WO2024053608A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2024053608A1
WO2024053608A1 PCT/JP2023/032247 JP2023032247W WO2024053608A1 WO 2024053608 A1 WO2024053608 A1 WO 2024053608A1 JP 2023032247 W JP2023032247 W JP 2023032247W WO 2024053608 A1 WO2024053608 A1 WO 2024053608A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
grain
iron loss
Prior art date
Application number
PCT/JP2023/032247
Other languages
English (en)
French (fr)
Inventor
猛 今村
之啓 新垣
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2024514751A priority Critical patent/JPWO2024053608A1/ja
Publication of WO2024053608A1 publication Critical patent/WO2024053608A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet suitable for a core material of a transformer.
  • a grain-oriented electrical steel sheet is a soft magnetic material used as an iron core material for transformers, and has a crystal structure in which the ⁇ 001> orientation, which is the axis of easy magnetization of iron, is highly aligned in the rolling direction of the steel sheet.
  • This type of texture is caused by secondary recrystallization, which causes ⁇ 110 ⁇ 001>-oriented crystal grains, called Goss orientation, to preferentially grow enormously during purification annealing during the manufacturing process of grain-oriented electrical steel sheets. It is formed through a phenomenon called
  • a common technique used is to secondary recrystallize grains with Goss orientation during purification annealing using a precipitate called an inhibitor.
  • a precipitate called an inhibitor.
  • the method using AlN and MnS described in Patent Document 1 and the method using MnS and MnSe described in Patent Document 2 have been put into practical use industrially.
  • the method using these inhibitors is a useful method for stably developing secondary recrystallized grains, but in order to finely disperse the inhibitors in the steel, slab heating at a high temperature of 1300°C or higher is required. , it was essential to once dissolve the inhibitor component in solid solution.
  • Patent Document 3 a technique for developing Goss-oriented crystal grains by secondary recrystallization in a material that does not contain an inhibitor component is disclosed in Patent Document 3 and the like.
  • This is a technique for secondary recrystallization of grains that have texture, and its effect is called the texture inhibition effect.
  • This method does not require fine dispersion of the inhibitor in the steel, so it does not require heating the slab at high temperatures, which was previously essential, and this method has great advantages in terms of cost and maintenance.
  • Grain-oriented electrical steel sheets are mainly used as the core of transformers, and are required to have excellent magnetization properties, especially low iron loss. To this end, it is important to highly align the secondary recrystallized grains in the steel sheet with the Goss orientation and to reduce impurities in the product sheet. Furthermore, a technology has been developed that physically introduces non-uniformity into the surface of a steel plate and subdivides the width of the magnetic domain to reduce iron loss, that is, a magnetic domain refining technology.
  • Patent Document 4 proposes a technique for reducing the iron loss of a steel sheet by irradiating a final product sheet with a laser, introducing a high dislocation density region into the surface layer of the steel sheet, and narrowing the magnetic domain width.
  • Patent Document 5 proposes a technique for controlling the magnetic domain width by irradiation with an electron beam.
  • grain-oriented electrical steel sheets are mainly used as the core of transformers.
  • the transformer core has a larger iron loss.
  • the iron loss ratio between the two (the value obtained by dividing the iron loss of the transformer core by the iron loss value of the material) is called the building factor. In other words, even if the core loss of the material is good, if the building factor is high, the core loss of the transformer core will be large, causing the problem that sufficient performance cannot be achieved.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet that has magnetic properties that can sufficiently reduce the building factor.
  • the present inventors have determined that the amount of Co in the base steel sheet on which a base film containing forsterite as the main component is formed, and the amount of Ti in the grain-oriented electrical steel sheet with the base film formed thereon. It was discovered that grain-oriented electrical steel sheets with a low building factor can be produced by controlling the amounts within certain ranges.
  • the hot rolled sheet was annealed at 1000°C for 30 seconds in a N2 atmosphere.
  • it was cold rolled to a plate thickness of 1.5 mm, and then intermediate annealed at 1000° C. for 100 seconds in a 25% H 2 -75% N 2 atmosphere.
  • it was cold rolled to a thickness of 0.23 mm, and decarburized annealed at 850°C for 150 seconds in a humid atmosphere of 50% H 2 -50% N 2 and a dew point of 50°C.
  • an annealing separator mainly composed of MgO was applied to the surface of the base steel plate after decarburization annealing, and purification annealing was performed by holding at 1200°C for 10 hours.
  • the heating rate up to 1200°C was 20°C/h
  • N 2 atmosphere was used from room temperature to 700°C
  • the mixing ratio of N 2 and H 2 was varied from 700°C to 1100°C.
  • the atmosphere was H 2 atmosphere from 1100°C to 1200°C.
  • the atmosphere was H 2
  • the atmosphere was Ar.
  • a sample was obtained in which a base film containing forsterite as a main component (hereinafter sometimes referred to as a forsterite film) was formed on the surface of the base steel plate.
  • iron loss W 17/50 iron loss when excited to 1.7T at 50Hz
  • W 19/50 iron loss when excited to 1.9T at 50Hz
  • hysteresis loss Wh 17 Hysteresis loss when excited up to 1.7T
  • Wh 19 hysteresis loss when excited up to 1.9T
  • a three-phase tripod model transformer was fabricated, imitating a transformer, with an external shape of 500 mm square and a board width of 100 mm for each leg and each yoke, and the model transformer iron loss WT 17/50 (1.7 at 50 Hz).
  • the transformer iron loss when excited up to T was measured.
  • the number of stacked samples was 50, with two stacked alternately.
  • the building factor F17 of the model transformer was calculated as the value obtained by dividing the model transformer iron loss WT 17/50 by the sample iron loss W 17/50 (WT 17/50 /W 17/50 ).
  • the relationship between the building factor F17 and the amount of Co in the base steel plate is shown in FIG.
  • the material belongs to Group A, that is, has the relationship 0.30 ⁇ R17 ⁇ R19, and exhibits a good building factor of 1.25 or less in the Co content range of 0.005 to 0.050%.
  • ⁇ Experiment 2> Contains C: 0.037%, Si: 3.05%, Mn: 0.18%, Al: 0.009%, N: 0.0036%, Se: 0.007%, Sn: 0.062% and Co: 0.0080% in mass%, the balance being Fe and
  • a steel slab with unavoidable impurities was manufactured by continuous casting, and after heating the slab by soaking it at 1300°C for 30 minutes, it was finished to a thickness of 2.2mm by hot rolling. Thereafter, the hot rolled sheet was annealed at 1100°C for 30 seconds in a N2 atmosphere.
  • the heating rate up to 1220°C was 15°C/h
  • the N 2 atmosphere was used from room temperature to 700°C, and the mixing ratio of N 2 and H 2 was varied from 700°C to 1100°C.
  • the atmosphere was H 2 atmosphere from 1100°C to 1220°C. Further, during holding, an H 2 atmosphere was used, and during cooling, an Ar atmosphere was used. In this way, a sample was obtained in which a base film containing forsterite as a main component (hereinafter sometimes referred to as a forsterite film) was formed on the surface of the base steel plate.
  • a base film containing forsterite as a main component hereinafter sometimes referred to as a forsterite film
  • the amount of Ti in the steel sheet with a forsterite coating was measured using the method specified in JIS G1223.
  • the ratio of the hysteresis loss Wh 17 to the iron loss W 17/50 when excited at 1.7T is R17, Wh 17 /W 17/50 , and the iron loss W 19 when excited at 1.9T.
  • Ratio of hysteresis loss Wh 19 to /50 Wh 19 /W 19/50 is defined as R19, and is divided into group A, which has the relationship of 0.30 ⁇ R17 ⁇ R19, and group B, which has the relationship 0.30 ⁇ R17 ⁇ R19.
  • the relationship between the amount of Ti and whether it belongs to group A or group B is shown in FIG.
  • FIG. 4 shows the relationship between the building factor F17 and the amount of Ti in a steel sheet with a forsterite coating.
  • the building factor F17 is high even if it belongs to Group A.
  • the building factor is low and good when the Ti content in the steel sheet with a forsterite coating is 0.0050 to 0.0200%. In short, this means that it is good for a certain amount of Ti to be present in the forsterite coating.
  • the mechanism by which the building factor of the model transformer is improved by the amount of Co in the base steel sheet and the amount of Ti in the steel sheet with a base film mainly composed of forsterite is not clear, but the invention They think as follows. That is, since the yoke and legs of the transformer have a constant width, the distance of the magnetic path differs between the inside and outside, like an athletics track. Therefore, during excitation, the magnetic flux tends to be biased towards the inside where the magnetic path is short. Even when the entire steel plate is excited to 1.7T, the magnetic flux density on the inside exceeds that. Therefore, it is estimated that the more advantageous the high magnetic field characteristics, the better the transformer characteristics such as the building factor.
  • the first point is the ratio of hysteresis loss Wh 17 to iron loss W 17/50 when excited at 1.7T, Wh 17 /W 17/50 , that is, R17 and iron loss W 19/50 when excited at 1.9T.
  • Wh 17 /W 17/50 that is, R17 and iron loss W 19/50 when excited at 1.9T.
  • the ratio of hysteresis loss Wh 19 to Wh 19 /W 19/50 that is, R19, does not satisfy the relationship 0.30 ⁇ R17 ⁇ R19.
  • R17 was less than 0.30 in most cases.
  • Hysteresis loss has a high correlation with B8 , and if B8 is the same, it is thought that there will be no large fluctuations, so the above case is considered to be a case where the eddy current loss is extremely large.
  • B8 is the same, it is thought that there will be no large fluctuations, so the above case is considered to be a case where the eddy current loss is extremely large.
  • eddy current loss which is highly frequency dependent, increases. Therefore, it is considered that the building factor increases when the eddy current loss ratio is high.
  • the second point is when the amount of Ti in the steel sheet with a forsterite coating is less than 0.0050% by mass or more than 0.0200% by mass.
  • Japanese Patent Publication No. 2021-509149 discloses a manufacturing technology for a grain-oriented electrical steel sheet containing Co.
  • this document mentions a technology for improving the magnetism of the electrical steel sheet itself, and this technology is completely different from the present invention, which uses a technology for containing Ti in a forsterite film to reduce the building factor. It's technology.
  • the present invention is based on the above findings. That is, the gist of the present invention is as follows.
  • a grain-oriented electrical steel sheet having a coating The amount of Ti in the base steel plate and the base coating is 0.0050 to 0.0200% by mass, R17 is the ratio of hysteresis loss Wh 17 to iron loss W 17/50 when excited at 1.7T, Wh 17 /W 17/50 , and hysteresis loss Wh 19 to iron loss W 19/50 when excited at 1.9T.
  • a grain-oriented electrical steel sheet that satisfies the following formula (1) when the ratio Wh 19 /W 19/50 is R19. 0.30 ⁇ R17 ⁇ R19...(1)
  • the base steel plate further contains Sn: 0.500 mass% or less, Cr: 0.500 mass% or less, Cu: 0.50 mass% or less, Ni: 0.50 mass% or less, Bi: 0.500 mass% or less, P: 0.500 mass% or less, Sb : 0.500 mass% or less, Mo: 0.500 mass% or less, B: 25.0 mass ppm or less, Nb: 0.020 mass% or less, V: 0.020 mass% or less, As: 0.0200 mass% or less, Zn: 0.020 mass% or less, Pb: The direction according to any one of 1 to 3 above, containing one or more selected from 0.0100% by mass or less, W: 0.0100% by mass or less, Ga: 0.0050% by mass or less, and Ge: 0.0050% by mass or less. electromagnetic steel sheet.
  • FIG. 2 is a graph showing the relationship between the Co content of the base steel plate and the building factor F17 in Experiment 1.
  • FIG. 2 is a graph showing the relationship between the Co content of the base steel plate and the building factor F17 (only Group A is extracted) regarding Experiment 1.
  • FIG. 2 is a graph showing the relationship between the amount of Ti in a steel plate with a forsterite coating and whether it belongs to Group A or Group B, regarding Experiment 2.
  • 3 is a graph showing the relationship between the Ti content and the building factor F17 of a steel plate with a forsterite coating in Example 2.
  • Si 1.50-8.00%
  • Si is an element necessary to increase the specific resistance of steel and improve iron loss. Further, Si is an element necessary also to form a forsterite film in the steel sheet of the present invention. However, if the amount of Si is less than 1.50%, there is no effect, and if it exceeds 8.00%, the workability of the steel deteriorates and rolling becomes difficult. For this reason, the amount of Si is limited to 1.50 to 8.00%.
  • the amount of Si is desirably 2.50% or more, and desirably 4.50% or less.
  • Mn 0.02-1.00% Mn is an element necessary to improve hot workability. However, if the amount of Mn is less than 0.02%, there is no effect, and if it exceeds 1.00%, the magnetic flux density of the product plate will decrease. Therefore, the amount of Mn is set to 0.02 to 1.00%. The amount of Mn is desirably 0.04% or more, and desirably 0.20% or less.
  • Co 0.005 ⁇ 0.050%
  • the amount of Co is preferably 0.006% or more, more preferably 0.008% or more. Further, the amount of Co is preferably 0.020% or less, and more preferably 0.015% or less.
  • the base steel sheet of the grain-oriented electrical steel sheet of the present invention contains, in addition to the above-mentioned basic components (Si, Mn, and Co), C (e.g., 0.020 to 0.100%), Al (e.g., 0.002 to 0.040%), and N. (for example, 0.002 to 0.015%).
  • the base steel plate may optionally contain S (for example, 0.020% or less) and/or Se (for example, 0.040% or less).
  • the base steel sheet of the grain-oriented electrical steel sheet of the present invention can appropriately contain the components (elements) described below as necessary.
  • the base steel plate contains Sn: (more than 0%) 0.500% or less, Cr: (more than 0%) 0.500% or less, Cu: (more than 0%) 0.50% or less, Ni: (more than 0%) less than or equal to 0.50%, Bi: (more than 0%) less than or equal to 0.500%, P: (more than 0%) less than or equal to 0.500%, Sb: (more than 0%) less than or equal to 0.500%, Mo: (more than 0%) ) 0.500% or less, B: (more than 0ppm) 25.0ppm or less, Nb: (more than 0%) 0.020% or less, V: (more than 0%) 0.020% or less, As: (more than 0%) 0.0200% or less, Zn: (More than 0%) 0.020% or less, Pb: (More than 0%) 0.0100% or less, W: (More than 0%) 0.0100% or less or
  • each of the above-mentioned elements can be contained in the base steel sheet within the above-mentioned upper limit amount in order to further improve the magnetic properties. If the amount (content) of each element exceeds the above upper limit, the development of secondary recrystallized grains may be suppressed and the magnetic properties may deteriorate.
  • the lower limit of each element does not need to be particularly limited, but is preferably in the following range.
  • Sn 0.005% or more, Cr: 0.005% or more, Cu: 0.01% or more, Ni: 0.01% or more, Bi: 0.005% or more, P: 0.005% or more, Sb: 0.005% or more, Mo: 0.005% or more, B: 0.1ppm or more, Nb: 0.001% or more, V: 0.001% or more, As: 0.0010% or more, Zn: 0.001% or more, Pb: 0.0001% or more, W: 0.0010% or more, Ga: 0.0001% or more, and Ge: 0.0001% that's all
  • the remainder other than the above-mentioned components (elements) is Fe and inevitable impurities.
  • the above-mentioned composition is the composition of the base material steel sheet, that is, it does not take into account the base film whose main component is forsterite.
  • the amount of Ti in the steel sheet with the base film containing forsterite as a main component is set to 0.0050 to 0.0200% for the above-mentioned reasons. limited.
  • the amount of Ti in the base steel sheet and the base coating is preferably 0.0060% or more, and preferably 0.0150% or less.
  • the "main component" refers to the component with the largest mass among the components constituting the base coat.
  • the amount of Ti in the base steel sheet is preferably 0.0030% or less. This is because if the amount of Ti in the base steel sheet is 0.0030% or less, significant deterioration of iron loss due to the formation of Ti precipitates in the steel can be suppressed.
  • the amount of Ti in the steel sheet with the base film is 0.0050% or more. This is because, as mentioned above, if a certain amount of Ti is present in the forsterite coating, it is thought that the coating properties can be improved and the eddy current loss can be improved, but if the Ti amount is less than 0.0050%, the This is because it is presumed to be less effective.
  • the hysteresis loss can be a value obtained by multiplying the energy loss of the iron core due to one rotation of the hysteresis loop by 50, which is the excitation frequency.
  • a general method for manufacturing electromagnetic steel sheets can be used.
  • slabs may be manufactured from molten steel with predetermined composition adjustments using the normal ingot-forming method or continuous casting method, or thin slabs with a thickness of 100 mm or less may be manufactured using the direct casting method.
  • Molten steel may be produced by a blast furnace method or an electric furnace method. Since it is difficult to add the above-mentioned various components that can be contained in the base steel plate in the middle of the process, it is desirable to add them in the molten steel stage.
  • the slab may be heated and hot rolled in a conventional manner, or it may be hot rolled immediately after casting without heating.
  • the heating temperature when heating is desirably 1250°C or lower.
  • the temperature for hot-rolled sheet annealing is preferably about 950 to 1150°C. If the temperature is 950°C or higher, the remaining unrecrystallized parts can be sufficiently suppressed, and if the temperature is 1150°C or lower, the excessive coarsening of the grain size after annealing can be suppressed, and the subsequent primary recrystallization texture can be further improved. It can be made into a good one.
  • the temperature for annealing the hot rolled sheet is preferably 1000°C or higher, and preferably 1100°C or lower.
  • a steel plate after hot rolling or hot rolling annealing is cold rolled once or cold rolled two or more times with intermediate annealing in between to obtain a cold rolled plate of the final thickness.
  • the annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200°C. If the temperature is 900°C or higher, it will effectively suppress recrystallized grains from becoming too fine after intermediate annealing, and also suppress the deterioration of the magnetic properties of the product sheet due to the reduction of Goss nuclei in the primary recrystallized structure. be able to. On the other hand, if the temperature is 1200° C. or lower, excessive coarsening of crystal grains can be suppressed and the primary recrystallized structure of regular grains can be made better, as in the case of hot-rolled sheet annealing.
  • the cold-rolled sheet that has reached its final thickness is then subjected to primary recrystallization annealing that also serves as decarburization annealing.
  • the annealing temperature in this primary recrystallization annealing is preferably in the range of 800 to 900°C from the viewpoint of rapidly progressing the decarburization reaction, and the atmosphere is preferably a humid atmosphere. is preferred.
  • mainly containing MgO means containing MgO in an amount of 75% by mass or more.
  • Ti can be effectively caused to exist in the forsterite film.
  • Ti may be present in the forsterite film by other methods.
  • secondary recrystallization annealing (purification annealing) is performed.
  • This purification annealing is desirably carried out at a temperature of 800°C or higher in order to induce secondary recrystallization, and from the viewpoint of purification it is desirable to raise the temperature to a holding temperature of 1100°C or higher.
  • the holding temperature is more preferably 1180°C or higher.
  • After purification annealing it is preferable to perform water washing, brushing, or pickling in order to remove the attached annealing separation agent.
  • an N 2 atmosphere is used up to the first intermediate temperature (for example, a temperature selected from the range of 600 to 800°C), and the first intermediate temperature is It is preferable to use a mixed atmosphere of N 2 and H 2 from the temperature to the second intermediate temperature (for example, a temperature selected from the range of 1050 to 1150° C.), and to use a H 2 atmosphere from the second intermediate temperature to the holding temperature. .
  • a laminated steel plate in order to improve iron loss, it is effective to apply an insulating coating to the surface of the steel plate before or after flattening annealing.
  • This insulating coating is preferably a coating that can apply tension to the steel plate in order to reduce iron loss.
  • Adopting a method of applying a tension coating via a binder, physical vapor deposition, or chemical vapor deposition to form a coating by depositing an inorganic substance on the surface layer of the steel plate has excellent coating adhesion and has a significant iron loss reduction effect. Therefore, it is desirable.
  • Example 1 Steel slab A...C: 0.070%, Si: 3.55%, Mn: 0.07%, Al: 0.0080%, N: 0.0050%, Co: 0.012%, Mo: 0.026%, Ti: 0.025%, the remainder is Fe and inevitable impurities Steel slab B...C: 0.072%, Si: 3.51%, Mn: 0.07%, Al: 0.0080%, N: 0.0047%, Co: 0.011%, Mo: 0.025%, Ti: 0.0025% Contains Fe and the balance is Fe and unavoidable impurities Steel slab C...C: 0.072%, Si: 3.49%, Mn: 0.07%, Al: 0.0090%, N: 0.0051%, Co: 0.002%, Mo: 0.025% , Ti: 0.024%, the balance being Fe and unavoidable impurities Steel slab D...C: 0.068%, Si: 3.48%, Mn: 0.07%, Al: 0.0090%, N: 0.0050%, Co: 0.008% , Mo: 0.022%
  • the hot rolled sheet was annealed at 1000°C for 60 seconds in a N2 atmosphere.
  • it was cold rolled to a plate thickness of 0.23 mm, and further decarburized annealed at 850°C for 90 seconds in a humid atmosphere of 60% H 2 -40% N 2 and a dew point of 60°C.
  • an annealing separator mainly composed of MgO (MgO: 97% by mass) is applied to the surface of the base steel plate after decarburization annealing, and after holding at 1100°C for 25 hours, it is held at 1200°C for 10 hours. Purification annealing was performed.
  • this temperature raising process from room temperature to 700°C is a N2 atmosphere, from 700°C to 1100°C is an atmosphere with various mixing ratios of N2 and H2 , and from 1100°C (retention start) to 1200°C (retention end). Until then, the atmosphere was H2 . Furthermore, an Ar atmosphere was used during cooling.
  • the Ti content (Ti content in the entire base steel plate and base film) was measured according to the method specified in JIS G1223. . The results are also listed in Table 1.
  • a three-phase tripod model transformer was fabricated, imitating a transformer, with an external shape of 500 mm square and a board width of 100 mm for each leg and each yoke, and the model transformer iron loss WT 17/50 (50 Hz The transformer iron loss when excited up to 1.7T was measured. The number of stacked samples was 50, with two stacked alternately. Then, the building factor F17 of the model transformer was calculated as the value obtained by dividing the model transformer iron loss WT 17/50 by the sample iron loss W 17/50 (WT 17/50 /W 17/50 ). The results are also listed in Table 1.
  • Example 2 A steel slab containing the components shown in Table 2, with the remainder being Fe and unavoidable impurities, is produced by continuous casting, subjected to slab heating by soaking at 1410°C for 20 minutes, and then hot rolled to a thickness of 2.4 mm. Finished thick. Thereafter, the hot rolled sheet was annealed at 1100°C for 20 seconds in a N2 atmosphere. Next, it was cold rolled to a plate thickness of 1.5 mm, and then intermediate annealed at 900° C. for 100 seconds in a 25% H 2 -75% N 2 atmosphere. Thereafter, it was cold rolled to a thickness of 0.23 mm, and further decarburized annealed at 825°C for 150 seconds in a humid atmosphere of 40% H 2 -60% N 2 and a dew point of 45°C.
  • an annealing separator mainly composed of MgO (MgO: 88% by mass) was applied to the surface of the base steel plate after decarburization annealing.
  • MgO MgO: 88% by mass
  • 5 parts by mass of superhydrated TiO 2 which was obtained by adding TiO 2 powder to 50° C. hot water and stirring for 24 hours, was added to the powdered MgO.
  • purification annealing was performed at 1200°C for 10 hours.
  • the heating rate up to 1200°C was 15°C/h
  • the N 2 atmosphere was used from room temperature to 700°C, and the mixing ratio of N 2 and H 2 was varied from 700°C to 1100°C.
  • the atmosphere was H 2 atmosphere from 1100°C to 1200°C.
  • the atmosphere was H 2 , and during cooling, the atmosphere was Ar.
  • the Ti content (Ti content in the entire base steel plate and base film) was measured according to the method specified in JIS G1223. .
  • the measurement results are also listed in Table 3.
  • a three-phase tripod model transformer was fabricated, imitating a transformer, with an external shape of 500 mm square and a board width of 100 mm for each leg and each yoke, and the model transformer iron loss WT 17/50 (50 Hz The transformer iron loss when excited up to 1.7T was measured. The number of stacked samples was 50, with two stacked alternately. Then, the building factor F17 of the model transformer was calculated as the value obtained by dividing the model transformer iron loss WT 17/50 by the sample iron loss W 17/50 (WT 17/50 /W 17/50 ). The results are also listed in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

ビルディングファクターを十分に低減させ得る磁気特性を有する、方向性電磁鋼板を提供する。Si:1.50~8.00質量%、Mn:0.02~1.00質量%およびCo:0.005~0.050質量%を含有する母材鋼板と、該母材鋼板の表面に形成される、フォルステライトを主成分とする下地被膜と、を有する方向性電磁鋼板であって、前記母材鋼板および前記下地被膜の全体におけるTi量が0.0050~0.0200質量%であり、1.7Tで励磁したときのヒステリシス損Wh17に対する鉄損W17/50の比W17/50/Wh17をR17とし、1.9Tで励磁したときのヒステリシス損Wh19に対する鉄損W19/50の比W19/50/Wh19をR19としたとき、0.30≦R17≦R19を満たすものとする。

Description

方向性電磁鋼板
 本発明は、変圧器の鉄心材料に好適な方向性電磁鋼板に関するものである。
 方向性電磁鋼板は、変圧器の鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、純化焼鈍の際にGoss方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させる、二次再結晶と呼ばれる現象を通じて形成される。
 この形成方法については、インヒビターと呼ばれる析出物を使用して純化焼鈍中にGoss方位を有する粒を二次再結晶させることが一般的な技術として使用されている。例えば、特許文献1に記載のAlN、MnSを使用する方法、特許文献2に記載のMnS、MnSeを使用する方法が、工業的に実用化されている。
 これらのインヒビターを用いる方法は、安定して二次再結晶粒を発達させるのに有用な方法であるが、インヒビターを鋼中に微細分散させるために、1300℃以上の高温でのスラブ加熱を行い、インヒビター成分を一度固溶させることが必須であった。
 一方、インヒビター成分を含有していない素材において、Goss方位結晶粒を二次再結晶により発達させる技術が、特許文献3等に開示されている。これは、インヒビター成分のような不純物を極力排除することで、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビターを用いずともGoss方位を有する粒を二次再結晶させる技術であり、その効果をテクスチャーインヒビション効果と呼んでいる。この方法では、インヒビターの鋼中微細分散が必要ではないため、必須であった高温でのスラブ加熱を必要としないことなど、コスト面でもメンテナンス面でも大きなメリットを有する方法である。
 方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。そのためには、鋼板中の二次再結晶粒をGoss方位に高度に揃えること、および、製品板中の不純物を低減することが重要である。さらに、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。例えば特許文献4では、最終製品板にレーザーを照射し、鋼板表層に高転位密度領域を導入し、磁区幅を狭くすることにより、鋼板の鉄損を低減する技術が提案されている。また、特許文献5では、電子ビームの照射により磁区幅を制御する技術が提案されている。
 前述の二次再結晶後の方位をGoss方位に高度に揃えること、および、製品板中の不純物を低減することは、ヒステリシス損の低下をもたらす。これに対して、磁区細分化技術を適用すると、渦電流損が主として低減される。
特公昭40-15644号公報 特公昭51-13469号公報 特開2000-129356号公報 特公昭57-2252号公報 特公平6-72266号公報
 上記の通り、方向性電磁鋼板は主に変圧器の鉄心として使用される。一般的に、変圧器鉄心の鉄損値と、素材となる方向性電磁鋼板の鉄損値との間には乖離があり、変圧器鉄心の方が鉄損は大きい。この両者の鉄損比(変圧器鉄心の鉄損を素材の鉄損値で除した値)をビルディングファクターと呼ぶ。つまり、素材の鉄損が良好であっても、ビルディングファクターが高ければ、変圧器鉄心の鉄損は大きくなり、十分なパフォーマンスを発揮できない問題が生じる。カーボンニュートラルの時代に削減すべきは、最終製品である変圧器の鉄損であり、いかに素材の鉄損が低くても、ビルディングファクターが高ければ意味をなさない。ビルディングファクターは、変圧器の設計だけでなく素材の特性にも影響を及ぼすため、素材の鉄損と共にビルディングファクターを下げることの要求がある。
 すなわち、本発明の目的は、ビルディングファクターを十分に低減させ得る磁気特性を有する、方向性電磁鋼板を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、フォルステライトを主成分とする下地被膜が形成される母材鋼板におけるCo量、および、前記下地被膜が形成された状態の方向性電磁鋼板におけるTi量をそれぞれ一定の範囲に制御することにより、低いビルディングファクターが得られる方向性電磁鋼板を製造できることを知見した。
 以下、本発明を成功に至らしめた実験について説明する。
<実験1>
 主としてCo含有量を変化させるために、質量%で、C:0.050~0.081%、Si:3.15~3.31%、Mn:0.07~0.10%、Al:0.020~0.025%、N:0.0069~0.0085%、S:0.0011~0.0031%、Sb:0.025~0.036%、Co:0~0.123%およびTi:0.0080~0.0090%を含み、残部はFeおよび不可避的不純物である鋼スラブを連続鋳造にて製造し、1400℃で20分均熱するスラブ加熱を施した後、熱間圧延により2.4mmの厚さに仕上げた。その後、1000℃で30秒、N雰囲気での熱延板焼鈍を施した。次いで、冷間圧延を施して板厚1.5mmに仕上げ、さらに1000℃で100秒、25%H-75%N雰囲気での中間焼鈍を施した。その後、冷間圧延で0.23mmの板厚に仕上げ、850℃で150秒、50%H-50%N、露点50℃の湿潤雰囲気下での脱炭焼鈍を施した。次に、脱炭焼鈍後の母材鋼板の表面に、MgOを主体とする焼鈍分離剤を塗布し、1200℃で10時間保定する純化焼鈍を行った。この際、1200℃までの昇温速度は20℃/hとし、さらに昇温過程において、室温から700℃まではN雰囲気、700℃から1100℃はNとHの混合比を種々変化させた雰囲気、1100℃から1200℃まではH雰囲気とした。また、保定時はH雰囲気とし、冷却時はAr雰囲気とした。このようにして、母材鋼板の表面にフォルステライトを主成分とする下地被膜(以下、フォルステライト被膜と称することがある。)が形成されたサンプルを得た。
 かくして得られたサンプルについて、鉄損W17/50(50Hzで1.7Tまで励磁した際の鉄損)およびW19/50(50Hzで1.9Tまで励磁した際の鉄損)と、ヒステリシス損Wh17(1.7Tまで励磁した際のヒステリシス損)およびWh19(1.9Tまで励磁した際のヒステリシス損)とを、JIS C2550-1に規定方法で測定した。
 また、母材鋼板におけるCo量を測定するために、得られたサンプルの一部を80℃の10%塩酸水溶液に180秒浸漬してフォルステライト被膜を除去し、JIS G1222に規定の方法でのCo量の測定に供した。
 次いで、得られたサンプルから、変圧器を模した外形500mm角で各脚と各ヨークの板幅が100mmである三相三脚モデルトランスを作製し、モデルトランス鉄損WT17/50(50Hzで1.7Tまで励磁した際のトランス鉄損)を測定した。サンプルの積層枚数は50枚とし、2枚ずつの交互積みとした。そして、モデルトランスのビルディングファクターF17を、モデルトランス鉄損WT17/50をサンプルの鉄損W17/50で除した値(WT17/50/W17/50)として計算した。かかるビルディングファクターF17と母材鋼板におけるCo量との関係を、図1に示す。
 この図1に示す結果からは、ビルディングファクターF17とCo量との間に明瞭な相関関係は認められなかった。ただし、図1から、ビルディングファクターF17は1.25以下の良好な値と1.30以上の高い値とに二分されることが読み取れる。
 そこで、サンプルの鉄損とヒステリシス損との関係から、この違いを説明できるかを検討した。その結果、1.7Tで励磁したときの鉄損W17/50に対するヒステリシス損Wh17の比Wh17/W17/50をR17とし、1.9Tで励磁したときの鉄損W19/50に対するヒステリシス損Wh19の比Wh19/W19/50をR19としたとき、0.30≦R17≦R19の関係を有するA群とそれ以外のB群に分けられることを見出した。図2は、図1のデータの内、A群のみを抽出して再描画した結果である。
 この図2に示す結果から、A群に属し、すなわち0.30≦R17≦R19の関係を有し、かつCo量が0.005~0.050%の範囲において、良好なビルディングファクター1.25以下を示すことが分かる。
<実験2>
 質量%で、C:0.037%、Si:3.05%、Mn:0.18%、Al:0.009%、N:0.0036%、Se:0.007%、Sn:0.062%およびCo:0.0080%を含み、残部はFeおよび不可避的不純物である鋼スラブを連続鋳造にて製造し、1300℃で30分均熱するスラブ加熱を施した後、熱間圧延により2.2mmの厚さに仕上げた。その後、1100℃で30秒、N雰囲気での熱延板焼鈍を施した。次いで、冷間圧延を施して板厚0.23mmに仕上げ、さらに840℃で120秒、40%H-60%N、露点40℃の湿潤雰囲気下での脱炭焼鈍を施した。次に、脱炭焼鈍後の母材鋼板の表面に、TiOをMgOに対して0~15質量部の範囲で種々変更して混合した焼鈍分離剤を塗布し、1220℃で5時間保定する純化焼鈍を行った。この際、1220℃までの昇温速度は15℃/hとし、さらに昇温過程において、室温から700℃まではN雰囲気、700℃から1100℃はNとHの混合比を種々変化させた雰囲気、1100℃から1220℃まではH雰囲気とした。また保定時はH雰囲気とし、冷却時はAr雰囲気とした。このようにして、母材鋼板の表面にフォルステライトを主成分とする下地被膜(以下、フォルステライト被膜と称することがある。)が形成されたサンプルを得た。
 かくして得られたサンプルについて、実験1と同様に、鉄損W17/50およびW19/50と、ヒステリシス損Wh17およびWh19とを、JIS C2550-1に規定の方法で測定した。
 また、フォルステライト被膜を有した状態の鋼板におけるTi量を、JIS G1223に規定の方法で測定した。
 さらに、母材鋼板におけるCo量を測定するために、得られたサンプルの一部を80℃の10%塩酸水溶液に180秒浸漬してフォルステライト被膜を除去し、JIS G1222に規定の方法でのCo量の測定に供した。その結果、Co量は0.0080%であり、鋼スラブと同等の含有量であった。
 さらに、実験1と同様に、1.7Tで励磁したときの鉄損W17/50に対するヒステリシス損Wh17の比Wh17/W17/50をR17とし、1.9Tで励磁したときの鉄損W19/50に対するヒステリシス損Wh19の比Wh19/W19/50をR19として、0.30≦R17≦R19の関係を有するA群とそれ以外のB群に分け、フォルステライト被膜を有した状態の鋼板におけるTi量と、A群またはB群のどちらに属するかとの関係を、図3に示す。
 この図3に示す結果から、フォルステライト被膜を有した状態の鋼板におけるTi量が0.0039%以上0.0200%以下の場合に、A群に属する傾向があることが分かる。
 さらに、実験1と同様に、外形500mm角で各脚と各ヨークの板幅が100mmである三相三脚モデルトランスを作製し、モデルトランス鉄損WT17/50(50Hzで1.7Tまで励磁した際のトランス鉄損)を測定した。そして、モデルトランスのビルディングファクターF17を、モデルトランス鉄損WT17/50をサンプルの鉄損W17/50で除した値(WT17/50/W17/50)として計算した。かかるビルディングファクターF17と、フォルステライト被膜を有した状態の鋼板におけるTi量との関係を、図4に示す。
 この図4に示す結果から、フォルステライト被膜を有した状態の鋼板におけるTi量が0.0050%未満の場合は、A群に属していてもビルディングファクターF17が高いことが分かる。総合すると、フォルステライト被膜を有した状態の鋼板におけるTi量が0.0050~0.0200%の場合に、ビルディングファクターが低く良好となることを知見した。これは要するに、ある程度の量のTiがフォルステライト被膜中に存在するのが良好であることを意味する。
 上記のように、母材鋼板におけるCo量およびフォルステライトを主成分とする下地被膜を有した状態の鋼板におけるTi量により、モデルトランスのビルディングファクターが良好となるメカニズムについては明らかではないが、発明者らは次のように考えている。
 すなわち、変圧器のヨーク部や脚部は一定の幅を有するため、磁路は陸上競技のトラックの様に内側と外側とで距離が異なる。このため、励磁時は磁路が短い内側に磁束が偏る傾向がある。鋼板全体を1.7Tに励磁する場合も、内側ではそれを超える磁束密度となる。よって、高磁場特性が有利なほどビルディングファクターの様な変圧器特性が良好になると推定される。Coは鉄に固溶させると、鉄の飽和磁束密度が高くなり、高磁場特性が向上することが見込まれるため、ビルディングファクターが良化したと推測される。ただし、実験1、2を通じて、Coを添加した場合でも、ビルディングファクターが良くない場合が2点あった。
 1点目は、1.7Tで励磁したときの鉄損W17/50に対するヒステリシス損Wh17の比Wh17/W17/50、すなわちR17と、1.9Tで励磁したときの鉄損W19/50に対するヒステリシス損Wh19の比Wh19/W19/50、すなわちR19とが、0.30≦R17≦R19の関係を満たさない場合である。詳細を調査した結果、R17が0.30を下回る場合が大半であった。ヒステリシス損はBと高い相関を有し、同じBなら大きな変動がないと考えられるため、上記は渦電流損が極めて大きい場合と考えられる。変圧器では、正弦波で励磁しても高周波成分が重畳して波形がひずむことから、周波数依存性の高い渦電流損が増大すると、考えられる。よって、渦電流損比率が高いとビルディングファクターが増大すると考えられる。
 2点目は、フォルステライト被膜を有した状態の鋼板におけるTi量が、0.0050質量%未満もしくは0.0200質量%超の場合である。推定ではあるが、Tiはある程度の量だけフォルステライト被膜中に存在することで、被膜特性を向上させることが考えられる。例えば、被膜張力が向上すれば磁区が微細化し、渦電流損を低減する可能性がある。その場合、上記のR17、R19の場合とは逆に渦電流損比率が下がるため、ビルディングファクターが低減できると考えられる。
 ちなみに、特表2021-509149号公報には、Coを含有する方向性電磁鋼板の製造技術が開示されている。しかしながら、当該文献では、電磁鋼板自体の磁性を向上させる技術について言及されており、かかる技術は、フォルステライト被膜にTiを含有させる技術を併用してビルディングファクターを低減させる本発明とは、全く異なる技術である。
 本発明は上記知見に立脚するものである。すなわち、本発明の要旨構成は次のとおりである。
1.Si:1.50~8.00質量%、Mn:0.02~1.00質量%およびCo:0.005~0.050質量%を含有する母材鋼板と、該母材鋼板の表面に形成される、フォルステライトを主成分とする下地被膜と、を有する方向性電磁鋼板であって、
  前記母材鋼板および前記下地被膜の全体におけるTi量が0.0050~0.0200質量%であり、
 1.7Tで励磁したときの鉄損W17/50に対するヒステリシス損Wh17の比Wh17/W17/50をR17とし、1.9Tで励磁したときの鉄損W19/50に対するヒステリシス損Wh19の比Wh19/W19/50をR19としたとき、次式(1)を満たす方向性電磁鋼板。
 0.30≦R17≦R19 ・・・(1)
2.前記母材鋼板におけるTi量が0.0030質量%以下である前記1に記載の方向性電磁鋼板。
3.前記下地被膜の表面上に絶縁被膜を備える前記1または2に記載の方向性電磁鋼板。
4.前記母材鋼板がさらに、Sn:0.500質量%以下、Cr:0.500質量%以下、Cu:0.50質量%以下、 Ni:0.50質量%以下、Bi:0.500質量%以下、P:0.500質量%以下、Sb:0.500質量%以下、Mo:0.500質量%以下、B:25.0質量ppm以下、Nb: 0.020質量%以下、V:0.020質量%以下、As:0.0200質量%以下、Zn:0.020質量%以下、Pb:0.0100質量%以下、W:0.0100質量%以下、Ga:0.0050質量%以下およびGe:0.0050質量%以下のうちから選んだ1種または2種以上を含有する前記1~3のいずれかに記載の方向性電磁鋼板。
 本発明によれば、ビルディングファクターを十分に低減させ得る磁気特性を有する、方向性電磁鋼板を提供することができる。
実験1に関する、母材鋼板のCoの含有量とビルディングファクターF17との関係を示すグラフである。 実験1に関する、母材鋼板のCoの含有量とビルディングファクターF17との関係(A群のみを抽出)を示すグラフである。 実験2に関する、フォルステライト被膜を有した状態の鋼板におけるTi量と、A群またはB群のどちらに属するかとの関係を示すグラフである。 実施例2に関する、フォルステライト被膜を有した状態の鋼板のTiの含有量とビルディングファクターF17との関係を示すグラフである。
 次に、本発明の構成要件の限定理由について述べる。まず、本発明の方向性電磁鋼板の母材鋼板における各元素量(成分組成)について説明する。なお、成分組成に関する「%」および「ppm」表示はそれぞれ、特に断らない限り「質量%」および「質量ppm」を示している。
Si:1.50~8.00%
 Siは、鋼の比抵抗を高め、鉄損を改善させるために必要な元素である。また、Siは、本発明の鋼板におけるフォルステライト被膜を形成するためにも必要な元素である。しかし、Si量が1.50%未満であると効果がなく、8.00%を超えると鋼の加工性が劣化し、圧延が困難となる。このことから、Si量は、1.50~8.00%に限定される。Si量は、望ましくは2.50%以上であり、また、望ましくは4.50%以下である。
Mn:0.02~1.00%
 Mnは、熱間加工性を良好にするために必要な元素である。しかし、Mn量が0.02%未満であると効果がなく、1.00%を超えると製品板の磁束密度が低下する。そのため、Mn量は、0.02~1.00%とする。Mn量は、望ましくは0.04%以上であり、また、望ましくは0.20%以下である。
Co:0.005~0.050%
 Coは、上述の理由により、0.005~0.050%の範囲の量で含有することが必須である。Co量は、望ましくは0.006%以上であり、さらに望ましくは0.008%以上である。また、Co量は、望ましくは0.020%以下であり、さらに望ましくは0.015%以下である。
 本発明の方向性電磁鋼板の母材鋼板は、上記した基本成分(Si、Mn、およびCo)のほか、C(例えば、0.020~0.100%)、Al(例えば、0.002~0.040%)、およびN(例えば、0.002~0.015%)を含有してもよい。また、母材鋼板は、そのほか、任意に、S(例えば、0.020%以下)および/またはSe(例えば、0.040%以下)を含有してもよい。また、本発明の方向性電磁鋼板の母材鋼板は、上記した各成分に加えて、以下に述べる成分(元素)を必要に応じて適宜含有することができる。
 具体的に、母材鋼板は、磁気特性を向上させる目的で、Sn:(0%超)0.500%以下、Cr:(0%超)0.500%以下、Cu:(0%超)0.50%以下、Ni:(0%超)0.50%以下、Bi:(0%超)0.500%以下、P:(0%超)0.500%以下、Sb:(0%超)0.500%以下、Mo:(0%超)0.500%以下、B:(0ppm超)25.0ppm以下、Nb:(0%超)0.020%以下、V:(0%超)0.020%以下、As:(0%超)0.0200%以下、Zn:(0%超)0.020%以下、Pb:(0%超)0.0100%以下、W:(0%超)0.0100%以下、Ga:(0%超)0.0050%以下およびGe:(0%超)0.0050%以下のうちから選んだ1種または2種以上を複合して添加できる。
 すなわち、上記した各元素は、磁気特性のさらなる向上を所期して、上記した上限量の範囲内で母材鋼板に含有させることができる。それぞれの元素の添加量(含有量)が上記の上限値を超えると、二次再結晶粒の発達が抑制され磁気特性が劣化する、おそれがある。なお、各元素の下限値については特に限定する必要はないが、好ましくは、以下の範囲である。
 Sn:0.005%以上、Cr:0.005%以上、Cu:0.01%以上、 Ni:0.01%以上、Bi:0.005%以上、P:0.005%以上、Sb:0.005%以上、Mo:0.005%以上、B:0.1ppm以上、Nb:0.001%以上、V:0.001%以上、As:0.0010%以上、Zn:0.001%以上、Pb:0.0001%以上、W:0.0010%以上、Ga:0.0001%以上およびGe:0.0001%以上
 母材鋼板において、上述した成分(元素)以外の残部は、Feおよび不可避的不純物である。
 上記した成分組成は、母材鋼板における成分組成であり、すなわち、フォルステライトを主成分とする下地被膜を考慮しないものである。本発明では、さらに、フォルステライトを主成分とする下地被膜を有した状態の鋼板におけるTi量、すなわち、母材鋼板および下地被膜の全体におけるTi量が、上述の理由により、0.0050~0.0200%に制限される。母材鋼板および下地被膜の全体におけるTi量は、望ましくは0.0060%以上であり、また、望ましくは0.0150%以下である。
 なお、下地被膜について「主成分」とは、下地被膜を構成する成分のうち最も質量が多い成分を指す。
 ここで、下地被膜を有した状態の鋼板におけるTi量を0.0050~0.0200%に制限するに当たり、母材鋼板におけるTi量は、0.0030%以下であることが好ましい。母材鋼板におけるTi量が0.0030%以下であれば、鋼中でTiの析出物が生成することによる鉄損の大幅な劣化を抑制することができるためである。一方、下地被膜を有した状態の鋼板におけるTi量は、0.0050%以上とする。なぜなら、上述の通り、Tiはある程度の量がフォルステライト被膜中に存在することで、被膜特性を向上させ、渦電流損を改善できると考えられるところ、Ti量が0.0050%未満であると、その効果が乏しいと推測されるためである。
 さらに、本発明では、上述した通り、製品鋼板のヒステリシス損および鉄損から計算されるパラメータの範囲を限定する必要がある。すなわち、1.7Tで励磁したときの鉄損W17/50に対するヒステリシス損Wh17の比R17(=Wh17/W17/50)と、1.9Tで励磁したときの鉄損W19/50に対するヒステリシス損Wh19の比R19(=Wh19/W19/50)とが、0.30≦R17≦R19の関係を満たす必要がある。これらの値は、JIS C2550-1に規定の方法で測定することが可能である。なお、ヒステリシス損は、50Hzにおける鉄損と合わせるため、ヒステリシスループ1周による鉄心のエネルギー損失に励磁周波数である50を掛けた値とすることができる。
 つぎに、本発明の方向電磁鋼板の製造方法について述べる。製造方法は、一般的な電磁鋼板を製造する方法を利用できる。例えば、所定の成分調整がなされた溶鋼を通常の造塊法もしくは、連続鋳造法でスラブを製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。溶鋼の製造は、高炉法でもよく電炉法でもよい。上述の、母材鋼板に含有され得る各種成分は、途中工程で加えることは困難であることから、溶鋼段階で添加することが望ましい。スラブは、通常の方法で加熱して熱間圧延するか、加熱することなく鋳込み後ただちに熱間圧延する。加熱する場合の温度は、インヒビター成分が少ない成分系ではインヒビターを固溶させるための高温焼鈍を必要としないため、1300℃以下の低温とすることが、コスト低減目的のため有効である。加熱する場合の温度は、望ましくは1250℃以下である。
 次いで、必要に応じて熱延板焼鈍を施す。熱延板焼鈍の温度は、950~1150℃程度が望ましい。950℃以上であれば、未再結晶部の残存を十分に抑制でき、また1150℃以下であれば、焼鈍後の粒径の過度な粗大化を抑制し、その後の一次再結晶集合組織をより良好なものとすることができる。熱延板焼鈍の温度は、望ましくは1000℃以上であり、また、望ましくは1100℃以下である。
 熱間圧延後あるいは熱延板焼鈍後の鋼板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900~1200℃の範囲とするのが好ましい。900℃以上であれば、中間焼鈍後の再結晶粒が細かくなりすぎるのを良好に抑制し、さらに、一次再結晶組織におけるGoss核の減少に伴う製品板の磁気特性の低下を良好に抑制することができる。一方、1200℃以下であれば、熱延板焼鈍と同様、結晶粒の過度な粗大化を抑制し、整粒の一次再結晶組織をより良好なものとすることができる。
 最終板厚とした冷延板は、その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。この一次再結晶焼鈍における焼鈍温度は、脱炭焼鈍を伴う場合は、脱炭反応を速やかに進行させる観点から、800~900℃の範囲とするのが好ましく、また、雰囲気は湿潤雰囲気とするのが好ましい。
 その後、MgOを主体とする焼鈍分離剤を適用し、次いで純化焼鈍を施すことにより、二次再結晶組織を発達させると共にフォルステライト被膜を形成させることが可能である。ここで、MgOを主体とするとは、MgOを75質量%以上で含むことを指す。
 さらに、焼鈍分離剤にTiの化合物を添加すること、そして後述する純化焼鈍時にN雰囲気を導入することによって、Tiを効果的にフォルステライト被膜中に存在させることができる。ただし、他の方法でTiをフォルステライト被膜中に存在させてもかまわない。
 次に、二次再結晶焼鈍(純化焼鈍)を施す。この純化焼鈍は、二次再結晶の発現のためには800℃以上で行うことが望ましく、純化の観点からは1100℃以上の保定温度まで昇温することが望ましい。保定温度は、より望ましくは1180℃以上である。ここでの保定時間は長時間であるほど純化が進むが、高温クリープによる形状劣化が生じるため3時間以上15時間以下が望ましい。純化焼鈍後には、付着した焼鈍分離剤を除去するため、水洗、ブラッシング、或いは酸洗を行うことが好ましい。また、所望の鉄損特性を得る観点から、純化焼鈍の昇温過程においては、第1中間温度(例えば、600~800℃の範囲から選択される温度)まではN雰囲気とし、第1中間温度から第2中間温度(例えば、1050~1150℃の範囲から選択される温度)まではNとHの混合雰囲気とし、第2中間温度から保定温度まではH雰囲気とすることが好ましい。
 その後、平坦化焼鈍を行い形状矯正することが、鉄損低減のために有効である。なお、鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍の前もしくは後に、鋼板表面に絶縁被膜を施すことが有効である。この絶縁被膜としては、鉄損低減のために鋼板に張力を付与できる被膜が望ましい。バインダーを介した張力被膜塗布方法、物理蒸着法、または化学蒸着法により無機物を鋼板表層に蒸着させ被膜を形成する方法を採用することが、被膜密着性に優れ、かつ著しい鉄損低減効果があるため、望ましい。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
(実施例1)
 鋼スラブA・・・C:0.070%、Si:3.55%、Mn:0.07%、Al:0.0080%、N:0.0050%、Co:0.012%、Mo:0.026%、Ti:0.025%を含み、残部はFeおよび不可避的不純物
 鋼スラブB・・・C:0.072%、Si:3.51%、Mn:0.07%、Al:0.0080%、N:0.0047%、Co:0.011%、Mo:0.025%、Ti:0.0025%を含み、残部はFeおよび不可避的不純物
 鋼スラブC・・・C:0.072%、Si:3.49%、Mn:0.07%、Al:0.0090%、N:0.0051%、Co:0.002%、Mo:0.025%、Ti:0.024%を含み、残部はFeおよび不可避的不純物
 鋼スラブD・・・C:0.068%、Si:3.48%、Mn:0.07%、Al:0.0090%、N:0.0050%、Co:0.008%、Mo:0.022%、Ti:0.0010%を含み、残部はFeおよび不可避的不純物
 上記の鋼スラブA~Dをそれぞれ、連続鋳造にて製造し、1200℃で40分均熱するスラブ加熱を施した後、熱間圧延により2.2mmの厚さに仕上げた。その後、1000℃で60秒、N雰囲気での熱延板焼鈍を施した。次いで、冷間圧延を施して板厚0.23mmに仕上げ、さらに850℃で90秒、60%H-40%N、露点60℃の湿潤雰囲気下での脱炭焼鈍を施した。
 次に、脱炭焼鈍後の母材鋼板の表面に、MgOを主体(MgO:97質量%)とする焼鈍分離剤を塗布し、1100℃で25時間保定した後、1200℃で10時間保定する純化焼鈍を行った。この昇温過程において、室温から700℃まではN雰囲気、700℃から1100℃はNとHの混合比を種々変化させた雰囲気、1100℃(保定開始)から1200℃(保定終了)まではH雰囲気とした。さらに、冷却時はAr雰囲気とした。
 かくして得られたサンプル、すなわちフォルステライトを主成分とする下地被膜を有した状態の鋼板について、Ti量(母材鋼板および下地被膜の全体におけるTi量)を、JIS G1223に規定の方法に従って測定した。その結果を、表1に併記する。
 上記鋼板の下地被膜上に、リン酸マグネシウムとシリカを主成分とする絶縁被膜を塗布し、形成した。かくして得られたサンプルについて、鉄損W17/50(50Hzで1.7Tまで励磁した際の鉄損)およびW19/50(50Hzで1.9Tまで励磁した際の鉄損)と、ヒステリシス損Wh17(1.7Tまで励磁した際のヒステリシス損)およびWh19(1.9Tまで励磁した際のヒステリシス損)とを、JIS C2550-1に規定の方法に従って測定した。Wh17/W17/50(すなわちR17)、およびWh19/W19/50(すなわちR19)を、表1に併記する。
 さらに、母材鋼板におけるCo量およびTi量を測定するために、得られたサンプルの一部を80℃の10%塩酸水溶液に180秒浸漬して下地被膜を除去し、JIS G1222およびJIS G1223に規定の方法に従う測定に供した。その測定結果を、表1に併記する。
 次いで、絶縁被膜を形成したサンプルから、変圧器を模した外形500mm角で各脚と各ヨークの板幅が100mmである三相三脚モデルトランスを作製し、モデルトランス鉄損WT17/50(50Hzで1.7Tまで励磁した際のトランス鉄損)を測定した。サンプルの積層枚数は50枚とし、2枚ずつの交互積みとした。そして、モデルトランスのビルディングファクターF17を、モデルトランス鉄損WT17/50をサンプルの鉄損W17/50で除した値(WT17/50/W17/50)として計算した。その結果を、表1に併記する。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明に従うサンプル(方向性電磁鋼板)においては、良好な鉄損特性(ビルディングファクター)が得られていることが分かる。
(実施例2)
 表2に示す成分を含み、残部はFeおよび不可避的不純物である鋼スラブを、連続鋳造にて製造し、1410℃で20分均熱するスラブ加熱を施した後、熱間圧延により2.4mmの厚さに仕上げた。その後、1100℃で20秒、N雰囲気の熱延板焼鈍を施した。次いで、冷間圧延を施して板厚1.5mmに仕上げ、さらに900℃で100秒、25%H-75%N雰囲気での中間焼鈍を施した。その後、冷間圧延で0.23mmの板厚に仕上げ、さらに825℃で150秒、40%H-60%N、露点45℃の湿潤雰囲気下での脱炭焼鈍を施した。
Figure JPOXMLDOC01-appb-T000002
 次に、脱炭焼鈍後の母材鋼板の表面に、MgOを主体(MgO:88質量%)とする焼鈍分離剤を塗布した。焼鈍分離剤には、TiO粉末を50℃の温水に投入し24時間撹拌させた後ろ取した過水和TiOを、粉末MgOに対して5質量部追加した。
 さらに、1200℃で10時間保定する純化焼鈍を行った。この際、1200℃までの昇温速度は15℃/hとし、さらに昇温過程において、室温から700℃まではN雰囲気、700℃から1100℃はNとHの混合比を種々変化させた雰囲気、1100℃から1200℃まではH雰囲気とした。また、保定時はH雰囲気とし、冷却時はAr雰囲気とした。
 かくして得られたサンプル、すなわちフォルステライトを主成分とする下地被膜を有した状態の鋼板について、Ti量(母材鋼板および下地被膜の全体におけるTi量)を、JIS G1223に規定の方法に従って測定した。その測定結果を、表3に併記する。
 上記鋼板の下地被膜上に、リン酸マグネシウムとシリカを主成分とする絶縁被膜を塗布し、形成した。かくして得られたサンプルについて、鉄損W17/50(50Hzで1.7Tまで励磁した際の鉄損)およびW19/50(50Hzで1.9Tまで励磁した際の鉄損)と、ヒステリシス損Wh17(1.7Tまで励磁した際のヒステリシス損)およびWh19(1.9Tまで励磁した際のヒステリシス損)とを、JIS C2550-1に規定の方法に従って測定した。Wh17/W17/50(すなわちR17)、およびWh19/W19/50(すなわちR19)を、表3に併記する。
 さらに、母材鋼板におけるCo量およびTi量を測定するために、得られたサンプルの一部を80℃の10%塩酸水溶液に180秒浸漬して下地被膜を除去し、JIS G1222およびJIS G1223に規定の方法に従う測定に供した。その測定結果を、表3に併記する。
 次いで、絶縁被膜を形成したサンプルから、変圧器を模した外形500mm角で各脚と各ヨークの板幅が100mmである三相三脚モデルトランスを作製し、モデルトランス鉄損WT17/50(50Hzで1.7Tまで励磁した際のトランス鉄損)を測定した。サンプルの積層枚数は50枚とし、2枚ずつの交互積みとした。そして、モデルトランスのビルディングファクターF17を、モデルトランス鉄損WT17/50をサンプルの鉄損W17/50で除した値(WT17/50/W17/50)として計算した。その結果を、表3に併記する。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本発明に従うサンプル(方向性電磁鋼板)においては、良好な鉄損特性(ビルディングファクター)が得られていることが分かる。

Claims (4)

  1.  Si:1.50~8.00質量%、Mn:0.02~1.00質量%およびCo:0.005~0.050質量%を含有する母材鋼板と、該母材鋼板の表面に形成される、フォルステライトを主成分とする下地被膜と、を有する方向性電磁鋼板であって、
     前記母材鋼板および前記下地被膜の全体におけるTi量が0.0050~0.0200質量%であり、
     1.7Tで励磁したときの鉄損W17/50に対するヒステリシス損Wh17の比Wh17/W17/50をR17とし、1.9Tで励磁したときの鉄損W19/50に対するヒステリシス損Wh19の比Wh19/W19/50をR19としたとき、次式(1)を満たす方向性電磁鋼板。
     0.30≦R17≦R19 ・・・(1)
  2.  前記母材鋼板におけるTi量が0.0030質量%以下である請求項1に記載の方向性電磁鋼板。
  3.  前記下地被膜の表面上に絶縁被膜を備える請求項1または2に記載の方向性電磁鋼板。
  4.  前記母材鋼板がさらに、Sn:0.500質量%以下、Cr:0.500質量%以下、Cu:0.50質量%以下、Ni:0.50質量%以下、Bi:0.500質量%以下、P:0.500質量%以下、Sb:0.500質量%以下、Mo:0.500質量%以下、B:25.0質量ppm以下、Nb:0.020質量%以下、V:0.020質量%以下、As:0.0200質量%以下、Zn:0.020質量%以下、Pb:0.0100質量%以下、W:0.0100質量%以下、Ga:0.0050質量%以下およびGe:0.0050質量%以下のうちから選んだ1種または2種以上を含有する請求項1~3のいずれかに記載の方向性電磁鋼板。
     
PCT/JP2023/032247 2022-09-09 2023-09-04 方向性電磁鋼板 WO2024053608A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024514751A JPWO2024053608A1 (ja) 2022-09-09 2023-09-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144154 2022-09-09
JP2022-144154 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053608A1 true WO2024053608A1 (ja) 2024-03-14

Family

ID=90191254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032247 WO2024053608A1 (ja) 2022-09-09 2023-09-04 方向性電磁鋼板

Country Status (2)

Country Link
JP (1) JPWO2024053608A1 (ja)
WO (1) WO2024053608A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291313A (ja) * 1996-04-25 1997-11-11 Kawasaki Steel Corp 磁気特性・被膜特性に優れる方向性けい素鋼板の製造方法
JP2006274405A (ja) * 2005-03-30 2006-10-12 Jfe Steel Kk 高磁束密度方向性電磁鋼板の製造方法
JP2012092409A (ja) * 2010-10-28 2012-05-17 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2013136824A (ja) * 2011-12-28 2013-07-11 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
CN108456829A (zh) * 2018-02-26 2018-08-28 合肥尚强电气科技有限公司 一种变压器硅钢片及其制备方法
JP2021123766A (ja) * 2020-02-06 2021-08-30 日本製鉄株式会社 方向性電磁鋼板、および方向性電磁鋼板の製造方法、ならびに焼鈍分離剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291313A (ja) * 1996-04-25 1997-11-11 Kawasaki Steel Corp 磁気特性・被膜特性に優れる方向性けい素鋼板の製造方法
JP2006274405A (ja) * 2005-03-30 2006-10-12 Jfe Steel Kk 高磁束密度方向性電磁鋼板の製造方法
JP2012092409A (ja) * 2010-10-28 2012-05-17 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2013136824A (ja) * 2011-12-28 2013-07-11 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
CN108456829A (zh) * 2018-02-26 2018-08-28 合肥尚强电气科技有限公司 一种变压器硅钢片及其制备方法
JP2021123766A (ja) * 2020-02-06 2021-08-30 日本製鉄株式会社 方向性電磁鋼板、および方向性電磁鋼板の製造方法、ならびに焼鈍分離剤

Also Published As

Publication number Publication date
JPWO2024053608A1 (ja) 2024-03-14

Similar Documents

Publication Publication Date Title
US6602357B2 (en) Grain oriented electrical steel sheet with low iron loss and production method for same
JP5754097B2 (ja) 方向性電磁鋼板およびその製造方法
US20130098507A1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2011115120A1 (ja) 方向性電磁鋼板の製造方法
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
JP7507157B2 (ja) 方向性電磁鋼板およびその製造方法
JP2016509625A (ja) 鉄損に優れた方向性電磁鋼板及びその製造方法
JP7063032B2 (ja) 方向性電磁鋼板の製造方法
JPH10152724A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP5760506B2 (ja) 方向性電磁鋼板の製造方法
JP2008150697A (ja) 電磁鋼板の製造方法
TWI641702B (zh) 回收性優良的無方向性電磁鋼板
CN107429307B (zh) 单向性电磁钢板的制造方法
JP7221481B2 (ja) 方向性電磁鋼板およびその製造方法
WO2020149341A1 (ja) 方向性電磁鋼板の製造方法
WO2024053608A1 (ja) 方向性電磁鋼板
JP2019116680A (ja) 方向性電磁鋼板用スラブ、方向性電磁鋼板およびその製造方法
JP7365414B2 (ja) 方向性電磁鋼板およびその製造方法
JP7053848B2 (ja) 方向性電磁鋼板およびその製造方法
JP2000034521A (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
JP3357602B2 (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
JP5527094B2 (ja) 方向性電磁鋼板の製造方法
JP2002194444A (ja) 磁気特性及び被膜特性に優れた方向性電磁鋼板の製造方法
JP6866869B2 (ja) 方向性電磁鋼板の製造方法
JP2000345305A (ja) 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863146

Country of ref document: EP

Kind code of ref document: A1