은 높은 전자이동성과 전류밀도를 갖기 때문에 리튬이온과의 전자 이동을 원할하게 한다. 이를 통해 금속 또는 반도체 미세입자와 전자 이동이 원활하게 이루어져 충방전 속도를 높이고 그래핀 금속 또는 반도체 복합구조에 의한 충전 및 방전 효율을 향상시키게 된다.
넷째, 금속 및 반도체 미세입자는 배터리 충방전이 반복될수록, 입자 주변에 SEI(Solid Electrolyte Interphase)가 형성되어 입자들간에 전기적인 연결이 끊어지면서 배터리의 용량이 감소하게 된다. 하지만 그래핀으로 코팅된 입자의 경우에는 SEI가 형성되어도 전도성 그래핀으로 상호 연결된 네트워크를 유지하기 때문에 배터리 용량감소가 현저히 줄어들게 된다.
상기 기술적 과제를 달성하기 위해, 본 발명은 복수 개의 미세입자(Micro Particle)와 다층 그래핀이 혼합된 구조를 가지는 그래핀 복합체로 이루어진 양극 활물질을 포함하되, 상기 미세입자는 금속 또는 반도체 입자이며, 상기 다층 그래핀 표면 또는 내부에 결착되며, 일부 미세입자는 상호 결합응고되고, 상기 미세입자 표면이 광화학, 광열조사 또는 열처리 공정에 의해 용융되면서 그래핀과 응고되어 미세입자와 그래핀이 3차원 나노구조를 형성하며 접합되며, 상기 미세입자의 일부 또는 전체 미세입자의 표면에 그래핀이 코팅된 것으로 상기 다층 그래핀은 여러 층의 그래핀이 적층되고 임의의 방향으로 굽혀져 있는 3차원 구조를 가지고, 상기 미세 입자는 상기 그래핀 표면 또는 내부에 결착되고, 상기 미세 입자 사이 빈 공간의 일부는 상기 그래핀 복합체가 채워져 상호 연결된 구조인 것을 특징으로 하는 하이브리드 그래핀을 포함하는 배터리용 양극을 제공한다.
또한, 본 발명인 상기 미세 입자는 리튬-니켈-코발트-망간계 복합 산화물(NCM), 리튬-니켈-코발트-알루미늄계복합 산화물(NCA), 리튬-코발트계 복합 산화물(LCO) 및 리튬-니켈계 복합 산화물(LNO), 리튬 망간계(LMO), 리튬철 인산계(LFP), 리튬 니켈-코발트-망간계(NCM), 은(Ag), 실리콘(Si), 실리콘카바이드(Si2C, SiC 또는 SiC2를 포함하는 SiCX), 산화실리콘(SiO 또는 SiO2를 포함하는 SiOX), 실리콘 복합산화물 (Si-MgxSiOx), 마그네슘 메타실리케이트 (enstatite, MgSiO3), 포스터라이트 (foresterite, Mg2SiO4), 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 아연(Zn), 은 합금 (Ag alloy), 표면이 은(Ag)으로 코팅된 구리(Cu) 및 표면이 구리(Cu)로 코팅된 은(Ag)으로 이루어진 군으로부터 선택되는 금속 혹은 반도체로 이루어진 인 것을 특징으로 하는 하이브리드 그래핀을 포함하는 배터리용 양극을 제공한다.
또한, 본 발명은 상기 그래핀 복합체는 3차원 다공성 그래핀 구조체이며, 상기 미세입자가 상호 연결되어 형성된 네트워크 구조를 가지는 것을 특징으로 하는 하이브리드 그래핀을 포함하는 배터리용 양극을 제공한다.
또한, 본 발명은 양극 집전체 및 양극 활물질층을 포함하는 양극; 고체 전해질층; 및 제1항, 제2항, 또는 제3항 중 어느 한 항에 따른 양극;을 포함하는 배터리를 제공한다.
또한, 본 발명인상기 양극 활물질층은, 리튬-니켈-코발트-망간계 복합 산화물(NCM), 리튬-니켈-코발트-알루미늄계복합 산화물(NCA), 리튬-코발트계 복합 산화물(LCO) 및 리튬-니켈계 복합 산화물(LNO), 리튬 망간계(LMO), 리튬철 인산계(LFP), 리튬 니켈-코발트-망간계(NCM), 이루어진 군으로부터 선택되는 1종 이상의 양극 활물질을 포함하는 것을 특징으로 하는 배터리를 제공한다. 구체적으로 LFP LCO(LiCoO2), NCM(LiNiCoMn), NCA(LiNiCoAlO2), LMO(LiMn2O4), LFP(LiFePO4) 를 1종 이상 포함할 수 있다.
또한, 본 발명인 상기 고체 전해질층은, Li2S-P2S5-LiI, Li2S-P2S5-LiCl, Li2S-P2S5-LiBr, Li2S-P2S5-Li2O, Li2S-P2S5-Li2O-LiI, Li2S-SiS2, Li2S-SiS2-LiI, Li2S-SiS2-LiBr, Li2S-SiS2-LiCl, Li2S-SiS2-B2S3-LiI, Li2S-SiS2-P2S5-LiI, Li2S-B2S3, Li2S-GeS2 및 Li2S-SiS2-Li3PO4로 이루어진 군으로부터 선택되는 1종 이상의 고체 전해질을 포함하는 것을 특징으로 하는 배터리를 제공한다.
본 발명에 따른 배터리용 양극은, 광화학, 광열조사 또는 열처리 공정 방식으로 제조된 3차원 다공성 하이브리드 그래핀 복합체를 양극 활물질로 포함함으로써, 안정적인 그래핀 복합체 구조를 형성하고 높은 전기전도성으로 충방전 속도 및 효율을 현저히 개선시키며 리튬이온이 결합할 수 있는 용량을 극대화 시켜 성능 및 안정성을 두루 갖춘 리튬이온전지를 구현할 수 있다.
도 1a는 열처리, 광화학 또는 광열조사 공정을 실시하기 전의 은 입자(Ag)를 보여주는 주사전자현미경(SEM) 사진 및 개념도이다.
도 1b는 열처리, 광화학 또는 광열조사 공정을 실시한 후의 은 입자(Ag)를 보여주는 주사전자현미경(SEM) 사진이다.
도 1c는 금속 입자 없이 광화학, 광열조사 또는 열처리로 제조된 다공성 그래핀 구조체(3차원 나노 다공성 그래핀)을 보여주는 주사전자현미경(SEM) 사진이다.
도 1d는 본원 실시예에서 광화학, 광열조사 또는 열처리로 제조한 전고체전지 양극활물질용 하이브리드 그래핀 복합체를 보여주는 주사전자현미경(SEM) 사진이다.
도 1e는 본원 실시예에서 상기 (d)의 광화학, 광열조사 또는 열처리 반응으로 제조된 그래핀이 은(Ag)미세입자의 빈 공간(b)에 위치하여 고정된 구조를 보여주는 개념도이다.
도 2는 본 발명에 따른 전고체전지 양극 활물질용 하이브리드 그래핀 복합체 전극 (Hybrid Graphene complex electrode, Graphene-Ag electrode), 그래핀 전극(Graphene electrode) 및 금속 전극(Gold electrode) 각각에 대해 전기화학 측정물질(PAP)의 농도에 따른 전류 측정 결과를보여주는 그래프이다.
도 3은 본 발명에 따른 전고체전지 양극 활물질용 하이브리드 그래핀 복합체(Hybrid Graphene), 그래핀(Graphene) 및 금속(Metal(Au)) 각각에 대해 같은 농도(10-3mM)의 PAP에서의 전류 값을 대비해 보여주는 그래프이다.
도 4는 본 발명에 따른 전고체전지 양극용 하이브리드 그래핀 전극을 이용해
전기화학 측정물질(PAP)의 다양한 농도를 측정한 실시간 그래프이다.
도 5는 상기 본 발명에 따른 전고체전지용 양극을 포함하는 전고체전지의 일
례로서, 양극 활물질(NMC)을 포함하는 양극, 황화물계 고체 전해질층, 및 양극 집전체(SUS) 및 상기 하이브리드 그래핀 복합체로 이루어진 양극 활물질을 포함하는 양극을 구비한 전고체전지의 단면 모식도이다.
도 6은 본 발명의 하이브리드 그래핀 복합체를 포함하는 전고체전지용 양극의 충전(a)과 방전(b)상태의 단면을 보여주는 사진이다.
도 7은 본 발명의 제작된 하이브리드 그래핀 양극(좌)와 이를 이용해 제작한 코인셀 배터리(우)에 대한 사진이다.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명을 상세히 설명하도록 한다.
본 발명은 하이브리드 그래핀을 포함하는 배터리용 양극에 관한 것으로, 그래핀과 금속 입자의 복합재료인 하이브리드 그래핀 복합체를 양극 활물질로 구성된 것에 특징이 있다.
상기 하이브리드 그래핀 복합체는 양극 활물질층을 구성하는 양극재로써, 리튬이온전지로 구성하여 배터리가 충전될 때는 양극에서 리튬이온이 빠져나와 음극으로 이동하고, 배터리가 방전될 때는 리튬이온이 다시 양극으로 돌아가며 외부 회로를 통해 전류를 흐르게 한다.
이때, 상기 하이브리드 그래핀 복합체를 구성하는 그래핀은 높은 전자이동성으로 인해 전자 공급이 균일하고 원활하게 이루어지기 때문에 리튬이온전지의 충방전 속도 및 효율을 증가시키는 역할을 하며, 또한, 높은 영계수(Young's modulus)를 가져 상기 양극재 입자 등의 금속 입자와 리튬(Li)의 결합에 따른 양극 활물질 팽창 현상을 효율적으로 지지할 수 있다.
한편, 상기 하이브리드 그래핀 복합체를 구성하는 그래핀은 결함이 없는 순수한 그래핀이 아닌 3차원 다공성 그래핀 구조체로부터 유래한 것이 바람직하다.
상기 하이브리드 그래핀 복합체는, 여러 층의 그래핀이 적층되고 임의의 방향으로 굽혀져 있는 3차원 나노구조를 가지고, 상기 금속 입자는 광화학, 광열조사 또는 열처리에 의해 상기 그래핀 표면 또는 내부에 결착되며 일부 미세금속입자는 상호 결합응고된 구조이고,
상기 금속 입자 사이 빈 공간의 일부는 상기 그래핀 복합층이 채워져 상호 연결된 구조이다.
또한 상기 미세금속입자 표면에 그래핀 코팅된 구조일 수도 있다.
결함이 없는 순수한 그래핀은 그 자체로는 뛰어난 전기전도도와 높은 비표면적 등 우수한 물성을 가지지만, 비가역적인 자기응집 현상(selfaggregation)에 의해 높인 비표면적의 장점이 크게 저하된다.
반면, 단층 및/또는 복수층의 그래핀 시트 사이로 기공들이 3차원적으로 유기적으로 연결된 3차원 다공성 그래핀 구조체는 자기응집 현상이 감소되어 상대적으로 더 넓은 비표면적을 가지며, 전자 및 이온을 보다 빠르게 확산시키기 때문에 에너지 전환 및 저장 장치와 같은 전기화학적인 응용에 있어서 상대적으로 우월한 특성을 나타낸다. 또한, 3차원 다공성 그래핀 구조체는 그 제조 공정 중에 공정 변수의 제어를 통해 기공 특성(기공의 위치 및 크기 등)의 제어 또한 가능하다는 장점을 가진다.
나아가, 3차원 다공성 그래핀 구조체는 본 발명에 따른 그래핀-금속입자 복합체와 같이 금속 입자 등의 이종 소재를 흡착시키는 화학적 도핑(chemical doping)을 통해 그래핀의 전자 구조를 변화시켜 전기적 특성을 조절할 수도 있다.
한편, 3차원 다공성 그래핀 구조체의 제조방법은 특별히 제한되지 않으나, 경질 주형(hard template) 또는 연질 주형(soft template)을 활용하는 방법을 주로 이용한다. 경질 주형법을 사용하는 방법에는 구형의 고분자를 이용한 방법, 금속 산화물 입자를 이용하는 방법, 그리고 니켈폼과 같은 다공성 기질을 이용한 방법 등이 있으며, 연질 주형법은 계면활성제 분자가 자기 조립(selfassembly)되어 만들어진 마이셀 주형을 이용하여 기공 크기가 조절된 물질을 합성할 수 있으며, 경질 주형법에 비해 상대적으로 주형 제거가 용이하다는 장점을 가진다.
또한, 고분자(polymer) 코팅층을 형성한 후 고분자 내의 탄소 원자가 육각형의 고리 배열을 갖도록 안정화 반응을 유도하고 고온에서 탄화(carbonization)시켜 3차원 다공성 그래핀 구조체를 제조할 수도 있다. 이때, 상기고분자는 폴리메틸메타크릴레이트(poly(methyl methacrylate), PMMA), 폴리스티렌(polystyrene, PS), 폴리이미드(polyimide, PI), 폴리에테르이미드(Polyetherimide, PEI), 켑톤 필름(Kapton Film) 등을 구체적인 예로 들 수 있으나, 반드시 이에 제한되는 것으 아니며, 고온에서 탄화하여 그래핀을 형성하는 탄소 공급원으로서의 역할을 할 수 있는 고분자라면 그 구조, 분자량, 유리 전이온도 등에 대한 특별한 제약은 없다.
상기 그래핀과 복합화되어 하이브리드 그래핀 복합체를 구성하는 상기 금속 미세 입자는 리튬-니켈-코발트-망간계 복합 산화물(NCM), 리튬-니켈-코발트-알루미늄계복합 산화물(NCA), 리튬-코발트계 복합 산화물(LCO) 및 리튬-니켈계 복합 산화물(LNO), 리튬 망간계(LMO), 리튬철 인산계(LFP), 리튬 니켈-코발트-망간계(NCM), 은(Ag), 실리콘(Si), 실리콘카바이드(Si2C, SiC 또는 SiC2를 포함하는 SiCX), 산화실리콘(SiO 또는 SiO2를 포함하는 SiOX), 실리콘 복합산화물 (Si-MgxSiOx), 마그네슘 메타실리케이트 (enstatite, MgSiO3), 포스터라이트 (foresterite, Mg2SiO4), 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 아연(Zn), 은 합금 (Ag alloy), 표면이 은(Ag)으로 코팅된 구리(Cu) 및 표면이 구리(Cu)로 코팅된 은(Ag)으로 이루어진 군으로부터 선택되는 금속 혹은 반도체로 이루어진 미세 입자일 수 있고, 나아가, 상기 미세 입자는 상기 금속 또는 반도체 중 1종의 물질로 이루어진 코어 입자 및 상기 코어입자와 상이한 물질로 이루어진 코팅층을 포함하는 금속 혹은 반도체 입자(예를 들면, 은이 코팅된 구리 입자, 구리가 코팅된 은 입자, 산화물 코팅된 실리콘 입자, 복합 산화물 코팅된 실리콘 입자 등)일 수도 있으나, 반드시 전술한 금속 입자로 제한되는 것은 아니다.
그래핀과 금속 입자를 복합화하여 상기 하이브리드 그래핀 복합체를 제조하기 위한 방법으로는, 3차원 다공성 그래핀 구조체와 금속 입자를 볼 밀링(ball-milling) 등의 교반 공정을 통해 균일하게 혼합 및 복합화하는 방법도 가능하지만, 보다 바람직하게는 3차원 다공성 그래핀 구조체 및 금속 입자가 균일하게 혼합된 혼합물에 레이저 혹은 UV 등의 광(light)을 조사하거나 열처리 공정을 통해 상기 혼합물을 소결시켜, 금속 입자 간 상호연결, 그래핀 시트 간 상호 연결, 및 금속 입자와 그래핀 시트 간 상호 연결이 유기적으로 이루어진 3차원 네트워크 구조를 가지는 하이브리드 그래핀 복합체를 제조할 수 있다.
본 발명은 고체 전해질층이 포함된 전고체전지의 리튬이온전지에도 응용할 수 있으며, 상기 하이브리드 그래핀 복합체로 이루어진 양극 활물질을 포함하는 전고체전지는, 양극 집전체 및 양극 활물질층을 포함하는 양극, 고체 전해질층, 및 양극 집전체 및 상기 하이브리드 그래핀 복합체로 이루어진 양극 활물질을 포함하는 양극 활물질층을 포함하는 양극을 포함해 이루어질 수 있다.
이때, 상기 양극 활물질층은, 리튬-니켈-코발트-망간계 복합 산화물(NCM), 리튬-니켈-코발트-알루미늄계복합 산화물(NCA), 리튬-코발트계 복합 산화물(LCO) 및 리튬-니켈계 복합 산화물(LNO), 리튬 망간계(LMO), 리튬철 인산계(LFP), 리튬 니켈-코발트-망간계(NCM)로 이루어진 군으로부터 선택되는 1종 이상의 양극 활물질을 포함할 수 있으나, 반드시 상기 양극 활물질로 구성 물질이 제한되는 것은 아니다.
또한, 상기 고체 전해질층을 구성하는 고체 전해질의 종류는 특별히 제한되지 않으나, 황화물계 고체 전해질을 포함할 수 있고, 예를 들어, Li2S-P2S5-LiI, Li2S-P2S5-LiCl, Li2S-P2S5-LiBr, Li2S-P2S5-Li2O, Li2S-P2S5-Li2O-LiI, Li2S-SiS2, Li2S-SiS2-LiI, Li2S-SiS2-LiBr, Li2S-SiS2-LiCl, Li2S-SiS2-B2S3-LiI, Li2S-SiS2-P2S5-LiI, Li2S-B2S3, Li2S-GeS2 및 Li2S-SiS2-Li3PO4로 이루어진 군으로부터 선택되는 1종이상일 수 있다.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다.
본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
도 1a는 본 발명에 따른 고체전지용 양극에 포함되는 양극 활물질인 하이브리드 그래핀 복합체를 제조하기 위한 열처리, 광화학 또는 광열조사 공정을 실시하기 전의 은 입자(Ag)를 보여주는 주사전자현미경(SEM) 사진이다.
도 1a를 참조하면, 열처리, 광화학 또는 광열조사 전의 은(Ag) 입자는 구형 형상의 입자 지름은 약 5㎛를 갖는다.
도 1b는 열처리, 광화학 또는 광열조사 공정을 실시한 후의 은 입자(Ag)를 보여주는 주사전자현미경(SEM) 사진이다.
도 1b를 참조하면, 열처리, 광화학 또는 광열조사를 사용하여 은(Ag) 입자의 표면이 용융된 상태에서 인접 입자와 결합 응고된 것으로 확인되며, 일부 입자는 연결되지않아 빈 공간이 형성된 것을 알 수 있다.
도 1c는 본 발명에 따른 배터리용 양극에 포함되는 양극 활물질인 하이브리드 그래핀 복합체를 제조하기 위한 열처리, 광화학 또는 광열조사 공정을 실시하기 전의 다공성 그래핀 구조체(3차원 나노 다공성 그래핀)을 보여주는 주사전자현미경(SEM) 사진이다.
도 1c를 참조하면, 다층 그래핀이 3차원 구조로 겹치거나 굽혀진 구조를 가지는 것을 확인할 수 있다.
도 1d는 본원 실시예에서 3차원 다공성 그래핀 구조체 및 은 양극재(LFP)의 혼합물에 열처리, 광화학 또는 광열조사 공정을 실시해 제조한 본 발명에 따른 전고체전지 양극활물질용 하이브리드 그래핀 복합체를 보여주는 주사전자현미경(SEM) 사진이다.
도 1d를 참조하면, 본원 실시예에서 광화학, 광열조사 또는 열처리에 의해 미세금속입자는 상기 그래핀 복합층 표면 및 내부에 동시에 결착되고 동시에 미세금속입자는 상호 결합응고될 수 있는 고정된 구조를 보여주고 있다.
도 1e는 본원 실시예에서 상기 d의 광화학, 광열조사 또는 열처리로 제조된 그래핀이 금속 또는 반도체 미세입자의 빈 공간에 위치하여 고정된 구조를 보여주는 개념도이다.
도 1e는 광화학, 광열조사 또는 열처리로 제조된 그래핀이 금속 또는 반도체 미세입자의 빈 공간에 위치하여 고정된 구조를 보여주는 개념도이다. 상기 금속 또는 반도체 미세입자가 그래핀 복합층 내부 및 외부에 결착될 수 있으며, 상기 개념도에는 미표시되었지만, 금속 또는 반도체 미세입자의 불규칙한 위치에 따라 일부 미세금속입자는 상호 결합응고될 수 있다.
또한 상기 금속 또는 반도체 미세금속입자는 광화학, 광열조사 또는 열처리로 표면에 그래핀코팅이 생성될 수 있다. 도 1e에서 입자표면에 그물망으로 그래핀 코팅구조가 도시되어 있다.
기존 그래핀의 경우 고온 공정을 비롯해 복잡한 과정이 필요하지만, 광화학, 광열조사 또는 열처리 합성 그래핀은 원스텝 공정으로 비교적 간단하게 합성할 수 있다
도 2는 본 발명에 따른 전고체전지 양극 활물질용 하이브리드 그래핀복합체(Graphene-Ag electrode), 그래핀 전극(Graphene electrode) 및 금속 전극(Gold electrode) 각각에 대해 전기화학 측정물질(p-Aminophenol, PAP)의 농도에 따른 전류 측정 결과를 보여주는 그래프이다.
각각의 전극에 대해 PAP 농도에 따라 전류 신호의 크기가 점점 커지게 된다.
또한, 같은 농도의 PAP에 대해서 금속 전극에 비해 표면적과 전자유입 및 방출의 장점이 있는 그래핀 전극의 신호가 더 크게 되고, 그래핀 전극 대비 저항이 작은 하이브리드 그래핀 복합체 전극의 신호가 더 크게 측정됨을 알 수있다.
도 3은 본 발명에 따른 전고체전지 양극 활물질용 하이브리드 그래핀복합체(Hybrid Graphene), 그래핀(Graphene) 및 금속(Metal(Au)) 각각에 대해 같은 농도(10-3mM)의 PAP에서의 전류 값을 대비해 보여주는 그래프이다.
도 3을 참조하면, 전고체전지 양극 활물질용 전극의 하이브리드 그래핀 전극(그래핀 금속 복합체)과 금속전극, 그래핀 전극에 대해 같은 농도의 PAP에 대해 측정한 전류신호의 차이를 보여주는 그래프이다. 같은 농도에서 그래핀 금속 복합체 전극으로 측정된 신호의 크기가 비교 전극들에 비하여 매우 크다는 것을 확인할 수 있다. 따라서 본 발명인 그래핀 금속 복합체 전극의 전류신호가 비교 전극들에 비해 더 큰 신호를 발생시켜서 SNR(Signal to Noise Ration, 신호대 잡음비)이 비교 전극에 비해 더 크다는 것을 알 수 있다.
도 4는 본 발명에 따른 전고체전지 양극용 하이브리드 그래핀 전극을 이용해
전기화학 측정물질(PAP)의 다양한 농도를 측정한 실시간 그래프이다.
도 5는 상기 본 발명에 따른 전고체전지용 양극을 포함하는 전고체전지의 일례로서, 양극 활물질(NMC)을 포함하는 양극, 황화물계 고체 전해질층, 및 양극 집전체(SUS) 및 상기 하이브리드 그래핀 복합체로 이루어진 양극 활물질을 포함하는 양극 활물질층을 포함하는 양극을 구비한 전고체전지의 단면 모식도이다.
도 6은 본 발명의 하이브리드 그래핀 복합체를 포함하는 전고체전지용 양극의 충전(a)과 방전(b)상태의 단면을 보여주는 사진이다.
기존양극은 리튬이 불균일하고 기공이 발생하여 덴드라이트(Dendrite) 형태로 침적(Deposition) 되는 것이 문제이나, 은미세금속입자는 리튬에 녹아들고 리튬이 결정화되는 에너지를 낮추어줌으로써 리튬이 균일하게 성장하게 된다. 또한 그래핀(Graphene)은 리튬 금속이 성장하여 고체전해질과 직접적으로 닿게되는 것을 방지하여 고체전해질이 분해되는 것을 막고 내구성(Durabiltiy) 수명을 향상 시킨다.
리튬금속이 침적(deposition) 되는 3차원 호스트(Host) 역할을 해주고 고체전해질을 보호해주는 보호층(Protective layer) 역할을 해서 내구성을 향상 시킬 수 있다.
도 7은 본 발명으로 제작된 하이브리드 그래핀 양극(좌)와 이를 이용해 제작한 코인셀 배터리(우)을 보여준다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.

Claims (9)

  1. 복수 개의 미세입자(Micro Particle)와 다층 그래핀이 혼합된 구조를 가지는 그래핀 복합체로 이루어진 양극 활물질을 포함하되,
    상기 미세입자는 금속 또는 반도체 입자이며, 상기 다층 그래핀 표면 또는 내부에 결착되며,
    상기 다층 그래핀은 여러 층의 그래핀이 적층되고 임의의 방향으로 굽혀져 있는 3차원 구조를 가지고,
    상기 미세입자는 상기 그래핀 표면 또는 내부에 결착되고,
    상기 미세입자 사이 빈 공간의 일부는 상기 그래핀 복합체가 채워져 상호 연결된 구조인 것을 특징으로 하는 하이브리드 그래핀을 포함하는 배터리용 양극.
  2. 제1항에 있어서,
    상기 미세입자 표면에 그래핀이 코팅된 것에 특징이 있는 하이브리드 그래핀을 포함하는 배터리용 양극.
  3. 제1항에 있어서,
    상기 미세입자 표면이 용융되면서 그래핀과 응고되어 미세입자와 그래핀이 3차원 나노구조를 형성하며 접합되는 것에 특징이 있는 하이브리드 그래핀을 포함하는 배터리용 양극.
  4. 제1항에 있어서,
    상기 그래핀 복합체는 광화학, 광열조사 또는 열처리 공정에 의해 생성되는 것에 특징이 있는 하이브리드 그래핀을 포함하는 배터리용 양극.
  5. 제1항에 있어서,
    상기 배터리는 리튬이온전지인 것에 특징이 있는 하이브리드 그래핀을 포함하는 배터리용 양극.
  6. 제1항에 있어서,
    상기 미세 입자는 리튬-니켈-코발트-망간계 복합 산화물(NCM), 리튬-니켈-코발트-알루미늄계복합 산화물(NCA), 리튬-코발트계 복합 산화물(LCO) 및 리튬-니켈계 복합 산화물(LNO), 리튬 망간계(LMO), 리튬철 인산계(LFP), 리튬 니켈-코발트-망간계(NCM), 은(Ag), 실리콘(Si), 실리콘카바이드(Si2C, SiC 또는 SiC2를 포함하는 SiCX), 산화실리콘(SiO 또는 SiO2를 포함하는 SiOX), 실리콘 복합산화물 (Si-MgxSiOx), 마그네슘 메타실리케이트 (enstatite, MgSiO3), 포스터라이트 (foresterite, Mg2SiO4), 금(Au), 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 아연(Zn), 은 합금 (Ag alloy), 표면이 은(Ag)으로 코팅된 구리(Cu) 및 표면이 구리(Cu)로 코팅된 은(Ag)으로 이루어진 군으로부터 선택되는 금속 혹은 반도체로 이루어진 인 것을 특징으로 하는 하이브리드 그래핀을 포함하는 배터리용 양극.
  7. 제1항에 있어서,
    상기 그래핀 복합체는 3차원 다공성 그래핀 구조체이며,
    상기 미세입자가 상호 연결되어 형성된 네트워크 구조를 가지는 것을 특징으로 하는 하이브리드 그래핀을 포함하는 배터리용 양극.
  8. 양극 집전체 및 양극 활물질층을 포함하는 양극;
    고체 전해질층; 및
    제1항 내지 제7항 중 어느 한 항에 따른 양극;
    을 포함하는 리튬이온전지.
  9. 제8항에 있어서,
    상기 고체 전해질층은, Li2S-P2S5-LiI, Li2S-P2S5-LiCl, Li2S-P2S5-LiBr, Li2S-P2S5-Li2O, Li2S-P2S5-Li2O-LiI, Li2S-SiS2, Li2S-SiS2-LiI, Li2S-SiS2-LiBr, Li2S-SiS2-LiCl, Li2S-SiS2-B2S3-LiI, Li2S-SiS2-P2S5-LiI, Li2S-B2S3, Li2S-GeS2 및 Li2S-SiS2-Li3PO4로 이루어진 군으로부터 선택되는 1종 이상의 고체 전해질을 포함하는 것을 특징으로 하는 리튬이온전지.
PCT/KR2023/008473 2022-09-27 2023-06-19 하이브리드 그래핀을 포함하는 배터리용 양극 WO2024071575A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220122800 2022-09-27
KR10-2022-0122800 2022-09-27
KR1020230011558A KR102545572B1 (ko) 2022-09-27 2023-01-30 하이브리드 그래핀 양극이 포함된 배터리
KR10-2023-0011558 2023-01-30

Publications (1)

Publication Number Publication Date
WO2024071575A1 true WO2024071575A1 (ko) 2024-04-04

Family

ID=86945979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008473 WO2024071575A1 (ko) 2022-09-27 2023-06-19 하이브리드 그래핀을 포함하는 배터리용 양극

Country Status (2)

Country Link
KR (1) KR102545572B1 (ko)
WO (1) WO2024071575A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241650A (zh) * 2013-06-14 2014-12-24 中国科学院上海硅酸盐研究所 基于三维石墨烯的复合正极材料及其制备方法
KR20170094459A (ko) * 2015-11-11 2017-08-17 사빅 글로벌 테크놀러지스 비.브이. 다수의 요크/쉘 구조를 포함하는 다층 그래핀 물질
JP2020064869A (ja) * 2011-10-07 2020-04-23 株式会社半導体エネルギー研究所 正極活物質層及び蓄電装置
KR102270809B1 (ko) * 2020-06-30 2021-06-30 (주)바이오제네시스 하이브리드 그래핀 전극
KR20210118118A (ko) * 2019-01-25 2021-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전고체 전지 및 그 제작 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017123B2 (ja) 2018-06-01 2022-02-08 トヨタ自動車株式会社 正極合材、全固体電池および正極合材の製造方法
KR20200129379A (ko) 2019-05-08 2020-11-18 주식회사 엘지화학 전고체전지의 제조방법 및 이를 이용하여 제조되는 전고체전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064869A (ja) * 2011-10-07 2020-04-23 株式会社半導体エネルギー研究所 正極活物質層及び蓄電装置
CN104241650A (zh) * 2013-06-14 2014-12-24 中国科学院上海硅酸盐研究所 基于三维石墨烯的复合正极材料及其制备方法
KR20170094459A (ko) * 2015-11-11 2017-08-17 사빅 글로벌 테크놀러지스 비.브이. 다수의 요크/쉘 구조를 포함하는 다층 그래핀 물질
KR20210118118A (ko) * 2019-01-25 2021-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전고체 전지 및 그 제작 방법
KR102270809B1 (ko) * 2020-06-30 2021-06-30 (주)바이오제네시스 하이브리드 그래핀 전극

Also Published As

Publication number Publication date
KR102545572B1 (ko) 2023-06-29

Similar Documents

Publication Publication Date Title
KR100609693B1 (ko) 리튬 단이온 전도 무기 첨가제를 포함하는 리튬이차전지용 복합 고분자 전해질 및 그 제조 방법
WO2011112042A2 (ko) 유기고분자-규소 복합체 입자 및 그 제조방법과 이를 포함하는 음극 및 리튬 이차전지
WO2012020942A2 (ko) 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지
WO2012138115A2 (ko) 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법
WO2013062337A2 (ko) 케이블형 이차전지
WO2011142575A9 (ko) 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2013055186A1 (ko) 케이블형 이차전지
WO2013100651A1 (ko) 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2012138152A2 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2013055185A2 (ko) 케이블형 이차전지
WO2013062336A1 (ko) 케이블형 이차전지
WO2012177016A2 (ko) 신규 구조 전극조립체 및 이를 이용한 이차전지
US11888153B2 (en) Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2021221272A1 (ko) 전고체 이차 전지
WO2013055187A1 (ko) 케이블형 이차전지
WO2015160127A1 (ko) 플라즈마를 이용한 실리콘나노복합체 분산액 제조방법 및 이를 이용한 음극활물질, 리튬이차전지
WO2014084678A1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함한 리튬 이차전지
WO2012118338A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2015199384A1 (ko) 리튬 이차전지
WO2014077633A1 (ko) 무선 충전이 가능한 케이블형 이차전지
WO2019059662A2 (ko) 금속 전극을 구비하는 금속이차전지
CN114335550B (zh) 三维有机框架复合材料的制备方法、锂金属负极及电池
WO2019103498A1 (ko) 실리콘계 입자-고분자 복합체, 및 이를 포함하는 음극 활물질
WO2024071575A1 (ko) 하이브리드 그래핀을 포함하는 배터리용 양극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872702

Country of ref document: EP

Kind code of ref document: A1