WO2024055617A1 - 流量控制方法、装置、设备及计算机可读存储介质 - Google Patents

流量控制方法、装置、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2024055617A1
WO2024055617A1 PCT/CN2023/094363 CN2023094363W WO2024055617A1 WO 2024055617 A1 WO2024055617 A1 WO 2024055617A1 CN 2023094363 W CN2023094363 W CN 2023094363W WO 2024055617 A1 WO2024055617 A1 WO 2024055617A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow control
traffic
network
policy
controller
Prior art date
Application number
PCT/CN2023/094363
Other languages
English (en)
French (fr)
Inventor
刘家鸣
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024055617A1 publication Critical patent/WO2024055617A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing

Definitions

  • Embodiments of the present application relate to the field of data network communication technology, and in particular to flow control methods, devices, equipment and computer-readable storage media.
  • the commonly used traffic diversion method is: the remote network device statically configures the BGP (Border Gateway Protocol) routing policy, and announces the route carrying the BGP extended Color attribute to the current traffic access device.
  • BGP Band Gateway Protocol
  • the access device queries the routing table according to the destination IP address (Internet Protocol Address) of the traffic message, and hits the BGP route next hop address announced by the remote network device, thereby successfully introducing the traffic to the pre-created SR policy (Segment Routing Policy) path.
  • BGP Band Gateway Protocol
  • this traffic diversion method requires re-modification of the routing policy configuration on the remote network device when temporary network traffic enters the traffic access device and traffic diversion is required, which poses certain risks to maintaining the stability of the current network.
  • the main purpose of the embodiments of the present application is to provide a flow control method, device, equipment and computer-readable storage medium, aiming to enhance the security of the traffic diversion method and reduce the risk of equipment instability caused by equipment configuration changes.
  • inventions of the present application provide a flow control method.
  • the method is applied to a controller, and the controller is connected to an access device.
  • the method includes:
  • the colored route is sent to the access device to complete flow control.
  • embodiments of the present application also provide a flow control method.
  • the method is applied to an access device, and the access device is connected to a controller.
  • the method includes:
  • Receive a colored route is generated by the controller receiving flow control instructions based on the graphical interface and based on the flow control instructions;
  • the access traffic is introduced to the path of the segment routing traffic engineering policy corresponding to the colored route based on the flow control policy;
  • the access traffic is discarded.
  • embodiments of the present application also provide a flow control device, the flow control device is applied to a controller, the controller is connected to the access device, and the flow control device includes:
  • the acquisition module is set to obtain the network topology from the preset device network
  • a processing module configured to graphically process the network topology and load relevant protocols to generate a graphical interface
  • a generation module configured to receive flow control instructions based on the graphical interface and generate corresponding coloring routes according to the flow control instructions
  • a sending module configured to send the colored route to the access device to complete flow control.
  • embodiments of the present application also provide a flow control device, the flow control device is applied to an access device, the access device is connected to a controller, and the flow control device includes:
  • a receiving module configured to receive a colored route, which is generated by the controller based on a graphical interface that receives flow control instructions and is generated according to the flow control instructions;
  • a redirection module configured to match the redirected traffic with a segment routing traffic engineering policy
  • a matching module configured to match the redirected traffic with a segment routing traffic engineering policy
  • the execution module is configured to, if the match is successful, convert the colored route into a traffic control policy, and introduce the access traffic to the segment routing traffic engineering policy corresponding to the colored route based on the traffic control policy. on the path;
  • the execution module is also configured to discard the access traffic if the matching fails.
  • embodiments of the present application also provide a flow control device, which includes: a memory, a processor, and a computer program stored on the memory and executable on the processor, The computer program implements the flow control method as described above when executed by the processor.
  • embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the flow control as described above is implemented. method.
  • the embodiment of the present application proposes a flow control method, device, equipment and computer-readable storage medium.
  • the controller first obtains the network topology from the preset equipment network; and then graphically processes the network topology and Load relevant protocols to generate a graphical interface; users can issue flow control instructions directly through the graphical interface without having to modify the routing policy configuration on the remote network device; and then receive the traffic from the graphical interface through the controller.
  • the flow control instruction can generate a colored route corresponding to the flow control instruction for controlling the flow direction of the traffic, and then the controller sends the colored route to the current access device, so that the current access device can be connected to the device.
  • the incoming traffic is directed to the path of the segment routing traffic engineering policy corresponding to the traffic control instruction without modification. Changing the routing strategy of remote network devices reduces the risk of device instability caused by device configuration changes, improves the security of device networking, and simplifies the operation process.
  • Figure 1 is a schematic system architecture diagram of a flow control method provided by an embodiment of the present application.
  • FIG2 is a flow chart of a flow control method provided in an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a flow control method provided by another embodiment of the present application.
  • Figure 4 is a schematic diagram of an application scenario of a flow control method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of implementation interaction of a flow control method provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a flow control device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a flow control device provided by another embodiment of the present application.
  • Figure 8 is a schematic diagram of the hardware structure of a flow control device provided by an embodiment of the present application.
  • the head-end device can divert traffic by matching the Color value of the SR policy, and the generated route will take effect on the forwarding plane after iterating to the segment list information of the SR policy.
  • the commonly used traffic diversion method is: the remote network device statically configures the BGP routing policy, and advertises the route carrying the BGP extended Color attribute to the current traffic access device.
  • the access device The routing table is queried according to the destination IP address of the traffic packet, and the next hop address of the BGP route advertised by the remote network device is hit, so that the traffic is successfully introduced to the pre-created SR policy path.
  • this traffic diversion method requires you to modify the routing policy configuration on the remote network device when temporary network traffic comes in, which poses certain risks to maintaining the stability of the current network; and this traffic diversion method can only target The destination IP address of the traffic is used for strategic traffic diversion, and there are certain limitations in the flexibility of traffic diversion.
  • embodiments of the present application provide a flow control method, device, equipment and computer-readable storage medium.
  • the controller first obtains the network topology from the preset device network; and then graphically displays the network topology. Process and load relevant protocols to generate a graphical interface; users can issue flow control instructions directly through the graphical interface without having to modify the routing policy configuration on the remote network device; and then receive data from the graphical interface through the controller
  • the flow control instructions of the interface can generate colored routes corresponding to the flow control instructions for controlling the flow direction of the traffic, and then deliver the colored routes to the current access device through the controller, which can realize the traffic guidance of the current access device.
  • On the path to the segment routing traffic engineering policy corresponding to the traffic control instruction there is no need to change the routing policy of the remote network device, which reduces the risk of device instability caused by device configuration changes and improves the security of the device network. Simplified operating procedures.
  • the flow control method, device, equipment and computer-readable storage medium provided by the embodiments of the present application are specifically described through the following embodiments. First, the flow control method in the embodiment of the present application is described.
  • Figure 1 is a schematic system architecture diagram of a flow control method provided by an embodiment of the present application.
  • the system architecture of the traffic control method includes a controller 100 and a device network composed of an access device 200 and multiple accessible devices.
  • the controller 100 is connected to the access device 200 in the device network, the access device 200 is connected to some accessible devices in the device network, and some of the accessible devices are connected to each other.
  • the controller 100 is a traffic scheduling controller based on the BGP protocol
  • the access device 200 is a network device that accesses network traffic.
  • the controller 100 establishes a BGP link-state (link state) with the access device 200. ) neighbor, and then receives the BGP link-state route from the access device 200.
  • the BGP link-state route contains the topology information (network nodes, link interconnection relationships) and network resource information (network nodes and link interconnection relationships) of the device network where the access device 200 is located. nodes, link bandwidth, and other related attributes).
  • a set of real-time protocol TOPO can be formed, and a graphical interface is generated for user operation.
  • the TOPO component of the controller 100 can control the network element according to the real-time protocol topo.
  • the selected network element name information is converted into BGP Flowspec (a route defined in the standard protocol, Flow Specification, flow specification) IP address required for route redirection, SRv6SID (Segment Routing IPv6, segment routing based on the IPv6 forwarding plane, Security Identifiers, security identifiers) and other communication attribute information, and based on the above communication attribute information, generate a BGP Flowspec coloring route for redirecting network traffic entering the access device 200, and then deliver the BGP Flowspec coloring route to the access device 200, After receiving the BGP Flowspec colored route, the access device 200 will redirect the network traffic according to the BGP Flowspec colored route, and match the redirected traffic with the segment routing traffic engineering policy SR policy; if the match is successful, then After converting the colored route into a flow control policy, network traffic is introduced based on the flow control policy to the path of the segment routing traffic engineering policy SR policy corresponding to the colored route; if the match fails, the network traffic is discarded.
  • the controller 100 is an SDN (Software Defined Network) controller, such as an OpenDaylight controller, an ONOS (Open Network Operating System) controller, a Floodlight controller, a NOX controller, a OneController controller, etc. ;
  • the access device 200 and the accessible devices are routers, such as broadband routers, wireless routers, edge routers and core routers. router, etc.
  • the SDN controller parses the user's flow control instructions and generates BGP Flowspec colored routes and sends them to the router; the router implements the redirection of network traffic by matching the network traffic with the BGP Flowspec colored routes.
  • system architecture shown in Figure 1 does not limit the embodiments of the present application, and may include more or fewer components than shown, or some components may be combined, or different components may be used. layout.
  • each device can separately call its stored flow control program to execute the flow control method.
  • FIG. 2 is a schematic flow chart of a flow control method provided by an embodiment of the present application.
  • the flow control method is applied to a controller, and the controller is connected to Input device connection, the flow control method provided in this embodiment includes but is not limited to steps S10 to S40.
  • Step S10 obtain the network topology from the preset device network
  • the application background condition of this embodiment is that the controller has established a connection with the access device in the preset device network.
  • the controller can be an SDN controller and the access device can be a router. It can be seen from the above system architecture that the preset The device network provided contains multiple network devices, and the access device is the network device among these network devices that has established a connection with the controller in this embodiment.
  • the controller can obtain the network topology from the preset device network through information interaction with the access device.
  • Step S20 Graphically process the network topology and load relevant protocols to generate a graphical interface
  • step S20 the controller uses the TOPO component to graphically process the network topology obtained in step S10 to form a set of real-time protocol topo, and generates a graphical interface based on the real-time protocol topo for the user operate.
  • Step S30 Receive flow control instructions based on the graphical interface, and generate corresponding coloring routes according to the flow control instructions;
  • the flow control instruction may be generated when the user triggers certain preset controls on the graphical interface. For example, when the user clicks on the network element name information representing a network device on the graphical interface, it is determined that the user wants to guide the network traffic entering the device network to the selected network device. At this time, it is considered that the flow control instruction contains The content is: redirect network traffic to the network device selected by the user, but the controller cannot directly control the flow of traffic, so the content contained in the flow control instruction needs to be delivered to the interface in the form of BGP Flowspec coloring routing. into the device to control the network traffic.
  • Step S40 Send the colored route to the access device to complete flow control.
  • the controller after the BGP Flowspec coloring route for coloring and redirecting network traffic is generated, the controller only needs to send it to the access device, so that the access device can send the BGP Flowspec coloring route based on the BGP Flowspec coloring route.
  • Network traffic is matched with the SR policy to control the flow of network traffic.
  • the embodiment of the present application provides a flow control method.
  • the controller first obtains the network topology from the preset device network; then graphically processes the network topology and loads relevant protocols to generate a graphical interface; so that Users can issue flow control instructions directly through the graphical interface without having to modify the routing policy configuration on the remote network device. Afterwards, the controller receives the flow control instructions from the graphical interface and can generate a corresponding flow control instruction. Colored routes used to control the flow of traffic, and then the controller delivers the colored routes to the current access device to achieve flow control without changing the routing policy of the remote network device, reducing the risk of device configuration changes caused by The risk of instability improves the security of equipment networking and simplifies the operation process.
  • Flowspec in this embodiment is an extended address family in the MP-BGP (backwards compatible) address family, which can realize the user's policy: the traffic that needs to be matched.
  • the seven-tuple of the IP packet (source and destination IP addresses, source and destination port numbers, protocol number, QOS mark, interface index) and the redirection after matching are packaged and sent to the traffic diversion device through BGP routing, thereby realizing the policy routing function through Flowspec
  • this embodiment can match the seven-tuple of traffic IP packets, and the traffic diversion here can strictly match multiple conditions, or it can also be used alone Loosely matched traffic conditions can meet users' customized choices and are more flexible; users can update BGP Flowspec routing can be used to redirect traffic, and BGP routing can be revoked at any time to cancel traffic redirection, making it more controllable.
  • the controller interface is graphical, and there is no need to memorize the IP address of the network device for operation.
  • the user only needs to select the network element name on the interface. Just perform the operation, which reduces the probability of human error and is more secure; because MP-BGP neighbors are established between the controller and the network device, and the extensions of BGP link-state, Flowspec, and SR-Policy have collected the topology , resource information collection, policy distribution, and policy management are integrated into one, which greatly simplifies network design and lowers the learning threshold for operation and maintenance personnel.
  • step S10 may include but is not limited to the following steps:
  • Step S11 establish a border gateway protocol neighbor in the preset device network
  • Step S12 Obtain networking information through Border Gateway Protocol neighbors
  • Step S13 Process the networking information through the preset networking topology component to obtain the networking topology.
  • step S11 the controller establishes a BGP link-state (link state) neighbor relationship with the access device; in step S12, the controller receives a message from the access device through a BGP link-state (link state) neighbor relationship.
  • Networking information includes the topology information (network nodes, link interconnection relationships) and network resource information (nodes, link bandwidth, and other related attributes) of the preset device network where the access device is located; in step S13, after processing this information through the TOPO component of the controller, a set of real-time protocol TOPO (ie, network topology) can be formed.
  • step S12 may include but is not limited to the following steps:
  • Step S121 receive the link state route sent by the Border Gateway Protocol neighbor
  • Step S122 Analyze link state routing to obtain networking information.
  • step S121 the controller receives the BGP link-state (link state) neighbor (ie, Border Gateway Protocol neighbor), that is, the BGP link-state route (ie, link state route) sent by the access device;
  • step S122 the controller parses the BGP link-state route to obtain the topology information and network resource information (i.e., networking information) of the preset device network where the access device is located contained in the BGP link-state route. .
  • the flow control method may also include but is not limited to the following steps:
  • Step S14 If there is no path corresponding to the segment routing traffic engineering policy in the networking topology, create a path corresponding to the segment routing traffic engineering policy with different colors in the networking topology.
  • step S14 the path corresponding to the segment routing traffic engineering policy SR policy corresponding to Color may not be created in advance in the preset device network.
  • the traffic can be normally introduced to the path corresponding to the SR policy corresponding to the Color. You need to first create the path corresponding to the SR policy corresponding to the Color in the network topology, and then perform step S20. . If the path corresponding to the segment routing traffic engineering policy already exists in the network topology, step S20 can be performed directly.
  • the flow control instruction includes: target device information; the step of generating the corresponding colored route according to the flow control instruction in step S30 may include but is not limited to the following steps:
  • Step S31 convert the target device information into communication attribute information
  • Step S32 Generate a colored route corresponding to the target device information according to the communication attribute information.
  • the target device information refers to the device name information or network element name information of each network device in the preset device network displayed to the user through the graphical interface.
  • the TOPO component of the controller converts the selected network element name information into the IP address, SRv6SID and other attribute information (i.e. communication attribute information) required for BGP Flowspec route redirection, which reduces There is a risk of misoperation when the user manually uses the device;
  • the controller BGP module generates a BGP Flowspec colored route containing the network device information selected by the user based on the IP address, SRv6SID and other attribute information.
  • BGP Flowspec is generated based on NLRI (Network Layer Reachability Information) encoding format, and the traffic matching rules of BGP Flowspec are replaced by n-tuples containing basic rules of traffic attributes.
  • the rule can be a more or less complex combination of: source IP address, sink IP address, source port (TCP/UDP), sink port (TCP/UDP), layer 4 information for ICMP type and ICMP code, and DSCP information ; The above are used as traffic matching rules.
  • Traffic redirection can be implemented after successful traffic matching, and are not limited to the following two attributes: 1) Since BGP routes have extended community attributes, BGP routes can be given the Color attribute (can be used in conjunction with the Color of SR policy ); 2) Specify the next hop address of the BGP route (can be used in conjunction with the Endpoint of the SR policy).
  • SRv6Policy since SRv6Policy uses the following triplet as the Key, it can uniquely identify an SRv6Policy globally: 1) Headpoint: identifies the head node of the SRv6Policy and can direct traffic into an SRv6Policy; 2) Color: The ID that identifies the SRv6Policy can be associated with the BGP service attribute Color; 3) Endpoint: identifies the destination address of the SRv6Policy.
  • This embodiment uses the above BGP Flowspec route to redirect traffic attributes (access device head node, BGP extended community attribute Color, BGP route Next hop attributes) and the triplet characteristics of the SR policy. When the BGP Flowspec route is delivered to the traffic access device, after the BGP Flowspec route redirection traffic attribute matches the triplet of the SR policy, the traffic can be successfully introduced to Managed on SR policy.
  • BGP Flowspec policy issuance is simpler and more convenient, and it can be revoked and modified at any time.
  • Advantages of deleting routes For operation and maintenance personnel, it is more secure than statically configuring FlowSpec policies on network devices in the past, without changing the device configuration.
  • Figure 3 is a flow chart of a flow control method provided by another embodiment of the present application.
  • the flow control method is applied to an access device.
  • the access device The device is connected to the controller.
  • the flow control method provided in this embodiment includes but is not limited to steps A10 to A50.
  • Step A10 receive the colored route.
  • the colored route is generated by the controller based on the graphical interface receiving the flow control instruction and based on the flow control instruction;
  • the application background condition of this embodiment is that the access device and the controller have established a connection, where the access device may be a router and the controller may be an SDN controller.
  • the access device can receive the flow control instructions from the user based on the graphical interface of the controller, and generate BGP Flowspec colored routes based on the flow control instructions.
  • Step A20 Process the access traffic according to the colored route to obtain redirected traffic
  • the access traffic is the network traffic that accesses the router device.
  • the router device After receiving the BGP Flowspec coloring route, the router device will redirect the network traffic according to the BGP Flowspec coloring route to obtain the redirected traffic.
  • Step A30 Match the redirected traffic with the segment routing traffic engineering policy
  • Step A40 if the match is successful, convert the colored route into a traffic control policy, and introduce the access traffic to the path of the segment routing traffic engineering policy corresponding to the colored route based on the traffic control policy;
  • Step A50 If the matching fails, the access traffic is discarded.
  • the router device After obtaining the redirected traffic, the router device matches the redirected traffic with the segment routing traffic engineering policy SR policy; if the redirected traffic successfully matches the segment routing traffic engineering policy SR policy, the accessed network traffic can be iterated on Related Segment Routing Traffic Engineering Policy SR policy Corresponding path; conversely, if the accessed network traffic does not match the segment routing traffic engineering policy SR policy, the network traffic will be discarded.
  • Embodiments of the present application provide a flow control method.
  • the access device receives flow control instructions from the controller based on a graphical interface and generates colored routes based on the flow control instructions; and then processes the access traffic according to the colored routes.
  • On the path of the segment routing traffic engineering policy if the match fails, the access traffic is discarded, thereby realizing a customized traffic diversion function and overcoming the limitations of existing technology in traffic diversion flexibility.
  • the embodiment of the present application also provides a schematic diagram of an application scenario of the flow control method as shown in Figure 4.
  • the background condition of this embodiment is: the controller SDN Controller establishes a basic network device with a networking device (such as R1 (RR) device and serves as a BGP route reflector) in the preset device networking AS 100.
  • a networking device such as R1 (RR) device and serves as a BGP route reflector
  • BGP neighbor, SDN Controller collects network topology, resource information, and traffic information through this MP-BGP neighbor;
  • the preset device networking AS 100 has created the sr policy corresponding to the color in advance, namely sr policy 1 and sr policy 2.
  • BGP routing policies are generally statically configured on the remote network device (the R2 device in Figure 4) so that the traffic with the destination address route to 1.1.1.1/24 that accesses AS 100 carries the BGP extended color attribute. 1, and notify it to the current access device (the R1 device in Figure 4), so that the traffic received by the R1 device can be normally introduced to the corresponding path of sr policy 1 created in advance.
  • the BGP Flowspec route is delivered to R1 through the controller.
  • the routing information can be: match the traffic (destination IP: 1.1.1.1/24) and redirect the traffic to the BGP router-id of R4 in Figure 4 address, and change the color to 2.
  • This allows the traffic received by the R1 device to be normally introduced to the path corresponding to sr policy 2 created in advance.
  • the above-mentioned BGP router-id address of R4 and its corresponding prefix-sid are obtained by the controller BGP link-state route. The user only needs to select it on the graphical interface, and there is no need to manually go to the device to query and fill in the corresponding information. .
  • the embodiment of the present application also provides an implementation interaction diagram of a flow control method as shown in FIG. 5 .
  • the SDN controller BGP module first collects topo information from the router device in the device network through BGPLS, and passes the topo information to the controller topo module for graphical topo processing, and fills in the relevant protocol information.
  • the user After the traffic is connected to the router device, the user performs route redirection on the graphical topo interface, and the SDN controller BGP module translates the user operation into a BGP Flowspec route and sends it to the router device.
  • the router device processes the incoming traffic through BGP Flowspec routing and obtains redirected traffic.
  • the redirected traffic carries the color attribute and NextHop information. If the color and endpoint of the SR policy can be hit, the traffic can iterate to the relevant SR policy. Introduce traffic to the corresponding sr policy bearer. On the contrary, if it does not match, the traffic will be discarded, thereby realizing the custom traffic diversion function.
  • an embodiment of the present application also provides a flow control device.
  • FIG. 6 is a schematic structural diagram of a flow control device provided by an embodiment of the present application. As shown in Figure 6, in this embodiment, the flow control device is applied to the controller, and the controller is connected to the access device.
  • the flow control device includes: an acquisition module 110, a processing module 120, a generation module 130 and a sending module 140.
  • the acquisition module 110 is configured to obtain the network topology from the preset device network
  • the processing module 120 is configured to graphically process the network topology and load relevant protocols to generate a graphical interface
  • the generation module 130 is configured to receive flow control instructions based on the graphical interface, and generate corresponding coloring routes according to the flow control instructions;
  • the sending module 140 is configured to send the colored route to the access device to complete flow control.
  • the embodiment of the present application provides a flow control device.
  • the controller first obtains the network topology from the preset device network; then graphically processes the network topology and loads relevant protocols to generate a graphical interface; so that Users can issue flow control instructions directly through the graphical interface without having to modify the routing policy configuration on the remote network device. Afterwards, the controller receives the flow control instructions from the graphical interface and can generate a corresponding flow control instruction. Colored routes used to control the flow of traffic, and then the controller delivers the colored routes to the current access device to achieve flow control without changing the routing policy of the remote network device, reducing the risk of device configuration changes caused by The risk of instability improves the security of equipment networking and simplifies the operation process.
  • the flow control device provided in this embodiment and the flow control method applied to the controller provided in the above embodiment belong to the same inventive concept.
  • the embodiment of the flow control method applied to the controller is described, and this embodiment has the same beneficial effects as the controller executing the flow control method.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • FIG. 7 is a schematic structural diagram of a flow control device provided by another embodiment of the present application. As shown in Figure 7, in this embodiment, the flow control device is applied to the access device, and the access device is connected to the controller.
  • the flow control device includes: a receiving module 210, a redirection module 220, a matching module 230 and an execution module 240.
  • the receiving module 210 is configured to receive colored routes.
  • the colored routes are generated by the controller based on the graphical interface receiving flow control instructions and based on the flow control instructions;
  • Redirect module 220 configured to match the redirected traffic with the segment routing traffic engineering policy
  • a matching module 230 configured to match the redirected traffic with the segment routing traffic engineering policy
  • the execution module 240 is configured to, if the match is successful, convert the colored route into a traffic control policy, and then introduce the access traffic to the path of the segment routing traffic engineering policy corresponding to the colored route based on the traffic control policy;
  • the execution module 240 is also configured to drop the access traffic if the matching fails.
  • the flow control device provided in this embodiment and the flow control method applied to access equipment provided in the above embodiment belong to the same inventive concept.
  • An embodiment of the method, and this embodiment has the same beneficial effects as the access device performing the flow control method.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • embodiments of the present application also provide a flow control device.
  • the above application is applied to the flow control device.
  • the flow control method of the device can be executed by the flow control device, and the flow control device can be implemented in the form of software and/or hardware and integrated in the flow control device.
  • the flow control device can be a mobile phone, laptop, tablet, or other mobile device that can communicate with the network side.
  • FIG 8 is a schematic diagram of the hardware structure of a flow control device provided by an embodiment of the present application.
  • the flow control device may include: a processor 1001, such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to realize connection communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard).
  • the user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface or a wireless interface (such as a wireless fidelity (WIreless-FIdelity, WI-FI) interface).
  • the memory 1005 can be a high-speed random access memory (Random Access Memory, RAM) memory or a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the structure shown in FIG. 8 does not constitute a limitation on the flow control device, and may include more or less components than shown, or combine certain components, or arrange different components.
  • the memory 1005 as a storage medium may include an operating system, a data storage module, a network communication module, a user interface module and a computer program.
  • the network interface 1004 is mainly used for data communication with other devices; the user interface 1003 is mainly used for data interaction with the user; the processor 1001 and the memory 1005 in this embodiment can be set in In the flow control device, the flow control device calls the computer program stored in the memory 1005 through the processor 1001, and executes the flow control method applied to the flow control device provided by any of the above embodiments.
  • the terminal proposed in this embodiment and the flow control method applied to the flow control device proposed in the above embodiment belong to the same inventive concept.
  • Technical details not described in detail in this embodiment can be referred to any of the above embodiments, and this embodiment has the same Implementing flow control methods has the same beneficial effects.
  • inventions of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is When the processor executes, the flow provided by any of the above embodiments is implemented. Quantity control method.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种流量控制方法、装置、设备及计算机可读存储介质,属于数据网络通讯技术领域。本申请实施例从预设的设备组网中获取组网拓扑,对组网拓扑进行图形化处理并载入相关协议以生成图形化界面,基于图形化界面接收流量控制指令,就能够生成与流量控制指令对应的用于控制流量流向的着色路由,通过将着色路由发送至接入设备,可以实现将接入设备的接入流量引导至与流量控制指令对应的分段路由流量工程策略的路径上。

Description

流量控制方法、装置、设备及计算机可读存储介质
相关申请
本申请要求于2022年9月16号申请的、申请号为202211134244.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及数据网络通讯技术领域,尤其涉及流量控制方法、装置、设备及计算机可读存储介质。
背景技术
在5G(5th Generation Mobile Communication Technology,第五代移动通信技术)承载网络大规模部署中,有各种各样的网络设备业务部署场景利用SR-TE(Segment Routing-Traffic Engineering,分段路由流量工程)技术实现智能流量调度。
目前,常用的引流方法是:远端网络设备静态配置BGP(Border Gateway Protocol,边界网关协议)路由策略,将携带BGP扩展Color(着色)属性的路由通告至当前的流量接入设备,当流量从近端接入设备进入时,在接入设备根据流量报文的目的IP地址(Internet Protocol Address,互联网协议地址)查询路由表,命中远端网络设备通告的BGP路由下一跳地址,从而将流量成功引入事先创建好的SR policy(SegmentRoutingPolicy,分段路由流量工程策略)路径上。
但是,这种引流方法在有临时网络流量进入流量接入设备导致需要引流时,需要重新在远端网络设备上修改路由策略的配置,这对维持当前网络的稳定性有一定的风险。
发明内容
本申请实施例的主要目的在于提供一种流量控制方法、装置、设备及计算机可读存储介质,旨在增强引流方法的安全性,降低设备变更配置引起的设备不稳定的风险。
为实现上述目的,本申请实施例提供一种流量控制方法,所述方法应用于控制器,所述控制器与接入设备连接,所述方法包括:
从预设的设备组网中获取组网拓扑;
对所述组网拓扑进行图形化处理并载入相关协议以生成图形化界面;
基于所述图形化界面接收流量控制指令,并根据所述流量控制指令生成对应的着色路由;
将所述着色路由发送至所述接入设备,以完成流量控制。
此外,为实现上述目的,本申请实施例还提供一种流量控制方法,所述方法应用于接入设备,所述接入设备与控制器连接,所述方法包括:
接收着色路由,所述着色路由是所述控制器基于图形化界面接收流量控制指令,并根据所述流量控制指令生成的;
根据所述着色路由对接入流量进行处理以得到重定向流量;
将所述重定向流量与分段路由流量工程策略进行匹配;
若匹配成功,则将所述着色路由转换成流量控制策略后,基于所述流量控制策略将所述接入流量引入到与所述着色路由对应的分段路由流量工程策略的路径上;
若匹配失败,则丢弃所述接入流量。
此外,为实现上述目的,本申请实施例还提供一种流量控制装置,所述流量控制装置应用于控制器,所述控制器与接入设备连接,所述流量控制装置包括:
获取模块,设置为从预设的设备组网中获取组网拓扑;
处理模块,设置为对所述组网拓扑进行图形化处理并载入相关协议以生成图形化界面;
生成模块,设置为基于所述图形化界面接收流量控制指令,并根据所述流量控制指令生成对应的着色路由;
发送模块,设置为将所述着色路由发送至所述接入设备,以完成流量控制。
此外,为实现上述目的,本申请实施例还提供一种流量控制装置,所述流量控制装置应用于接入设备,所述接入设备与控制器连接,所述流量控制装置包括:
接收模块,设置为接收着色路由,所述着色路由是所述控制器基于图形化界面接收流量控制指令,并根据所述流量控制指令生成的;
重定向模块,设置为将所述重定向流量与分段路由流量工程策略进行匹配;
匹配模块,设置为将所述重定向流量与分段路由流量工程策略进行匹配;
执行模块,设置为若匹配成功,则将所述着色路由转换成流量控制策略后,基于所述流量控制策略将所述接入流量引入到与所述着色路由对应的分段路由流量工程策略的路径上;
所述执行模块还设置为若匹配失败,则丢弃所述接入流量。
此外,为实现上述目的,本申请实施例还提供一种流量控制设备,所述流量控制设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的流量控制方法。
此外,为实现上述目的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的流量控制方法。
本申请实施例提出一种流量控制方法、装置、设备及计算机可读存储介质,通过控制器先从预设的设备组网中获取组网拓扑;再对所述组网拓扑进行图形化处理并载入相关协议以生成图形化界面;使得用户可以直接通过图形化界面实现流量控制指令的下发,无需再到远端网络设备上修改路由策略的配置;之后通过控制器接收来自图形化界面的流量控制指令,能够生成与所述流量控制指令对应的用于控制流量流向的着色路由,再通过控制器将所述着色路由下发至当前接入设备,可以实现将所述当前接入设备接入的流量引导至与所述流量控制指令对应的分段路由流量工程策略的路径上,无需改 变远端网络设备的路由策略,降低了由于设备变更配置引起的设备不稳定的风险,提高了设备组网的安全性,简化了操作流程。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例的一部分,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种流量控制方法的系统架构示意图;
图2为本申请一实施例提供的一种流量控制方法的流程示意图;
图3为本申请另一实施例提供的一种流量控制方法的流程示意图;
图4为本申请实施例提供的一种流量控制方法的应用场景示意图;
图5为本申请实施例提供的一种流量控制方法的实施交互示意图;
图6为本申请一实施例提供的一种流量控制装置的结构示意图;
图7为本申请另一实施例提供的一种流量控制装置的结构示意图;
图8为本申请一实施例提供的一种流量控制设备的硬件结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请实施例。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请实施例的描述。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
还应当理解,在本申请实施例说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请实施例的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、 “在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
在5G承载网络大规模部署中,有各种各样的网络设备业务部署场景利用SR-TE技术实现智能流量调度,其中,在基于SR policy的自动引流架构下,通过在BGP路由中携带扩展团体属性的方式,能够实现在头端设备通过匹配SR policy的Color值进行引流,生成的路由迭代到SR policy的segment(分段)列表信息后在转发平面生效。
目前,常用的引流方法是:远端网络设备静态配置BGP路由策略,将携带BGP扩展Color属性的路由通告至当前的流量接入设备,当流量从近端接入设备进入时,在接入设备根据流量报文的目的IP地址查询路由表,命中远端网络设备通告的BGP路由下一跳地址,从而使流量成功引入事先创建好的SR policy路径上。
但是,这种引流方法在有临时网络流量进入需要引流时,需要重新到远端网络设备上修改路由策略的配置,这对维持当前网络的稳定性有一定的风险;而且该引流方法只能针对流量的目的IP地址进行策略引流,在引流的灵活度上也存在一定的局限性。
基于此,本申请实施例提供了一种流量控制方法、装置、设备及计算机可读存储介质,通过控制器先从预设的设备组网中获取组网拓扑;再对组网拓扑进行图形化处理并载入相关协议以生成图形化界面;使得用户可以直接通过图形化界面实现流量控制指令的下发,无需再到远端网络设备上修改路由策略的配置;之后通过控制器接收来自图形化界面的流量控制指令,能够生成与流量控制指令对应的用于控制流量流向的着色路由,再通过控制器将着色路由下发至当前接入设备,可以实现将当前接入设备接入的流量引导至与流量控制指令对应的分段路由流量工程策略的路径上,无需改变远端网络设备的路由策略,降低了由于设备变更配置引起的设备不稳定的风险,提高了设备组网的安全性,简化了操作流程。
本申请实施例提供的流量控制方法、装置、设备及计算机可读存储介质,具体通过如下实施例进行说明,首先描述本申请实施例中的流量控制方法。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请实施例提供的一种流量控制方法的系统架构示意图。在图1的示例中,该流量控制方法的系统架构包括控制器100以及由接入设备200和多个可接入设备组成的设备组网。
其中,控制器100与设备组网中的接入设备200连接,接入设备200与设备组网中的部分可接入设备连接,部分可接入设备之间连接。
在本实施例中,控制器100为基于BGP协议的流量调度控制器,接入设备200为接入网络流量的网络设备,控制器100通过与接入设备200建立BGP link-state(链路状态)邻居,进而接收到来自接入设备200的BGP link-state路由,该BGP link-state路由中包含接入设备200所在设备网络的拓扑信息(网络节点、链路互联关系)和网络资源信息(节点、链路带宽以及其他相关属性)。这些信息通过SDN控制器的TOPO(topology,组网拓扑)组件进行处理后就可以形成一套实时协议topo,并生成图形化界面以供用户操作。在有网络流量进入接入设备200之后,若用户通过控制器100提供的图形化界面选择需要进行流量控制的组网设备中的网元名称,控制器100的TOPO组件就能够根据实时协议topo将选中的网元名称信息转换成BGP Flowspec(标准协议中定义的一种路由,Flow Specification,流动规范)路由重定向所需要的IP地址、SRv6SID(Segment Routing IPv6,基于IPv6转发平面的段路由,Security Identifiers,安全标识符)等通讯属性信息,并基于上述通讯属性信息生成用于重定向进入接入设备200的网络流量的BGP Flowspec着色路由,然后将BGP Flowspec着色路由下发至接入设备200,接入设备200在接收到BGP Flowspec着色路由后,会根据BGP Flowspec着色路由对网络流量进行重定向,并将重定向后的流量与分段路由流量工程策略SR policy进行匹配;若匹配成功,则将该着色路由转换成流量控制策略后,基于流量控制策略将网络流量引入到与着色路由对应的分段路由流量工程策略SR policy的路径上;若匹配失败,则丢弃该网络流量。
在一实施例中,控制器100为SDN(Software Defined Network,软件定义网络)控制器,例如OpenDaylight控制器、ONOS(开放网络操作系统)控制器、Floodlight控制器、NOX控制器、OneController控制器等;接入设备200和可接入设备为路由器,例如宽带路由器、无线路由器、边缘路由器和核 心路由器等。其中,SDN控制器通过解析用户的流量控制指令并生成BGP Flowspec着色路由下发至路由器;路由器通过将网络流量与BGP Flowspec着色路由进行匹配以实现对网络流量的重定向操作。
本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1中示出的系统架构并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图1所示的系统架构中,各个设备可以分别调用其储存的流量控制程序,以执行流量控制方法。
基于上述系统架构,提出本申请实施例的流量控制方法的各个实施例。
本申请实施例提供一种流量控制方法,如图2所示,图2为本申请一实施例提供的一种流量控制方法的流程示意图,该流量控制方法应用于控制器,该控制器与接入设备连接,本实施例提供的流量控制方法包括但不限于步骤S10至S40。
步骤S10,从预设的设备组网中获取组网拓扑;
本实施例的应用背景条件是控制器与预设的设备组网中的接入设备已建立连接,其中,控制器可以是SDN控制器,接入设备可以是路由器,由上述系统架构可知,预设的设备组网中包含多台网络设备,接入设备即这些网络设备中与本实施例中的控制器已建立连接的网络设备。在步骤S10中,控制器通过与接入设备之间的信息交互,可以从预设的设备组网中获取到组网拓扑。
步骤S20,对组网拓扑进行图形化处理并载入相关协议以生成图形化界面;
在一实施方式中,在步骤S20中,控制器通过TOPO组件对步骤S10中获取到的组网拓扑进行图形化处理形成一套实时协议topo,并基于该实时协议topo生成图形化界面以供用户操作。
步骤S30,基于图形化界面接收流量控制指令,并根据流量控制指令生成对应的着色路由;
在一实施方式中,在步骤S30中,流量控制指令可以是在用户触发图形化界面上的某些预设控件时生成的。例如在用户点击了图形化界面上代表了一网络设备的网元名称信息时,认定用户希望将进入设备组网的网络流量引导至被选中的网络设备处,此时就认为流量控制指令包含的内容是:将网络流量重定向至用户选中的该网络设备,但是控制器无法直接对流量的流向进行控制,故而需要将该流量控制指令所包含的内容以BGP Flowspec着色路由的形式下发到接入设备中以对该网络流量进行控制。
步骤S40,将着色路由发送至接入设备,以完成流量控制。
在一实施方式中,在用于对网络流量进行着色和重定向的BGP Flowspec着色路由生成完成后,控制器只要将其发送到接入设备中,就可以使得接入设备基于BGP Flowspec着色路由将网络流量与SR policy进行匹配,进而完成对网络流量流向的控制。
本申请实施例提供了一种流量控制方法,通过控制器先从预设的设备组网中获取组网拓扑;再对组网拓扑进行图形化处理并载入相关协议以生成图形化界面;使得用户可以直接通过图形化界面实现流量控制指令的下发,无需再到远端网络设备上修改路由策略的配置;之后通过控制器接收来自图形化界面的流量控制指令,能够生成与流量控制指令对应的用于控制流量流向的着色路由,再通过控制器将着色路由下发至当前接入设备,即可实现流量控制,无需改变远端网络设备的路由策略,降低了由于设备变更配置引起的设备不稳定的风险,提高了设备组网的安全性,简化了操作流程。
与现有技术相比,本申请实施例具有以下特点:本实施例中的Flowspec是MP-BGP(向后兼容)地址族中的一个扩展地址族,可以实现将用户的策略:需要匹配的流量IP包的七元组(源、目标IP地址,源、目标端口号、协议号、QOS标记、接口索引)以及匹配后重定向打包后通过BGP路由发送给引流设备,从而通过Flowspec实现策略路由功能而不需要对设备进行配置,降低了设备变更配置引起的设备不稳定的风险;本实施例可以匹配流量IP报文的七元组,这里的引流可以做到严格匹配多个条件,也可以单条件松散匹配流量,能够满足用户的自定义选择,更加灵活;用户可以通过更新BGP  Flowspec路由来进行流量重定向,也可随时撤销BGP路由取消流量重定向,可控性更强;控制器界面图形化,无需记忆网络设备的IP地址进行操作,用户只需在界面选择网元名称进行操作即可,减小了人为误操作的概率,安全性更高;由于控制器与网络设备之间建立MP-BGP邻居,同时BGP link-state、Flowspec、SR-Policy的扩展已经将拓扑收集、资源信息收集、策略分发、策略管理集成于一身,极大程度上简化了网络设计降低了运维人员学习门槛。
在一些实施例中,步骤S10可以包括但不限于以下步骤:
步骤S11,在预设的设备组网中建立边界网关协议邻居;
步骤S12,通过边界网关协议邻居获取组网信息;
步骤S13,通过预设的组网拓扑组件处理组网信息以得到组网拓扑。
在步骤S11中,控制器通过与接入设备建立BGP link-state(链路状态)邻居;在步骤S12中,控制器通过BGP link-state(链路状态)邻居关系接收到来自接入设备的组网信息;该组网信息中包含接入设备所在的预设的设备组网的拓扑信息(网络节点、链路互联关系)和网络资源信息(节点、链路带宽以及其他相关属性);在步骤S13中,通过控制器的TOPO组件对这些信息进行处理后就可以形成一套实时协议topo(即组网拓扑)。
在一些实施例中,步骤S12可以包括但不限于以下步骤:
步骤S121,接收边界网关协议邻居发送的链路状态路由;
步骤S122,解析链路状态路由以得到组网信息。
可以理解的是,在步骤S121中,控制器接收BGP link-state(链路状态)邻居(即边界网关协议邻居,)即接入设备发送的BGP link-state路由(即链路状态路由);在步骤S122中,控制器对BGP link-state路由进行解析,以得到BGP link-state路由中包含的接入设备所在的预设的设备组网的拓扑信息和网络资源信息(即组网信息)。
在一些实施例中,在步骤S10之后,流量控制方法还可以包括但不限于以下步骤:
步骤S14,若组网拓扑中不存在分段路由流量工程策略对应的路径,则在组网拓扑中创建不同着色的分段路由流量工程策略对应的路径。
在一实施方式中,在步骤S14中,预设的设备组网中可能并没有提前创建好对应Color的分段路由流量工程策略SR policy对应的路径,为了保证通 过BGP Flowspec着色路由对流量进行Color属性变更后流量能够正常引入到对应Color的SR policy对应的路径,就需要在组网拓扑中先创建好对应Color的SR policy对应的路径,然后再执行步骤S20。若组网拓扑中已存在分段路由流量工程策略对应的路径,则可以直接执行步骤S20。
在一些实施例中,流量控制指令包括:目标设备信息;步骤S30中根据流量控制指令生成对应的着色路由的步骤可以包括但不限于以下步骤:
步骤S31,将目标设备信息转换为通讯属性信息;
步骤S32,根据通讯属性信息生成与目标设备信息对应的着色路由。
在一实施方式中,在步骤S31中,目标设备信息指的是图形化界面展示给用户的代表预设的设备组网中各网络设备的设备名称信息或网元名称信息,在用户通过图形化界面选择设备名称进行BGP Flowspec路由下发时,控制器的TOPO组件将选中的网元名称信息转换成BGP Flowspec路由重定向所需要的IP地址、SRv6SID等属性信息(即通讯属性信息),降低了用户手工使用设备操作误操作的风险;在步骤S32中,控制器BGP模块基于IP地址、SRv6SID等属性信息生成包含用户选中的网络设备信息的BGP Flowspec着色路由。
本实施例中,BGP Flowspec是基于NLRI(Network Layer Reachability Information,网络层可达性信息)编码格式生成的,BGP Flowspec的流量匹配规则是由包含流量属性基本规则的n元组替换。该规则可以是或多或少复杂的以下组合:源IP地址、宿IP地址、源端口(TCP/UDP)、宿端口(TCP/UDP)、ICMP类型和ICMP代码的第4层信息以及DSCP信息;以上作为流量匹配规则,在流量匹配成功后可以实现流量重定向,不限于以下两个属性:1)由于BGP路由具备扩展团体属性,可以赋予BGP路由Color属性(可与SR policy的Color结合使用);2)指定BGP路由下一跳地址(可与SR policy的Endpoint结合使用)。同时,由于SRv6Policy使用如下三元组作为Key,故而可以实现全局唯一标识一个SRv6Policy:1)头节点(Headpoint):标识SRv6Policy的头节点,可以将流量导入一个SRv6Policy中;2)颜色(Color):标识SRv6Policy的ID,可与BGP业务属性Color相关联;3)尾节点(Endpoint):标识SRv6Policy的目的地址。本实施例利用以上BGP Flowspec路由重定向流量属性(接入设备头节点,BGP扩展团体属性Color,BGP路由的Next hop 属性)以及SR policy的三元组特性进行结合,在BGP Flowspec路由下发至流量接入设备时,BGP Flowspec路由重定向流量属性匹配上SR policy的三元组后,即可成功将流量引入至SR policy上进行管理。
由于本实施例的BGP Flowspec的所有操作均在SDN控制器的图形化界面操作,而且将整张网络以端到端的模式展现出来,使得BGP Flowspec策略下发更加简单便捷,并且具备随时撤销、修改、删除路由的优点。对于运维人员而言,也比以往在网络设备上静态配置FlowSpec策略也要更加的具备安全性,无需更改设备配置。
本申请实施例提出一种流量控制方法,如图3所示,图3为本申请另一实施例提供的一种流量控制方法的流程示意图,该流量控制方法应用于接入设备,该接入设备与控制器连接,本实施例提供的流量控制方法包括但不限于有步骤A10至A50。
步骤A10,接收着色路由,着色路由是控制器基于图形化界面接收流量控制指令,并根据流量控制指令生成的;
本实施例的应用背景条件是接入设备与控制器已建立连接,其中,接入设备可以是路由器,控制器可以是SDN控制器。在步骤A10中,接入设备通过与控制器之间的信息交互,可以接收到控制器基于图形化界面接收来自用户的流量控制指令,并根据该流量控制指令生成的BGP Flowspec着色路由。
步骤A20,根据着色路由对接入流量进行处理以得到重定向流量;
本实施例中,接入流量即接入路由器设备的网络流量,路由器设备在接收到BGP Flowspec着色路由后,会根据BGP Flowspec着色路由对网络流量进行重定向处理,进而得到重定向流量。
步骤A30,将重定向流量与分段路由流量工程策略进行匹配;
步骤A40,若匹配成功,则将着色路由转换成流量控制策略后,基于流量控制策略将接入流量引入到与着色路由对应的分段路由流量工程策略的路径上;
步骤A50,若匹配失败,则丢弃接入流量。
在得到重定向流量后,路由器设备将重定向流量与分段路由流量工程策略SR policy进行匹配;重定向流量如果成功匹配上分段路由流量工程策略SR policy,则接入的网络流量可以迭代上相关的分段路由流量工程策略SR policy 对应的路径;反之,如果接入的网络流量与分段路由流量工程策略SR policy不匹配,则会丢弃该网络流量。
本申请实施例提供了一种流量控制方法,通过接入设备接收由控制器基于图形化界面接收流量控制指令,并根据流量控制指令生成的着色路由;再根据着色路由对接入流量进行处理以得到重定向流量;之后将重定向流量与分段路由流量工程策略进行匹配;若匹配成功,则将着色路由转换成流量控制策略后,基于流量控制策略将接入流量引入到与着色路由对应的分段路由流量工程策略的路径上;若匹配失败,则丢弃接入流量,从而实现自定义引流功能,克服了现有技术在引流灵活度上存在的局限性。
此外,为便于理解本申请实施例所提供的流量控制方法,本申请实施例还提供了如图4所示的一种流量控制方法的应用场景示意图。
示例性地,本实施例的背景条件是:控制器SDN Controller与预设的设备组网AS 100中的一台组网设备(例如R1(RR)设备,并作为BGP路由反射器)建立基本的BGP邻居,SDN Controller通过这台MP-BGP邻居收集网络拓扑、资源信息、流量信息;该预设的设备组网AS 100已提前创建好对应color的sr policy,即sr policy 1和sr policy 2。
现有技术中,一般通过在远端网络设备(如图4中的R2设备)上静态配置BGP路由策略,使接入AS 100的目的地址路由为1.1.1.1/24的流量携带BGP扩展color属性1,并通告至当前的接入设备(如图4中的R1设备),使R1设备收到的该流量能正常引入到事先创建好的sr policy 1对应路径上。
本实施例中,通过控制器给R1下发BGP Flowspec路由,该路由信息可以是:匹配流量(目的IP:1.1.1.1/24),将流量重定向到图4中的R4的BGP router-id地址,并且变更color为2。使得R1设备收到的该流量能够正常引入到提前创建好的sr policy 2对应路径上。上述R4的BGP router-id地址以及其对应的prefix-sid,都是由控制器BGP link-state路由获取,用户只需在图形化界面选择即可,无需人工去设备处查询对应的信息填入。重新检查流量,此时流量已实现重定向后的sr policy2新路径上(如图4中的R1-->R3-->R4)。至此,通过控制器成功实现通过下发bgp flowspec将流量引流到sr policy路径。
此外,为便于理解本申请实施例所提供的流量控制方法,本申请实施例还提供了如图5所示的一种流量控制方法的实施交互示意图。
示例性地,SDN控制器BGP模块先从设备组网的路由器设备处通过BGPLS采集topo信息,并将topo信息传递给控制器topo模块进行图形化topo处理,并将相关协议信息填入。在流量接入路由器设备之后,用户在图形topo界面进行路由重定向,经过SDN控制器BGP模块将用户操作翻译成BGP Flowspec路由下发给路由器设备。路由器设备通过BGP Flowspec路由对接入的流量进行处理之后得到重定向流量,该重定向流量携带color属性和NextHop信息,若能够命中sr policy的color和endpoint,则流量可以迭代上相关的SR policy,将流量引入至对应的sr policy承载,反之,若不匹配则会将流量丢弃,从而实现自定义引流功能。
此外,本申请实施例还提出一种流量控制装置,参照图6,图6为本申请一实施例提供的一种流量控制装置的结构示意图。如图6所示,本实施例中,流量控制装置应用于控制器,控制器与接入设备连接,流量控制装置包括:获取模块110、处理模块120、生成模块130和发送模块140。
获取模块110,设置为从预设的设备组网中获取组网拓扑;
处理模块120,设置为对组网拓扑进行图形化处理并载入相关协议以生成图形化界面;
生成模块130,设置为基于图形化界面接收流量控制指令,并根据流量控制指令生成对应的着色路由;
发送模块140,设置为将着色路由发送至接入设备,以完成流量控制。
本申请实施例提供了一种流量控制装置,通过控制器先从预设的设备组网中获取组网拓扑;再对组网拓扑进行图形化处理并载入相关协议以生成图形化界面;使得用户可以直接通过图形化界面实现流量控制指令的下发,无需再到远端网络设备上修改路由策略的配置;之后通过控制器接收来自图形化界面的流量控制指令,能够生成与流量控制指令对应的用于控制流量流向的着色路由,再通过控制器将着色路由下发至当前接入设备,即可实现流量控制,无需改变远端网络设备的路由策略,降低了由于设备变更配置引起的设备不稳定的风险,提高了设备组网的安全性,简化了操作流程。
本实施例提供的流量控制装置与上述实施例提供的应用于控制器的流量控制方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上 述应用于控制器的流量控制方法的实施例,并且本实施例具备与控制器执行流量控制方法相同的有益效果。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请实施例还提出一种流量控制装置,参照图7,图7为本申请另一实施例提供的一种流量控制装置的结构示意图。如图7所示,本实施例中,流量控制装置应用于接入设备,接入设备与控制器连接,流量控制装置包括:接收模块210、重定向模块220、匹配模块230和执行模块240。
接收模块210,设置为接收着色路由,着色路由是控制器基于图形化界面接收流量控制指令,并根据流量控制指令生成的;
重定向模块220,设置为将重定向流量与分段路由流量工程策略进行匹配;
匹配模块230,设置为将重定向流量与分段路由流量工程策略进行匹配;
执行模块240,设置为若匹配成功,则将着色路由转换成流量控制策略后,基于流量控制策略将接入流量引入到与着色路由对应的分段路由流量工程策略的路径上;
执行模块240还设置为若匹配失败,则丢弃接入流量。
本实施例提供的流量控制装置与上述实施例提供的应用于接入设备的流量控制方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述应用于接入设备的流量控制方法的实施例,并且本实施例具备与接入设备执行流量控制方法相同的有益效果。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请实施例还提供一种流量控制设备,上述应用于流量控制设 备的流量控制方法可以由流量控制装置执行,该流量控制装置可以通过软件和/或硬件的方式实现,并集成在流量控制设备中。流量控制设备可以为手机、笔记本、平板电脑等可与网络侧通信的移动设备。
参照图8,图8为本申请一实施例提供的一种流量控制设备的硬件结构示意图。如图8所示,流量控制设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005还可以是独立于前述处理器1001的存储设备。
本领域技术人员可以理解,图8中示出的结构并不构成对流量控制设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。如图8所示,作为一种存储介质的存储器1005中可以包括操作系统、数据存储模块、网络通信模块、用户接口模块以及计算机程序。
在图8所示的流量控制设备中,网络接口1004主要用于与其他设备进行数据通信;用户接口1003主要用于与用户进行数据交互;本实施例中的处理器1001、存储器1005可以设置在流量控制设备中,流量控制设备通过处理器1001调用存储器1005中存储的计算机程序,并执行上述任一实施例提供的应用于流量控制设备的流量控制方法。
本实施例提出的终端与上述实施例提出的应用于流量控制设备的流量控制方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行流量控制方法相同的有益效果。
此外,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述任一实施例提供的流 量控制方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请实施例的可选实施方式进行了具体说明,但本申请实施例并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请实施例精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请实施例权利要求所限定的范围内。

Claims (10)

  1. 一种流量控制方法,其中,所述方法应用于控制器,所述控制器与接入设备连接,所述方法包括:
    从预设的设备组网中获取组网拓扑;
    对所述组网拓扑进行图形化处理并载入相关协议以生成图形化界面;
    基于所述图形化界面接收流量控制指令,并根据所述流量控制指令生成对应的着色路由;
    将所述着色路由发送至所述接入设备,以完成流量控制。
  2. 如权利要求1所述的方法,其中,在所述从预设的设备组网中获取组网拓扑的步骤之后,所述方法还包括:
    若所述组网拓扑中不存在分段路由流量工程策略对应的路径,则在所述组网拓扑中创建不同着色的分段路由流量工程策略对应的路径。
  3. 如权利要求1所述的方法,其中,所述从预设的设备组网中获取组网拓扑的步骤,包括:
    在预设的设备组网中建立边界网关协议邻居;
    通过所述边界网关协议邻居获取组网信息;
    通过预设的组网拓扑组件处理所述组网信息以得到组网拓扑。
  4. 如权利要求3所述的方法,其中,所述通过所述边界网关协议邻居获取组网信息的步骤,包括:
    接收所述边界网关协议邻居发送的链路状态路由;
    解析所述链路状态路由以得到组网信息。
  5. 如权利要求1所述的方法,其中,所述流量控制指令包括:目标设备信息;
    所述根据所述流量控制指令生成对应的着色路由的步骤,包括:
    将所述目标设备信息转换为通讯属性信息;
    根据所述通讯属性信息生成与所述目标设备信息对应的着色路由。
  6. 一种流量控制方法,其中,所述方法应用于接入设备,所述接入设备与控制器连接,所述方法包括:
    接收着色路由,所述着色路由是所述控制器基于图形化界面接收流量控制指令,并根据所述流量控制指令生成的;
    根据所述着色路由对接入流量进行处理以得到重定向流量;
    将所述重定向流量与分段路由流量工程策略进行匹配;
    若匹配成功,则将所述着色路由转换成流量控制策略后,基于所述流量控制策略将所述接入流量引入到与所述着色路由对应的分段路由流量工程策略的路径上;
    若匹配失败,则丢弃所述接入流量。
  7. 一种流量控制装置,其中,所述流量控制装置应用于控制器,所述控制器与接入设备连接,所述流量控制装置包括:
    获取模块,设置为从预设的设备组网中获取组网拓扑;
    处理模块,设置为对所述组网拓扑进行图形化处理并载入相关协议以生成图形化界面;
    生成模块,设置为基于所述图形化界面接收流量控制指令,并根据所述流量控制指令生成对应的着色路由;
    发送模块,设置为将所述着色路由发送至所述接入设备,以完成流量控制。
  8. 一种流量控制装置,其中,所述流量控制装置应用于接入设备,所述接入设备与控制器连接,所述流量控制装置包括:
    接收模块,设置为接收着色路由,所述着色路由是所述控制器基于图形化界面接收流量控制指令,并根据所述流量控制指令生成的;
    重定向模块,设置为将所述重定向流量与分段路由流量工程策略进行匹配;
    匹配模块,设置为将所述重定向流量与分段路由流量工程策略进行匹配;
    执行模块,设置为若匹配成功,则将所述着色路由转换成流量控制策略后,基于所述流量控制策略将所述接入流量引入到与所述着色路由对应的分段路由流量工程策略的路径上;
    所述执行模块还设置为若匹配失败,则丢弃所述接入流量。
  9. 一种流量控制设备,其中,所述流量控制设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的流量控制方法或如权利要求6所述的流量控制方法。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的流量控制方法或如权利要求6所述的流量控制方法。
PCT/CN2023/094363 2022-09-16 2023-05-15 流量控制方法、装置、设备及计算机可读存储介质 WO2024055617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211134244.XA CN117768369A (zh) 2022-09-16 2022-09-16 流量控制方法、装置、设备及计算机可读存储介质
CN202211134244.X 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055617A1 true WO2024055617A1 (zh) 2024-03-21

Family

ID=90274227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094363 WO2024055617A1 (zh) 2022-09-16 2023-05-15 流量控制方法、装置、设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117768369A (zh)
WO (1) WO2024055617A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796581B1 (en) * 2006-08-29 2010-09-14 Sprint Communications Company L.P. Automated route control for a communication network
CN106130796A (zh) * 2016-08-29 2016-11-16 广州西麦科技股份有限公司 Sdn网络拓扑流量可视化监控方法及控制终端
CN107360100A (zh) * 2017-07-31 2017-11-17 江苏省邮电规划设计院有限责任公司 一种基于sdn技术的网络流量编排系统和方法
US20210385150A1 (en) * 2020-06-03 2021-12-09 Juniper Networks, Inc. Provisioning non-colored segment routing label switched paths via segment routing policies in border gateway protocol
CN114650262A (zh) * 2020-12-21 2022-06-21 中国移动通信有限公司研究院 一种ip流量传输方法、装置及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796581B1 (en) * 2006-08-29 2010-09-14 Sprint Communications Company L.P. Automated route control for a communication network
CN106130796A (zh) * 2016-08-29 2016-11-16 广州西麦科技股份有限公司 Sdn网络拓扑流量可视化监控方法及控制终端
CN107360100A (zh) * 2017-07-31 2017-11-17 江苏省邮电规划设计院有限责任公司 一种基于sdn技术的网络流量编排系统和方法
US20210385150A1 (en) * 2020-06-03 2021-12-09 Juniper Networks, Inc. Provisioning non-colored segment routing label switched paths via segment routing policies in border gateway protocol
CN114650262A (zh) * 2020-12-21 2022-06-21 中国移动通信有限公司研究院 一种ip流量传输方法、装置及网络侧设备

Also Published As

Publication number Publication date
CN117768369A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US10757008B2 (en) Flow specification protocol-based communications method, device, and system
US10986024B1 (en) Dynamic prefix list for route filtering
US9819540B1 (en) Software defined network controller
US9634928B2 (en) Mesh network of simple nodes with centralized control
WO2022166691A1 (zh) 一种业务处理方法、装置、存储介质及电子装置
US9350661B2 (en) Aggregation network with centralized control
US9143557B2 (en) Feedback loop for service engineered paths
US10841172B2 (en) Network fabric visualization and management
US9531627B1 (en) Selecting a remote path using forwarding path preferences
CN106789637B (zh) 一种跨域业务互通的路径建立方法、控制器及系统
US8000327B1 (en) Quality of service (QoS)-aware forwarding in an MPLS network with tactical traffic engineering
CN104702502A (zh) 网络路径计算方法及装置
RU2528149C1 (ru) Способ коммутации туннеля и система сервисов многопротокольной коммутации по меткам
CN110611616A (zh) 一种基于Radius服务器的流量调度方法、系统、设备和介质
US20190245775A1 (en) Data network
US11418428B2 (en) Recomputation of multipaths in a segment routing-enabled network
CN114884873A (zh) 一种转发路径的确定方法及装置
CN111935004B (zh) 基于SR Policy的自动引流扩展方法、路由器及系统
US11818032B2 (en) Bandwidth constraint for multipath segment routing
CN112671650A (zh) Sd-wan场景下的端到端sr控制方法、系统和可读存储介质
US10554543B1 (en) Migrating data traffic between label switched paths (LSPs) based on per-LSP protocol priority value
US11736392B2 (en) Supporting stateful explicit paths
Chen et al. Scalable and flexible traffic steering for service function chains
WO2024055617A1 (zh) 流量控制方法、装置、设备及计算机可读存储介质
CN117097818A (zh) 一种报文处理的方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864356

Country of ref document: EP

Kind code of ref document: A1