WO2024066838A1 - 热泵热水器 - Google Patents

热泵热水器 Download PDF

Info

Publication number
WO2024066838A1
WO2024066838A1 PCT/CN2023/114812 CN2023114812W WO2024066838A1 WO 2024066838 A1 WO2024066838 A1 WO 2024066838A1 CN 2023114812 W CN2023114812 W CN 2023114812W WO 2024066838 A1 WO2024066838 A1 WO 2024066838A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
heat pump
evaporator
sub
section
Prior art date
Application number
PCT/CN2023/114812
Other languages
English (en)
French (fr)
Inventor
向毅
黄存芳
黄民柱
张海能
刘裕
梁智文
王伟戈
Original Assignee
海信家电集团股份有限公司
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222650002.8U external-priority patent/CN218269577U/zh
Priority claimed from CN202222650045.6U external-priority patent/CN218269578U/zh
Priority claimed from CN202223072744.3U external-priority patent/CN218600007U/zh
Priority claimed from CN202223072734.XU external-priority patent/CN218645772U/zh
Priority claimed from CN202223072717.6U external-priority patent/CN218600009U/zh
Application filed by 海信家电集团股份有限公司, 海信(广东)空调有限公司 filed Critical 海信家电集团股份有限公司
Publication of WO2024066838A1 publication Critical patent/WO2024066838A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels

Definitions

  • the present disclosure relates to the technical field of household appliances, and in particular to a heat pump water heater.
  • the heat pump water heater can introduce cold water into the water tank from the water inlet, and heat the cold water into hot water through the heat pump device, and then let the hot water flow out through the water outlet for users to use.
  • a heat pump water heater comprising a water tank assembly and a heat pump device.
  • the water tank assembly comprises a first shell and a water tank body.
  • the water tank body is arranged in the first shell, and the water tank body has a water inlet and a water outlet.
  • the heat pump device is located at the top of the water tank assembly, and comprises a second shell, an evaporator, a compressor and a fan assembly.
  • the evaporator is located in the second shell, and is configured to absorb heat from the air.
  • the compressor is located at one side of the evaporator, and the compressor has an air inlet and an air outlet, the air inlet is connected to the evaporator, and the air outlet is connected to the condenser.
  • the fan assembly is located at the other side of the evaporator opposite to the one side, and is configured to introduce external air into the evaporator.
  • the water tank assembly also comprises a mounting plate, and the mounting plate is arranged at one end of the axial direction of the first shell.
  • the heat pump device is located on a side of the mounting plate away from the water tank body, and the mounting plate is configured to support the heat pump device.
  • the second shell is detachably connected to the mounting plate, and a receiving cavity is formed between the second shell and the mounting plate, and the evaporator, the compressor and the fan assembly are respectively received in the receiving cavity.
  • one of the second shell and the mounting plate is provided with at least one accommodating portion, and the other of the second shell and the mounting plate is provided with at least one first clamping portion, and the first clamping portion is fitted in the accommodating portion to connect the second shell and the mounting plate.
  • FIG1 is a structural diagram of a heat pump water heater according to some embodiments.
  • FIG2 is a cross-sectional view of a heat pump water heater according to some embodiments.
  • FIG3 is a partial cross-sectional view of a heat pump water heater according to some embodiments.
  • FIG4 is a partial structural diagram of a heat pump device and a water tank assembly according to some embodiments.
  • FIG5 is a structural diagram of the heat pump water heater in FIG4 from another angle
  • FIG6 is a structural diagram of a first sub-housing of a heat pump water heater according to some embodiments.
  • FIG7 is a partial enlarged view of the circle A1 in FIG6;
  • FIG8 is a partial enlarged view of the circle B in FIG6;
  • FIG9 is a structural diagram of a second sub-housing of a heat pump water heater according to some embodiments.
  • FIG10 is a partial enlarged view of the circle C1 in FIG9 ;
  • FIG11 is a partial enlarged view of the circle D in FIG9 ;
  • FIG. 12 is a structural diagram of a mounting plate of a heat pump water heater according to some embodiments.
  • FIG. 13 is another structural diagram of a first sub-housing of a heat pump water heater according to some embodiments.
  • FIG14 is a partial enlarged view of the circle A2 in FIG13;
  • 15 is another structural diagram of a second sub-housing of a heat pump water heater according to some embodiments.
  • FIG16 is a partial enlarged view of the circle C2 in FIG15;
  • 17 is a cross-sectional view of a housing and a top cover of a heat pump water heater according to some embodiments
  • FIG18 is a partial enlarged view of the circle E in FIG17;
  • FIG19 is a partial enlarged view of the circle F in FIG17;
  • FIG. 20 is an exploded view of a heat pump water heater according to some embodiments.
  • FIG. 21 is a structural diagram of a fan assembly and an evaporator according to some embodiments.
  • FIG22 is a partial enlarged view of the circle G in FIG21;
  • FIG. 23 is a front view of a fan assembly and an evaporator according to some embodiments.
  • FIG. 24 is a side view of a fan assembly and an evaporator according to some embodiments.
  • FIG25 is a top view of the fan assembly and evaporator in FIG24;
  • 26 is another front view of a fan assembly and an evaporator according to some embodiments.
  • FIG. 27 is a top view of a heat pump water heater according to some embodiments.
  • FIG28 is a partial structural diagram of a heat pump device according to some embodiments.
  • 29 is another side view of a fan assembly and evaporator according to some embodiments.
  • FIG30 is a diagram of a heat pump water heater according to some embodiments.
  • FIG31 is a partial enlarged view of the circle P portion in FIG30;
  • FIG32 is a structural diagram of a second housing according to some embodiments.
  • FIG33 is a structural diagram of a filter assembly and a second housing according to some embodiments.
  • FIG34 is a structural diagram of a mounting bracket and a second housing according to some embodiments.
  • FIG35 is a block diagram of a filter assembly according to some embodiments.
  • FIG36 is a cross-sectional view of a second housing according to some embodiments.
  • FIG37 is a partial enlarged view of circle Q in FIG36 .
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • Coupled and “connected” and their derivatives may be used.
  • the term “connected” should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the term “coupled” indicates that two or more components are in direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • Heat pump water heaters are a new type of water heater that emerged after electric water heaters, gas water heaters and solar water heaters. Heat pump water heaters heat the water in the water tank by absorbing heat from the air. This avoids the problems of electric water heater leakage and dry burning, as well as the possible gas poisoning when using gas water heaters, and overcomes the disadvantage of solar water heaters being greatly affected by the weather. It has the advantages of high efficiency and energy saving, safety and environmental protection, all-weather operation, and convenience of use.
  • the heat pump water heater 100 includes a water tank assembly 1 and a heat pump device 2.
  • the water tank assembly 1 includes a first shell 11, a water tank body 12 and a condenser.
  • the water tank body 12 is disposed in the first shell 11 and is configured to store water.
  • the water tank body 12 has a water inlet 121 and a water outlet 122.
  • the water inlet 121 and the water outlet 122 can be disposed at both ends of the axial direction of the water tank body 12.
  • the water inlet 121 is configured to connect an external pipeline so that cold water can flow into the water tank body 12 through the water inlet 121, and the cold water can flow out of the water tank body 12 through the water outlet 122 after being heated for use by the user.
  • the condenser is disposed in the first housing 11 , and the condenser may be a heat-conducting member of a hollow tubular structure.
  • the condenser is a copper tube and is wound around the outside of the water tank body 12 .
  • the heat pump device 2 is located at the top of the water tank assembly 1.
  • the heat pump device 2 includes a second housing 21, a compressor 22 and an evaporator 23 contained in the second housing 21.
  • the evaporator 23 is configured to absorb heat from the air.
  • the compressor 22 has an air inlet and an exhaust port, the exhaust port of the compressor 22 is connected to one end of the condenser, and the air inlet of the compressor 22 is connected to one end of the evaporator 23.
  • the heat pump device 2 further includes a throttling assembly 24.
  • the throttling assembly 24 is connected between the other end of the evaporator 23 and the other end of the condenser.
  • the compressor 22, the condenser, the throttling assembly 24 and the evaporator 23 are sequentially connected to form a refrigerant circulation loop.
  • the refrigerant can flow in the refrigerant circulation loop, so that the condenser and the water tank body 12 can exchange heat to heat the water in the water tank body 12.
  • the heat pump device 2 further includes a fan assembly 25.
  • the fan assembly 25 is disposed on one side of the evaporator 23 and is configured to introduce external air into the evaporator 23. After the refrigerant in the evaporator 23 absorbs heat, it returns to the compressor 22 to be compressed again, and the cycle is repeated, and the heat energy in the air is continuously sent to the water, so that the water temperature in the water tank body 12 increases.
  • the heat pump device 2 further includes an electric control box 26.
  • the electric control box 26 is coupled to the compressor 22, the evaporator 23 and the fan assembly 25.
  • the electric control box 26 and the compressor 22 are located on the same side of the evaporator 23 and opposite to the fan assembly 25.
  • the electric control box 26 is configured to control the normal operation of the heat pump water heater 100.
  • the fan assembly 25 and the compressor 22 are respectively located on both sides of the thickness direction of the evaporator 23 (the left and right direction as shown in FIG2).
  • the fan assembly 25 When the heat pump water heater 100 is working, the fan assembly 25 is running. Under the action of the fan assembly 25, a large amount of air flows through the outer surface of the evaporator 23. The heat in the air is absorbed by the evaporator 23, and the temperature of the air is reduced to become cold air. The cold air is then discharged from the fan assembly 25.
  • the refrigerant in the evaporator 23 absorbs heat and vaporizes, and is then sucked into the compressor 22.
  • the compressor 22 compresses the returning low-pressure refrigerant gas into a high-temperature, high-pressure gas, and sends it into the condenser wrapped around the outer wall of the water tank body 12.
  • the heat generated by the high-temperature, high-pressure gas is transferred to the inside of the water tank body 12 by heat conduction through the condenser to heat the water in the water tank body 12.
  • the refrigerant in the condenser is cooled into liquid under the continuous action of pressure, and the liquid flows into the evaporator 23 again after being throttled and cooled by the throttling component 24 (such as an expansion valve). Since the pressure in the evaporator 23 drops suddenly, the liquid refrigerant evaporates rapidly into gas at the evaporator 23 and absorbs a large amount of heat. In this repeated cycle, the heat energy in the air is continuously sent to the water, so that the water temperature in the water tank body 12 increases.
  • the throttling component 24 such as an expansion valve
  • the heat pump device 2 further includes a base 28, which is disposed on the The side of the mounting plate 13 away from the water tank assembly 1.
  • the compressor 22, the evaporator 23, the throttling assembly 24, the fan assembly 25 and the electric control box 26 are respectively arranged on the side (such as the upper side) of the base 28 away from the water tank assembly 1.
  • the base 28 is connected to the water tank assembly 1 to complete the assembly of the heat pump device 2 and the water tank assembly 1.
  • the water tank assembly 1 includes a mounting plate 13.
  • the mounting plate 13 is disposed at one axial end of the first housing 11.
  • the mounting plate 13 is disposed at the top of the first housing 11 to facilitate installation of the heat pump device 2.
  • a first accommodating chamber 10 is defined between the mounting plate 13 and the first housing 11, and the water tank body 12 is located in the first accommodating chamber 10.
  • the lower end of the second housing 21 is detachably connected to the mounting plate 13.
  • the second housing 21 and the mounting plate 13 form a second accommodating chamber 20 (i.e., an accommodating chamber), and the compressor 22, the evaporator 23, the throttling assembly 24, the fan assembly 25, and the electric control box 26 are all located in the second accommodating chamber 20.
  • the heat pump water heater 100 further includes a display device 27 (eg, a display panel), which is disposed on the second housing 21 .
  • the display device 27 is configured to display the water temperature in the water tank body 12 .
  • the second housing 21 of the heat pump device 2 is an integral housing.
  • the display device 27 is first installed in the integral housing, and then the display device 27 and the electric control box 26 are wired.
  • the common integral housing lacks a pre-fixed structure, and the second housing 21 is prone to fall off during the installation process, resulting in reduced assembly efficiency.
  • the integral housing limits the operating space, making wiring difficult.
  • the second shell 21 is a split structure, and the second shell 21 includes a first sub-shell and a second sub-shell.
  • the second shell 21 includes a first sub-shell and a second sub-shell.
  • some embodiments of the present disclosure provide a heat pump water heater 100, wherein one of the second housing 21 and the mounting plate 13 is provided with a receiving portion 131, and the other of the second housing 21 and the mounting plate 13 is provided with a first engaging portion 215, and the first engaging portion 215 is engaged in the receiving portion 131, so that the second housing 21 and the mounting plate 13 are connected.
  • the second housing 21 includes the first engaging portion 215, and the first engaging portion 215 can be a boss.
  • the mounting plate 13 includes the receiving portion 131, and the receiving portion 131 can be a groove.
  • the second housing 21 can be pre-installed on the mounting plate 13 by the cooperation of the first engaging portion 215 and the accommodating portion 131, and then the display device 27 is wired, thereby preventing the second housing 21 from falling off from the mounting plate 13 during wiring.
  • the assembly method is simple, easy to operate, and can improve assembly efficiency.
  • the accommodating portion 131 is disposed at the outer periphery of the mounting plate 13.
  • the accommodating portion 131 is formed by a portion of the mounting plate 13 being recessed toward the central axis of the mounting plate 13.
  • the first engaging portion 215 is disposed on the inner wall surface of the second housing 21 and is located on a side of the second housing 21 adjacent to the mounting plate 13.
  • the second housing 21 can be pre-installed on the mounting plate 13 by the cooperation of the first engaging portion 215 and the accommodating portion 131.
  • one end of the first engaging portion 215 extends toward the central axis of the second housing 21, and the other end of the first engaging portion 215 is connected to the second housing 21.
  • the width of the one end of the first engaging portion 215 is smaller than the width of the other end so as to cooperate with the corresponding accommodating portion 131.
  • the mounting plate 13 includes a mounting plate body 132 and a first matching portion 133 connected to each other.
  • the mounting plate body 132 is connected to the first housing 11, the first matching portion 133 is arranged on the circumference of the mounting plate body 132 and extends in a direction toward the top of the second housing 21, and the first matching portion 133 is formed with an accommodating portion 131.
  • the shape of the mounting plate body 132 is adapted to the shape of the top of the first shell 11 to separate the heat pump device 2 from the water tank body 12 to prevent water in the water tank body 12 from entering the second shell 21 and causing a short circuit in the circuit of the heat pump device 2.
  • the first matching portion 133 is located at the edge of the mounting plate body 132 and extends to a side away from the water tank assembly 1.
  • the first matching portion 133 extends along the circumference of the mounting plate body 132 and is perpendicular to the mounting plate body 132.
  • the first matching portion 133 is spaced apart from the outer circumference of the mounting plate body 132, so that after the second shell 21 is assembled with the mounting plate 13, the first matching portion 133 can be located in the second shell 21, and at this time, the lower end surface of the second shell 21 abuts against the outer circumference of the mounting plate body 132.
  • the structure of the mounting plate 13 is simple and easy to process, and the sealing performance of the connection between the second housing 21 and the mounting plate 13 can be improved to prevent external liquid from entering the second housing 21 from the connection, thereby preventing the compressor 22 from leaking. And so on to play a waterproof role.
  • the second housing 21 includes a first sub-housing 211 and a second sub-housing 212 that are detachably connected.
  • the first engaging portion 215 includes a first sub-engaging portion 2111 and a second sub-engaging portion 2121.
  • the first sub-housing 211 is provided with a plurality of first sub-engaging portions 2111, which are arranged at intervals along the circumference of the first sub-housing 211.
  • the second sub-housing 212 is provided with a plurality of second sub-engaging portions 2121, which are arranged at intervals along the circumference of the second sub-housing 212.
  • the plurality of accommodating portions 131 include a plurality of first sub-accommodating portions 1311 and a plurality of second sub-accommodating portions 1312.
  • first sub-engaging portions 2111 are respectively located in the first sub-accommodating portions 1311 to pre-install the first sub-housing 211 on the mounting plate 13.
  • second sub-engaging portions 2121 are respectively located in the second sub-accommodating portions 1312 to pre-install the second sub-housing 212 on the mounting plate 13.
  • the display device 27 is disposed in one of the first sub-housing 211 and the second sub-housing 212. As shown in FIG6 , the display device 27 is disposed in the first sub-housing 211. At this time, when the display device 27 is installed on the first sub-housing 211, the first sub-housing 211 can be pre-installed on the mounting plate 13 by the cooperation of the first sub-engaging portion 2111 and the first sub-accommodating portion 1311, and then the display device 27 is wired, so as to prevent the first sub-housing 211 from falling off from the mounting plate 13 during wiring. Finally, the second sub-housing 212 is connected to the first sub-housing 211, so as to provide sufficient space for the wiring operation.
  • At least two of the plurality of first sub-engaging portions 2111 located at both ends of the circumference of the first sub-housing 211 have first guide surfaces. At least two of the plurality of second sub-engaging portions 2121 located at both ends of the circumference of the second sub-housing 212 have second guide surfaces.
  • the at least two first sub-engaging parts 2111 include two first sub-engaging parts 2111, and the first guide surfaces of the two first sub-engaging parts 2111 are arranged opposite to each other.
  • the at least two second sub-engaging parts 2121 include two second sub-engaging parts 2121, and the second guide surfaces of the two second sub-engaging parts 2121 are arranged opposite to each other.
  • At least two of the plurality of first sub-accommodating portions 1311 have a third guide surface, which contacts the first guide surface.
  • At least two of the plurality of second sub-accommodating portions 1312 have a fourth guide surface, which contacts the second guide surface.
  • the first guide surface cooperates with the third guide surface to quickly install the first sub-housing 211 on the mounting plate 13.
  • the second guide surface cooperates with the fourth guide surface to quickly install the second sub-housing 212 on the mounting plate 13. In this way, the assembly efficiency between the housing and the mounting plate 13 is improved.
  • the plurality of second sub-engaging portions 2121 on the second sub-housing 212 are respectively located at two ends of the circumferential direction of the second sub-housing 212.
  • Such an arrangement can ensure that there is sufficient space in the middle of the second sub-housing 212, so as to facilitate the installation of the larger fan assembly 25 to the side of the second accommodating cavity 20 adjacent to the second sub-housing 212, so as to make full use of the space in the second housing 21, so as to make the arrangement of the heat pump device 2 compact and reduce the overall volume of the heat pump device 2.
  • the second housing 21 further includes at least one sealing member 216.
  • the sealing member 216 is disposed on the inner side wall of the second housing 21 and is located on a side of the second housing 21 adjacent to the mounting plate 13. For example, the sealing member 216 is located between two adjacent first engaging portions 215 of the plurality of first engaging portions 215. During assembly, the sealing member 216 abuts against the outer peripheral surface of the first matching portion 133.
  • the sealing between the mounting plate 13 and the second shell 21 can be further improved, and foreign impurities or liquids can be prevented from entering the second shell 21 , thereby ensuring the cleanliness of the interior of the second shell 21 .
  • At least one first limiting portion 136 is disposed on the outer circumference of the first matching portion 133, that is, the first limiting portion 136 is disposed on a side of the first matching portion 133 adjacent to the second housing 21.
  • the sealing member 216 abuts against the first limiting portion 136, and the first limiting portion 136 can be supported on the corresponding sealing member 216.
  • the at least one seal 216 includes a plurality of seals 216, and the plurality of seals 216 are arranged at intervals along the circumference of the inner side wall of the second housing 21.
  • the at least one first stopper 136 includes a plurality of first stoppers 136, and the plurality of first stoppers 136 are arranged at intervals along the circumference of the mounting plate 13.
  • first limiting portion 136 and the sealing member 216 cooperate to prevent the second housing 21 and the mounting plate 13 from relative movement in the up-down direction, and prevent the mounting plate 13 from being disengaged from the second housing 21.
  • a waterproof effect can be further achieved.
  • a first buckle 2113 is provided on one of the first sub-housing 211 and the second sub-housing 212, and a second stopper 134 is provided on the mounting plate 13, and the first buckle 2113 abuts against the second stopper 134.
  • two first buckles 2113 are provided on one end of the inner wall surface of the first sub-housing 211 adjacent to the mounting plate 13.
  • the two first buckles 2113 are respectively located at two ends of the circumference of the first sub-housing 211, and the two first buckles 2113 are located on a side of the first sub-engaging portion 2111 away from the sealing member 216.
  • two second limiting portions 134 are provided on one side of the first matching portion 133 adjacent to the center of the mounting plate body 132, and the two second limiting portions 134 can be opposite to each other along the radial direction of the mounting plate body 132.
  • the first sub-engaging portion 2111 and the second sub-engaging portion 2121 are respectively engaged in the corresponding accommodating portion 131, and the first buckle 2113 is in contact with the side wall of the second limiting portion 134.
  • the second housing 21 can be prevented from rotating around the central axis of the mounting plate 13, so that the second housing 21 can be firmly fixed on the mounting plate 13.
  • the first sub-housing 211 further includes a first mounting post 2115.
  • the second sub-housing 212 further includes a second mounting post 2125, and the second mounting post 2125 is arranged corresponding to the first mounting post 2115. Both ends of the fastener are connected to the first mounting post 2115 and the second mounting post 2125, respectively.
  • the two ends of the fastener extend into the first mounting post 2115 and the second mounting post 2125.
  • the connection reliability of the first sub-housing 211 and the second sub-housing 212 can be improved, and the first sub-housing 211 and the second sub-housing 212 can be prevented from being out of engagement.
  • the first subshell 211 is provided with at least one first connection portion 213, and the second subshell 212 is provided with at least one second connection portion 214, and the second connection portion 214 cooperates with the first connection portion 213 to improve the waterproof performance of the connection between the first subshell 211 and the second subshell 212.
  • one of the first connection portion 213 and the second connection portion 214 has a protrusion, and the other of the first connection portion 213 and the second connection portion 214 has a groove.
  • first connection portion 213 has a groove and the second connection portion 214 has a protrusion to describe the structures of the second connection portion 214 and the first connection portion 213 .
  • the first connection portion 213 is provided at the edge of the first sub-housing 211 and extends along the axial direction of the first sub-housing 211.
  • the second connection portion 214 is provided at the edge of the second sub-housing 212 and extends along the axial direction of the second sub-housing 212.
  • the second connection portion 214 is fitted into the first connection portion 213 so that the end surface of the first sub-housing 211 fits with the end surface of the second sub-housing 212, thereby reducing the gap at the connection between the first sub-housing 211 and the second sub-housing 212, thereby improving the sealing performance of the connection between the first sub-housing 211 and the second sub-housing 212.
  • the first connection portion 213 includes a first section 2131 and a second section 2132.
  • the first section 2131 extends along the axial direction of the first housing 11.
  • One end of the second section 2132 is connected to the first section 2131, and the other end of the second section 2132 extends toward the center of the first housing 11.
  • the second connecting portion 214 includes a fourth section 2141 and a fifth section 2142.
  • the fourth section 2141 extends along the axial direction of the first housing 11, and the fourth section 2141 fits in the first section 2131.
  • One end of the fifth section 2142 is connected to the fourth section 2141, and the other end of the fifth section 2142 extends in a direction toward the center of the first housing 11, and the fifth section 2142 fits in the second section 2132.
  • the second section 2132 extends horizontally away from the first section 2131, and the first connection portion 213 forms a first bend.
  • the fifth section 2142 extends horizontally away from the fourth section 2141, and the second connection portion 214 forms a second bend.
  • the first connection part 213 and the second connection part 214 can further achieve the sealing of the first sub-shell 211 and the second sub-shell 212, making it difficult for external liquid to penetrate into the second shell 21, thereby enhancing the waterproof effect of the heat pump water heater 100.
  • the second housing 21 further includes a top cover 3, which is disposed on a side (such as the upper side) of the first sub-housing 211 and the second sub-housing 212 away from the water tank assembly 1.
  • the top cover 3 includes a top cover extension section 31 and a top cover body 32 connected to each other, the top cover body 32 is opposite to the top of the second housing 21, and the top cover extension section 31 is provided on the second sub-housing 211 and the second sub-housing 212.
  • the top cover extension section 31 extends obliquely downward in a direction away from the top cover body 32 , and the end surface of the free end of the top cover extension section 31 (ie, the bottom wall of the top cover 3 ) abuts against the outer side wall of the second section 2132 .
  • the top cover 3 covers the upper part of the fitting point of the first connection part 213 and the second connection part 214, which can protect the first sub-shell 211 and the second sub-shell 212, so that the upper part of the fitting point of the first connection part 213 and the second connection part 214 has double waterproof performance, which is beneficial to enhance the waterproof effect of the heat pump water heater 100.
  • the first connection portion 213 further includes a third segment 2133.
  • One end of the third segment 2133 is connected to the other end of the second segment 2132, and the other end of the third segment 2133 extends obliquely in a direction away from the second segment 2132.
  • the second connection portion 214 further includes a sixth segment 2143.
  • One end of the sixth segment 2143 is connected to the other end of the fifth segment 2142, and the other end of the sixth segment 2143 extends obliquely in a direction away from the end of the second connection portion 214, and the sixth segment 2143 fits in the third segment 2133.
  • the third section 2133 extends upwardly and obliquely in a direction away from the second section 2132.
  • the length of the third section 2133 may be less than the distance from the top cover body 32 to the second section 2132.
  • the sixth section 2143 extends upwardly and obliquely in a direction away from the fifth section 2142.
  • the ends of the first connecting portion 213 and the second connecting portion 214 adjacent to the top cover 3 have a plurality of bent portions.
  • the sealing of the first sub-shell 211 and the second sub-shell 212 is further achieved, and the waterproof performance of the second shell 21 is enhanced.
  • the mounting plate 13 is located between the first shell 11 and the second shell 21.
  • the side wall of the mounting plate 13 extends into the second shell 21.
  • the first matching portion 133 of the mounting plate 13 extends upward to form a side wall, and the diameter of the side wall is smaller than the diameter of the second shell 21.
  • the second shell 21 is located on the outside of the side wall of the mounting plate 13, so that the lower part of the first connecting portion 213 and the second connecting portion 214 has double waterproof performance, which enhances the waterproof effect of the heat pump water heater 100.
  • the free end of the side wall of the mounting plate 13 (i.e., the top end of the first matching portion 133) is higher than the free end of the first segment 2131 (i.e., the bottom end of the first segment 2131).
  • the end surface of the free end of the side wall of the mounting plate 13 is located above the free end of the first segment 2131.
  • the free end of the side wall of the mounting plate 13 partially overlaps with the free end of the first segment 2131 in the axial direction of the second shell 21.
  • the side wall of the mounting plate 13 can prevent the external liquid from further penetrating into the second shell 21, thereby further enhancing the waterproof effect of the heat pump water heater 100.
  • first connection parts 213 and two second connection parts 214 there are two first connection parts 213 and two second connection parts 214, the two first connection parts 213 are respectively located at two ends of the circumference of the first sub-shell 211, and the two second connection parts 214 are respectively located at two ends of the circumference of the second sub-shell 212.
  • the two first connection parts 213 cooperate with the two second connection parts 214 to further ensure the waterproof effect of the connection between the first sub-shell 211 and the second sub-shell 212.
  • the fan assembly 25 includes a volute 251, a volute extension 252, and a wind wheel 255.
  • the volute 251 is arranged on the side of the evaporator 23 away from the compressor 22, and the volute 251 has a second air inlet 2511 and a second air outlet 2512.
  • the second air inlet 2511 is arranged facing the evaporator 23.
  • the second air outlet 2512 is opposite to and connected to the first air outlet 302 along the axial direction of the second shell 21.
  • the air entering the interior of the second shell 21 from the first air inlet 301 is suitable for flowing through the second air inlet 2511 and entering the fan assembly 25, and then discharged from the second air outlet 2512 and the first air outlet 302.
  • one end of the volute extension 252 is connected to the second air outlet 2512, and the other end of the volute extension 252 is opposite to the first air outlet 302, and the volute extension 252 is inclined from the second air outlet 2512 toward the first air outlet 302 (i.e., the up and down direction) and the direction close to the evaporator 23.
  • the wind wheel 255 is disposed in the volute 251.
  • the air entering the second shell 21 from the first air inlet 301 flows through the evaporator 23 and exchanges heat with the evaporator 23, then enters the volute 251 through the second air inlet 2511 and is discharged from the first air outlet 302 through the second air outlet 2512.
  • the volute extension 252 is tilted toward the side where the evaporator 23 is located. In this way, on the one hand, the volute extension 252 can form an escape space on the other side away from the evaporator 23, which is convenient for the installation of the second housing 21. On the other hand, part of the space around the evaporator 23 can be used to make the internal structure of the heat pump device 2 more compact, and facilitate the communication between the second air outlet 2512 and the first air outlet 302, so as to increase the air volume at the first air outlet 302.
  • the space at the top of the evaporator 23 can be fully utilized to increase the area of the second air outlet 2512, which is beneficial to make the second air outlet 2512 and the first air outlet 2512 close to each other.
  • the first air outlet 302 is opposite to the second air outlet 2512, and the air volume at the second air outlet 2512 is increased, so that the air can be discharged in time, and the utilization rate of the internal space of the second shell 21 is improved.
  • the second air outlet 2512 and the second shell 21 can be prevented from interfering with each other, thereby affecting the assembly efficiency of the second shell 21.
  • the volute extension 252 includes an opening section 253 and a connecting section 254, wherein the connecting section 254 is connected to the opening section 253, and the connecting section 254 is closer to the volute 251 than the opening section 253.
  • One end of the opening section 253 is opposite to the first air outlet 302.
  • the cross section of the opening section 253 is circular.
  • One end of the connecting section 254 is connected to the other end of the opening section 253, and the other end of the connecting section 254 is connected to the second air outlet 2512.
  • the cross-sectional shape of the other end of the connecting section 254 is substantially rectangular.
  • the air flowing out of the second air outlet 2512 passes through the connecting section 254 and the opening section 253 in sequence, and then flows out from the first air outlet 302.
  • the cross-sectional shape of the opening section 253 is adapted to the shape of the first air outlet 302, thereby facilitating the increase of the air outlet area of the volute extension 252.
  • the cross-sectional shape (e.g., rectangular) of the end of the connecting section 254 away from the opening section 253 is adapted to the shape of the second air outlet 2512. In this way, the air outlet area of the second air outlet 2512 can be increased, thereby increasing the air outlet volume of the volute 251, which is conducive to improving the heat exchange efficiency of the evaporator 23.
  • the connecting section 254 includes a first surface 2541, a second surface 2542, a third surface 2543, a fourth surface 2544, a fifth surface 2545, and a sixth surface 2546 that are sequentially connected along the circumference of the second air outlet 2512 of the volute 251.
  • the first surface 2541 is connected to the evaporator 23 and the second surface 2542, respectively.
  • the fourth surface 2544 is opposite to a side surface of the evaporator 23 that faces the fan assembly 25.
  • the sixth surface 2546 is connected to the fifth surface 2545 and the evaporator 23, respectively, and the sixth surface 2546 is opposite to the first surface 2541.
  • one side of the first surface 2541 is connected to the evaporator 23
  • one side of the second surface 2542 is connected to the other side of the first surface 2541
  • one side of the third surface 2543 is connected to the other side of the second surface 2542
  • one side of the fourth surface 2544 is connected to the other side of the third surface 2543
  • the fourth surface 2544 is opposite to the surface of the evaporator 23 facing the fan assembly
  • one side of the fifth surface 2545 is connected to the other side of the fourth surface 2544
  • one side of the sixth surface 2546 is connected to the other side of the fifth surface 2545
  • the other side of the sixth surface 2546 is connected to the evaporator 23
  • the sixth surface 2546 is opposite to the first surface 2541.
  • At least the second to fifth surfaces 2545 extend obliquely toward the evaporator 23 along the direction from the second air outlet 2512 to the first air outlet 302 (i.e., from bottom to top).
  • the outer circumferences of the first to sixth surfaces 2541 to 2546 are irregular curved surfaces.
  • the curvature radius of the portion of the fourth surface 2544 adjacent to the opening section 253 is greater than the curvature radius of the portion of the fourth surface 2544 adjacent to the second air outlet 2512 .
  • the end surface of the second air outlet 2512 includes a first connecting section, a second connecting section, a third connecting section, a fourth connecting section, a fifth connecting section and a sixth connecting section.
  • the end points of the two ends of the first connecting section along the direction of the central axis of the opening section 253 (i.e., the up and down direction) and the area enclosed by the line connecting the corresponding points of the opening section 253 constitute the first surface 2541.
  • the second surface 2542 to the sixth surface 2546 are analogous in this way.
  • the first surface 2541 to the sixth surface 2546 extend obliquely from the second air outlet 2512 toward the opening section 253, so that the volute extension 252 constitutes the lower end surface of the connecting section 254 according to the shape of the second air outlet 2512, so as to ensure that the cross-sectional area of the lower end surface of the connecting section 254 is adapted to the second air outlet 2512, thereby increasing the air output of the volute 251.
  • the two corners of the second air outlet 2512 away from the evaporator 23 respectively have a first fillet 256 and a second fillet 257
  • the second surface 2542 and the third surface 2543 are connected at the first fillet 256
  • the fifth surface 2545 is connected at the second fillet 257. That is, the second connecting section and the third connecting section are the first fillet 256, and the fifth connecting section is the second fillet 257.
  • the first fillet 256 and the second fillet 257 are formed by the volute 251 during the forming process.
  • the cross-sectional area of the volute extension 252 decreases to guide the air to the opening section 253.
  • the arrangement of the first fillet 256 and the second fillet 257 facilitates the reduction of the resistance of the air flowing inside the volute 251, and facilitates the arrangement of the second surface 2542, the third surface 2543 and the fifth surface 2545, so that the connecting section 254 is adapted to the second air outlet 2512.
  • the first surface 2541 extends obliquely toward the center of the volute 251 (the side where the impeller 255 is located in FIG23 ) along the direction from the second air outlet 2512 to the opening section 253.
  • the first surface 2541 is arranged obliquely, so that the opening section 253 can avoid interference with the installation of the second housing 21 and improve the utilization rate of the internal space of the second housing 21.
  • the inclination angle of the first surface 2541 is ⁇ . That is, the angle between the orthographic projection of the first surface 2541 on the first section and the orthographic projection of the central axis of the opening section 253 on the first section is ⁇ , and ⁇ satisfies: ⁇ 3°. That is, the first surface The angle between the orthographic projection of 2541 on the evaporator 23 and the central axis of the opening section 253 is ⁇ , and ⁇ satisfies: ⁇ 3°.
  • the first cross section is a cross section of the fan assembly 25 perpendicular to the central axis direction of the wind wheel 255.
  • the central axis of the wind wheel 255 is the dotted line N-N shown in FIG24 .
  • the angle between the first surface 2541 and the central axis of the opening section 253 is limited so that the first surface 2541 is located within the preset position range, which facilitates the volute extension 252 to be opposite to the first air outlet 302, thereby ensuring the air outlet effect.
  • the fourth surface 2544 extends obliquely toward the evaporator 23 along the direction from the second air outlet 2512 to the opening section 253, and the inclination angle of the fourth surface 2544 is ⁇ , and ⁇ satisfies: ⁇ 5°. That is, the angle between the orthographic projection of the fourth surface 2544 on the second section and the orthographic projection of the central axis of the opening section 253 on the second section is ⁇ , and ⁇ satisfies: ⁇ 5°.
  • the second cross section is a longitudinal plane passing through the central axis of the wind wheel 255, and the longitudinal plane extends along the central axis direction of the opening section 253. That is, the second cross section is a cross section of the fan assembly 25 passing through the dotted line M-M in Figure 23.
  • limiting the angle between the fourth surface 2544 and the central axis of the opening section 253 can improve the air outlet effect of the volute extension 252 and effectively reduce the resistance of the volute extension 252 to the air flow, thereby ensuring that the air at the second air outlet 2512 can be discharged from the volute extension 252 in a timely manner.
  • the evaporator 23 further includes a relief portion 231, and the volute extension portion 252 is partially located in the relief portion 231.
  • the relief portion 231 is configured to avoid the volute extension portion 252.
  • the ratio of the first orthographic projection area to the second orthographic projection area of the relief portion 231 on the horizontal plane is A, and the second orthographic projection area is the orthographic projection area of the end of the volute extension portion 252 away from the second air outlet 2512 (i.e., the opening section 253) on the horizontal plane, and A satisfies: 1/6 ⁇ A ⁇ 1/2.
  • the volute extension portion 252 cannot reasonably utilize the internal space of the evaporator 23, making the overall volume of the evaporator 23 and the volute 251 large, which is not conducive to the miniaturization design of the heat pump device 2.
  • the insufficient space of the avoidance portion 231 will also affect the size of the cross-sectional area of the opening section 253, thereby affecting the air outlet effect.
  • the ratio of the orthographic projection area of the avoidance portion 231 to the opening section 253 on the horizontal plane is limited, so that the first air outlet 302 and the opening section 253 are arranged opposite to each other, and the first air outlet 302 is prevented from interfering with the installation of the opening section 253, and the compactness of the structure of the volute extension 252, the volute 251 and the evaporator 23 can be improved, and the space inside the volute 251 can be increased.
  • the air outlet efficiency of the volute extension 252 can be guaranteed, so that the air can quickly flow from the second air outlet 2512 to the first air outlet 302, and then be discharged from the first air outlet 302.
  • the connection between the end (i.e., the bottom end) of the volute extension 252 away from the opening section 253 and the evaporator 23 is transitioned through the third fillet 258.
  • the air flows out of the second air outlet 2512, it can flow to the volute extension 252 through the third fillet 258 at the connection between the volute extension 252 and the evaporator 23, thereby increasing the guiding property of the connection to the air, and avoiding a large change in the flow direction of the air at the connection, which affects the air outlet efficiency of the volute extension 252.
  • the volute 251 includes a third shell 2513 and a fourth shell 2514 connected to each other along the central axis direction of the wind wheel 255.
  • the evaporator 23 includes a pipeline for evaporation and a side plate for mounting the pipeline.
  • the third shell 2513 is connected to the side plate of the evaporator 23, and the third shell 2513 and the side plate are an integral part.
  • the fourth shell 2514 is connected to the side of the third shell 2513 away from the evaporator 23.
  • the third shell 2513 and the side plate of the evaporator 23 are integrally formed, which can reduce the number of components of the heat pump device 2, which is conducive to improving the installation efficiency of the volute 251.
  • the second air inlet 2511 of the volute 251 is connected to the side plate of the evaporator 23. After the air passes through the pipe of the evaporator 23 for heat exchange, it reaches the position where the side plate of the evaporator 23 is located, and then enters the evaporator 23 through the second air inlet 2511.
  • the third shell 2513 and the side plate of the evaporator 23 are integrally formed, which can ensure the sealing between the volute 251 and the evaporator 23, and is conducive to increasing the air intake of the second air inlet 2511.
  • the ratio of the width of the third shell 2513 to the width of the fourth shell 2514 is B, and B satisfies: 3/7 ⁇ B ⁇ 1.
  • the width ratio B between the third shell 2513 and the fourth shell 2514 is less than 3/7, the internal space of the evaporator 23 cannot be fully utilized, and the structural strength of the connection between the third shell 2513 and the evaporator 23 may be reduced. If the width ratio B between the third shell 2513 and the fourth shell 2514 is greater than 1, the third shell 2513 is likely to interfere with the internal structure of the evaporator 23, affecting the air volume of the second air outlet 2512.
  • the third shell 2513 can reasonably utilize the space of the side panel, so that the volute extension 252 is opposite to the first air outlet 302, thereby ensuring the connection strength between the third shell 2513 and the evaporator 23, and increasing the internal space of the volute 251, thereby increasing the air intake and air outlet of the volute 251.
  • the top cover 3 has a first air inlet 301 and a first air outlet 302 , and both the first air inlet 301 and the first air outlet 302 are connected to the second accommodating cavity 20 .
  • the first air inlet 301 and the first air outlet 302 are respectively located on both sides of the evaporator 23, the first air outlet 302 and the fan assembly 25 are located on the same side of the evaporator 23 and are connected to the fan assembly 25, and the air entering the interior of the second shell 21 from the first air inlet 301 is suitable for flowing through the evaporator 23 and exchanging heat with the evaporator 23, and then being discharged from the first air outlet 302 through the fan assembly 25.
  • the first air inlet 301 and the first air outlet 302 are arranged non-centrally symmetrically with respect to the top cover 3, that is, the first air inlet 301 and the first air outlet 302 are not arranged opposite to each other in the radial direction of the top cover 3. In this way, the first air inlet 301 can be prevented from being interfered with by components such as the electric control box 26, thereby increasing the air intake space and air intake efficiency.
  • the air entering the second housing 21 from the first air inlet 301 needs to pass through a preset angle when flowing through the evaporator 23, and then flows out from the first air outlet 302, which can extend the flow path of the air from the first air inlet 301 to the first air outlet 302, so that the air can fully exchange heat with the compressor 22, the electric control box 26, the evaporator 23, etc.
  • the angle between the lines connecting the center of the first air inlet 301 and the center of the first air outlet 302 and the center of the top cover 3 is ⁇ , and ⁇ satisfies: 80° ⁇ 180°. That is, the center of the first air inlet 301 is connected to the center of the top cover 3 to form a first line segment, the center of the first air outlet 302 is connected to the center of the top cover 3 to form a second line segment, and the angle formed by the orthographic projection of the first line segment and the second line segment on the top cover 3 along the axial direction of the second shell 21 is ⁇ .
  • the air entering the second housing 21 from the first air inlet 301 passes through the evaporator 23, then passes through the second air inlet 2511 and the second air outlet 2512, and finally flows out from the first air outlet 302. Therefore, when the center position of the second air inlet 2511 is fixed, the larger the angle ⁇ is, the shorter the path of the air flowing inside the second housing 21 is, and the weaker the heat dissipation effect on the compressor 22 and the electric control box 26 in the second housing 21 is. In addition, the residence time of the air inside the second housing 21 is shortened, which reduces the evaporation efficiency of the evaporator 23.
  • the first air inlet 301 and the first air outlet 302 are symmetrically arranged about the center of the second housing 21.
  • the first air inlet 301 may be partially located above the electric control box 26, resulting in a small air inlet space, and the air entering the second housing 21 from the first air inlet 301 is disturbed by the electric control box 26 and cannot smoothly reach the location of the evaporator 23, thereby causing air loss.
  • the angle ⁇ between the lines connecting the center of the first air inlet 301 and the center of the first air outlet 302 and the center of the top cover 3 is 105°.
  • the air intake effect of the first air inlet 301 can be guaranteed, thereby ensuring the air volume required for the operation of the evaporator 23, so as to improve the heat exchange efficiency of the evaporator 23.
  • the air outlet effect of the first air outlet 302 can be guaranteed, which is conducive to increasing the flow rate of air inside the second housing 21, so that the air can quickly take away the heat generated by the operation of the electric control box 26 and the compressor 22, etc., and effectively reduce Energy consumption of the heat pump water heater 100.
  • the first air inlet 301 and the compressor 22 are arranged opposite to each other along the axial direction of the heat pump water heater, and the first air inlet 301 and the compressor 22 are arranged at intervals. That is, the first air inlet 301 and the compressor 22 are opposite to each other in the axial direction of the second housing 21.
  • the air entering the second housing 21 from the first air inlet 301 first passes through the compressor 22 and then flows to the evaporator 23 and the electric control box 26. In this way, the electric control box 26 can avoid blocking the first air inlet 301, increase the air intake of the second housing 21, and achieve cooling of the compressor 22.
  • the air inlet 2511 is located on one side of the evaporator 23 close to the electric control box 26.
  • the second air inlet 2511 and the electric control box 26 are located on both sides of the evaporator 23 and are arranged opposite to each other.
  • the air entering the second housing 21 from the first air inlet 301 first passes through the compressor 22, then passes through the electric control box 26 and the evaporator 23, and finally flows to the second air inlet 2511.
  • the air inside the second housing 21 flows from the side of the evaporator 23 close to the electric control box 26 (such as the S2 side as shown in FIG. 28) to the second air inlet 2511, and the air is prevented from flowing from the side of the evaporator 23 close to the compressor 22 (such as the S1 side as shown in FIG. 28) to the second air inlet 2511.
  • the area through which the air flows through the evaporator 23 is increased, and the wind receiving area of the evaporator 23 is increased.
  • it can ensure that the air is in full contact with the electric control box 26, realize the heat dissipation of the electric control box 26, and thus ensure the working efficiency of the electric control box 26.
  • the center of the second air inlet 2511 is located on one side of the first center plane adjacent to the mounting plate 13.
  • the first center plane is the center plane in the height direction of the evaporator 23, and the first center plane extends along the center axis direction of the evaporator 23.
  • the height direction of the evaporator 23 is the up-down direction shown in FIG. 29
  • the width direction of the evaporator 23 is the left-right direction shown in FIG. 29 .
  • setting the center of the second air inlet 2511 below the first center plane of the evaporator 23 and close to the electrical control box 26 can extend the flow path of air from the first air inlet 301 to the first air outlet 302, fully increase the wind receiving area of the evaporator 23, and thus increase the heat exchange efficiency of the evaporator 23.
  • the distance between the electric control box 26 and the evaporator 23 gradually increases in the direction toward the compressor 22, and an angle ⁇ is formed between the electric control box 26 and the evaporator 23, where ⁇ satisfies: 15 ⁇ 30°.
  • the first air inlet 301 is opposite to the compressor 22, and after the air enters the second housing 21 from the first air inlet 301, it flows toward the evaporator 23 and the space between the evaporator 23 and the electric control box 26, so as to facilitate the heat dissipation of the electric control box 26.
  • the distance between the electric control box 26 and the evaporator 23 gradually increases in the direction toward the compressor 22, and the angle ⁇ between the electric control box 26 and the evaporator 23 is 25°. Therefore, by limiting the angle ⁇ between the electric control box 26 and the evaporator 23, the air intake volume of the evaporator 23 close to the electric control box 26 can be increased, the heat exchange capacity and heat exchange efficiency of the evaporator 23 can be improved, and a large amount of air can pass through the surface of the electric control box 26, thereby improving the cooling effect of the electric control board in the electric control box 26 and facilitating the heat dissipation of the electric control box 26.
  • the second housing 21 is formed with a first opening 217, and the first opening 217 may be formed on a side wall of the second housing 21.
  • the heat pump device 2 further includes a filter assembly 4, the filter assembly 4 passes through the first opening 217 and is disposed in the first opening 217, and the filter assembly 4 is opposite to the first air inlet 301.
  • the filter assembly 4 is configured to filter impurities in the air entering the second housing 21 from the first air inlet 301.
  • the air entering the second shell 21 from the first air inlet 301 is first filtered by the filter assembly 4 , then flows through the compressor 22 , the evaporator 23 and the fan assembly 25 , and finally flows out from the first air outlet 302 .
  • the first opening 217 is provided to facilitate the installation of the filter assembly 4.
  • the provision of the filter assembly 4 can prevent impurities such as particulate matter in the air from entering the evaporator 23 and staying on the surface of the evaporator 23 to cause clogging of the evaporator 23, thereby improving the heat exchange efficiency of the evaporator 23 and increasing the service life of the evaporator 23 and the compressor 22 and other components inside the second housing 21.
  • the filter assembly 4 includes a filter 41 and a bracket 42.
  • the filter 41 is disposed on the bracket 42, and the bracket 42 is configured to support the filter 41.
  • the bracket 42 is disposed at the first opening 217 of the second housing 21 and is connected to the second housing 21.
  • the bracket 42 is integrally formed with the second housing 21. The portion of the bracket 42 away from the first opening 217 extends toward the center of the first air inlet 301 to be opposite to the first air inlet 301.
  • the first air inlet 301, the filter 41 and the bracket 42 are opposite to each other along the axial direction of the second housing 21.
  • the arrangement of the bracket 42 can facilitate the installation of the filter 41 and improve the stability of the filter 41.
  • the filter screen 41 includes a second matching portion 411 and a third connecting portion 412.
  • a side surface of the second matching portion 411 close to the first opening 217 is flush with the outer peripheral surface of the second shell 21.
  • One end of the third connecting portion 412 is connected to the second matching portion 411, and the other end of the third connecting portion 412 passes through the first opening 217 and extends into the second shell 21.
  • the shape of the filter 41 can be matched with the shape of the bracket 42 to improve the installation efficiency of the filter 41 and fully filter the air entering the second housing 21.
  • a second engaging portion 423 is provided on one of the bracket 42 and the filter 41
  • a second buckle 414 is provided on the other of the bracket 42 and the filter 41 .
  • the bracket 42 is provided with a second engaging portion 423, which is provided on a side of the bracket 42 adjacent to the first opening 217.
  • the third connecting portion 412 is provided with a second buckle 414, which is provided on a side of the filter 41 adjacent to the second matching portion 411.
  • the second buckle 414 cooperates with the second engaging portion 423 to fix the filter 41 to the bracket 42.
  • the free end of the second buckle 414 extends obliquely toward the center of the second housing 21, and the second buckle 414 can be deformed in the axial direction of the second housing 21 to facilitate the cooperation between the second buckle 414 and the second engaging portion 423.
  • the second engaging portion 423 can limit the second buckle 414, so that the filter 41 and the bracket 42 can be detachably connected, which is convenient for the later replacement and cleaning of the filter 41, and reduces the use cost of the filter assembly 4.
  • a through hole 424 is formed on the bracket 42.
  • the through hole 424 is provided at one end of the bracket 42 away from the first opening 217, and the through hole 424 is opposite to the first air inlet 301.
  • At least a portion of the filter 41 is opposite to the through hole 424, and the air entering the interior of the second housing 21 from the first air inlet 301 is suitable for passing through the at least a portion of the filter 41 and the through hole 424.
  • the bracket 42 includes a bracket body 421 and a mounting groove 422.
  • the mounting groove 422 is disposed on at least one side of the bracket body 421 along the circumferential direction of the second housing 21.
  • the mounting groove 422 extends toward the center of the first air inlet 301 along the radial direction of the second housing 21.
  • the mounting groove 422 is configured to guide the filter 41.
  • the filter screen 41 further includes a guide rib 413, which is disposed on at least one side of the third connection portion 412 along the circumferential direction of the second housing 21.
  • the guide rib 413 extends along the radial direction of the second housing 21 toward the center of the second housing 21.
  • the guide rib 413 cooperates with the mounting groove 422 to mount the filter screen 41 on the bracket 42.
  • the filter 41 extends from the first opening 217 along the installation groove 422 into the first opening 217 to complete the cooperation with the bracket 42. Therefore, the installation groove 422 and the guide rib 413 can form a limit for the filter 41, increase the guidance of the filter 41 during the assembly process, and the stability of the filter 41 after installation, which is conducive to improving the assembly efficiency of the filter 41 and the bracket 42.
  • the filter screen further includes a push-pull portion 415, which is disposed on one side of the second matching portion 411 close to the top of the second housing 21 and extends along the circumferential direction of the second housing 21.
  • the push-pull portion 415 is recessed toward the water tank assembly 1.
  • the push-pull portion 415 has an anti-slip function, and is convenient for the user to open the second matching portion 411 or take out the filter screen 41 through the push-pull portion 415.
  • the second housing 21 is further provided with a second opening 218, which is located on one side of the first opening 217 adjacent to the top of the second housing 21.
  • the second opening 218 is connected to the first opening 217 in the axial direction of the second housing 21, and the second opening 218 is arranged opposite to the push-pull portion 415.
  • the arrangement of the second opening 218 can further facilitate the user to take out the filter 41.
  • the filter assembly 4 satisfies one of the following conditions: the filter assembly 4 is detachably connected to the second shell 21 , or the filter assembly 4 includes a filter 41 and a bracket 42 , the filter 41 is detachably mounted on the bracket 42 , and the bracket 42 is connected to the second shell 21 .
  • a mounting groove may be formed on the side wall of the second housing 21 to facilitate installation and removal of the filter assembly 4 and improve installation efficiency.
  • the filter assembly 4 as a whole may be assembled to the second housing 21 along the mounting groove. When the filter assembly 4 needs to be replaced, the filter assembly 4 as a whole is removed along the mounting groove. In this way, the filter assembly 4 and the second housing 21 may be manufactured separately, which can reduce the difficulty of processing.
  • the filter assembly 4 includes a filter 41 and a bracket 42
  • the filter 41 is detachably mounted on the bracket 42, and the bracket 42 can be integrally formed with the second housing 21 to improve the structural strength of the bracket 42.
  • the filter 41 needs to be replaced, the filter 41 is removed along the bracket 42 to facilitate replacement of the filter 41, thereby reducing the cost of subsequent use and maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种热泵热水器,包括水箱组件以及热泵装置。所述水箱组件包括第一壳体、水箱本体和安装板。所述水箱本体设置于所述第一壳体内,所述安装板设在所述第一壳体的轴向的一端。所述热泵装置位于所述水箱组件的顶部,所述热泵装置包括蒸发器、压缩机、风机组件和第二壳体。所述第二壳体与所述安装板可拆卸连接,所述蒸发器、所述压缩机以及所述风机组件分别位于所述第二壳体与所述安装板构成的容纳腔内。其中,所述第二壳体和所述安装板中的一个设置有至少一个容置部,所述第二壳体和所述安装板中的另一个设有至少一个第一卡合部,所述第一卡合部配合在所述容置部内,以使所述第二壳体和所述安装板相连。

Description

热泵热水器
本申请要求于2022年11月18日提交的、申请号为202223072734.X的中国专利申请的优先权,于2022年11月18日提交的、申请号为202223072717.6的中国专利申请的优先权,于2022年09月30日提交的、申请号为202222650045.6的中国专利申请的优先权,于2022年09月30日提交的、申请号为202222650002.8的中国专利申请的优先权,于2022年11月18日提交的、申请号为202223072744.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家用电器技术领域,尤其涉及一种热泵热水器。
背景技术
热泵热水器可以将冷水从进水口引入水箱,并通过热泵装置将冷水加热为热水后,使热水通过出水口流出以供用户使用。
发明内容
提供一种热泵热水器,包括水箱组件以及热泵装置。所述水箱组件包括第一壳体和水箱本体。所述水箱本体设置于所述第一壳体内,所述水箱本体具有进水口和出水口。所述热泵装置位于所述水箱组件的顶部,所述热泵装置包括第二壳体、蒸发器、压缩机和风机组件。所述蒸发器位于所述第二壳体内,且被配置为吸收空气中的热量。所述压缩机位于所述蒸发器的一侧,所述压缩机具有进气口和排气口,所述进气口与所述蒸发器相连,所述排气口与冷凝器相连。所述风机组件位于所述蒸发器的与所述一侧相对的另一侧,且被配置为将外部空气导入所述蒸发器。所述水箱组件还包括安装板,所述安装板设在所述第一壳体的轴向的一端。所述热泵装置位于所述安装板的远离所述水箱本体的一侧,所述安装板被配置为支撑所述热泵装置。所述第二壳体与所述安装板可拆卸连接,且所述第二壳体与所述安装板之间构成容纳腔,所述蒸发器、所述压缩机以及所述风机组件分别容纳在所述容纳腔内。其中,所述第二壳体和所述安装板中的一个设置有至少一个容置部,所述第二壳体和所述安装板中的另一个设有至少一个第一卡合部,所述第一卡合部配合在所述容置部内,以使所述第二壳体和所述安装板相连。
附图说明
图1是根据一些实施例的一种热泵热水器的一种结构图;
图2是根据一些实施例的一种热泵热水器的剖面图;
图3是根据一些实施例的一种热泵热水器的局部剖面图;
图4是根据一些实施例的一种热泵装置与水箱组件的部分结构图;
图5是图4中的热泵热水器的另一个角度的结构图;
图6是根据一些实施例的一种热泵热水器的第一子壳体的一种结构图;
图7是图6中圈A1处的局部放大图;
图8是图6中圈B处的局部放大图;
图9是根据一些实施例的一种热泵热水器的第二子壳体的一种结构图;
图10是图9中圈C1处的局部放大图;
图11是图9中圈D处的局部放大图;
图12是根据一些实施例的一种热泵热水器的安装板的结构图;
图13是根据一些实施例的一种热泵热水器的第一子壳体的另一种结构图;
图14是图13中圈A2处的局部放大图;
图15是根据一些实施例的一种热泵热水器的第二子壳体的另一种结构图;
图16是图15中圈C2处的局部放大图;
图17是根据一些实施例的一种热泵热水器的壳体和顶盖的剖面图;
图18是图17中圈E处的局部放大图;
图19是图17中圈F处的局部放大图;
图20是根据一些实施例的一种热泵热水器的分解图;
图21是根据一些实施例的一种风机组件和蒸发器的结构图;
图22是图21中圈G处的局部放大图;
图23是根据一些实施例的一种风机组件和蒸发器的一种主视图;
图24是根据一些实施例的一种风机组件和蒸发器的一种侧视图;
图25是图24中的风机组件和蒸发器的俯视图;
图26是根据一些实施例的一种风机组件和蒸发器的另一种主视图;
图27是根据一些实施例的一种热泵热水器的俯视图;
图28是根据一些实施例的一种热泵装置的部分结构图;
图29是根据一些实施例的一种风机组件和蒸发器的另一种侧视图;
图30是根据一些实施例的热泵热水器的图;
图31是图30中圈P部分的局部放大图;
图32是根据一些实施例的第二壳体的结构图;
图33是根据一些实施例的滤网组件和第二壳体的结构图;
图34是根据一些实施例的安装支架与第二壳体的结构图;
图35是根据一些实施例的滤网组件的结构图;
图36是根据一些实施例的第二壳体的剖面图;
图37是图36中圈Q的局部放大图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨 论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
热泵热水器是继电热水器、燃气热水器以及太阳能热水器之后出现的一种新型热水器。热泵热水器通过吸收空气的热量,来加热水箱中的水。以此,避免了电热水器漏电、干烧以及燃气热水器使用时可能发生煤气中毒的问题、克服了太阳能热水器受天气影响大的缺点,具有高效节能、安全环保、全天候运行、使用方便等优点。
如图1所示,热泵热水器100包括水箱组件1和热泵装置2。如图2所示,水箱组件1包括第一壳体11、水箱本体12和冷凝器。水箱本体12设置于第一壳体11内,且被配置为储存水。水箱本体12具有进水口121和出水口122。例如,进水口121和出水口122可以设置在水箱本体12的轴向的两端。进水口121被配置为连接外部管道,以使冷水可以通过进水口121流入水箱本体12内,冷水被加热后可以经由出水口122流出水箱本体12,以供用户使用。
在一些实施例中,冷凝器设置在第一壳体11内,冷凝器可以为空心的管状结构的导热件。例如,冷凝器为铜管且缠绕在水箱本体12的外部。
如图1至图4所示,热泵装置2位于水箱组件1的顶部。热泵装置2包括第二壳体21、以及容纳在第二壳体21内的压缩机22和蒸发器23。蒸发器23被配置为吸收空气中的热量。压缩机22具有进气口和排气口,压缩机22的排气口与冷凝器的一端相连,压缩机22的进气口与蒸发器23的一端相连。
在一些实施例中,热泵装置2还包括节流组件24。节流组件24连接在蒸发器23的另一端和冷凝器的另一端之间。压缩机22、冷凝器、节流组件24和蒸发器23依次相连,以构成制冷剂循环回路。制冷剂可以在该制冷剂循环回路中流动,从而可以实现冷凝器与水箱本体12换热,以对水箱本体12内的水进行加热。
在一些实施例中,热泵装置2还包括风机组件25。风机组件25设置于蒸发器23的一侧,且被配置为将外部空气导入蒸发器23。蒸发器23内部的制冷剂吸收热量之后,回到压缩机22中再次被压缩,如此反复循环工作,空气中的热能被不断送到水中,使水箱本体12内的水温升高。
在一些实施例中,热泵装置2还包括电控盒26。电控盒26与压缩机22、蒸发器23和风机组件25耦接。电控盒26和压缩机22位于蒸发器23的同一侧,且与风机组件25相对。电控盒26被配置为控制热泵热水器100的正常工作。如图4所示,风机组件25和压缩机22分别位于蒸发器23的厚度方向(如图2所示的左右方向)的两侧。
当热泵热水器100工作时,风机组件25运转。在风机组件25的作用下,大量的空气流过蒸发器23的外表面。空气中的热量被蒸发器23吸收,空气的温度降低变成冷气。之后所述冷气从风机组件25排出。
在此过程中,蒸发器23内部的制冷剂吸热汽化后被吸入压缩机22中。压缩机22将回流的低压制冷剂气体压缩成高温、高压的气体,并送入缠绕在水箱本体12外侧壁的冷凝器内。高温、高压气体产生的热量经冷凝器以热传导的方式传递至水箱本体12内部,以加热水箱本体12内的水。
而冷凝器中的制冷剂在压力的持续作用下被冷却成液体,该液体经节流组件24(如膨胀阀)节流降温后再次流入蒸发器23。由于蒸发器23内的压力骤然降低,因此液态的制冷剂在蒸发器23处迅速蒸发成气态并吸收大量的热量。如此反复循环,空气中的热能被不断送到水中,使水箱本体12里的水温升高。
在一些实施例中,如图20和图28所示,热泵装置2还包括底座28,底座28设在安 装板13的远离水箱组件1的一侧。压缩机22、蒸发器23、节流组件24、风机组件25和电控盒26分别设在底座28的远离水箱组件1的一侧(如上侧)。底座28与水箱组件1连接,以完成热泵装置2与水箱组件1的装配。
在一些实施例中,如图2至图5所示,水箱组件1包括安装板13。安装板13设在第一壳体11的轴向的一端。例如,安装板13设于第一壳体11的顶部,以便于安装热泵装置2。安装板13与第一壳体11之间限定出第一容纳腔10,水箱本体12位于第一容纳腔10内。
在一些实施例中,第二壳体21的下端与安装板13可拆卸地连接。第二壳体21与安装板13构成第二容纳腔20(即容纳腔),压缩机22、蒸发器23、节流组件24、风机组件25和电控盒26均位于第二容纳腔20内。
如图1所示,热泵热水器100还包括显示装置27(如显示面板),显示装置27设置于第二壳体21。显示装置27被配置为显示水箱本体12内的水温。
通常,热泵装置2的第二壳体21为整体式外壳。装配显示装置27时,是先将显示装置27安装于整体式外壳后,再将显示装置27与电控盒26进行接线操作。常见的整体式外壳缺少预固定结构,安装过程中第二壳体21容易出现脱落的情况,导致装配效率降低。并且整体式外壳限制了操作空间,使得接线困难。
在一些实施例中,第二壳体21为分体式结构,第二壳体21包括第一子壳体和第二子壳体,但是第一子壳体和第二子壳体的连接处可能存在渗水的问题。
为解决上述问题中的至少之一,本公开一些实施例提供一种热泵热水器100,第二壳体21和安装板13中的一个设置有容置部131,第二壳体21和安装板13中的另一个设有第一卡合部215,第一卡合部215卡合在容置部131内,以使第二壳体21和安装板13相连。例如,第二壳体21包括第一卡合部215,第一卡合部215可以为凸台。安装板13包括容置部131,容置部131可以为凹槽。
这样,当在第二壳体21上安装显示装置27时,可以先通过第一卡合部215和容置部131的配合将第二壳体21预安装在安装板13上,再对显示装置27进行接线,从而避免接线时第二壳体21从安装板13上脱落。并且,该装配方式简单,操作方便,可以提高装配效率。
如图12所示,容置部131设置在安装板13的外周缘。容置部131由安装板13的一部分朝向安装板13的中心轴线凹入形成。如图6和图9所示,第一卡合部215设在第二壳体21的内壁面上,且位于第二壳体21的邻近安装板13的一侧。装配时,可以通过第一卡合部215与容置部131的配合,将第二壳体21预安装至安装板13上。
在一些实施例中,第一卡合部215的一端朝第二壳体21的中心轴线方向延伸,第一卡合部215的一端的另一端与第二壳体21相连接。第一卡合部215的所述一端的宽度小于所述另一端的宽度,以便与对应的容置部131配合。
在一些实施例中,如图2和图12所示,安装板13包括彼此相连的安装板本体132和第一配合部133。安装板本体132与第一壳体11相连,第一配合部133设在安装板本体132的周向上且沿朝向靠近第二壳体21的顶部的方向延伸,第一配合部133上形成有容置部131。
如图3和图12所示,安装板本体132的形状与第一壳体11的顶部的形状相适配,以将热泵装置2与水箱本体12间隔开,避免水箱本体12内的水进入第二壳体21内而造成热泵装置2的线路短路。
第一配合部133位于安装板本体132的边缘并向远离所述水箱组件1的一侧延伸。例如,第一配合部133沿安装板本体132的周向延伸,且垂直于安装板本体132。此外,第一配合部133与安装板本体132的外周面间隔开,以使第二壳体21与安装板13装配后,第一配合部133能够位于第二壳体21内,此时第二壳体21的下端面与安装板本体132的外周面止抵。
由此,使得安装板13的结构简单、方便加工,并且能够提高第二壳体21和安装板13的连接处的密封性,避免外界液体从所述连接处进入第二壳体21内部,从而对压缩机22 等起到防水作用。
如图6至图9所示,第二壳体21包括可拆卸连接的第一子壳体211和第二子壳体212。第一卡合部215包括第一子卡合部2111和第二子卡合部2121。第一子壳体211上设置有多个第一子卡合部2111,多个第一子卡合部2111沿第一子壳体211的周向间隔排布。第二子壳体212上设置有多个第二子卡合部2121,多个第二子卡合部2121沿第二子壳体212的周向间隔排布。
多个容置部131包括多个第一子容置部1311和多个第二子容置部1312。安装时,第一子卡合部2111分别位于第一子容置部1311内,以将第一子壳体211预安装在安装板13上。第二子卡合部2121分别位于第二子容置部1312内,以将第二子壳体212预安装于安装板13。
在一些实施例中,显示装置27设置于第一子壳体211和第二子壳体212中的一个。如图6所示,显示装置27设置于第一子壳体211。此时,当在第一子壳体211上安装显示装置27时,可以先通过第一子卡合部2111与第一子容置部1311的配合,将第一子壳体211预安装在安装板13上之后,再对显示装置27进行接线,从而避免接线时第一子壳体211从安装板13上脱落。最后再将第二子壳体212与第一子壳体211连接,从而为接线操作提供足够的空间。
在一些实施例中,多个第一子卡合部2111中位于第一子壳体211的周向的两端的至少两个第一子卡合部2111具有第一导向面。多个第二子卡合部2121中位于第二子壳体212的周向的两端的至少两个第二子卡合部2121具有第二导向面。
例如,所述至少两个第一子卡合部2111包括两个第一子卡合部2111,两个第一子卡合部2111的第一导向面彼此相对设置。所述至少两个第二子卡合部2121包括两个第二子卡合部2121,两个第二子卡合部2121的第二导向面彼此相对设置。
可以理解的是,多个第一子容置部1311中的至少两个具有第三导向面,第三导向面与第一导向面接触。多个第二子容置部1312中的至少两个具有第四导向面,第四导向面与第二导向面接触。
安装时,第一导向面与第三导向面相配合,以将第一子壳体211快速安装至安装板13上。第二导向面与第四导向面相配合,以将第二子壳体212快速安装至安装板13上。这样,有利于提高壳体与安装板13之间的装配效率。
在一些实施例中,沿安装板13的径向,第二子壳体212上的多个第二子卡合部2121分别位于第二子壳体212周向上的两端。如此设置,能够保证第二子壳体212的中部具有充足的空间,便于将尺寸较大的风机组件25安装至第二容纳腔20中邻近第二子壳体212的一侧,以充分利用第二壳体21内的空间,使得热泵装置2的排布紧凑,减小热泵装置2整体的体积。
在一些实施例中,第二壳体21还包括至少一个密封件216。密封件216设置于第二壳体21的内侧壁上,且位于第二壳体21的邻近安装板13的一侧。例如,密封件216位于所述多个第一卡合部215中的相邻两个第一卡合部215之间。装配时,密封件216与第一配合部133的外周面止抵。
由此,可以进一步提高安装板13与第二壳体21之间的密封性,避免外界杂质或液体进入第二壳体21内,保证了第二壳体21内部的清洁度。
在一些实施例中,如图18所示,第一配合部133的外周面设有至少一个第一限位部136,即第一限位部136设置于第一配合部133的邻近第二壳体21的一侧。密封件216与第一限位部136止抵,第一限位部136可支撑在对应的密封件216上。
在一些实施例中,所述至少一个密封件216包括多个密封件216,所述多个密封件216沿第二壳体21的内侧壁的周向间隔排布。所述至少一个第一限位部136包括多个第一限位部136,所述多个第一限位部136沿安装板13的周向间隔排布。
这样,通过第一限位部136和密封件216的配合,可以避免第二壳体21和安装板13沿上下方向的相对移动,避免安装板13与第二壳体21脱离配合。并且,可以进一步起到防水作用。
在一些实施例中,第一子壳体211和第二子壳体212中的一个上设有第一卡扣2113,安装板13上设有第二限位部134,第一卡扣2113与第二限位部134止抵。如图6和图8所示,第一子壳体211的内壁面的邻近安装板13的一端设有两个第一卡扣2113。两个第一卡扣2113分别位于第一子壳体211的周向的两端,且两个第一卡扣2113位于第一子卡合部2111的远离密封件216的一侧。
如图12所示,第一配合部133的邻近安装板本体132中心的一侧设有两个第二限位部134,两个第二限位部134可沿安装板本体132的径向相对。安装时,第一子卡合部2111和第二子卡合部2121分别配合在对应的容置部131内,第一卡扣2113与第二限位部134的侧壁贴合。由此,可以避免第二壳体21绕安装板13的中心轴线转动,以将第二壳体21牢靠地固定在安装板13上。
如图6至图8所示,第一子壳体211还包括第一安装柱2115。如图9至图11所示,第二子壳体212还包括第二安装柱2125,第二安装柱2125与第一安装柱2115对应设置。紧固件的两端分别与第一安装柱2115和第二安装柱2125相连。
安装时,将第一子壳体211和第二子壳体212连接之后,紧固件的两端分别伸入第一安装柱2115和第二安装柱2125内。由此,可以提高第一子壳体211和第二子壳体212的连接可靠性,避免第一子壳体211和第二子壳体212脱离配合。
在一些实施例中,第一子壳体211设置有至少一个第一连接部213,第二子壳体212中设有至少一个第二连接部214,第二连接部214与第一连接部213相配合,以提高第一子壳体211与第二子壳体212的连接处的防水性能。
例如,第一连接部213和第二连接部214中的一个具有凸起,第一连接部213和第二连接部214中的另一个具有凹槽。
以下以第一连接部213具有凹槽,第二连接部214具有凸起为例,对第二连接部214和第一连接部213的结构进行说明。
如图13至图16所示,第一连接部213设在第一子壳体211的边缘,且沿第一子壳体211的轴向延伸。第二连接部214设在第二子壳体212的边缘,且沿第二子壳体212的轴向延伸。安装时,将第二连接部214配合在第一连接部213内,以使第一子壳体211的端面与第二子壳体212的端面贴合,减小第一子壳体211和第二子壳体212的连接处的间隙,从而可以提高第一子壳体211与第二子壳体212的连接处的密封性。
这样,避免外部液体(如水)经上述连接处进入第二壳体21内,实现了对第二壳体21内的压缩机22、风机组件25和蒸发器23的防水保护,增强了热泵热水器100的防水效果。并且,可以保证第一子壳体211与第二子壳体212的光滑连接,以使第一子壳体211和第二子壳体212的外观装配效果好。
如图14所示,第一连接部213包括第一段2131和第二段2132。第一段2131沿第一壳体11的轴向延伸。第二段2132的一端与第一段2131相连,第二段2132的另一端沿朝向第一壳体11中心的方向延伸。
如图16所示,第二连接部214包括第四段2141和第五段2142。第四段2141沿第一壳体11的轴向延伸,第四段2141配合在第一段2131内。第五段2142的一端与第四段2141相连,第五段2142的另一端沿朝向第一壳体11中心的方向延伸,第五段2142配合在第二段2132内。
在一些实施例中,第二段2132沿水平方向朝向远离第一段2131的方向延伸,此时第一连接部213形成第一折弯部。第五段2142沿水平方向朝向远离第四段2141的方向延伸,此时第二连接部214形成第二折弯部。
由此,当第二连接部214嵌入第一连接部213内后,第一连接部213和第二连接部214可以进一步实现对第一子壳体211和第二子壳体212的密封,使得外部液体难以渗入第二壳体21内,从而加强了热泵热水器100的防水效果。
参照图17和图19,在一些实施例中,第二壳体21还包括顶盖3,顶盖3盖设在第一子壳体211和第二子壳体212的远离水箱组件1的一侧(如上侧)。顶盖3包括彼此相连的顶盖延伸段31和顶盖本体32,顶盖本体32与第二壳体21的顶部相对,顶盖延伸段31 沿远离顶盖本体32的方向倾斜向下延伸,且顶盖延伸段31的自由端的端面(即顶盖3的底壁)与第二段2132的外侧壁止抵。
由此,顶盖3覆盖了第一连接部213与第二连接部214的配合处的上部,对第一子壳体211和第二子壳体212能起到保护作用,使得第一连接部213与第二连接部214的配合处的上部具有双重防水性能,有利于增强热泵热水器100的防水效果。
在一些实施例中,如图14和图16所示,第一连接部213还包括第三段2133。第三段2133的一端与第二段2132的另一端相连,第三段2133的另一端沿远离第二段2132的方向倾斜延伸。第二连接部214还包括第六段2143。第六段2143的一端与第五段2142的另一端相连,第六段2143的另一端沿远离第二连接部214端的方向倾斜延伸,第六段2143配合在第三段2133内。
在一些实施例中,第三段2133沿远离第二段2132的的方向倾斜向上延伸。第三段2133的长度可以小于顶盖本体32到第二段2132的距离。同样地,第六段2143沿远离第五段2142的方向倾斜向上延伸。此时,使得第一连接部213和第二连接部214的邻近顶盖3的一端具有多个折弯部。由此,进一步实现了对第一子壳体211和第二子壳体212的密封,增强了第二壳体21的防水性能。
可以理解的是,安装板13位于第一壳体11和第二壳体21之间。在一些实施例中,安装板13的侧壁伸入第二壳体21内。如图17和图18所示,安装板13的第一配合部133向上延伸构成了侧壁,且侧壁的直径小于第二壳体21的直径。安装时,第二壳体21位于安装板13的侧壁的外侧,使得第一连接部213和第二连接部214的下部具有双重防水性能,增强了热泵热水器100的防水效果。
在一些实施例中,参照图18,沿第一壳体11的轴向,安装板13的侧壁的自由端(即第一配合部133的顶端)高于第一段2131的自由端(即第一段2131的底端)。例如,在第一子壳体211与第二子壳体212的连接处,安装板13的侧壁的自由端的端面位于第一段2131的自由端上方,此时安装板13的侧壁的自由端与第一段2131的自由端在第二壳体21的轴向方向上有一部分重叠,即便外部液体从第一连接部213和第二连接部214的配合处的下部渗入第二壳体21内,安装板13的侧壁可以阻挡外部液体进一步渗入第二壳体21内,从而进一步加强了热泵热水器100的防水效果。
在一些实施例中,第一连接部213和第二连接部214均为两个,两个第一连接部213分别位于第一子壳体211的周向的两端,两个第二连接部214分别位于第二子壳体212的周向的两端。通过两个第一连接部213与两个第二连接部214配合,进一步保证了第一子壳体211与第二子壳体212连接处的防水效果。
如图20至图23所示,风机组件25包括蜗壳251、蜗壳延伸部252、风轮255。蜗壳251设于蒸发器23的远离压缩机22的一侧,蜗壳251具有第二进风口2511和第二出风口2512。第二进风口2511面向蒸发器23设置。第二出风口2512与第一出风口302沿第二壳体21的轴向相对且连通。从第一进风口301进入第二壳体21内部的空气适于流经第二进风口2511进入风机组件25后,从第二出风口2512和第一出风口302排出。
在一些实施例中,如图21和图22所示,蜗壳延伸部252的一端与第二出风口2512相连,蜗壳延伸部252的另一端与第一出风口302相对,从第二出风口2512朝向第一出风口302的方向(即上下方向)、蜗壳延伸部252朝向靠近蒸发器23的方向倾斜设置。
在一些实施例中,风轮255设在蜗壳251内,从第一进风口301进入第二壳体21内部的空气流经蒸发器23并与蒸发器23换热后,经第二进风口2511进入蜗壳251并通过第二出风口2512从第一出风口302排出。
在一些实施例中,蜗壳延伸部252朝向蒸发器23所在的一侧倾斜设置。这样,一方面可以使蜗壳延伸部252在远离蒸发器23的另一侧形成避让空间,便于第二壳体21的设置。另一方面,可以利用蒸发器23周边的部分空间,以使热泵装置2内部的结构更加紧凑,并且便于将第二出风口2512与第一出风口302连通,以增加第一出风口302处的出风量。
由此,在蜗壳251的第二出风口2512处设置倾斜的蜗壳延伸部252,可以充分利用蒸发器23顶部的空间,便于增加第二出风口2512的面积,有利于使第二出风口2512与第 一出风口302相对,增加第二出风口2512处的出风量,以使空气能够及时排出,提高第二壳体21内部空间的利用率。并且,可以避免第二壳体21在与安装板13装配时,第二出风口2512与第二壳体21互相干涉,影响第二壳体21的装配的效率。
如图21所示,蜗壳延伸部252包括开口段253和连接段254,连接段254与开口段253连接,且连接段254比开口段253更靠近蜗壳251。开口段253的一端与第一出风口302相对。例如,开口段253的横截面为圆形。连接段254的一端与开口段253的另一端连接,连接段254的另一端与第二出风口2512连接。例如,连接段254的所述另一端的横截面形状大致为矩形。
在一些实施例中,第二出风口2512流出的空气依次经过连接段254和开口段253,再从第一出风口302流出。开口段253的横截面形状与第一出风口302的形状相适配,由此,有利于增加蜗壳延伸部252的出风面积。连接段254的远离开口段253的一端的横截面的形状(如矩形)与第二出风口2512的形状相适配。这样,能够增加第二出风口2512的出风面积,从而增大蜗壳251的出风量,有利于提高蒸发器23的换热效率。
如图22所示,连接段254包括沿蜗壳251的第二出风口2512的周向依次连接的第一面2541、第二面2542、第三面2543、第四面2544、第五面2545和第六面2546。第一面2541分别与蒸发器23以及第二面2542连接。第四面2544与蒸发器23的面向风机组件25的一侧表面相对。第六面2546分别与第五面2545以及蒸发器23连接,第六面2546与第一面2541相对。
例如,第一面2541的一侧与蒸发器23连接,第二面2542的一侧与第一面2541的另一侧连接,第三面2543的一侧与第二面2542的另一侧连接,第四面2544的一侧与第三面2543的另一侧连接,第四面2544与蒸发器23的面向风机组件25的一侧表面相对,第五面2545的一侧与第四面2544的另一侧连接,第六面2546的一侧与第五面2545的另一侧连接,第六面2546的另一侧与蒸发器23连接,第六面2546与第一面2541相对。且至少第二至第五面2545沿第二出风口2512朝向第一出风口302的方向(即由下到上的方向)朝向靠近蒸发器23倾斜延伸。
需要说明的是,第一面2541至第六面2546的外周面分别为不规则的曲面。例如,第四面2544邻近开口段253的部分的曲率半径大于第四面2544邻近第二出风口2512部分的曲率半径。
第二出风口2512的端面包括第一连接段、第二连接段、第三连接段、第四连接段、第五连接段和第六连接段,第一连接段的两端的端点沿开口段253的中心轴线的方向(即上下方向)与开口段253对应点的连线围成的区域构成第一面2541。第二面2542至第六面2546依次类推。由此,第一面2541至第六面2546从第二出风口2512朝向开口段253倾斜延伸,使蜗壳延伸部252根据第二出风口2512的形状构成连接段254的下端面,以保证连接段254下端面的横截面积与第二出风口2512相适应,从而增加蜗壳251的出风量。
如图22所示,第二出风口2512的远离蒸发器23的两个角处分别具有第一圆角256和第二圆角257,第二面2542和第三面2543连接在第一圆角256处,第五面2545连接在第二圆角257处。即所述第二连接段和所述第三连接段为第一圆角256,所述第五连接段为第二圆角257。第一圆角256和第二圆角257由蜗壳251在成形过程中形成。
在一些实施例中,第二面2542、第三面2543和第五面2545在朝向开口段253延伸时,蜗壳延伸部252的横截面积减小,以将空气引导至开口段253。由此,第一圆角256和第二圆角257的设置,便于降低空气在蜗壳251内部流动的阻力,且便于第二面2542、第三面2543和第五面2545的设置,以使连接段254与第二出风口2512相适配。
在一些实施例中,如图23所示,第一面2541沿第二出风口2512至开口段253的方向朝向蜗壳251的中心(如图23中风轮255所在的一侧)倾斜延伸。由此,将第一面2541倾斜设置,能够避免开口段253对第二壳体21的安装产生干涉并且提高第二壳体21内部空间的利用率。
如图23所示,第一面2541的倾斜角度为β。即第一面2541在第一截面上的正投影与开口段253的中心轴线在第一截面上的正投影的夹角为β,β满足:β≤3°。也即第一面 2541在蒸发器23上的正投影与开口段253的中心轴线之间的角度为β,β满足:β≤3°。
需要说明的是,所述第一截面为垂直于风轮255的中心轴线方向的风机组件25的横截面。风轮255的中心轴线如图24所示的虚线N-N。
可以理解的是,夹角β越大,第一面2541的倾斜角度越大,空气在流经第一面2541时的方向变化越大。因此空气可能在第一面2541附近产生涡流,从而影响蜗壳延伸部252内空气的流动速率,降低第二出风口2512的出风量。
由此,限定第一面2541与开口段253中心轴线之间的夹角,以使第一面2541位于预设位置范围内,便于蜗壳延伸部252与第一出风口302相对,保证了出风效果。
在一些实施例中,如图24所示,第四面2544沿第二出风口2512向开口段253的方向朝向蒸发器23倾斜延伸,第四面2544的倾斜角度为α,α满足:α≤5°。即第四面2544在第二截面上的正投影与开口段253的中心轴线在所述第二截面上的正投影的夹角为α,α满足:α≤5°。
需要说明的是,所述第二截面为过风轮255的中心轴线的纵向平面,且该纵向平面沿开口段253的中心轴线方向延伸。也即,所述第二截面为过图23中虚线M-M的风机组件25的截面。
可以理解的是,夹角α越大,第四面2544的倾斜角度越大。受到第四面2544倾斜角度的影响,空气可能在第四面2544附近产生涡流,从而影响蜗壳延伸部252内空气的流动速率,降低第二出风口2512的出风量。
由此,限定第四面2544与开口段253的中心轴线之间的夹角,能够提高蜗壳延伸部252的出风效果,且有效降低蜗壳延伸部252对空气流动的阻力,保证第二出风口2512的空气能够及时从蜗壳延伸部252排出。
参照图22和图25,蒸发器23还包括避让部231,蜗壳延伸部252部分位于避让部231内。避让部231被配置为避让蜗壳延伸部252。避让部231在水平面上的第一正投影面积与第二正投影面积之比为A,第二正投影面积为蜗壳延伸部252的远离第二出风口2512的一端(即开口段253)在水平面上的正投影面积,A满足:1/6≤A≤1/2。
可以理解的是,避让部231与开口段253的正投影面积之比A越小,则避让部231的空间越小。此时,蜗壳延伸部252不能合理地利用蒸发器23的内部空间,使蒸发器23和蜗壳251的整体体积大,不利于热泵装置2的小型化设计。并且避让部231空间不足,还会影响开口段253截面的面积大小,从而影响出风效果。
避让部231与开口段253的正投影面积之比A越大,则开口段253与第二出风口2512在水平面上的正投影相交的面积越小。因此,可能会干扰第二出风口2512出风,从而降低第二出风口2512的出风效率。
由此,限定避让部231与开口段253在水平面的正投影面积之比,便于将第一出风口302与开口段253相对设置,避免第一出风口302对开口段253的安装产生干涉,并且能够提高蜗壳延伸部252、蜗壳251和蒸发器23的结构紧凑性,增大蜗壳251内部的空间。另外,能够保证蜗壳延伸部252的出风效率,使得空气能够快速地从第二出风口2512流向第一出风口302,从而从第一出风口302排出。
如图26所示,蜗壳延伸部252的远离开口段253的一端(即底端)与蒸发器23的连接处通过第三圆角258过渡。空气在流出第二出风口2512时,能够在蜗壳延伸部252与蒸发器23的连接处,通过第三圆角258流向蜗壳延伸部252,以此增加所述连接处对空气的导向性,避免空气在该连接处流动方向变化大,而影响蜗壳延伸部252的出风效率。
如图21和图24所示,蜗壳251包括沿风轮255的中心轴线方向相互连接的第三壳体2513和第四壳体2514。蒸发器23包括用于蒸发的管路和安装管路的侧板。第三壳体2513与蒸发器23的侧板连接,且第三壳体2513与侧板为一体件。第四壳体2514连接在第三壳体2513的远离蒸发器23的一侧。由此,第三壳体2513与蒸发器23的侧板一体成型,可以减小热泵装置2部件的数量,有利于提高蜗壳251的安装效率。
如图26和图29所示,蜗壳251的第二进风口2511连通蒸发器23的侧板,空气经过蒸发器23的管路换热后,到达蒸发器23的侧板所在的位置,再经第二进风口2511进入 蜗壳251。由此,第三壳体2513与蒸发器23的侧板一体成型,能够保证蜗壳251与蒸发器23之间的密封性,有利于增加第二进风口2511的进风量。
如图24所示,沿蒸发器23的厚度方向也即风轮255的中心轴线方向,第三壳体2513的宽度与第四壳体2514的宽度之比为B,B满足:3/7≤B≤1。
可以理解的是,若第三壳体2513与第四壳体2514之间的宽度之比B小于3/7,则不能充分地利用蒸发器23的内部空间,且可能降低第三壳体2513与蒸发器23连接的结构强度。若第三壳体2513与第四壳体2514之间的宽度之比B大于1,则第三壳体2513容易与蒸发器23内部的结构产生干涉,影响第二出风口2512的出风量。
由此,通过限定第三壳体2513与第四壳体2514的宽度之比,以使第三壳体2513能够合理的利用侧板的空间,便于蜗壳延伸部252与第一出风口302相对,保证第三壳体2513与蒸发器23的连接强度,且增大蜗壳251的内部空间,提高蜗壳251的进风量和出风量。
在一些实施例中,如图20所示,顶盖3具有第一进风口301和第一出风口302,第一进风口301和第一出风口302均与第二容纳腔20连通。
在一些实施例中,如图2和图3所示,第一进风口301和第一出风口302分别位于蒸发器23的两侧,第一出风口302和风机组件25位于蒸发器23的同一侧且与风机组件25连通,从第一进风口301进入第二壳体21内部的空气适于流经蒸发器23并与蒸发器23换热后经风机组件25从第一出风口302排出。
在一些实施例中,第一进风口301和第一出风口302关于顶盖3为非中心对称布置,也即第一进风口301与第一出风口302不在顶盖3的径向方向相对设置。这样,能够避免第一进风口301受到电控盒26等部件的干扰,增加进风空间和进风效率。并且从第一进风口301进入第二壳体21内部的空气在流经蒸发器23时需要经过预设角度,再从第一出风口302处流出,能够延长空气从第一进风口301流向第一出风口302的流动路径,以使空气与压缩机22、电控盒26、蒸发器23等充分换热。
如图27所示,第一进风口301的中心和第一出风口302的中心分别与顶盖3的中心的连线之间的夹角为γ,γ满足:80°≤γ<180°。也即,第一进风口301的中心与顶盖3的中心连接形成第一线段,第一出风口302的中心与顶盖3的中心连接形成第二线段,第一线段和第二线段沿第二壳体21的轴向方向在顶盖3上的正投影构成的夹角为γ。
可以理解的是,夹角γ越小,则第一进风口301与第一出风口302距离越近。若夹角γ小于80°,则容易导致第一进风口301与第一出风口302互相干涉,影响热泵热水器100的进风和出风效果。还可能会使第一进风口301与第一出风口302分别与第二进风口2511的连线的夹角小,增加空气在第二壳体21内部流动的阻力。并且,不便于第二壳体21内部电控盒26和压缩机22等部件的设置。
由于从第一进风口301进入第二壳体21内部的空气经过蒸发器23之后,再经由第二进风口2511和第二出风口2512,最终从第一出风口302流出。因此在第二进风口2511的中心位置固定的情况下,夹角γ越大,空气在第二壳体21内部的流经的路径越短,对第二壳体21内压缩机22和电控盒26的散热效果越弱。并且,空气在第二壳体21内部停留时间变短,降低了蒸发器23的蒸发效率。
若夹角γ等于180°,则第一进风口301与第一出风口302关于第二壳体21的中心对称设置。此时第一进风口301可能部分位于电控盒26上方,导致进风空间小,从第一进风口301进入第二壳体21内部的空气受到电控盒26的干扰,不能顺利到达蒸发器23所在的位置处,从而导致空气的流失。
例如,第一进风口301的中心和第一出风口302的中心分别与顶盖3的中心的连线之间的夹角γ=105°。
由此,通过限定第一进风口301与第一出风口302之间的夹角γ,一方面能够保证第一进风口301的进风效果,从而保证蒸发器23工作所需要的风量,以提高蒸发器23的换热效率。另一方面能够保证第一出风口302的出风效果,有利于提高空气在第二壳体21内部流动的速率,使空气能够快速带走电控盒26和压缩机22等工作产生的热量,有效降低 热泵热水器100的能耗。
在一些实施例中,如图20和图27所示,第一进风口301与压缩机22沿热泵热水器的轴向方向相对设置,且第一进风口301与压缩机22间隔设置。也即第一进风口301与压缩机22在第二壳体21的轴向方向相对。从第一进风口301进入第二壳体21的空气先经过压缩机22再流向蒸发器23和电控盒26。以此,可以避免电控盒26对第一进风口301的遮挡,增加第二壳体21进风量,实现对压缩机22的降温。
在一些实施例中,如图26、图28和图29所示,在蒸发器23的宽度方向上,进风口2511位于蒸发器23的靠近电控盒26的一侧。例如,第二进风口2511和电控盒26位于蒸发器23的两侧且相对设置。从第一进风口301进入第二壳体21内部的空气先经过压缩机22,再经过电控盒26和蒸发器23,并最终流向第二进风口2511。
以此,保证在风机组件25的作用下,第二壳体21内部的空气从蒸发器23的靠近电控盒26的一侧(如图28所述的S2侧)流向第二进风口2511,避免空气从蒸发器23的靠近压缩机22的一侧(如图28所述的S1侧)流向第二进风口2511。这样,使得空气所流经蒸发器23的面积增大,增加了蒸发器23的受风面积。并且可以保证空气与电控盒26充分接触,实现对电控盒26的散热,从而保证电控盒26的工作效率。
如图29所示,第二进风口2511的中心位于第一中心平面邻近安装板13的一侧。所述第一中心平面为所述蒸发器23的高度方向上的中心平面,且所述第一中心平面沿蒸发器23的中心轴线方向延伸。
需要说明的是,所述蒸发器23的高度方向为图29所示的上下方向,所述蒸发器23的宽度方向为图29所示的左右方向。
由此,将第二进风口2511的中心设置于蒸发器23的所述第一中心平面以下,且靠近所述电控盒26设置,能够延长空气从第一进风口301流向第一出风口302的流动路径,充分增加蒸发器23的受风面积,以此增加蒸发器23的换热效率。
如图28所示,沿朝向压缩机22的方向,电控盒26与蒸发器23之间的距离逐渐增大,电控盒26与蒸发器23之间呈夹角θ,θ满足:15≤θ≤30°。第一进风口301与压缩机22相对,空气从第一进风口301进入第二壳体21内后,流向蒸发器23和蒸发器23与电控盒26之间的空间内,以便于电控盒26的散热。
可以理解的是,夹角θ越小,则电控盒26与蒸发器23之间的进风量越小,可能导致电控盒26的散热能力降低,蒸发器23的换热能力减弱。电控盒26与蒸发器23之间的夹角θ越大,则流向蒸发器23的空气会受到电控盒26的阻挡,越容易在电控盒26的表面产生紊流,从而造成空气的流失,使蒸发器23的进风量减小,并进一步影响蒸发器23的换热效果。
例如,沿朝向压缩机22的方向、电控盒26与蒸发器23之间的距离逐渐增大,电控盒26与蒸发器23之间的夹角θ=25°。由此,限定电控盒26与蒸发器23之间的夹角θ,可以增加蒸发器23靠近电控盒26一侧的进风量,提高蒸发器23的换热能力和换热效率,并且可使大量空气经过电控盒26表面,提升电控盒26内的电控板的降温效果,便于对电控盒26进行散热。
在一些实施例中,如图30至图32所示,第二壳体21形成有第一开口217,第一开口217可以形成在第二壳体21的侧壁上。热泵装置2还包括滤网组件4,滤网组件4穿设第一开口217设于第一开口217内,滤网组件4与第一进风口301相对。滤网组件4被配置为过滤从第一进风口301进入第二壳体21内部的空气中的杂质。
在风机组件25的作用下,从第一进风口301进入第二壳体21内部的空气先经过滤网组件4的过滤后,再流经压缩机22、蒸发器23和风机组件25等,最终从第一出风口302流出。
可以理解的是,第一开口217的设置便于滤网组件4的安装。滤网组件4的设置,能够避免空气中的杂质例如颗粒物等进入蒸发器23中,且在蒸发器23的表面停留而造成蒸发器23的堵塞,以此提高蒸发器23的换热效率,增加第二壳体21内部蒸发器23和压缩机22等部件的使用寿命。
在一些实施例中,如图33和图34所示,滤网组件4包括滤网41和支架42。滤网41设于支架42上,支架42被配置为对滤网41进行支撑。支架42设置在第二壳体21的第一开口217处,且与第二壳体21相连接。例如,支架42与第二壳体21一体成型。支架42远离第一开口217的部分朝向第一进风口301的中心延伸,以与第一进风口301相对。
可以理解的是,滤网41安装于支架42之后,沿第二壳体21的轴向方向,第一进风口301、滤网41和支架42相对。支架42的设置能够便于滤网41的安装,且提高滤网41的稳定性。
在一些实施例中,如图35所示,滤网41包括第二配合部411和第三连接部412。第二配合部411靠近第一开口217的一侧表面与第二壳体21的外周面平齐。第三连接部412的一端与第二配合部411连接,第三连接部412的另一端穿设第一开口217伸入第二壳体21内。
滤网41的形状可以与支架42的形状相适配,以提高滤网41的安装效率,充分过滤进入第二壳体21内部的空气。并且,便于用户在第一开口217处取出滤网41,以对滤网41进行更换和清理,来保证第一进风口301处的进风量。
在一些实施例中,如图34至图37所示,支架42和滤网41中的一个上设有第二卡合部423,支架42和滤网41中的另一个上设有第二卡扣414。
例如,支架42设置有第二卡合部423,第二卡合部423设于支架42的邻近第一开口217的一侧。第三连接部412设有第二卡扣414,第二卡扣414设于滤网41邻近第二配合部411的一侧。第二卡扣414与第二卡合部423相配合,以将滤网41与支架42相固定。
在一些实施例中,第二卡扣414的自由端朝向第二壳体21的中心倾斜延伸,且第二卡扣414在第二壳体21的轴向方向可发生形变,以便于第二卡扣414与第二卡合部423的配合。由此,第二卡合部423可以形成对第二卡扣414的限位,使得滤网41与支架42可拆卸连接,便于后期更换和清理滤网41,降低滤网组件4的使用成本。
在一些实施例中,如图34所示,支架42上形成有通孔424。通孔424设于支架42的远离第一开口217的一端,且通孔424与第一进风口301相对。滤网41的至少部分与通孔424相对,从第一进风口301进入第二壳体21内部的空气适于通过滤网41的所述至少部分以及通孔424。
在一些实施例中,如图34所示,支架42包括支架本体421和安装槽422。安装槽422设置于支架本体421的沿第二壳体21的周向方向的至少一侧。安装槽422沿第二壳体21的径向方向朝向第一进风口301的中心延伸。安装槽422被配置为对滤网41进行导向。
如图35所示,滤网41还包括导向筋413,导向筋413设置于第三连接部412的沿第二壳体21的周向方向的至少一侧。导向筋413沿第二壳体21的径向方向朝向第二壳体21的中心延伸。导向筋413与安装槽422相配合,以将滤网41安装于支架42。
在滤网41与支架42装配的过程中,滤网41从第一开口217处沿着安装槽422伸入第一开口217内,以完成与支架42的配合。由此,安装槽422和导向筋413的设置,可以形成对滤网41的限位,增加装配过程中对滤网41的导向性,以及安装后滤网41的稳定性,有利于提高滤网41与支架42的装配效率。
在一些实施例中,如图35所示,滤网还包括推拉部415,推拉部415设置于第二配合部411靠近第二壳体21的顶部的一侧,且沿第二壳体21的周向方向延伸。在第二壳体21的轴向方向上,推拉部415朝向水箱组件1的方向凹入。以此,推拉部415具有防滑的作用,便于用户通过推拉部415打开第二配合部411或者取出滤网41。
在一些实施例中,如图31所示,第二壳体21上还设有第二开口218,第二开口218位于第一开口217的邻近第二壳体21的顶部的一侧。第二开口218在第二壳体21的轴向方向与第一开口217连通,且第二开口218与推拉部415相对设置。第二开口218的设置可以进一步便于用户取出滤网41。
在一些实施例中,滤网组件4满足以下之一:滤网组件4与第二壳体21可拆卸连接,或,滤网组件4包括滤网41和支架42,滤网41可拆卸地安装在支架42上,支架42与第二壳体21相连接。
在滤网组件4与第二壳体21可拆卸连接的情况下,安装槽可形成于第二壳体21的侧壁上,以便于滤网组件4安装和拆卸,提高安装效率。滤网组件4整体可沿安装槽装配于第二壳体21。在需要更换滤网组件4时,将滤网组件4整体沿安装槽取下。这样,滤网组件4和第二壳体21可分别进行制造,能够降低加工难度。
在滤网组件4包括滤网41和支架42的情况下,滤网41可拆卸地设在支架42上,支架42可与第二壳体21一体成型,以提高支架42的结构强度。在需要更换滤网41时,将滤网41沿支架42取下,以便于滤网41的更换,降低后期使用和维护的成本。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (34)

  1. 一种热泵热水器,包括:
    水箱组件,所述水箱组件包括:
    第一壳体;和
    水箱本体,设置于所述第一壳体内,所述水箱本体具有进水口和出水口;以及热泵装置,位于所述水箱组件的顶部,所述热泵装置包括:
    第二壳体;
    蒸发器,位于所述第二壳体内,且被配置为吸收空气中的热量;
    压缩机,位于所述蒸发器的一侧,所述压缩机具有进气口和排气口,所述进气口与所述蒸发器相连,所述排气口与冷凝器相连;和
    风机组件,位于所述蒸发器的与所述一侧相对的另一侧,且被配置为将外部空气导入所述蒸发器;
    所述水箱组件还包括安装板,所述安装板设在所述第一壳体的轴向的一端;所述热泵装置位于所述安装板的远离所述水箱本体的一侧,所述安装板被配置为支撑所述热泵装置;
    所述第二壳体与所述安装板可拆卸连接,且所述第二壳体与所述安装板之间构成容纳腔,所述蒸发器、所述压缩机以及所述风机组件分别容纳在所述容纳腔内;其中,
    所述第二壳体和所述安装板中的一个设置有至少一个容置部,所述第二壳体和所述安装板中的另一个设有至少一个第一卡合部,所述第一卡合部配合在所述容置部内,以使所述第二壳体和所述安装板相连。
  2. 根据权利要求1所述的热泵热水器,其中,所述第一卡合部设置于所述第二壳体的内壁面;所述安装板包括:
    安装板本体,与所述第一壳体相连;以及
    第一配合部,与所述安装板本体相连;所述第一配合部设在所述安装板本体的周向,且沿朝向所述第二壳体的顶部的方向延伸;所述第一配合部位于所述第二壳体内,所述容置部设置于所述第一配合部。
  3. 根据权利要求2所述的热泵热水器,其中,所述第二壳体包括可拆卸连接的第一子壳体和第二子壳体;所述至少一个第一卡合部包括多个第一卡合部,所述多个第一卡合部包括至少一个第一子卡合部和至少一个第二子卡合部;其中,
    所述至少一个第一子卡合部包括多个第一子卡合部,所述多个第一子卡合部沿所述第一子壳体的周向间隔排布;所述至少一个第二子卡合部包括多个第二子卡合部,所述多个第二子卡合部沿所述第二子壳体的周向间隔排布。
  4. 根据权利要求3所述的热泵热水器,其中,所述多个第一子卡合部中位于所述第一子壳体的两侧的第一子卡合部具有第一导向面;所述多个第二子卡合部中位于所述第二子壳体的两侧的第二子卡合部具有第二导向面;
    所述至少一个容置部包括多个容置部,所述多个容置部包括多个第一子容置部和多个第二子容置部;所述多个第一子容置部中的至少两个第一子容置部具有第三导向面,所述第三导向面与所述第一导向面接触;所述多个第二子容置部中的至少两个第二子容置部具有第四导向面,所述第四导向面与所述第二导向面接触。
  5. 根据权利要求3或4所述的热泵热水器,其中,所述多个第二子卡合部分别靠近所述第二子壳体的端部设置。
  6. 根据权利要求3至5中任一项所述的热泵热水器,其中,所述第二壳体还包括至少一个密封件,所述密封件位于所述第二壳体的邻近所述安装板的一侧,且与所述第一配合部止抵;其中,所述多个第一卡合部中相邻两个第一卡合部之间设有所述密封件。
  7. 根据权利要求6所述的热泵热水器,其中,所述第一配合部的外周设有至少一个第一限位部,所述密封件与所述第一限位部止抵。
  8. 根据权利要求3至7中任一项所述的热泵热水器,其中,所述第一子壳体和所述第二子壳体中的一个设有第一卡扣,所述安装板还包括第二限位部,所述第一卡扣与所述第二限位部止抵。
  9. 根据权利要求3至8中任一项所述的热泵热水器,其中,所述第一子壳体设置有至 少一个第一连接部,所述第二子壳体设置有至少一个第二连接部,所述第二连接部与所述第一连接部相配合,以密封所述第一子壳体以及所述第二子壳体的连接处。
  10. 根据权利要求9所述的热泵热水器,其中,所述第一连接部包括:
    第一段,所述第一段沿所述第一壳体的轴向延伸;和
    第二段,所述第二段的一端与所述第一段相连,所述第二段的另一端沿朝向所述第一壳体中心的方向延伸;
    所述第二连接部包括:
    第四段,所述第四段沿所述第一壳体的轴向延伸,所述第四段配合在所述第一段内;和
    第五段,所述第五段的一端与所述第四段相连,所述第五段的另一端沿朝向所述第一壳体中心的方向延伸;所述第五段配合在所述第二段内。
  11. 根据权利要求10所述的热泵热水器,其中,所述第二壳体还包括顶盖,所述顶盖盖设在所述第一子壳体和所述第二子壳体的顶部,且所述顶盖的底壁与所述第二段的外侧壁止抵。
  12. 根据权利要求11所述的热泵热水器,其中,所述第一连接部还包括第三段,所述第三段的一端与所述第二段的所述另一端相连,所述第三段的另一端沿远离所述第二段的方向倾斜延伸;
    所述第二连接部还包括第六段,所述第六段的一端与所述第五段的所述另一端相连,所述第六段的另一端沿远离所述第五段的方向倾斜延伸;所述第六段配合在所述第三段内。
  13. 根据权利要求10所述的热泵热水器,其中,所述第一配合部位于所述第二壳体内;且沿所述第二壳体的轴向,所述第一配合部的顶端高于所述第一段的底端。
  14. 根据权利要求11至13中任一项所述的热泵热水器,其中,所述顶盖具有第一进风口和第一出风口,所述蒸发器位于所述第一进风口和所述第一出风口之间;所述风机组件包括:
    蜗壳,所述蜗壳具有:
    第二进风口,与所述蒸发器相对设置;和
    第二出风口,连通所述第二进风口,所述第二出风口与所述第一出风口沿所述第二壳体的轴向相对且连通;
    蜗壳延伸部,所述蜗壳延伸部的一端与所述第二出风口相连,所述蜗壳延伸部的另一端与所述第一出风口相对;从所述第二出风口朝向所述第一出风口的方向,所述蜗壳延伸部朝向所述蒸发器的方向倾斜设置;以及
    风轮,设在所述蜗壳内,从所述第一进风口进入所述第二壳体的空气适于流经所述蒸发器并与所述蒸发器换热后,经所述第二进风口进入所述蜗壳,并通过所述第二出风口从所述第一出风口排出。
  15. 根据权利要求14所述的热泵热水器,其中,所述蜗壳延伸部包括:
    开口段,与所述第一出风口相对;以及
    连接段,分别与所述开口段以及所述第二出风口连接。
  16. 根据权利要求15所述的热泵热水器,其中,所述连接段包括依次相连的第一面至第六面,其中,
    所述第一面分别与所述蒸发器以及所述第二面连接;
    所述第四面与所述蒸发器的面向所述风机组件的一侧表面相对;
    所述第六面分别与所述第五面以及所述蒸发器连接,所述第六面与所述第一面相对。
  17. 根据权利要求16所述的热泵热水器,其中,所述第一面沿所述第二出风口向所述第一出风口的方向朝向所述蜗壳的中心倾斜延伸,所述第一面在第一截面上的正投影与所述开口段的中心轴线在所述第一截面上的正投影的夹角为β,所述β满足:β≤3°;其中,所述第一截面为垂直于所述风轮的中心轴线的平面。
  18. 根据权利要求16或17所述的热泵热水器,其中,所述第四面沿所述第二出风口向所述第一出风口的方向朝向所述蒸发器倾斜延伸,所述第四面在第二截面上的正投影与 所述开口段的中心轴线在所述第二截面上的正投影之间的夹角为α,所述α满足:α≤5°;其中,所述第二截面为过所述风轮的中心轴线的平面。
  19. 根据权利要求14至18中任一项所述的热泵热水器,其中,所述蒸发器包括避让部,以避让所述蜗壳延伸部,所述避让部在水平面上的第一正投影面积与第二正投影面积之比为A,其中,所述第二正投影面积为所述蜗壳延伸部远离所述第二出风口的一端在所述水平面上的正投影面积,所述A满足:1/6≤A≤1/2。
  20. 根据权利要求14至19中任一项所述的热泵热水器,其中,所述蜗壳包括:
    第三壳体,与所述蒸发器的侧板连接;以及
    第四壳体,与所述第三壳体相连,且位于所述第三壳体的远离所述蒸发器的一侧。
  21. 根据权利要求20所述的热泵热水器,其中,沿所述蒸发器的厚度方向,所述第三壳体的宽度与所述第四壳体的宽度之比为B,所述B满足:3/7≤B≤1。
  22. 根据权利要求14至21中任一项所述的热泵热水器,其中,所述第一进风口位于所述蒸发器的所述一侧,且与所述压缩机相对设置,气流适于通过所述第一进风口进入所述热泵装置;所述第一出风口位于所述蒸发器的所述另一侧,且与所述风机组件连通;其中,
    所述第一进风口和所述第一出风口关于所述顶盖为非中心对称布置。
  23. 根据权利要求22所述的热泵热水器,其中,所述第一进风口的中心与所述顶盖的中心的第一连线,和,所述第一出风口的中心与所述顶盖的中心的第二连线之间的夹角为γ,其中,所述γ满足:80°≤γ<180°。
  24. 根据权利要求22或23所述的热泵热水器,还包括电控盒,所述电控盒位于所述蒸发器的所述一侧,所述电控盒与所述压缩机耦接;所述第二进风口开设于所述蒸发器的所述另一侧,与所述电控盒相对设置;在所述蒸发器宽度方向上,所述第二进风口的中心位于所述蒸发器的靠近所述电控盒的一侧;在所述蒸发器的高度方向上,所述第二进风口中心位于所述蒸发器的靠近所述安装板的一侧。
  25. 根据权利要求14至24中任一项所述的热泵热水器,其中,沿朝向所述压缩机的方向,所述电控盒与所述蒸发器之间的距离呈增大趋势,所述电控盒与所述蒸发器之间呈夹角θ,所述θ满足:15°≤θ≤30°。
  26. 根据权利要求14至25中任一项所述的热泵热水器,其中,所述第二壳体形成有第一开口,所述热泵热水器还包括滤网组件,所述滤网组件设于所述第一开口内,且所述滤网组件与所述第一进风口相对。
  27. 根据权利要求26所述的热泵热水器,其中,所述滤网组件包括:
    滤网,与所述第一进风口相对,且被配置为过滤所述空气中的杂质;以及
    支架,所述支架与所述第二壳体连接,所述滤网设于所述支架。
  28. 根据权利要求27所述的热泵热水器,其中,所述支架和所述滤网中的一个设有第二卡合部,所述支架和所述滤网中的另一个设有第二卡扣,所述第二卡扣与所述第二卡合部配合,以使所述支架和所述滤网相连;
    其中,所述第二卡扣的自由端朝向所述第二壳体的中心倾斜延伸。
  29. 根据权利要求27或28所述的热泵热水器,其中,所述支架具有通孔,所述通孔与所述第一进风口相对,所述滤网的至少部分与所述通孔相对,从所述第一进风口进入所述第二壳体的空气适于通过所述滤网的至少部分以及所述通孔。
  30. 根据权利要求27至29中任一项所述的热泵热水器,其中,所述滤网包括第二配合部和第三连接部,所述第二配合部与所述第一开口配合;所述第三连接部的一端与所述第二配合部连接,所述第三连接部的另一端穿设所述第一开口伸入所述第二壳体内。
  31. 根据权利要求30所述的热泵热水器,其中,所述滤网还包括导向筋,所述导向筋设置于所述第三连接部的沿所述第二壳体的周向方向的至少一侧;所述导向筋朝向所述第一进风口的方向延伸;
    所述支架42包括支架本体和安装槽,所述安装槽设置于所述支架本体的沿所述第二壳体的周向方向的至少一侧;所述安装槽朝向所述第一进风口的方向延伸;其中,所述导 向筋与所述安装槽相配合,以将所述滤网安装于所述支架。
  32. 根据权利要求30或31中所述的热泵热水器,其中,所述滤网还包括推拉部,所述推拉部设置于所述第二配合部的靠近所述第二壳体的顶部的一侧;在所述第二壳体的轴向方向上,所述推拉部朝向所述水箱组件的方向凹入。
  33. 根据权利要求32所述的热泵热水器,其中,所述第二壳体具有第二开口,所述第二开口位于所述第一开口的邻近所述第二壳体的顶部的一侧;所述第二开口在所述第二壳体的轴向方向与所述第一开口连通,且与所述推拉部相对设置。
  34. 根据权利要求26至33中任一项所述的热泵热水器,其中,所述滤网组件满足以下之一:
    所述滤网组件与所述第二壳体可拆卸连接;或
    所述滤网组件包括滤网和支架,所述滤网可拆卸地安装于所述支架。
PCT/CN2023/114812 2022-09-30 2023-08-24 热泵热水器 WO2024066838A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202222650002.8U CN218269577U (zh) 2022-09-30 2022-09-30 热泵热水器
CN202222650002.8 2022-09-30
CN202222650045.6U CN218269578U (zh) 2022-09-30 2022-09-30 热泵热水器
CN202222650045.6 2022-09-30
CN202223072744.3U CN218600007U (zh) 2022-11-18 2022-11-18 热泵热水器
CN202223072734.XU CN218645772U (zh) 2022-11-18 2022-11-18 热泵热水器
CN202223072744.3 2022-11-18
CN202223072717.6U CN218600009U (zh) 2022-11-18 2022-11-18 热泵热水器
CN202223072717.6 2022-11-18
CN202223072734.X 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024066838A1 true WO2024066838A1 (zh) 2024-04-04

Family

ID=90476031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114812 WO2024066838A1 (zh) 2022-09-30 2023-08-24 热泵热水器

Country Status (1)

Country Link
WO (1) WO2024066838A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574897A (zh) * 2012-07-25 2014-02-12 珠海格力电器股份有限公司 整体式空气能热水器
CN104930702A (zh) * 2014-03-17 2015-09-23 广东美的暖通设备有限公司 热泵热水机
CN108571820A (zh) * 2017-03-08 2018-09-25 青岛海尔新能源电器有限公司 一种整体式热泵热水器
EP3904783A1 (fr) * 2020-04-30 2021-11-03 Compagnie Industrielle des Chauffe-Eau Installation de chauffage d'eau chaude sanitaire
CN218269578U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218269577U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218600009U (zh) * 2022-11-18 2023-03-10 海信家电集团股份有限公司 热泵热水器
CN218600007U (zh) * 2022-11-18 2023-03-10 海信家电集团股份有限公司 热泵热水器
CN218645772U (zh) * 2022-11-18 2023-03-17 海信家电集团股份有限公司 热泵热水器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574897A (zh) * 2012-07-25 2014-02-12 珠海格力电器股份有限公司 整体式空气能热水器
CN104930702A (zh) * 2014-03-17 2015-09-23 广东美的暖通设备有限公司 热泵热水机
CN108571820A (zh) * 2017-03-08 2018-09-25 青岛海尔新能源电器有限公司 一种整体式热泵热水器
EP3904783A1 (fr) * 2020-04-30 2021-11-03 Compagnie Industrielle des Chauffe-Eau Installation de chauffage d'eau chaude sanitaire
CN218269578U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218269577U (zh) * 2022-09-30 2023-01-10 海信家电集团股份有限公司 热泵热水器
CN218600009U (zh) * 2022-11-18 2023-03-10 海信家电集团股份有限公司 热泵热水器
CN218600007U (zh) * 2022-11-18 2023-03-10 海信家电集团股份有限公司 热泵热水器
CN218645772U (zh) * 2022-11-18 2023-03-17 海信家电集团股份有限公司 热泵热水器

Similar Documents

Publication Publication Date Title
CN218645772U (zh) 热泵热水器
CN105202796A (zh) 空调系统及具有其的空调器
CN115717735A (zh) 室内挂机
WO2024066838A1 (zh) 热泵热水器
WO2024066839A1 (zh) 热泵热水器
CN205090655U (zh) 空调系统及具有其的空调器
WO2024066818A1 (zh) 热泵热水器
WO2024066845A1 (zh) 热泵热水器
CN207378968U (zh) 一种高效半导体除湿机
CN106523434B (zh) 一种离心风扇蜗壳及室内机
US11835060B2 (en) Range hood
CN215637534U (zh) 一种空调器
EP4269903A2 (en) An integrated heat pump water heater
EP4269902A2 (en) A heat pump unit and a split heat pump water heater
CN208296098U (zh) 空调器
CN208296097U (zh) 空调器
KR101590316B1 (ko) 공기조화장치
WO2020192003A1 (zh) 除湿机
CN217558630U (zh) 一种用于离心风机的集流蜗壳机构
CN218672368U (zh) 单面出风的天花机室内机
CN213272927U (zh) 移动式空调器
CN217636201U (zh) 冷凝换热器和燃气热水器
CN205909487U (zh) 具有补水阀密封装置的燃气锅炉
CN109724248B (zh) 热水器
CN220017564U (zh) 一种除湿机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870081

Country of ref document: EP

Kind code of ref document: A1