WO2024057492A1 - Procédé d'identification de la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration - Google Patents

Procédé d'identification de la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration Download PDF

Info

Publication number
WO2024057492A1
WO2024057492A1 PCT/JP2022/034580 JP2022034580W WO2024057492A1 WO 2024057492 A1 WO2024057492 A1 WO 2024057492A1 JP 2022034580 W JP2022034580 W JP 2022034580W WO 2024057492 A1 WO2024057492 A1 WO 2024057492A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
waveform
optical fiber
fiber cable
distribution waveform
Prior art date
Application number
PCT/JP2022/034580
Other languages
English (en)
Japanese (ja)
Inventor
達也 岡本
大輔 飯田
優介 古敷谷
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/034580 priority Critical patent/WO2024057492A1/fr
Publication of WO2024057492A1 publication Critical patent/WO2024057492A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the present disclosure relates to vibration distribution sensing technology.
  • Vibration distribution sensing that uses OTDR (Optical Time Domain Reflectometry), OFDR (Optical Frequency Domain Reflectometry), etc. to obtain and analyze the vibration distribution of an overhead optical fiber cable.
  • DRS Distributed Vibration Sensing
  • the measurement performance of the vibration distribution obtained through measurement is higher than the frequency in time and space that is the vibration characteristic of the overhead optical fiber cable, the Nyquist theorem is satisfied and the vibration of the overhead optical fiber cable can be faithfully measured.
  • the vibration distribution of an overhead optical fiber cable can be regarded as an independent vibration system for each span, and sections where vibration propagation is continuous are those of the overhead optical fiber cable, and discontinuous points are boundary points with adjacent vibration systems, i.e. Represents a telephone pole.
  • discontinuous points are boundary points with adjacent vibration systems, i.e. Represents a telephone pole.
  • an object of the present disclosure is to make it possible to identify the position of a utility pole from the vibration distribution waveform of an overhead optical fiber cable without relying on visual observation.
  • the vibration analysis device and vibration analysis method of the present disclosure include: The vibration distribution waveform showing the temporal change in the spatial distribution of vibration in the longitudinal direction of the overhead optical fiber cable is filtered using a high-pass filter with a cutoff frequency higher than the spatial frequency of the vibration.
  • the utility pole position is identified by performing envelope detection of the filtered waveform obtained by the filtering.
  • the cutoff frequency may be any frequency higher than the spatial frequency of vibration.
  • the vibration analysis device and vibration analysis method of the present disclosure extract only a traveling wave component or a backward wave component in the longitudinal direction of vibration from the vibration distribution waveform, and perform the filtering on the extracted traveling wave component or backward wave component. You may go.
  • An example of vibration distribution waveform F0 is shown.
  • An example of the position of a utility pole in a vibration distribution waveform is shown.
  • An example of a system configuration of the present disclosure is shown.
  • An example of the vibration analysis method of the present disclosure is shown.
  • An example of spectrum S1 for each spatial frequency k and temporal frequency w is shown.
  • An example of a unidirectional spectrum S2 is shown.
  • An example of a unidirectional vibration distribution waveform F1 is shown.
  • An example of a high-pass filtering waveform F2 is shown.
  • An example of a high-pass filtering waveform F3 after envelope detection is shown.
  • Figure 1 shows an example of the vibration distribution waveform.
  • a vibration distribution waveform of vibration of an overhead optical fiber cable is used.
  • the vibration distribution waveform includes two distributions: a spatial distribution in the longitudinal direction of the overhead optical fiber cable and a temporal change, that is, a temporal distribution.
  • the figure shows an example of a two-dimensional distribution of distance (m) in the longitudinal direction of an overhead optical fiber cable and time (s).
  • the vibrations propagating along the overhead optical fiber cable exhibit continuous behavior over one span between utility poles, as shown by the arrows in Figure 2. Since the propagation of vibration in the overhead optical fiber cable 91 is interrupted at the utility pole 92, the vibration distribution waveform becomes discontinuous at distances D1, D2, D3, and D4 of the utility pole position.
  • the vibration analysis device of the present disclosure specifies the distance at which the utility pole is located by executing the vibration analysis method of the present disclosure.
  • FIG. 3 shows a configuration example of the vibration analysis device of the present disclosure.
  • the vibration analysis device 10 of the present disclosure includes a signal processing section 11 and a memory 12.
  • the memory 12 stores vibration distribution waveforms in the longitudinal direction of the overhead optical fiber cable. Note that the vibration distribution waveform may be calculated by the signal processing unit 11 from measurement results such as OTDR or OFDR.
  • FIG. 4 shows an example of the vibration analysis method of the present disclosure.
  • the signal processing unit 11 sequentially executes the following steps.
  • Step S11 Obtain the vibration distribution waveform F0 from the memory 12.
  • Step S15 Apply a high-pass filter in the spatial direction to the vibration distribution waveform F0.
  • Step S16 Calculate the square of the high-pass filtering waveform F2 after high-pass filtering.
  • Step S17 Envelope detection of the high-pass filtering waveform F2 is performed.
  • Step S18 Output (display) the utility pole position using the detection result.
  • Step S12 Two-dimensional Fourier transform is performed on the vibration distribution waveform F0 to obtain a spatial frequency spectrum S1.
  • Step S13 Extract only the forward wave or backward wave component from the spectrum S1 to obtain a unidirectional spectrum S2.
  • Step S14 Inverse two-dimensional Fourier transform is performed on the components of the traveling wave or the backward wave to obtain a unidirectional vibration distribution waveform F1.
  • a high-pass filter is applied to the vibration distribution waveform F1 in the spatial direction.
  • step S11 a vibration distribution waveform as shown in FIG. 1 is acquired.
  • step S12 is executed, a spectrum S1 (dB) for each spatial frequency k and temporal frequency w as shown in FIG. 5 is obtained.
  • Step S13 is executed to make all the traveling wave components or backward wave components of the vibration to zero, and as shown in the spectrum S2 shown in FIG. Extract the vibration components of waves). By extracting components in one direction in this manner, discontinuous positions in vibration in the spatial direction can be highlighted.
  • Step S14 is executed, and the extracted spectrum S2 is subjected to inverse two-dimensional Fourier transform.
  • the amplitude is large in a region A1 from around 275 m to around 310 m and in a region A2 from around 420 m to around 450 m.
  • step S15 is executed and a high-pass filter in the spatial direction is applied to the vibration distribution waveform F1 at a cutoff frequency higher than the spatial frequency of the vibration.
  • a cutoff frequency of 0.5 or more is used.
  • Envelope detection of the high-pass filtering waveform F2 is performed to emphasize discontinuous points in the high-pass filtering waveform F2.
  • Envelope detection is performed, for example, by applying a low-pass filter in the time direction. At this time, a low-pass filter may be applied after squaring the high-pass filtering waveform.
  • FIG. 9 shows an example of the high-pass filtering waveform F3 after envelope detection.
  • the signal processing unit 11 may graph the amplitude of the high-pass filtering waveform F3 after envelope detection on a logarithmic scale. Thereby, the discontinuous portions of the high-pass filtering waveform F2 can be further emphasized.
  • the signal processing unit 11 detects the highlighted distance and outputs the detected distance as the utility pole position. For example, a distance where the amplitude exceeds a predetermined value is detected. It may also be a distance where the amplitude exceeds a predetermined value for a predetermined period of time. Here, the predetermined time may be continuous, or may be the sum of intermittent times. In the example of this embodiment, since each of the distances D1 to D8 is emphasized, the signal processing unit 11 outputs each of the distances D1 to D8 as the utility pole position.
  • the position of a utility pole can be extracted from the vibration distribution waveform of an overhead optical fiber cable by signal processing without relying on visual observation.
  • Discontinuities in vibration at utility pole positions have statistical properties, and it is easier to observe discontinuities when measured over a long period of time.
  • the overhead optical fiber cable has an independent vibration system for each span, the frequency characteristics are almost the same. For example, a discontinuous point (out of phase synchronization) between a section vibrating at 1 Hz and a section vibrating at 10 Hz can be detected in a short measurement time because the frequencies are significantly different. Detecting discontinuous points in the 1.1 Hz section requires a long measurement time.
  • the signal processing unit 11 may acquire the vibration distribution waveform so that the time axis direction is equal to or longer than a predetermined time.
  • the frequency difference between 1 Hz and 1.1 Hz is 0.1 Hz, and to distinguish these two vibrations requires a measurement time with a frequency resolution of at least 0.1 Hz. Since the length of the measurement time and the frequency resolution are in a reciprocal relationship, the vibration distribution waveform only needs to be measured for 10 seconds or more.
  • vibration distribution can be faithfully measured by performing measurements to satisfy the Nyquist theorem in sampling in the spatial and temporal directions.
  • the time scale length of measurement time
  • the time period of vibration depends on the installation conditions of the overhead cable, but it is about several seconds at most, so a time scale of about 1 minute is sufficient.
  • the distance scale length in the distance direction
  • the width of a telephone pole is about 1 m, a distance scale of about 5 m is sufficient.
  • the device of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the program of the present disclosure is a program for realizing a computer as each functional unit included in the device of the present disclosure, and is a program for causing the computer to execute each step of a method executed by the device of the present disclosure. .
  • Vibration analysis device 11 Signal processing unit 12: Memory 91: Aerial optical fiber cable 92: Telephone pole

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Le but de la présente divulgation est de permettre d'identifier, sans compter sur une inspection visuelle, la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration d'un câble à fibre optique aérien. La présente divulgation concerne un dispositif d'analyse de vibration et un procédé d'analyse de vibration permettant chacun d'identifier la position d'un pôle électrique par la réalisation, à l'aide d'un filtre passe-haut comportant une fréquence de coupure qui est supérieure à la fréquence spatiale de vibration d'un câble à fibre optique aérien, d'un filtrage sur une forme d'onde de distribution de vibration indiquant un changement dans le temps d'une distribution spatiale dans la direction longitudinale de la vibration, et la réalisation d'une détection d'enveloppe d'une forme d'onde de filtrage obtenue par le filtrage.
PCT/JP2022/034580 2022-09-15 2022-09-15 Procédé d'identification de la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration WO2024057492A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034580 WO2024057492A1 (fr) 2022-09-15 2022-09-15 Procédé d'identification de la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034580 WO2024057492A1 (fr) 2022-09-15 2022-09-15 Procédé d'identification de la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration

Publications (1)

Publication Number Publication Date
WO2024057492A1 true WO2024057492A1 (fr) 2024-03-21

Family

ID=90274649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034580 WO2024057492A1 (fr) 2022-09-15 2022-09-15 Procédé d'identification de la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration

Country Status (1)

Country Link
WO (1) WO2024057492A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170342814A1 (en) * 2016-03-09 2017-11-30 Conocophillips Company Low-frequency das snr improvement
WO2020044648A1 (fr) * 2018-08-30 2020-03-05 日本電気株式会社 Système, dispositif et procédé d'identification de position de poteaux de ligne de transmission ainsi que support d'informations non transitoire lisible par ordinateur
WO2020044660A1 (fr) * 2018-08-30 2020-03-05 日本電気株式会社 Système d'identification d'état, dispositif d'identification d'état, procédé d'identification d'état et support lisible par ordinateur non transitoire
JP2020052030A (ja) * 2018-09-20 2020-04-02 日本電信電話株式会社 マンホール位置特定方法及びマンホール位置特定システム
CN211234916U (zh) * 2019-12-17 2020-08-11 国网新疆电力有限公司昌吉供电公司 一种基于das与otdr的光缆状态监测系统
JP2021156822A (ja) * 2020-03-30 2021-10-07 沖電気工業株式会社 光ファイバ振動検知装置及び振動検知方法
WO2022087012A1 (fr) * 2020-10-19 2022-04-28 Nec Laboratories America, Inc. Localisation de poteau de ligne de transmission par la détection de fibres réparties de câble aérien de fibres
WO2022176047A1 (fr) * 2021-02-17 2022-08-25 日本電信電話株式会社 Procédé de spécification de position de poteau de service de distribution et procédé d'estimation d'état de câble de fibre optique aérien
WO2022180834A1 (fr) * 2021-02-26 2022-09-01 日本電信電話株式会社 Dispositif de mesure de lumière cohérente, et système et procédé d'essai de ligne optique

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170342814A1 (en) * 2016-03-09 2017-11-30 Conocophillips Company Low-frequency das snr improvement
WO2020044648A1 (fr) * 2018-08-30 2020-03-05 日本電気株式会社 Système, dispositif et procédé d'identification de position de poteaux de ligne de transmission ainsi que support d'informations non transitoire lisible par ordinateur
WO2020044660A1 (fr) * 2018-08-30 2020-03-05 日本電気株式会社 Système d'identification d'état, dispositif d'identification d'état, procédé d'identification d'état et support lisible par ordinateur non transitoire
JP2020052030A (ja) * 2018-09-20 2020-04-02 日本電信電話株式会社 マンホール位置特定方法及びマンホール位置特定システム
CN211234916U (zh) * 2019-12-17 2020-08-11 国网新疆电力有限公司昌吉供电公司 一种基于das与otdr的光缆状态监测系统
JP2021156822A (ja) * 2020-03-30 2021-10-07 沖電気工業株式会社 光ファイバ振動検知装置及び振動検知方法
WO2022087012A1 (fr) * 2020-10-19 2022-04-28 Nec Laboratories America, Inc. Localisation de poteau de ligne de transmission par la détection de fibres réparties de câble aérien de fibres
WO2022176047A1 (fr) * 2021-02-17 2022-08-25 日本電信電話株式会社 Procédé de spécification de position de poteau de service de distribution et procédé d'estimation d'état de câble de fibre optique aérien
WO2022180834A1 (fr) * 2021-02-26 2022-09-01 日本電信電話株式会社 Dispositif de mesure de lumière cohérente, et système et procédé d'essai de ligne optique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OKAMOTO TATSUYA; IIDA DAISUKE; KOSHIKIYA YUSUKE; HONDA NAZUKI: "Deployment Condition Visualization of Aerial Optical Fiber Cable By Distributed Vibration Sensing Based On Optical Frequency Domain Reflectometry", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 39, no. 21, 27 August 2021 (2021-08-27), USA, pages 6942 - 6951, XP011885509, ISSN: 0733-8724, DOI: 10.1109/JLT.2021.3107855 *

Similar Documents

Publication Publication Date Title
Aktas et al. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications
CN107727227B (zh) 基于φ-otdr的高压输电线路覆冰舞动监测方法
CN108254798B (zh) 一种快速定位地下光缆的方法及装置
JP7491458B2 (ja) 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法
GB2515564A (en) Improvements in fibre optic distributed sensing
Hicke et al. Condition monitoring of industrial infrastructures using distributed fibre optic acoustic sensors
Tu et al. Enhancement of signal identification and extraction in a Φ-OTDR vibration sensor
JP7435160B2 (ja) 光ファイバ振動検知装置及び振動検知方法
Sun et al. Target location method for pipeline pre-warning system based on HHT and time difference of arrival
CN111487318B (zh) 一种时变结构瞬时频率提取方法
CN203147289U (zh) 双Sagnac管道安全监测系统
CN103486444B (zh) 基于3×3耦合器的Sagnac环形管道安全监测系统
WO2024057492A1 (fr) Procédé d'identification de la position d'un pôle électrique à partir d'une forme d'onde de distribution de vibration
WO2022044174A1 (fr) Dispositif de mesure de distribution de vibration et procédé correspondant
JP7428030B2 (ja) 雑音評価装置および雑音評価方法
CN102913761B (zh) 双Sagnac管道安全监测系统
Hussels et al. Distributed acoustic fibre optic sensors for condition monitoring of pipelines
JP2016095231A (ja) 分析データ作成方法、周波数フィルター作成方法、異常音発生位置の特定方法、分析データ作成装置、周波数フィルター作成装置および異常音発生位置の特定装置
CN114136430B (zh) 一种精准寻缆系统及方法
JP6557576B2 (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
CN115144707A (zh) 基于光纤传感测量超声信号的局部放电定位方法及装置
Wang et al. Underwater natural gas pipeline leakage detection based on interferometric fiber optic sensor in experiment-scale
CN113340226A (zh) 输电线路杆塔的监测方法、装置、设备及介质
CN113092959A (zh) 绝缘子污闪监测方法、装置、设备及存储介质
Zhu et al. Distributed fiber-optic sensing using double-loop sagnac interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958815

Country of ref document: EP

Kind code of ref document: A1