WO2024062533A1 - 異物検査装置 - Google Patents

異物検査装置 Download PDF

Info

Publication number
WO2024062533A1
WO2024062533A1 PCT/JP2022/035007 JP2022035007W WO2024062533A1 WO 2024062533 A1 WO2024062533 A1 WO 2024062533A1 JP 2022035007 W JP2022035007 W JP 2022035007W WO 2024062533 A1 WO2024062533 A1 WO 2024062533A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
containers
container
vibration
location
Prior art date
Application number
PCT/JP2022/035007
Other languages
English (en)
French (fr)
Inventor
尚司 谷内田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/035007 priority Critical patent/WO2024062533A1/ja
Publication of WO2024062533A1 publication Critical patent/WO2024062533A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Definitions

  • the present invention relates to an inspection system, an inspection method, and a recording medium.
  • An inspection system has been proposed that inspects the presence or absence of foreign substances in liquid sealed in a container.
  • the movement trajectory of floating objects is calculated from a plurality of images obtained by continuously photographing the liquid in a container with a camera after vibrating the container and then keeping it still in a predetermined posture. Based on the characteristics of the movement trajectory, it is determined whether the floating object is a bubble or a foreign object.
  • An object of the present invention is to provide an inspection system that solves the above problems.
  • An inspection system includes: An inspection system for inspecting the presence of foreign substances in a liquid sealed in a container, Vibration applying means for simultaneously vibrating n containers transported to each of n inspection locations from No. 1 to No. n (n ⁇ 2) at different intensities; The presence or absence of foreign matter in the liquid of each of the n containers is individually inspected based on time-series images obtained by imaging the liquid flowing in the n containers, and each of the n containers is individually inspected for the presence of foreign substances.
  • an inspection means for generating inspection results for each inspection location including identification information of the inspection location where the container is placed and an inspection result for the presence or absence of foreign objects; a determining means for determining the presence or absence of foreign matter in the liquid for each of the containers, based on all of the inspection results for each inspection location in the same container; It is configured to include.
  • an inspection method includes: An inspection method for inspecting the presence or absence of foreign substances in a liquid sealed in a container, Simultaneously vibrating n containers transported to each of n inspection locations from No. 1 to No.
  • n (n ⁇ 2) with mutually different intensities; individually inspecting the presence or absence of foreign matter in the liquid of each of the n containers based on time-series images obtained by imaging the liquid flowing in the n containers; For each of the n containers, generate an inspection result by inspection location including identification information of the inspection location where the container is placed and a test result for the presence or absence of foreign matter; Determining the presence or absence of foreign matter in the liquid for each of the containers based on all of the inspection results for each inspection location in the same container; It is configured as follows.
  • a computer-readable recording medium includes: A computer that inspects the presence of foreign objects in the liquid sealed in a container, A process of simultaneously vibrating n containers transported to each of n inspection locations from No. 1 to No. n (n ⁇ 2) with mutually different intensities; A process of individually inspecting the presence or absence of foreign matter in the liquid of each of the n containers based on time-series images obtained by imaging the liquid flowing in the n containers; A process of generating, for each of the n containers, an inspection result by inspection location including identification information of the inspection location where the container is placed and an inspection result for the presence or absence of foreign objects; A process of determining the presence or absence of foreign matter in the liquid for each container based on all of the inspection results for each inspection location in the same container; The computer is configured to record a program for performing the following steps.
  • the present invention can increase the number of test containers per unit time.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system that implements an inspection method according to a first embodiment of the present invention.
  • FIG. 1 is a block diagram showing an example of an information processing device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration example of image information in the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration example of tracking information in the first embodiment of the present invention. It is a figure showing the example of composition of inspection result information by inspection place in a 1st embodiment of the present invention. It is a figure showing an example of composition of a final inspection result in a 1st embodiment of the present invention.
  • FIG. 3 is a flowchart showing an example of the operation of the inspection system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing how a plurality of containers are sequentially inspected one by one at three inspection locations in the first embodiment of the present invention.
  • FIG. 3 is a schematic view of a state in which the necks of a plurality of containers are sandwiched and gripped from both sides by two elongated rods, viewed from above, from the side, and from the front.
  • FIG. 2 is an external perspective view showing an example of a vibration imparting device.
  • FIG. 2 is a block diagram of an inspection system according to a second embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system 100 that implements an inspection method according to a first embodiment of the present invention.
  • an inspection system 100 is a system that inspects the presence or absence of foreign substances in a liquid sealed in a container 300.
  • the inspection system 100 includes a transport device 110, a vibration applying device 120, a lighting device 130, a camera device 140, a display device 150, and an information processing device 200 as main components.
  • the container 300 is a transparent or translucent bottle-shaped container such as a glass bottle.
  • the inside of the container 300 is sealed and filled with a liquid such as a medicine or water.
  • container 300 is a filled vial.
  • a vial is, for example, a bottle whose opening is capped with a rubber stopper in order to preserve a drug solution in a sterile state, and an aluminum cap is placed over the rubber stopper.
  • the liquid sealed in such a container 300 may contain foreign matter. Examples of foreign objects include glass pieces, metal pieces, rubber pieces, hair, fiber pieces, soot, and the like.
  • the inspection system 100 is provided with three inspection locations 400.
  • the transport device 110 is configured to sequentially transport the containers 300 to be inspected into each of the three inspection locations 400 one by one from an entrance, and transport them out from the exit.
  • the conveying device 110 may be, for example, a belt conveyor type conveying device that places and suctions the container 300 and conveys it, a hanging type conveying device that suspends and conveys the container 300, a combination thereof, or the like.
  • the vibration applying device 120 is configured to simultaneously vibrate the three containers 300 transported to each of the three inspection locations 400 with mutually different intensities. Further, the vibration applying device 120 may be configured to stop the vibration at a necessary timing.
  • the three types of vibrations with different intensities will be referred to as weak vibration, medium vibration, and strong vibration in order from weakest vibration.
  • the strong vibrations are preferably strong enough to cause a flow that is strong enough to cause foreign objects, such as pieces of glass, which have the heaviest specific gravity of the foreign object types, to float upward from the bottom surface.
  • medium vibration is not sufficient to cause foreign objects with the heaviest specific gravity, such as pieces of glass, to float upward from the bottom surface as floating objects, but it is not sufficient to cause foreign objects with the highest specific gravity, such as pieces of rubber, to float upward from the bottom surface. It is desirable that the vibration be sufficient to cause enough flow to suspend any foreign matter in the middle.
  • weak vibration is not sufficient to float foreign objects with intermediate specific gravity, such as pieces of rubber, upward from the bottom surface, but it can cause foreign objects with the lightest specific gravity, such as pieces of fiber, It is desirable that the vibration be sufficient to cause sufficient flow to float upward from the bottom surface.
  • the vibration applying device 120 is configured to vibrate the container 300 transported to the inspection location 400-1, which is the most upstream of the three inspection locations 400 in the transport direction of the container 300, with weak vibration, vibrate the container 300 transported to the adjacent inspection location 400-2 with medium vibration, and vibrate the container 300 transported to the most downstream inspection location 400-3 with strong vibration.
  • This allows the container 300 newly transported to the most upstream inspection location 400-1 to be a container with little liquid flow, so that vibration application for the next inspection can begin immediately after transport.
  • the relationship between the inspection location 400 and the vibration strength is not limited to the above.
  • the vibration imparting device 120 may be provided independently for each inspection location 400.
  • the vibration imparting device 120 provided independently for each inspection location 400 may be configured to hold the container 300 in an upright position and rotate the container 300 around a center line passing through the center of the bottom surface of the container 300 and the center of the head of the container 300.
  • the vibration imparting device 120 installed at the inspection location 400-1 which is the most upstream of the three inspection locations 400 in the transport direction of the container 300, may be configured to rotate the container 300 for a certain period of time at a low speed
  • the vibration imparting device 120 installed at the inspection location 400-3 which is the most downstream
  • the vibration imparting device 120 set at the inspection location 400-2 which is in between
  • the vibration imparting device 120 set at the inspection location 400-2 which is in between, may be configured to rotate the container 300 at an intermediate speed between the two.
  • the vibration imparting device 120 repeats as a unit operation the operation of tilting the container 300 from an upright posture in a predetermined direction and returning it to the upright posture over a certain period of time while gripping the container 300.
  • a vibration imparting device 120 may be used.
  • the vibration application device 120 installed at the inspection location 400-1 which is the most upstream in the transport direction of the container 300 among the three inspection locations 400, performs one unit operation. or/and the inclination angle is small.
  • the vibration applying device 120 installed at the inspection location 400-3 located at the most downstream side performs one unit operation within a short time and/or has a large inclination angle.
  • the vibration applying device 120 set at the inspection location 400-2 located in the middle executes one unit operation over a time period in between them, and/or changes the inclination angle to a time period in between them. Let it be an angle.
  • the time and/or inclination angle required for the operation of tilting the container 300 from an upright position in a predetermined direction and returning it to an upright position three containers 300 are sealed.
  • a flow with an intensity corresponding to the reciprocal of the operating time and/or a flow with an intensity depending on the inclination angle is generated in the liquid. Note that even after the repeated operation stops, the liquid continues to flow for a while due to inertia.
  • vibrations of different intensities were applied to the containers 300 transported to each inspection location 400 by the vibration applying device 120 provided independently at each inspection location 400.
  • vibrations of different intensities may be applied to the three containers 300 transported to the three inspection locations 400 by one common vibration applying device 120.
  • a specific example of such a vibration applying device 120 will be described later.
  • the illumination device 130 is configured to irradiate illumination light onto the liquid flowing within the three containers 300 that have been transported to the three inspection locations 400.
  • the lighting device 130 is a surface light source of a size that can simultaneously illuminate all three containers 300 placed at the three inspection locations 400.
  • the lighting device 130 is installed on the opposite side of the container 300 from the side where the camera device 140 is installed. That is, the illumination by the illumination device 130 is transmitted illumination.
  • the camera device 140 is an imaging device that continuously captures, at a predetermined frame rate, images of the liquid flowing in the three containers 300 placed at the three inspection locations 400 from the side opposite the side where the lighting device 130 is installed, as viewed from the containers 300. The placement location and angle of view of the camera device 140 are adjusted so that the three containers 300 at the three inspection locations 400 are simultaneously captured within one imaging range.
  • the camera device 140 may be configured, for example, as a color camera or a black-and-white camera equipped with a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary MOS) image sensor having a pixel capacity of several million pixels.
  • the camera device 140 is connected to the information processing device 200 by wire or wirelessly.
  • the camera device 140 is configured to transmit the time-series images obtained by capturing images to the information processing device 200 together with information indicating the capture time, etc.
  • the lighting device 130 and the camera device 140 may be configured to be strongly vibrated in synchronization with the container 300 which is strongly vibrated. That is, the vibration applying device 120 may be configured to strongly vibrate the lighting device 130 and the camera device 140 in synchronization with the container 300. Even with strong vibration, glass pieces or metal pieces with heavy specific gravity will settle to the bottom of the glass bottle immediately after the vibration stops, so by strongly vibrating the illumination device 130 and camera device 140 at the same time, the shake of the glass bottle can be suppressed even during the vibration, and the liquid can be submerged. foreign matter can be easily observed.
  • a configuration example for strongly vibrating the lighting device 130 and the camera device 140 will be described later.
  • the display device 150 is a display device such as an LCD (Liquid Crystal Display).
  • the display device 150 is connected to the information processing device 200 by wire or wirelessly.
  • the display device 150 is configured to display the test results of the container 300 performed by the information processing device 200 and the like.
  • the information processing device 200 is configured to perform image processing on time-series images taken by the camera device 140 to inspect the presence or absence of foreign objects in the liquid sealed in the container 300. .
  • the information processing device 200 is connected to the transport device 110, the vibration applying device 120, the lighting device 130, the camera device 140, and the display device 150 by wire or wirelessly.
  • FIG. 2 is a block diagram showing an example of the information processing device 200.
  • the information processing device 200 includes a communication I/F section 210, an operation input section 220, a storage section 230, and an arithmetic processing section 240.
  • the communication I/F section 210 is composed of a data communication circuit, and is connected to the transport device 110, the vibration applying device 120, the lighting device 130, the camera device 140, the display device 150, and other external devices (not shown) by wire or wirelessly. is configured to perform data communication.
  • the operation input unit 220 includes an operation input device such as a keyboard and a mouse, and is configured to detect an operator's operation and output it to the arithmetic processing unit 240.
  • the storage unit 230 is composed of one or more types of storage devices such as a hard disk or memory, and is configured to store processing information and programs 231 necessary for various processes in the arithmetic processing unit 240.
  • the program 231 is a program that implements various processing units by being read and executed by the arithmetic processing unit 240.
  • the information is read in advance and stored in the storage unit 230.
  • the main processing information stored in the storage unit 230 includes image information 232, tracking information 233, inspection results by inspection location 234, and final inspection results 235.
  • the image information 232 includes time-series images obtained by continuously capturing images of the liquid in the three containers 300 placed at the three inspection locations 400 using the camera device 140. If floating objects are present in the liquid in the container 300, the image information 232 includes an image of the floating objects.
  • FIG. 3 shows a configuration example of the image information 232.
  • the image information 232 in this example is composed of entries including container ID and inspection location ID sets 2321 to 2323, imaging time 2324, and frame image 2325.
  • a pair of an ID that uniquely identifies the container 300 placed at the inspection location 400-1 and an ID that uniquely identifies the inspection location 400-1 is set.
  • Ru In the container ID and inspection location ID pair 2322 item, a pair of an ID that uniquely identifies the container 300 placed at the inspection location 400-2 and an ID that uniquely identifies the inspection location 400-2 is set. Ru.
  • a pair of an ID that uniquely identifies the container 300 placed at the inspection location 400-3 and an ID that uniquely identifies the inspection location 400-3 is set.
  • Possible container IDs include a serial number assigned to the container 300, a barcode affixed to the container 300, and object fingerprint information collected from the cap of the container 300.
  • the inspection location ID for example, serial numbers assigned to the three inspection locations 400 can be considered.
  • image capturing time 2324 and frame image 2325 an image capturing time and a frame image are set.
  • the imaging time 2324 is set to an accuracy (for example, in milliseconds) that allows the frame image to be distinguished from other adjacent frame images.
  • pairs 2321 to 2323 of container ID and inspection location ID are associated with each frame image 2325, but pairs 2321 to 2323 of container ID and inspection location ID are associated with each group of multiple frame images 2325. may also be associated.
  • the tracking information 233 includes information according to the results of detecting and tracking floating objects present in the liquid in the container 300.
  • FIG. 4 shows an example of the configuration of the tracking information 233.
  • the tracking information 233 in this example is composed of entries of a set 2331 of a container ID and an inspection location ID, and a set of a tracking ID 2332 and a pointer 2333.
  • a set of an ID that uniquely identifies the container 300 and an ID that uniquely identifies the inspection location 400 where the container 300 was inspected is set.
  • An entry consisting of a pair of tracking ID 2332 and pointer 2333 is provided for each floating object to be tracked.
  • the tracking ID 2332 item an ID for identifying the floating object to be tracked from other floating objects in the same container 300 is set.
  • a pointer to movement trajectory information 2334 of the floating object to be tracked is set.
  • the movement trajectory information 2334 is composed of entries consisting of a set of time 23341 and position information 23342.
  • time 23341 and position information 23342 items an imaging time and a coordinate value indicating the position of the floating object to be tracked (for example, the position of the center of gravity of the floating object) at the imaging time are set.
  • the coordinate values may be, for example, coordinate values in a predetermined coordinate system. Further, the predetermined coordinate system may be a camera coordinate system centered on the camera, or a world coordinate system centered on a certain position in space.
  • Entries of movement trajectory information 2334 are arranged in order of time 23341.
  • the time 23341 of the first entry is the tracking start time.
  • the time 23341 of the last entry is the tracking end time.
  • the times 23341 of entries other than the first and last entries are tracking intermediate times.
  • the inspection results by inspection location 234 include information according to the inspection results for each inspection location 400 of the container 300.
  • FIG. 5 shows an example of the configuration of the inspection results 234 for each inspection location.
  • the inspection result 234 by inspection location in this example is composed of entries of a set 2341 of a container ID and an inspection location ID, and an inspection result 2342.
  • a pair of an ID that uniquely identifies the container 300 to be inspected and an ID that uniquely identifies the inspection location 400 where the inspection of the container 300 was performed is set.
  • Ru In the entry of the inspection result 2342, either an OK (inspection pass) or NG (inspection failure) inspection result is set.
  • OK indicates that no foreign matter was detected in the liquid in the container during the inspection at the inspection location.
  • NG indicates that at least one foreign substance was detected in the liquid in the container during the inspection at the inspection location.
  • the final inspection result 235 indicates the final inspection result of the container 300 that has completed inspection at all three inspection locations 400.
  • FIG. 6 shows an example of the configuration of the final inspection result 235.
  • the final inspection result 235 is composed of entries for a container ID 2351 and an inspection result 2352.
  • the container ID entry is set with an ID that uniquely identifies the container 300 that has completed inspection.
  • the inspection result 2352 entry is set with an inspection result of either OK (inspection passed) or NG (inspection failed). OK indicates that no foreign matter was detected in the liquid in the container.
  • NG indicates that a foreign matter was detected in the liquid in the container.
  • the arithmetic processing unit 240 includes a processor such as a CPU (Central Processing Unit) and its peripheral circuits, and reads the program 231 from the storage unit 230 and executes it, thereby processing the hardware and the program 231. It is configured to realize various processing units by cooperating with the above.
  • the main processing units realized by the arithmetic processing unit 240 include a transport control unit 241, a vibration control unit 242, an image acquisition unit 243, a movement trajectory calculation unit 244, an inspection location specific inspection unit 245, a determination unit 246, and a display unit. There is a control section 247.
  • the transport control unit 241 transmits a command to the transport device 110 through the communication I/F unit 210, thereby controlling the transport device 110 to sequentially transport one container 300 to each of the three inspection locations 400. is configured to control.
  • the vibration control unit 242 sends a command to the vibration application device 120 through the communication I/F unit 210 to apply different strengths to the three containers 300 that have been transported to each of the three inspection locations 400.
  • the vibration applying device 120 is configured to be controlled so as to vibrate at the same time.
  • the image acquisition unit 243 is configured to transmit a command to the camera device 140 through the communication I/F unit 210, so that the camera device 140 simultaneously and continuously captures images of the liquid flowing in the three containers 300 for a predetermined time under the illumination of the lighting device 130.
  • the image acquisition unit 243 is also configured to generate image information 232 as shown in FIG. 3 from the time-series images obtained by capturing them, and store them in the storage unit 230.
  • the image acquisition unit 243 may be configured to capture images of the liquid flowing in the container 300 during vibration using the camera device 140.
  • the image acquisition unit 243 may be configured to capture images of the liquid flowing due to inertia in the container 300 whose vibration has been stopped using the camera device 140.
  • the image acquisition unit 243 may be configured to capture images of the liquid flowing in the container 300 during vibration and the liquid flowing due to inertia in the container whose vibration has been stopped using the camera device 140.
  • the movement trajectory calculation unit 244 reads the image information 232 generated by the image acquisition unit 243 from the storage unit 230, generates tracking information 233 as shown in FIG. is configured to be saved in
  • the movement trajectory calculation unit 244 In generating the tracking information 233, the movement trajectory calculation unit 244 first focuses on the pair 2321 of the first container ID and inspection location ID included in the image information 232 shown in FIG. Next, the movement trajectory calculation unit 244 calculates a value corresponding to the set of container ID and inspection location ID from all the frame images 2325 (time series frame images) corresponding to the set 2321 of the container ID and inspection location ID of interest. All partial images of the container 300 are extracted. For example, in a frame image in which inspection locations 400-1, 400-2, and 400-3 are included in one imaging area, the container 300 at inspection location 400-1 is shown on the left side of the image, and the container 300 at inspection location 400-1 is shown in the center of the image.
  • the container 300 located at the inspection location 400-2 is shown, and the container 300 located at the inspection location 400-3 is shown on the right side of the image. Therefore, if the inspection location ID in the set 2321 of the container ID and inspection location ID of interest is inspection location 400-1, the movement trajectory calculation unit 244 calculates the partial image of the container 300 shown on the left side of the frame image 2325. If the inspection location is 400-2, a partial image of the container 300 shown in the center of the frame image 2325 is extracted, and if the inspection location is 400-3, a partial image of the container 300 shown on the right side of the frame image 2325 is extracted. Extract images.
  • the movement trajectory calculation unit 244 calculates all the movement trajectory information 2334 of the floating objects present in the liquid in the container 300 from the time series of the extracted partial images.
  • the movement trajectory calculation unit 244 calculates tracking information 233 including the set of the container ID and inspection location ID of interest and the calculated movement trajectory information of the floating object, and stores it in the storage unit 230.
  • the movement trajectory calculation unit 244 shifts its attention to the next container ID and inspection location ID pair 2322 included in the image information 232 shown in FIG. Tracking information 233 including a set of ⁇ and inspection location ID'' and information on the calculated moving trajectory of the floating object is calculated and stored in the storage unit 230 .
  • the movement trajectory calculation unit 244 calculates tracking information 233 including the last container ID and inspection location ID pair 2322 included in the image information 232 shown in FIG. 3 and the calculated movement trajectory information of the floating object. and stores it in the storage unit 230.
  • the inspection location-based inspection unit 245 reads the three pieces of tracking information 233 calculated by the movement trajectory calculation unit 244 from the storage unit 230, generates an inspection location-specific inspection result 234 for each tracking information 233, and stores it in the storage unit 230. do. In generating the inspection result 234 by inspection location, the inspection location-specific inspection unit 245 first focuses on one of the three pieces of tracking information 233 . Next, for each floating object tracking ID 2332 included in the tracking information 233 of interest, the inspection location-specific inspection unit 245 detects the floating object represented by the movement trajectory information 2334 specified by the pointer 2333 corresponding to the tracking ID 2332. Based on the characteristics of the movement trajectory, it is determined whether the floating object is a bubble or a foreign object.
  • a floating object that traces a trajectory moving in the anti-gravity direction in the liquid can be determined to be a bubble, and a floating object that traces a trajectory that moves in the liquid in the gravitational direction can be determined to be a foreign object.
  • the inspection unit by inspection location 245 uses the set 2341 of container ID and inspection location ID set in the set 2331 of container ID and inspection location ID of the tracking information 233 of interest, and performs an inspection according to the result of the above determination.
  • An inspection result 234 by inspection location having a result (OK/NG) 2342 is generated and stored in the storage unit 230.
  • the inspection unit 245 by inspection location shifts its attention to the next piece of tracking information 233, performs the same process as above, and newly focuses on the set 2331 of the container ID and inspection location ID of the tracking information 233.
  • a test result 234 by test location corresponding to the test result 234 is generated and stored in the storage unit 230.
  • the inspection unit 245 for each inspection location generates the inspection result 234 for each inspection location corresponding to the set 2331 of container ID and inspection location ID of the last tracking information 233, and stores it in the storage unit 230.
  • the determination unit 246 reads out from the storage unit 230 all the inspection results 234 by inspection location generated by the inspection unit 245 for each inspection location for the containers 300 that have been inspected at all three inspection locations 400, and stores all of them.
  • the final inspection result 235 shown in FIG. For example, if the test results 2342 of all the test results 234 by test location are OK, the determination unit 246 generates the final test results 235 including the test results 2352 that are OK. On the other hand, if the test result 2342 of at least one test result 234 by test location is NG, the determination unit 246 generates the final test result 235 including the test result 2352 of NG.
  • the display control unit 247 is configured to read the final inspection result 235 generated by the judgment unit 246 from the storage unit 230, display it on the display device 150, and/or transmit it to an external device (not shown) via the communication I/F unit 210.
  • FIG. 7 is a flowchart showing an example of the operation of the inspection system 100.
  • the inspection system 100 sequentially transports one container 300 to each of the three inspection locations 400 by controlling the transport device 10 by the transport control unit 241 (step S1).
  • the inspection system 100 causes the three containers 300 transported to each of the three inspection locations 400 to be simultaneously vibrated with mutually different intensities by controlling the vibration applying device 120 by the vibration control unit 242 (Ste S2).
  • the inspection system 100 simultaneously and continuously photographs the liquid flowing in the three containers 300 for a predetermined period of time by controlling the illumination device 130 and the camera device 140 by the image acquisition unit 243.
  • Image information 232 as shown in FIG. 3 is obtained (step S3).
  • the inspection system 100 uses the movement trajectory calculation unit 244 to check the container ID and the tracking information 233 including the movement trajectory information of the floating objects floating in the liquid as shown in FIG. 4 based on the image information 232. It is generated for each location ID set (step S4).
  • the inspection system 100 uses the inspection location-specific inspection unit 245 to determine the movement trajectory of the floating substances floating in the liquid of the container for each inspection location based on the tracking information 233 corresponding to the pair of container ID and inspection location ID. Based on the characteristics, it is determined whether the floating object is a foreign object or a bubble, and an inspection result 234 for each inspection location is generated (step S5).
  • the inspection system 100 determines, by the determination unit 246, all of the inspection results 234 by inspection location generated by the inspection by inspection unit 245 for the containers 300 that have been inspected at all three inspection locations 400. A final test result 235 shown in FIG. 6 is generated based on the test results.
  • the inspection system 100 causes the display control unit 247 to display the final inspection result 235 on the display device 150 and/or transmits it to an external device (not shown) via the communication I/F unit 210 (step S7). Then, the inspection system 100 returns to the process of step S1 and repeats the same process as described above.
  • FIG. 8 is a schematic diagram showing how multiple containers 300 are inspected one by one in sequence at three inspection locations 400.
  • inspection location 400-1 inspects for the presence of light specific gravity foreign matter
  • inspection location 400-2 inspects for the presence of medium specific gravity foreign matter
  • inspection location 400-3 inspects for the presence of heavy specific gravity foreign matter. Only if the inspection results at all three inspection locations 400 are OK (no foreign matter), is a final inspection result of OK (no foreign matter) generated and output; otherwise, a final inspection result of NG (no foreign matter present) is generated and output.
  • OK no foreign matter
  • NG no foreign matter present
  • the inspection time required from the start of the inspection of one container 300 to the generation of the final inspection result is the sum of the inspection time at each inspection location 400 and the generation time of the final inspection result. Generation of the final test result is performed in a very short time. Therefore, if the inspection time at each inspection location 400 is T hours, the inspection time for one container 300 is approximately 3T. However, since inspections of different containers 300 at different inspection locations 400 are carried out in parallel, in a steady state, the final inspection result of one container 300 is output every T time, which means that The number of test containers can be increased.
  • the inspection time T per one inspection location 400 can be sufficiently shorter than the inspection time (denoted as T') when all foreign substances from light to heavy specific gravity are inspected by one flow. The reason is as follows.
  • the inspection at the inspection location 400-1 is not sufficient to float foreign objects with intermediate specific gravity, such as pieces of rubber, upward from the bottom of the container 300; This is done by applying enough vibration to cause enough flow to float the foreign object, which has the lightest specific gravity among the types, upward from the bottom surface. Therefore, the flow of the liquid in the container 300 is stabilized to some extent from the beginning, and as a result, by observing T for a short period of time, it is possible to detect foreign objects with a light specific gravity such as fiber pieces, distinguishing them from air bubbles.
  • the inspection at the inspection location 400-3 is performed by applying vibration to the container 300 to the extent that it causes enough flow to cause foreign objects with heavy specific gravity, such as glass pieces, to float upward from the bottom surface.
  • foreign objects with heavy specific gravity such as pieces of glass
  • the inspection at the inspection location 400-3 is performed by applying vibration to the container 300 to the extent that it causes enough flow to cause foreign objects with heavy specific gravity, such as glass pieces, to float upward from the bottom surface.
  • foreign objects with heavy specific gravity such as pieces of glass, tend to fall off in a short period of time without being affected by the flow. Therefore, by observing T for a short time, foreign objects with heavy specific gravity such as glass pieces can be detected.
  • the inspection at the inspection location 400-2 is insufficient to float foreign objects with a heavy specific gravity such as pieces of glass upward from the bottom of the container 300, foreign objects such as pieces of rubber etc. This is done by applying vibration to a level that causes sufficient flow to cause foreign particles with intermediate specific gravity to float upward from the bottom surface. Therefore, the flow of liquid within container 300 is less intense than at inspection location 400-3. Foreign objects with intermediate specific gravity, such as pieces of rubber, tend to fall even when there is a certain amount of liquid flow, so they can be detected separately from air bubbles by observing T for a short period of time.
  • FIG. 9 is a schematic view of the device being held in a state seen from above, from the side, and from the front.
  • the two elongated rods 501 and 502 are made of a material that has some degree of hardness and torsional strength (appropriate hardness and torsional rigidity). Examples of such materials include, but are not limited to, plastic, acrylic resin, and spring steel.
  • the two elongated rods 501 and 502 may be made of a material that has some degree of hardness and strength against twisting, and furthermore, can be appropriately stretched in the longitudinal direction.
  • An example of such a material is a contact spring, but the material is not limited thereto.
  • the container 300 is a vial with a height of 30 mm and a width of 16 mm, using long and thin rods 501 and 502 with a total length of about 96 mm, it is possible to grip these six containers by sandwiching them from both sides.
  • the location of the container 300 closest to the ends 501b and 502b is the inspection location 400-3, and the location of the container 300 next to it is can be set as an inspection location 400-2, and the position of the container 300 next thereto can be defined as an inspection location 400-1.
  • the remaining three containers 300 near the fixed ends 501a, 502a have little or very weak vibration, so those locations are generally not suitable as inspection locations.
  • the positions of one end portions 501a and 502a of the two elongated rods 501 and 502 may be fixed at all times, or may be fixed only when vibration is applied.
  • the positions of the other ends 501b and 502b of the two elongated rods 501 and 502 may be fixed at predetermined positions when no vibration is applied. Further, the end portions 501b and 502b may be configured to rotate around the fixed position when vibration is applied.
  • the two elongated rods 501 and 502 may also serve as a transport path for transporting a plurality of containers 300 in a line in a hanging manner.
  • the containers 300 are sequentially loaded one by one between the two long and thin rods 501 and 502 from the entrances at the ends 501a and 502a of the two long and thin rods.
  • the six containers 300 already held by the two elongated rods 501 and 502 are pushed by the newly inserted container 300 and are moved by one container.
  • the one container 300 on the most downstream side is released from the grip by the two elongated rods 501 and 502 and is carried out from the outlet to the downstream side.
  • this transported container 300 is transported to a storage location where non-defective containers are stored if it is OK, and transported to a storage location where defective containers are stored if it is NG. .
  • the specific example of the vibration applying device 120 using the two elongated rods 501 and 502 as described above will be described.
  • the specific example of the vibration imparting device 120 using the two elongated rods 501 and 502 is not limited to the following.
  • FIG 10 is an external perspective view showing an example of a vibration imparting device 120 using two elongated rods 501, 502.
  • this vibration imparting device 120 includes a lower support section 510, an upper support section 520, a rotating section 530, and the two elongated rods 501, 502 described above.
  • the lower support portion 510 has a flat pedestal 511 and columns 512 to 514 erected on the pedestal 511.
  • the support column 512 is a member that firmly connects the upper support section 520 to the pedestal 511.
  • the struts 513 and 514 are members for fixing the positions of the ends 501a and 502a of the two elongated rods 501 and 502. In this example, the ends 501a, 502a of the two elongated rods 501, 502 are fixed to the upper portions of the supports 513, 514, so that the neck of the container 300 can be easily inserted into the ends.
  • the struts 513 and 514 may be members with high bending rigidity, or may be members with appropriate bending rigidity.
  • the upper support section 520 is a member that rotatably supports the rotating section 530, and includes a rotating shaft 521 that pivotally supports the rotating section 530 and a drive section 522 that rotates the rotating shaft 521.
  • the rotating part 530 includes an L-shaped member 531, a substantially rectangular parallelepiped-shaped upper protrusion 532 fixed to the upper part of the L-shaped member 531 on the inner side of the vertical plane, and an upper protrusion 532 on the inner side of the horizontal plane of the L-shaped member 531. It has a substantially rectangular parallelepiped-shaped lower protrusion 533 fixed at a position facing the .
  • the distance between the lower surface of the upper projection 532 and the upper surface of the lower projection 533 is set to be slightly longer than the length from the bottom surface of the container 300 to the top surface of the cap.
  • the illumination device 130 is attached to the inside surface of the vertical plane of the L-shaped member 531.
  • a camera device 140 is attached to the horizontal inner surface of the L-shaped member 531.
  • Ends 501b and 502b of the two elongated rods 501 and 502 are fixed to the lower ends of columns 534 and 535 that are erected on the lower surface of the upper projection 532 so as to extend downward.
  • the pillars 534 and 535 may be members with high bending rigidity, or may be members with appropriate bending rigidity.
  • the attachment position and size of the upper protrusion 532 and the length and attachment angle of the columns 534 and 535 are adjusted so that the lower surface of the upper protrusion 532 is located with a slight gap between the two containers 300
  • the attachment position and size of the lower protrusion 533 are adjusted so that the upper surface of the lower protrusion 533 is located directly below the bottom of the chisel with a slight gap therebetween.
  • the rotating shaft 521 is fixed to the rotating part 530 so as to pass through the upper protrusion 532.
  • the L-shaped member 531, the upper protrusion 532, the lower protrusion 533, the illumination device 130, and the camera device 15, which are fixed to the L-shaped member 531 integrally rotate in the rotation unit 530. Due to the rotation at this time, the positions of the ends 501b, 502b of the two elongated rods 501, 502 move along the circular arc. Therefore, as described with reference to FIG. 9, the positions of the ends 501b and 502b are forced along the circular arc while the necks of the six containers 300 are gripped from both sides with the two elongated rods 501 and 502.
  • the container 300 closest to the ends 501b and 502b vibrates with strong vibration
  • the container 300 next to it vibrates with medium vibration
  • the container 300 next to it vibrates with weak vibration.
  • only one container 300 closest to the ends 501b and 502b rotates while being supported from above and below by the upper protrusion 532 and the lower protrusion 533, and the remaining 5 containers
  • the container 300 rotates while being supported only by the two elongated rods 501 and 502.
  • the illumination device 130 is a surface light source of a size that can simultaneously illuminate all three containers 300 that are held by two elongated rods 501 and 502 and vibrate strongly, mediumly, and weakly, and when viewed from these containers 300. It is installed on the opposite side to the side where camera device 140 is installed. Furthermore, the camera device 140 is arranged at a location and at a viewing angle such that the three containers 300, which are gripped by two elongated rods 501 and 502 and vibrate strongly, moderately, and weakly, can be simultaneously captured within one photographing range. It has been adjusted. Since the camera device 140 and the lighting device 130 are fixed to the rotating section 530, they vibrate in synchronization with the vibration of the rotating section 530.
  • the rotating part 530 vibrates strongly. Therefore, the camera device 140 and the lighting device 130 attached to the rotating part 530 strongly vibrate in synchronization with this.
  • a plurality of containers 300 can be vibrated with mutually different intensities by one device. Further, since the camera device 140 and the lighting device 130 can be strongly vibrated in synchronization with the strongly vibrating container 300, it is possible to appropriately illuminate and photograph the liquid flowing inside the strongly vibrating container 300. . The reason for this is that the distances between the strongly vibrating container 300, the lighting device 130, and the camera device 140 are approximately constant. Note that when the camera device 140 and the lighting device 130 vibrate strongly, the distance between them and the container 300, which vibrates moderately or weakly, cannot be kept almost constant, but since the vibrations are not strong in the first place, there is little effect on illumination and photography. Furthermore, in the case of medium or weak vibrations, the vibration of the glass bottle stops quickly and the sedimentation speed of foreign particles with light specific gravity is slow, so it is possible to detect foreign substances after the glass bottle is stabilized and the liquid content is stabilized.
  • FIG. 11 is a block diagram of an inspection system 600 according to the second embodiment of the present invention.
  • an inspection system 600 is an inspection system that inspects the presence or absence of foreign matter in a liquid sealed in a container, and includes a vibration application means 601, an inspection means 602, and a determination means 603.
  • the vibration applying means 601 is configured to simultaneously vibrate n containers transported to each of n inspection locations from No. 1 to No. n (n ⁇ 2) with mutually different intensities. .
  • the vibration applying means 601 can be configured in the same manner as the vibration applying device 120 and the vibration control unit 242 in FIG. 1, for example, but is not limited thereto.
  • the inspection means 602 individually inspects the presence or absence of foreign substances in the liquid of each of the n containers based on time-series images obtained by imaging the liquid flowing in the n containers. For each, it is configured to generate inspection results for each inspection location, including identification information of the inspection location where the container is placed and inspection results for the presence or absence of foreign objects.
  • the inspection means 602 can be configured in the same manner as, for example, the image acquisition section 243, movement trajectory calculation section 244, and inspection location-based inspection section 245 in FIG. 2, but is not limited thereto.
  • the determining means 603 is configured to determine, for each container, the presence or absence of foreign matter in the liquid based on all inspection results for each inspection location in the same container.
  • the determining unit 603 can be configured in the same manner as the determining unit 246 in FIG. 2, for example, but is not limited thereto.
  • the inspection system 600 configured as above operates as follows. That is, first, the vibration applying means 601 simultaneously vibrates the n containers transported to each of the n inspection locations from the first to the nth (n ⁇ 2) at different intensities. Next, the inspection means 602 individually inspects the presence or absence of foreign matter in the liquid of each of the n containers based on the time-series images obtained by imaging the liquid flowing in the n containers. For each container, an inspection result for each inspection location is generated, including identification information of the inspection location where the container is placed and an inspection result for the presence or absence of foreign substances. Next, the determining means 603 determines, for each container, the presence or absence of foreign matter in the liquid based on all inspection results for each inspection location in the same container.
  • the inspection time required from the start of inspection of one container to the generation of the final inspection result is the same as the inspection time at each inspection location and the generation time of the final inspection result. It is the sum of Generation of the final test result is performed in a very short time. Therefore, if the inspection time at each inspection location is T time, the inspection time for one container 300 is nT. However, inspections of n containers at different inspection locations are performed in parallel. Therefore, in a steady state, the final inspection result of one container is output every time T, and the number of containers inspected per unit time can be increased.
  • the present invention has been described above with reference to the above-mentioned embodiments, the present invention is not limited to the above-described embodiments.
  • the configuration and details of the present invention may be modified in various ways within the scope of the present invention by those skilled in the art.
  • the information processing device instead of the above-mentioned CPU, uses GPU (Graphic Processing Unit), DSP (Digital Signal Processor), MPU (Micro Processing Unit), FPU (Float ing number Processing Unit), PPU((Physics Processing Unit) , a TPU (Tensor Processing Unit), a quantum processor, a microcontroller, or a combination thereof.
  • the present invention can be used in the general field of inspecting the presence or absence of foreign substances in a liquid sealed in a container such as a vial.
  • Inspection system 110 Transport device 120 Vibration device 130 Lighting device 140 Camera device 150 Display device 300 Container 400 Inspection location

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

容器に封入された液体中の異物の有無を検査する検査システムは、振動付与手段と検査手段と判定手段とを備える。振動付与手段は、第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する強度で同時に振動させる。検査手段は、n個の容器内で流動する液体を同時に連続して撮像して得られた時系列の画像に基づいてn個の容器それぞれの液体中の異物の有無を個別に検査し、n個の容器それぞれについて、容器が置かれた検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成する。判定手段は、容器毎に、同一の容器における全ての検査場所別検査結果に基づいて液体中の異物の有無を判定する。

Description

異物検査装置
 本発明は、検査システム、検査方法、および、記録媒体に関する。
 容器に封入された液体中の異物の有無を検査する検査システムが提案されている。
 例えば、特許文献1では、容器を振動させた後に所定の姿勢で静止させた容器中の液体をカメラで連続して撮影して得られた複数の画像から浮遊物の移動軌跡を算出し、その移動軌跡の特徴に基づいて浮遊物が気泡および異物の何れであるかを判定する。
WO2021/214994
 液体中に混入する可能性のある異物の種類は多く、液体に対するその比重の差の程度は様々である。そのため、比重の軽い異物だけでなく比重の重い異物を浮遊物として液中に浮遊させるためには、容器を強く振動させて液体を激しく流動させる必要がある。しかしながら、液体を激しく流動させると、それがある程度落ち着くまでに長い時間を要する。比重の軽い異物の移動軌跡は、比重の重い異物と異なり流動の影響を受け易く、流動が有る程度落ち着くまでは気泡と区別するのは困難である。そのため、容器を静止させてから液体の流動がある程度落ち着くまでの長い時間にわたって浮遊物の移動軌跡を観測しなければならず、単位時間当たりの検査容器数を増大するのは困難であった。
 本発明の目的は、上記課題を解決する検査システムを提供することにある。
 本発明の一形態に係る検査システムは、
 容器に封入された液体中の異物の有無を検査する検査システムであって、
 第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する強度で同時に振動させる振動付与手段と、
 前記n個の容器内で流動する液体を撮像して得られた時系列の画像に基づいて前記n個の容器それぞれの液体中の異物の有無を個別に検査し、前記n個の容器それぞれについて、前記容器が置かれた前記検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成する検査手段と、
 前記容器毎に、同一の前記容器における全ての前記検査場所別検査結果に基づいて液体中の異物の有無を判定する判定手段と、
を備えるように構成されている。
 また、本発明の他の形態に係る検査方法は、
 容器に封入された液体中の異物の有無を検査する検査方法であって、
 第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する強度で同時に振動させ、
 前記n個の容器内で流動する液体を撮像して得られた時系列の画像に基づいて前記n個の容器それぞれの液体中の異物の有無を個別に検査し、
 前記n個の容器それぞれについて、前記容器が置かれた前記検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成し、
 前記容器毎に、同一の前記容器における全ての前記検査場所別検査結果に基づいて液体中の異物の有無を判定する、
ように構成されている。
 また、本発明の他の形態に係るコンピュータ読み取り可能な記録媒体は、
 容器に封入された液体中の異物の有無を検査するコンピュータに、
 第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する強度で同時に振動させる処理と、
 前記n個の容器内で流動する液体を撮像して得られた時系列の画像に基づいて前記n個の容器それぞれの液体中の異物の有無を個別に検査する処理と、
 前記n個の容器それぞれについて、前記容器が置かれた前記検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成する処理と、
 前記容器毎に、同一の前記容器における全ての前記検査場所別検査結果に基づいて液体中の異物の有無を判定する処理と、
を行わせるためのプログラムを記録するように構成されている。
 本発明は上述したような構成を有することにより、単位時間当たりの検査容器数を増大することができる。
本発明の第1の実施形態に係る検査方法を実施する検査システムの概略構成を示す模式図である。 本発明の第1の実施形態における情報処理装置の一例を示すブロック図である。 本発明の第1の実施形態における画像情報の構成例を示す図である。 本発明の第1の実施形態における追跡情報の構成例を示す図である。 本発明の第1の実施形態における検査場所別検査結果情報の構成例を示す図である。 本発明の第1の実施形態における最終検査結果の構成例を示す図である。 本発明の第1の実施形態に係る検査システムの動作の一例を示すフローチャートである。 本発明の第1の実施形態において複数の容器が3か所の検査場所で1容器ずつ順番に検査されていく様子を示す模式図である。 2本の細長い棒によって複数の容器の首部を両側から挟んで把持した状態を上、横、および、前から見た模式図である。 振動付与装置の一例を示す外観斜視図である。 本発明の第2の実施形態に係る検査システムのブロック図である。
 次に、本発明の実施の形態について、図面を参照して詳細に説明する。なお、以降の説明において、符号「XXX」を付された要素と共通の機能を持つ要素が複数存在する場合には、当該符号「XXX」に枝番号を付けて区別することとする。
[第1の実施の形態]
 図1は、本発明の第1の実施形態に係る検査方法を実施する検査システム100の概略構成を示す模式図である。図1を参照すると、検査システム100は、容器300に封入された液体中の異物の有無を検査するシステムである。検査システム100は、主な構成要素として、搬送装置110、振動付与装置120、照明装置130、カメラ装置140、表示装置150、および、情報処理装置200を備えている。
 容器300は、ガラス瓶などの透明または半透明なボトル形状の容器である。容器300の内部には、薬剤や水などの液体が封入・充填されている。一例として、容器300は充填済みバイアル瓶である。バイアル瓶とは、例えば、薬液を無菌状態で保存するために開口部にゴム栓で打栓し、さらにゴム栓を覆うようにアルミニウム製のキャップを被せた瓶である。このような容器300に封入された液体中には、異物が混入している可能性がある。異物としては、例えば、ガラス片、金属片、ゴム片、髪の毛、繊維片、煤、などが想定される。これらの異物の中で、ガラス片または金属片は最も比重が重く、髪の毛、繊維片、煤は最も比重が軽く、ゴム片はそれらの中間の比重を有する。しかし、何れの異物の比重も容器300に封入された液体の比重よりは重いため、液体が安定した状態では容器300の底面付近に沈んでおり、浮遊してはいない。そのため、検査システム100は、容器300を振動させることによって容器内の液体を流動させ、異物を浮遊物として観測できるようにする。
 検査システム100には、3か所の検査場所400が設けられている。搬送装置110は、この3か所の検査場所400のそれぞれに検査対象とする容器300を搬入口から1個ずつ順次搬入し、搬出口から外部へ搬出するように構成されている。搬送装置110は、例えば、容器300を載置・吸着等して搬送するベルトコンベア式搬送装置、容器300を吊り下げて搬送する吊り下げ式搬送装置、それらの組合せなどであってよい。
 振動付与装置120は、3か所の検査場所400のそれぞれに搬送された3個の容器300を互いに相違する強度で同時に振動させるように構成されている。また、振動付与装置120は、必要なタイミングで振動を停止させるように構成されていてよい。以下、互いに相違する3種類の強度の振動を、振動の弱いものから順に、弱振動、中振動、強振動と記す。強振動は、異物の種類の中で比重の最も重いガラス片などの異物を底面から上方に浮遊させるのに十分な激しい流動を引き起こす強い振動であることが望ましい。また、中振動は、ガラス片などのような比重の最も重い異物を浮遊物として底面から上方に浮遊させるのには不十分であるが、ゴム片などのような異物の種類の中で比重が中間にあるような異物を浮遊させるのに十分な流動を引き起こす程度の振動であることが望ましい。また、弱振動は、ゴム片などのような比重が中間の異物を底面から上方に浮遊させるのには不十分であるが、繊維片などのような異物の種類の中で比重が最も軽い異物を底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動であることが望ましい。
 ここで、振動付与装置120は、3か所の検査場所400のうち容器300の搬送方向の最も上流にある検査場所400-1に搬送された容器300は弱振動で振動させ、その隣にある検査場所400-2に搬送された容器300は中振動で振動させ、最も下流にある検査場所400-3に搬送された容器300は強振動で振動させるように構成されている。これにより、最も上流側の検査場所400-1に新たに搬入する容器300は液体の流動が少ない状態の容器とすることができるため、搬入後、直ちに次の検査のための振動付与を開始することができる。但し、検査場所400と振動強度の関係は上記に限定されない。
 振動付与装置120は、例えば、それぞれの検査場所400毎に独立して設けられていてよい。例えば、それぞれの検査場所400に独立に設けられた振動付与装置120は、容器300を正立した姿勢で把持し、容器300の底面中心から頭部中心を貫く中心線を軸に容器300を回転させるように構成されていてよい。このような振動付与装置120を用いる場合、3か所の検査場所400のうち容器300の搬送方向の最も上流にある検査場所400-1に設置された振動付与装置120は低速度で、最も下流にある検査場所400-3に設置された振動付与装置120は高速度で、そして、中間にある検査場所400-2に設定された振動付与装置120は両者の中間の速度で、それぞれ一定時間だけ容器300を回転させるように構成されていてよい。このように互いに異なる回転速度で同じ時間だけ3個の容器300を同時に回転させることにより、3個の容器300に封入された液体に回転速度に応じた互いに強度の相違する流動が発生することになる。なお、回転が停止した後も慣性によって液体の流動はしばらく継続する。
 あるいは、振動付与装置120は、容器300を把持した状態で、容器300を正立した姿勢から所定方向に傾斜させた後に再び正立した姿勢に戻す動作を単位動作として一定時間にわたって何度も繰り返す振動付与装置120を使用してよい。このような振動付与装置120を用いる場合、3か所の検査場所400のうち容器300の搬送方向の最も上流にある検査場所400-1に設置された振動付与装置120は、1回の単位動作を長い時間をかけて実行するか、または/および、傾斜角度を小さな角度とする。また、最も下流にある検査場所400-3に設置された振動付与装置120は、1回の単位動作を短い時間内で実行するか、または/および、傾斜角度を大きな角度とする。そして、その中間にある検査場所400-2に設定された振動付与装置120は、1回の単位動作をそれらの中間の時間をかけて実行するか、または/および、傾斜角度をそれらの中間の角度とする。このように容器300を正立した姿勢から所定方向に傾斜させた後に再び正立した姿勢に戻す動作に要する時間または/および傾斜角度を互いに相違させることにより、3個の容器300に封入された液体に動作時間の逆数に応じた強度の流動、または/および、傾斜角度に応じた強度の流動が発生することになる。なお、繰り返し動作が停止した後も慣性によって液体の流動はしばらく継続する。
 上記では、それぞれの検査場所400に独立に設けた振動付与装置120によって、各検査場所400に搬送された容器300に互いに異なる強度の振動を付与した。しかし、共通の1つの振動付与装置120によって3か所の検査場所400に搬送された3個の容器300に互いに異なる強度の振動を付与するようにしてもよい。このような振動付与装置120の具体例については後述する。
 照明装置130は、3か所の検査場所400に搬送された3個の容器300内で流動する液体に対して照明光を照射するように構成されている。照明装置130は、3か所の検査場所400に置かれた3個の容器300の全てを同時に照明できるサイズの面光源である。照明装置130は、容器300からみてカメラ装置140が設置される側とは反対側に設置されている。すなわち、照明装置130による照明は、透過照明である。
 カメラ装置140は、容器300からみて照明装置130が設置される側とは反対側から3か所の検査場所に置かれた3個の容器300内で流動する液体を、所定のフレームレートで連続して撮影する撮影装置である。カメラ装置140は、3か所の検査場所400にある3個の容器300が同時に1つの撮影範囲内に収まるように、配置場所と画角が調整されている。カメラ装置140は、例えば、数百万画素程度の画素容量を有するCCD(Charge-Coupled Device)イメージセンサやCMOS(Complementary MOS)イメージセンサを備えたカラーカメラや白黒カメラで構成されていてよい。カメラ装置140は、有線または無線により、情報処理装置200と接続されている。カメラ装置140は、撮影して得られた時系列の画像を、撮影時刻を示す情報などと共に、情報処理装置200に対して送信するように構成されている。
 ここで、照明装置130とカメラ装置140は、強振動される容器300と同期して、強振動されるように構成されていてよい。即ち、振動付与装置120は、照明装置130およびカメラ装置140を、容器300と同期して強振動するように構成されていてよい。強振動させても比重の重いガラス片または金属片は振動停止直後にガラス瓶底面に沈降するため、照明装置130およびカメラ装置140を同時に強振動させることで振動中もガラス瓶のブレを抑制し液中の異物を容易に観測可能となる。照明装置130およびカメラ装置140を強振動させる構成例については、後述する。
 表示装置150は、LCD(Liquid Crystal Display:液晶ディスプレイ)などの表示装置である。表示装置150は、情報処理装置200と有線または無線により接続されている。表示装置150は、情報処理装置200で行われた容器300の検査結果などを表示するように構成されている。
 情報処理装置200は、カメラ装置140によって撮影して得られた時系列の画像に対して画像処理を行って、容器300に封入された液体中の異物の有無を検査するように構成されている。情報処理装置200は、搬送装置110、振動付与装置120、照明装置130、カメラ装置140、および、表示装置150と有線または無線により接続されている。
 図2は、情報処理装置200の一例を示すブロック図である。図2を参照すると、情報処理装置200は、通信I/F部210と操作入力部220と記憶部230と演算処理部240とを備えている。
 通信I/F部210は、データ通信回路から構成され、有線または無線により搬送装置110、振動付与装置120、照明装置130、カメラ装置140、表示装置150、および図示しない他の外部装置との間でデータ通信を行うように構成されている。操作入力部220は、キーボードやマウスなどの操作入力装置から構成され、オペレータの操作を検出して演算処理部240に出力するように構成されている。
 記憶部230は、ハードディスクやメモリなどの1種類あるいは多種類の1以上の記憶装置から構成され、演算処理部240における各種処理に必要な処理情報およびプログラム231を記憶するように構成されている。プログラム231は、演算処理部240に読み込まれて実行されることにより各種処理部を実現するプログラムであり、通信I/F部210などのデータ入出力機能を介して図示しない外部装置や記録媒体から予め読み込まれて記憶部230に保存される。記憶部230に記憶される主な処理情報には、画像情報232、追跡情報233、検査場所別検査結果234、および、最終検査結果235がある。
 画像情報232は、3か所の検査場所400に置かれた3個の容器300内の液体をカメラ装置140によって連続して撮像して得られた時系列の画像を含んでいる。容器300内の液体中に浮遊物が存在する場合、画像情報232には、浮遊物の像が写っている。
 図3は、画像情報232の構成例を示す。この例の画像情報232は、容器IDと検査場所IDの組2321~2323と撮像時刻2324とフレーム画像2325とからなるエントリから構成されている。容器IDと検査場所IDの組2321の項目には、検査場所400-1に置かれた容器300を一意に識別するIDと当該検査場所400-1を一意に識別するIDとの組が設定される。容器IDと検査場所IDの組2322の項目には、検査場所400-2に置かれた容器300を一意に識別するIDと当該検査場所400-2を一意に識別するIDとの組が設定される。容器IDと検査場所IDの組2323の項目には、検査場所400-3に置かれた容器300を一意に識別するIDと当該検査場所400-3を一意に識別するIDとの組が設定される。容器IDとしては、容器300に振られた通し番号、容器300に貼付されたバーコード、容器300のキャップなどから採取された物体指紋情報などが考えられる。検査場所IDとしては、例えば、3つの検査場所400に割り振られた通し番号などが考えられる。撮像時刻2324およびフレーム画像2325の各項目には、撮像時刻およびフレーム画像が設定される。撮像時刻2324は、隣接する他のフレーム画像と区別して識別できるような精度(例えばミリ秒単位)に設定されている。図3の例では、フレーム画像2325毎に容器IDと検査場所IDとの組2321~2323を関連付けているが、複数のフレーム画像2325のグループ毎に容器IDと検査場所IDとの組2321~2323を関連付けるようにしてもよい。
 追跡情報233は、容器300内の液体中に存在する浮遊物を検出して追跡した結果に応じた情報を含んでいる。図4は、追跡情報233の構成例を示す。この例の追跡情報233は、容器IDと検査場所IDの組2331、追跡ID2332とポインタ2333との組、の各エントリから構成されている。容器IDと検査場所IDの組2331のエントリには、容器300を一意に識別するIDと当該容器300の検査が行われた検査場所400を一意に識別するIDの組が設定される。追跡ID2332とポインタ2333との組からなるエントリは、追跡対象の浮遊物毎に設けられる。追跡ID2332の項目には、追跡対象の浮遊物を同じ容器300内の他の浮遊物と識別するためのIDが設定される。ポインタ2333の項目には、追跡対象とする浮遊物の移動軌跡情報2334へのポインタが設定される。
 移動軌跡情報2334は、時刻23341と位置情報23342との組からなるエントリから構成されている。時刻23341と位置情報23342との項目には、撮像時刻とその撮像時刻における追跡対象の浮遊物の位置(例えば浮遊物の重心の位置)を示す座標値とが設定される。座標値は、例えば、予め定められた座標系における座標値であってよい。また、予め定められた座標系は、カメラを中心としてみたカメラ座標系であってもよいし、空間中のある位置を中心として考えたワールド座標系であってもよい。移動軌跡情報2334のエントリは、時刻23341の順に並べられている。先頭のエントリの時刻23341は、追跡開始時刻である。最後尾のエントリの時刻23341は、追跡終了時刻である。先頭および最後尾以外のエントリの時刻23341は、追跡中間時刻である。
 検査場所別検査結果234は、容器300の検査場所400毎の検査結果に応じた情報を含んでいる。図5は、検査場所別検査結果234の構成例を示す。この例の検査場所別検査結果234は、容器IDと検査場所IDの組2341と検査結果2342の各エントリから構成されている。容器IDと検査場所IDの組2341のエントリには、検査対象の容器300を一意に識別するIDと当該容器300の検査が行われた検査場所400を一意に識別するIDとの組が設定される。検査結果2342のエントリには、OK(検査合格)またはNG(検査不合格)の何れかの検査結果が設定される。OKは、当該検査場所における検査では当該容器の液体中に異物が1つも検出されなかったことを表している。NGは、当該検査場所における検査において当該容器の液体中に異物が少なくとも1つ検出されたことを表している。
 最終検査結果235は、3か所の検査場所400の全てで検査を終了した容器300の最終的な検査結果を表す。図6は、最終検査結果235の構成例を示す。この例の最終検査結果235は、容器ID2351と検査結果2352の各エントリから構成されている。容器IDのエントリには、検査を終えた容器300を一意に識別するIDが設定される。検査結果2352のエントリには、OK(検査合格)またはNG(検査不合格)の何れかの検査結果が設定される。OKは、当該容器の液体中から異物は検出されなかったことを表している。NGは、当該容器の液体中から異物が検出されたことを表している。
 再び図2を参照すると、演算処理部240は、CPU(Central Processing Unit)などのプロセッサとその周辺回路を有し、記憶部230からプログラム231を読み込んで実行することにより、上記ハードウェアとプログラム231とを協働させて各種処理部を実現するように構成されている。演算処理部240で実現される主な処理部には、搬送制御部241、振動制御部242、画像取得部243、移動軌跡算出部244、検査場所別検査部245、判定部246、および、表示制御部247がある。
 搬送制御部241は、通信I/F部210を通じて搬送装置110に対して指令を送信することにより、3か所の検査場所400のそれぞれに容器300を1個ずつ順次搬送するように搬送装置110を制御するように構成されている。
 振動制御部242は、通信I/F部210を通じて振動付与装置120に対して指令を送信することにより、3か所の検査場所400のそれぞれに搬送された3個の容器300を互いに異なる強度で同時に振動させるように振動付与装置120を制御するように構成されている。
 画像取得部243は、通信I/F部210を通じてカメラ装置140に対して指令を送信することにより、3個の容器300内で流動する液体を照明装置130の照明の下でカメラ装置140によって予め定められた時間だけ同時に連続して撮影するように構成されている。また、画像取得部243は、撮影して得られた時系列の画像から図3に示されるような画像情報232を生成し、記憶部230に保存するように構成されている。なお、画像取得部243は、振動中の容器300内で流動する液体をカメラ装置140によって撮影して得られた画像を取得するように構成されていてもよい。あるいは、画像取得部243は、振動を停止させられた容器300内で慣性によって流動する液体をカメラ装置140によって撮影して得られた画像を取得するように構成されていてよい。あるいは、画像取得部243は、振動中の容器300内で流動する液体および振動を停止させられた容器内で慣性によって流動する液体をカメラ装置140によって撮影して得られた画像を取得するように構成されていてよい。
 移動軌跡算出部244は、画像取得部243によって生成された画像情報232を記憶部230から読み出し、この画像情報232に基づいて、図4に示されるような追跡情報233を生成し、記憶部230に保存するように構成されている。
 移動軌跡算出部244は、追跡情報233の生成では、先ず、図3に示される画像情報232に含まれる先頭の容器IDと検査場所IDの組2321に注目する。次に、移動軌跡算出部244は、注目中の容器IDと検査場所IDの組2321に対応する全てのフレーム画像2325(時系列のフレーム画像)から当該容器IDと検査場所IDの組に対応する容器300の部分画像を全て抽出する。例えば、検査場所400-1、400-2、400-3が1つの撮影領域に含まれるフレーム画像には、画像の左側に検査場所400-1にある容器300が写っており、画像の中央に検査場所400-2にある容器300が写っており、画像の右側に検査場所400-3にある容器300が写っている。そのため、移動軌跡算出部244は、注目中の容器IDと検査場所IDの組2321における検査場所IDが検査場所400-1であれば、フレーム画像2325の左側に写っている容器300の部分画像を抽出し、検査場所400-2であればフレーム画像2325の中央に写っている容器300の部分画像を抽出し、検査場所400-3であればフレーム画像2325の右側に写っている容器300の部分画像を抽出する。次に、移動軌跡算出部244は、抽出した部分画像の時系列から当該容器300内の液体中に存在する浮遊物の移動軌跡情報2334を全て算出する。次に、移動軌跡算出部244は、注目中の容器IDと検査場所IDの組および算出された浮遊物の移動軌跡情報を含む追跡情報233を算出し、記憶部230に保存する。次に、移動軌跡算出部244は、図3に示される画像情報232に含まれる次の容器IDと検査場所IDの組2322に注目を移し、上記と同様の処理によって、新たに注目した容器IDと検査場所IDの組および算出された浮遊物の移動軌跡情報を含む追跡情報233を算出し、記憶部230に保存する。同様にして、移動軌跡算出部244は、図3に示される画像情報232に含まれる最後の容器IDと検査場所IDの組2322および算出された浮遊物の移動軌跡情報を含む追跡情報233を算出し、記憶部230に保存する。
 検査場所別検査部245は、移動軌跡算出部244が算出した上記3つの追跡情報233を記憶部230から読み出し、追跡情報233毎に、検査場所別検査結果234を生成し、記憶部230に保存する。検査場所別検査部245は、検査場所別検査結果234の生成では、先ず、3つの追跡情報233のうちの1つの追跡情報233に注目する。次に、検査場所別検査部245は、注目中の追跡情報233に含まれる浮遊物の追跡ID2332毎に、追跡ID2332に対応するポインタ2333によって特定される移動軌跡情報2334で表される浮遊物の移動軌跡の特徴に基づいて、当該浮遊物が気泡であるか、異物であるかを判定する。
 浮遊物の移動軌跡に基づいて、浮遊物が異物であるか、気泡であるかを判定することができるのは、液体中の異物の移動軌跡の特徴と気泡の移動軌跡の特徴とが相違するためである。即ち、液体に比べて圧倒的に比重が軽い気泡は、液体中を反重力方向に移動する傾向が強く表れる。これに対して、気泡に対して比重の重い異物は、液体中を反重力方向に移動する傾向は強くなく、重力方向に移動する傾向を示す。このようなことから、液体中を反重力方向に移動する軌跡を描く浮遊物は気泡と判定でき、液体中を重力方向に移動する軌跡を描く浮遊物は異物と判定することができる。
 次に、検査場所別検査部245は、注目中の追跡情報233の容器IDと検査場所IDの組2331に設定された容器IDと検査場所IDの組2341と、上記判定の結果に応じた検査結果(OK/NG)2342とを有する検査場所別検査結果234を生成し、記憶部230に保存する。次に、検査場所別検査部245は、次の1つの追跡情報233に注目を移し、上記と同様な処理を行って新たに注目を移した追跡情報233の容器IDと検査場所IDの組2331に対応する検査場所別検査結果234を生成して記憶部230に保存する。同様にして、検査場所別検査部245は、最後の追跡情報233の容器IDと検査場所IDの組2331に対応する検査場所別検査結果234を生成して記憶部230に保存する。
 判定部246は、3か所の検査場所400の全てで検査を終了した容器300について、検査場所別検査部245によって生成された全ての検査場所別検査結果234を記憶部230から読み出し、それら全ての検査場所別検査結果234の検査結果に基づいて図6に示される最終検査結果235を生成し、記憶部230に保存するように構成されている。例えば、判定部246は、全ての検査場所別検査結果234の検査結果2342がOKであれば、OKの検査結果2352を含む最終検査結果235を生成する。一方、判定部246は、少なくとも1つの検査場所別検査結果234の検査結果2342がNGであれば、NGの検査結果2352を含む最終検査結果235を生成する。
 表示制御部247は、判定部246が生成した最終検査結果235を記憶部230から読み出し、表示装置150に表示し、または/および、通信I/F部210を通じて図示しない外部装置へ送信するように構成されている。
 次に、本実施形態に係る検査システム100の全体的な動作を説明する。
 図7は、検査システム100の動作の一例を示すフローチャートである。検査システム100は、搬送制御部241によって搬送装置10を制御することにより、3か所の検査場所400のそれぞれに容器300を1個ずつ順次に搬送する(ステップS1)。次に、検査システム100は、振動制御部242によって振動付与装置120を制御することにより、3か所の検査場所400のそれぞれに搬送された3個の容器300を同時に互いに異なる強度で振動させる(ステップS2)。次に、検査システム100は、画像取得部243によって照明装置130およびカメラ装置140を制御することによって、3個の容器300内で流動する液体を予め定められた時間だけ同時に連続して撮影して得られた図3に示されるような画像情報232を取得する(ステップS3)。次に、検査システム100は、移動軌跡算出部244により、画像情報232に基づいて、図4に示されるような液中を浮遊する浮遊物の移動軌跡情報を含む追跡情報233を容器IDと検査場所IDの組毎に生成する(ステップS4)。次に、検査システム100は、検査場所別検査部245により、容器IDと検査場所IDの組に対応する追跡情報233に基づいて、検査場所別に容器の液体中を浮遊する浮遊物の移動軌跡の特徴から浮遊物が異物であるか、気泡であるかを検査して検査場所別検査結果234を生成する(ステップS5)。次に、検査システム100は、判定部246により、3か所の検査場所400の全てで検査を終了した容器300について、検査場所別検査部245によって生成された全ての検査場所別検査結果234の検査結果に基づいて図6に示される最終検査結果235を生成する。次に、検査システム100は、表示制御部247により、最終検査結果235を表示装置150に表示し、または/および、通信I/F部210を通じて図示しない外部装置へ送信する(ステップS7)。そして、検査システム100は、ステップS1の処理に戻り、上述した処理と同様の処理を繰り返す。
 図8は、複数の容器300が3か所の検査場所400で1容器ずつ順番に検査されていく様子を示す模式図である。このように、1つの容器300について、検査場所400-1における検査で比重の軽い異物の有無を検査し、検査場所400-2における検査で比重が中間の異物の有無を検査し、検査場所400-3における検査で比重が重い異物の有無を検査し、これら3つの検査場所400における検査結果が全てOK(異物なし)であった場合に限って、OK(異物なし)の最終検査結果を生成して出力し、それ以外はNG(異物あり)の最終検査結果を生成して出力する。そのため、容器300に含まれる可能性のある比重の軽い異物から重い異物まで漏れなく検査することができる。
 また、1つの容器300の検査開始から最終検査結果の生成までに要する検査時間は、各検査場所400における検査の時間と最終検査結果の生成時間とを合計したものとなる。最終検査結果の生成は極めて短時間で実行される。そのため、各検査場所400における検査の時間をT時間とすると、1つの容器300の検査時間は略3Tになる。しかし、異なる容器300に対する異なる検査場所400での検査は並行して実施されるため、定常状態においては、T時間毎に1つの容器300の最終検査結果が出力されることになり、単位時間当たりの検査容器数を増大させることができる。
 また、1つの検査場所400当たりの検査時間Tは、一度の流動によって比重の軽い異物から重い異物まで全て検査する場合の検査時間(T’と記す)より十分に短くすることができる。その理由は以下の通りである。
 比重の軽い異物だけでなく比重の重い異物を浮遊物として液中に浮遊させるためには、容器を強く振動させて液体を激しく流動させる必要がある。しかし、液体を激しく流動させると、それがある程度落ち着くまでに長い時間を要する。比重の軽い異物の移動軌跡は、比重の重い異物と異なり流動の影響を受け易く、流動が有る程度落ち着くまではその移動軌跡に基づいて気泡と区別するのは困難である。そのため、容器を静止させてから液体の流動がある程度落ち着くまでに長い時間がかかり、結果として、検査時間T’が長大化する。
 一方、検査場所400-1における検査は、容器300に対してゴム片などのような比重が中間の異物を底面から上方に浮遊させるのには不十分であるが、繊維片などのような異物の種類の中で比重が最も軽い異物を底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動を付与して行う。そのため、容器300内の液体の流動は当初からある程度落ち着いた状態になり、その結果、短時間Tの観測により繊維片などの比重の軽い異物を気泡と区別して検出することができる。
 また、検査場所400-3における検査は、容器300に対してガラス片などのような比重が重い異物を底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動を付与して行う。しかし、ガラス片などの比重が重い異物は流動の影響を受けずに短時間で落下する傾向がある。そのため、短時間Tの観測によりガラス片などの比重の重い異物を検出することができる。
 また、検査場所400-2における検査は、容器300に対してガラス片などのような比重が重い異物を底面から上方に浮遊させるのには不十分であるが、ゴム片などのような異物の種類の中で比重が中間の異物を底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動を付与して行う。そのため、容器300内の液体の流動は検査場所400-3よりは激しくない。ゴム片などの比重が中間の異物はある程度の液体の流動があっても落下する傾向を示すため、短時間Tの観測により気泡と区別して検出することができる。
 続いて、1つの装置によって複数の容器300を互いに異なる強度で振動させる振動付与装置120について説明する。
 図9は、一方の端部501a、502bの位置が固定され他方の端部501b、502bの位置が移動自在な2本の細長い棒501、502によって、6個の容器300の首部を両側から挟んで把持した状態を上、横、および、前から見た模式図である。2本の細長い棒501、502は、ある程度硬度があり且つねじれに対する強度がある(適度な硬度およびねじれ剛性がある)材料により作られている。そのような材料としては、プラスチック、アクリル樹脂、ばね鋼などが例示されるが、それに限定されない。また、2本の細長い棒501、502は、ある程度硬度があり且つねじれに対する強度があり、さらに長尺方向に適度に伸びる材料により作られていてよい。そのような材料としては、密着バネが例示されるが、それに限定されない。例えば、容器300が高さ30mm、幅16mmのバイアル瓶の場合、全長が約96mmの細長い棒501、502を使用すれば、これら6個の容器を両側から挟んで把持することが可能である。そして、この2本の細長い棒501、502の端部501b、502bの位置を、当該棒の長尺方向に垂直な方向(図示の矢印方向)に同じ量だけ振動させると、2本の細長い棒501、502は互いの間隔をほぼ保ちながら同じように振動するため、6個の容器300は2本の細長い棒501、502で把持された状態で振動する。このときの6個の容器300の振動量は、一方の端部501a、502aの位置が固定されているため、他方の端部501b、502bの位置に近い容器300の方が遠い容器300より大きくなる。この結果、同じ2本の細長い棒501、502を用いて、複数の容器300を互いに異なる強度で振動させることができる。
 例えば、2本の細長い棒501、502によって把持される合計6個の容器300のうち、端部501b、502bに一番近い容器300の位置を検査場所400-3、その隣の容器300の位置を検査場所400-2、さらにその隣の容器300の位置を検査場所400-1とすることができる。位置が固定された端部501a、502aに近い残り3つの容器300は、ほとんど振動しないか極めて弱い振動になるため、それらの場所は一般的に検査場所に適さない。
 2本の細長い棒501、502の一方の端部501a、502aの位置は、常に固定されていてもよいし、振動を付与するときのみ固定されていてもよい。2本の細長い棒501、502の他方の端部501b、502bの位置は、振動を付与しない状態では、予め定められた位置に固定されていてよい。また、端部501b、502bは、振動を付与する状態では、上記固定された位置を中心に回動するように構成されていてよい。また、2本の細長い棒501、502は、複数の容器300を一列に並べて吊り下げ方式で搬送する搬送路を兼ねていてよい。この場合、容器300は、2本の細長い棒501、502の端部501a、502aの搬入口から1個ずつ順番に2本の細長い棒501、502の間に搬入される。このとき既に2本の細長い棒501、502に保持されている6個の容器300は新たに挿入された1個の容器300によって押されて1容器分だけ移動する。その結果、最も下流側の1個の容器300は2本の細長い棒501、502による把持から解放されて搬出口から下流側に搬出される。この搬出された容器300は、その最終検査結果に応じて、OKならば良品の容器を貯蔵する保管場所へ搬送され、NGならば不良品の容器を貯蔵する保管場所へ搬送されることになる。
 以下、上記のような2本の細長い棒501、502を用いた振動付与装置120の具体例について説明する。但し、2本の細長い棒501、502を用いた振動付与装置120の具体例は下記に限定されない。
 図10は、2本の細長い棒501、502を用いた振動付与装置120の一例を示す外観斜視図である。図10を参照すると、この振動付与装置120は、下側支持部510と上側支持部520と回動部530と上述した2本の細長い棒501、502とを備えている。
 下側支持部510は、平板状の台座511と、台座511に立設された支柱512~514と有する。支柱512は、台座511に上側支持部520を強固に連結する部材である。支柱513、514は、2本の細長い棒501、502の端部501a、502aの位置を固定するための部材である。この例では、2本の細長い棒501、502の端部501a、502aは、容器300の首部が挿入し易いようにハの字状に加工されて支柱513、514の上部に固定されている。支柱513、514は曲げ剛性の高い部材であってもよいし、適度な曲げ剛性を有する部材であってもよい。
 上側支持部520は、回動部530を回動自在に支持する部材であり、回動部530を軸支する回転シャフト521とこの回転シャフト521を回動させる駆動部522を有する。回動部530は、L字状部材531と、L字状部材531の垂直面内側上部に固定された略直方体形状の上部突起部532と、L字状部材531の水平面内側の上部突起部532に対向する位置に固定された略直方体形状の下部突起部533とを有する。また、上部突起部532の下面と下部突起部533の上面との距離は、容器300の底面からキャップ上面までの長さより僅かに長くなるように設定されている。さらに、L字状部材531の垂直面内側の面上に照明装置130が取り付けられている。また、L字状部材531の水平面内側の面上にカメラ装置140が取り付けられている。
 2本の細長い棒501、502の端部501b、502bは、上部突起部532の下面に下方に延びるように立設された支柱534、535の下端に固定されている。この支柱534、535は曲げ剛性の高い部材であってもよいし、適度な曲げ剛性を有する部材であってもよい。このとき、2本の細長い棒501、502で首部を両側から挟んで把持される6個の容器300のうち端部501b、502bに一番近い1個の容器300のみの頭頂部の真上に僅かな隙間を隔てて上部突起部532の下面が位置するように上部突起部532の取り付け位置とサイズおよび支柱534、535の長さや取り付け角度などが調整され、当該一番近い1個の容器300のみの底部の真下に僅かな隙間を隔てて下部突起部533の上面が位置するように下部突起部533の取り付け位置とサイズが調整されている。
 回転シャフト521は、上部突起部532を貫くように回動部530に固定されている。回転シャフト521の回転によって回動部530は、L字状部材531、それに固定された上部突起部532、下部突起部533、照明装置130、および、カメラ装置15が一体となって回動する。このときの回動によって2本の細長い棒501、502の端部501b、502bの位置は円弧に沿って移動する。そのため、図9を参照して説明したように2本の細長い棒501、502で6個の容器300の首部を両側から挟んで把持する状態で端部501b、502bの位置を円弧に沿って強振動させると、端部501b、502bに一番近い容器300が強振動で振動し、その隣の容器300が中振動で振動し、さらにその隣の容器300が弱振動で振動することになる。このとき、6個の容器300のうち端部501b、502bに一番近い1本の容器300だけが上部突起部532と下部突起部533で上下から支持された状態で回動し、残り5個の容器300は2本の細長い棒501、502によってのみ支持された状態で回動することになる。
 照明装置130は、2本の細長い棒501、502で把持されて強振動、中振動、および弱振動する3つの容器300の全てを同時に照明できるサイズの面光源であり、これらの容器300からみてカメラ装置140が設置される側とは反対側に設置されている。また、カメラ装置140は、2本の細長い棒501、502で把持されて強振動、中振動、および弱振動する3つの容器300を同時に1つの撮影範囲内に収まるように配置場所と画角が調整されている。カメラ装置140と照明装置130は、回動部530に固定されているため、回動部530の振動に同期して振動することになる。2本の細長い棒501、502の端部501b、502bに一番近い1本の容器300を強振動させるために、回動部530は強振動する。そのため、回動部530に取り付けられたカメラ装置140および照明装置130はそれに同期して強振動することになる。
 図10に示される振動付与装置120によれば、1つの装置によって複数の容器300を互いに異なる強度で振動させることができる。また、カメラ装置140と照明装置130を、強振動する容器300に同期して強振動させることができるため、強振動している容器300内で流動する液体を適切に照明および撮影することができる。その理由は、強振動する容器300と照明装置130およびカメラ装置140との距離がほぼ一定になるためである。なお、カメラ装置140と照明装置130が強振動すると、中振動または弱振動する容器300との距離はほぼ一定に保てないが、そもそも振動が強くないので、照明および撮影に与える影響は少ない。更に中振動または弱振動ではガラス瓶の振動が収まるタイミングが早く且つ比重の軽い異物の沈降速度は遅いため、ガラス瓶が安定し内容液の安定後での異物検知が可能である。
[第2の実施形態]
 図11は本発明の第2の実施形態に係る検査システム600のブロック図である。図11を参照すると、検査システム600は、容器に封入された液体中の異物の有無を検査する検査システムであり、振動付与手段601と検査手段602と判定手段603とを備えている。
 振動付与手段601は、第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する強度で同時に振動させるように構成されている。振動付与手段601は、例えば、図1の振動付与装置120および振動制御部242と同様に構成することができるが、それに限定されない。
 検査手段602は、n個の容器内で流動する液体を撮像して得られた時系列の画像に基づいてn個の容器それぞれの液体中の異物の有無を個別に検査し、n個の容器それぞれについて、容器が置かれた検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成するように構成されている。検査手段602は、例えば、図2の画像取得部243、移動軌跡算出部244、および、検査場所別検査部245と同様に構成することができるが、それに限定されない。
 判定手段603は、容器毎に、同一の前記容器における全ての検査場所別検査結果に基づいて液体中の異物の有無を判定するように構成されている。判定手段603は、例えば、図2の判定部246と同様に構成することができるが、それに限定されない。
 以上のように構成された検査システム600は、以下のように動作する。即ち、先ず、振動付与手段601は、第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する強度で同時に振動させる。次に、検査手段602は、n個の容器内で流動する液体を撮像して得られた時系列の画像に基づいてn個の容器それぞれの液体中の異物の有無を個別に検査し、n個の容器それぞれについて、容器が置かれた検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成する。次に、判定手段603は、容器毎に、同一の容器における全ての検査場所別検査結果に基づいて液体中の異物の有無を判定する。
 以上のように構成され動作する検査システム600によれば、1つの容器の検査開始から最終検査結果の生成までに要する検査時間は、個々の検査場所における検査の時間と最終検査結果の生成時間とを合計したものとなる。最終検査結果の生成は極めて短時間で実行される。そのため、各検査場所における検査の時間をT時間とすると、1つの容器300の検査時間はnTになる。しかし、n個の容器に対する異なる検査場所での検査は並行して実施される。そのため、定常状態においては、T時間毎に1つの容器の最終検査結果が出力されることになり、単位時間当たりの検査容器数を増大させることができる。
 以上、上記各実施形態を参照して本発明を説明したが、本発明は、上述した実施形態に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解しうる様々な変更をすることができる。例えば、情報処理装置は、上述したCPUの代わりに、GPU(Graphic Processing Unit)、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)、FPU(Floating number Processing Unit)、PPU((Physics Processing Unit)、TPU(Tensor Processing Unit)、量子プロセッサ、マイクロコントローラ、又は、これらの組み合わせなどを用いることができる。
 本発明は、バイアル瓶などの容器に封入された液体中の異物の有無を検査する分野全般に利用できる。
100 検査システム
110 搬送装置
120 振動付与装置
130 照明装置
140 カメラ装置
150 表示装置
300 容器
400 検査場所

Claims (16)

  1.  容器に封入された液体中の異物の有無を検査する検査システムであって、
     第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する所定の強度で同時に振動させる振動付与手段と、
     前記n個の容器内で流動する液体を撮像して得られた時系列の画像に基づいて前記n個の容器それぞれの液体中の異物の有無を個別に検査し、
    前記n個の容器それぞれについて、前記容器が置かれた前記検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成する検査手段と、
     前記容器毎に、同一の前記容器における全ての前記検査場所別検査結果に基づいて液体中の異物の有無を判定する判定手段と、
    を備える検査システム。
  2.  前記振動付与手段は、
     一方の端部の位置が固定され他方の端部の位置が移動自在な一対の棒によって、前記n個の容器の首部を両側から挟んで把持した状態で、前記他方の端部を前記n個の容器の並び方向に略垂直な方向に振動させるように構成されている、
    請求項1に記載の検査システム。
  3.  前記n個の検査場所として、前記容器の搬送方向の下流側から順に第1の検査場所と第2の検査場所と第3の検査場所とを有し、
     前記振動付与手段は、前記第1の検査場所に搬送された前記容器を強振動で振動させ、前記第2の検査場所に搬送された前記容器を前記強振動よりも弱い中振動で振動させ、前記第3の検査場所に搬送された前記容器を前記中振動よりも弱い弱振動で振動させるように構成されている、
    請求項1に記載の検査システム。
  4.  前記異物の種類を比重によって最も比重の重い区分と最も比重の軽い区分とその中間の区分とに分けたとき、前記強振動は、前記最も比重の重い区分に属する異物を容器の底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動に設定され、前記中振動は、前記最も比重の重い区分に属する異物を浮遊させるのには不十分であるが、前記中間の区分に属する異物を浮遊させるのに十分な流動を引き起こす程度の振動に設定され、前記弱振動は、前記中間の区分に属する異物を浮遊させるのには不十分でるが、前記最も比重の軽い区分に属する異物を底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動に設定されている、
    請求項3に記載の検査システム。
  5.  前記n個の検査場所のそれぞれで容器の検査が終了する毎に、第n番の検査場所にある容器を搬出口から搬出させ、前記第1番から第n-1番までの検査場所にあるn-1個の容器をそれぞれ1つ下流側の検査場所に移動させ、新たな容器を搬入口から前記第1番の検査場所に搬入させる搬送手段を、
    さらに備える請求項1に記載の検査システム。
  6.  前記n個の容器内で流動する液体を1つの撮影範囲内に収まるように撮影するカメラ装置を、
    さらに備える請求項1乃至5の何れかに記載の検査システム。
  7.  前記n個の容器を同時に照明する照明装置を、
    さらに備える請求項6に記載の検査システム。
  8.  前記照明装置は、前記n個の容器からみて前記カメラ装置が設置される側とは反対側に設置されている、
    請求項7に記載の検査システム。
  9.  前記n個の容器を同時に照明する照明装置と、
     前記n個の容器内で流動する液体を1つの撮影範囲内に収まるように撮影するカメラ装置とを、さらに備え、
     前記振動付与手段は、前記照明装置および前記カメラ装置を前記強振動で振動させるように構成されている、
    請求項3に記載の検査システム。
  10.  容器に封入された液体中の異物の有無を検査する検査方法であって、
     第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する所定の強度で同時に振動させ、
     前記n個の容器内で流動する液体を撮像して得られた時系列の画像に基づいて前記n個の容器それぞれの液体中の異物の有無を個別に検査し、
     前記n個の容器それぞれについて、前記容器が置かれた前記検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成し、
     前記容器毎に、同一の前記容器における全ての前記検査場所別検査結果に基づいて液体中の異物の有無を判定する、
    検査方法。
  11.  前記振動では、
     一方の端部の位置が固定され他方の端部の位置が移動自在な一対の棒によって、前記n個の容器の首部を両側から挟んで把持した状態で、前記他方の端部を前記n個の容器の並び方向に略垂直な方向に振動させる、
    請求項10に記載の検査方法。
  12.  前記n個の検査場所として、前記容器の搬送方向の下流側から順に第1の検査場所と第2の検査場所と第3の検査場所とを有し、
     前記振動では、前記第1の検査場所に搬送された前記容器を強振動で振動させ、前記第2の検査場所に搬送された前記容器を前記強振動よりも弱い中振動で振動させ、前記第3の検査場所に搬送された前記容器を前記中振動よりも弱い弱振動で振動させる、
    請求項10に記載の検査方法。
  13.  前記異物の種類を比重によって最も比重の重い区分と最も比重の軽い区分とその中間の区分とに分けたとき、前記強振動は、前記最も比重の重い区分に属する異物を容器の底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動に設定され、前記中振動は、前記最も比重の重い区分に属する異物を浮遊させるのには不十分であるが、前記中間の区分に属する異物を浮遊させるのに十分な流動を引き起こす程度の振動に設定され、前記弱振動は、前記中間の区分に属する異物を浮遊させるのには不十分でるが、前記最も比重の軽い区分に属する異物を底面から上方に浮遊させるのに十分な流動を引き起こす程度の振動に設定されている、
    請求項12に記載の検査方法。
  14.  前記n個の検査場所のそれぞれで容器の検査が終了する毎に、第n番の検査場所にある容器を搬出口から搬出させ、前記第1番から第n-1番までの検査場所にあるn-1個の容器をそれぞれ1つ下流側の検査場所に移動させ、新たな容器を搬入口から前記第1番の検査場所に搬入させる、
    請求項10に記載の検査方法。
  15.  前記n個の容器内で流動する液体を1つの撮影範囲内に収まるようにカメラ装置で撮影する、
    請求項10乃至14の何れかに記載の検査方法。
  16.  容器に封入された液体中の異物の有無を検査するコンピュータに、
     第1番から第n番(n≧2)までのn個の検査場所のそれぞれに搬送されたn個の容器を互いに相違する所定の強度で同時に振動させる処理と、
     前記n個の容器内で流動する液体撮像して得られた時系列の画像に基づいて前記n個の容器それぞれの液体中の異物の有無を個別に検査する処理と、
     前記n個の容器それぞれについて、前記容器が置かれた前記検査場所の識別情報と異物の有無の検査結果とを含む検査場所別検査結果を生成する処理と、
     前記容器毎に、同一の前記容器における全ての前記検査場所別検査結果に基づいて液体中の異物の有無を判定する処理と、
    を行わせるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2022/035007 2022-09-20 2022-09-20 異物検査装置 WO2024062533A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035007 WO2024062533A1 (ja) 2022-09-20 2022-09-20 異物検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035007 WO2024062533A1 (ja) 2022-09-20 2022-09-20 異物検査装置

Publications (1)

Publication Number Publication Date
WO2024062533A1 true WO2024062533A1 (ja) 2024-03-28

Family

ID=90453970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035007 WO2024062533A1 (ja) 2022-09-20 2022-09-20 異物検査装置

Country Status (1)

Country Link
WO (1) WO2024062533A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124164A1 (en) * 1983-04-22 1984-11-07 Thomassen & Drijver-Verblifa N.V. Apparatus for checking containers
JPH0351748A (ja) * 1989-07-19 1991-03-06 Takeda Chem Ind Ltd 粉末密封透明容器の自動検査装置
JPH08159989A (ja) * 1994-12-06 1996-06-21 Datsuku Eng Kk 液体密封容器の検査方法および検査装置
JP2000298103A (ja) * 1999-04-15 2000-10-24 Nittetsu Mining Co Ltd 透明容器内粉末の異物検査装置
JP2013096921A (ja) * 2011-11-02 2013-05-20 Hitachi Engineering & Services Co Ltd 飲料液異物検査装置および飲料液異物検査方法
WO2020194567A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 検品装置、検品方法、及び非一時的なコンピュータ可読媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124164A1 (en) * 1983-04-22 1984-11-07 Thomassen & Drijver-Verblifa N.V. Apparatus for checking containers
JPH0351748A (ja) * 1989-07-19 1991-03-06 Takeda Chem Ind Ltd 粉末密封透明容器の自動検査装置
JPH08159989A (ja) * 1994-12-06 1996-06-21 Datsuku Eng Kk 液体密封容器の検査方法および検査装置
JP2000298103A (ja) * 1999-04-15 2000-10-24 Nittetsu Mining Co Ltd 透明容器内粉末の異物検査装置
JP2013096921A (ja) * 2011-11-02 2013-05-20 Hitachi Engineering & Services Co Ltd 飲料液異物検査装置および飲料液異物検査方法
WO2020194567A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 検品装置、検品方法、及び非一時的なコンピュータ可読媒体

Similar Documents

Publication Publication Date Title
TWI639003B (zh) 檢體處理裝置及檢體處理方法
RU2414698C2 (ru) Устройство для проверки бутылок или подобных сосудов
CN105793714B (zh) 自动分析装置
TW200900682A (en) Apparatus for transferring subject to be inspected and appearance inspecting apparatus
JP6568105B2 (ja) 容器製品を検査する検査装置
TW200902955A (en) Appearance inspecting apparatus
JP6167053B2 (ja) 検査装置及び検査方法、並びに検査方法をコンピュータに実行させるプログラム
CN108994828A (zh) 分拣装置及分拣系统
CN101581721A (zh) 具有至少一个在离心循环过程中提供预先的凝聚评估的成像仪的免疫诊断检测设备
WO2005031328A1 (ja) 検査システム
KR101440302B1 (ko) 유리병 검사장치
JP2000298103A (ja) 透明容器内粉末の異物検査装置
JP7359297B2 (ja) 検査システム
CN111776392B (zh) 贴标设备、装置和系统及贴标方法及存储介质
WO2024062533A1 (ja) 異物検査装置
JP2010008339A (ja) 透明容器内粉末中の異物検査方法及び異物検査装置
JPS62220844A (ja) 異物検査装置
JP2011247835A (ja) 異物検査装置および異物検査方法
JP2719410B2 (ja) 粉末密封透明容器の自動検査装置
CN206489092U (zh) 用于光学监测空物品箱的检查设备
JP6748168B2 (ja) 略円形の側面を有する物品の検査装置、及び物品反転装置
JP2005121592A (ja) ボトル液内異物検査システム
KR102697656B1 (ko) 액체에 포함된 이물질 광학검사 장치 및 방법
WO2023175943A1 (ja) 異物検査装置
WO2024161565A1 (ja) 検査システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959497

Country of ref document: EP

Kind code of ref document: A1