WO2024066839A1 - 热泵热水器 - Google Patents

热泵热水器 Download PDF

Info

Publication number
WO2024066839A1
WO2024066839A1 PCT/CN2023/114813 CN2023114813W WO2024066839A1 WO 2024066839 A1 WO2024066839 A1 WO 2024066839A1 CN 2023114813 W CN2023114813 W CN 2023114813W WO 2024066839 A1 WO2024066839 A1 WO 2024066839A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
evaporator
heat pump
sub
section
Prior art date
Application number
PCT/CN2023/114813
Other languages
English (en)
French (fr)
Inventor
刘裕
向毅
王伟戈
黄存芳
黄民柱
张海能
梁智文
Original Assignee
海信家电集团股份有限公司
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222650045.6U external-priority patent/CN218269578U/zh
Priority claimed from CN202222650002.8U external-priority patent/CN218269577U/zh
Priority claimed from CN202223072734.XU external-priority patent/CN218645772U/zh
Priority claimed from CN202223072717.6U external-priority patent/CN218600009U/zh
Priority claimed from CN202223606329.1U external-priority patent/CN218936670U/zh
Application filed by 海信家电集团股份有限公司, 海信(广东)空调有限公司 filed Critical 海信家电集团股份有限公司
Publication of WO2024066839A1 publication Critical patent/WO2024066839A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/06Arrangement of mountings or supports for heaters, e.g. boilers, other than space heating radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/16Arrangements for water drainage 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the present disclosure relates to the technical field of household appliances, and in particular to a heat pump water heater.
  • the heat pump water heater can introduce cold water into the water tank from the water inlet, and heat the cold water into hot water through the heat pump device, and then let the hot water flow out through the water outlet for users to use.
  • a heat pump water heater comprising a water tank assembly and a heat pump device.
  • the water tank assembly comprises a first shell, a water tank body and a condenser.
  • the water tank body is arranged in the first shell, and the water tank body has a water inlet and a water outlet.
  • the condenser is arranged in the first shell, and is configured to release heat to heat the water in the water tank body.
  • the heat pump device comprises a second shell, an evaporator, a compressor, a throttling assembly and a fan assembly.
  • the second shell has a first air inlet and a first air outlet.
  • the evaporator is located in the second shell, the evaporator is located between the first air inlet and the first air outlet, and is configured to absorb heat from the air.
  • the compressor is located in the second shell and is arranged on one side of the evaporator.
  • the throttling assembly is arranged between the evaporator and the condenser, and the compressor, the condenser, the throttling assembly and the evaporator are connected in sequence and form a refrigerant circulation loop.
  • the fan assembly is arranged on the other side of the evaporator opposite to the one side, and is configured to introduce external air into the evaporator. Wherein, the fan assembly comprises a volute and a wind wheel.
  • the volute has a second air inlet and a second air outlet volute extension.
  • the second air inlet is arranged opposite to the evaporator.
  • the second air outlet is connected to the second air inlet, and the second air outlet is opposite to and connected to the first air outlet along the axial direction of the second shell.
  • the wind wheel is arranged in the volute, and the air entering the second shell from the first air inlet is suitable for flowing through the evaporator and exchanging heat with the evaporator, and then entering the volute through the second air inlet and being discharged from the first air outlet through the second air outlet.
  • the volute also includes a volute extension, one end of the volute extension is connected to the second air outlet, and the other end of the volute extension is opposite to the first air outlet. From the second air outlet toward the first air outlet, the volute extension is inclined toward the direction of the evaporator.
  • FIG1 is a structural diagram of a heat pump water heater according to some embodiments.
  • FIG2 is a cross-sectional view of a heat pump water heater according to some embodiments.
  • FIG3 is a partial cross-sectional view of a heat pump water heater according to some embodiments.
  • FIG4 is a partial structural diagram of a heat pump device and a water tank assembly according to some embodiments.
  • FIG5 is a structural diagram of the heat pump water heater in FIG4 from another angle
  • FIG6 is a structural diagram of a first sub-housing of a heat pump water heater according to some embodiments.
  • FIG7 is a partial enlarged view of the circle A1 in FIG6;
  • FIG8 is a partial enlarged view of the circle B in FIG6;
  • FIG9 is a structural diagram of a second sub-housing of a heat pump water heater according to some embodiments.
  • FIG10 is a partial enlarged view of the circle C1 in FIG9 ;
  • FIG11 is a partial enlarged view of the circle D in FIG9 ;
  • FIG. 12 is a structural diagram of a mounting plate of a heat pump water heater according to some embodiments.
  • FIG. 13 is another structural diagram of a first sub-housing of a heat pump water heater according to some embodiments.
  • FIG14 is a partial enlarged view of the circle A2 in FIG13;
  • 15 is another structural diagram of a second sub-housing of a heat pump water heater according to some embodiments.
  • FIG16 is a partial enlarged view of the circle C2 in FIG15;
  • 17 is a cross-sectional view of a housing and a top cover of a heat pump water heater according to some embodiments
  • FIG18 is a partial enlarged view of the circle E in FIG17;
  • FIG19 is a partial enlarged view of the circle F in FIG17;
  • FIG. 20 is an exploded view of a heat pump water heater according to some embodiments.
  • FIG. 21 is a structural diagram of a fan assembly and an evaporator according to some embodiments.
  • FIG22 is a partial enlarged view of the circle G in FIG21;
  • FIG. 23 is a front view of a fan assembly and an evaporator according to some embodiments.
  • FIG. 24 is a side view of a fan assembly and an evaporator according to some embodiments.
  • FIG25 is a top view of the fan assembly and evaporator in FIG24;
  • 26 is another front view of a fan assembly and an evaporator according to some embodiments.
  • FIG. 27 is a top view of a heat pump water heater according to some embodiments.
  • FIG28 is a partial structural diagram of a heat pump device according to some embodiments.
  • 29 is another side view of a fan assembly and evaporator according to some embodiments.
  • FIG30 is a structural diagram of a filter assembly according to some embodiments.
  • FIG31 is a structural diagram of a filter assembly and a second housing according to some embodiments.
  • FIG32 is a structural diagram of a heat pump device of a heat pump water heater according to some embodiments.
  • FIG33 is a structural diagram of a volute according to some embodiments.
  • FIG34 is a structural diagram of a base according to some embodiments.
  • FIG35 is a structural diagram of a first water receiving trough and a drainage trough according to some embodiments.
  • FIG36 is a partial enlarged view of the circle P in FIG35;
  • FIG37 is a structural diagram of a second water receiving trough and a water guiding trough according to some embodiments.
  • FIG38 is a partial enlarged view of the circle Q in FIG37;
  • 39 is a top view of a base according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • Coupled and “connected” and their derivatives may be used.
  • the term “connected” should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the term “coupled” indicates that two or more components are in direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents of this document.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C", and both include the following Combination of A, B and C: A only, B only, C only, combination of A and B, combination of A and C, combination of B and C, and combination of A, B and C.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • Heat pump water heaters are a new type of water heater that emerged after electric water heaters, gas water heaters and solar water heaters. Heat pump water heaters heat the water in the water tank by absorbing heat from the air. This avoids the problems of electric water heater leakage and dry burning, as well as the possible gas poisoning when using gas water heaters, and overcomes the disadvantage of solar water heaters being greatly affected by the weather. It has the advantages of high efficiency and energy saving, safety and environmental protection, all-weather operation, and convenience of use.
  • the heat pump water heater 100 includes a water tank assembly 1 and a heat pump device 2.
  • the water tank assembly 1 includes a first shell 11, a water tank body 12 and a condenser.
  • the water tank body 12 is disposed in the first shell 11 and is configured to store water.
  • the water tank body 12 has a water inlet 121 and a water outlet 122.
  • the water inlet 121 and the water outlet 122 can be disposed at both ends of the axial direction of the water tank body 12.
  • the water inlet 121 is configured to connect an external pipeline so that cold water can flow into the water tank body 12 through the water inlet 121, and the cold water can flow out of the water tank body 12 through the water outlet 122 after being heated for use by the user.
  • the condenser is disposed in the first housing 11 , and the condenser may be a heat-conducting member of a hollow tubular structure.
  • the condenser is a copper tube and is wound around the outside of the water tank body 12 .
  • the heat pump device 2 is located at the top of the water tank assembly 1.
  • the heat pump device 2 includes a second housing 21, and a compressor 22 and an evaporator 23 contained in the second housing 21.
  • the evaporator 23 is configured to absorb heat from the air.
  • the compressor 22 has an air inlet and an exhaust port, the exhaust port of the compressor 22 is connected to one end of the condenser, and the air inlet of the compressor 22 is connected to one end of the evaporator 23.
  • the heat pump device 2 further includes a throttling assembly 24.
  • the throttling assembly 24 is connected between the other end of the evaporator 23 and the other end of the condenser.
  • the compressor 22, the condenser, the throttling assembly 24 and the evaporator 23 are sequentially connected to form a refrigerant circulation loop.
  • the refrigerant can flow in the refrigerant circulation loop, so that the condenser and the water tank body 12 can exchange heat to heat the water in the water tank body 12.
  • the heat pump device 2 further includes a fan assembly 25.
  • the fan assembly 25 is disposed on one side of the evaporator 23 and is configured to draw external air into the second housing 21, and to introduce the air inside the second housing 21 into the evaporator 23 to perform heat exchange with the evaporator 23. After the refrigerant inside the evaporator 23 absorbs heat, it returns to the compressor 22 to be compressed again, and the cycle is repeated, and the heat energy in the air is continuously sent to the water, so that the water temperature in the water tank body 12 increases.
  • the heat pump device 2 further includes an electric control box 26.
  • the electric control box 26 is coupled to the compressor 22, the evaporator 23 and the fan assembly 25 to control the normal operation of the heat pump water heater 100.
  • the electric control box 26 and the compressor 22 are located on the same side of the evaporator 23 and opposite to the fan assembly 25.
  • the electric control box 26 is configured to control the normal operation of the heat pump water heater 100.
  • the fan assembly 25 and the compressor 22 are respectively located on both sides of the thickness direction of the evaporator 23 (the left and right direction as shown in FIG. 2 ).
  • the fan assembly 25 When the heat pump water heater 100 is working, the fan assembly 25 is running. Under the action of the fan assembly 25, a large amount of air flows through the outer surface of the evaporator 23. The heat in the air is absorbed by the evaporator 23, and the temperature of the air is reduced to become cold air. The cold air is then discharged from the fan assembly 25.
  • the refrigerant in the evaporator 23 absorbs heat and vaporizes, and is then sucked into the compressor 22.
  • the refluxed low-pressure refrigerant gas is compressed into high-temperature, high-pressure gas and sent to the condenser wrapped around the outer wall of the water tank body 12.
  • the heat generated by the high-temperature, high-pressure gas is transferred to the inside of the water tank body 12 by heat conduction through the condenser to heat the water in the water tank body 12.
  • the refrigerant in the condenser is cooled into liquid under the continuous action of pressure, and the liquid flows into the evaporator 23 again after being throttled and cooled by the throttling component 24 (such as an expansion valve). Since the pressure in the evaporator 23 drops suddenly, the liquid refrigerant evaporates rapidly into gas at the evaporator 23 and absorbs a large amount of heat. In this repeated cycle, the heat energy in the air is continuously sent to the water, so that the water temperature in the water tank body 12 increases.
  • the throttling component 24 such as an expansion valve
  • the first air inlet and the first air outlet of the heat pump water heater 100 are symmetrically distributed about the top cover, that is, the line connecting the centers of the first air inlet and the first air outlet passes through the center of the top cover. In this way, the air entering the second housing 21 may be disturbed by the electric control box 26 inside the second housing 21.
  • some embodiments of the present disclosure provide a heat pump water heater 100, in which the first air inlet and the first air outlet are non-centrally symmetrically distributed about the top cover, and the first air inlet is arranged opposite to the compressor 22 to increase the air inlet space and avoid interference with the air flow inside the second shell 21.
  • the second air outlet of the volute is provided with a volute extension to connect the second air outlet with the first air outlet.
  • the volute extension is tilted toward the center of the evaporator 23 and the wind wheel to reduce the occupation of the internal space of the second housing 21 and avoid affecting the installation of the second housing 21.
  • the heat pump device 2 further comprises a base 28, which is disposed on a side of the mounting plate 13 away from the water tank assembly 1.
  • the compressor 22, the evaporator 23, the throttling assembly 24, the fan assembly 25 and the electric control box 26 are respectively disposed on a side (such as the upper side) of the base 28 away from the water tank assembly 1.
  • the base 28 is connected to the water tank assembly 1 to complete the assembly of the heat pump device 2 and the water tank assembly 1.
  • the water tank assembly 1 includes a mounting plate 13.
  • the mounting plate 13 is disposed at one axial end of the first housing 11.
  • the mounting plate 13 is disposed at the top of the first housing 11 to facilitate installation of the heat pump device 2.
  • a first accommodating chamber 10 is defined between the mounting plate 13 and the first housing 11, and the water tank body 12 is located in the first accommodating chamber 10.
  • the lower end of the second housing 21 is detachably connected to the mounting plate 13.
  • the second housing 21 and the mounting plate 13 form a second accommodating chamber 20 (i.e., an accommodating chamber), and the compressor 22, the evaporator 23, the throttling assembly 24, the fan assembly 25, and the electric control box 26 are all located in the second accommodating chamber 20.
  • the heat pump water heater 100 further includes a display device 27 (eg, a display panel), which is disposed on the second housing 21 .
  • the display device 27 is configured to display the water temperature in the water tank body 12 .
  • one of the second housing 21 and the mounting plate 13 is provided with a receiving portion 131, and the other of the second housing 21 and the mounting plate 13 is provided with a clamping portion 215, which is clamped in the receiving portion 131 to connect the second housing 21 and the mounting plate 13.
  • the second housing 21 includes the clamping portion 215, which may be a boss.
  • the mounting plate 13 includes the receiving portion 131, which may be a groove.
  • the second housing 21 can be pre-installed on the mounting plate 13 by the cooperation between the engaging portion 215 and the accommodating portion 131, and then the display device 27 is wired, thereby preventing the second housing 21 from falling off from the mounting plate 13 during wiring.
  • the assembly method is simple, easy to operate, and can improve assembly efficiency.
  • the receiving portion 131 is disposed at the outer periphery of the mounting plate 13.
  • the receiving portion 131 is formed by a portion of the mounting plate 13 being recessed toward the central axis of the mounting plate 13.
  • the engaging portion 215 is disposed on the inner wall surface of the second housing 21 and is located on a side of the second housing 21 adjacent to the mounting plate 13. During assembly, the second housing 21 can be pre-installed on the mounting plate 13 by the engagement of the engaging portion 215 with the receiving portion 131.
  • one end of the engaging portion 215 extends toward the central axis of the second housing 21, and the other end of the engaging portion 215 is connected to the second housing 21.
  • the width of the one end of the engaging portion 215 is smaller than the width of the other end, so as to cooperate with the corresponding accommodating portion 131.
  • the mounting plate 13 includes a mounting plate body 132 and a mounting plate body 132 connected to each other.
  • Matching portion 133 The mounting plate body 132 is connected to the first housing 11 , the matching portion 133 is arranged in the circumferential direction of the mounting plate body 132 and extends in a direction toward the top of the second housing 21 , and an accommodating portion 131 is formed on the matching portion 133 .
  • the shape of the mounting plate body 132 is adapted to the shape of the top of the first shell 11 to separate the heat pump device 2 from the water tank body 12 to prevent water in the water tank body 12 from entering the second shell 21 and causing a short circuit in the circuit of the heat pump device 2.
  • the matching portion 133 is located at the edge of the mounting plate body 132 and extends to a side away from the water tank assembly 1.
  • the matching portion 133 extends along the circumference of the mounting plate body 132 and is perpendicular to the mounting plate body 132.
  • the matching portion 133 is spaced apart from the outer circumference of the mounting plate body 132, so that after the second shell 21 is assembled with the mounting plate 13, the matching portion 133 can be located in the second shell 21, and at this time, the lower end surface of the second shell 21 abuts against the outer circumference of the mounting plate body 132.
  • the mounting plate 13 has a simple structure and is easy to process, and can improve the sealing of the connection between the second shell 21 and the mounting plate 13, preventing external liquid from entering the second shell 21 from the connection, thereby playing a waterproof role for the compressor 22 and the like.
  • the second housing 21 includes a first sub-housing 211 and a second sub-housing 212 that are detachably connected.
  • the engaging portion 215 includes a first sub-engaging portion 2111 and a second sub-engaging portion 2121.
  • the first sub-housing 211 is provided with a plurality of first sub-engaging portions 2111, which are arranged at intervals along the circumference of the first sub-housing 211.
  • the second sub-housing 212 is provided with a plurality of second sub-engaging portions 2121, which are arranged at intervals along the circumference of the second sub-housing 212.
  • the plurality of accommodating portions 131 include a plurality of first sub-accommodating portions 1311 and a plurality of second sub-accommodating portions 1312.
  • first sub-engaging portions 2111 are respectively located in the first sub-accommodating portions 1311 to pre-install the first sub-housing 211 on the mounting plate 13.
  • second sub-engaging portions 2121 are respectively located in the second sub-accommodating portions 1312 to pre-install the second sub-housing 212 on the mounting plate 13.
  • the display device 27 is disposed in one of the first sub-housing 211 and the second sub-housing 212. As shown in FIG6 , the display device 27 is disposed in the first sub-housing 211. At this time, when the display device 27 is installed on the first sub-housing 211, the first sub-housing 211 can be pre-installed on the mounting plate 13 by the cooperation of the first sub-engaging portion 2111 and the first sub-accommodating portion 1311, and then the display device 27 is wired, so as to prevent the first sub-housing 211 from falling off from the mounting plate 13 during wiring. Finally, the second sub-housing 212 is connected to the first sub-housing 211, so as to provide sufficient space for the wiring operation.
  • At least two of the plurality of first sub-engaging portions 2111 located at both ends of the circumference of the first sub-housing 211 have first guide surfaces. At least two of the plurality of second sub-engaging portions 2121 located at both ends of the circumference of the second sub-housing 212 have second guide surfaces.
  • the at least two first sub-engaging parts 2111 include two first sub-engaging parts 2111, and the first guide surfaces of the two first sub-engaging parts 2111 are arranged opposite to each other.
  • the at least two second sub-engaging parts 2121 include two second sub-engaging parts 2121, and the second guide surfaces of the two second sub-engaging parts 2121 are arranged opposite to each other.
  • At least two of the plurality of first sub-accommodating portions 1311 have a third guide surface, which contacts the first guide surface.
  • At least two of the plurality of second sub-accommodating portions 1312 have a fourth guide surface, which contacts the second guide surface.
  • the first guide surface cooperates with the third guide surface to quickly install the first sub-housing 211 on the mounting plate 13.
  • the second guide surface cooperates with the fourth guide surface to quickly install the second sub-housing 212 on the mounting plate 13. In this way, the assembly efficiency between the housing and the mounting plate 13 is improved.
  • the plurality of second sub-engaging portions 2121 on the second sub-housing 212 are respectively located at two ends of the circumferential direction of the second sub-housing 212.
  • Such an arrangement can ensure that there is sufficient space in the middle of the second sub-housing 212, so as to facilitate the installation of the larger fan assembly 25 to the side of the second accommodating cavity 20 adjacent to the second sub-housing 212, so as to make full use of the space in the second housing 21, so as to make the arrangement of the heat pump device 2 compact and reduce the overall volume of the heat pump device 2.
  • the second housing 21 further includes at least one sealing member 216.
  • the sealing member 216 is disposed on the inner side wall of the second housing 21 and is located on a side of the second housing 21 adjacent to the mounting plate 13. For example, the sealing member 216 is located between two adjacent engaging portions 215 of the plurality of engaging portions 215. During assembly, the sealing member 216 abuts against the outer peripheral surface of the mating portion 133.
  • the sealing between the mounting plate 13 and the second shell 21 can be further improved, and foreign impurities or liquids can be prevented from entering the second shell 21 , thereby ensuring the cleanliness of the interior of the second shell 21 .
  • At least one first limiting portion 136 is disposed on the outer circumference of the matching portion 133, that is, the first limiting portion 136 is disposed on a side of the matching portion 133 adjacent to the second housing 21.
  • the sealing member 216 abuts against the first limiting portion 136, and the first limiting portion 136 can be supported on the corresponding sealing member 216.
  • the at least one seal 216 includes a plurality of seals 216, and the plurality of seals 216 are arranged at intervals along the circumference of the inner side wall of the second housing 21.
  • the at least one first stopper 136 includes a plurality of first stoppers 136, and the plurality of first stoppers 136 are arranged at intervals along the circumference of the mounting plate 13.
  • first limiting portion 136 and the sealing member 216 cooperate to prevent the second housing 21 and the mounting plate 13 from relative movement in the up-down direction, and prevent the mounting plate 13 from being disengaged from the second housing 21.
  • a waterproof effect can be further achieved.
  • a buckle 2113 is provided on one of the first sub-shell 211 and the second sub-shell 212, and a second stopper 134 is provided on the mounting plate 13, and the buckle 2113 abuts against the second stopper 134.
  • two buckles 2113 are provided on one end of the inner wall surface of the first sub-shell 211 adjacent to the mounting plate 13.
  • the two buckles 2113 are respectively located at two ends of the circumference of the first sub-shell 211, and the two buckles 2113 are located on a side of the first sub-engaging portion 2111 away from the sealing member 216.
  • two second limiting portions 134 are provided on one side of the matching portion 133 adjacent to the center of the mounting plate body 132, and the two second limiting portions 134 can be opposite to each other along the radial direction of the mounting plate body 132.
  • the first sub-engaging portion 2111 and the second sub-engaging portion 2121 are respectively engaged in the corresponding accommodating portion 131, and the buckle 2113 is in contact with the side wall of the second limiting portion 134.
  • the second housing 21 can be prevented from rotating around the central axis of the mounting plate 13, so that the second housing 21 can be firmly fixed on the mounting plate 13.
  • the first sub-housing 211 further includes a first mounting post 2115.
  • the second sub-housing 212 further includes a second mounting post 2125, and the second mounting post 2125 is arranged corresponding to the first mounting post 2115. Both ends of the fastener are connected to the first mounting post 2115 and the second mounting post 2125, respectively.
  • the two ends of the fastener extend into the first mounting post 2115 and the second mounting post 2125.
  • the connection reliability of the first sub-housing 211 and the second sub-housing 212 can be improved, and the first sub-housing 211 and the second sub-housing 212 can be prevented from being out of engagement.
  • the first subshell 211 is provided with at least one first connection portion 213, and the second subshell 212 is provided with at least one second connection portion 214, and the second connection portion 214 cooperates with the first connection portion 213 to improve the waterproof performance of the connection between the first subshell 211 and the second subshell 212.
  • one of the first connection portion 213 and the second connection portion 214 has a protrusion, and the other of the first connection portion 213 and the second connection portion 214 has a groove.
  • first connection portion 213 has a groove and the second connection portion 214 has a protrusion to describe the structures of the second connection portion 214 and the first connection portion 213 .
  • the first connection portion 213 is provided at the edge of the first sub-housing 211 and extends along the axial direction of the first sub-housing 211.
  • the second connection portion 214 is provided at the edge of the second sub-housing 212 and extends along the axial direction of the second sub-housing 212.
  • the second connection portion 214 is fitted into the first connection portion 213 so that the end surface of the first sub-housing 211 fits with the end surface of the second sub-housing 212, thereby reducing the gap at the connection between the first sub-housing 211 and the second sub-housing 212, thereby improving the sealing performance of the connection between the first sub-housing 211 and the second sub-housing 212.
  • the first connection portion 213 includes a first section 2131 and a second section 2132.
  • the first section 2131 extends along the axial direction of the first housing 11.
  • One end of the second section 2132 is connected to the first section 2131, and the other end of the second section 2132 extends toward the center of the first housing 11.
  • the second connecting portion 214 includes a fourth section 2141 and a fifth section 2142.
  • the fourth section 2141 extends along the axial direction of the first housing 11, and the fourth section 2141 fits in the first section 2131.
  • One end of the fifth section 2142 is connected to the fourth section 2141.
  • 2141 is connected, and the other end of the fifth section 2142 extends in a direction toward the center of the first shell 11 , and the fifth section 2142 is fitted in the second section 2132 .
  • the second section 2132 extends horizontally away from the first section 2131, and the first connection portion 213 forms a first bend.
  • the fifth section 2142 extends horizontally away from the fourth section 2141, and the second connection portion 214 forms a second bend.
  • the first connection part 213 and the second connection part 214 can further achieve the sealing of the first sub-shell 211 and the second sub-shell 212, making it difficult for external liquid to penetrate into the second shell 21, thereby enhancing the waterproof effect of the heat pump water heater 100.
  • the second housing 21 further includes a top cover 3, which is disposed on a side (such as the upper side) of the first sub-housing 211 and the second sub-housing 212 away from the water tank assembly 1.
  • the top cover 3 includes a top cover extension section 31 and a top cover body 32 connected to each other, the top cover body 32 is opposite to the top of the second housing 21, the top cover extension section 31 extends downwardly in a direction away from the top cover body 32, and the end surface of the free end of the top cover extension section 31 (i.e., the bottom wall of the top cover 3) stops against the outer side wall of the second section 2132.
  • the top cover 3 covers the upper part of the fitting point of the first connection part 213 and the second connection part 214, which can protect the first sub-shell 211 and the second sub-shell 212, so that the upper part of the fitting point of the first connection part 213 and the second connection part 214 has double waterproof performance, which is beneficial to enhance the waterproof effect of the heat pump water heater 100.
  • the first connection portion 213 further includes a third segment 2133.
  • One end of the third segment 2133 is connected to the other end of the second segment 2132, and the other end of the third segment 2133 extends obliquely in a direction away from the second segment 2132.
  • the second connection portion 214 further includes a sixth segment 2143.
  • One end of the sixth segment 2143 is connected to the other end of the fifth segment 2142, and the other end of the sixth segment 2143 extends obliquely in a direction away from the end of the second connection portion 214, and the sixth segment 2143 fits in the third segment 2133.
  • the third section 2133 extends upwardly and obliquely in a direction away from the second section 2132.
  • the length of the third section 2133 may be less than the distance from the top cover body 32 to the second section 2132.
  • the sixth section 2143 extends upwardly and obliquely in a direction away from the fifth section 2142.
  • the ends of the first connecting portion 213 and the second connecting portion 214 adjacent to the top cover 3 have a plurality of bent portions.
  • the sealing of the first sub-shell 211 and the second sub-shell 212 is further achieved, and the waterproof performance of the second shell 21 is enhanced.
  • the mounting plate 13 is located between the first housing 11 and the second housing 21.
  • the side wall of the mounting plate 13 extends into the second housing 21.
  • the mating portion 133 of the mounting plate 13 extends upward to form a side wall, and the diameter of the side wall is smaller than the diameter of the second housing 21.
  • the second housing 21 is located outside the side wall of the mounting plate 13, so that the lower part of the first connecting portion 213 and the second connecting portion 214 has a double waterproof performance, which enhances the waterproof effect of the heat pump water heater 100.
  • the free end of the side wall of the mounting plate 13 (i.e., the top end of the matching portion 133) is higher than the free end of the first segment 2131 (i.e., the bottom end of the first segment 2131).
  • the end surface of the free end of the side wall of the mounting plate 13 is located above the free end of the first segment 2131.
  • the free end of the side wall of the mounting plate 13 partially overlaps with the free end of the first segment 2131 in the axial direction of the second shell 21.
  • the side wall of the mounting plate 13 can prevent the external liquid from further penetrating into the second shell 21, thereby further enhancing the waterproof effect of the heat pump water heater 100.
  • first connection parts 213 and two second connection parts 214 there are two first connection parts 213 and two second connection parts 214, the two first connection parts 213 are respectively located at two ends of the circumference of the first sub-shell 211, and the two second connection parts 214 are respectively located at two ends of the circumference of the second sub-shell 212.
  • the two first connection parts 213 cooperate with the two second connection parts 214 to further ensure the waterproof effect of the connection between the first sub-shell 211 and the second sub-shell 212.
  • the fan assembly 25 includes a volute 251, a volute extension 252, and a wind wheel 255.
  • the volute 251 is arranged on a side of the evaporator 23 away from the compressor 22, and the volute 251 has a second air inlet 2511 and a second air outlet 2512.
  • the second air inlet 2511 is arranged facing the evaporator 23.
  • the second air outlet 2512 is opposite to and connected to the first air outlet 302 along the axial direction of the second shell 21.
  • the air entering the interior of the second shell 21 from the first air inlet 301 is suitable for flowing through the second air inlet 2511 and entering the fan assembly 25, and then discharged from the second air outlet 2512 and the first air outlet 302.
  • one end of the volute extension 252 is aligned with the second air outlet 2512.
  • the other end of the volute extension 252 is opposite to the first air outlet 302 , and is inclined from the second air outlet 2512 toward the first air outlet 302 (ie, the up and down direction) and the volute extension 252 toward the evaporator 23 .
  • the wind wheel 255 is disposed in the volute 251.
  • the air entering the second shell 21 from the first air inlet 301 flows through the evaporator 23 and exchanges heat with the evaporator 23, then enters the volute 251 through the second air inlet 2511 and is discharged from the first air outlet 302 through the second air outlet 2512.
  • the volute extension 252 is tilted toward the side where the evaporator 23 is located. In this way, on the one hand, the volute extension 252 can form an escape space on the other side away from the evaporator 23, which is convenient for the installation of the second housing 21. On the other hand, part of the space around the evaporator 23 can be used to make the internal structure of the heat pump device 2 more compact, and facilitate the communication between the second air outlet 2512 and the first air outlet 302, so as to increase the air volume at the first air outlet 302.
  • the space at the top of the evaporator 23 can be fully utilized, which is convenient for increasing the area of the second air outlet 2512, and is conducive to making the second air outlet 2512 opposite to the first air outlet 302, increasing the air volume at the second air outlet 2512, so that the air can be discharged in time, and improving the utilization rate of the internal space of the second shell 21.
  • the second air outlet 2512 and the second shell 21 can be prevented from interfering with each other, thereby affecting the assembly efficiency of the second shell 21.
  • the volute extension 252 includes an opening section 253 and a connecting section 254, wherein the connecting section 254 is connected to the opening section 253, and the connecting section 254 is closer to the volute 251 than the opening section 253.
  • One end of the opening section 253 is opposite to the first air outlet 302.
  • the cross section of the opening section 253 is circular.
  • One end of the connecting section 254 is connected to the other end of the opening section 253, and the other end of the connecting section 254 is connected to the second air outlet 2512.
  • the cross-sectional shape of the other end of the connecting section 254 is substantially rectangular.
  • the air flowing out of the second air outlet 2512 passes through the connecting section 254 and the opening section 253 in sequence, and then flows out from the first air outlet 302.
  • the cross-sectional shape of the opening section 253 is adapted to the shape of the first air outlet 302, thereby facilitating the increase of the air outlet area of the volute extension 252.
  • the cross-sectional shape (e.g., rectangular) of the end of the connecting section 254 away from the opening section 253 is adapted to the shape of the second air outlet 2512. In this way, the air outlet area of the second air outlet 2512 can be increased, thereby increasing the air outlet volume of the volute 251, which is conducive to improving the heat exchange efficiency of the evaporator 23.
  • the connecting section 254 includes a first surface 2541, a second surface 2542, a third surface 2543, a fourth surface 2544, a fifth surface 2545, and a sixth surface 2546 that are sequentially connected along the circumference of the second air outlet 2512 of the volute 251.
  • the first surface 2541 is connected to the evaporator 23 and the second surface 2542, respectively.
  • the fourth surface 2544 is opposite to a side surface of the evaporator 23 that faces the fan assembly 25.
  • the sixth surface 2546 is connected to the fifth surface 2545 and the evaporator 23, respectively, and the sixth surface 2546 is opposite to the first surface 2541.
  • one side of the first surface 2541 is connected to the evaporator 23
  • one side of the second surface 2542 is connected to the other side of the first surface 2541
  • one side of the third surface 2543 is connected to the other side of the second surface 2542
  • one side of the fourth surface 2544 is connected to the other side of the third surface 2543
  • the fourth surface 2544 is opposite to the surface of the evaporator 23 facing the fan assembly
  • one side of the fifth surface 2545 is connected to the other side of the fourth surface 2544
  • one side of the sixth surface 2546 is connected to the other side of the fifth surface 2545
  • the other side of the sixth surface 2546 is connected to the evaporator 23
  • the sixth surface 2546 is opposite to the first surface 2541.
  • At least the second to fifth surfaces 2545 extend obliquely toward the evaporator 23 along the direction from the second air outlet 2512 to the first air outlet 302 (i.e., from bottom to top).
  • the outer circumferences of the first to sixth surfaces 2541 to 2546 are irregular curved surfaces.
  • the curvature radius of the portion of the fourth surface 2544 adjacent to the opening section 253 is greater than the curvature radius of the portion of the fourth surface 2544 adjacent to the second air outlet 2512 .
  • the end surface of the second air outlet 2512 includes a first connecting section, a second connecting section, a third connecting section, a fourth connecting section, a fifth connecting section and a sixth connecting section.
  • the end points of the two ends of the first connecting section along the direction of the central axis of the opening section 253 (i.e., the up and down direction) and the area enclosed by the line connecting the corresponding points of the opening section 253 constitute the first surface 2541.
  • the second surface 2542 to the sixth surface 2546 are analogous in this way.
  • the first surface 2541 to the sixth surface 2546 extend obliquely from the second air outlet 2512 toward the opening section 253, so that the volute extension 252 constitutes the lower end surface of the connecting section 254 according to the shape of the second air outlet 2512, so as to ensure that the cross-sectional area of the lower end surface of the connecting section 254 is adapted to the second air outlet 2512, thereby increasing the air output of the volute 251.
  • the two corners of the second air outlet 2512 away from the evaporator 23 respectively have a first rounded corner 256 and a second rounded corner 257
  • the second surface 2542 and the third surface 2543 are connected at the first rounded corner 256
  • the fifth surface 2545 is connected at the second rounded corner 257. That is, the second connecting section and the third connecting section are the first rounded corner 256
  • the fifth connecting section is The first fillet 256 and the second fillet 257 are formed by the volute 251 during the forming process.
  • the cross-sectional area of the volute extension 252 decreases to guide the air to the opening section 253.
  • the arrangement of the first fillet 256 and the second fillet 257 facilitates the reduction of the resistance of the air flowing inside the volute 251, and facilitates the arrangement of the second surface 2542, the third surface 2543 and the fifth surface 2545, so that the connecting section 254 is adapted to the second air outlet 2512.
  • the first surface 2541 extends obliquely toward the center of the volute 251 (the side where the impeller 255 is located in FIG23) along the direction from the second air outlet 2512 to the opening section 253.
  • the first surface 2541 is arranged obliquely, so that the opening section 253 can avoid interference with the installation of the second housing 21 and improve the utilization rate of the internal space of the second housing 21.
  • the inclination angle of the first surface 2541 is ⁇ . That is, the angle between the orthographic projection of the first surface 2541 on the first section and the orthographic projection of the central axis of the opening section 253 on the first section is ⁇ , and ⁇ satisfies: ⁇ 3°. That is, the angle between the orthographic projection of the first surface 2541 on the evaporator 23 and the central axis of the opening section 253 is ⁇ , and ⁇ satisfies: ⁇ 3°.
  • the first cross section is a cross section of the fan assembly 25 perpendicular to the central axis direction of the wind wheel 255.
  • the central axis of the wind wheel 255 is the dotted line N-N shown in FIG24 .
  • the angle between the first surface 2541 and the central axis of the opening section 253 is limited so that the first surface 2541 is located within the preset position range, which facilitates the volute extension 252 to be opposite to the first air outlet 302, thereby ensuring the air outlet effect.
  • the fourth surface 2544 extends obliquely toward the evaporator 23 along the direction from the second air outlet 2512 to the opening section 253, and the inclination angle of the fourth surface 2544 is ⁇ , and ⁇ satisfies: ⁇ 5°. That is, the angle between the orthographic projection of the fourth surface 2544 on the second section and the orthographic projection of the central axis of the opening section 253 on the second section is ⁇ , and ⁇ satisfies: ⁇ 5°.
  • the second cross section is a longitudinal plane passing through the central axis of the wind wheel 255, and the longitudinal plane extends along the central axis direction of the opening section 253. That is, the second cross section is a cross section of the fan assembly 25 passing through the dotted line M-M in Figure 23.
  • limiting the angle between the fourth surface 2544 and the central axis of the opening section 253 can improve the air outlet effect of the volute extension 252 and effectively reduce the resistance of the volute extension 252 to the air flow, thereby ensuring that the air at the second air outlet 2512 can be discharged from the volute extension 252 in a timely manner.
  • the evaporator 23 further includes a relief portion 231, and the volute extension portion 252 is partially located in the relief portion 231.
  • the relief portion 231 is configured to avoid the volute extension portion 252.
  • the ratio of the first orthographic projection area to the second orthographic projection area of the relief portion 231 on the horizontal plane is A, and the second orthographic projection area is the orthographic projection area of the end of the volute extension portion 252 away from the second air outlet 2512 (i.e., the opening section 253) on the horizontal plane, and A satisfies: 1/6 ⁇ A ⁇ 1/2.
  • the volute extension portion 252 cannot reasonably utilize the internal space of the evaporator 23, making the overall volume of the evaporator 23 and the volute 251 large, which is not conducive to the miniaturization design of the heat pump device 2.
  • the insufficient space of the avoidance portion 231 will also affect the size of the cross-sectional area of the opening section 253, thereby affecting the air outlet effect.
  • the ratio of the orthographic projection area of the avoidance portion 231 to the opening section 253 on the horizontal plane is limited, so that the first air outlet 302 and the opening section 253 are arranged opposite to each other, and the first air outlet 302 is prevented from interfering with the installation of the opening section 253, and the compactness of the structure of the volute extension 252, the volute 251 and the evaporator 23 can be improved, and the space inside the volute 251 can be increased.
  • the air outlet efficiency of the volute extension 252 can be guaranteed, so that the air can quickly flow from the second air outlet 2512 to the first air outlet 302, and then be discharged from the first air outlet 302.
  • the connection between the end (i.e., the bottom end) of the volute extension 252 away from the opening section 253 and the evaporator 23 is transitioned through the third fillet 258.
  • the air flows out of the second air outlet 2512, it can flow to the volute extension 252 through the third fillet 258 at the connection between the volute extension 252 and the evaporator 23, thereby increasing the guiding property of the connection to the air, and avoiding a large change in the flow direction of the air at the connection, which affects the air outlet efficiency of the volute extension 252.
  • the volute 251 includes a third shell 2513 and a fourth shell 2514 connected to each other along the central axis direction of the wind wheel 255.
  • the evaporator 23 includes a pipeline for evaporation and a side plate for mounting the pipeline.
  • the third shell 2513 is connected to the side plate of the evaporator 23, and the third shell 2513 and the side plate are an integral part.
  • the fourth shell 2514 is connected to the side of the third shell 2513 away from the evaporator 23.
  • the third shell 2513 and the side plate of the evaporator 23 are integrally formed, which can reduce the number of components of the heat pump device 2, which is conducive to improving the installation efficiency of the volute 251.
  • the second air inlet 2511 of the volute 251 is connected to the side plate of the evaporator 23. After the air passes through the pipeline of the evaporator 23 for heat exchange, it reaches the position where the side plate of the evaporator 23 is located, and then enters the volute 251 through the second air inlet 2511. Therefore, the third shell 2513 and the side plate of the evaporator 23 are integrally formed, which can ensure the sealing between the volute 251 and the evaporator 23, and is conducive to increasing the air intake of the second air inlet 2511.
  • the ratio of the width of the third shell 2513 to the width of the fourth shell 2514 is B, and B satisfies: 3/7 ⁇ B ⁇ 1.
  • the width ratio B between the third shell 2513 and the fourth shell 2514 is less than 3/7, the internal space of the evaporator 23 cannot be fully utilized, and the structural strength of the connection between the third shell 2513 and the evaporator 23 may be reduced. If the width ratio B between the third shell 2513 and the fourth shell 2514 is greater than 1, the third shell 2513 is likely to interfere with the internal structure of the evaporator 23, affecting the air volume of the second air outlet 2512.
  • the third shell 2513 can reasonably utilize the space of the side panel, so that the volute extension 252 is opposite to the first air outlet 302, thereby ensuring the connection strength between the third shell 2513 and the evaporator 23, and increasing the internal space of the volute 251, thereby increasing the air intake and air outlet of the volute 251.
  • the top cover 3 has a first air inlet 301 and a first air outlet 302 , and both the first air inlet 301 and the first air outlet 302 are connected to the second accommodating cavity 20 .
  • the first air inlet 301 and the first air outlet 302 are respectively located on both sides of the evaporator 23, the first air outlet 302 and the fan assembly 25 are located on the same side of the evaporator 23 and are connected to the fan assembly 25, and the air entering the interior of the second shell 21 from the first air inlet 301 is suitable for flowing through the evaporator 23 and exchanging heat with the evaporator 23, and then being discharged from the first air outlet 302 through the fan assembly 25.
  • the first air inlet 301 and the first air outlet 302 are arranged non-centrally symmetrically with respect to the top cover 3, that is, the first air inlet 301 and the first air outlet 302 are not arranged opposite to each other in the radial direction of the top cover 3. In this way, the first air inlet 301 can be prevented from being interfered with by components such as the electric control box 26, thereby increasing the air intake space and air intake efficiency.
  • the air entering the second housing 21 from the first air inlet 301 needs to pass through a preset angle when flowing through the evaporator 23, and then flows out from the first air outlet 302, which can extend the flow path of the air from the first air inlet 301 to the first air outlet 302, so that the air can fully exchange heat with the compressor 22, the electric control box 26, the evaporator 23, etc.
  • the angle between the lines connecting the center of the first air inlet 301 and the center of the first air outlet 302 and the center of the top cover 3 is ⁇ , and ⁇ satisfies: 80° ⁇ 180°. That is, the center of the first air inlet 301 is connected to the center of the top cover 3 to form a first line segment, the center of the first air outlet 302 is connected to the center of the top cover 3 to form a second line segment, and the angle formed by the orthographic projection of the first line segment and the second line segment on the top cover 3 along the axial direction of the second shell 21 is ⁇ .
  • the air entering the second housing 21 from the first air inlet 301 passes through the evaporator 23, then passes through the second air inlet 2511 and the second air outlet 2512, and finally flows out from the first air outlet 302. Therefore, when the center position of the second air inlet 2511 is fixed, the larger the angle ⁇ , the shorter the path of the air flowing inside the second housing 21, and the weaker the heat dissipation effect on the compressor 22 and the electric control box 26 in the second housing 21. In addition, when the air stays inside the second housing 21, The time becomes shorter, reducing the evaporation efficiency of the evaporator 23.
  • the first air inlet 301 and the first air outlet 302 are symmetrically arranged about the center of the second housing 21.
  • the first air inlet 301 may be partially located above the electric control box 26, resulting in a small air inlet space, and the air entering the second housing 21 from the first air inlet 301 is disturbed by the electric control box 26 and cannot smoothly reach the location of the evaporator 23, thereby causing air loss.
  • the angle ⁇ between the lines connecting the center of the first air inlet 301 and the center of the first air outlet 302 and the center of the top cover 3 is 105°.
  • the air intake effect of the first air inlet 301 can be guaranteed, thereby ensuring the air volume required for the operation of the evaporator 23, so as to improve the heat exchange efficiency of the evaporator 23.
  • the air outlet effect of the first air outlet 302 can be guaranteed, which is conducive to increasing the flow rate of air inside the second housing 21, so that the air can quickly take away the heat generated by the operation of the electric control box 26 and the compressor 22, etc., and effectively reduce the energy consumption of the heat pump water heater 100.
  • the first air inlet 301 and the compressor 22 are arranged opposite to each other along the axial direction of the heat pump water heater 100, and the first air inlet 301 and the compressor 22 are arranged at intervals. That is, the first air inlet 301 and the compressor 22 are opposite to each other in the axial direction of the second housing 21.
  • the air entering the second housing 21 from the first air inlet 301 first passes through the compressor 22 and then flows to the evaporator 23 and the electric control box 26. In this way, the electric control box 26 can avoid blocking the first air inlet 301, increase the air intake of the second housing 21, and achieve cooling of the compressor 22.
  • the air inlet 2511 is located on one side of the evaporator 23 close to the electric control box 26.
  • the second air inlet 2511 and the electric control box 26 are located on both sides of the evaporator 23 and are arranged opposite to each other.
  • the air entering the second housing 21 from the first air inlet 301 first passes through the compressor 22, then passes through the electric control box 26 and the evaporator 23, and finally flows to the second air inlet 2511.
  • the center of the second air inlet 2511 is located on one side of the first center plane adjacent to the mounting plate 13.
  • the first center plane is the center plane in the height direction of the evaporator 23, and the first center plane extends along the center axis direction of the evaporator 23.
  • the height direction of the evaporator 23 is the up-down direction shown in FIG. 29
  • the width direction of the evaporator 23 is the left-right direction shown in FIG. 29 .
  • setting the center of the second air inlet 2511 below the first center plane of the evaporator 23 and close to the electrical control box 26 can extend the flow path of air from the first air inlet 301 to the first air outlet 302, fully increase the wind receiving area of the evaporator 23, and thus increase the heat exchange efficiency of the evaporator 23.
  • the distance between the electric control box 26 and the evaporator 23 gradually increases in the direction toward the compressor 22, and an angle ⁇ is formed between the electric control box 26 and the evaporator 23, where ⁇ satisfies: 15 ⁇ 30°.
  • the first air inlet 301 is opposite to the compressor 22, and after the air enters the second housing 21 from the first air inlet 301, it flows toward the evaporator 23 and the space between the evaporator 23 and the electric control box 26, so as to facilitate the heat dissipation of the electric control box 26.
  • the distance between the electric control box 26 and the evaporator 23 gradually increases in the direction toward the compressor 22, and the angle ⁇ between the electric control box 26 and the evaporator 23 is 25°. Therefore, by limiting the angle ⁇ between the electric control box 26 and the evaporator 23, the air intake of the evaporator 23 close to the electric control box 26 can be increased, the heat exchange capacity and heat exchange efficiency of the evaporator 23 can be improved, and a large amount of air can pass through the surface of the electric control box 26, thereby improving the cooling effect of the electric control board in the electric control box 26 and facilitating the heat dissipation of the electric control box 26.
  • the heat pump water heater 100 further includes a filter assembly 4.
  • the filter assembly 4 is disposed in the second housing 21, and the filter assembly 4 is opposite to the first air inlet 301.
  • the filter assembly 4 satisfies one of the following conditions: the filter assembly 4 is detachably connected to the second housing 21, or the filter assembly 4 includes a filter 41 and a bracket 42, the filter 41 is detachably mounted on the bracket 42, and the bracket 42 is connected to the second housing 21.
  • a mounting groove may be formed on the side wall of the second housing 21 to facilitate installation and removal of the filter assembly 4 and improve installation efficiency.
  • the filter assembly 4 as a whole may be assembled to the second housing 21 along the mounting groove. When the filter assembly 4 needs to be replaced, the filter assembly 4 as a whole is removed along the mounting groove. In this way, the filter assembly 4 and the second housing 21 may be manufactured separately, which can reduce the difficulty of processing.
  • the filter assembly 4 includes a filter 41 and a bracket 42
  • the filter 41 is detachably mounted on the bracket 42, and the bracket 42 can be integrally formed with the second housing 21 to improve the structural strength of the bracket 42.
  • the filter 41 needs to be replaced, the filter 41 is removed along the bracket 42 to facilitate replacement of the filter 41, thereby reducing the cost of subsequent use and maintenance.
  • the base 28 has a first water receiving groove 281, which is arranged on the base body and below the evaporator 23.
  • the first water receiving groove 281 is configured to collect condensed water generated by the pipes of the evaporator 23.
  • the base 28 further has a drainage groove 283 and a drainage hole 285.
  • One end of the drainage groove 283 is connected to the first water receiving groove 281, and the other end of the drainage groove 283 away from the first water receiving groove 281 is connected to the drainage hole 285.
  • the condensed water collected in the first water receiving groove 281 can flow along the first water receiving groove 281 to the drainage groove 283, and finally be discharged from the second accommodating chamber 20 through the drainage hole 285.
  • a first water receiving groove 281 is provided below the evaporator 23 to collect condensed water generated on the pipe surface of the evaporator 23, and the condensed water collected by the first water receiving groove 281 flows out of the second accommodating chamber 20 through the drainage groove 283 and the drainage hole 285.
  • the random flow of condensed water can be prevented from affecting the heat pump device 2, and the integrated drainage structure can also significantly improve the collection efficiency and discharge efficiency of condensed water.
  • a water receiving trough structure may also be provided at an area outside the pipeline of the corresponding evaporator 23 on the base 28 where condensed water is easily generated.
  • the water receiving trough structure is connected to the drainage trough 283, so that condensed water generated in each area can be discharged from the drainage trough 283 after being collected by the water receiving trough structure. In this way, the collection and discharge effects of condensed water are further guaranteed.
  • the base 28 further includes a plurality of first reinforcing ribs 2811, which are disposed on the bottom surface of the first water receiving groove 281.
  • the plurality of first reinforcing ribs 2811 are disposed parallel to each other and form an assembly position for mounting the evaporator 23. In this way, the evaporator 23 is disposed at the assembly position formed by the first reinforcing ribs 2811, thereby ensuring the stability of the evaporator 23 on the base 28.
  • the multiple first reinforcing ribs 2811 are all arranged in the same direction and point to the drainage groove 283, so as to ensure the strength of the first water receiving groove 281 to support the evaporator 23, and can also play a role in draining condensed water, guiding the condensed water in the first water receiving groove 281 to flow to the drainage groove 283 as quickly as possible, which can significantly improve the water receiving and drainage effects of the first water receiving groove 281.
  • the base 28 further includes a second water receiving groove 282 , which is located below the volute 251 , and is disposed on one side of the first water receiving groove 281 and communicates with the drainage groove 283 .
  • a second water receiving groove 282 is disposed at the bottom of the volute 251 to collect the condensed water generated on the surface of the volute 251, and the condensed water collected by the second water receiving groove 282 can flow along the second water receiving groove 282 to the drainage groove 283 and finally be discharged from the second accommodating chamber 20 from the drainage hole 285.
  • the shape of the second water receiving trough 282 matches the shape of the volute 251 to ensure the collection effect of the condensed water generated on the surface of the volute 251.
  • the lower surface of the volute 251 is arc-shaped.
  • the second water receiving trough 282 is an arc-shaped trough with a trapezoidal cross-section.
  • the second water receiving trough 282 includes a horizontally arranged bottom surface, and an arc-shaped side surface connected to the bottom surface. The arc-shaped side surface matches the arc surface of the volute 251, and the two can be two arc surfaces with concentric centers but different diameters.
  • the base 28 further includes a plurality of second reinforcing ribs 2821, which are disposed on the bottom and side surfaces of the second water receiving trough 282. Different from the first reinforcing ribs 2811, the plurality of second reinforcing ribs 2821 are 2821 includes at least one transverse rib and at least one longitudinal rib perpendicular to each other, that is, the plurality of second reinforcing ribs 2821 are arranged in a staggered manner horizontally and vertically.
  • the structural strength of the second water receiving trough 282 can be improved, the volute 251 can be supported, and a gap can be formed between the volute 251 and the second water receiving trough 282, thereby ensuring the normal flow of condensed water.
  • the base 28 further includes a water guide groove 284, which is disposed on one side of the second water receiving groove 282.
  • the water guide groove 284 is disposed between the first water receiving groove 281 and the second water receiving groove 282.
  • the water guide groove 284 is connected to the second water receiving groove 282 and the drainage groove 283. Condensed water in the second water receiving groove 282 can flow to the drainage groove 283 through the water guide groove 284.
  • the third shell 2513 of the volute 251 extends in the direction of the evaporator 23 and is connected to the side plate of the evaporator 23, and the third shell 2513 and the side plate of the evaporator 23 are an integral part.
  • the water guide groove 284 can also be located at the bottom of the side plate of the evaporator 23. In this case, the water guide groove 284 is not only configured to transfer the condensed water of the second water receiving groove 282, but also configured to collect the condensed water generated by the side plate of the evaporator 23 and transfer the condensed water to the drainage groove 283.
  • the width of the orthographic projection of the drain groove 283 on the base 28 decreases from the end close to the first water receiving groove 281 to the end close to the drain hole 285.
  • the bottom surface of the drain groove 283 is inclined relative to the horizontal plane toward the end (i.e., the lower end) close to the water tank body 12, that is, from the end close to the first water receiving groove 281 to the end close to the drain hole 285, the height of the bottom surface of the drain groove 283 gradually decreases in the axial direction of the heat pump water heater 100.
  • the inclination angle of the bottom surface of the drain groove 283 is ⁇ , and ⁇ satisfies 1° ⁇ 3°.
  • the base 28 further includes a plurality of shielding columns 2831, which are arranged at positions of the drain groove 283 near the drain hole 285.
  • the plurality of shielding columns 2831 can block large-volume foreign matter in the condensed water, and can effectively prevent foreign matter from blocking the drain hole 285 and affecting the normal discharge of the condensed water.
  • the operator can regularly open the second housing 21 to clean the foreign matter or large-volume particles blocked by the shielding columns 2831, thereby ensuring the normal use of the drain groove 283.
  • a water level sensor is further provided in the first water receiving tank 281, and the water level sensor is configured to detect the water level condition in the first water receiving tank 281.
  • the water level sensor may send an alarm signal to remind the operator to promptly check the conditions of the first water receiving tank 281 and the drainage tank 283 to ensure the normal operation of the heat pump water heater 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种热泵热水器,包括水箱组件以及热泵装置。所述水箱组件包括第一壳体、水箱本体和冷凝器。所述水箱本体以及所述冷凝器设置于所述第一壳体内。所述热泵装置位于所述水箱组件的顶部,所述热泵装置包括蒸发器、压缩机、节流组件、风机组件和第二壳体。所述第二壳体具有第一进风口和第二进风口。所述风机组件包括蜗壳、蜗壳延伸部和风轮。所述蜗壳设于所述蒸发器的远离所述压缩机的一侧,且所述蜗壳具有第二进风口以及第二出风口。其中,所述蜗壳延伸部的一端与所述第二出风口相连,所述蜗壳延伸部的另一端与所述第一出风口相对,从所述第二出风口朝向所述第一出风口的方向、所述蜗壳延伸部朝向所述蒸发器的方向倾斜设置。

Description

热泵热水器
本申请要求于2022年11月18日提交的、申请号为202223072734.X的中国专利申请的优先权,于2022年11月18日提交的、申请号为202223072717.6的中国专利申请的优先权,于2022年09月30日提交的、申请号为202222650045.6的中国专利申请的优先权,于2022年09月30日提交的、申请号为202222650002.8的中国专利申请的优先权,于2022年12月30日提交的、申请号为202223606329.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家用电器技术领域,尤其涉及一种热泵热水器。
背景技术
热泵热水器可以将冷水从进水口引入水箱,并通过热泵装置将冷水加热为热水后,使热水通过出水口流出以供用户使用。
发明内容
提供一种热泵热水器,包括水箱组件以及热泵装置。所述水箱组件包括第一壳体、水箱本体和冷凝器。所述水箱本体设置于所述第一壳体内,所述水箱本体具有进水口和出水口。所述冷凝器设置于所述第一壳体内,且被配置为释放热量以加热所述水箱本体内的水。所述热泵装置包括第二壳体、蒸发器、压缩机、节流组件和风机组件。所述第二壳体具有第一进风口和第一出风口。所述蒸发器位于所述第二壳体内,所述蒸发器位于所述第一进风口和所述第一出风口之间,且被配置为吸收空气中的热量。所述压缩机位于所述第二壳体内,且设于所述蒸发器的一侧。所述节流组件设于所述蒸发器和所述冷凝器之间,所述压缩机、所述冷凝器、所述节流组件和所述蒸发器依次相连并构成制冷剂循环回路。所述风机组件设于所述蒸发器的与所述一侧相对的另一侧,且被配置为将外部空气导入所述蒸发器。其中,所述风机组件包括蜗壳和风轮。所述蜗壳具有第二进风口和第二出风口蜗壳延伸部。所述第二进风口与所述蒸发器相对设置。所述第二出风口连通所述第二进风口,且所述第二出风口与所述第一出风口沿所述第二壳体的轴向相对且连通。所述风轮设在所述蜗壳内,从所述第一进风口进入所述第二壳体的空气适于流经所述蒸发器并与所述蒸发器换热后,经所述第二进风口进入所述蜗壳并通过所述第二出风口从所述第一出风口排出。其中,所述蜗壳还包括蜗壳延伸部,所述蜗壳延伸部的一端与所述第二出风口相连,所述蜗壳延伸部的另一端与所述第一出风口相对。从所述第二出风口朝向所述第一出风口的方向,所述蜗壳延伸部朝向所述蒸发器的方向倾斜设置。
附图说明
图1是根据一些实施例的一种热泵热水器的一种结构图;
图2是根据一些实施例的一种热泵热水器的剖面图;
图3是根据一些实施例的一种热泵热水器的局部剖面图;
图4是根据一些实施例的一种热泵装置与水箱组件的部分结构图;
图5是图4中的热泵热水器的另一个角度的结构图;
图6是根据一些实施例的一种热泵热水器的第一子壳体的一种结构图;
图7是图6中圈A1处的局部放大图;
图8是图6中圈B处的局部放大图;
图9是根据一些实施例的一种热泵热水器的第二子壳体的一种结构图;
图10是图9中圈C1处的局部放大图;
图11是图9中圈D处的局部放大图;
图12是根据一些实施例的一种热泵热水器的安装板的结构图;
图13是根据一些实施例的一种热泵热水器的第一子壳体的另一种结构图;
图14是图13中圈A2处的局部放大图;
图15是根据一些实施例的一种热泵热水器的第二子壳体的另一种结构图;
图16是图15中圈C2处的局部放大图;
图17是根据一些实施例的一种热泵热水器的壳体和顶盖的剖面图;
图18是图17中圈E处的局部放大图;
图19是图17中圈F处的局部放大图;
图20是根据一些实施例的一种热泵热水器的分解图;
图21是根据一些实施例的一种风机组件和蒸发器的结构图;
图22是图21中圈G处的局部放大图;
图23是根据一些实施例的一种风机组件和蒸发器的一种主视图;
图24是根据一些实施例的一种风机组件和蒸发器的一种侧视图;
图25是图24中的风机组件和蒸发器的俯视图;
图26是根据一些实施例的一种风机组件和蒸发器的另一种主视图;
图27是根据一些实施例的一种热泵热水器的俯视图;
图28是根据一些实施例的一种热泵装置的部分结构图;
图29是根据一些实施例的一种风机组件和蒸发器的另一种侧视图;
图30是根据一些实施例的一种滤网组件的结构图;
图31是根据一些实施例的一种滤网组件和第二壳体的结构图;
图32是根据一些实施例的一种热泵热水器的热泵装置的结构图;
图33是根据一些实施例的一种蜗壳的结构图;
图34是根据一些实施例的一种底座的结构图;
图35是根据一些实施例的一种第一接水槽与排水槽的结构图;
图36是图35中的圈P处的局部放大图;
图37是根据一些实施例的一种第二接水槽与导水槽的结构图;
图38是图37中的圈Q处的局部放大图;
图39是根据一些实施例的底座的俯视图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下 A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
热泵热水器是继电热水器、燃气热水器以及太阳能热水器之后出现的一种新型热水器。热泵热水器通过吸收空气的热量,来加热水箱中的水。以此,避免了电热水器漏电、干烧以及燃气热水器使用时可能发生煤气中毒的问题、克服了太阳能热水器受天气影响大的缺点,具有高效节能、安全环保、全天候运行、使用方便等优点。
如图1和图2所示,热泵热水器100包括水箱组件1和热泵装置2。水箱组件1包括第一壳体11、水箱本体12和冷凝器。水箱本体12设置于第一壳体11内,且被配置为储存水。水箱本体12具有进水口121和出水口122。例如,进水口121和出水口122可以设置在水箱本体12的轴向的两端。进水口121被配置为连接外部管道,以使冷水可以通过进水口121流入水箱本体12内,冷水被加热后可以经由出水口122流出水箱本体12,以供用户使用。
在一些实施例中,冷凝器设置在第一壳体11内,冷凝器可以为空心的管状结构的导热件。例如,冷凝器为铜管且缠绕在水箱本体12的外部。
如图1至图5所示,热泵装置2位于水箱组件1的顶部。热泵装置2包括第二壳体21、以及容纳在第二壳体21内的压缩机22和蒸发器23。蒸发器23被配置为吸收空气中的热量。压缩机22具有进气口和排气口,压缩机22的排气口与冷凝器的一端相连,压缩机22的进气口与蒸发器23的一端相连。
在一些实施例中,热泵装置2还包括节流组件24。节流组件24连接在蒸发器23的另一端和冷凝器的另一端之间。压缩机22、冷凝器、节流组件24和蒸发器23依次相连,以构成制冷剂循环回路。制冷剂可以在该制冷剂循环回路中流动,从而可以实现冷凝器与水箱本体12换热,以对水箱本体12内的水进行加热。
在一些实施例中,热泵装置2还包括风机组件25。风机组件25设置于蒸发器23的一侧,且被配置为将外部空气吸入第二壳体21内部,以及将第二壳体21内部的空气导入蒸发器23,与蒸发器23进行热交换。蒸发器23内部的制冷剂吸收热量之后,回到压缩机22中再次被压缩,如此反复循环工作,空气中的热能被不断送到水中,使水箱本体12内的水温升高。
在一些实施例中,热泵装置2还包括电控盒26。电控盒26与压缩机22、蒸发器23和风机组件25耦接,以控制热泵热水器100的正常运行。电控盒26和压缩机22位于蒸发器23的同一侧,且与风机组件25相对。电控盒26被配置为控制热泵热水器100的正常工作。如图4所示,风机组件25和压缩机22分别位于蒸发器23的厚度方向(如图2所示的左右方向)的两侧。
当热泵热水器100工作时,风机组件25运转。在风机组件25的作用下,大量的空气流过蒸发器23的外表面。空气中的热量被蒸发器23吸收,空气的温度降低变成冷气。之后所述冷气从风机组件25排出。
在此过程中,蒸发器23内部的制冷剂吸热汽化后被吸入压缩机22中。压缩机22将 回流的低压制冷剂气体压缩成高温、高压的气体,并送入缠绕在水箱本体12外侧壁的冷凝器内。高温、高压气体产生的热量经冷凝器以热传导的方式传递至水箱本体12内部,以加热水箱本体12内的水。
而冷凝器中的制冷剂在压力的持续作用下被冷却成液体,该液体经节流组件24(如膨胀阀)节流降温后再次流入蒸发器23。由于蒸发器23内的压力骤然降低,因此液态的制冷剂在蒸发器23处迅速蒸发成气态并吸收大量的热量。如此反复循环,空气中的热能被不断送到水中,使水箱本体12里的水温升高。
通常,热泵热水器100的第一进风口和第一出风口关于顶盖为中心对称分布,即第一进风口和第一出风口的圆心连线经过顶盖的中心。这样进入第二壳体21内部的空气可能会受到第二壳体21内部的电控盒26的干扰。
并且,常见的蜗壳的第二出风口的位置设计不合理,导致蜗壳占用第二壳体21内部较大空间,使得第二壳体21内部的空间利用率低,不利于热泵热水器100的集成化和小型化设计。
为解决上述问题,本公开一些实施例提供一种热泵热水器100,热泵热水器100的第一进风口和第一出风口关于顶盖为非中心对称分布,且第一进风口与压缩机22相对设置,以增大进风空间,避免第二壳体21内部空气流动受到干扰。
蜗壳的第二出风口处设置有蜗壳延伸部,以连通第二出风口和第一出风口。蜗壳延伸部朝向蒸发器23和风轮的中心倾斜设置,以减少对第二壳体21内部空间的占用,并且避免了对第二壳体21的安装造成影响。
在一些实施例中,如图20所示,热泵装置2还包括底座28,底座28设在安装板13的远离水箱组件1的一侧。压缩机22、蒸发器23、节流组件24、风机组件25和电控盒26分别设在底座28的远离水箱组件1的一侧(如上侧)。底座28与水箱组件1连接,以完成热泵装置2与水箱组件1的装配。
在一些实施例中,如图2至图5所示,水箱组件1包括安装板13。安装板13设在第一壳体11的轴向的一端。例如,安装板13设于第一壳体11的顶部,以便于安装热泵装置2。安装板13与第一壳体11之间限定出第一容纳腔10,水箱本体12位于第一容纳腔10内。
在一些实施例中,第二壳体21的下端与安装板13可拆卸地连接。第二壳体21与安装板13构成第二容纳腔20(即容纳腔),压缩机22、蒸发器23、节流组件24、风机组件25和电控盒26均位于第二容纳腔20内。
如图1所示,热泵热水器100还包括显示装置27(如显示面板),显示装置27设置于第二壳体21。显示装置27被配置为显示水箱本体12内的水温。
在一些实施例中,第二壳体21和安装板13中的一个设置有容置部131,第二壳体21和安装板13中的另一个设有卡合部215,卡合部215卡合在容置部131内,以使第二壳体21和安装板13相连。例如,第二壳体21包括卡合部215,卡合部215可以为凸台。安装板13包括容置部131,容置部131可以为凹槽。
这样,当在第二壳体21上安装显示装置27时,可以先通过卡合部215和容置部131的配合将第二壳体21预安装在安装板13上,再对显示装置27进行接线,从而避免接线时第二壳体21从安装板13上脱落。并且,该装配方式简单,操作方便,可以提高装配效率。
如图12所示,容置部131设置在安装板13的外周缘。容置部131由安装板13的一部分朝向安装板13的中心轴线凹入形成。如图6和图9所示,卡合部215设在第二壳体21的内壁面上,且位于第二壳体21的邻近安装板13的一侧。装配时,可以通过卡合部215与容置部131的配合,将第二壳体21预安装至安装板13上。
在一些实施例中,卡合部215的一端朝第二壳体21的中心轴线方向延伸,卡合部215的一端的另一端与第二壳体21相连接。卡合部215的所述一端的宽度小于所述另一端的宽度,以便与对应的容置部131配合。
在一些实施例中,如图2和图12所示,安装板13包括彼此相连的安装板本体132和 配合部133。安装板本体132与第一壳体11相连,配合部133设在安装板本体132的周向上且沿朝向靠近第二壳体21的顶部的方向延伸,配合部133上形成有容置部131。
如图3和图12所示,安装板本体132的形状与第一壳体11的顶部的形状相适配,以将热泵装置2与水箱本体12间隔开,避免水箱本体12内的水进入第二壳体21内而造成热泵装置2的线路短路。
配合部133位于安装板本体132的边缘并向远离所述水箱组件1的一侧延伸。例如,配合部133沿安装板本体132的周向延伸,且垂直于安装板本体132。此外,配合部133与安装板本体132的外周面间隔开,以使第二壳体21与安装板13装配后,配合部133能够位于第二壳体21内,此时第二壳体21的下端面与安装板本体132的外周面止抵。
由此,使得安装板13的结构简单、方便加工,并且能够提高第二壳体21和安装板13的连接处的密封性,避免外界液体从所述连接处进入第二壳体21内部,从而对压缩机22等起到防水作用。
如图6至图9所示,第二壳体21包括可拆卸连接的第一子壳体211和第二子壳体212。卡合部215包括第一子卡合部2111和第二子卡合部2121。第一子壳体211上设置有多个第一子卡合部2111,多个第一子卡合部2111沿第一子壳体211的周向间隔排布。第二子壳体212上设置有多个第二子卡合部2121,多个第二子卡合部2121沿第二子壳体212的周向间隔排布。
多个容置部131包括多个第一子容置部1311和多个第二子容置部1312。安装时,第一子卡合部2111分别位于第一子容置部1311内,以将第一子壳体211预安装在安装板13上。第二子卡合部2121分别位于第二子容置部1312内,以将第二子壳体212预安装于安装板13。
在一些实施例中,显示装置27设置于第一子壳体211和第二子壳体212中的一个。如图6所示,显示装置27设置于第一子壳体211。此时,当在第一子壳体211上安装显示装置27时,可以先通过第一子卡合部2111与第一子容置部1311的配合,将第一子壳体211预安装在安装板13上之后,再对显示装置27进行接线,从而避免接线时第一子壳体211从安装板13上脱落。最后再将第二子壳体212与第一子壳体211连接,从而为接线操作提供足够的空间。
在一些实施例中,多个第一子卡合部2111中位于第一子壳体211的周向的两端的至少两个第一子卡合部2111具有第一导向面。多个第二子卡合部2121中位于第二子壳体212的周向的两端的至少两个第二子卡合部2121具有第二导向面。
例如,所述至少两个第一子卡合部2111包括两个第一子卡合部2111,两个第一子卡合部2111的第一导向面彼此相对设置。所述至少两个第二子卡合部2121包括两个第二子卡合部2121,两个第二子卡合部2121的第二导向面彼此相对设置。
可以理解的是,多个第一子容置部1311中的至少两个具有第三导向面,第三导向面与第一导向面接触。多个第二子容置部1312中的至少两个具有第四导向面,第四导向面与第二导向面接触。
安装时,第一导向面与第三导向面相配合,以将第一子壳体211快速安装至安装板13上。第二导向面与第四导向面相配合,以将第二子壳体212快速安装至安装板13上。这样,有利于提高壳体与安装板13之间的装配效率。
在一些实施例中,沿安装板13的径向,第二子壳体212上的多个第二子卡合部2121分别位于第二子壳体212周向上的两端。如此设置,能够保证第二子壳体212的中部具有充足的空间,便于将尺寸较大的风机组件25安装至第二容纳腔20中邻近第二子壳体212的一侧,以充分利用第二壳体21内的空间,使得热泵装置2的排布紧凑,减小热泵装置2整体的体积。
在一些实施例中,第二壳体21还包括至少一个密封件216。密封件216设置于第二壳体21的内侧壁上,且位于第二壳体21的邻近安装板13的一侧。例如,密封件216位于所述多个卡合部215中的相邻两个卡合部215之间。装配时,密封件216与配合部133的外周面止抵。
由此,可以进一步提高安装板13与第二壳体21之间的密封性,避免外界杂质或液体进入第二壳体21内,保证了第二壳体21内部的清洁度。
在一些实施例中,如图18所示,配合部133的外周面设有至少一个第一限位部136,即第一限位部136设置于配合部133的邻近第二壳体21的一侧。密封件216与第一限位部136止抵,第一限位部136可支撑在对应的密封件216上。
在一些实施例中,所述至少一个密封件216包括多个密封件216,所述多个密封件216沿第二壳体21的内侧壁的周向间隔排布。所述至少一个第一限位部136包括多个第一限位部136,所述多个第一限位部136沿安装板13的周向间隔排布。
这样,通过第一限位部136和密封件216的配合,可以避免第二壳体21和安装板13沿上下方向的相对移动,避免安装板13与第二壳体21脱离配合。并且,可以进一步起到防水作用。
在一些实施例中,第一子壳体211和第二子壳体212中的一个上设有卡扣2113,安装板13上设有第二限位部134,卡扣2113与第二限位部134止抵。如图6和图8所示,第一子壳体211的内壁面的邻近安装板13的一端设有两个卡扣2113。两个卡扣2113分别位于第一子壳体211的周向的两端,且两个卡扣2113位于第一子卡合部2111的远离密封件216的一侧。
如图12所示,配合部133的邻近安装板本体132中心的一侧设有两个第二限位部134,两个第二限位部134可沿安装板本体132的径向相对。安装时,第一子卡合部2111和第二子卡合部2121分别配合在对应的容置部131内,卡扣2113与第二限位部134的侧壁贴合。由此,可以避免第二壳体21绕安装板13的中心轴线转动,以将第二壳体21牢靠地固定在安装板13上。
如图6至图8所示,第一子壳体211还包括第一安装柱2115。如图9至图11所示,第二子壳体212还包括第二安装柱2125,第二安装柱2125与第一安装柱2115对应设置。紧固件的两端分别与第一安装柱2115和第二安装柱2125相连。
安装时,将第一子壳体211和第二子壳体212连接之后,紧固件的两端分别伸入第一安装柱2115和第二安装柱2125内。由此,可以提高第一子壳体211和第二子壳体212的连接可靠性,避免第一子壳体211和第二子壳体212脱离配合。
在一些实施例中,第一子壳体211设置有至少一个第一连接部213,第二子壳体212中设有至少一个第二连接部214,第二连接部214与第一连接部213相配合,以提高第一子壳体211与第二子壳体212的连接处的防水性能。
例如,第一连接部213和第二连接部214中的一个具有凸起,第一连接部213和第二连接部214中的另一个具有凹槽。
以下以第一连接部213具有凹槽,第二连接部214具有凸起为例,对第二连接部214和第一连接部213的结构进行说明。
如图13至图16所示,第一连接部213设在第一子壳体211的边缘,且沿第一子壳体211的轴向延伸。第二连接部214设在第二子壳体212的边缘,且沿第二子壳体212的轴向延伸。安装时,将第二连接部214配合在第一连接部213内,以使第一子壳体211的端面与第二子壳体212的端面贴合,减小第一子壳体211和第二子壳体212的连接处的间隙,从而可以提高第一子壳体211与第二子壳体212的连接处的密封性。
这样,避免外部液体(如水)经上述连接处进入第二壳体21内,实现了对第二壳体21内的压缩机22、风机组件25和蒸发器23的防水保护,增强了热泵热水器100的防水效果。并且,可以保证第一子壳体211与第二子壳体212的光滑连接,以使第一子壳体211和第二子壳体212的外观装配效果好。
如图14所示,第一连接部213包括第一段2131和第二段2132。第一段2131沿第一壳体11的轴向延伸。第二段2132的一端与第一段2131相连,第二段2132的另一端沿朝向第一壳体11中心的方向延伸。
如图16所示,第二连接部214包括第四段2141和第五段2142。第四段2141沿第一壳体11的轴向延伸,第四段2141配合在第一段2131内。第五段2142的一端与第四段 2141相连,第五段2142的另一端沿朝向第一壳体11中心的方向延伸,第五段2142配合在第二段2132内。
在一些实施例中,第二段2132沿水平方向朝向远离第一段2131的方向延伸,此时第一连接部213形成第一折弯部。第五段2142沿水平方向朝向远离第四段2141的方向延伸,此时第二连接部214形成第二折弯部。
由此,当第二连接部214嵌入第一连接部213内后,第一连接部213和第二连接部214可以进一步实现对第一子壳体211和第二子壳体212的密封,使得外部液体难以渗入第二壳体21内,从而加强了热泵热水器100的防水效果。
参照图17和图19,在一些实施例中,第二壳体21还包括顶盖3,顶盖3盖设在第一子壳体211和第二子壳体212的远离水箱组件1的一侧(如上侧)。顶盖3包括彼此相连的顶盖延伸段31和顶盖本体32,顶盖本体32与第二壳体21的顶部相对,顶盖延伸段31沿远离顶盖本体32的方向倾斜向下延伸,且顶盖延伸段31的自由端的端面(即顶盖3的底壁)与第二段2132的外侧壁止抵。
由此,顶盖3覆盖了第一连接部213与第二连接部214的配合处的上部,对第一子壳体211和第二子壳体212能起到保护作用,使得第一连接部213与第二连接部214的配合处的上部具有双重防水性能,有利于增强热泵热水器100的防水效果。
在一些实施例中,如图14和图16所示,第一连接部213还包括第三段2133。第三段2133的一端与第二段2132的另一端相连,第三段2133的另一端沿远离第二段2132的方向倾斜延伸。第二连接部214还包括第六段2143。第六段2143的一端与第五段2142的另一端相连,第六段2143的另一端沿远离第二连接部214端的方向倾斜延伸,第六段2143配合在第三段2133内。
在一些实施例中,第三段2133沿远离第二段2132的的方向倾斜向上延伸。第三段2133的长度可以小于顶盖本体32到第二段2132的距离。同样地,第六段2143沿远离第五段2142的方向倾斜向上延伸。此时,使得第一连接部213和第二连接部214的邻近顶盖3的一端具有多个折弯部。由此,进一步实现了对第一子壳体211和第二子壳体212的密封,增强了第二壳体21的防水性能。
可以理解的是,安装板13位于第一壳体11和第二壳体21之间。在一些实施例中,安装板13的侧壁伸入第二壳体21内。如图17和图18所示,安装板13的配合部133向上延伸构成了侧壁,且侧壁的直径小于第二壳体21的直径。安装时,第二壳体21位于安装板13的侧壁的外侧,使得第一连接部213和第二连接部214的下部具有双重防水性能,增强了热泵热水器100的防水效果。
在一些实施例中,参照图18,沿第一壳体11的轴向,安装板13的侧壁的自由端(即配合部133的顶端)高于第一段2131的自由端(即第一段2131的底端)。例如,在第一子壳体211与第二子壳体212的连接处,安装板13的侧壁的自由端的端面位于第一段2131的自由端上方,此时安装板13的侧壁的自由端与第一段2131的自由端在第二壳体21的轴向方向上有一部分重叠,即便外部液体从第一连接部213和第二连接部214的配合处的下部渗入第二壳体21内,安装板13的侧壁可以阻挡外部液体进一步渗入第二壳体21内,从而进一步加强了热泵热水器100的防水效果。
在一些实施例中,第一连接部213和第二连接部214均为两个,两个第一连接部213分别位于第一子壳体211的周向的两端,两个第二连接部214分别位于第二子壳体212的周向的两端。通过两个第一连接部213与两个第二连接部214配合,进一步保证了第一子壳体211与第二子壳体212连接处的防水效果。
如图20至图23所示,风机组件25包括蜗壳251、蜗壳延伸部252、风轮255。蜗壳251设于蒸发器23的远离压缩机22的一侧,蜗壳251具有第二进风口2511和第二出风口2512。第二进风口2511面向蒸发器23设置。第二出风口2512与第一出风口302沿第二壳体21的轴向相对且连通。从第一进风口301进入第二壳体21内部的空气适于流经第二进风口2511进入风机组件25后,从第二出风口2512和第一出风口302排出。
在一些实施例中,如图21和图22所示,蜗壳延伸部252的一端与第二出风口2512相 连,蜗壳延伸部252的另一端与第一出风口302相对,从第二出风口2512朝向第一出风口302的方向(即上下方向)、蜗壳延伸部252朝向靠近蒸发器23的方向倾斜设置。
在一些实施例中,风轮255设在蜗壳251内,从第一进风口301进入第二壳体21内部的空气流经蒸发器23并与蒸发器23换热后,经第二进风口2511进入蜗壳251并通过第二出风口2512从第一出风口302排出。
在一些实施例中,蜗壳延伸部252朝向蒸发器23所在的一侧倾斜设置。这样,一方面可以使蜗壳延伸部252在远离蒸发器23的另一侧形成避让空间,便于第二壳体21的设置。另一方面,可以利用蒸发器23周边的部分空间,以使热泵装置2内部的结构更加紧凑,并且便于将第二出风口2512与第一出风口302连通,以增加第一出风口302处的出风量。
由此,在蜗壳251的第二出风口2512处设置倾斜的蜗壳延伸部252,可以充分利用蒸发器23顶部的空间,便于增加第二出风口2512的面积,有利于使第二出风口2512与第一出风口302相对,增加第二出风口2512处的出风量,以使空气能够及时排出,提高第二壳体21内部空间的利用率。并且,可以避免第二壳体21在与安装板13装配时,第二出风口2512与第二壳体21互相干涉,影响第二壳体21的装配的效率。
如图21所示,蜗壳延伸部252包括开口段253和连接段254,连接段254与开口段253连接,且连接段254比开口段253更靠近蜗壳251。开口段253的一端与第一出风口302相对。例如,开口段253的横截面为圆形。连接段254的一端与开口段253的另一端连接,连接段254的另一端与第二出风口2512连接。例如,连接段254的所述另一端的横截面形状大致为矩形。
在一些实施例中,第二出风口2512流出的空气依次经过连接段254和开口段253,再从第一出风口302流出。开口段253的横截面形状与第一出风口302的形状相适配,由此,有利于增加蜗壳延伸部252的出风面积。连接段254的远离开口段253的一端的横截面的形状(如矩形)与第二出风口2512的形状相适配。这样,能够增加第二出风口2512的出风面积,从而增大蜗壳251的出风量,有利于提高蒸发器23的换热效率。
如图22所示,连接段254包括沿蜗壳251的第二出风口2512的周向依次连接的第一面2541、第二面2542、第三面2543、第四面2544、第五面2545和第六面2546。第一面2541分别与蒸发器23以及第二面2542连接。第四面2544与蒸发器23的面向风机组件25的一侧表面相对。第六面2546分别与第五面2545以及蒸发器23连接,第六面2546与第一面2541相对。
例如,第一面2541的一侧与蒸发器23连接,第二面2542的一侧与第一面2541的另一侧连接,第三面2543的一侧与第二面2542的另一侧连接,第四面2544的一侧与第三面2543的另一侧连接,第四面2544与蒸发器23的面向风机组件25的一侧表面相对,第五面2545的一侧与第四面2544的另一侧连接,第六面2546的一侧与第五面2545的另一侧连接,第六面2546的另一侧与蒸发器23连接,第六面2546与第一面2541相对。且至少第二至第五面2545沿第二出风口2512朝向第一出风口302的方向(即由下到上的方向)朝向靠近蒸发器23倾斜延伸。
需要说明的是,第一面2541至第六面2546的外周面分别为不规则的曲面。例如,第四面2544邻近开口段253的部分的曲率半径大于第四面2544邻近第二出风口2512部分的曲率半径。
第二出风口2512的端面包括第一连接段、第二连接段、第三连接段、第四连接段、第五连接段和第六连接段,第一连接段的两端的端点沿开口段253的中心轴线的方向(即上下方向)与开口段253对应点的连线围成的区域构成第一面2541。第二面2542至第六面2546依次类推。由此,第一面2541至第六面2546从第二出风口2512朝向开口段253倾斜延伸,使蜗壳延伸部252根据第二出风口2512的形状构成连接段254的下端面,以保证连接段254下端面的横截面积与第二出风口2512相适应,从而增加蜗壳251的出风量。
如图22所示,第二出风口2512的远离蒸发器23的两个角处分别具有第一圆角256和第二圆角257,第二面2542和第三面2543连接在第一圆角256处,第五面2545连接在第二圆角257处。即所述第二连接段和所述第三连接段为第一圆角256,所述第五连接段 为第二圆角257。第一圆角256和第二圆角257由蜗壳251在成形过程中形成。
在一些实施例中,第二面2542、第三面2543和第五面2545在朝向开口段253延伸时,蜗壳延伸部252的横截面积减小,以将空气引导至开口段253。由此,第一圆角256和第二圆角257的设置,便于降低空气在蜗壳251内部流动的阻力,且便于第二面2542、第三面2543和第五面2545的设置,以使连接段254与第二出风口2512相适配。
在一些实施例中,如图23所示,第一面2541沿第二出风口2512至开口段253的方向朝向蜗壳251的中心(如图23中风轮255所在的一侧)倾斜延伸。由此,将第一面2541倾斜设置,能够避免开口段253对第二壳体21的安装产生干涉并且提高第二壳体21内部空间的利用率。
如图23所示,第一面2541的倾斜角度为β。即第一面2541在第一截面上的正投影与开口段253的中心轴线在第一截面上的正投影的夹角为β,β满足:β≤3°。也即第一面2541在蒸发器23上的正投影与开口段253的中心轴线之间的角度为β,β满足:β≤3°。
需要说明的是,所述第一截面为垂直于风轮255的中心轴线方向的风机组件25的横截面。风轮255的中心轴线如图24所示的虚线N-N。
可以理解的是,夹角β越大,第一面2541的倾斜角度越大,空气在流经第一面2541时的方向变化越大。因此空气可能在第一面2541附近产生涡流,从而影响蜗壳延伸部252内空气的流动速率,降低第二出风口2512的出风量。
由此,限定第一面2541与开口段253中心轴线之间的夹角,以使第一面2541位于预设位置范围内,便于蜗壳延伸部252与第一出风口302相对,保证了出风效果。
在一些实施例中,如图24所示,第四面2544沿第二出风口2512向开口段253的方向朝向蒸发器23倾斜延伸,第四面2544的倾斜角度为α,α满足:α≤5°。即第四面2544在第二截面上的正投影与开口段253的中心轴线在所述第二截面上的正投影的夹角为α,α满足:α≤5°。
需要说明的是,所述第二截面为过风轮255的中心轴线的纵向平面,且该纵向平面沿开口段253的中心轴线方向延伸。也即,所述第二截面为过图23中虚线M-M的风机组件25的截面。
可以理解的是,夹角α越大,第四面2544的倾斜角度越大。受到第四面2544倾斜角度的影响,空气可能在第四面2544附近产生涡流,从而影响蜗壳延伸部252内空气的流动速率,降低第二出风口2512的出风量。
由此,限定第四面2544与开口段253的中心轴线之间的夹角,能够提高蜗壳延伸部252的出风效果,且有效降低蜗壳延伸部252对空气流动的阻力,保证第二出风口2512的空气能够及时从蜗壳延伸部252排出。
参照图22和图25,蒸发器23还包括避让部231,蜗壳延伸部252部分位于避让部231内。避让部231被配置为避让蜗壳延伸部252。避让部231在水平面上的第一正投影面积与第二正投影面积之比为A,第二正投影面积为蜗壳延伸部252的远离第二出风口2512的一端(即开口段253)在水平面上的正投影面积,A满足:1/6≤A≤1/2。
可以理解的是,避让部231与开口段253的正投影面积之比A越小,则避让部231的空间越小。此时,蜗壳延伸部252不能合理地利用蒸发器23的内部空间,使蒸发器23和蜗壳251的整体体积大,不利于热泵装置2的小型化设计。并且避让部231空间不足,还会影响开口段253截面的面积大小,从而影响出风效果。
避让部231与开口段253的正投影面积之比A越大,则开口段253与第二出风口2512在水平面上的正投影相交的面积越小。因此,可能会干扰第二出风口2512出风,从而降低第二出风口2512的出风效率。
由此,限定避让部231与开口段253在水平面的正投影面积之比,便于将第一出风口302与开口段253相对设置,避免第一出风口302对开口段253的安装产生干涉,并且能够提高蜗壳延伸部252、蜗壳251和蒸发器23的结构紧凑性,增大蜗壳251内部的空间。另外,能够保证蜗壳延伸部252的出风效率,使得空气能够快速地从第二出风口2512流向第一出风口302,从而从第一出风口302排出。
如图26所示,蜗壳延伸部252的远离开口段253的一端(即底端)与蒸发器23的连接处通过第三圆角258过渡。空气在流出第二出风口2512时,能够在蜗壳延伸部252与蒸发器23的连接处,通过第三圆角258流向蜗壳延伸部252,以此增加所述连接处对空气的导向性,避免空气在该连接处流动方向变化大,而影响蜗壳延伸部252的出风效率。
如图21和图24所示,蜗壳251包括沿风轮255的中心轴线方向相互连接的第三壳体2513和第四壳体2514。蒸发器23包括用于蒸发的管路和安装管路的侧板。第三壳体2513与蒸发器23的侧板连接,且第三壳体2513与侧板为一体件。第四壳体2514连接在第三壳体2513的远离蒸发器23的一侧。由此,第三壳体2513与蒸发器23的侧板一体成型,可以减小热泵装置2部件的数量,有利于提高蜗壳251的安装效率。
如图26和图29所示,蜗壳251的第二进风口2511连通蒸发器23的侧板,空气经过蒸发器23的管路换热后,到达蒸发器23的侧板所在的位置,再经第二进风口2511进入蜗壳251。由此,第三壳体2513与蒸发器23的侧板一体成型,能够保证蜗壳251与蒸发器23之间的密封性,有利于增加第二进风口2511的进风量。
如图23和图24所示,沿蒸发器23的厚度方向也即风轮255的中心轴线方向,第三壳体2513的宽度与第四壳体2514的宽度之比为B,B满足:3/7≤B≤1。
可以理解的是,若第三壳体2513与第四壳体2514之间的宽度之比B小于3/7,则不能充分地利用蒸发器23的内部空间,且可能降低第三壳体2513与蒸发器23连接的结构强度。若第三壳体2513与第四壳体2514之间的宽度之比B大于1,则第三壳体2513容易与蒸发器23内部的结构产生干涉,影响第二出风口2512的出风量。
由此,通过限定第三壳体2513与第四壳体2514的宽度之比,以使第三壳体2513能够合理的利用侧板的空间,便于蜗壳延伸部252与第一出风口302相对,保证第三壳体2513与蒸发器23的连接强度,且增大蜗壳251的内部空间,提高蜗壳251的进风量和出风量。
在一些实施例中,如图20所示,顶盖3具有第一进风口301和第一出风口302,第一进风口301和第一出风口302均与第二容纳腔20连通。
在一些实施例中,如图2至图4所示,第一进风口301和第一出风口302分别位于蒸发器23的两侧,第一出风口302和风机组件25位于蒸发器23的同一侧且与风机组件25连通,从第一进风口301进入第二壳体21内部的空气适于流经蒸发器23并与蒸发器23换热后经风机组件25从第一出风口302排出。
在一些实施例中,第一进风口301和第一出风口302关于顶盖3为非中心对称布置,也即第一进风口301与第一出风口302不在顶盖3的径向方向相对设置。这样,能够避免第一进风口301受到电控盒26等部件的干扰,增加进风空间和进风效率。并且从第一进风口301进入第二壳体21内部的空气在流经蒸发器23时需要经过预设角度,再从第一出风口302处流出,能够延长空气从第一进风口301流向第一出风口302的流动路径,以使空气与压缩机22、电控盒26、蒸发器23等充分换热。
如图27所示,第一进风口301的中心和第一出风口302的中心分别与顶盖3的中心的连线之间的夹角为γ,γ满足:80°≤γ<180°。也即,第一进风口301的中心与顶盖3的中心连接形成第一线段,第一出风口302的中心与顶盖3的中心连接形成第二线段,第一线段和第二线段沿第二壳体21的轴向方向在顶盖3上的正投影构成的夹角为γ。
可以理解的是,夹角γ越小,则第一进风口301与第一出风口302距离越近。若夹角γ小于80°,则容易导致第一进风口301与第一出风口302互相干涉,影响热泵热水器100的进风和出风效果。还可能会使第一进风口301与第一出风口302分别与第二进风口2511的连线的夹角小,增加空气在第二壳体21内部流动的阻力。并且,不便于第二壳体21内部电控盒26和压缩机22等部件的设置。
由于从第一进风口301进入第二壳体21内部的空气经过蒸发器23之后,再经由第二进风口2511和第二出风口2512,最终从第一出风口302流出。因此在第二进风口2511的中心位置固定的情况下,夹角γ越大,空气在第二壳体21内部的流经的路径越短,对第二壳体21内压缩机22和电控盒26的散热效果越弱。并且,空气在第二壳体21内部停留时 间变短,降低了蒸发器23的蒸发效率。
若夹角γ等于180°,则第一进风口301与第一出风口302关于第二壳体21的中心对称设置。此时第一进风口301可能部分位于电控盒26上方,导致进风空间小,从第一进风口301进入第二壳体21内部的空气受到电控盒26的干扰,不能顺利到达蒸发器23所在的位置处,从而导致空气的流失。
例如,第一进风口301的中心和第一出风口302的中心分别与顶盖3的中心的连线之间的夹角γ=105°。
由此,通过限定第一进风口301与第一出风口302之间的夹角γ,一方面能够保证第一进风口301的进风效果,从而保证蒸发器23工作所需要的风量,以提高蒸发器23的换热效率。另一方面能够保证第一出风口302的出风效果,有利于提高空气在第二壳体21内部流动的速率,使空气能够快速带走电控盒26和压缩机22等工作产生的热量,有效降低热泵热水器100的能耗。
在一些实施例中,如图20和图27所示,第一进风口301与压缩机22沿热泵热水器100的轴向方向相对设置,且第一进风口301与压缩机22间隔设置。也即第一进风口301与压缩机22在第二壳体21的轴向方向相对。从第一进风口301进入第二壳体21的空气先经过压缩机22再流向蒸发器23和电控盒26。以此,可以避免电控盒26对第一进风口301的遮挡,增加第二壳体21进风量,实现对压缩机22的降温。
在一些实施例中,如图26和图28所示,在蒸发器23的宽度方向上,进风口2511位于蒸发器23的靠近电控盒26的一侧。例如,第二进风口2511和电控盒26位于蒸发器23的两侧且相对设置。从第一进风口301进入第二壳体21内部的空气先经过压缩机22,再经过电控盒26和蒸发器23,并最终流向第二进风口2511。
以此,保证在风机组件25的作用下,第二壳体21内部的空气从蒸发器23的靠近电控盒26的一侧(如图28所示的S2侧)流向第二进风口2511,避免空气从蒸发器23的靠近压缩机22的一侧(如图28所示的S1侧)流向第二进风口2511。这样,使得空气所流经蒸发器23的面积增大,增加了蒸发器23的受风面积。并且可以保证空气与电控盒26充分接触,实现对电控盒26的散热,从而保证电控盒26的工作效率。
如图29所示,第二进风口2511的中心位于第一中心平面邻近安装板13的一侧。所述第一中心平面为所述蒸发器23的高度方向上的中心平面,且所述第一中心平面沿蒸发器23的中心轴线方向延伸。
需要说明的是,所述蒸发器23的高度方向为图29所示的上下方向,所述蒸发器23的宽度方向为图29所示的左右方向。
由此,将第二进风口2511的中心设置于蒸发器23的所述第一中心平面以下,且靠近所述电控盒26设置,能够延长空气从第一进风口301流向第一出风口302的流动路径,充分增加蒸发器23的受风面积,以此增加蒸发器23的换热效率。
如图28所示,沿朝向压缩机22的方向,电控盒26与蒸发器23之间的距离逐渐增大,电控盒26与蒸发器23之间呈夹角θ,θ满足:15≤θ≤30°。第一进风口301与压缩机22相对,空气从第一进风口301进入第二壳体21内后,流向蒸发器23和蒸发器23与电控盒26之间的空间内,以便于电控盒26的散热。
可以理解的是,夹角θ越小,则电控盒26与蒸发器23之间的进风量越小,可能导致电控盒26的散热能力降低,蒸发器23的换热能力减弱。电控盒26与蒸发器23之间的夹角θ越大,则流向蒸发器23的空气会受到电控盒26的阻挡,越容易在电控盒26的表面产生紊流,从而造成空气的流失,使蒸发器23的进风量减小,并进一步影响蒸发器23的换热效果。
例如,沿朝向压缩机22的方向、电控盒26与蒸发器23之间的距离逐渐增大,电控盒26与蒸发器23之间的夹角θ=25°。由此,限定电控盒26与蒸发器23之间的夹角θ,可以增加蒸发器23靠近电控盒26一侧的进风量,提高蒸发器23的换热能力和换热效率,并且可使大量空气经过电控盒26表面,提升电控盒26内的电控板的降温效果,便于对电控盒26进行散热。
如图30和图31所示,热泵热水器100还包括滤网组件4。滤网组件4设在第二壳体21内,且滤网组件4与第一进风口301相对。滤网组件4满足以下之一:滤网组件4与第二壳体21可拆卸连接,或,滤网组件4包括滤网41和支架42,滤网41可拆卸地安装在支架42上,支架42与第二壳体21相连接。
在滤网组件4与第二壳体21可拆卸连接的情况下,安装槽可形成于第二壳体21的侧壁上,以便于滤网组件4安装和拆卸,提高安装效率。滤网组件4整体可沿安装槽装配于第二壳体21。在需要更换滤网组件4时,将滤网组件4整体沿安装槽取下。这样,滤网组件4和第二壳体21可分别进行制造,能够降低加工难度。
在滤网组件4包括滤网41和支架42的情况下,滤网41可拆卸地设在支架42上,支架42可与第二壳体21一体成型,以提高支架42的结构强度。在需要更换滤网41时,将滤网41沿支架42取下,以便于滤网41的更换,降低后期使用和维护的成本。
在一些实施例中,如图32至图34所示,底座28具有第一接水槽281,第一接水槽281设于底座本体上且位于蒸发器23下方,第一接水槽281被配置为收集蒸发器23的管路产生的冷凝水。
在一些实施例中,如图34所示,底座28还具有排水槽283和排水孔285。排水槽283的一端与第一接水槽281相连通,排水槽283远离第一接水槽281的另一端与排水孔285相连通。第一接水槽281中收集的冷凝水可沿第一接水槽281流向排水槽283,并最终从排水孔285排出第二容纳腔20。
由此,在蒸发器23下方设置第一接水槽281以收集蒸发器23的管路表面产生的冷凝水,且使第一接水槽281收集的冷凝水经过排水槽283和排水孔285流出第二容纳腔20。这样能够避免冷凝水的随意流动对热泵装置2造成影响,并且,集成式的排水结构也能够显著提升冷凝水的收集效率和排放效率。
可以理解的是,底座28上对应的蒸发器23的管路之外的容易产生冷凝水的区域处也可以设置接水槽结构。所述接水槽结构连通排水槽283,使得各区域产生冷凝水经过所述接水槽结构收集后,均可以从排水槽283排出。这样,进一步保证了对冷凝水的收集效果和排放效果。
在一些实施例中,底座28还包括多个第一加强筋2811,所述多个第一加强筋2811设于第一接水槽281的底面上。所述多个第一加强筋2811相互平行设置,并构成装配位,以安装蒸发器23。这样,蒸发器23设置于第一加强筋2811构成的所述装配位,保证了蒸发器23在底座28上的稳定。
进一步地,所述多个第一加强筋2811均沿同一方向设置并指向排水槽283,以此能够保证第一接水槽281的强度,以对蒸发器23进行支撑,还能够对冷凝水起到引流的作用,引导第一接水槽281中的冷凝水尽快流向排水槽283,能够显著提升第一接水槽281的接水与排水效果。
如图32至图34所示,底座28还包括第二接水槽282,第二接水槽282位于蜗壳251的下方,且,第二接水槽282设于第一接水槽281的一侧并与排水槽283相连通。
可以理解的是,由于蜗壳251靠近蒸发器23设置,蜗壳251的表面也会因蒸发器23的运行而产生冷凝水,蜗壳251表面的冷凝水沿蜗壳251汇集至蜗壳251的底部。在蜗壳251的底部设置第二接水槽282,可收集蜗壳251表面产生的冷凝水,第二接水槽282所收集的冷凝水可沿第二接水槽282流向排水槽283并最终从排水孔285排出第二容纳腔20。
在一些实施例中,第二接水槽282的形状与蜗壳251的形状相配合,以保证对蜗壳251表面产生的冷凝水的收集效果。如图32和图34所示,蜗壳251的下表面为弧形。为了使第二接水槽282与弧形的蜗壳251相配合第二接水槽282为截面呈梯形的弧形槽。或者,第二接水槽282包括水平设置的底面,以及与底面相连接的弧形侧面。弧形侧面与蜗壳251的弧面相匹配,二者可以同圆心不同直径的两段弧面。
在一些实施例中,底座28还包括多个第二加强筋2821,所述多个第二加强筋2821设置于第二接水槽282的底面和侧面。与第一加强筋2811不同的是,所述多个第二加强筋 2821包括相互垂直的至少一个横向筋和至少一个纵向筋,即所述多个第二加强筋2821横竖交错设置。以此,能够提升第二接水槽282的结构强度,实现对蜗壳251的支撑,并且确保蜗壳251与第二接水槽282之间能够形成间隙,保证了冷凝水的正常流动。
如图34和图37所示,在一些实施例中,底座28还包括导水槽284,导水槽284设置于第二接水槽282的一侧。例如,导水槽284设置于第一接水槽281和第二接水槽282之间。导水槽284与第二接水槽282和排水槽283相连通。第二接水槽282中的冷凝水可经过导水槽284流向排水槽283。
在一些实施例中,蜗壳251的第三壳体2513向蒸发器23所在的方向延伸,且与蒸发器23的侧板连接,且第三壳体2513与蒸发器23的侧板为一体件。导水槽284还可以位于蒸发器23的侧板的底部,此时导水槽284不仅被配置为中转第二接水槽282的冷凝水,还被配置为收集蒸发器23的侧板产生的冷凝水,并将冷凝水传递至排水槽283中。
在一些实施例中,如图35、图37以及图39所示,从靠近第一接水槽281的一端至靠近排水孔285的一端,排水槽283在底座28上的正投影的宽度呈减小趋势。进一步地,为了避免排水槽283中的冷凝水在排水槽283中长时间堆积与停留,使排水槽283中的冷凝水快速排出,排水槽283的底面相对水平面向靠近水箱本体12的一端(即下端)倾斜设置,也即从靠近第一接水槽281的一端至靠近排水孔285的一端,排水槽283的底面的高度在热泵热水器100的轴向上逐渐降低。例如,排水槽283底面的倾斜角度为θ,θ满足1°≤θ≤3°。
如图35至图38所示,底座28还包括多个遮挡柱2831,所述多个遮挡柱2831设置在排水槽283的靠近排水孔285的位置处。所述多个遮挡柱2831能够对冷凝水中的大体积异物进行阻挡,可有效防止异物阻塞排水孔285影响冷凝水的正常排出。实际使用时操作人员可定期打开第二壳体21对遮挡柱2831旁侧被阻拦的异物或大体积颗粒进行清洗,进而确保排水槽283的正常使用。
在一些实施例中,为了方便操作人员及时了解各接水槽及排水槽283中的水位情况,例如,第一接水槽281内还设有水位传感器,水位感应器被配置为检测第一接水槽281内的水位情况。当排水槽283无法正常排水且导致第一接水槽281内的冷凝水水位位于水位阈值范围外时,水位传感器可发出报警信号,以提醒操作人员及时检查第一接水槽281及排水槽283的情况,保证热泵热水器100的正常运行。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (35)

  1. 一种热泵热水器,包括:
    水箱组件,所述水箱组件包括:
    第一壳体;
    水箱本体,设置于所述第一壳体内,所述水箱本体具有进水口和出水口;和
    冷凝器,设置于所述第一壳体内,且被配置为释放热量以加热所述水箱本体内的水;以及
    热泵装置,所述热泵装置包括:
    第二壳体,所述第二壳体具有第一进风口和第一出风口;
    蒸发器,位于所述第二壳体内,所述蒸发器位于所述第一进风口和所述第一出风口之间,且被配置为吸收空气中的热量;
    压缩机,位于所述第二壳体内,且设于所述蒸发器的一侧;
    节流组件,设于所述蒸发器和所述冷凝器之间,所述压缩机、所述冷凝器、所述节流组件和所述蒸发器依次相连并构成制冷剂循环回路;和
    风机组件,设于所述蒸发器的与所述一侧相对的另一侧,且被配置为将外部空气导入所述蒸发器;其中,
    所述风机组件包括:
    蜗壳,所述蜗壳具有:
    第二进风口,与所述蒸发器相对设置;和
    第二出风口,连通所述第二进风口,且所述第二出风口与所述第一出风口沿所述第二壳体的轴向相对且连通;以及
    风轮,设在所述蜗壳内,从所述第一进风口进入所述第二壳体的空气适于流经所述蒸发器并与所述蒸发器换热后,经所述第二进风口进入所述蜗壳并通过所述第二出风口从所述第一出风口排出;其中,
    所述蜗壳还包括蜗壳延伸部,所述蜗壳延伸部的一端与所述第二出风口相连,所述蜗壳延伸部的另一端与所述第一出风口相对;从所述第二出风口朝向所述第一出风口的方向,所述蜗壳延伸部朝向所述蒸发器的方向倾斜设置。
  2. 根据权利要求1所述的热泵热水器,其中,所述蜗壳延伸部包括:
    开口段,与所述第一出风口相对;以及
    连接段,分别与所述开口段以及所述第二出风口连接。
  3. 根据权利要求2所述的热泵热水器,其中,所述连接段包括依次相连的第一面至第六面,其中,
    所述第一面分别与所述蒸发器以及所述第二面连接;
    所述第四面与所述蒸发器的面向所述风机组件的一侧表面相对;
    所述第六面分别与所述第五面以及所述蒸发器连接,所述第六面与所述第一面相对。
  4. 根据权利要求3所述的热泵热水器,其中,所述第一面沿所述第二出风口向所述第一出风口的方向朝向所述蜗壳的中心倾斜延伸,所述第一面在第一截面上的正投影与所述开口段的中心轴线在所述第一截面上的正投影的夹角为β,所述β满足:β≤3°;其中,所述第一截面为垂直于所述风轮的中心轴线的平面。
  5. 根据权利要求3或4所述的热泵热水器,其中,所述第四面沿所述第二出风口向所述第一出风口的方向朝向所述蒸发器倾斜延伸,所述第四面在第二截面上的正投影与所述开口段的中心轴线在所述第二截面上的正投影之间的夹角为α,所述α满足:α≤5°;其中,所述第二截面为过所述风轮的中心轴线的平面。
  6. 根据权利要求1至5中任一项所述的热泵热水器,其中,所述蒸发器包括避让部,以避让所述蜗壳延伸部,所述避让部在水平面上的第一正投影面积与第二正投影面积之比为A,其中,所述第二正投影面积为所述蜗壳延伸部远离所述第二出风口的一端在所述水平面上的正投影面积,所述A满足:1/6≤A≤1/2。
  7. 根据权利要求1至6中任一项所述的热泵热水器,其中,所述蜗壳还包括:
    第三壳体,与所述蒸发器的侧板连接;以及
    第四壳体,与所述第三壳体相连,且位于所述第三壳体的远离所述蒸发器的一侧。
  8. 根据权利要求7所述的热泵热水器,其中,沿所述蒸发器的厚度方向,所述第三壳体的宽度与所述第四壳体的宽度之比为B,所述B满足:3/7≤B≤1。
  9. 根据权利要求1至8中任一项所述的热泵热水器,还包括电控盒,所述电控盒位于所述蒸发器的所述一侧,所述电控盒与所述压缩机耦接;其中,所述第一进风口位于所述蒸发器的所述一侧,且与所述压缩机相对设置,气流适于通过所述第一进风口进入所述热泵装置;所述第一出风口位于所述蒸发器的所述另一侧,且与所述风机组件连通;其中,
    所述第一进风口和所述第一出风口关于所述第二壳体的顶部为非中心对称布置。
  10. 根据权利要求9所述的热泵热水器,其中,所述第二壳体还包括顶盖,所述第一进风口和所述第二进风口设置于所述顶盖上;所述第一进风口的中心与所述顶盖的中心的第一连线,和,所述第一出风口的中心与所述顶盖的中心的第二连线之间的夹角为γ,其中,所述γ满足:80°≤γ<180°。
  11. 根据权利要求9或10所述的热泵热水器,其中,所述第二进风口开设于所述蒸发器的所述另一侧,且与所述电控盒相对设置;在水平方向上,所述第二进风口的中心位于所述蒸发器的靠近所述电控盒的一侧;在高度方向上,所述第二进风口的中心位于所述蒸发器的靠近所述水箱本体的一侧。
  12. 根据权利要求9至11中任一项所述的热泵热水器,其中,沿朝向所述压缩机的方向,所述电控盒与所述蒸发器之间的距离呈增大趋势,所述电控盒与所述蒸发器之间呈夹角θ,所述θ满足:15°≤θ≤30°。
  13. 根据权利要求1至12中任一项所述的热泵热水器,还包括滤网组件,所述滤网组件设在所述第二壳体内,且与所述第一进风口相对;其中,所述滤网组件满足以下之一:
    所述滤网组件与所述第二壳体可拆卸连接;或
    所述滤网组件包括滤网和安装支架,所述滤网可拆卸地设在所述安装支架上,所述安装支架与所述第二壳体相连。
  14. 根据权利要求1至13中任一项所述的热泵热水器,其中,所述水箱组件还包括安装板,所述第二壳体与所述安装板可拆卸地连接;所述安装板与所述第二壳体之间构成容纳腔;所述压缩机、所述风机组件、所述节流组件和所述蒸发器分别容纳在所述容纳腔内;其中,
    所述第二壳体和所述安装板中的一个设置有至少一个容置部,所述第二壳体和所述安装板中的另一个设有至少一个卡合部,所述卡合部配合在所述容置部内,以使所述第二壳体和所述安装板相连。
  15. 根据权利要求14所述的热泵热水器,其中,所述卡合部设置于所述第二壳体的内壁面;所述安装板包括:
    安装板本体,与所述第一壳体相连;以及
    配合部,与所述安装板本体相连;所述配合部设在所述安装板本体的周向,且沿朝向所述第二壳体的方向延伸;所述配合部位于所述第二壳体内,所述容置部设置于所述配合部。
  16. 根据权利要求14或15所述的热泵热水器,其中,所述第二壳体包括可拆卸连接的第一子壳体和第二子壳体;所述至少一个卡合部包括多个卡合部,所述多个卡合部包括至少一个第一子卡合部和至少一个第二子卡合部;其中,
    所述至少一个第一子卡合部包括多个第一子卡合部,所述多个第一子卡合部沿所述第一子壳体的周向间隔排布;所述至少一个第二子卡合部包括多个第二子卡合部,所述多个第二子卡合部沿所述第二子壳体的周向间隔排布。
  17. 根据权利要求16所述的热泵热水器,其中,所述多个第一子卡合部中位于所述第一子壳体的两侧的第一子卡合部具有第一导向面;所述多个第二子卡合部中位于所述第二子壳体的两侧的第二子卡合部具有第二导向面;
    所述至少一个容置部包括多个容置部,所述多个容置部包括多个第一子容置部和多个第二子容置部;所述多个第一子容置部中的至少两个第一子容置部具有第三导向面,所述 第三导向面与所述第一导向面接触;所述多个第二子容置部中的至少两个第二子容置部具有第四导向面,所述第四导向面与所述第二导向面接触。
  18. 根据权利要求16或17所述的热泵热水器,其中,所述多个第二子卡合部分别靠近所述第二子壳体的端部设置。
  19. 根据权利要求16至18中任一项所述的热泵热水器,其中,所述第二壳体还包括至少一个凸筋,所述凸筋位于所述第二壳体的邻近所述安装板的一侧,且与所述配合部止抵;其中,所述多个卡合部中相邻两个卡合部之间设有所述凸筋。
  20. 根据权利要求19所述的热泵热水器,其中,所述配合部的外周设有至少一个第一限位部,所述凸筋与所述第一限位部止抵。
  21. 根据权利要求14至20中任一项所述的热泵热水器,其中,所述第一子壳体和所述第二子壳体中的一个设有卡扣,所述安装板包括第二限位部,所述卡扣与所述第二限位部止抵。
  22. 根据权利要求16至21中任一项所述的热泵热水器,其中,所述第一子壳体设置有至少一个第一连接部,所述第二子壳体设置有至少一个第二连接部,所述第二连接部于所述第一连接部相配合,以密封所述第一子壳体以及所述第二子壳体的连接处。
  23. 根据权利要求22所述的热泵热水器,其中,所述第一连接部包括:
    第一段,所述第一段沿所述第一壳体的轴向延伸;
    第二段,所述第二段的一端与所述第一段相连,所述第二段的另一端沿朝向所述第一壳体中心的方向延伸;
    所述第二连接部包括:
    第四段,所述第四段沿所述第一壳体的轴向延伸,所述第四段配合在所述第一段内;
    第五段,所述第五段的一端与所述第四段相连,所述第五段的另一端沿朝向所述第一壳体中心的方向延伸;所述第五段配合在所述第二段内。
  24. 根据权利要求23所述的热泵热水器,其中,所述第二壳体还包括顶盖,所述顶盖盖设在所述第一子壳体和所述第二子壳体的顶部,且所述顶盖的底壁与所述第二段的外侧壁止抵。
  25. 根据权利要求23或24所述的热泵热水器,其中,所述第一连接部还包括第三段,所述第三段的一端与所述第二段的所述另一端相连,所述第三段的另一端沿远离所述第二段的方向倾斜延伸;
    所述第二连接部还包括第六段,所述第六段的一端与所述第五段的所述另一端相连,所述第六段的另一端沿远离所述第五端的方向倾斜延伸;所述第六段配合在所述第三段内。
  26. 根据权利要求23至25中任一项所述的热泵热水器,其中,所述配合部位于所述第二壳体内;沿所述第一壳体的轴向,所述配合部的顶端高于所述第一段的底端。
  27. 根据权利要求1至26中任一项所述的热泵热水器,还包括底座,所述压缩机、所述蒸发器、所述节流组件以及所述风机组件均位于所述底座的远离所述水箱组件的一侧,所述底座包括:
    底座本体;
    第一接水槽,设于所述底座本体,且位于所述蒸发器的底部,所述第一接水槽被配置为收集所述蒸发器的管路表面产生的冷凝水;
    排水槽,设于所述底座本体,且与所述第一接水槽相连通;以及
    排水孔,设于所述底座本体且与所排水槽相连通;其中,所述第一接水槽中的冷凝水经由所述第一接水槽流向所述排水槽,并最终从所述排水孔排出。
  28. 根据权利要求27所述的热泵热水器,其中,所述底座还包括多个第一加强筋,所述多个第一加强筋设于所述第一接水槽的底面,所述多个第一加强筋相互平行设置并构成装配位,以安装所述蒸发器。
  29. 根据权利要求27或28所述的热泵热水器,其中,所述底座还包括第二接水槽,所述第二接水槽设于所述底座本体且位于所述蜗壳的底部;所述第二接水槽位于所述第一 接水槽的一侧并与所述排水槽相连通,所述第二接水槽被配置为收集所述蜗壳表面产生的冷凝水;其中,
    所述第二接水槽中的冷凝水沿所述第二接水槽流向所述排水槽并最终从所述排水孔排出。
  30. 根据权利要求29所述的热泵热水器,其中,所述第二接水槽包括:
    底面,所述底面水平设置;以及
    侧面,与所述底面相连接,所述侧面与所述蜗壳的侧面相匹配。
  31. 根据权利要求29或30所述的热泵热水器,其中,所述底座还包括多个第二加强筋,所述多个第二加强筋设于所述第二接水槽,所述多个第二加强筋包括相互垂直的横向筋和纵向筋。
  32. 根据权利要求29至31中任一项所述的热泵热水器,其中,所述底座还包括导水槽,所述导水槽位于所述第二接水槽靠近所述第一接水槽的一侧,且所述导水槽连通所述第二接水槽以及所述排水槽,所述第二接水槽中的冷凝水经过所述导水槽流向所述排水槽;
    所述蜗壳与所述蒸发器的侧板相连接,所述导水槽位于所述蒸发器的侧板的底部,所述导水槽还被配置为收集所述蒸发器的侧板表面产生的冷凝水。
  33. 根据权利要求27至32中任一项所述的热泵热水器,其中,从所述第一接水槽至所述排水孔,所述排水槽在所述底座的正投影的宽度呈减小趋势。
  34. 根据权利要求27至33中任一项所述的热泵热水器,其中,从所述第一接水槽至所述排水孔,所述排水槽的底面相对于水平面向靠近所述水箱本体的一侧倾斜设置。
  35. 根据权利要求27至34中任一项所述的热泵热水器,其中,所述底座还包括遮挡柱,所述遮挡柱位于所述排水槽靠近所述排水孔处,所述遮挡柱被配置为防止冷凝水中的异物流向所述排水孔,以避免阻塞所述排水孔。
PCT/CN2023/114813 2022-09-30 2023-08-24 热泵热水器 WO2024066839A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202222650045.6U CN218269578U (zh) 2022-09-30 2022-09-30 热泵热水器
CN202222650002.8 2022-09-30
CN202222650045.6 2022-09-30
CN202222650002.8U CN218269577U (zh) 2022-09-30 2022-09-30 热泵热水器
CN202223072734.X 2022-11-18
CN202223072734.XU CN218645772U (zh) 2022-11-18 2022-11-18 热泵热水器
CN202223072717.6U CN218600009U (zh) 2022-11-18 2022-11-18 热泵热水器
CN202223072717.6 2022-11-18
CN202223606329.1U CN218936670U (zh) 2022-12-30 2022-12-30 一种热泵热水器
CN202223606329.1 2022-12-30

Publications (1)

Publication Number Publication Date
WO2024066839A1 true WO2024066839A1 (zh) 2024-04-04

Family

ID=90476036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114813 WO2024066839A1 (zh) 2022-09-30 2023-08-24 热泵热水器

Country Status (1)

Country Link
WO (1) WO2024066839A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200968713Y (zh) * 2006-09-06 2007-10-31 卓珍瑞 冷媒热泵热水设备
CN202885239U (zh) * 2012-09-26 2013-04-17 广东志高空调有限公司 一种室内整体式热泵热水器
CN104930702A (zh) * 2014-03-17 2015-09-23 广东美的暖通设备有限公司 热泵热水机
CN206695381U (zh) * 2017-05-02 2017-12-01 艾欧史密斯(中国)热水器有限公司 热泵热水器
CN218269577U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218269578U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218600009U (zh) * 2022-11-18 2023-03-10 海信家电集团股份有限公司 热泵热水器
CN218645772U (zh) * 2022-11-18 2023-03-17 海信家电集团股份有限公司 热泵热水器
CN218936670U (zh) * 2022-12-30 2023-04-28 海信(广东)空调有限公司 一种热泵热水器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200968713Y (zh) * 2006-09-06 2007-10-31 卓珍瑞 冷媒热泵热水设备
CN202885239U (zh) * 2012-09-26 2013-04-17 广东志高空调有限公司 一种室内整体式热泵热水器
CN104930702A (zh) * 2014-03-17 2015-09-23 广东美的暖通设备有限公司 热泵热水机
CN206695381U (zh) * 2017-05-02 2017-12-01 艾欧史密斯(中国)热水器有限公司 热泵热水器
CN218269577U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218269578U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218600009U (zh) * 2022-11-18 2023-03-10 海信家电集团股份有限公司 热泵热水器
CN218645772U (zh) * 2022-11-18 2023-03-17 海信家电集团股份有限公司 热泵热水器
CN218936670U (zh) * 2022-12-30 2023-04-28 海信(广东)空调有限公司 一种热泵热水器

Similar Documents

Publication Publication Date Title
CN218645772U (zh) 热泵热水器
WO2024066845A1 (zh) 热泵热水器
WO2024066839A1 (zh) 热泵热水器
WO2024066838A1 (zh) 热泵热水器
JP2010281461A (ja) 空気調和機の室外機
WO2024066818A1 (zh) 热泵热水器
CN208442938U (zh) 天花机
CN103836853B (zh) 一种气液分离器及具有其的空调系统
CN214199119U (zh) 风机盘管壳体、风机盘管及空调
CN214120217U (zh) 厨房空气调节器
CN110068072A (zh) 空调室外机和空调器
US11835060B2 (en) Range hood
EP2878896B1 (en) Gas water heating appliance with air pressure switch
CN212300020U (zh) 降膜式换热器和空调器
WO2022002253A1 (zh) 冷凝器组件和便携式空调器
CN208296097U (zh) 空调器
CN217178716U (zh) 一种防漏水的风机盘管机及空调器
CN209046461U (zh) 一种磁悬浮电机冷却装置
CN119137427A (zh) 热泵热水器
CN113847664A (zh) 一种厨房空调一体机
CN218583253U (zh) 一种吸油烟机
CN218993558U (zh) 空调器
CN221944345U (zh) 空调室内机
CN220186989U (zh) 一种除湿机
CN222279460U (zh) 冷凝换热装置及燃气热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870082

Country of ref document: EP

Kind code of ref document: A1