WO2024055601A1 - 一种太赫兹相控阵波导腔体、通信系统及前端 - Google Patents

一种太赫兹相控阵波导腔体、通信系统及前端 Download PDF

Info

Publication number
WO2024055601A1
WO2024055601A1 PCT/CN2023/092068 CN2023092068W WO2024055601A1 WO 2024055601 A1 WO2024055601 A1 WO 2024055601A1 CN 2023092068 W CN2023092068 W CN 2023092068W WO 2024055601 A1 WO2024055601 A1 WO 2024055601A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
radio frequency
rectangular waveguide
cavity
communication system
Prior art date
Application number
PCT/CN2023/092068
Other languages
English (en)
French (fr)
Inventor
张波
牛中乾
孟祥翱
于馨菲
袁军
马飞
周闻达
Original Assignee
四川太赫兹通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川太赫兹通信有限公司 filed Critical 四川太赫兹通信有限公司
Publication of WO2024055601A1 publication Critical patent/WO2024055601A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to the technical field of terahertz communication, and in particular to a terahertz phased array waveguide cavity, a communication system and a front end.
  • Phased array technology refers to scanning the array through phase control electronics, using a large number of small phase-controllable channels to arrange the units, and finally forming a phased array array, and each channel unit is controlled by its own independent switch. Different phase beams are formed. With fast beam scanning and flexible beam forming capabilities, phased array communication technology has become a key technology in advanced military and commercial applications.
  • the terahertz communication system currently under development based on solid-state semiconductor technology does not adopt a phased array communication method, but generally adopts a point-to-point transmission method of one transmitter and one receiver. This is mainly due to the narrow beam of terahertz waves.
  • it is necessary to minimize the phased array array spacing and control the array spacing within one wavelength. and the wavelength of terahertz wave is short, and the spacing between adjacent circuit transmission rectangular waveguides corresponding to the array spacing within one wavelength is only a few tenths of a millimeter.
  • the processing of the corresponding metal waveguide cavity is difficult and costly. Due to technical problems such as large size, long cycle time, and low yield, there is little research on terahertz phased array communication systems.
  • the purpose of the present invention is to provide a terahertz phased array waveguide cavity, communication system and front end to solve the above technical problems existing in the existing technology, which mainly include the following three aspects:
  • a first aspect of this application provides a terahertz phased array waveguide cavity.
  • the cavity is provided with a plurality of antenna cavities arranged in an array, and a radio frequency rectangular waveguide channel corresponding to the antenna cavity.
  • the frequency rectangular waveguide channel is connected to the antenna cavity.
  • the radio frequency rectangular waveguide channel is used to install the terahertz radio frequency circuit.
  • the spacing between the central axes of the radio frequency rectangular waveguide channel is M
  • the terahertz radio frequency circuit output
  • the wavelength of the signal is N, and the ratio of M to N is 2:1, 2.5:1, or 3:1.
  • the antenna cavity is a quadrangular pyramid structure
  • the bottom surface of the quadrangular pyramid is the mouth surface of the antenna cavity
  • the top surface of the quadrangular pyramid is the connection surface between the antenna cavity and the radio frequency rectangular waveguide channel
  • the top surface of the quadrangular pyramid is connected to the
  • the cross-sectional structures of the RF rectangular waveguide channels are the same.
  • the ratio between the lengths is 2.8:2.8:25:1.092:0.546; when the ratio of M and N is 2.5:1, the length of the bottom surface of the quadrangular platform, the width of the bottom surface of the quadrangular platform, the depth of the antenna cavity, and the radio frequency rectangular waveguide.
  • the ratio between the length of the wide side of the channel and the length of the narrow side of the radio frequency rectangular waveguide channel is 3.55:3.55:25:1.092:0.546; when the ratio of M and N is 3:1, the length and the length of the bottom of the quadrangular platform
  • the ratio of the depth of the antenna cavity to the depth of the radio frequency rectangular waveguide channel is 25:20.
  • the radio frequency rectangular waveguide channels are arranged in a one-dimensional array, the radio frequency rectangular waveguide channels are arranged in sequence along the straight line where the narrow side or the wide side of the radio frequency rectangular waveguide channel is located.
  • the second aspect of this application provides a terahertz communication system front end.
  • the terahertz communication system front end is a transmitting front end, including a local oscillator drive signal, a multi-channel power divider, a plurality of terahertz radio frequency circuits and the above-mentioned terahertz phase phase.
  • Controlled array waveguide cavity, the terahertz radio frequency circuit is arranged in the radio frequency rectangular waveguide channel of the terahertz phased array waveguide cavity, the signal input end of the multi-channel power divider is connected to the signal output end of the local oscillator drive signal, and the multi-channel power divider is connected to the signal output end of the local oscillator drive signal.
  • the signal output terminals of the power splitter are respectively connected to the signal input terminals of the terahertz radio frequency circuit.
  • the signal input end of the terahertz radio frequency circuit is also connected to the signal output end of the intermediate frequency signal;
  • the two-way signal transmission connection is between the terahertz radio frequency circuit and the intermediate frequency signal.
  • the terahertz radio frequency circuit includes a local oscillator frequency multiplier and a terahertz frequency converter arranged sequentially along the signal transmission direction, and the signal output end of the multi-channel power divider is connected to the signal input end of the local oscillator frequency multiplier,
  • the signal output end of the intermediate frequency signal is connected to the signal input end of the terahertz frequency converter;
  • the intermediate frequency signal and the terahertz frequency converter are connected for bidirectional signal transmission.
  • the intermediate frequency signal passes through an intermediate frequency numerically controlled phase shifter and a terahertz frequency converter.
  • the terahertz radio frequency circuit also includes a terahertz phase shifter, and the terahertz frequency converter is connected to the antenna cavity for bidirectional signal transmission through the terahertz phase shifter.
  • the third aspect of this application provides a terahertz communication system, including the above-mentioned terahertz phased array waveguide cavity, or the above-mentioned terahertz communication system front end.
  • the present invention at least has the following technical effects:
  • the present invention arranges the radio frequency rectangular waveguide channel and the corresponding antenna cavity in a phased array at an array interval of 2, 2.5 or 3 wavelengths, thereby increasing the spacing between adjacent radio frequency rectangular waveguide channels, so that the existing radio frequency rectangular waveguide channel can be Processing technology
  • the metal branches between the RF rectangular waveguide channels and the metal branches between the antenna cavities can maintain high mechanical strength and are not easy to be damaged during processing and use.
  • the terahertz communication system can be The radio frequency circuit in the module is quickly integrated and set up in the radio frequency rectangular waveguide channel after modularization, which not only allows the front end of the terahertz communication system to achieve modular phased array expansion functions, but also achieves a good scanning angle at the front end of the terahertz communication system.
  • the integrated setup facilitates wider and more flexible applications of terahertz communication systems in military and commercial applications.
  • Figure 1 is a schematic structural diagram of a terahertz phased array waveguide cavity (antenna cavity in front) in Embodiment 1 of the present application;
  • Figure 2 is a schematic structural diagram of the terahertz phased array waveguide cavity (RF rectangular waveguide channel in front) in Embodiment 1 of the present application;
  • Figure 3 is a top view of the terahertz phased array waveguide cavity in Embodiment 1 of the present application;
  • Figure 4 is a cross-sectional view along the A-A direction in Figure 3;
  • Figure 5 is a cross-sectional view along the B-B direction in Figure 3;
  • Figure 6 is another structural schematic diagram of the terahertz phased array waveguide cavity of the present application.
  • Figure 7 is a schematic circuit connection diagram of the transmitting front end of the terahertz communication system in Embodiment 2 of the present application.
  • Figure 8 is another circuit connection diagram of the transmitting front end of the terahertz communication system in Embodiment 2 of the present application.
  • Figure 9 is a schematic circuit connection diagram of the receiving front end of the terahertz communication system in Embodiment 3 of the present application.
  • Figure 10 is another circuit connection schematic diagram of the receiving front end of the terahertz communication system in Embodiment 3 of the present application.
  • Figure 11 is a performance test diagram of the front end of the terahertz communication system in Embodiment 4 of the present application.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish descriptions and shall not be understood as indicating or implying relative importance.
  • the first feature being above or below the second feature may include the first and second features being in direct contact, or the first and second features not being in direct contact. is through additional characteristic contact between them.
  • the first feature on, above and above the second feature includes the first feature directly above and diagonally above the second feature, or simply means that the first feature is higher level than the second feature.
  • the first feature below, below and below the second feature includes the first feature directly below and diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the embodiment of the present application provides a terahertz phased array waveguide cavity.
  • the cavity 10 is provided with a plurality of antenna cavities 110 arranged in an array, and a plurality of antenna cavities 110 are provided corresponding to the antenna cavities 110.
  • the radio frequency rectangular waveguide channel 120 is connected with the antenna cavity 110.
  • the radio frequency rectangular waveguide channel 120 is used to install the terahertz radio frequency circuit 270.
  • the radio frequency rectangular waveguide channel The spacing between the central axes of 120 is M, the wavelength of the output signal of the terahertz radio frequency circuit 270 is N, and the ratio of M and N is 2:1, 2.5:1, or 3:1.
  • Terahertz communication systems based on solid-state semiconductor technology are currently under development. Due to the narrow beam of terahertz waves, the existing technology needs to minimize the phased array layout in order to ensure good scanning angle performance of the terahertz phased array communication front-end. Spacing, the array spacing is controlled within one wavelength, and the wavelength of terahertz wave is short. The spacing between adjacent circuit transmission rectangular waveguides corresponding to the array spacing within one wavelength is only a few tenths of a millimeter, making it almost impossible to achieve actual processing. Production, therefore the existing technology generally uses a point-to-point transmission method of one transmitter and one receiver.
  • the frequency band uses switches with high loss and poor isolation, which effectively reduces the volume of the terahertz radio frequency circuit 270 and the corresponding radio frequency rectangular waveguide channel 120; at the same time, this embodiment integrates the design structure of the antenna cavity 110 and the radio frequency rectangular waveguide channel 120.
  • the terahertz radio frequency circuit 270 in the terahertz communication system can be quickly integrated and set up in the radio frequency rectangular waveguide channel 120 after modularization, which not only allows the The front-end of the Hertz communication system can realize modular phased array expansion functions, and at the same time, the front-end of the Terahertz communication system can also achieve good scanning Angle performance, and because only one waveguide cavity can be used to modularly integrate multiple terahertz radio frequency circuits 270, it effectively improves the space utilization of the waveguide cavity (the waveguide flange is an international standard size, and the size of a single waveguide flange is approximately is 2 cm, and the volume of the terahertz circuit is in the micron level.
  • the antenna cavity 110 is a quadrangular pyramid structure.
  • the bottom surface of the quadrangular pyramid is the mouth surface of the antenna cavity 110
  • the top surface of the quadrangular pyramid is the antenna cavity 110 and the radio frequency rectangular waveguide channel.
  • the connection surface of 120 and the top surface of the quadrangular frustum have the same cross-sectional structure as the radio frequency rectangular waveguide channel 120, and the top and bottom surfaces of the quadrangular frustum are arranged in parallel.
  • the ratio between the lengths of the narrow sides is 2.8:2.8:25:1.092:0.546.
  • the length of the bottom surface of the quadrangular pyramid, the width of the bottom surface of the quadrangular pyramid, the depth of the antenna cavity 110 , the length of the wide side of the radio frequency rectangular waveguide channel 120 and the radio frequency rectangle is 3.55:3.55:25:1.092:0.546.
  • the length of the bottom surface of the quadrangular pyramid, the width of the bottom surface of the quadrangular pyramid, the depth of the antenna cavity 110 , the length of the wide side of the radio frequency rectangular waveguide channel 120 and the radio frequency rectangle is 4.3:4.3:25:1.092:0.546.
  • the front end of the terahertz communication system can achieve good scanning angle performance.
  • the ratio of the depth of the antenna cavity 110 to the depth of the radio frequency rectangular waveguide channel 120 is 2.5:2.
  • the corresponding wavelength of the 200GHz frequency band is 1.5mm
  • the corresponding size of the radio frequency rectangular waveguide channel 120 is 1.092mm*0.546mm.
  • Standard waveguide WR-4 as shown in Figure 6, the size of the antenna cavity 110 is 2.8mm*2.8mm, the depth of the antenna cavity 110 is 25mm, and the depth of the radio frequency rectangular waveguide channel 120 is 20mm.
  • the phased array waveguide cavity is equipped with 2*4 antenna cavities 110 to achieve beam scanning in both horizontal and vertical directions, and a phased array array spacing of 2 wavelengths (3mm) is used.
  • the narrow sides correspond to two radio frequency rectangles.
  • the width of the metal branch 130 between the waveguide channels 120 is 2.454mm.
  • the width of the metal branch 130 between the two radio frequency rectangular waveguide channels 120 is 1.908mm.
  • the width of the metal branch 130 between the antenna cavities 110 is 0.2mm ⁇ 1.908mm or 0.2mm ⁇ 2.454mm; at this time, when the antenna cavity 110 and the radio frequency rectangular waveguide channel 120 are processed on the waveguide cavity, the mechanical strength of the metal branch 130 can stably support the existing processing technology and reduce the terahertz phase.
  • the processing difficulty and processing cost of the controlled array waveguide cavity in the actual processing process can shorten the processing cycle and improve the processing efficiency.
  • the antenna cavity 110 and the radio frequency rectangular waveguide channel 120 are respectively rectangular waveguide structures.
  • the antenna cavity 110 can directly serve as the antenna at the front end of the terahertz communication system, and the radio frequency rectangular waveguide channel 120 can directly use the standard waveguide size 1.092mm*0.546mm.
  • the radio frequency rectangular waveguide channels 120 are arranged in a one-dimensional array, the radio frequency rectangular waveguide channels 120 are arranged sequentially along the straight line where the narrow side of the radio frequency rectangular waveguide channel 120 is located.
  • the width of the metal branch 130 between the two radio frequency rectangular waveguide channels 120 is larger, and the width of the metal branch 130 between the two radio frequency rectangular waveguide channels 120 is larger in the waveguide cavity.
  • the processing difficulty and processing cycle when processing the antenna cavity 110 and the radio frequency rectangular waveguide channel 120 are also lower, which improves the convenience and safety of processing and production of the terahertz phased array waveguide cavity.
  • the radio frequency rectangular waveguide channels 120 when the radio frequency rectangular waveguide channels 120 are arranged in a one-dimensional array, the radio frequency rectangular waveguide channels 120 can also be arranged sequentially along the straight line where the wide side of the radio frequency rectangular waveguide channel 120 is located.
  • the terahertz phased array waveguide cavity includes eight radio frequency rectangular waveguide channels 120
  • the eight radio frequency rectangular waveguide channels 120 are arranged in sequence along the straight line where the wide side of the radio frequency rectangular waveguide channel 120 is located.
  • the number of radio frequency rectangular waveguide channels 120 in each row is the same.
  • the terahertz phased array waveguide cavity includes 8 radio frequency rectangular waveguide channels 120, the radio frequency rectangular waveguide channels 120 are arranged in a 2*4 pattern, and 4 are arranged in each row along the narrow side of the radio frequency rectangular waveguide channel 120.
  • the wide sides of the radio frequency rectangular waveguide channels 120 are arranged 2 in each column.
  • the number of radio frequency rectangular waveguide channels 120 in each row can be set to be different.
  • the terahertz phased array waveguide cavity includes 7 Radio frequency rectangular waveguide channels 120, from top to bottom, are arranged in the first row with 3 arrays, in the second row with 3 arrays, and in the third row with 1 array; in the example row, the terahertz phased array waveguide cavity includes 9 RF rectangular waveguide channels, from top to bottom, 3 are arranged in the first row, 5 are arranged in the second row, and 1 is arranged in the third row; in the example row, the terahertz phased array waveguide cavity includes 10 RF rectangular waveguide channels, from top to bottom, 2 arrays are arranged in the first row, 2 arrays are arranged in the second row, 4 arrays are arranged in the third row, and 2 arrays are arranged in the fourth row.
  • the embodiment of the present application provides a terahertz communication system transmitting front end, as shown in Figure 7, including a local oscillator drive signal 210, a multi-channel power divider 230, a plurality of terahertz radio frequency circuits 270 and the terahertz RF circuit in Embodiment 1.
  • Phased array waveguide cavity, the terahertz radio frequency circuit 270 is arranged in the radio frequency rectangular waveguide channel 120 of the terahertz phased array waveguide cavity, the signal input end of the multiplexer 230 and the signal of the local oscillator driving signal 210
  • the output terminals are connected.
  • the signal output terminals of the multiplexer 230 are respectively connected to the signal input terminals of the terahertz radio frequency circuit 270.
  • the signal input terminals of the terahertz radio frequency circuit 270 are also connected to the signal output terminals of the intermediate frequency signals.
  • the terahertz radio frequency circuit 270 includes a local oscillator frequency multiplier 240 and a terahertz frequency converter 250 arranged sequentially along the signal transmission direction.
  • the signal output end of the multi-channel power divider 230 and the signal of the local oscillator frequency multiplier 240 The input end is connected, and the signal output end of the intermediate frequency signal is connected with the signal input end of the terahertz frequency converter 250 .
  • the intermediate frequency signal passes through the intermediate frequency numerically controlled phase shifter 260 and the terahertz frequency converter 250 .
  • the intermediate frequency digitally controlled phase shifter 260 is not provided, and a terahertz phase shifter 280 is provided in the terahertz radio frequency circuit 270.
  • the terahertz frequency converter 250 communicates with the antenna through the terahertz phase shifter 280.
  • the bidirectional signal transmission connection of the cavity 110 allows the terahertz phase shifter 280 to follow the terahertz radio frequency circuit 270 and be installed in the radio frequency rectangular waveguide channel 120, further integrating the transmitting front end of the terahertz communication system and effectively reducing the load of the transmitting front end of the terahertz communication system. volume.
  • the signal output end of the local oscillator driving signal 210 is connected to the signal input end of the multi-channel power divider 230 through the dielectric phase-locked oscillator 220 .
  • the embodiment of the present application provides a terahertz communication system receiving front end, as shown in Figure 9, including a local oscillator drive signal 210, a multi-channel power divider 230, a plurality of terahertz radio frequency circuits 270 and the terahertz RF circuit in Embodiment 1.
  • Phased array waveguide cavity, the terahertz radio frequency circuit 270 is arranged in the radio frequency rectangular waveguide channel 120 of the terahertz phased array waveguide cavity, the signal input end of the multiplexer 230 and the signal of the local oscillator driving signal 210
  • the output terminals are connected.
  • the signal output terminals of the multiplexer 230 are respectively connected to the signal input terminals of the terahertz radio frequency circuit 270.
  • the terahertz radio frequency circuit 270 and the intermediate frequency signal are connected for bidirectional signal transmission.
  • the terahertz radio frequency circuit 270 includes a local oscillator frequency multiplier 240 and a terahertz frequency converter 250 arranged sequentially along the signal transmission direction.
  • the signal output end of the multi-channel power divider 230 and the signal of the local oscillator frequency multiplier 240 The input end is connected, and the intermediate frequency signal is connected to the terahertz frequency converter 250 for bidirectional signal transmission.
  • the intermediate frequency signal passes through the intermediate frequency numerically controlled phase shifter 260 and the terahertz frequency converter 250 .
  • the intermediate frequency digitally controlled phase shifter 260 is not provided, and a terahertz phase shifter 280 is provided in the terahertz radio frequency circuit 270.
  • the terahertz frequency converter 250 communicates with the antenna through the terahertz phase shifter 280.
  • the bidirectional signal transmission connection of the cavity 110 allows the terahertz phase shifter 280 to follow the terahertz radio frequency circuit 270 and is installed in the radio frequency rectangular waveguide channel 120, further integrating the receiving front end of the terahertz communication system and effectively reducing the load of the receiving front end of the terahertz communication system. volume.
  • the embodiment of the present application provides a terahertz communication system, including the terahertz phased array waveguide cavity in Embodiment 1, the terahertz communication system transmitting front end in Embodiment 2, or the terahertz communication system reception in Embodiment 3. front end.
  • the transmitting front-end of the terahertz communication system in Embodiment 2 and the receiving front-end of the terahertz communication system in Embodiment 3 are selected to form a terahertz communication system, and the cavity 10 corresponding to the 200GHz frequency band is used as shown in Figure 6
  • the transmitting front-end and the receiving front-end are installed respectively.
  • both the transmitting front-end and the receiving front-end use a 50MHz crystal oscillator as the local oscillator drive signal 210 to generate the drive signal, and the eight-way power divider serves as the multi-way power divider 230.
  • Eight radio frequency rectangular waveguides are The local oscillator frequency multipliers 240 in the channel 120 are driven respectively.
  • the local oscillator frequency multiplier 240 outputs a 200GHz signal, and the intermediate frequency signal first undergoes phase adjustment through the intermediate frequency numerically controlled phase shifter 260, and then passes through the terahertz frequency converter 250 and the local oscillator multiplier. After the terahertz signal generated by the frequency converter 240 is synthesized, it is output by the antenna cavity 110.
  • the echo signal is first down-converted by the terahertz frequency converter 250, and then The phase is adjusted by the intermediate frequency numerically controlled phase shifter 260, and is finally output to the intermediate frequency signal, and the echo signal is further processed by the signal processing system; in addition, the front end of the terahertz communication system of this embodiment is tested for performance, and the results are shown in Figure 11 , when using 2 wavelengths for 2*4 array, the scanning angle can reach ⁇ 15°, that is, the scanning angle is 30°; in addition, when using 3 wavelengths for 2*4 array, the scanning angle can reach ⁇ 10° , that is, the scanning angle is 20°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种太赫兹相控阵波导腔体、通信系统及前端,腔体上设置有天线腔和射频矩形波导通道,射频矩形波导通道用于安装太赫兹射频电路,射频矩形波导通道中轴线之间的间距和太赫兹射频电路输出信号的波长比值为2、2.5或3。通过将射频矩形波导通道进行相控阵布阵,让金属分支均能够保持较高的机械强度,不易在加工和使用过程中折损,同时只需使用一个波导腔体就能够将多个射频电路模块化集成设置,实现模块化式的相控阵扩展功能,并达到良好的扫描角度性能,有效提高波导腔体的空间利用率。

Description

一种太赫兹相控阵波导腔体、通信系统及前端 技术领域
本发明涉及太赫兹通信技术领域,尤其是涉及一种太赫兹相控阵波导腔体、通信系统及前端。
背景技术
相控阵技术,就是指通过相位控制电子对阵列进行扫描,利用大量可控制相位的小型通道进行单元排列,最终形成相控阵阵面,并且每一个通道单元都由各自独立的开关进行控制,形成不同的相位波束。凭借快速的波束扫描,灵活的波束赋形能力,相控阵通信技术已经成为先进军事和商业应用中的关键技术。
而申请人在实现本发明的过程中发现,目前在研的基于固态半导体技术的太赫兹通信系统,并没有采用相控阵通信方式,而是普遍采用一个发射端和一个接收端的点对点传输方式。这主要是由于太赫兹波波束窄,现有技术为保证太赫兹相控阵通信前端有较好的扫描角度性能,就需要尽量减少相控阵布阵间距,将布阵间距控制在一个波长以内,而太赫兹波波长较短,一个波长以内的布阵间距对应的相邻电路传输矩形波导之间间距仅有零点几毫米,基于现有加工技术,存在相应金属波导腔体加工难度高、成本大、周期长、成品率低等技术问题,因而鲜有太赫兹相控阵通信系统的研究。
发明内容
本发明的目的是提供一种太赫兹相控阵波导腔体、通信系统及前端,来解决现有技术中存在的上述技术问题,主要包括以下三个方面:
本申请第一方面提供了一种太赫兹相控阵波导腔体,所述腔体上设置有多个呈阵列设置的天线腔、以及与天线腔对应设置的射频矩形波导通道,所述射 频矩形波导通道与天线腔连通,射频矩形波导通道用于安装太赫兹射频电路,在两个相邻射频矩形波导通道中,射频矩形波导通道中轴线之间的间距为M,太赫兹射频电路输出信号的波长为N,M和N的比值为2:1、2.5:1、或3:1。
进一步地,所述天线腔为四棱台结构,四棱台的底面为天线腔的口面,四棱台的顶面为天线腔和射频矩形波导通道的连接面,四棱台的顶面与射频矩形波导通道的截面结构相同。
进一步地,在M和N的比值为2:1时,四棱台底面的长、四棱台底面的宽、天线腔的深度、射频矩形波导通道宽边的长度和射频矩形波导通道窄边的长度之间的比值为2.8:2.8:25:1.092:0.546;在M和N的比值为2.5:1时,四棱台底面的长、四棱台底面的宽、天线腔的深度、射频矩形波导通道宽边的长度和射频矩形波导通道窄边的长度之间的比值为3.55:3.55:25:1.092:0.546;在M和N的比值为3:1时,四棱台底面的长、四棱台底面的宽、天线腔的深度、射频矩形波导通道宽边的长度和射频矩形波导通道窄边的长度之间的比值为4.3:4.3:25:1.092:0.546。
进一步地,所述天线腔的深度和射频矩形波导通道的深度比为25:20。
进一步地,在射频矩形波导通道呈一维阵列布阵时,射频矩形波导通道沿射频矩形波导通道的窄边或宽边所在直线依次排列设置。
本申请第二方面提供了一种太赫兹通信系统前端,所述太赫兹通信系统前端为发射前端,包括本振驱动信号、多路功分器、多个太赫兹射频电路和上述的太赫兹相控阵波导腔体,所述太赫兹射频电路设置在太赫兹相控阵波导腔体的射频矩形波导通道内,多路功分器的信号输入端与本振驱动信号的信号输出端连接,多路功分器的信号输出端分别与太赫兹射频电路的信号输入端连接,
在太赫兹通信系统前端为发射前端时,太赫兹射频电路的信号输入端还与中频信号的信号输出端连接;
在太赫兹通信系统前端为接收前端时,太赫兹射频电路与中频信号之间双向信号传输连接。
进一步地,所述太赫兹射频电路包括沿信号传输方向依次设置的本振倍频器和太赫兹变频器,多路功分器的信号输出端与本振倍频器的信号输入端连接,
在太赫兹通信系统前端为发射前端时,所述中频信号的信号输出端与太赫兹变频器的信号输入端连接;
在太赫兹通信系统前端为接收前端时,所述中频信号与太赫兹变频器之间双向信号传输连接。
进一步地,所述中频信号通过中频数控移相器与太赫兹变频器。
进一步地,所述太赫兹射频电路还包括太赫兹移相器,太赫兹变频器通过太赫兹移相器与天线腔双向信号传输连接。
本申请第三方面提供了一种太赫兹通信系统,包括上述的太赫兹相控阵波导腔体,或上述的太赫兹通信系统前端。
本发明相对于现有技术至少具有如下技术效果:
本发明通过将射频矩形波导通道和对应的天线腔按2、2.5或3个波长的布阵间隔进行相控阵布阵,增大相邻射频矩形波导通道之间的间距,使得在基于现有加工工艺在波导腔体对天线腔和射频矩形波导通道进行加工时,射频矩形波导通道之间金属分支、以及天线腔之间的金属分支均能够保持较高的机械强度,不易在加工和使用过程中折损,让太赫兹相控阵波导腔体的实际加工生产得以实现;同时,基于将天线腔和射频矩形波导通道的一体化设计结构、以及相控阵布阵,能够将太赫兹通信系统中的射频电路在模块化后快速集成设置在射频矩形波导通道中,不仅让太赫兹通信系统前端能够实现模块化式的相控阵扩展功能,同时太赫兹通信系统前端还能达到良好的扫描角度性能,而且由于仅使用一个波导腔体就能够将多个射频电路模块化集成设置,有效提高波导腔体的空间利用率,减小太赫兹通信系统前端体积,实现太赫兹通信系统前端的小型化集成设置,有利于太赫兹通信系统在军事和商业中进行更广泛、灵活的应用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中太赫兹相控阵波导腔体(天线腔在前)的结构示意图;
图2是本申请实施例1中太赫兹相控阵波导腔体(射频矩形波导通道在前)的结构示意图;
图3是本申请实施例1中太赫兹相控阵波导腔体的俯视图;
图4是图3中A-A向的剖视图;
图5是图3中B-B向的剖视图;
图6是本申请太赫兹相控阵波导腔体的另一种结构示意图;
图7是本申请实施例2中太赫兹通信系统发射前端的电路连接示意图;
图8是本申请实施例2中太赫兹通信系统发射前端的另一种电路连接示意图;
图9是本申请实施例3中太赫兹通信系统接收前端的电路连接示意图;
图10是本申请实施例3中太赫兹通信系统接收前端的另一种电路连接示意图;
图11是本申请实施例4中太赫兹通信系统前端的性能测试图;
图中:
10、腔体;110、天线腔;120、射频矩形波导通道;130、金属分支;210、
本振驱动信号;220、介质锁相振荡器;230、多路功分器;240、本振倍频器;250、太赫兹变频器;260、中频数控移相器;270、太赫兹射频电路;280、太赫兹移相器。
具体实施方式
以下的说明提供了许多不同的实施例、或是例子,用来实施本发明的不同特征。以下特定例子所描述的元件和排列方式,仅用来精简的表达本发明,其仅作为例子,而并非用以限制本发明。
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之上或之下可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例1:
本申请实施例提供了一种太赫兹相控阵波导腔体,如图1~5所示,所述腔体10上设置有多个呈阵列设置的天线腔110、以及与天线腔110对应设置的射频矩形波导通道120,所述射频矩形波导通道120与天线腔110连通,射频矩形波导通道120用于安装太赫兹射频电路270,在两个相邻射频矩形波导通道120中,射频矩形波导通道120中轴线之间的间距为M,太赫兹射频电路270输出信号的波长为N,M和N的比值为2:1、2.5:1、或3:1。
目前在研的基于固态半导体技术的太赫兹通信系统,由于太赫兹波波束窄,现有技术为保证太赫兹相控阵通信前端有较好的扫描角度性能,就需要尽量减少相控阵布阵间距,将布阵间距控制在一个波长以内,而太赫兹波波长较短,一个波长以内的布阵间距对应的相邻电路传输矩形波导之间间距仅有零点几毫米,几乎不可能实现实际加工生产,因此现有技术一般采用一个发射端和一个接收端的点对点传输方式,即使有采用相控阵的通信系统,也仅是在理论层面实现,而无法在实际加工中进行生产;而本实施例通过将射频矩形波导通道120和对应的天线腔110按2、2.5或3个波长的布阵间隔进行相控阵布阵,增大相邻射频矩形波导通道120之间的间距,使得在基于现有加工工艺在波导腔体对天线腔110和射频矩形波导通道120进行加工时,射频矩形波导通道120之间金属分支130、以及天线腔110之间的金属分支130均能够保持较高的机械强度,不易在加工和使用过程中折损,让太赫兹相控阵波导腔体的实际加工生产得以实现,多个通道并行排布,保证射频矩形波导通道120之间的高度隔离,避免在太赫兹频段使用损耗高、隔离度差的开关,有效减少太赫兹射频电路270及对应射频矩形波导通道120的体积;同时,本实施例通过将天线腔110和射频矩形波导通道120的一体化设计结构、以及相控阵布阵,在应用于太赫兹相控阵通信前端时,能够将太赫兹通信系统中的太赫兹射频电路270在模块化后快速集成设置在射频矩形波导通道120中,不仅让太赫兹通信系统前端能够实现模块化式的相控阵扩展功能,同时太赫兹通信系统前端还能达到良好的扫描 角度性能,而且由于仅使用一个波导腔体就能够将多个太赫兹射频电路270模块化集成设置,有效提高波导腔体的空间利用率(波导法兰为国际标准尺寸,单个波导法兰尺寸约为2厘米,太赫兹电路体积为微米级,而现有太赫兹通信系统中采用,在一个波导腔体内只设置一个太赫兹电路,在多个太赫兹电路集成时实际是将多个波导腔体进行集成,致使波导腔体的内部空间利用率低,集成设置的太赫兹通信系统前端体积大),减小太赫兹通信系统前端体积,实现太赫兹通信系统前端的小型化集成设置,有利于太赫兹通信系统在军事和商业中进行更广泛、灵活的应用。
具体地,如图4和5所示,所述天线腔110为四棱台结构,四棱台的底面为天线腔110的口面,四棱台的顶面为天线腔110和射频矩形波导通道120的连接面,四棱台的顶面与射频矩形波导通道120的截面结构相同,四棱台的顶面和底面平行设置。
具体地,在M和N的比值为2:1时,四棱台底面的长、四棱台底面的宽、天线腔110的深度、射频矩形波导通道120宽边的长度和射频矩形波导通道120窄边的长度之间的比值为2.8:2.8:25:1.092:0.546。
在一些实施例中,在M和N的比值为2.5:1时,四棱台底面的长、四棱台底面的宽、天线腔110的深度、射频矩形波导通道120宽边的长度和射频矩形波导通道120窄边的长度之间的比值为3.55:3.55:25:1.092:0.546。
在一些实施例中,在M和N的比值为3:1时,四棱台底面的长、四棱台底面的宽、天线腔110的深度、射频矩形波导通道120宽边的长度和射频矩形波导通道120窄边的长度之间的比值为4.3:4.3:25:1.092:0.546。
通过合理设置天线的结构尺寸,对射频矩形波导通道120按2、2.5或3个波长的相控阵布阵结构进行适配,使得太赫兹通信系统前端能够实现良好的扫描角度性能。
具体地,所述天线腔110的深度和射频矩形波导通道120的深度比为2.5:2。
在一些实施例中,在采用太赫兹相控阵波导腔体去匹配200GHz频段的太赫兹射频电路270时,200GHz频段对应波长为1.5mm,对应射频矩形波导通道120的尺寸为1.092mm*0.546mm(标准波导WR-4),如图6所示,选用天线腔110口面的尺寸为2.8mm*2.8mm,天线腔110的深度为25mm,射频矩形波导通道120的深度为20mm,在太赫兹相控阵波导腔体设置2*4个天线腔110,以实现横向和纵向两个方向进行波束扫描,并采用2个波长(3mm)的相控阵布阵间距,窄边对应两个射频矩形波导通道120之间的金属分支130宽度为2.454mm,宽边对应两个射频矩形波导通道120之间的金属分支130宽度为1.908mm,天线腔110之间的的金属分支130宽度为0.2mm~1.908mm或0.2mm~2.454mm;此时,在波导腔体上加工天线腔110和射频矩形波导通道120时,金属分支130的机械强度就能够稳定支撑现有加工工艺的进行,降低太赫兹相控阵波导腔体在实际加工过程中的加工难度和加工成本,缩短加工周期,提高加工效率。
需要说明的是,所述天线腔110和射频矩形波导通道120分别为矩形波导结构,在应用到太赫兹通信系统前端时,天线腔110可以直接作为太赫兹通信系统前端的天线,射频矩形波导通道120可以直接采用标准波导尺寸1.092mm*0.546mm。
具体地,在射频矩形波导通道120呈一维阵列布阵时,射频矩形波导通道120沿射频矩形波导通道120的窄边所在直线依次排列设置。通过将射频矩形波导通道120沿射频矩形波导通道120的窄边依次布阵,较于沿宽边排布,两个射频矩形波导通道120之间的金属分支130宽度更大,在对波导腔体上加工天线腔110和射频矩形波导通道120时的加工难度和加工周期也就更低,提高太赫兹相控阵波导腔体的加工生产便捷性和安全性。
在一些实施例中,在射频矩形波导通道120呈一维阵列布阵时,射频矩形波导通道120也可以沿射频矩形波导通道120的宽边所在直线依次排列设置, 示例行的,太赫兹相控阵波导腔体上包括8个射频矩形波导通道120时,8个射频矩形波导通道120沿射频矩形波导通道120的宽边所在直线依次排列设置。
具体地,在射频矩形波导通道120呈二维阵列布阵时,每一行中射频矩形波导通道120数目相同。优选地,太赫兹相控阵波导腔体上包括8个射频矩形波导通道120,射频矩形波导通道120呈2*4排布,沿射频矩形波导通道120的窄边每行布阵4个,沿射频矩形波导通道120的宽边每列布阵2个。
在一些实施例中,在射频矩形波导通道120呈二维阵列布阵时,每一行中射频矩形波导通道120数目可以设置为不同,示例行的,太赫兹相控阵波导腔体上包括7个射频矩形波导通道120,从上往下,第一行布阵3个,第二行布阵3个,第三行布阵1个;示例行的,太赫兹相控阵波导腔体上包括9个射频矩形波导通道,从上往下,第一行布阵3个,第二行布阵5个,第三行布阵1个;示例行的,太赫兹相控阵波导腔体上包括10个射频矩形波导通道,从上往下,第一行布阵2个,第二行布阵2个,第三行布阵4个,第四行布阵2个。
实施例2
本申请实施例提供了一种太赫兹通信系统发射前端,如图7所示,包括本振驱动信号210、多路功分器230、多个太赫兹射频电路270和实施例1中的太赫兹相控阵波导腔体,所述太赫兹射频电路270设置在太赫兹相控阵波导腔体的射频矩形波导通道120内,多路功分器230的信号输入端与本振驱动信号210的信号输出端连接,多路功分器230的信号输出端分别与太赫兹射频电路270的信号输入端连接,太赫兹射频电路270的信号输入端还与中频信号的信号输出端连接。
具体地,所述太赫兹射频电路270包括沿信号传输方向依次设置的本振倍频器240和太赫兹变频器250,多路功分器230的信号输出端与本振倍频器240的信号输入端连接,所述中频信号的信号输出端与太赫兹变频器250的信号输入端连接。
具体地,所述中频信号通过中频数控移相器260与太赫兹变频器250。
在一些实施例中,如图8所示,不设置中频数控移相器260,在太赫兹射频电路270中设置太赫兹移相器280,太赫兹变频器250通过太赫兹移相器280与天线腔110双向信号传输连接,让太赫兹移相器280跟随太赫兹射频电路270安装在射频矩形波导通道120内,进一步对太赫兹通信系统发射前端进行集成,有效减小太赫兹通信系统发射前端的体积。
具体地,所述本振驱动信号210的信号输出端通过介质锁相振荡器220与多路功分器230的信号输入端连接。
实施例3
本申请实施例提供了一种太赫兹通信系统接收前端,如图9所示,包括本振驱动信号210、多路功分器230、多个太赫兹射频电路270和实施例1中的太赫兹相控阵波导腔体,所述太赫兹射频电路270设置在太赫兹相控阵波导腔体的射频矩形波导通道120内,多路功分器230的信号输入端与本振驱动信号210的信号输出端连接,多路功分器230的信号输出端分别与太赫兹射频电路270的信号输入端连接,太赫兹射频电路270与中频信号之间双向信号传输连接。
具体地,所述太赫兹射频电路270包括沿信号传输方向依次设置的本振倍频器240和太赫兹变频器250,多路功分器230的信号输出端与本振倍频器240的信号输入端连接,所述中频信号与太赫兹变频器250之间双向信号传输连接。
具体地,所述中频信号通过中频数控移相器260与太赫兹变频器250。
在一些实施例中,如图10所示,不设置中频数控移相器260,在太赫兹射频电路270中设置太赫兹移相器280,太赫兹变频器250通过太赫兹移相器280与天线腔110双向信号传输连接,让太赫兹移相器280跟随太赫兹射频电路270安装在射频矩形波导通道120内,进一步对太赫兹通信系统接收前端进行集成,有效减小太赫兹通信系统接收前端的体积。
实施例4
本申请实施例提供了一种太赫兹通信系统,包括实施例1中的太赫兹相控阵波导腔体、实施例2中的太赫兹通信系统发射前端或实施例3中的太赫兹通信系统接收前端。
在一些实施例中,选用实施例2中的太赫兹通信系统发射前端和实施例3中的太赫兹通信系统接收前端组成太赫兹通信系统,采用如图6所示与200GHz频段对应的腔体10分别对发射前端和接收前端进行安装,具体地,发射前端和接收前端均采用50MHz晶振作为本振驱动信号210产生驱动信号,八路功分器作为多路功分器230,对八个射频矩形波导通道120内的本振倍频器240分别进行驱动,本振倍频器240输出200GHz信号,而中频信号首先经过中频数控移相器260实现相位调节,然后经过太赫兹变频器250与本振倍频器240产生的太赫兹信号进行合成后,由天线腔110输出,另外,对于接收前端,天线腔110在接收到回波信号后,回波信号先经过太赫兹变频器250下变频处理,然后由中频数控移相器260实现相位调节,最后输出至中频信号,由信号处理系统对回波信号进一步处理;此外,将本实施例的太赫兹通信系统前端进行性能测试,结果如图11所示,在采用2个波长进行2*4布阵时,扫描角度可以达到±15°,即扫描角度30°;此外,再采用3个波长进行2*4布阵时,扫描角度可以达到±10°,即扫描角度20°。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种太赫兹相控阵波导腔体,其特征在于,所述腔体上设置有多个呈阵列设置的天线腔、以及与天线腔对应设置的射频矩形波导通道,所述射频矩形波导通道与天线腔连通,射频矩形波导通道用于安装太赫兹射频电路,在两个相邻射频矩形波导通道中,射频矩形波导通道中轴线之间的间距为M,太赫兹射频电路输出信号的波长为N,M和N的比值为2:1、2.5:1、或3:1。
  2. 如权利要求1所述的太赫兹相控阵波导腔体,其特征在于,所述天线腔为四棱台结构,四棱台的底面为天线腔的口面,四棱台的顶面为天线腔和射频矩形波导通道的连接面,四棱台的顶面与射频矩形波导通道的截面结构相同。
  3. 如权利要求2所述的太赫兹相控阵波导腔体,其特征在于,在M和N的比值为2:1时,四棱台底面的长、四棱台底面的宽、天线腔的深度、射频矩形波导通道宽边的长度和射频矩形波导通道窄边的长度之间的比值为2.8:2.8:25:1.092:0.546;在M和N的比值为2.5:1时,四棱台底面的长、四棱台底面的宽、天线腔的深度、射频矩形波导通道宽边的长度和射频矩形波导通道窄边的长度之间的比值为3.55:3.55:25:1.092:0.546;在M和N的比值为3:1时,四棱台底面的长、四棱台底面的宽、天线腔的深度、射频矩形波导通道宽边的长度和射频矩形波导通道窄边的长度之间的比值为4.3:4.3:25:1.092:0.546。
  4. 如权利要求3所述的太赫兹相控阵波导腔体,其特征在于,所述天线腔的深度和射频矩形波导通道的深度比为25:20。
  5. 如权利要求2~4任意一项所述的太赫兹相控阵波导腔体,其特征在于,在射频矩形波导通道呈一维阵列布阵时,射频矩形波导通道沿射频矩形波导通道的窄边或宽边所在直线依次排列设置。
  6. 一种太赫兹通信系统前端,其特征在于,所述太赫兹通信系统前端为发射前端,包括本振驱动信号、多路功分器、多个太赫兹射频电路和权利要求1~5任意一项所述的太赫兹相控阵波导腔体,所述太赫兹射频电路设置在太赫兹相控阵波导腔体的射频矩形波导通道内,多路功分器的信号输入端与本振驱动信 号的信号输出端连接,多路功分器的信号输出端分别与太赫兹射频电路的信号输入端连接,
    在太赫兹通信系统前端为发射前端时,太赫兹射频电路的信号输入端还与中频信号的信号输出端连接;
    在太赫兹通信系统前端为接收前端时,太赫兹射频电路与中频信号之间双向信号传输连接。
  7. 如权利要求6所述的太赫兹通信系统前端,其特征在于,所述太赫兹射频电路包括沿信号传输方向依次设置的本振倍频器和太赫兹变频器,多路功分器的信号输出端与本振倍频器的信号输入端连接,
    在太赫兹通信系统前端为发射前端时,所述中频信号的信号输出端与太赫兹变频器的信号输入端连接;
    在太赫兹通信系统前端为接收前端时,所述中频信号与太赫兹变频器之间双向信号传输连接。
  8. 如权利要求6或7所述的太赫兹通信系统前端,其特征在于,所述中频信号通过中频数控移相器与太赫兹变频器。
  9. 如权利要求7所述的太赫兹通信系统前端,其特征在于,所述太赫兹射频电路还包括太赫兹移相器,太赫兹变频器通过太赫兹移相器与天线腔双向信号传输连接。
  10. 一种太赫兹通信系统,其特征在于,包括权利要求1~5任意一项所述的太赫兹相控阵波导腔体,或权利要求6~9任意一项所述的太赫兹通信系统前端。
PCT/CN2023/092068 2022-09-15 2023-05-04 一种太赫兹相控阵波导腔体、通信系统及前端 WO2024055601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211121013.5 2022-09-15
CN202211121013.5A CN115208451B (zh) 2022-09-15 2022-09-15 一种太赫兹相控阵波导腔体、通信系统及前端

Publications (1)

Publication Number Publication Date
WO2024055601A1 true WO2024055601A1 (zh) 2024-03-21

Family

ID=83572864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092068 WO2024055601A1 (zh) 2022-09-15 2023-05-04 一种太赫兹相控阵波导腔体、通信系统及前端

Country Status (2)

Country Link
CN (1) CN115208451B (zh)
WO (1) WO2024055601A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208451B (zh) * 2022-09-15 2022-12-09 四川太赫兹通信有限公司 一种太赫兹相控阵波导腔体、通信系统及前端
CN115548616B (zh) * 2022-12-01 2023-03-21 四川太赫兹通信有限公司 一种太赫兹电路的构造元件、构造系统及电路系统
CN116488740B (zh) * 2023-04-17 2023-11-07 军事科学院系统工程研究院网络信息研究所 一种空间太赫兹通信载荷系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680140A (zh) * 2016-01-12 2016-06-15 电子科技大学 一种毫米波/太赫兹二维准光功分器/合成器
US20180375218A1 (en) * 2017-06-26 2018-12-27 Nidec Corporation Horn antenna array
US20190140344A1 (en) * 2016-06-29 2019-05-09 Nidec Corporation Waveguide device module and microwave module
CN112688080A (zh) * 2020-12-22 2021-04-20 华南理工大学 基于3d打印技术的双脊开口波导结构圆极化天线阵列
CN115208451A (zh) * 2022-09-15 2022-10-18 四川太赫兹通信有限公司 一种太赫兹相控阵波导腔体、通信系统及前端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800963B2 (ja) * 2003-11-13 2011-10-26 カリフォルニア インスティテュート オヴ テクノロジー 通信とレーダー用のモノリシックシリコンベース位相配列受信機
US7531803B2 (en) * 2006-07-14 2009-05-12 William Marsh Rice University Method and system for transmitting terahertz pulses
US9354484B2 (en) * 2013-09-30 2016-05-31 Electronics And Telecommunications Research Institute Terahertz continuous wave emitting device
CN103762416B (zh) * 2014-02-25 2016-12-07 中国工程物理研究院电子工程研究所 一种太赫兹波片载-波导-喇叭转换天线
CN103811876B (zh) * 2014-02-26 2016-08-17 中国工程物理研究院电子工程研究所 一种应用于太赫兹波段相控阵的芯片-介质填充喇叭天线
CN109283525B (zh) * 2018-09-13 2023-06-02 山西大学 太赫兹雷达散射截面测试系统及雷达散射截面提取方法
CN112864598B (zh) * 2021-01-12 2022-04-01 北京邮电大学 适用于毫米波通信的圆极化天线及通信设备
CN114123980B (zh) * 2022-01-27 2022-05-03 电子科技大学 基于GaAs单片集成的太赫兹低噪声通信系统收发前端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680140A (zh) * 2016-01-12 2016-06-15 电子科技大学 一种毫米波/太赫兹二维准光功分器/合成器
US20190140344A1 (en) * 2016-06-29 2019-05-09 Nidec Corporation Waveguide device module and microwave module
US20180375218A1 (en) * 2017-06-26 2018-12-27 Nidec Corporation Horn antenna array
CN112688080A (zh) * 2020-12-22 2021-04-20 华南理工大学 基于3d打印技术的双脊开口波导结构圆极化天线阵列
CN115208451A (zh) * 2022-09-15 2022-10-18 四川太赫兹通信有限公司 一种太赫兹相控阵波导腔体、通信系统及前端

Also Published As

Publication number Publication date
CN115208451A (zh) 2022-10-18
CN115208451B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2024055601A1 (zh) 一种太赫兹相控阵波导腔体、通信系统及前端
CN112180352B (zh) 一种高集成度的综合射频传感阵列系统
CN111755812A (zh) 天线模组及终端
US20110175780A1 (en) Flat scanning antenna
WO2022002074A1 (zh) 一种天线及移动终端
CN110794373A (zh) 一种集成毫米波瓦片式tr组件
CN109462039B (zh) 一体化圆柱共形相控阵天线
WO2021104299A1 (zh) 一种阵列天线以及设备
EP3979518A1 (en) Filter antenna and base station device
CN214336937U (zh) 一种砖瓦混合式相控阵天线
CN113241533A (zh) Ku/Ka双频双极化有源相控阵天线
CN101707289A (zh) 多波束天线
CN113067144A (zh) 基于塑封硅基tr芯片的瓦片式有源相控阵子阵
CN117371391A (zh) 一种小型化毫米波变频组件
CN114614275B (zh) 一种htcc双波束瓦片式气密sip模块
CN115225114B (zh) 一种弹载跳频通信体制全向电扫描射频组件
CN214378852U (zh) 基于塑封硅基tr芯片的瓦片式有源相控阵子阵
US6727776B2 (en) Device for propagating radio frequency signals in planar circuits
CN114188727A (zh) 阵列天线
CN208889858U (zh) 垂直集成滤波器的天线阵元及毫米波天线阵列、通信装置
Vosoogh et al. An E-band compact frequency division duplex radio front-end based on gap waveguide technology
CN221530256U (zh) 一种天线阵列及有源天线单元
CN216903359U (zh) 低剖面有源相控阵波导缝隙阵列天线
CN109687172A (zh) 垂直集成滤波器的天线阵元及毫米波天线阵列、通信装置
CN218827831U (zh) 一种小型化斜率功分及基于该斜率功分的基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864341

Country of ref document: EP

Kind code of ref document: A1