WO2024058054A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2024058054A1
WO2024058054A1 PCT/JP2023/032727 JP2023032727W WO2024058054A1 WO 2024058054 A1 WO2024058054 A1 WO 2024058054A1 JP 2023032727 W JP2023032727 W JP 2023032727W WO 2024058054 A1 WO2024058054 A1 WO 2024058054A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
positive electrode
electrode
active material
Prior art date
Application number
PCT/JP2023/032727
Other languages
French (fr)
Japanese (ja)
Inventor
慶 若林
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024058054A1 publication Critical patent/WO2024058054A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof

Definitions

  • the present disclosure relates to secondary batteries.
  • Secondary batteries can be repeatedly charged and discharged, and are used for a variety of purposes.
  • secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
  • Patent Document 1 discloses a battery electrode in which the porosity of an upper layer of an electrode active material coated on the surface of a current collector is higher than that of a lower layer. According to the electrode described in Patent Document 1, it is disclosed that impregnation with an electrolytic solution is improved by making the electrode surface portion have a higher porosity than the inside of the electrode.
  • the present disclosure has been made in view of such problems. That is, the main objective of the present disclosure is to provide a secondary battery in which charging and discharging reactions occur more appropriately and cycle characteristics are further improved.
  • the secondary battery according to the present disclosure is comprising an electrode structure in which a positive electrode and a negative electrode having a larger area than the positive electrode are arranged facing each other with a separator interposed therebetween;
  • the negative electrode has a facing portion facing the positive electrode and a non-facing portion not facing the positive electrode, The surface of the non-opposing portion is rougher than the surface of the opposing portion.
  • the surface of the opposing part of the negative electrode that faces the positive electrode is rougher than the surface of the non-facing part of the negative electrode that does not face the positive electrode, so that charging and discharging reactions can occur more favorably.
  • the energy density per volume of the electrode can be improved.
  • FIG. 1A is a cross-sectional view of a positive electrode, a negative electrode, and a separator.
  • FIG. 1B is a plan view of the positive electrode, negative electrode, and separator.
  • FIG. 2 is an enlarged sectional view of main parts of a positive electrode, a negative electrode, and a separator.
  • FIG. 3 is a perspective view of an electrode structure having a wound structure.
  • FIG. 4 is a schematic cross-sectional view showing the electrode structure housed in the exterior member.
  • FIG. 5 is a schematic cross-sectional view showing a state in which an electrolytic solution is supplied into the exterior member.
  • FIG. 6 is a schematic cross-sectional view schematically showing an embodiment of the secondary battery of the present disclosure.
  • FIG. 1A is a cross-sectional view of a positive electrode, a negative electrode, and a separator.
  • FIG. 1B is a plan view of the positive electrode, negative electrode, and separator.
  • FIG. 2 is an enlarged sectional view
  • FIG. 7A schematically shows an exemplary form of a secondary battery, and is a perspective view of a button-shaped/coin-shaped secondary battery.
  • FIG. 7B schematically shows an example of a secondary battery, and is a perspective view of a square secondary battery.
  • FIG. 8 is a schematic cross-sectional view schematically showing another embodiment of the secondary battery of the present disclosure.
  • the direction of "thickness” corresponds to the thickness direction of the secondary battery.
  • planar view used in this specification is based on a sketch when the object is viewed from above or below along the thickness direction. Unless otherwise specified, the same reference numerals or symbols indicate the same members/parts or the same meanings.
  • top surface refers to the surface that is located above the battery in the vertical direction
  • bottom surface refers to the surface that is positioned above the battery in the vertical direction. It means the surface positioned on the lower side.
  • top surface in this specification refers to one of the main surfaces
  • bottom surface refers to one of the main surfaces. Pointing to the other side.
  • the term "secondary battery” used herein refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the present disclosure is not excessively limited by its name, and may also include, for example, power storage devices.
  • the secondary battery 100 of the present disclosure may include an electrode structure 10, an exterior member 50 that accommodates the electrode structure 10, and an electrolyte 80. Each component constituting the secondary battery of the present disclosure will be described in detail below with reference to FIGS. 1 to 8.
  • the electrode structure 10 is made by rolling a sheet or plate-like member (see FIGS. 1 and 2) in which a positive electrode 1 and a negative electrode 2 having a larger area than the positive electrode 1 are arranged facing each other with a separator 3 in between. (See FIG. 3).
  • the electrode structure 10 of the present disclosure is not limited to a wound structure, but may have a laminated structure in which the positive electrode 1, the separator 3, and the negative electrode 2 are stacked on a plane (see FIG. 8), or , a so-called stack-and-fold structure in which the positive electrode 1, separator 3, and negative electrode 2 are laminated on a long film and then folded may be used.
  • Each component constituting the electrode structure 10 will be described in detail below.
  • the positive electrode 1 may include at least a positive electrode current collector 1a and a positive electrode material 1b.
  • the positive electrode material 1b is provided on both sides of the positive electrode current collector 1a, but the present invention is not limited to this example, and the positive electrode material 1b may be provided only on one side of the positive electrode current collector 1a. good.
  • the positive electrode current collector 1a is a member that helps collect and supply electrons generated in the active material due to battery reactions.
  • the positive electrode current collector 1a may be made into a rectangular shape by cutting a sheet-like metal member, and may have a porous or perforated form.
  • the current collector may be metal foil, punched metal, net, expanded metal, or the like.
  • the positive electrode current collector 1a may be made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel, etc., and for example, aluminum foil is preferable.
  • the positive electrode material 1b may contain a positive electrode active material as an electrode active material.
  • a binder may be included in the positive electrode material 1b in order to ensure sufficient contact between the particles and shape retention.
  • a conductive additive may be included in the positive electrode material 1b in order to facilitate the transmission of electrons that promote battery reactions. Since the positive electrode material 1b contains a plurality of components in this manner, the positive electrode material 1b can also be referred to as a "positive electrode composite material.”
  • the positive electrode active material is preferably a material that contributes to intercalation and desorption of lithium ions. From this point of view, it is preferable that the positive electrode active material is, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material 1b of the secondary battery 100 according to the present disclosure, such a lithium transition metal composite oxide may preferably be included as a positive electrode active material.
  • the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a material in which some of the transition metals thereof are replaced with another metal.
  • positive electrode active materials may be contained as a single species, they may be contained in a combination of two or more types.
  • Binders that may be included in the positive electrode material 1b include, but are not particularly limited to, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and polytetrafluoroethylene. At least one selected from the group consisting of:
  • the conductive additive that can be included in the positive electrode material 1b is not particularly limited, but includes carbon black such as thermal black, furnace black, channel black, Ketjen black, and acetylene black, graphite, carbon nanotubes, and vapor-phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the thickness of the positive electrode material 1b is not particularly limited, but may be 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at arbitrary 10 points may be adopted.
  • the negative electrode 2 may include at least a negative electrode current collector 2a and a negative electrode material 2b.
  • the negative electrode material 2b is provided on both sides of the negative electrode current collector 2a, but the invention is not limited to this example, and the negative electrode material 2b may be provided only on one side of the negative electrode current collector 2a. good.
  • the negative electrode current collector 2a is a member that helps collect and supply electrons generated in the active material due to battery reactions.
  • the negative electrode current collector 2a is preferably made of a metal foil containing at least one member selected from the group consisting of nickel, copper, nickel-plated copper, stainless steel (SUS), etc., for example, copper foil. It's good to be there.
  • stainless steel in this specification refers to, for example, stainless steel specified in "JIS G 0203 Iron and Steel Terminology", and may be an alloy steel containing chromium or chromium and nickel. .
  • the negative electrode material 2b may contain a negative electrode active material as an electrode active material.
  • a negative electrode active material is composed of, for example, a granular material
  • a binder may be included in the negative electrode material 2b for more sufficient contact between the particles and shape retention.
  • a conductive additive may be included in the negative electrode material 2b in order to facilitate the transmission of electrons that promote battery reactions. Since the negative electrode material 2b contains a plurality of components in this manner, it can also be referred to as a "negative electrode composite material.”
  • the negative electrode active material is preferably a material that contributes to intercalation and desorption of lithium ions.
  • the negative electrode active materials include C (carbon), Si (silicon), SiO x (silicon oxide), Sn (tin), Bi (bismuth), Ti (titanium), Mn (manganese), Fe ( At least one selected from the group consisting of iron), Ni (nickel), Cu (copper), and the like can be mentioned.
  • the binder that may be included in the negative electrode material 2b is not particularly limited, but at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. can be mentioned.
  • the conductive additive that can be included in the negative electrode material 2b is not particularly limited, but includes carbon black such as thermal black, furnace black, channel black, Ketjen black, and acetylene black, graphite, carbon nanotubes, and vapor-phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the negative electrode material 2b may contain a component resulting from a thickener component (for example, carboxymethyl cellulose) used during battery manufacture.
  • the thickness of the negative electrode material 2b is not particularly limited, but may be 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness dimension of the negative electrode material 2b is the thickness inside the secondary battery, and the average value of the measured values at ten arbitrary locations may be adopted.
  • the negative electrode 2 in the secondary battery of the present disclosure is designed to have a larger area than the positive electrode 1 in plan view (see FIG. 1B).
  • the negative electrode 2 in a typical secondary battery, when a battery reaction occurs between the positive electrode 1 and the negative electrode 2, dendrites tend to precipitate on the outer periphery of the negative electrode 2, and there is a possibility that this dendrite comes into contact with the positive electrode 1 and causes an internal short circuit. There is.
  • the negative electrode 2 is designed to have a larger area than the positive electrode 1 in plan view. That is, the negative electrode 2 includes a facing portion 21 that faces the positive electrode 1 and a non-facing portion 22 that does not face the positive electrode 1 (see FIGS. 1A and 2).
  • the area of the negative electrode 2 is designed to be larger than the area of the positive electrode 1 by the area of the non-facing portion 22 of the negative electrode 2 .
  • the length L (see FIG. 2) of the non-opposed portion 22 is preferably 0.2 mm or more.
  • the non-opposing portion 22 is rougher than the opposing portion 21.
  • the term “roughness” indicates that the judgment is made by comparing the “roughness index” of the non-opposed portion 22 and the opposing portion 21 through an external inspection. That is, the main aspect is that the determination is made by comparing the surface roughness of the non-opposing portion 22 and the surface roughness of the opposing portion 21.
  • coming rough refers to the roughness that inherently exists in the non-opposed portion 22 and the opposing portion 21, although there is little change in appearance. ” and “the surface of the particles constituting the opposing portion” may also be included in the judgment by comparing the “roughness index”.
  • the porosity must not differ greatly between the bulk region (region not on the surface) of the facing part 21 and the bulk region (region not on the surface) of the non-facing part 22. is preferred.
  • examples of “roughness indicators” include surface roughness (arithmetic mean roughness (Ra or Sa), maximum height (Rz or Sz), root mean square roughness (Rq or Sq)), etc. . The verification test regarding the roughness will be described in detail in the examples below.
  • the process of changing the roughness of the non-opposed portion 22 may be performed by, for example, laser treatment to make the roughness of the “surface” and/or the “surface of the constituent particles” of the non-opposed portion 22 rougher than that of the opposing portion 21.
  • the roughness modification treatment is not limited to laser treatment, and may be, for example, plasma treatment, physical grinding treatment, surface modification treatment by heating, or the like.
  • the impregnating property of the electrolytic solution which will be described later, is improved, and the electrolytic solution can be easily permeated into the electrode uniformly. Therefore, the charging/discharging reaction of the battery can be caused more suitably.
  • the facing part 21 that causes the charging/discharging reaction of the battery is not subjected to any treatment to roughen its surface and/or the surfaces of the constituent particles, the energy density per volume of the electrode can be improved.
  • the non-opposing portion 22 may be provided outside the opposing portion 21.
  • the electrolytic solution can be impregnated from the non-opposing part 22 toward the opposing part 21, so that the electrode can be more uniformly impregnated with the electrolytic solution.
  • the non-opposing portion 22 may be provided at the outer peripheral edge of the opposing portion 21. With such an embodiment, the electrolytic solution can be uniformly impregnated from the outer periphery of the facing portion 21 .
  • the non-opposed portions 22 located on both sides of the opposing portion 21 may be provided symmetrically with respect to the opposing portion 21. With such an embodiment, it is possible to more uniformly impregnate the electrolytic solution.
  • the separator 3 is a member provided from the viewpoint of preventing short circuits due to contact between the positive electrode 1 and the negative electrode 2 and retaining electrolyte.
  • the separator 3 can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode 1 and the negative electrode 2.
  • the separator 3 is a porous or microporous insulating member and has a membrane form due to its small thickness.
  • a microporous membrane made of polyolefin may be used as the separator 3.
  • the microporous membrane used as the separator 3 may contain, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator 3 may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP.”
  • the surface of the separator 3 may be covered with an inorganic particle coating layer, an adhesive layer, or the like.
  • the surface of the separator 3 may have adhesive properties.
  • the separator 3 is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, an insulating inorganic particle, or the like having a similar function.
  • the separator 3 has a larger area than the positive electrode 1 and the negative electrode 2 in plan view (see FIG. 1B).
  • the amount of protrusion of the separator 3 that protrudes from both sides of the positive electrode 1 and the negative electrode 2 in a cross-sectional view may be symmetrical with respect to the positive electrode 1 and the negative electrode 2.
  • the amount of protrusion of the separator 3 is the same on both sides of the positive electrode 1 and the negative electrode 2, short circuits due to contact between the positive electrode 1 and the negative electrode 2 can be more effectively prevented.
  • the exterior member 50 may be a member that can house or enclose the electrode structure 10.
  • the exterior member 50 is a metal exterior body having a non-laminated configuration.
  • the metal sheath may be a single member made of metal such as stainless steel (SUS) and/or aluminum.
  • SUS stainless steel
  • the term "metal single member” here means that the exterior member 50 does not have a so-called laminate structure, and in a narrow sense, it means that the exterior member 50 is substantially made of only metal. It means that.
  • the surface of the metal exterior body may be subjected to an appropriate surface treatment.
  • the exterior member 50 may include a lid-shaped member 51 and a cup-shaped member 52.
  • the lid-like member 51 and the cup-like member 52 may be joined by welding (see FIGS. 4 to 6).
  • the lid-like member 51 may have an opening 51a formed in the center (for example, see FIG. 6).
  • a terminal member 60 may be provided to cover the opening 51a.
  • An insulating member 70 may be arranged between the terminal member 60 and the lid-like member 51.
  • the insulating member 70 is provided to fill the gap between the lid-like member 51 and the terminal member 60, it can also be considered to contribute to "sealing". As shown in FIG. 6, the insulating member 70 may have a shape along the lid-like member 51 so as to extend to an area outside the terminal member 60. That is, the insulating member 70 may be provided on the exterior member 50 so as to protrude outward from the terminal member 60.
  • the type of insulating member 70 is not particularly limited as long as it exhibits "insulating properties".
  • the insulating material has not only "insulating properties" but also "adhesive properties".
  • the insulating member 70 may include thermoplastic resin.
  • the insulation material may comprise polyolefins such as polyethylene and/or polypropylene.
  • the terminal member 60 means an output terminal for connection with external equipment in the secondary battery.
  • the terminal member 60 may have a flat plate shape, for example.
  • the flat terminal member 60 may be, for example, a metal plate.
  • the material of the terminal member 60 is not particularly limited, and may include at least one metal selected from the group consisting of aluminum, nickel, and copper.
  • the terminal member 60 may have a shape that follows the lid-like member 51. That is, in the illustrated cross-sectional view, the terminal member 60, the surface of the lid-like member 51 on which the terminal member 60 is provided, and the insulating member 70 may have a mutually parallel arrangement relationship.
  • the shape of the terminal member 60 in plan view is not particularly limited, and may be, for example, circular (see FIG.
  • the terminal member 60 may be electrically connected to a lead (not shown) drawn out from the positive electrode current collector 1a in the electrode structure 10. That is, since the terminal member 60 is electrically connected to the positive electrode 1, it may function as a positive electrode of the secondary battery.
  • the cup-shaped member 52 has a storage space for storing the electrode structure 10, and the electrode structure 10 may be stored in the storage space. More specifically, the electrode structure 10 may be housed so that the direction along the winding axis of the electrode structure 10 is parallel to the thickness direction of the secondary battery.
  • the electrolytic solution 80 which will be described later, can be supplied along the winding axis of the electrode structure 10, so that the electrolytic solution 80 can be efficiently supplied.
  • the dimension of the cup-shaped member 52 in the thickness direction is preferably approximately equal to the dimension along the winding axis of the electrode structure 10. Note that the term "substantially equal” as used herein is intended to include allowing an error of approximately ⁇ 10%.
  • the cup-shaped member 52 can have a reduced surplus void in the storage space. Even when the electrode structure 10 is housed in such a cup-shaped member 52, the electrolytic solution 80 can be efficiently impregnated because the non-opposing portion 22 is rough.
  • the width direction dimension 52a of the cup-shaped member 52 is longer than the thickness direction dimension 52b of the cup-shaped member 52 (see FIG. 5). With such dimensions of the cup-shaped member 52, the electrolytic solution 80 can be uniformly permeated in the thickness direction of the cup-shaped member 52.
  • the cup-shaped member 52 may be electrically connected to a lead (not shown) drawn out from the negative electrode current collector 2a in the electrode structure 10. That is, since the cup-shaped member 52 is electrically connected to the negative electrode, it may function as a negative electrode of the secondary battery.
  • the above-described electrode structure 10 may be enclosed in an exterior member 50, which will be described later, together with an electrolytic solution 80.
  • the electrolytic solution 80 is preferably a "non-aqueous" electrolyte such as an organic electrolyte or an organic solvent. That is, it is preferable that the electrolyte is a non-aqueous electrolyte.
  • Metal ions released from the electrodes (positive and negative electrodes) are present in the electrolyte, and therefore the electrolyte assists in the movement of metal ions in battery reactions.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a specific nonaqueous electrolyte solvent may contain at least carbonate.
  • Such carbonates may be cyclic carbonates and/or linear carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), and dipropyl carbonate (DPC).
  • non-aqueous electrolyte a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, for example a mixture of ethylene carbonate and diethyl carbonate may be used.
  • Li salt such as LiPF 6 and/or LiBF 4 may be used as a specific solute of the non-aqueous electrolyte.
  • the electrolyte 80 may be supplied by the electrolyte supply device 80s with the electrode structure 10 housed in the cup-shaped member 52.
  • the electrode structure 10 can be impregnated with the electrolytic solution. More specifically, by suitably infiltrating the electrolytic solution 80 from the non-opposing portion 22 of the negative electrode 2, which has good impregnating properties, the electrolytic solution can be easily infiltrated into the electrode uniformly.
  • the electrolytic solution 80 may be uniformly infiltrated in the direction of gravity from the non-opposed portion located on the upper side shown in FIG.
  • the electrolytic solution 80 can be uniformly permeated by, for example. Therefore, the charging/discharging reaction of the battery can be caused more suitably.
  • IR laser model number MD-X1000, Keyence
  • IR laser irradiation conditions were a frequency of 180 kHz, a scan speed of 4500 mm/sec, and one irradiation number, and the output of the IR laser was set to 50%.
  • An IR laser (model number MD-X1000, Keyence) was irradiated to the non-opposed portion of the negative electrode to roughen the surface of the negative electrode.
  • the IR laser irradiation conditions were a frequency of 180 kHz, a scan speed of 4500 mm/sec, and one irradiation frequency, and the output of the IR laser was set to 75%.
  • the created secondary battery was evaluated for [composite material surface roughness], [negative electrode active material surface roughness], [solvent penetration time], and [secondary battery cycle characteristics].
  • the specific evaluation method for each evaluation is as follows.
  • the negative electrode active material was observed using a laser microscope (model number VR-3200, Keyence). Specifically, particles constituting the negative electrode active material were observed. The observation conditions were set to ⁇ 50 magnification and auto illumination. After the above observation, the surface roughness of the particles constituting the negative electrode active material was measured. Note that the active material surface roughness is calculated by drawing a line with a length of 10 ⁇ m on the active material particle surface, measuring the average height on the line, and using the arithmetic mean height (Ra) of the line roughness. did.
  • the method for evaluating the time for solvent penetration into the negative electrode was to drop 5 ⁇ l of dimethyl carbonate (DMC) onto the negative electrode using a micropipette, and then visually evaluate the time until the solvent soaked into the negative electrode.
  • the time it took for the color to penetrate was defined as the time when the color of DMC disappeared.
  • the solvent penetration time was measured using a digital microscope (model number VHX-6000, Keyence). The observation conditions were magnification x20 and coaxial epi-illumination. Note that if an electrolytic solution containing Li salt and additives is used, it will deposit on the dropping surface, making it impossible to determine whether or not it has penetrated, so a DMC solvent was used in this evaluation.
  • the secondary batteries of Examples 1 to 5 have a larger surface roughness of the composite material than the secondary battery of Comparative Example 1.
  • the surface roughness of the composite material in the non-opposing part that was irradiated with the IR laser was greater than the surface roughness of the composite material in the facing part that was not irradiated with the IR laser.
  • the secondary batteries of Examples 1 to 5 are shorter than the secondary battery of Comparative Example 1. In other words, the secondary batteries of Examples 1 to 5 had improved electrolyte impregnation properties compared to the secondary battery of Comparative Example 1.
  • the secondary batteries of Examples 1 to 5 have larger surface roughness of the negative electrode active material than the secondary battery of Comparative Example 1.
  • the surface roughness of the negative electrode active material in the non-opposing part that was irradiated with the IR laser was greater than the surface roughness of the negative electrode active material in the facing part that was not irradiated with the IR laser. It's getting bigger.
  • the secondary batteries of Examples 1 to 5 are shorter than the secondary battery of Comparative Example 1. In other words, the secondary batteries of Examples 1 to 5 had improved electrolyte impregnation properties compared to the secondary battery of Comparative Example 1.
  • aspects of the secondary battery of the present disclosure are as follows.
  • ⁇ 1> An electrode structure in which a positive electrode and a negative electrode having a larger area than the positive electrode are arranged facing each other with a separator interposed therebetween;
  • the negative electrode has a facing portion facing the positive electrode and a non-facing portion not facing the positive electrode,
  • a secondary battery wherein the surface of the non-opposing portion is rougher than the surface of the opposing portion.
  • ⁇ 3> The secondary battery according to ⁇ 1> or ⁇ 2>, wherein the electrode structure is configured by winding the positive electrode and the negative electrode with the separator interposed therebetween.
  • ⁇ 4> The secondary battery according to ⁇ 3>, wherein the direction along the winding axis of the winding is parallel to the thickness direction of the secondary battery.
  • ⁇ 5> The secondary battery according to ⁇ 3> or ⁇ 4>, wherein a dimension of the electrode structure along the winding axis is approximately equal to a dimension in the thickness direction of an exterior member housing the electrode structure.
  • ⁇ 6> The secondary battery according to ⁇ 5>, wherein the dimension in the width direction of the exterior member perpendicular to the thickness direction is longer than the dimension in the thickness direction.
  • ⁇ 7> The secondary battery according to any one of ⁇ 1> to ⁇ 6>, wherein the electrode structure is impregnated with an electrolyte.
  • the negative electrode comprises a composite material containing a negative electrode active material, The secondary battery according to any one of ⁇ 1> to ⁇ 7>, wherein the surface roughness of the composite material in the non-facing portion is greater than the surface roughness of the composite material in the opposing portion.
  • the negative electrode comprises a composite material containing a negative electrode active material, The secondary according to any one of ⁇ 1> to ⁇ 7>, wherein the surface roughness of the negative electrode active material in the non-facing portion is greater than the surface roughness of the negative electrode active material in the facing portion. battery.
  • the negative electrode comprises a composite material containing a negative electrode active material, Any one of ⁇ 1> to ⁇ 9>, wherein the negative electrode active material contains at least one selected from the group consisting of C, Si, SiO x , Sn, Bi, Ti, Mn, Fe, Ni, and Cu.
  • the secondary battery described in item 1. ⁇ 11> The secondary battery according to any one of ⁇ 1> to ⁇ 10>, wherein the positive electrode and the negative electrode are capable of intercalating and deintercalating lithium ions.
  • the secondary battery according to the present disclosure can be used in various fields where power storage is expected.
  • the secondary battery of the present disclosure can be used in the electrical, information, and communication fields where mobile devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic Paper, RFID tags, card-type electronic money, electric/electronic equipment fields including small electronic devices such as smart watches, or mobile equipment fields), household/small industrial applications (e.g., power tools, golf carts, household/nursing use) ⁇ Industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g.
  • mobile devices e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic Paper, RFID tags, card-type electronic money, electric/electronic equipment fields including small electronic devices such as smart watches, or mobile equipment fields
  • household/small industrial applications e.g., power tools, golf carts, household/nursing use
  • Large industrial applications
  • hybrid cars electric cars, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications e.g. various power generation, road conditioners, smart grids, home-installed power storage systems, etc.
  • medical applications medical equipment such as earphones and hearing aids
  • pharmaceutical applications medication management systems, etc.
  • the present disclosure can also be used in the field of IoT), space/deep sea applications (for example, fields of space probes, underwater research vessels, etc.), and the like.
  • Electrode structure 50 Exterior member 51 Lid-like member 51a Opening portion 52 Cup-shaped member 52a Cup-shaped Dimension in the width direction of the member 52b Dimension in the thickness direction of the cup-shaped member 60 Terminal member 70 Insulating member 80 Electrolyte 80s Electrolyte supply device 100 Secondary battery L Length of non-opposed portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a secondary battery in which charging and discharging reactions occur more favorably, thereby improving the volumetric energy density of an electrode. A secondary battery 100 according to the present disclosure comprises an electrode structure 10 composed of a positive electrode 1 and a negative electrode 2 having a larger area than the positive electrode 1, the positive and negative electrodes being disposed opposite to each other with a separator 3 interposed therebetween. The negative electrode 2 has an opposite part 21 opposite to the positive electrode 1 and a non-opposite part 22 that is not opposite to the positive electrode 1. The surface of the non-opposite part 22 is rougher than the surface of the opposite part 21.

Description

二次電池secondary battery
 本開示は、二次電池に関する。 The present disclosure relates to secondary batteries.
 二次電池は、充電・放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 Secondary batteries can be repeatedly charged and discharged, and are used for a variety of purposes. For example, secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
 特許文献1には、集電体の表面上にコーティングされた電極活物質の上層部の気孔率が下層部の気孔率より高い電池用の電極が開示されている。そして、特許文献1に記載の電極によれば、電極内部よりも電極表面部分を高い気孔率とすることによって、電解液に対する含浸性を改善させる点が開示されている。 Patent Document 1 discloses a battery electrode in which the porosity of an upper layer of an electrode active material coated on the surface of a current collector is higher than that of a lower layer. According to the electrode described in Patent Document 1, it is disclosed that impregnation with an electrolytic solution is improved by making the electrode surface portion have a higher porosity than the inside of the electrode.
特開2010-153403号公報Japanese Patent Application Publication No. 2010-153403
 本願発明者は、従前の二次電池では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。 The inventor of the present application has noticed that there are problems that need to be overcome with conventional secondary batteries, and has found it necessary to take measures to address them. Specifically, the inventor of the present application has found that there are the following problems.
 特許文献1に記載の電極は、電極表面部分に多数の気孔が形成されるため、電極の体積当たりのエネルギー密度の低下が懸念される。また、電池の充放電反応は、正極と負極とが対向する位置で生じるが、電極の対向位置に多数の気孔が形成されていると、充放電反応に悪影響を及ぼすことが懸念される。その結果、電池のサイクル特性が低下していた。 Since the electrode described in Patent Document 1 has many pores formed on the surface of the electrode, there is a concern that the energy density per volume of the electrode may decrease. Further, the charging and discharging reaction of a battery occurs at the position where the positive electrode and the negative electrode face each other, but if a large number of pores are formed at the position where the electrodes face each other, there is a concern that the charging and discharging reaction will be adversely affected. As a result, the cycle characteristics of the battery deteriorated.
 本開示は、かかる課題に鑑みて為されたものである。即ち、本開示の主たる目的は、充放電反応をより好適に生じさせて、サイクル特性をより向上させた二次電池を提供することである。 The present disclosure has been made in view of such problems. That is, the main objective of the present disclosure is to provide a secondary battery in which charging and discharging reactions occur more appropriately and cycle characteristics are further improved.
 本開示に係る二次電池は、
 正極と、前記正極よりも面積が大きい負極とが、セパレータを介して対向配置されて成る電極構造体を備え、
 前記負極は、前記正極と対向する対向部と、前記正極と対向しない非対向部とを有しており、
 前記非対向部の表面が、前記対向部の表面よりも粗くなっている。
The secondary battery according to the present disclosure is
comprising an electrode structure in which a positive electrode and a negative electrode having a larger area than the positive electrode are arranged facing each other with a separator interposed therebetween;
The negative electrode has a facing portion facing the positive electrode and a non-facing portion not facing the positive electrode,
The surface of the non-opposing portion is rougher than the surface of the opposing portion.
 本開示に係る二次電池によれば、負極における正極と対向する対向部の表面が、負極における正極と対向しない非対向部の表面よりも粗くなっているため、充放電反応をより好適に生じさせて、電極の体積当たりのエネルギー密度を向上させることができる。 According to the secondary battery according to the present disclosure, the surface of the opposing part of the negative electrode that faces the positive electrode is rougher than the surface of the non-facing part of the negative electrode that does not face the positive electrode, so that charging and discharging reactions can occur more favorably. Thus, the energy density per volume of the electrode can be improved.
図1Aは、正極、負極およびセパレータの断面図である。FIG. 1A is a cross-sectional view of a positive electrode, a negative electrode, and a separator. 図1Bは、正極、負極およびセパレータの平面図である。FIG. 1B is a plan view of the positive electrode, negative electrode, and separator. 図2は、正極、負極およびセパレータの要部拡大断面図である。FIG. 2 is an enlarged sectional view of main parts of a positive electrode, a negative electrode, and a separator. 図3は、巻回構造である電極構造体の斜視図である。FIG. 3 is a perspective view of an electrode structure having a wound structure. 図4は、電極構造体を外装部材に収容した状態を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing the electrode structure housed in the exterior member. 図5は、外装部材内に電解液を供給した状態を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a state in which an electrolytic solution is supplied into the exterior member. 図6は、本開示の二次電池の実施形態を模式的に示した模式断面図である。FIG. 6 is a schematic cross-sectional view schematically showing an embodiment of the secondary battery of the present disclosure. 図7Aは、二次電池の例示形態を模式的に示しており、ボタン型・コイン型の二次電池の斜視図である。FIG. 7A schematically shows an exemplary form of a secondary battery, and is a perspective view of a button-shaped/coin-shaped secondary battery. 図7Bは、二次電池の例示形態を模式的に示しており、角型の二次電池の斜視図である。FIG. 7B schematically shows an example of a secondary battery, and is a perspective view of a square secondary battery. 図8は、本開示の二次電池の別の実施形態を模式的に示した模式断面図である。FIG. 8 is a schematic cross-sectional view schematically showing another embodiment of the secondary battery of the present disclosure.
 以下では、本開示の一実施形態に係る二次電池をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本開示の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。 Below, a secondary battery according to an embodiment of the present disclosure will be described in more detail. Although explanations will be made with reference to drawings as necessary, various elements in the drawings are merely shown schematically and illustratively for understanding the present disclosure, and the appearance and dimensional ratio may differ from the actual ones. .
 本明細書で直接的または間接的に説明される“上下方向” および“左右方向”は、図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。また、本明細書で直接的または間接的に説明される「断面視」は、二次電池を構成する電極組立体・電極構成層の“上下方向”に沿って二次電池を切り取った仮想的な断面に基づいている。同様にして、本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成する電極材の“上下方向”に基づいている。例えばボタン型・コイン型などの「板状に厚みを有する二次電池」でいえば、“厚み”の方向は、かかる二次電池の板厚方向に相当する。本明細書で用いる「平面視」とは、かかる厚みの方向に沿って対象物を上側または下側からみた場合の見取図に基づいている。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。 The "up-down direction" and "left-right direction" described directly or indirectly in this specification correspond to the up-down direction and the left-right direction in the drawings. Unless otherwise specified, the same reference numerals or symbols indicate the same members/parts or the same meanings. In addition, "cross-sectional view" described directly or indirectly in this specification refers to a virtual view of a secondary battery cut along the "vertical direction" of the electrode assembly/electrode constituent layers that constitute the secondary battery. It is based on a cross section. Similarly, the direction of "thickness" described directly or indirectly in this specification is based on the "vertical direction" of the electrode material constituting the secondary battery. For example, in the case of a "thick plate-shaped secondary battery" such as a button type or coin type, the direction of "thickness" corresponds to the thickness direction of the secondary battery. The term "planar view" used in this specification is based on a sketch when the object is viewed from above or below along the thickness direction. Unless otherwise specified, the same reference numerals or symbols indicate the same members/parts or the same meanings.
 本明細書でいう「上面」とは、電池を構成する面のうちで上下方向の上側に位置付けられる面のことを意味し、「下面」とは、電池を構成する面のうちで上下方向の下側に位置付けられる面のことを意味している。対向する主面が2つ存在するような典型的な二次電池を想定すると、本明細書でいう「上面」とは、かかる主面の一方を指しており、「下面」とは、かかる主面の他方を指している。 In this specification, the "top surface" refers to the surface that is located above the battery in the vertical direction, and the "bottom surface" refers to the surface that is positioned above the battery in the vertical direction. It means the surface positioned on the lower side. Assuming a typical secondary battery with two opposing main surfaces, the "top surface" in this specification refers to one of the main surfaces, and the "bottom surface" refers to one of the main surfaces. Pointing to the other side.
[本開示の二次電池の説明]
 本明細書でいう「二次電池」は、充電・放電の繰り返しが可能な電池のことを指している。従って、本開示に係る二次電池は、その名称に過度に拘泥されるものでなく、例えば蓄電デバイスなども対象に含まれ得る。本開示の二次電池100は、電極構造体10と、電極構造体10を収容する外装部材50と、電解液80と、を備えてよい。以下、本開示の二次電池を構成する各構成要素について図1~8を参照しながら詳述する。
[Description of the secondary battery of the present disclosure]
The term "secondary battery" used herein refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the present disclosure is not excessively limited by its name, and may also include, for example, power storage devices. The secondary battery 100 of the present disclosure may include an electrode structure 10, an exterior member 50 that accommodates the electrode structure 10, and an electrolyte 80. Each component constituting the secondary battery of the present disclosure will be described in detail below with reference to FIGS. 1 to 8.
[電極構造体]
 電極構造体10は、正極1と、正極1よりも面積が大きい負極2とが、セパレータ3を介して対向配置されて成るシート状または板状の部材(図1および図2参照)を、ロール状に巻回することによって構成されてよい(図3参照)。なお、本開示の電極構造体10は、巻回状の構造に限定されるものではなく、正極1、セパレータ3および負極2が平面上に積層された積層状の構造(図8参照)、または、正極1、セパレータ3および負極2を長いフィルム上に積層してから折りたたんだ、いわゆるスタック・アンド・フォールディング型構造としてもよい。以下、電極構造体10を構成する各構成要素について詳述する。
[Electrode structure]
The electrode structure 10 is made by rolling a sheet or plate-like member (see FIGS. 1 and 2) in which a positive electrode 1 and a negative electrode 2 having a larger area than the positive electrode 1 are arranged facing each other with a separator 3 in between. (See FIG. 3). Note that the electrode structure 10 of the present disclosure is not limited to a wound structure, but may have a laminated structure in which the positive electrode 1, the separator 3, and the negative electrode 2 are stacked on a plane (see FIG. 8), or , a so-called stack-and-fold structure in which the positive electrode 1, separator 3, and negative electrode 2 are laminated on a long film and then folded may be used. Each component constituting the electrode structure 10 will be described in detail below.
[正極]
 正極1は、少なくとも正極集電体1aおよび正極材1bから構成されてよい。図1Aに示す例では、正極集電体1aの両面に正極材1bが設けられているが、この例に限定されず、正極集電体1aの片面にのみ正極材1bが設けられていてもよい。
[Positive electrode]
The positive electrode 1 may include at least a positive electrode current collector 1a and a positive electrode material 1b. In the example shown in FIG. 1A, the positive electrode material 1b is provided on both sides of the positive electrode current collector 1a, but the present invention is not limited to this example, and the positive electrode material 1b may be provided only on one side of the positive electrode current collector 1a. good.
 正極集電体1aは、電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。例えば、正極集電体1aは、シート状の金属部材を切断して矩形状としてよく、多孔または穿孔の形態を有していてよい。また、集電体は、金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。 The positive electrode current collector 1a is a member that helps collect and supply electrons generated in the active material due to battery reactions. For example, the positive electrode current collector 1a may be made into a rectangular shape by cutting a sheet-like metal member, and may have a porous or perforated form. Further, the current collector may be metal foil, punched metal, net, expanded metal, or the like.
 正極集電体1aは、一例として、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものであってよく、例えばアルミニウム箔が好ましい。 As an example, the positive electrode current collector 1a may be made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel, etc., and for example, aluminum foil is preferable.
 正極材1bには、電極活物質として正極活物質が含まれてよい。正極活物質は、例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材1bに含まれていてよい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材1bに含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材1bは、“正極合材”と称すこともできる。 The positive electrode material 1b may contain a positive electrode active material as an electrode active material. When the positive electrode active material is composed of, for example, granules, a binder may be included in the positive electrode material 1b in order to ensure sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material 1b in order to facilitate the transmission of electrons that promote battery reactions. Since the positive electrode material 1b contains a plurality of components in this manner, the positive electrode material 1b can also be referred to as a "positive electrode composite material."
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本開示に係る二次電池100の正極材1bにおいては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれてよい。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。 The positive electrode active material is preferably a material that contributes to intercalation and desorption of lithium ions. From this point of view, it is preferable that the positive electrode active material is, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material 1b of the secondary battery 100 according to the present disclosure, such a lithium transition metal composite oxide may preferably be included as a positive electrode active material. For example, the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a material in which some of the transition metals thereof are replaced with another metal. Although such positive electrode active materials may be contained as a single species, they may be contained in a combination of two or more types.
 正極材1bに含まれ得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体およびポリテトラフルオロエチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材1bに含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。 Binders that may be included in the positive electrode material 1b include, but are not particularly limited to, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and polytetrafluoroethylene. At least one selected from the group consisting of: The conductive additive that can be included in the positive electrode material 1b is not particularly limited, but includes carbon black such as thermal black, furnace black, channel black, Ketjen black, and acetylene black, graphite, carbon nanotubes, and vapor-phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
 正極材1bの厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば5μm以上200μm以下である。正極材層の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness of the positive electrode material 1b is not particularly limited, but may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at arbitrary 10 points may be adopted.
[負極]
 負極2は、少なくとも負極集電体2aおよび負極材2bから構成されてよい。図1Aに示す例では、負極集電体2aの両面に負極材2bが設けられているが、この例に限定されず、負極集電体2aの片面にのみ負極材2bが設けられていてもよい。
[Negative electrode]
The negative electrode 2 may include at least a negative electrode current collector 2a and a negative electrode material 2b. In the example shown in FIG. 1A, the negative electrode material 2b is provided on both sides of the negative electrode current collector 2a, but the invention is not limited to this example, and the negative electrode material 2b may be provided only on one side of the negative electrode current collector 2a. good.
 負極集電体2aは、電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。負極集電体2aは、一例として、ニッケル、銅、ニッケルメッキした銅およびステンレス鋼(SUS)等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。なお、本明細書における「ステンレス鋼」は、例えば「JIS G 0203 鉄鋼用語」に規定されているステンレス鋼のことを指しており、クロムまたはクロムとニッケルとを含有させた合金鋼であってよい。 The negative electrode current collector 2a is a member that helps collect and supply electrons generated in the active material due to battery reactions. The negative electrode current collector 2a is preferably made of a metal foil containing at least one member selected from the group consisting of nickel, copper, nickel-plated copper, stainless steel (SUS), etc., for example, copper foil. It's good to be there. Note that "stainless steel" in this specification refers to, for example, stainless steel specified in "JIS G 0203 Iron and Steel Terminology", and may be an alloy steel containing chromium or chromium and nickel. .
 負極材2bには、電極活物質として負極活物質が含まれてよい。負極活物質は、例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが負極材2bに含まれていてよい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材2bに含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、負極材2bは、“負極合材”と称すこともできる。 The negative electrode material 2b may contain a negative electrode active material as an electrode active material. When the negative electrode active material is composed of, for example, a granular material, a binder may be included in the negative electrode material 2b for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the negative electrode material 2b in order to facilitate the transmission of electrons that promote battery reactions. Since the negative electrode material 2b contains a plurality of components in this manner, it can also be referred to as a "negative electrode composite material."
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は、C(炭素)、Si(珪素)、SiO(酸化珪素)、Sn(スズ)、Bi(ビスマス)、Ti(チタン)、Mn(マンガン)、Fe(鉄)、Ni(ニッケル)およびCu(銅)などから成る群から選択される少なくとも1種を挙げることができる。 The negative electrode active material is preferably a material that contributes to intercalation and desorption of lithium ions. From this point of view, the negative electrode active materials include C (carbon), Si (silicon), SiO x (silicon oxide), Sn (tin), Bi (bismuth), Ti (titanium), Mn (manganese), Fe ( At least one selected from the group consisting of iron), Ni (nickel), Cu (copper), and the like can be mentioned.
 負極材2bに含まれ得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。負極材2bに含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材2bには、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that may be included in the negative electrode material 2b is not particularly limited, but at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. can be mentioned. The conductive additive that can be included in the negative electrode material 2b is not particularly limited, but includes carbon black such as thermal black, furnace black, channel black, Ketjen black, and acetylene black, graphite, carbon nanotubes, and vapor-phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. Note that the negative electrode material 2b may contain a component resulting from a thickener component (for example, carboxymethyl cellulose) used during battery manufacture.
 負極材2bの厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば5μm以上200μm以下である。負極材2bの厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness of the negative electrode material 2b is not particularly limited, but may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the negative electrode material 2b is the thickness inside the secondary battery, and the average value of the measured values at ten arbitrary locations may be adopted.
 本開示の二次電池における負極2は、平面視において正極1よりも面積が大きく設計されている(図1B参照)。ここで、一般的な二次電池では、正極1および負極2に電池反応を生じさせると、負極2の外周縁にデンドライドが析出し易く、このデンドライドが正極1と接して内部短絡を起こす可能性がある。この内部短絡を防ぐため、負極2を平面視において正極1よりも面積を大きく設計している。つまり、負極2には、正極1と対向する対向部21と、正極1と対向しない非対向部22と、が備えられている(図1A,図2参照)。言い換えると、負極2の非対向部22の面積分、負極2の面積が正極1の面積よりも大きく設計されている。なお、非対向部22の長さL(図2参照)は、0.2mm以上であることが好ましい。 The negative electrode 2 in the secondary battery of the present disclosure is designed to have a larger area than the positive electrode 1 in plan view (see FIG. 1B). Here, in a typical secondary battery, when a battery reaction occurs between the positive electrode 1 and the negative electrode 2, dendrites tend to precipitate on the outer periphery of the negative electrode 2, and there is a possibility that this dendrite comes into contact with the positive electrode 1 and causes an internal short circuit. There is. In order to prevent this internal short circuit, the negative electrode 2 is designed to have a larger area than the positive electrode 1 in plan view. That is, the negative electrode 2 includes a facing portion 21 that faces the positive electrode 1 and a non-facing portion 22 that does not face the positive electrode 1 (see FIGS. 1A and 2). In other words, the area of the negative electrode 2 is designed to be larger than the area of the positive electrode 1 by the area of the non-facing portion 22 of the negative electrode 2 . Note that the length L (see FIG. 2) of the non-opposed portion 22 is preferably 0.2 mm or more.
 非対向部22は、対向部21よりも粗くなっている。本明細書でいう「粗くなる」との用語は、非対向部22と対向部21とを外観上の検査によって「粗さの指標」を比較して判断することを示す。つまり、主たる態様としては、非対向部22の表面の粗さと、対向部21の表面の粗さとを比較して判断することを示す。さらに、「粗くなる」との用語には、外観上の変化は少ないものの非対向部22と対向部21に内在的に存在する粗さ、つまりは、「非対向部22を構成する粒子の表面」と「対向部を構成する粒子の表面」との間の「粗さの指標」を比較して判断することも包含してよい。なお、「内在的に存在する粗さ」について、対向部21のバルク領域(表面ではない領域)と非対向部22のバルク領域(表面ではない領域)との間で空隙率が大きく異ならないことが好ましい。また、「粗さの指標」の一例として、表面粗さ(算術平均粗さ(RaまたはSa)、最大高さ(RzまたはSz)、二乗平均平方根粗さ(RqまたはSq))等が挙げられる。当該粗さに関する実証試験は、後述の実施例で詳述する。 The non-opposing portion 22 is rougher than the opposing portion 21. As used herein, the term "roughness" indicates that the judgment is made by comparing the "roughness index" of the non-opposed portion 22 and the opposing portion 21 through an external inspection. That is, the main aspect is that the determination is made by comparing the surface roughness of the non-opposing portion 22 and the surface roughness of the opposing portion 21. Furthermore, the term "becoming rough" refers to the roughness that inherently exists in the non-opposed portion 22 and the opposing portion 21, although there is little change in appearance. ” and “the surface of the particles constituting the opposing portion” may also be included in the judgment by comparing the “roughness index”. Regarding the "inherently existing roughness", the porosity must not differ greatly between the bulk region (region not on the surface) of the facing part 21 and the bulk region (region not on the surface) of the non-facing part 22. is preferred. Furthermore, examples of "roughness indicators" include surface roughness (arithmetic mean roughness (Ra or Sa), maximum height (Rz or Sz), root mean square roughness (Rq or Sq)), etc. . The verification test regarding the roughness will be described in detail in the examples below.
 非対向部22の粗さを変える処理は、一例としてレーザー処理によって、非対向部22の「表面」および/または「構成する粒子の表面」の粗さを対向部21より粗くしてよい。なお、粗さの改変処理は、レーザー処理に限定されるものではなく、例えば、プラズマ処理、物理的な研削処理、加熱により表面改質処理等によるものであってもよい。 The process of changing the roughness of the non-opposed portion 22 may be performed by, for example, laser treatment to make the roughness of the “surface” and/or the “surface of the constituent particles” of the non-opposed portion 22 rougher than that of the opposing portion 21. Note that the roughness modification treatment is not limited to laser treatment, and may be, for example, plasma treatment, physical grinding treatment, surface modification treatment by heating, or the like.
 負極2の非対向部22の表面を対向部21の表面よりも粗くすることにより、後述する電解液の含浸性が向上し、電極に電解液を均一に染み込み易くできる。したがって、電池の充放電反応をより好適に生じさせることができる。また、電池の充放電反応を生じさせる対向部21には、その表面および/または構成する粒子の表面を粗くする処理が施されないため、電極の体積当たりのエネルギー密度を向上させることができる。 By making the surface of the non-opposing portion 22 of the negative electrode 2 rougher than the surface of the opposing portion 21, the impregnating property of the electrolytic solution, which will be described later, is improved, and the electrolytic solution can be easily permeated into the electrode uniformly. Therefore, the charging/discharging reaction of the battery can be caused more suitably. In addition, since the facing part 21 that causes the charging/discharging reaction of the battery is not subjected to any treatment to roughen its surface and/or the surfaces of the constituent particles, the energy density per volume of the electrode can be improved.
 好ましい非対向部22の態様の一例として、非対向部22は、対向部21よりも外側に設けられていてよい。このような態様であれば、非対向部22から対向部21に向けて電解液を染み込ませることができるため、より均一に電解液を電極に含浸させることができる。さらに好ましくは、非対向部22は、対向部21の外周縁に設けられてよい。このような態様であれば、対向部21の外周から均一に電解液を含浸させることができる。さらに好ましい非対向部22の態様の一例として、対向部21の両側に位置する非対向部22は、対向部21に対して対称に設けられていてよい。このような態様であれば、さらに均一に電解液を含浸させることができる。 As an example of a preferable aspect of the non-opposing portion 22, the non-opposing portion 22 may be provided outside the opposing portion 21. With such an embodiment, the electrolytic solution can be impregnated from the non-opposing part 22 toward the opposing part 21, so that the electrode can be more uniformly impregnated with the electrolytic solution. More preferably, the non-opposing portion 22 may be provided at the outer peripheral edge of the opposing portion 21. With such an embodiment, the electrolytic solution can be uniformly impregnated from the outer periphery of the facing portion 21 . As an example of a more preferable aspect of the non-opposed portions 22, the non-opposed portions 22 located on both sides of the opposing portion 21 may be provided symmetrically with respect to the opposing portion 21. With such an embodiment, it is possible to more uniformly impregnate the electrolytic solution.
[セパレータ]
 セパレータ3は、正極1および負極2の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータ3は、正極1と負極2との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータ3は多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータ3として用いられてよい。この点、セパレータ3として用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ、または、ポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータ3は、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータ3の表面が無機粒子コート層や接着層等により覆われていてもよい。セパレータ3の表面が接着性を有していてもよい。なお、本開示において、セパレータ3は、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。
[Separator]
The separator 3 is a member provided from the viewpoint of preventing short circuits due to contact between the positive electrode 1 and the negative electrode 2 and retaining electrolyte. In other words, the separator 3 can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode 1 and the negative electrode 2. Preferably, the separator 3 is a porous or microporous insulating member and has a membrane form due to its small thickness. Although this is merely an example, a microporous membrane made of polyolefin may be used as the separator 3. In this regard, the microporous membrane used as the separator 3 may contain, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin. Furthermore, the separator 3 may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP." The surface of the separator 3 may be covered with an inorganic particle coating layer, an adhesive layer, or the like. The surface of the separator 3 may have adhesive properties. In the present disclosure, the separator 3 is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, an insulating inorganic particle, or the like having a similar function.
 セパレータ3は、平面視において正極1および負極2よりも面積が大きいことが好ましい(図1B参照)。このような態様とすることにより、正極1および負極2の接触による短絡をより効果的に防止することができる。また、断面視(図1A)において正極1および負極2の両側から突出するセパレータ3の突出量は、正極1および負極2に対して対称であってよい。このような態様であれば、セパレータ3の突出量が正極1および負極2の両側で同程度であるため、正極1および負極2の接触による短絡をさらに効果的に防止することができる。 It is preferable that the separator 3 has a larger area than the positive electrode 1 and the negative electrode 2 in plan view (see FIG. 1B). By adopting such an aspect, short circuit due to contact between the positive electrode 1 and the negative electrode 2 can be more effectively prevented. Furthermore, the amount of protrusion of the separator 3 that protrudes from both sides of the positive electrode 1 and the negative electrode 2 in a cross-sectional view (FIG. 1A) may be symmetrical with respect to the positive electrode 1 and the negative electrode 2. In this embodiment, since the amount of protrusion of the separator 3 is the same on both sides of the positive electrode 1 and the negative electrode 2, short circuits due to contact between the positive electrode 1 and the negative electrode 2 can be more effectively prevented.
[外装部材]
 外装部材50は、電極構造体10を収納する又は包み込むことができる部材であってよい。外装部材50は、非ラミネート構成を有する金属外装体であることが好ましい。金属外装体は、ステンレス鋼(SUS)および/またはアルミニウムなどの金属から成る単一部材であってよい。ここでいう「金属単一部材」とは、広義には、外装部材50がいわゆるラミネート構成を有さないことを意味しており、狭義には、外装部材50が実質的に金属のみから成る部材となることを意味している。外装部材50が実質的に金属のみから成る部材となる場合、金属外装体の表面に適当な表面処理がなされていてもよい。
[Exterior parts]
The exterior member 50 may be a member that can house or enclose the electrode structure 10. Preferably, the exterior member 50 is a metal exterior body having a non-laminated configuration. The metal sheath may be a single member made of metal such as stainless steel (SUS) and/or aluminum. In a broad sense, the term "metal single member" here means that the exterior member 50 does not have a so-called laminate structure, and in a narrow sense, it means that the exterior member 50 is substantially made of only metal. It means that. When the exterior member 50 is made of substantially only metal, the surface of the metal exterior body may be subjected to an appropriate surface treatment.
 電極構造体10を外装部材50に容易に収納する観点から、外装部材50は、蓋状部材51と、カップ状部材52と、を有してよい。蓋状部材51とカップ状部材52は、溶接によって接合されてよい(図4~6参照)。 From the viewpoint of easily storing the electrode structure 10 in the exterior member 50, the exterior member 50 may include a lid-shaped member 51 and a cup-shaped member 52. The lid-like member 51 and the cup-like member 52 may be joined by welding (see FIGS. 4 to 6).
 蓋状部材51は、中央に開口部51aが形成されていてよい(例えば、図6参照)。そして、開口部51aを覆うように端子部材60が設けられてよい。端子部材60と蓋状部材51との間には、絶縁部材70が配置されてよい。 The lid-like member 51 may have an opening 51a formed in the center (for example, see FIG. 6). A terminal member 60 may be provided to cover the opening 51a. An insulating member 70 may be arranged between the terminal member 60 and the lid-like member 51.
 絶縁部材70は、蓋状部材51と端子部材60との隙間を埋めるように設けられるところ、“封止”に資すると解すこともできる。図6に示されるように、絶縁部材70は、端子部材60の外側の領域まで広がるように蓋状部材51に沿う形の形状となっていてよい。つまり、端子部材60から外側へとはみ出すように絶縁部材70が外装部材50上に設けられてよい。絶縁部材70は、“絶縁性”を呈すのであればその種類に特に制限はない。好ましくは、絶縁材は“絶縁性”だけでなく、“接着性”を有することが好ましい。例えば、絶縁部材70は熱可塑性樹脂を含んで成るものであってよい。あくまでも1つの具体的な例示にすぎないが、絶縁材はポリエチレンおよび/またはポリプロピレンなどのポリオレフィンを含んで成るものであってよい。 Since the insulating member 70 is provided to fill the gap between the lid-like member 51 and the terminal member 60, it can also be considered to contribute to "sealing". As shown in FIG. 6, the insulating member 70 may have a shape along the lid-like member 51 so as to extend to an area outside the terminal member 60. That is, the insulating member 70 may be provided on the exterior member 50 so as to protrude outward from the terminal member 60. The type of insulating member 70 is not particularly limited as long as it exhibits "insulating properties". Preferably, the insulating material has not only "insulating properties" but also "adhesive properties". For example, the insulating member 70 may include thermoplastic resin. By way of one specific example only, the insulation material may comprise polyolefins such as polyethylene and/or polypropylene.
 端子部材60は、二次電池において外部機器との接続に供する出力端子を意味している。端子部材60は、例えば平板状の形態を有してよい。平板状の端子部材60は、例えば金属板であってよい。端子部材60は、その材質に特に制限はなく、アルミニウム、ニッケルおよび銅から成る群から選択される少なくとも1種の金属を含んでよい。図6に示す好適な実施形態から分かるように、端子部材60は蓋状部材51に沿う形状であってよい。つまり、図示されるような断面視において、端子部材60と、端子部材60が設けられている蓋状部材51の面および絶縁部材70とが互いに並行な配置関係を有してよい。端子部材60の平面視形状も特に制限はなく、例えば円形(図7A参照)であってよく、あるいは四角形などを含む矩形(図7B参照)であってもよい。端子部材60は、電極構造体10における正極集電体1aから引き出されたリード(不図示)と電気的に接続されてよい。つまり、端子部材60は、正極1と電気的に接続されるため、二次電池の正極として作用してよい。 The terminal member 60 means an output terminal for connection with external equipment in the secondary battery. The terminal member 60 may have a flat plate shape, for example. The flat terminal member 60 may be, for example, a metal plate. The material of the terminal member 60 is not particularly limited, and may include at least one metal selected from the group consisting of aluminum, nickel, and copper. As can be seen from the preferred embodiment shown in FIG. 6, the terminal member 60 may have a shape that follows the lid-like member 51. That is, in the illustrated cross-sectional view, the terminal member 60, the surface of the lid-like member 51 on which the terminal member 60 is provided, and the insulating member 70 may have a mutually parallel arrangement relationship. The shape of the terminal member 60 in plan view is not particularly limited, and may be, for example, circular (see FIG. 7A) or rectangular including a square (see FIG. 7B). The terminal member 60 may be electrically connected to a lead (not shown) drawn out from the positive electrode current collector 1a in the electrode structure 10. That is, since the terminal member 60 is electrically connected to the positive electrode 1, it may function as a positive electrode of the secondary battery.
 カップ状部材52は、電極構造体10を収納するための収納空間を有しており、当該収納空間に電極構造体10が収納されてよい。より具体的には、電極構造体10の巻回軸に沿う方向は、二次電池の厚み方向と平行となるように電極構造体10が収納されてよい。このような収納形態とすることにより、電極構造体10の巻回軸に沿って後述する電解液80を供給することができるため、効率的に電解液80を供給することができる。 The cup-shaped member 52 has a storage space for storing the electrode structure 10, and the electrode structure 10 may be stored in the storage space. More specifically, the electrode structure 10 may be housed so that the direction along the winding axis of the electrode structure 10 is parallel to the thickness direction of the secondary battery. By adopting such a storage configuration, the electrolytic solution 80, which will be described later, can be supplied along the winding axis of the electrode structure 10, so that the electrolytic solution 80 can be efficiently supplied.
 カップ状部材52の厚み方向の寸法は、電極構造体10の巻回軸に沿う寸法と略等しいことが好ましい。なお、本明細書でいう「略等しい」とは、±10%程度の誤差を許容するものを含むことを意図している。このようなカップ状部材52の厚み方向の寸法とすることにより、収納空間に余剰な空隙が低減されたカップ状部材52とすることができる。そして、このようなカップ状部材52に対し、電極構造体10を収納する場合であっても、非対向部22が粗くなっているため、効率的に電解液80を染み込ませることができる。 The dimension of the cup-shaped member 52 in the thickness direction is preferably approximately equal to the dimension along the winding axis of the electrode structure 10. Note that the term "substantially equal" as used herein is intended to include allowing an error of approximately ±10%. By setting the dimension of the cup-shaped member 52 in the thickness direction as described above, the cup-shaped member 52 can have a reduced surplus void in the storage space. Even when the electrode structure 10 is housed in such a cup-shaped member 52, the electrolytic solution 80 can be efficiently impregnated because the non-opposing portion 22 is rough.
 カップ状部材52の幅方向の寸法52aは、カップ状部材52の厚み方向の寸法52bよりも長いことが好ましい(図5参照)。このようなカップ状部材52の寸法とすることにより、カップ状部材52の厚み方向に均一に電解液80を染み込ませることができる。 It is preferable that the width direction dimension 52a of the cup-shaped member 52 is longer than the thickness direction dimension 52b of the cup-shaped member 52 (see FIG. 5). With such dimensions of the cup-shaped member 52, the electrolytic solution 80 can be uniformly permeated in the thickness direction of the cup-shaped member 52.
 カップ状部材52は、電極構造体10における負極集電体2aから引き出されたリード(不図示)と電気的に接続されてよい。つまり、カップ状部材52は、負極と電気的に接続されるため、二次電池の負極として作用してよい。 The cup-shaped member 52 may be electrically connected to a lead (not shown) drawn out from the negative electrode current collector 2a in the electrode structure 10. That is, since the cup-shaped member 52 is electrically connected to the negative electrode, it may function as a negative electrode of the secondary battery.
[電解液]
 本開示の二次電池では、上述の電極構造体10が電解液80とともに後述する外装部材50に封入されてよい。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解液80は有機電解質・有機溶媒などの“非水系”電解質であることが好ましい。すなわち、電解質が非水電解質となっていることが好ましい。電解質では電極(正極・負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。
[Electrolyte]
In the secondary battery of the present disclosure, the above-described electrode structure 10 may be enclosed in an exterior member 50, which will be described later, together with an electrolytic solution 80. When the positive electrode and the negative electrode have a layer capable of intercalating and deintercalating lithium ions, the electrolytic solution 80 is preferably a "non-aqueous" electrolyte such as an organic electrolyte or an organic solvent. That is, it is preferable that the electrolyte is a non-aqueous electrolyte. Metal ions released from the electrodes (positive and negative electrodes) are present in the electrolyte, and therefore the electrolyte assists in the movement of metal ions in battery reactions.
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものであってよい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物を用いてよい。また、具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が用いられてよい。 A non-aqueous electrolyte is an electrolyte containing a solvent and a solute. A specific nonaqueous electrolyte solvent may contain at least carbonate. Such carbonates may be cyclic carbonates and/or linear carbonates. Although not particularly limited, examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to. Examples of chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), and dipropyl carbonate (DPC). By way of example only, a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, for example a mixture of ethylene carbonate and diethyl carbonate may be used. Moreover, as a specific solute of the non-aqueous electrolyte, for example, Li salt such as LiPF 6 and/or LiBF 4 may be used.
 電解液80は、図5に示すように、カップ状部材52に電極構造体10が収納された状態で電解液供給装置80sによって供給されてよい。このような供給態様とすることにより、電極構造体10に電解液を染み込ませることができる。より詳述すると、含浸性のよい負極2の非対向部22から電解液80を好適に染み込ませることによって、電極に電解液を均一に染み込み易くできる。一例として、図5に示す上方側に位置する非対向部から重力方向に電解液80を均一に染み込ませることや、下方側(カップ状部材52の底面側)に位置する非対向部から毛管現象等によって電解液80を均一に染み込ませることができる。したがって、電池の充放電反応をより好適に生じさせることができる。 As shown in FIG. 5, the electrolyte 80 may be supplied by the electrolyte supply device 80s with the electrode structure 10 housed in the cup-shaped member 52. By adopting such a supply mode, the electrode structure 10 can be impregnated with the electrolytic solution. More specifically, by suitably infiltrating the electrolytic solution 80 from the non-opposing portion 22 of the negative electrode 2, which has good impregnating properties, the electrolytic solution can be easily infiltrated into the electrode uniformly. For example, the electrolytic solution 80 may be uniformly infiltrated in the direction of gravity from the non-opposed portion located on the upper side shown in FIG. The electrolytic solution 80 can be uniformly permeated by, for example. Therefore, the charging/discharging reaction of the battery can be caused more suitably.
 本開示に関連する実施例を説明する。以下の実施例1~5および比較例1の二次電池を作成した。 Examples related to the present disclosure will be described. Secondary batteries of Examples 1 to 5 and Comparative Example 1 below were created.
[実施例1~5および比較例1の二次電池の共通する構成]
 実施例1~5および比較例1の二次電池として、図6に示すとおり、セパレータを介して正極及び負極を巻回することで構成された電極構造体10を有する二次電池を作成した。なお、二次電池を構成する電極構造体(正極、負極、セパレータ)、外装部材および電解液の詳細は、[本開示の二次電池の説明]で説明したとおりである。
[Common configuration of secondary batteries of Examples 1 to 5 and Comparative Example 1]
As secondary batteries of Examples 1 to 5 and Comparative Example 1, secondary batteries having an electrode structure 10 configured by winding a positive electrode and a negative electrode with a separator in between, as shown in FIG. 6, were created. Note that the details of the electrode structure (positive electrode, negative electrode, separator), exterior member, and electrolyte that constitute the secondary battery are as described in [Description of the secondary battery of the present disclosure].
[実施例1特有の構成]
 負極の非対向部に対し、IRレーザー(型番MD-X1000,Keyence)を照射し、負極表面を粗面化した。なお、IRレーザーの照射条件は、周波数180kHz、スキャン速度4500mm/sec、照射回数1回とし、IRレーザーの出力は5%に設定した。
[Configuration unique to Example 1]
An IR laser (model number MD-X1000, Keyence) was irradiated to the non-opposed portion of the negative electrode to roughen the surface of the negative electrode. Note that the IR laser irradiation conditions were a frequency of 180 kHz, a scan speed of 4500 mm/sec, and one irradiation number, and the output of the IR laser was set to 5%.
[実施例2特有の構成]
 負極の非対向部に対し、IRレーザー(型番MD-X1000,Keyence)を照射し、負極表面を粗面化した。なお、IRレーザーの照射条件は、周波数180kHz、スキャン速度4500mm/sec、照射回数1回とし、IRレーザーの出力は25%に設定した。
[Configuration unique to Example 2]
An IR laser (model number MD-X1000, Keyence) was irradiated to the non-opposed portion of the negative electrode to roughen the surface of the negative electrode. Note that the IR laser irradiation conditions were a frequency of 180 kHz, a scan speed of 4500 mm/sec, and the number of irradiations was once, and the output of the IR laser was set to 25%.
[実施例3特有の構成]
 負極の非対向部に対し、IRレーザー(型番MD-X1000,Keyence)を照射し、負極表面を粗面化した。なお、IRレーザーの照射条件は、周波数180kHz、スキャン速度4500mm/sec、照射回数1回とし、IRレーザーの出力は50%に設定した。
[Configuration unique to Embodiment 3]
An IR laser (model number MD-X1000, Keyence) was irradiated to the non-opposed portion of the negative electrode to roughen the surface of the negative electrode. Note that the IR laser irradiation conditions were a frequency of 180 kHz, a scan speed of 4500 mm/sec, and one irradiation number, and the output of the IR laser was set to 50%.
[実施例4特有の構成]
 負極の非対向部に対し、IRレーザー(型番MD-X1000,Keyence)を照射し、負極表面を粗面化した。なお、IRレーザーの照射条件は、周波数180kHz、スキャン速度4500mm/sec、照射回数1回とし、IRレーザーの出力は75%に設定した。
[Configuration unique to Embodiment 4]
An IR laser (model number MD-X1000, Keyence) was irradiated to the non-opposed portion of the negative electrode to roughen the surface of the negative electrode. The IR laser irradiation conditions were a frequency of 180 kHz, a scan speed of 4500 mm/sec, and one irradiation frequency, and the output of the IR laser was set to 75%.
[実施例5特有の構成]
 負極の非対向部に対し、IRレーザー(型番MD-X1000,Keyence)を照射し、負極表面を粗面化した。なお、IRレーザーの照射条件は、周波数180kHz、スキャン速度4500mm/sec、照射回数1回とし、IRレーザーの出力は100%に設定した。
[Configuration unique to Example 5]
An IR laser (model number MD-X1000, Keyence) was irradiated to the non-opposed portion of the negative electrode to roughen the surface of the negative electrode. Note that the IR laser irradiation conditions were a frequency of 180 kHz, a scan speed of 4500 mm/sec, and a number of irradiation times, and the output of the IR laser was set to 100%.
[比較例1の構成]
 負極の非対向部に対し、IRレーザーを照射していない。つまり、負極表面の粗面化を行っていない。
[Configuration of Comparative Example 1]
The non-opposed portion of the negative electrode was not irradiated with the IR laser. In other words, the surface of the negative electrode is not roughened.
 作成した二次電池に対し、[合材表面粗さ]、[負極活物質の表面粗さ]、[溶媒染み込み時間]、[二次電池のサイクル特性]について、評価した。各評価における具体的な評価方法は、以下のとおりである。 The created secondary battery was evaluated for [composite material surface roughness], [negative electrode active material surface roughness], [solvent penetration time], and [secondary battery cycle characteristics]. The specific evaluation method for each evaluation is as follows.
[合材表面粗さの評価]
 負極(負極合材)についてレーザー顕微鏡(型番VR-3200,Keyence)を用いて観察を行った。観察条件として、倍率×80、照明オートに設定した。上記観察の後に、負極合材の表面粗さの測定を行った。なお、表面粗さは、1視野(3.8mm×2.9mm)当たりの面粗さをn=3で測定した。また、表面粗さは、面粗さの算術平均高さ(Sa)を用いて算出した。
[Evaluation of composite material surface roughness]
The negative electrode (negative electrode composite material) was observed using a laser microscope (model number VR-3200, Keyence). The observation conditions were set to ×80 magnification and auto illumination. After the above observation, the surface roughness of the negative electrode composite material was measured. Note that the surface roughness was measured using n=3 per field of view (3.8 mm x 2.9 mm). Moreover, the surface roughness was calculated using the arithmetic mean height (Sa) of the surface roughness.
[負極活物質の表面粗さの評価]
 負極活物質についてレーザー顕微鏡(型番VR-3200,Keyence)を用いて観察を行った。具体的には、負極活物質を構成する粒子を観察した。観察条件として、倍率×50、照明オートに設定した。上記観察の後に、負極活物質を構成する粒子の表面粗さの測定を行った。なお、活物質表面粗さは、活物質粒子表面上で長さ10μmのラインを引き、そのライン上での平均高さを測定し、線粗さの算術平均高さ(Ra)を用いて算出した。
[Evaluation of surface roughness of negative electrode active material]
The negative electrode active material was observed using a laser microscope (model number VR-3200, Keyence). Specifically, particles constituting the negative electrode active material were observed. The observation conditions were set to ×50 magnification and auto illumination. After the above observation, the surface roughness of the particles constituting the negative electrode active material was measured. Note that the active material surface roughness is calculated by drawing a line with a length of 10 μm on the active material particle surface, measuring the average height on the line, and using the arithmetic mean height (Ra) of the line roughness. did.
[溶媒染み込み時間の評価]
 負極の溶媒染み込み時間の評価手法は、負極にジメチルカーボネート(DMC)をマイクロピペットで5μl滴下した後に、目視で染み込むまでの時間を評価した。染み込むまでの時間は、DMCの色味がなくなった時間とした。溶媒染み込み時間は、デジタルマイクロスコープ(型番VHX-6000,Keyence)を用いて測定した。観察条件として、倍率×20、同軸落射とした。なお、Li塩、添加剤を含む電解液を使用すると、滴下表面に堆積して染み込み有無が判断できなくなるため、本評価ではDMC溶媒を使用した。
[Evaluation of solvent penetration time]
The method for evaluating the time for solvent penetration into the negative electrode was to drop 5 μl of dimethyl carbonate (DMC) onto the negative electrode using a micropipette, and then visually evaluate the time until the solvent soaked into the negative electrode. The time it took for the color to penetrate was defined as the time when the color of DMC disappeared. The solvent penetration time was measured using a digital microscope (model number VHX-6000, Keyence). The observation conditions were magnification x20 and coaxial epi-illumination. Note that if an electrolytic solution containing Li salt and additives is used, it will deposit on the dropping surface, making it impossible to determine whether or not it has penetrated, so a DMC solvent was used in this evaluation.
[サイクル特性評価]
 上記表面粗さを有する二次電池に基づいて、充放電サイクル特性評価を行った。充放電サイクル条件は、充電側を2.0C,4.4Vの定電流充電、放電側を0.5C,3.0Vの定電流放電とし、環境温度23℃で100サイクル繰り返し行った。なお、サイクル特性の判断は、100サイクル時点の放電容量維持率(初期1サイクル時の放電容量に対する100サイクル時の放電容量の比を100分率で表した値)が95%未満を不適(×)、95%以上を良好(〇)とした。
[Cycle characteristic evaluation]
Charge/discharge cycle characteristics were evaluated based on a secondary battery having the above surface roughness. The charge/discharge cycle conditions were constant current charging at 2.0 C and 4.4 V on the charging side and constant current discharging at 0.5 C and 3.0 V on the discharging side, and 100 cycles were repeated at an environmental temperature of 23°C. In addition, when determining the cycle characteristics, if the discharge capacity retention rate at 100 cycles (the ratio of the discharge capacity at 100 cycles to the initial 1 cycle discharge capacity expressed as a percentage) is less than 95%, it is considered unsuitable (× ), 95% or more was considered good (〇).
 上記評価結果について下記表に示す。 The above evaluation results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記評価結果によれば、合材の表面粗さに着目すると、実施例1~5の二次電池は、比較例1の二次電池に対し、合材の表面粗さが大きくなっている。つまり、実施例1~5の二次電池は、IRレーザーが照射された非対向部の合材の表面粗さが、IRレーザーが照射されていない対向部の合材の表面粗さよりも大きくなっている。そして、溶媒DMC染み込み時間について、実施例1~5の二次電池は、比較例1の二次電池に対して短くなっている。つまり、実施例1~5の二次電池は、比較例1の二次電池と比較して電解液の含浸性が向上している結果が得られた。 According to the above evaluation results, focusing on the surface roughness of the composite material, the secondary batteries of Examples 1 to 5 have a larger surface roughness of the composite material than the secondary battery of Comparative Example 1. In other words, in the secondary batteries of Examples 1 to 5, the surface roughness of the composite material in the non-opposing part that was irradiated with the IR laser was greater than the surface roughness of the composite material in the facing part that was not irradiated with the IR laser. ing. Regarding the solvent DMC penetration time, the secondary batteries of Examples 1 to 5 are shorter than the secondary battery of Comparative Example 1. In other words, the secondary batteries of Examples 1 to 5 had improved electrolyte impregnation properties compared to the secondary battery of Comparative Example 1.
 また、負極活物質の表面粗さに着目すると、実施例1~5の二次電池は、比較例1の二次電池に対し、負極活物質の表面粗さが大きくなっている。つまり、実施例1~5の二次電池は、IRレーザーが照射された非対向部の負極活物質の表面粗さが、IRレーザーが照射されていない対向部の負極活物質の表面粗さよりも大きくなっている。そして、溶媒DMC染み込み時間について、実施例1~5の二次電池は、比較例1の二次電池に対して短くなっている。つまり、実施例1~5の二次電池は、比較例1の二次電池と比較して電解液の含浸性が向上している結果が得られた。 Furthermore, focusing on the surface roughness of the negative electrode active material, the secondary batteries of Examples 1 to 5 have larger surface roughness of the negative electrode active material than the secondary battery of Comparative Example 1. In other words, in the secondary batteries of Examples 1 to 5, the surface roughness of the negative electrode active material in the non-opposing part that was irradiated with the IR laser was greater than the surface roughness of the negative electrode active material in the facing part that was not irradiated with the IR laser. It's getting bigger. Regarding the solvent DMC penetration time, the secondary batteries of Examples 1 to 5 are shorter than the secondary battery of Comparative Example 1. In other words, the secondary batteries of Examples 1 to 5 had improved electrolyte impregnation properties compared to the secondary battery of Comparative Example 1.
 また、サイクル特性に着目すると、実施例1~5の二次電池のサイクル特性は、比較例1の二次電池のサイクル特性よりも良好である結果が得られた。 Furthermore, focusing on the cycle characteristics, the cycle characteristics of the secondary batteries of Examples 1 to 5 were better than the cycle characteristics of the secondary battery of Comparative Example 1.
 本開示の二次電池の態様は、以下のとおりである。
<1>正極と、前記正極よりも面積が大きい負極とが、セパレータを介して対向配置されて成る電極構造体を備え、
 前記負極は、前記正極と対向する対向部と、前記正極と対向しない非対向部とを有しており、
 前記非対向部の表面が、前記対向部の表面よりも粗くなっている、二次電池。
<2>前記対向部よりも外側に前記非対向部が設けられている、<1>に記載の二次電池。
<3>前記電極構造体は、前記セパレータを介して前記正極及び前記負極を巻回することで構成されている、<1>または<2>に記載の二次電池。
<4>前記巻回の巻回軸に沿う方向は、前記二次電池の厚み方向と平行とされている、<3>に記載の二次電池。
<5>前記電極構造体の巻回軸に沿う寸法は、前記電極構造体を収納する外装部材の厚み方向の寸法と略等しい、<3>または<4>に記載の二次電池。
<6>前記厚み方向に直交する前記外装部材の幅方向の寸法は、前記厚み方向の寸法よりも長くなっている、<5>に記載の二次電池。
<7>前記電極構造体は、電解液に含浸されている、<1>~<6>のいずれか1つに記載の二次電池。
<8>前記負極は、負極活物質を含む合材を備えて成り、
 前記非対向部の前記合材の表面粗さは、前記対向部の前記合材の表面粗さよりも大きくなっている、<1>~<7>のいずれか1つに記載の二次電池。
<9>前記負極は、負極活物質を含む合材を備えて成り、
 前記非対向部の前記負極活物質の表面粗さは、前記対向部の前記負極活物質の表面粗さよりも大きくなっている、<1>~<7>のいずれか1つに記載の二次電池。
<10>前記負極は、負極活物質を含む合材を備えて成り、
 前記負極活物質は、C,Si,SiO、Sn、Bi、Ti、Mn、Fe、NiおよびCuから成る群より選択される少なくとも一種を含んで成る、<1>~<9>のいずれか1つに記載の二次電池。
<11>前記正極及び前記負極は、リチウムイオンを吸蔵放出可能とされている、<1>~<10>のいずれか1つに記載の二次電池。
Aspects of the secondary battery of the present disclosure are as follows.
<1> An electrode structure in which a positive electrode and a negative electrode having a larger area than the positive electrode are arranged facing each other with a separator interposed therebetween;
The negative electrode has a facing portion facing the positive electrode and a non-facing portion not facing the positive electrode,
A secondary battery, wherein the surface of the non-opposing portion is rougher than the surface of the opposing portion.
<2> The secondary battery according to <1>, wherein the non-opposing portion is provided outside the opposing portion.
<3> The secondary battery according to <1> or <2>, wherein the electrode structure is configured by winding the positive electrode and the negative electrode with the separator interposed therebetween.
<4> The secondary battery according to <3>, wherein the direction along the winding axis of the winding is parallel to the thickness direction of the secondary battery.
<5> The secondary battery according to <3> or <4>, wherein a dimension of the electrode structure along the winding axis is approximately equal to a dimension in the thickness direction of an exterior member housing the electrode structure.
<6> The secondary battery according to <5>, wherein the dimension in the width direction of the exterior member perpendicular to the thickness direction is longer than the dimension in the thickness direction.
<7> The secondary battery according to any one of <1> to <6>, wherein the electrode structure is impregnated with an electrolyte.
<8> The negative electrode comprises a composite material containing a negative electrode active material,
The secondary battery according to any one of <1> to <7>, wherein the surface roughness of the composite material in the non-facing portion is greater than the surface roughness of the composite material in the opposing portion.
<9> The negative electrode comprises a composite material containing a negative electrode active material,
The secondary according to any one of <1> to <7>, wherein the surface roughness of the negative electrode active material in the non-facing portion is greater than the surface roughness of the negative electrode active material in the facing portion. battery.
<10> The negative electrode comprises a composite material containing a negative electrode active material,
Any one of <1> to <9>, wherein the negative electrode active material contains at least one selected from the group consisting of C, Si, SiO x , Sn, Bi, Ti, Mn, Fe, Ni, and Cu. The secondary battery described in item 1.
<11> The secondary battery according to any one of <1> to <10>, wherein the positive electrode and the negative electrode are capable of intercalating and deintercalating lithium ions.
 なお、今回開示した実施態様は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本開示の技術的範囲は、上記した実施態様のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本開示の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Note that the embodiments disclosed herein are illustrative in all respects, and are not the basis for a limited interpretation. Therefore, the technical scope of the present disclosure should not be interpreted only by the embodiments described above, but should be defined based on the claims. Further, the technical scope of the present disclosure includes all changes within the meaning and scope equivalent to the claims.
 本開示に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本開示の二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などにも本開示を利用することができる。 The secondary battery according to the present disclosure can be used in various fields where power storage is expected. Although this is just an example, the secondary battery of the present disclosure can be used in the electrical, information, and communication fields where mobile devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic Paper, RFID tags, card-type electronic money, electric/electronic equipment fields including small electronic devices such as smart watches, or mobile equipment fields), household/small industrial applications (e.g., power tools, golf carts, household/nursing use)・Industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g. hybrid cars, electric cars, buses, trains, electrically assisted bicycles, electric motorcycles, etc.) ), power system applications (e.g. various power generation, road conditioners, smart grids, home-installed power storage systems, etc.), medical applications (medical equipment such as earphones and hearing aids), and pharmaceutical applications (medication management systems, etc.) The present disclosure can also be used in the field of IoT), space/deep sea applications (for example, fields of space probes, underwater research vessels, etc.), and the like.
1 正極
1a 正極集電体
1b 正極材
2 負極
2a 負極集電体
2b 負極材
21 対向部
22 非対向部
3 セパレータ
10 電極構造体
50 外装部材
51 蓋状部材
51a 開口部
52 カップ状部材
52a カップ状部材の幅方向の寸法
52b カップ状部材の厚み方向の寸法
60 端子部材
70 絶縁部材
80 電解液
80s 電解液供給装置
100 二次電池
L 非対向部の長さ
1 Positive electrode 1a Positive electrode current collector 1b Positive electrode material 2 Negative electrode 2a Negative electrode current collector 2b Negative electrode material 21 Opposed portion 22 Non-opposed portion 3 Separator 10 Electrode structure 50 Exterior member 51 Lid-like member 51a Opening portion 52 Cup-shaped member 52a Cup-shaped Dimension in the width direction of the member 52b Dimension in the thickness direction of the cup-shaped member 60 Terminal member 70 Insulating member 80 Electrolyte 80s Electrolyte supply device 100 Secondary battery L Length of non-opposed portion

Claims (11)

  1.  正極と、前記正極よりも面積が大きい負極とが、セパレータを介して対向配置されて成る電極構造体を備え、
     前記負極は、前記正極と対向する対向部と、前記正極と対向しない非対向部とを有しており、
     前記非対向部の表面が、前記対向部の表面よりも粗くなっている、二次電池。
    comprising an electrode structure in which a positive electrode and a negative electrode having a larger area than the positive electrode are arranged facing each other with a separator interposed therebetween;
    The negative electrode has a facing portion facing the positive electrode and a non-facing portion not facing the positive electrode,
    A secondary battery, wherein the surface of the non-opposing portion is rougher than the surface of the opposing portion.
  2.  前記対向部よりも外側に前記非対向部が設けられている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the non-opposing portion is provided outside the opposing portion.
  3.  前記電極構造体は、前記セパレータを介して前記正極及び前記負極を巻回することで構成されている、請求項1または2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein the electrode structure is configured by winding the positive electrode and the negative electrode with the separator interposed therebetween.
  4.  前記巻回の巻回軸に沿う方向は、前記電池の厚み方向と平行とされている、請求項3に記載の二次電池。 The secondary battery according to claim 3, wherein the direction along the winding axis of the winding is parallel to the thickness direction of the battery.
  5.  前記電極構造体の巻回軸に沿う寸法は、前記電極構造体を収容する外装部材の厚み方向の寸法と略等しい、請求項3または4に記載の二次電池。 The secondary battery according to claim 3 or 4, wherein a dimension of the electrode structure along the winding axis is approximately equal to a dimension in the thickness direction of an exterior member that accommodates the electrode structure.
  6.  前記厚み方向に直交する前記外装部材の幅方向の寸法は、前記厚み方向の寸法よりも長くなっている、請求項5に記載の二次電池。 The secondary battery according to claim 5, wherein a dimension in the width direction of the exterior member perpendicular to the thickness direction is longer than a dimension in the thickness direction.
  7.  前記電極構造体は、電解液に含浸されている、請求項1~6のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein the electrode structure is impregnated with an electrolyte.
  8.  前記負極は、負極活物質を含む合材を備えて成り、
     前記非対向部の前記合材の表面粗さは、前記対向部の前記合材の表面粗さよりも大きくなっている、請求項1~7のいずれか1項に記載の二次電池。
    The negative electrode comprises a composite material containing a negative electrode active material,
    The secondary battery according to any one of claims 1 to 7, wherein the surface roughness of the composite material in the non-facing portion is greater than the surface roughness of the composite material in the opposing portion.
  9.  前記負極は、負極活物質を含む合材を備えて成り、
     前記非対向部の前記負極活物質の表面粗さは、前記対向部の前記負極活物質の表面粗さよりも大きくなっている、請求項1~7のいずれか1項に記載の二次電池。
    The negative electrode comprises a composite material containing a negative electrode active material,
    The secondary battery according to any one of claims 1 to 7, wherein the surface roughness of the negative electrode active material in the non-facing portion is greater than the surface roughness of the negative electrode active material in the facing portion.
  10.  前記負極は、負極活物質を含む合材を備えて成り、
     前記負極活物質は、C,Si,SiO、Sn、Bi、Ti、Mn、Fe、NiおよびCuから成る群より選択される少なくとも一種を含んで成る、請求項1~9のいずれか1項に記載の二次電池。
    The negative electrode comprises a composite material containing a negative electrode active material,
    10. The negative electrode active material comprises at least one selected from the group consisting of C, Si, SiO x , Sn, Bi, Ti, Mn, Fe, Ni, and Cu. The secondary battery described in .
  11.  前記正極及び前記負極は、リチウムイオンを吸蔵放出可能とされている、請求項1~10のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 10, wherein the positive electrode and the negative electrode are capable of inserting and extracting lithium ions.
PCT/JP2023/032727 2022-09-16 2023-09-07 Secondary battery WO2024058054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022148475 2022-09-16
JP2022-148475 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058054A1 true WO2024058054A1 (en) 2024-03-21

Family

ID=90274895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032727 WO2024058054A1 (en) 2022-09-16 2023-09-07 Secondary battery

Country Status (1)

Country Link
WO (1) WO2024058054A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243097A (en) * 2012-05-22 2013-12-05 Toyota Motor Corp Secondary battery
JP2015170449A (en) * 2014-03-06 2015-09-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2018163295A1 (en) * 2017-03-07 2018-09-13 日産自動車株式会社 Secondary battery and method for manufacturing secondary battery
WO2021065335A1 (en) * 2019-09-30 2021-04-08 株式会社村田製作所 Secondary cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243097A (en) * 2012-05-22 2013-12-05 Toyota Motor Corp Secondary battery
JP2015170449A (en) * 2014-03-06 2015-09-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2018163295A1 (en) * 2017-03-07 2018-09-13 日産自動車株式会社 Secondary battery and method for manufacturing secondary battery
WO2021065335A1 (en) * 2019-09-30 2021-04-08 株式会社村田製作所 Secondary cell

Similar Documents

Publication Publication Date Title
US9660240B2 (en) Secondary battery including separator containing electroconductive porous layer sandwiched between electroconductive material-free porous layers
US20130177787A1 (en) Current collector and nonaqueous secondary battery
RU2540321C1 (en) Active material for negative electrode of electric device
KR102391375B1 (en) Nonaqueous electrolyte secondary battery
MX2013013477A (en) Negative electrode active material for electrical device, negative electrode for electrical device and electrical device.
WO2020256023A1 (en) Secondary battery
US20230307713A1 (en) Method for manufacturing secondary battery
US20220045408A1 (en) Secondary battery
JP6652939B2 (en) Hollow type package for cable type secondary battery and cable type secondary battery including the same
JP7355235B2 (en) Secondary battery and its manufacturing method
US20190074535A1 (en) Secondary battery
US10497962B2 (en) Electrode including an increased active material content
JP7215570B2 (en) secondary battery
JP2017216149A (en) Nonaqueous electrolyte secondary battery
JP7396354B2 (en) secondary battery
WO2024058054A1 (en) Secondary battery
JP7414129B2 (en) secondary battery
WO2021020151A1 (en) Secondary battery
CN111799441B (en) Nonaqueous electrolyte secondary battery
CN111435729B (en) Lithium ion secondary battery
WO2021033469A1 (en) Secondary battery
JP6962070B2 (en) Air battery and negative electrode complex used for it
WO2017208534A1 (en) Secondary battery
WO2022009997A1 (en) Secondary battery
JP7456163B2 (en) secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865409

Country of ref document: EP

Kind code of ref document: A1