WO2024051613A1 - 一种卷绕设备、伸缩装置和搬运机器人 - Google Patents

一种卷绕设备、伸缩装置和搬运机器人 Download PDF

Info

Publication number
WO2024051613A1
WO2024051613A1 PCT/CN2023/116621 CN2023116621W WO2024051613A1 WO 2024051613 A1 WO2024051613 A1 WO 2024051613A1 CN 2023116621 W CN2023116621 W CN 2023116621W WO 2024051613 A1 WO2024051613 A1 WO 2024051613A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
telescopic
parts
fixed bracket
connecting piece
Prior art date
Application number
PCT/CN2023/116621
Other languages
English (en)
French (fr)
Inventor
单明明
Original Assignee
深圳市海柔创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海柔创新科技有限公司 filed Critical 深圳市海柔创新科技有限公司
Publication of WO2024051613A1 publication Critical patent/WO2024051613A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/12Driving gear incorporating electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/26Rope, cable, or chain winding mechanisms; Capstans having several drums or barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/30Rope, cable, or chain drums or barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/04Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/02Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms suspended from ropes, cables, or chains or screws and movable along pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/28Constructional details, e.g. end stops, pivoting supporting members, sliding runners adjustable to load dimensions

Definitions

  • the utility model relates to the field of logistics and warehousing, and specifically relates to a winding equipment, a telescopic device and a handling robot.
  • liftable handling robots In the field of logistics and warehousing, liftable handling robots are increasingly used. They can replace manual labor to transport goods, and automatically lift to pick up and place goods at different heights in the storage area.
  • the inventor of the present application found during research that when the goods are lifted with the handling robot, as the goods get higher and higher, the load weight of the handling robot gradually increases and the lifting speed gradually decreases. In order to enable the handling robot to work normally, It is usually necessary to select the drive components according to the maximum load condition of the handling robot. This method results in excessive power consumption of the handling robot and low power utilization, which is not conducive to energy conservation, environmental protection and electricity safety.
  • the purpose of this application is to provide a winding equipment, telescopic device and handling robot that can match corresponding telescopic/lifting speeds for different cargo loads and improve power utilization.
  • a winding device including a driving component and a winding component; the driving component is coaxially arranged with the winding component and is used to drive the winding component to rotate;
  • the winding assembly includes at least two winding parts arranged sequentially along the axial direction, and the adjacent winding parts With different winding radii.
  • the winding equipment provided by the embodiment of the present application is provided with multiple winding parts arranged sequentially along the axial direction.
  • the adjacent winding parts have different winding radii.
  • the driving assembly operates at rated power
  • the winding group Through the changes in the winding radius of different winding parts, the pulling force of the winding equipment under different loads is adjusted, ensuring that the winding equipment always works at the rated power, improving the winding efficiency of the winding equipment, and improving the driving efficiency. Component utilization.
  • a wire groove is provided on the surface of the winding portion. By guiding and positioning the wire, the wound wire is wound sequentially along the wire groove to avoid extrusion and friction between two adjacent turns of wire, resulting in misalignment changes.
  • a buffer portion is provided between the adjacent winding portions, and the buffer portion is used to provide buffering for the wiring on the surface of the adjacent winding portions.
  • the winding radius of the winding portion increases or decreases sequentially along the axial direction.
  • the drive component can meet different loads under the rated power, thereby saving power consumption and improving the utilization rate of the drive component.
  • a telescopic device including the above-mentioned winding device and a telescopic assembly;
  • the telescopic assembly includes a fixed bracket, at least one telescopic part and at least one end device, and the telescopic part can be relative to The fixed bracket moves;
  • the telescopic parts are slidably connected in sequence, and the terminal device is slidably disposed on the telescopic part farthest from the fixed bracket;
  • the winding equipment and one end of the fixed bracket are relatively fixedly arranged, and the winding part is provided with a connecting piece.
  • One end of the connecting piece is connected to the winding part with the largest winding radius, and the other end is connected to the end
  • the device is connected, and when each of the winding parts rotates, the connecting piece drives each of the telescopic parts to extend or contract in sequence with the rotation of each of the winding parts.
  • the telescopic device connects multi-stage telescopic parts in sequence through connecting parts, and winds along the winding parts with different winding radii through the connecting parts, and controls the corresponding telescopic parts to expand and contract in sequence according to different telescopic requirements. And control the telescopic speed of the corresponding telescopic part.
  • the winding component rotates at a constant speed to meet the pulling force required for various load requirements of the multi-stage telescopic part. This ensures that the winding equipment always works at rated power and improves the winding efficiency of the winding equipment. ,improve Improves the power utilization of drive components.
  • each of the winding parts corresponds to the telescopic part and the end device in sequence, wherein the end device corresponds to the winding part with the largest winding radius and is a distance from the The farther the telescopic part is from the fixed bracket, the larger the winding radius of the corresponding winding part is. In this way, the winding part with the largest winding radius is connected to the end device. As the winding radius decreases, the corresponding telescopic part is closer to the fixed bracket, so that the winding component drives the end device through the connecting piece first and telescopes first.
  • the end device Since the end device has the smallest load, the end device can quickly telescopically move; then the telescopic part farthest from the fixed bracket can telescopically move in sequence, the load level increases, and the winding radius of the winding part decreases successively, thus gradually Increase the tensile force of the winding assembly.
  • the length of the connector wound by each winding part is equal to the length of the corresponding telescopic part or the end match the maximum extension length of the device.
  • the fixed bracket and each of the telescopic parts include guide grooves, and each of the telescopic parts or the terminal device can be driven along the adjacent guide grooves by the connecting piece. slide. Each of the telescopic parts and the terminal device can slide along the adjacent guide grooves driven by the connecting piece.
  • the guide groove is used to support the telescopic extension to avoid shaking and deviation, reduce the space occupied by the telescopic component, and make the structure more compact.
  • both the telescopic part and the fixed bracket include a limiting part located at one end of the guide groove.
  • the former telescopic part slides along the guide groove of the adjacent telescopic part, the current The limiting portion of the telescopic portion is in contact with the limiting portion of the adjacent telescopic portion.
  • the terminal device is prevented from continuing to rise and slide out of the telescopic part, thereby preventing the telescopic part and the terminal device from easily slipping when they are raised and lowered rapidly, causing accidents and other safety hazards.
  • the telescopic part further includes a guide wheel assembly
  • the guide wheel assembly includes an upper pulley and a lower pulley
  • the upper pulley and the lower pulley are respectively provided at both ends of the telescopic part.
  • the connecting piece is wound around the upper pulley and the lower pulley in turn, the guide pulley assembly and the connecting piece form a movable pulley structure, and the driving assembly controls the lifting and lowering of the telescopic portion through the connecting piece.
  • a fixed pulley is provided on one end of the fixed bracket away from the winding equipment; the connecting member is arranged around the fixed pulley, the fixed pulley, and the fixed pulley in order from the winding part with the largest winding radius. Lower pulley and upper pulley to the end device.
  • the connectors are wound sequentially from the winding part with the largest winding radius, and the corresponding end device with the smallest drive load is extended first, which can increase the traction force corresponding to the load when the multi-stage telescopic part is extended and save power consumption.
  • the terminal device is a handling component for carrying and picking up and placing goods, and the handling component is used for carrying goods.
  • the goods are placed on the terminal device, and as the terminal device moves, the goods can be placed on higher shelves, or the goods can be transported from high places to the ground.
  • a handling robot including any one of the above telescopic components.
  • Figure 1 is a schematic structural diagram of a winding equipment provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a telescopic device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the telescopic component of the telescopic device provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of the guide wheel assembly of the telescopic device provided by an embodiment of the present application.
  • the reference numbers in the specific implementation are as follows: 100. Winding equipment; 110. Winding component; 111. Winding part; 120. Drive component; 130. Wire trough; 140. Slow Punching part; 150, wire rod; 200. Telescopic device; 210. Telescopic component; 211. Fixed bracket; 212. Telescopic part; 213. Connector; 214. Guide groove; 215. Limiting part of the telescopic part; 216. Limiting part of the fixed bracket; 220. Guide pulley assembly; 221. Upper pulley; 222. Lower pulley; 230. Fixed pulley; 240. Terminal device; 241. Limiting portion of the terminal device; 242. Connecting block.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • a telescopic device In order to pick and place goods on shelves of different heights, it is usually necessary to configure a telescopic device in the storage area.
  • the height of the telescopic device is adjustable, and different lifting positions can be adjusted according to the height of the shelf, so that the goods can be moved to the designated location. , or take out the goods from the designated location.
  • the telescopic device In order to adapt to the requirements of modern logistics, the telescopic device must not only ensure sufficient telescopic height to realize the picking and placing of goods on higher shelves, but also ensure that the telescopic device has an appropriate volume to facilitate movement and maintenance. Therefore, usually Next, set the telescopic device to multi-level telescopic. When the telescopic device is in the extended state, the telescopic length can be increased to meet the height requirements of the cargo.
  • the telescopic length is greater.
  • the telescopic length gradually increases, its load becomes larger and larger, because as the telescopic length increases, the telescopic device has to bear the weight of the cargo in addition to In addition, it also needs to bear the weight of each extended telescopic part.
  • the telescopic length increases, the The weight of the outgoing telescopic part also gradually increases, which requires the telescopic device to output larger lifting power.
  • the embodiment of the present application proposes a winding equipment, a telescopic device and a handling robot.
  • the winding assembly has different characteristics.
  • the winding radius is used to wind or release the connector for different load weights.
  • the telescopic device As the length of the telescopic device gradually increases, in addition to the weight of the cargo, the telescopic device also needs to bear the weight of the telescopic part itself. Therefore, as the telescopic length of the telescopic device increases, the load it bears gradually increases.
  • the load carried by the telescopic device is small.
  • the winding equipment uses the winding part with a larger winding radius to drive the telescopic device to move.
  • the telescopic speed of the telescopic device is maintained at a fast state.
  • the winding equipment works at rated power. In order to drive heavier loads to move, at this time, the winding equipment uses a larger winding radius.
  • the small winding part drives the telescopic device to move.
  • the winding equipment Since the winding equipment uses a winding part with a small winding radius to drive the telescopic device to move, therefore, under rated power, it uses a winding part with a small winding radius.
  • the tensile force output during winding is greater than the tensile force output when winding with a larger winding radius, and can drive heavier loads to move. Therefore, the solution provided by the embodiment of the present application can use different winding radii for winding under different load conditions, ensuring that the winding equipment always works at rated power, and improving the utilization rate of the winding equipment.
  • the winding equipment, telescopic devices and handling robots proposed in the embodiments of this application can be used in the logistics field to transport and store acquisitions; they can also be used in the engineering field, such as for lifting and lowering operations that require high-altitude construction. ; It can also be used in firefighting, sanitation, and other scenarios involving length or height adjustment.
  • the embodiments of this application only take the logistics field as an example for description.
  • a winding device 100 is proposed.
  • the winding device 100 includes a driving component 120 and a winding component 110; the driving component 120 and the winding component 110 Coaxially arranged, used to drive the winding assembly 110 to rotate; the winding assembly 110 includes at least two winding parts 111 arranged sequentially along the axial direction, and adjacent winding parts have different winding radii.
  • the output shaft of the driving assembly 120 is connected to the central axis of the winding assembly 110 .
  • the driving assembly 120 works, the winding assembly 110 is driven to rotate to wind or release the wire.
  • the driving assembly 120 can be any type of power output device such as a driving motor, a driving motor or a driving wheel, which allows the winding assembly 110 to rotate coaxially around its output shaft to achieve uniform speed or variable speed rotation.
  • the winding assembly 110 includes a plurality of winding parts 111. As shown in FIG. 1, two winding parts are shown. The two winding parts are coaxially arranged adjacently and have different winding radii. The two winding parts may be formed integrally or separately, and then be screwed together or set together in other ways. Furthermore, the winding assembly 110 may also include a larger number of winding parts, with multiple winding parts arranged coaxially in sequence, such as three or four winding parts, which are arranged in the same manner as the two winding parts. The setting method is similar and will not be described again here. It should be pointed out that when two separately formed winding parts are arranged adjacently and have the same winding radius, in this application, they are regarded as the same winding part. In this application, the winding radius is used to distinguish different winding parts. The winding part and other forms of deformation are also included in the protection scope of this application.
  • each winding portion 111 has a winding surface, and the winding surface can be formed into a cylindrical structure, or a cylindrical structure with a bottom surface of any shape, etc., as long as the connecting piece can be rolled. It suffices, and is not limited in the embodiments of this application.
  • each winding portion has a fixed winding length to ensure that different winding portions correspond to different winding lengths.
  • the connecting member may be a linear material such as a steel wire rope, a nylon rope or a cable that can be wound onto the surface of the winding part in sequence.
  • the winding radius of the winding part refers to the distance from the axis center of the winding part to the winding surface
  • the winding length of the winding part 111 is the circumference of the winding surface of each winding part around the winding part. Therefore, the larger the winding radius is, the larger the corresponding winding length of the winding portion 111 is.
  • the winding radii of adjacent winding parts 111 are different.
  • the winding radii of the plurality of winding parts 111 gradually increase or decrease in sequence.
  • the winding parts 111 with different winding radii can also be arranged at intervals without obvious regularity, as long as the winding requirements can be met.
  • the winding length is the largest.
  • the drive assembly operates at rated power and rotates at the same speed, it has the maximum winding speed; when the winding radius is the largest, the winding length is the largest.
  • the winding circumference is the smallest, and the length of the wire wound by the winding part 111 for one rotation is the smallest.
  • the driving assembly operates at rated power and rotates at the same rotation speed, it has the smallest The winding speed, but with the maximum pulling force, can drive the final load to move.
  • each winding section is arranged in sequence according to the size of the winding radius, the winding speed and output tension of each winding section in the middle will differ with the different winding radius, thus enabling the winding equipment to adapt to different loads. Case.
  • the winding equipment proposed in the embodiment of the present application is provided with multiple winding parts arranged sequentially along the axial direction, and adjacent winding parts have different winding radii.
  • the winding component 110 adjusts the pulling force of the winding equipment under different loads through changes in the winding radius of the different winding parts 111, ensuring that the winding equipment always works at rated power and improving the winding efficiency of the winding equipment. , improving the utilization of drive components.
  • a wire groove 130 is provided on the surface of the winding portion 111 .
  • the wire groove 130 is an annular groove extending circumferentially on the surface of the winding part.
  • the function of the wire groove 130 is to guide and position the wire, so that the wound wire is wound sequentially along the wire groove 130, and Stabilize the position of the wire on the winding part 111. It is ensured that when the wires are arranged in the winding part 111, each turn is not affected, so as to avoid extrusion and friction between two adjacent turns of wires, resulting in misalignment changes.
  • the depth of the conductor trough 130 matches the diameter of the wire. Furthermore, the depth of the conductor trough 130 matches the diameter of the wire. This prevents the wire from easily slipping out of the conductor trough 130 and causing the wire to detach from its original roll.
  • the winding direction; or the depth of the wire groove 130 is too deep, and the wire is easily wound in the same wire groove 130 multiple times, unable to be wound to other winding parts 111, and the winding speed cannot be changed.
  • wire troughs 130 that match the diameter of the wire, it is further ensured that the wire is wound only once in the same wire trough 130, ensuring that the wire is wound sequentially in a single turn on the winding assembly 110, and ensuring that the connector is wound in each winding.
  • the number of winding turns on the surface of each winding part is fixed, which ensures that the length of the connecting piece wound by each winding part is determined.
  • a buffer portion 140 is provided between adjacent winding portions 111, and the buffer portion 140 is used to provide buffering for the traces on the surface of the adjacent winding portions. .
  • the buffer portion 140 is a raised portion provided on one side wall of the winding portion with a larger winding radius and protruding toward the side of the winding portion with a smaller winding radius.
  • the raised portion Starting from the surface of the winding part 111 with a larger winding radius, the winding radius gradually decreases until it connects with the surface of the winding part 111 with a smaller winding radius, thereby connecting the connecting member between the two connected winding parts.
  • the buffer transition function provides a buffer for the wiring on the surface of the adjacent winding part, so that the wire can be wound smoothly along the axial direction to different winding parts 111, effectively preventing the winding of the wire during the winding process. It ensures the fixed winding length of each winding part and avoids wear and tear on the wire, thus increasing the service life of the wire.
  • the width of the protruding portion of the buffer portion 140 is generally set to be larger than the diameter of the connector.
  • a wire groove 130 is provided on the surface of the buffer part, and the wire groove 130 extends from the winding part 111 with a larger winding radius, and extends to the winding part 111 with a smaller winding radius, so that the wire can Transitions between different winding sections are made via wire ducts 130 .
  • the winding radius of the winding part 111 is along the axial direction. Increase or decrease in turn.
  • each winding part 111 decreases in sequence, so that the tensile force of the winding wire in different winding parts 111 gradually increases or decreases to meet the continuous load. increase or decrease.
  • a telescopic device 200 is also provided, including the winding device 100 and the telescopic assembly 210 proposed in the above embodiment.
  • the telescopic assembly 210 includes a fixed bracket 211 and a plurality of telescopic parts 212, at least one telescopic part 212 and at least one end device 240.
  • the telescopic part 212 is movable relative to the fixed bracket 211; the telescopic parts 212 are slidably connected in turn, and the telescopic parts 212 are movable relative to the fixed bracket 211.
  • the terminal device 240 is slidably disposed on the telescopic portion 212 that is farthest from the fixed bracket 211; the winding device 100 is relatively fixed to one end of the fixed bracket 211.
  • the winding part 111 is provided with a connecting piece 213. One end of the connecting piece is connected to the winding part with the largest winding radius, and the other end is connected to the end device 240. When each winding part 111 rotates, the connecting piece 213 Each telescopic portion 212 is driven to extend or contract sequentially along with the rotation of each winding portion 111 .
  • the telescopic component 210 can be a rod-shaped structure or a column structure, and different basic structures can be used as the telescopic component 210 according to actual conditions.
  • the telescopic assembly 210 can telescope in a direction perpendicular to the ground to realize the lifting and lowering of the telescopic device 200; it can also be in a direction parallel to the ground to realize transverse movement and telescopic expansion of the telescopic device 200.
  • the telescopic assembly 210 includes a fixed bracket 211 and a plurality of telescopic parts 212.
  • the fixed bracket is used to support the telescopic part and is generally fixedly arranged relative to the winding device 100.
  • the multiple telescopic parts 212 are arranged together with the fixed bracket 211. , during operation, it can move relative to the fixed bracket 211, thereby increasing the moving distance.
  • one end of the fixed bracket 211 is usually fixed on the ground or the base, specifically fixed and fixed relative to one end of the winding device 100. Since the fixed bracket mainly plays a supporting role, it is usually made of a material with a certain hardness. Made of, for example: stainless steel, aluminum alloy or other plastics with a certain hardness and strength.
  • the length of the fixed bracket 211 can be the same as the length of the telescopic part 212.
  • the telescopic part 212 In the initial state of the telescopic component 210, that is, when the winding equipment does not start to rotate, the telescopic part 212 is parallel to both ends of the fixed bracket 211, or completely accommodates the fixed bracket. Inside. Of course, the length of the telescopic part 212 may be smaller than the length of the fixed bracket 211. In the initial state of the telescopic assembly 210, one end of the telescopic part 212 is parallel to the end of the fixed bracket 211 fixed on the base or the ground.
  • the telescopic portion 212 can be disposed inside the fixed bracket 211 , or can be disposed side by side relative to the fixed bracket 211 , and can extend from the fixed bracket 211 or move within the fixed bracket 211 .
  • the winding mechanism drives the telescopic part to first move relative to the fixed bracket 211, and then the extended telescopic part 212 drives other telescopic parts to move until the predetermined extension height or all telescopic parts are reached.
  • the parts 212 are all in the maximum extended state.
  • the telescopic part 212 can be provided with multiple telescopic parts according to the required telescopic length. Figure 2 only shows the case of including one telescopic part.
  • More telescopic parts may also be included, so that the multiple telescopic parts 212 extend out of the fixed bracket 211 in sequence. , to achieve multi-level scaling.
  • Sequential expansion and contraction means that the plurality of expansion and contraction parts 212 are sequentially extended or contracted.
  • the multi-level telescopic part 212 as an example, the first-level telescopic part extends first. When the first-level telescopic part is at the maximum extension length, the adjacent second-level telescopic part is driven to extend again. Sequential contraction is similar to sequential extension. The first-level telescopic part shrinks first. When the first-level telescopic part shrinks to the maximum contraction length, the second-level telescopic part then moves relative to the Fixed bracket retracts.
  • first-level telescopic part and the second-level telescopic part are only used to distinguish the telescopic part that moves first and the telescopic part that moves subsequently when the plurality of telescopic parts 212 move sequentially, and do not make any substantial limitation.
  • the primary telescopic part and the secondary telescopic part may be two components with the same structure, or may be two components with different lengths or structures.
  • FIG. 2 since FIG. 2 only shows the telescopic device 200 with only one telescopic part 212 , the end device 240 is disposed on the telescopic part.
  • the terminal device 240 is disposed at the telescopic part farthest from the fixed bracket.
  • the telescopic device 200 takes the telescopic direction as the y direction as an example of a device that realizes lifting.
  • the telescopic part that extends first is located on the topmost telescopic part. At this time, the distance between the telescopic part and the fixed bracket 211 is the farthest, and the terminal device 240 is installed on the telescopic part.
  • the terminal device 240 is slidably disposed at the telescopic part 212 farthest from the fixed bracket 211, that is, the telescopic part 212 with the largest distance from the fixed bracket 211 in both the x and y directions in FIG. 2 .
  • the terminal device 240 can slide on the telescopic part 212 farthest from the fixed bracket 211.
  • the required extension length of the telescopic component 210 is only the distance required for the terminal device 240 to move on the telescopic part 212 farthest from the fixed bracket 211.
  • the load is small, and the connecting member 213 can be wound to the winding part 111 with the largest winding radius, so that the end device 212 can quickly move to one end of the telescopic part 212, that is, to the point where the end device 240 can move on the telescopic part 212.
  • the end point of the maximum distance is larger.
  • the load at this time is the terminal device 240 and the telescopic part 212 farthest from the fixed bracket.
  • the load is The winding part 111 with the largest winding radius drives the end device 240 to move.
  • the connector moves from the winding part with the largest winding radius to the adjacent one with a smaller winding radius.
  • the winding part begins to drive the telescopic part 212 adjacent to the terminal device 240, that is, the telescopic part 212 farthest from the fixed bracket, to move. Due to the reduction of the winding radius, when the telescopic part 212 is driven to move, its winding speed increases. has decreased, but its pulling force has increased, so that the end device 240 can continue to extend as the adjacent telescopic portion 212 moves to meet the required extension length.
  • the connector 213 is a wire wound on the winding part through the rotation of the winding assembly 110, and can be any flexible material that can withstand a certain strength and toughness to achieve traction, such as a steel wire rope or a nylon rope.
  • the winding part 111 drives the telescopic part 212 and the end device 240 to move relative to the fixed bracket 211 by winding or releasing the connecting piece 213 .
  • the fixed bracket 211 is connected to the plurality of telescopic parts 212 and the terminal device 240 in sequence through the connecting pieces 213.
  • the telescopic parts 212 move relative to the fixed bracket 211 in sequence as the winding part 111 rotates. Since the winding component 110 includes a plurality of winding parts 111 with different winding radii, when the connecting member 213 is wound to different winding parts 111, it drives different telescopic parts 212 to move, so that the telescopic component 210 can operate at different telescopic lengths.
  • the moving speed of each telescopic part 212 is different, and through the change of the winding radius of the different winding parts 111, the tension of the winding equipment under different loads is adjusted, ensuring that the winding equipment always works at the rated power, improving the winding efficiency.
  • the winding efficiency of the winding device 100 improves the utilization of the driving assembly 120 .
  • the telescopic device 200 proposed in the embodiment of the present application sequentially connects the multi-stage telescopic parts 212 through the connecting parts 213, and winds along the winding parts 111 with different winding radii through the connecting parts 213, so as to control the corresponding telescopic parts according to different telescopic requirements.
  • the telescopic parts 212 expand and contract in sequence, and the telescopic speed of the corresponding telescopic part 212 is controlled.
  • the winding component 110 rotates at a constant speed to meet the pulling force required for various load requirements of the multi-stage telescopic part 212. This ensures that the winding equipment 100 always works at the rated power and improves the efficiency of the winding equipment.
  • the winding efficiency of 100 improves the power utilization of the driving assembly 120 .
  • each of the winding parts 111 corresponds to the telescopic part 212 and the end device 240 in sequence, wherein the end device 240 corresponds to the winding part 111 with the largest winding radius.
  • the winding part 111 with the largest winding radius is connected to the end device 240.
  • the winding component 110 drives the end device 240 to move.
  • the corresponding drive The telescopic part 212 from the far end of the fixed bracket, that is, the telescopic part adjacent to the terminal device 240, extends in sequence to the telescopic part closest to the fixed bracket.
  • the terminal device 240 can be moved quickly by winding the connector through the winding portion 111 with the largest winding radius; and as the multiple telescopic portions 212 extend, the load at this time is
  • the terminal device 240 and the extended telescopic part 212 gradually decrease the winding radius of the winding part 111 to increase the winding group.
  • the load is maximum.
  • the corresponding winding portion 111 has the smallest winding radius and the largest pulling force.
  • the winding assembly 110 first drives the terminal device to extend through the connecting piece 213. Since the telescopic portion 212 moves sequentially, the load of the terminal device 240 is the smallest. The connecting piece 213 starts winding along the winding portion 111 with the largest winding radius, thereby realizing the terminal device. 240 fast movement. When the telescopic portion 212 extends to its maximum extension length, or shrinks to its maximum contraction length, the connectors 213 are completely arranged on the wire groove 130 of the winding portion 111 with the largest winding radius. At this time, the connectors 213 pass through The buffer portion 140 continues to be wound to the winding portion 111 adjacent to the winding portion with the largest winding radius, and the telescopic portion 212 adjacent to the terminal device starts to move.
  • the connecting member 213 is sequentially wound along the winding part 111 with the largest winding radius to the winding part 111 with the smallest winding radius. Due to the change of the winding radius, When the length of the connecting member 213 wound by the winding part 111 rotates once, the length of the connecting member 213 wound by the winding part 111 becomes shorter, thereby reducing the extension speed of the corresponding telescopic part 212 driven by the connecting member 213 of the winding part 111 .
  • the traction force formula F P/V, the power P output by the drive component 120 is the rated power, and P is constant.
  • the winding part 111 with the largest winding radius is wound in sequence, and a plurality of telescopic parts 212 are correspondingly driven to extend from the terminal device in sequence, so that the telescopic device 200 can achieve speed changes through the winding parts 111 with different winding radii.
  • the traction force can be increased correspondingly, thereby saving power consumption.
  • the connecting member 213 wound by each winding part 111 is The length matches the maximum extension length of its corresponding telescopic portion 212 and end device 240.
  • the winding assembly 110 since the winding assembly 110 includes a plurality of winding parts 111 with different winding radii, and each winding part 111 is provided corresponding to each telescopic part 212, all the wire grooves 130 on the surface of each winding part 111 When the connecting member 213 is wound, the telescopic part 212 corresponding to the winding part 111 is fully extended, that is, the telescopic part reaches the maximum extending distance.
  • the length of the winding portion 111 with the smallest winding radius around the connecting member 213 can be greater than the maximum extension length of the telescopic portion 212 closest to the fixed bracket, and the other winding portions 111 can wind around the connector 213.
  • the length of the connecting member 213 (winding part + buffering part) needs to be smaller than the maximum extension length of the corresponding telescopic part 212.
  • the connecting member 213 needs to be completely wound to the winding part 111 with the maximum winding radius and the adjacent part of the winding part.
  • Buffer portion 140 therefore, the length of the connector 213 wound by the winding portion 111 with the largest winding radius is less than the maximum extension length of the terminal device 240, and the winding portion 111 with the largest winding radius and the adjacent winding portion
  • the buffer portion 140 matches the maximum extension length of the terminal device 240.
  • the winding part 111 with the smallest winding radius corresponds to the telescopic part 212 connected to the fixed bracket, that is, the telescopic part 212 that extends at the last stage does not need to drive other telescopic parts to extend in sequence after stretching out, so the telescopic part 212 is connected to the fixed bracket.
  • the maximum extension length of the portion 212 only needs to correspond to the winding portion with the smallest winding radius, and there is no need to pass through other winding portions 111 with different winding radii, and there is no need to wind the buffer portion 140 through the connector. Therefore, it is consistent with the expansion and contraction.
  • the length of the connecting member 213 corresponding to the maximum extended length of the portion 212 is smaller than the length of the connecting member 213 of other telescopic portions.
  • the connectors 213 are wound on the winding assembly 110 in a single layer.
  • the length of the connectors 213 can be set by the maximum extension length of each telescopic portion 212 and the number of winding turns.
  • the number of winding turns can be calculated by manually calculating the number of turns, using an encoder to calculate the number of turns of the drive assembly 120 or calculating the transmission stroke.
  • the length of the connecting piece 213 can be accurately set to ensure that the connecting piece 213 is completely arranged in the winding assembly. 110, the multi-stage telescopic part 212 in the telescopic device 200 is fully extended.
  • the connecting member 213 in order to prevent the connecting member 213 from falling off, is wound on the winding assembly 110 at least three times in the initial state of the telescopic device 200 .
  • the winding portion 111 is controlled to wrap around the telescopic portion 212 corresponding to the connector 213 to reach its maximum extension length.
  • the length of the wire groove 130 of the winding portion 111 also matches the length of the connector 213 .
  • a sensor may also be provided in the wire trough 130 to detect whether there is any winding on the wire trough 130 when the telescopic device 200 needs to be extended.
  • Connector 213. The sensor is also used to detect when the telescopic device 200 needs When shrinking, whether the connector 213 on the wire trough 130 is released.
  • the sensor may be a pressure sensor, an infrared sensor, a photosensitive sensor or a temperature sensor, or any other device that obtains sensing signals.
  • the maximum length of the connecting piece 213 By determining the maximum length of the connecting piece 213 by combining the number of rotations of the winding part 111 with the winding radius of the buffer part and the maximum extension length of the telescopic part 212, overly long connection lines can be avoided and costs can be saved. Moreover, the perfect cooperation between the connecting piece 213 and each winding part 111 and the corresponding telescopic part 212 improves the working stability of the telescopic device 200.
  • the fixed bracket and each of the telescopic parts include guide grooves 214 , and each of the telescopic parts 212 and the telescopic parts 214 .
  • the terminal device 240 can slide along the adjacent guide groove 214 driven by the connecting member 213 .
  • the telescopic part 212 is arranged in the guide groove of the fixed bracket 211, so that the multi-stage telescopic part 212 is completely retracted into the fixed bracket 211 in the initial state of the telescopic device 200, thereby reducing the overall space occupied by the telescopic device 200 and making the structure more compact.
  • the size of the opening of the guide groove 214 matches that of the telescopic part 212, and the telescopic part 212 is just inserted into the guide groove 214 and has a guiding and fixing effect.
  • the telescopic parts 212 also include guide grooves, and the plurality of telescopic parts 212 are also slidingly connected to adjacent telescopic parts through guide grooves 214. Since each telescopic part 212 extends in turn, each telescopic part is inserted into its Sequentially extend the guide groove 212 of the next telescopic part in the sequence.
  • the terminal device is installed in the guide groove on the telescopic part farthest from the fixed bracket, and slides along the guide groove of the telescopic part 212 farthest from the fixed bracket through the connecting piece 213.
  • the telescopic part 212 When the goods are located at a higher or farther position, the telescopic part 212 is far away from the fixed bracket 211 or the ground. Due to the limited structural rigidity of the telescopic part 212 itself, it will inevitably cause shaking when picking up and placing the goods, which affects the stability of the telescopic device 200. Security is compromised. Disposing the telescopic portion 212 in the fixed bracket 211 can support the multiple telescopic portions 212 when they are extended to avoid shaking, and the telescopic portion 212 and the terminal device 240 will not tilt due to multi-stage extension. .
  • both the telescopic part and the fixed bracket include a limiting part (not shown), which is located at one end of the guide groove.
  • the limiting portion is used to limit the maximum movement range of the telescopic portion adjacent to the telescopic portion or the fixed bracket.
  • the limiting portion of the extending telescopic portion 212 abuts against the limiting portion of the adjacent telescopic portion, It means that the telescopic part 212 has reached its maximum extension length.
  • the winding component 110 continues to wind the connecting member 213, it will drive the telescopic part adjacent to the telescopic part 212 to extend.
  • the limiting portion of the extending telescopic portion 212 abuts against the limiting portion on the fixed bracket 211, it means that the telescopic portion 212 has reached its maximum extension length.
  • the telescopic device 200 has reached the fully extended state. That is, each telescopic portion 212 reaches the maximum extension length, and at this time, the winding assembly 110 cannot continue to wind the connector 213 .
  • the terminal device 240 also includes a limiting portion 241. As shown in Figure 2, when the limiting portion 241 of the terminal device abuts the limiting portion on the telescopic portion 212 farthest from the fixed bracket, the terminal device 240 is located at the top of the telescopic part 212. At this time, if the winding assembly 110 continues to wind the connecting member 213, it will drive the telescopic part 212 farthest from the fixed bracket to extend.
  • the terminal device 240 is prevented from continuing to rise and slide out of the telescopic portion 212, thereby preventing the terminal device 240 or the goods on the terminal device 240 from falling from a high place, causing accidents and other safety hazards. Moreover, after the terminal device is at the top of the telescopic part adjacent to it, the terminal device 240 drives the telescopic part 212 adjacent to it to extend toward the fixed bracket 211, extending the lifting range of the terminal device 240, so as to achieve a higher position of the terminal device. Pick up and place goods further away.
  • the telescopic part also includes a guide wheel assembly, and the guide wheel assembly includes an upper pulley. and a lower pulley, the upper pulley and the lower pulley are respectively provided at both ends of the telescopic part; the connecting piece is wound around the upper pulley and the lower pulley in turn, and the guide pulley assembly is connected to the The connecting piece forms a movable pulley structure, and the driving assembly controls the lifting and lowering of the telescopic part through the connecting piece.
  • the plurality of telescopic parts 212 are connected through movable pulleys provided at both ends of the telescopic part 212 , so that it is more labor-saving when the plurality of telescopic parts 212 are extended in sequence.
  • Figure 4 simplifies the side walls of the telescopic part 212 and the fixed bracket 211 for the convenience of illustration.
  • the upper pulley 221 and the lower pulley 222 are provided on the side where the telescopic part 212 abuts the fixed bracket.
  • the portion 212 is in contact with the guide groove 214 of the fixed bracket 211 through the upper pulley 221 and the lower pulley 222.
  • the connector 213 is wound around the guide wheel assembly 220 to change the direction of the force output by the driving assembly 120, thereby driving different telescopic parts 212 to move through different winding parts 111, and an upper pulley and a lower pulley are provided to enable multiple telescopic parts. It saves effort when the parts are stretched out in sequence.
  • the part of the fixed bracket 211 away from the winding device 100 is A fixed pulley 230 is provided at one end; the connecting piece 213 sequentially winds the fixed pulley 230, the lower pulley 222 and the upper pulley 221 from the winding part 111 with the largest winding radius to the end device.
  • the fixed pulley 230 is a pulley whose position of the shaft is fixed, and is used to surround the guide connecting piece 213 around the guide pulley assembly 220 .
  • the winding part 111 drives the upper pulley 221 and the lower pulley 222 to rotate accordingly through the winding connector 213.
  • the upper pulley 221 and the lower pulley 222 follow the guide of the fixed bracket 211 along with the telescopic part 212. Slot 214 moves.
  • the terminal device 240 is a handling component for carrying and picking up and placing goods.
  • the goods are placed on the terminal device 240, and as the terminal device moves, or the terminal device moves with the expansion and contraction (lifting) of the multi-stage telescopic portion, the goods can be placed on higher shelves, or the goods can be transported from high places to the ground.
  • the terminal device 240 is used to carry goods.
  • the terminal device 240 includes but is not limited to the structure of a fork and a pallet.
  • the pallet is installed on the fork.
  • the pallet is also provided with a baffle.
  • the baffle is perpendicular to the bottom of the pallet.
  • the bottom surface of the pallet and the baffle form at least one opening on the pallet, and the fork can also drive the end device 240 to rotate, so that the goods can be placed on a designated shelf through the opening on the pallet, or through the opening on the pallet.
  • the opening is placed on the underside of the pallet.
  • the terminal device 240 is disposed in the telescopic part 212 and moves within the length range of the telescopic part 212 .
  • One end of the connecting piece 213 is connected to the end device 240, and the other end is connected to the winding part 111 with the largest winding radius.
  • the end device 240 moves with the expansion and contraction of the telescopic component 210, so that the end device 240 reaches Designate a location and pick up and place goods.
  • the terminal device 240 When the telescopic device 200 moves from the initial state to the extended state, the terminal device 240 first moves within the telescopic part 212. Since the telescopic part 212 has not been extended at this time, the load is only the terminal device 240 and the cargo. Through the maximum winding radius, The winding part 111 winds the connector 213 to enable the goods to move quickly.
  • the telescopic assembly 210 is taken as an example in which the telescopic assembly 210 extends in a direction perpendicular to the ground.
  • the telescopic assembly 210 is used to lift the terminal device 240 to place goods on higher shelves or move goods from the shelf. Transported from high places to the ground.
  • the telescopic device 200 includes a base, and the fixed bracket 211 and the winding device 100 are fixed on the base.
  • the fixed bracket 211 includes a left fixed bracket and a right fixed bracket arranged oppositely.
  • the corresponding telescopic part 212 includes a left telescopic part and a right telescopic part. The left telescopic part is inserted into the left fixed bracket through the guide groove 214, and the right telescopic part passes through the guide groove 214.
  • the slot 214 is inserted into the right fixed bracket.
  • the winding assembly 110 includes a left winding assembly that drives the left telescopic part to move relative to the left fixed bracket through winding or releasing the connector 213, and a right winding assembly that drives the right telescopic part to move relative to the right fixed bracket through winding or releasing the connector 213. Winding components.
  • the driving assembly 120 rotates the left and right winding assemblies simultaneously through the transmission rod.
  • a left guide groove is provided on the side of the left telescopic part facing the right telescopic part
  • a right guide groove is provided on the side of the right telescopic part facing the left telescopic part
  • the terminal device 240 is provided with a slider matching the left guide groove and the right slide. , causing the terminal device to move between the two parallel and opposite telescopic parts 212 on the left and right along the left guide groove and the right guide groove.
  • the terminal device 240 rises and falls between the two left and right telescopic parts 212, stably supporting the lifting and lowering of the terminal device 240 and preventing the terminal device 240 from shaking when moving. Prevent goods from falling during lifting.
  • the driving assembly 120 drives the left winding assembly and the right winding assembly to rotate simultaneously through the coaxial transmission assembly, and the winding part 111 with the largest winding radius drives the connecting piece through the winding connector 213 213
  • the terminal device 240 connected at the other end moves.
  • the left telescopic part and the right telescopic part are connected through the limiting part 215 of the telescopic part.
  • the terminal device 240 reaches the limiting part 215, the terminal device 240 is located at the top end of the telescopic part 212.
  • Figure 2 also shows the fully extended state of the telescopic device 200 in the embodiment of the present application.
  • the specific way for the telescopic device 200 to move from the contracted state to the fully extended state is that the driving component 120 drives the winding component 110 to rotate, and the connecting member 213 moves from the contracted state to the fully extended state.
  • the winding part 111 with the largest radius starts to wind, driving the terminal device 240 to move on the telescopic part 212.
  • the telescopic part 212 does not move; when the terminal device 240 moves to one end of the telescopic part 212, the limiting part 241 of the terminal device and When the limiting portion 215 of the telescopic portion abuts, the connecting piece 213 is wound to the winding portion 111 with a smaller winding radius. At this time, the telescopic portion 212 extends relative to the fixed bracket 211, driving the terminal device 240 to continue moving.
  • the left fixed bracket and the right fixed bracket are connected through the limiting part 216 of the fixed bracket.
  • the limiting part 216 of the fixed bracket is also provided with a notch that matches the limiting part 215 of the telescopic part (the telescopic part adjacent to the fixed bracket).
  • the terminal device 240 first moves to the other end of the telescopic part 212 to make the limiting block 241 contact the base.
  • the telescopic part 212 then retracts into the fixed bracket 211 until the limiting part of the telescopic part 212 is reached.
  • 215 is parallel to the limiting portion 216 of the fixed bracket through the notch.
  • the driving assembly 120 drives the left and right winding assemblies 110 to rotate at the same time to realize the terminal device. 240 rises and falls smoothly, and after the terminal device 240 reaches one end of the telescopic part 212, it drives the two left and right telescopic parts 212 to rise and fall synchronously, so that the goods can be lifted and lowered while ensuring smooth operation.
  • a handling robot including any one of the telescopic devices 200 mentioned above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种卷绕设备、伸缩装置和搬运机器人,包括驱动组件(120)和卷绕组件(110);驱动组件(120)与卷绕组件(110)同轴设置,用于带动卷绕组件(110)进行转动;卷绕组件(110)包括多个沿轴向依次设置的卷绕部(111),相邻的卷绕部(111)具有不同的卷绕半径。通过将卷绕设备设为变径结构,改变卷绕设备的卷绕速度,从而改变卷绕设备的拉力,结构简单。

Description

一种卷绕设备、伸缩装置和搬运机器人
本申请要求于2022年9月8日提交中国专利局、申请号为202222409660.8、申请名称为“一种卷绕设备、伸缩装置和搬运机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及物流仓储领域,具体涉及一种卷绕设备、伸缩装置和搬运机器人。
背景技术
在物流仓储领域中,可升降的搬运机器人的应用越来越广泛,其能够替代人工来实现对货物的搬运,以及自动升降对仓储区域中不同高度货物进行取放。
本申请发明人在研究中发现,当货物在随搬运机器人升起时,随着货物越来越高,搬运机器人的负载重量逐渐增大,升降速度逐渐减小,为使搬运机器人能够正常工作,通常需要为按照搬运机器人的最大负载状态选择驱动组件。这种方式导致搬运机器人功耗过大,功率利用率较低,不利于节能环保和用电安全。
实用新型内容
为了解决上述全部或部分问题,本申请的目的在于提供一种卷绕设备、伸缩装置和搬运机器人,能够针对不同的货物负载,匹配相应的伸缩/升降速度,提升功率利用率。
根据本申请实施例的一个方面,提供一种卷绕设备,包括驱动组件和卷绕组件;所述驱动组件与所述卷绕组件同轴设置,用于带动所述卷绕组件进行转动;所述卷绕组件包括至少两个沿轴向依次设置的卷绕部,相邻的所述卷绕部 具有不同的卷绕半径。
本申请实施例提供的卷绕设备通过设置多个沿轴向依次设置的卷绕部,相邻的卷绕部具有不同的卷绕半径,在驱动组件工作在额定功率的的情况下,卷绕组件通过不同卷绕部卷绕半径的变化,在从而调整卷绕设备在不同负载时的拉力,保证了卷绕设备始终以额定功率进行工作,提高了卷绕设备的卷绕效率,提高了驱动组件的利用率。
在一种可选的方式中,所述卷绕部表面设置有导线槽。通过对线材进行导向定位,使卷绕的线材沿导线槽依次卷绕,避免相邻的两圈线材挤压摩擦,导致错位变动。
在一种可选的方式中,相邻的所述卷绕部之间设置有缓冲部,所述缓冲部用于为相邻的所述卷绕部表面的走线提供缓冲。通过上述方式,防止了卷绕过程中线材的卷绕混乱,保证了各卷绕部卷绕长度的固定,也避免了对线材造成磨损,从而提高了线材的使用寿命。
在一种可选的方式中,所述卷绕部的卷绕半径沿轴向依次增大或减小。以使不同卷绕部卷绕线材的拉力逐渐增大或减小,在驱动组件在额定功率下,满足不同负载,从而节省功耗,提高驱动组件的利用率。
根据本申请实施例的另一个方面,提供一种伸缩装置,包括上述卷绕设备和伸缩组件;所述伸缩组件包括固定支架、至少一个伸缩部和至少一个末端装置,所述伸缩部可相对于所述固定支架移动;所述伸缩部依次滑动连接,所述末端装置滑动设置在距离所述固定支架最远的所述伸缩部上;
所述卷绕设备与所述固定支架一端相对固定设置,所述卷绕部上设置有连接件,所述连接件一端与卷绕半径最大的所述卷绕部连接,另一端与所述末端装置连接,当各所述卷绕部转动时,所述连接件带动各所述伸缩部随各所述卷绕部的转动而依次伸出或收缩。
本申请实施例提供的伸缩装置,通过连接件依次连接多级伸缩部,并且通过连接件依次沿不同卷绕半径的卷绕部进行卷绕,针对不同的伸缩需求控制对应的伸缩部依次伸缩,并控制对应的伸缩部的伸缩速度。无需调整驱动组件的功率,卷绕组件匀速转动,就能满足多级伸缩部多种负载要求所需的拉力,保证了卷绕设备始终以额定功率进行工作,提高了卷绕设备的卷绕效率,提高 了驱动组件的功率的利用率。
在一种可选的方式中,各所述卷绕部依次与所述伸缩部及所述末端装置对应,其中,所述末端装置对应于卷绕半径最大的所述卷绕部,距离所述固定支架越远的所述伸缩部对应的所述卷绕部的卷绕半径越大。这种方式,使卷绕半径最大的卷绕部连接末端装置,随卷绕半径依次递减,对应的伸缩部距离固定支架越近,从而使得卷绕组件先通过连接件带动末端装置最先在伸缩部上移动,由于末端装置负载最小,实现末端装置的快速伸缩移动;随后从距离固定支架的最远的伸缩部依次伸缩移动,负载层级递增,卷绕部卷绕半径依次减小,从而逐级增强卷绕组件的拉力。
在一种可选的方式中,当各所述卷绕部将所述连接件完全卷绕时,各所述卷绕部卷绕的连接件的长度与其对应的所述伸缩部或所述末端装置的最大伸出长度相匹配。通过将各卷绕部的卷绕长度和各伸缩部最大伸出长度相匹配,能够使连接件与各卷绕部及对应的伸缩部的完美配合,提高了伸缩装置的工作稳定性。
在一种可选的方式中,所述固定支架及各所述伸缩部包括导向槽,各所述伸缩部或所述末端装置可在随所述连接件的带动沿相邻的所述导向槽滑动。各所述伸缩部及所述末端装置可在所述连接件的带动下沿相邻的所述导向槽滑动。通过导向槽对伸缩伸出时进行支撑,避免晃动和偏离,减少伸缩组件的占用空间,结构更紧凑。
在一种可选的方式中,所述伸缩部和固定支架均包括限位部,位于所述导向槽的一端,在当前所述伸缩部沿与其相邻的伸缩部的导向槽滑动时,当前所述伸缩部的限位部和与其相邻的伸缩部的限位部相抵接。通过限位部设置,防止末端装置继续升起滑出伸缩部,进而避免伸缩部和末端装置快速升降时容易滑落,造成事故等安全隐患。
在一种可选的方式中,所述伸缩部还包括导轮组件,所述导轮组件包括上滑轮和下滑轮,所述上滑轮和所述下滑轮分别设置于所述伸缩部的两端;所述连接件依次绕设于所述上滑轮和所述下滑轮,所述导轮组件与所述连接件形成动滑轮结构,所述驱动组件通过所述连接件控制所述伸缩部升降。通过将连接件绕设于导轮组件,改变驱动组件输出的力的方向,从而通过不同卷绕部带 动不同的伸缩部移动,并且设置上滑轮和下滑轮,可以使多个伸缩部依次伸出时更省力。
在一种可选的方式中,所述固定支架上远离所述卷绕设备的一端设置有定滑轮;所述连接件从最大卷绕半径的卷绕部依次绕设所述定滑轮、所述下滑轮和所述上滑轮至所述末端装置。使连接件依次从卷绕半径最大的卷绕部卷绕,对应的带动负载最小的末端装置先伸出,能够随着多级伸缩部伸出时的负载,对应增大牵引力,节省功耗。
在一种可选的方式中,所述末端装置为用于承载并取放货物的搬运组件,所述搬运组件用于承载货物。货物放置在末端装置上,随末端装置的移动,实现将货物放置在较高的货架上,或将货物从高处搬运到地面。
根据本申请的另一个方面,提供一种搬运机器人,包括上述任意一项伸缩组件。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请一实施例提供的卷绕设备的结构示意图;
图2为本申请一实施例提供的伸缩装置的结构示意图;
图3为本申请一实施例提供的伸缩装置的伸缩组件的结构示意图;
图4为本申请一实施例提供的伸缩装置的导轮组件的结构示意图。
具体实施方式中的附图标号如下:
100、卷绕设备;
110、卷绕组件;111、卷绕部;120、驱动组件;130、导线槽;140、缓
冲部;150、线材;
200、伸缩装置;
210、伸缩组件;211、固定支架;212、伸缩部;213、连接件;214、导
向槽;215、伸缩部的限位部;216、固定支架的限位部;
220、导轮组件;221、上滑轮;222、下滑轮;
230、定滑轮;
240、末端装置;241、末端装置的限位部;242、连接块。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一 般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
随着人们对的物流仓储中存储密集度要求越来越高,比如对于不同高度规格的料箱类货物,为了提高存储密度,货物往往储存在较高的货仓架上。为实现对不同高度的货架上的货物进行取放,通常需要在仓储区域中配置伸缩装置,伸缩装置的高度可调,可根据货架的高度调整不同的举升位置,从而将货物搬运到指定位置,或从指定位置取出货物。
为了适应现代物流的要求,伸缩装置既要保证足够的伸缩高度,实现对高度较高的货架上的货物的取放,同时又要保证伸缩装置的体积适当,方便移动和维修,因此,通常情况下,将伸缩装置设置成多级伸缩,在伸缩装置处于伸出状态时,可以增加伸缩长度,从而满足货物的高度要求。
但是,当伸缩装置的级数越多,可以伸缩的长度越大,在伸缩长度逐渐增加时,其负载变得越来越大,因为随着伸缩长度的增加,伸缩装置除了要承担货物的重量外,还需要承担伸出的各伸缩部的重量,随着伸缩长度的增加,伸 出的伸缩部的重量也逐渐增加,这就要求伸缩装置需要输出较大的举升功率。
为了解决上述问题,通常需要根据伸缩装置所需要的最大的负载设置伸缩装置的驱动组件的输出功率,即根据伸缩装置处于最大伸缩长度时的负载选择驱动组件的额定功率。但本申请发明人发现,这种方式虽然保证了伸缩装置能够在最大举升高度时正常工作,但是并未考虑到伸缩装置并未完全伸出时的负载较小,驱动组件无法达到额定功率,造成功率利用较低,伸缩装置整体运行效率较低,不利于节能环保。
有鉴于此,本申请实施例提出一种卷绕设备、伸缩装置和搬运机器人,通过在卷绕设备的卷绕组件上设置多个卷绕半径不同的卷绕部,以使卷绕组件具有不同的卷绕半径。在工作时,针对不同的负载重量采用不同卷绕半径的卷绕部对连接件进行卷绕或释放。随着伸缩装置的长度逐渐增加,伸缩装置除了要负载货物重量外,还要负载伸缩部本身的重量,因此,随着伸缩装置伸缩长度的增加,其承担的负载逐渐增大。卷绕设备在开始卷绕时,伸缩装置承载的负载较小,卷绕设备采用卷绕半径较大的卷绕部带动伸缩装置进行运动,此时,在卷绕设备以额定功率工作的情况下,伸缩装置的伸缩速度保持在较快的状态。随着伸缩装置的伸出长度的增加,伸缩装置承载的负载逐渐增大,卷绕设备在额定功率下工作,为了能够带动更重的负载进行运动,此时,卷绕设备采用卷绕半径较小的卷绕部带动伸缩装置进行运动,由于卷绕设备采用了卷绕半径较小的卷绕部带动伸缩装置进行运动,因此,在额定功率下,其采用卷绕半径较小的卷绕部卷绕时输出的拉力比采用卷绕半径较大的卷绕部卷绕时输出的拉力大,能够带动更重的负载进行运动。因此,本申请实施例提供的方案,能够在不同负载状况下,采用不同的卷绕半径进行卷绕,保证了卷绕设备始终以额定功率进行工作,提高了卷绕设备的利用率。
本申请实施例提出的卷绕设备、伸缩装置以及搬运机器人可以应用于物流领域,对获取进行搬运和存放;也可以应用于工程领域,比如用于对需要进行高空施工的作业情况,进行升降操作;还可以应用于消防、环卫以及其他涉及到需要调节长度或高度作业的场景。本申请实施例仅以物流领域为例进行说明。
根据本申请实施例的一个方面,如图1所示,提出一种卷绕设备100,卷绕设备100包括驱动组件120和卷绕组件110;驱动组件120与卷绕组件110 同轴设置,用于带动卷绕组件110进行转动;卷绕组件110包括至少两个沿轴向依次设置的卷绕部111,相邻的卷绕部具有不同的卷绕半径。
如图1所示,驱动组件120的输出轴与所述卷绕组件110的中心轴相连接,当驱动组件120工作时,驱动卷绕组件110转动以卷绕或释放线材。驱动组件120可以是驱动电机、驱动马达或驱动轮等任意类型,使卷绕组件110绕其输出轴同轴实现均速或变速转动的功率输出设备。
所述卷绕组件110包括多个卷绕部111,如图1所示,示出了两个卷绕部,两个卷绕部同轴相邻设置,具有不同的卷绕半径。两个所述卷绕部可以一体成型,也可以分别成型,然后通过螺接或者其他方式设置在一起。进一步的,所述卷绕组件110也可以包括更多数量的卷绕部,多个卷绕部同轴依次设置,比如三个或四个卷绕部,其设置方式与两个卷绕部的设置方式类似,在这里不再赘述。需要指出的是,当分别成型的两个卷绕部相邻设置,具有相同的卷绕半径时,在本申请中,视为同一个卷绕部,本申请中以卷绕半径来区分不同的卷绕部,其他形式的变形,也包括在本申请的保护范围内。
在本申请实施例中,各个卷绕部111具有卷绕表面,所述卷绕表面可以形成为圆柱形结构,也可以形成为底面为任意形状的柱状结构等,只要能够实现对连接件的卷绕即可,在本申请实施例中不做限定。所述连接件在各个卷绕部的表面进行卷绕时,每个卷绕部都有固定的卷绕长度,以保证不同的卷绕部对应不同的卷绕长度。所述连接件可以是钢丝绳、尼龙绳或电缆等可依次缠绕至卷绕部表面的线性材料。
其中,所述卷绕部的卷绕半径是指卷绕部从轴心到卷绕表面的距离,卷绕部111的卷绕长度为各卷绕部的卷绕表面的环绕卷绕部一周的长度,因此,卷绕半径越大,其对应的卷绕部111的卷绕长度就越大。当多个卷绕部111同轴依次设置时,相邻的卷绕部111的卷绕半径不同。优选地,在本申请实施例中,多个卷绕部111的卷绕半径依次逐渐增大或者逐渐减小。当然,不同卷绕半径的卷绕部111也可以间隔设置,不呈现明显的规律性,只要能够满足卷绕需求即可。
在卷绕半径最大的卷绕部111卷绕时,卷绕长度最大,在驱动组件以额定功率工作时,以同样的转速转动时,其具有最大的卷绕速度;在卷绕半径最 小的卷绕部卷绕时,卷绕周长最小,卷绕部111转动一周所卷绕的线材的长度最小,在驱动组件以额定功率工作时,以同样的转动速度转动时,其具有最小的卷绕速度,但是具有最大的拉力,能够带动最终的负载进行运动。在各卷绕部依次按照卷绕半径的大小排列时,位于中间的各卷绕部的卷绕速度和输出拉力,会随着卷绕半径的不同而不同,从而能够使卷绕设备适应不同负载的情况。
本申请实施例提出的卷绕设备,通过设置多个沿轴向依次设置的卷绕部,相邻的卷绕部具有不同的卷绕半径,在驱动组件120工作在额定功率的的情况下,卷绕组件110通过不同卷绕部111卷绕半径的变化,在从而调整卷绕设备在不同负载时的拉力,保证了卷绕设备始终以额定功率进行工作,提高了卷绕设备的卷绕效率,提高了驱动组件的利用率。
根据本申请的一些实施例,为了更好确定的使卷绕设备100对连接件进行卷绕的卷绕长度,本申请一些实施例中,在卷绕部111表面设置有导线槽130。
如图1所示,导线槽130为设置在卷绕部表面周向延伸的环形沟槽,导线槽130的作用是对线材进行导向定位,使卷绕的线材沿导线槽130依次卷绕,并稳固线材在卷绕部111的位置。保证线材在卷绕部111排列时每一圈之间不被影响,避免相邻的两圈线材挤压摩擦,导致错位变动。
导线槽130的深度与线材的直径相匹配,进一步的,导线槽130的深度与线材的直径相匹配,避免导线槽130的深度较浅,线材容易滑出导线槽130,使线材脱离原来的卷绕方向;或是导线槽130的深度过深,线材容易在同一导线槽130多圈卷绕,无法卷绕至其他卷绕部111,无法实现对卷绕速度的改变。
通过设置于线材直径相匹配的导线槽130,进一步保证线材在同一导线槽130内只卷绕一圈,保证线材在卷绕组件110上单圈依次卷绕,保证了连接件在每个卷绕部表面的卷绕圈数是固定的,也就保证了每个卷绕部卷绕的连接件的长度时确定的。
为避免线材突然从较大卷绕半径的卷绕部111直接卷绕至较小卷绕半径的卷绕部111时,线材容易滑动,无法沿轴向依次卷绕;或是,线材突然从较 小卷绕半径的卷绕部111至较大卷绕半径的卷绕部111时,线材无法卡入较大卷绕半径的卷绕部的导线槽,继续在较小卷绕半径的卷绕部111末端卷绕,参考图1,根据本申请的一些实施例,相邻的卷绕部111之间设置有缓冲部140,缓冲部140用于为相邻的卷绕部表面的走线提供缓冲。
如图1所示,缓冲部140为设置在卷绕半径较大的卷绕部的一侧侧壁上并向卷绕半径较小的卷绕部一侧凸起的凸起部,凸起部从卷绕半径较大的卷绕部111表面开始卷绕半径逐渐减小,直至与卷绕半径较小的卷绕部表面相衔接,起到将连接件在相连的两个卷绕部之间进行缓冲过渡的作用,为相邻的卷绕部表面的走线提供缓冲,从而线材能够平稳的沿轴向依次卷绕至不同的卷绕部111,有效防止了卷绕过程中线材的卷绕混乱,保证了各卷绕部卷绕长度的固定,也避免了对线材造成磨损,从而提高了线材的使用寿命。
进一步的,为了使所述缓冲部140更好的提供走线的作用,所述缓冲部140的凸起部的宽度一般设置为大于连接件的直径。优选的,在所述缓冲部表面设置有导线槽130,所述导线槽130从卷绕半径较大的卷绕部111延伸出来,并延伸至卷绕半径较小的卷绕部111,使线材通过导线槽130从不同的卷绕部之间进行过渡。通过设置导线槽130,可以有效防止连接在在缓冲部140表面脱落。
更进一步的,由于实际情况下负载会越来越大或越来越小,不存在负载突变陡然增大的情况,根据本申请一些实施例,所述卷绕部111的卷绕半径沿轴向依次增大或减小。
沿轴向是指沿卷绕组件110的中心轴,各卷绕部111的卷绕半径依次递减,以使不同卷绕部111卷绕线材的拉力逐渐增大或减小,以满足负载的不断增加或减少。
根据本申请实施例的另一个方面,如图2所示,还提供了一种伸缩装置200,包括上述实施例中提出的卷绕设备100和伸缩组件210。伸缩组件210包括固定支架211和多个伸缩部212,至少一个伸缩部212和至少一个末端装置240,所述伸缩部212可相对于固定支架211移动;所述伸缩部212依次滑动连接,所述末端装置240滑动设置在所述距离所述固定支架211最远的所述伸缩部212上;卷绕设备100与固定支架211一端相对固定设置,所述卷 绕部111上设置有连接件213,所述连接件一端与卷绕半径最大的所述卷绕部连接,另一端与所述末端装置240连接,当各卷绕部111转动时,连接件213带动各伸缩部212随各卷绕部111的转动而依次伸出或收缩。
如图2所示,所述伸缩组件210可以是杆状结构或立柱结构,根据实际情况可以采用不同的基本结构作为伸缩组件210。伸缩组件210的伸缩方向可以与地面垂直的方向,实现伸缩装置200的升降;也可以是与地面平行的方向,实现伸缩装置200的横向移动伸缩。所述伸缩组件210包括固定支架211和多个伸缩部212,固定支架用于对伸缩部起到支撑作用,一般与卷绕设备100相对固定设置,多个伸缩部212与固定支架211设置在一起,在工作时,能够相对于固定支架211进行移动,起到增加移动距离的作用。
如图2所示,固定支架211的一端通常固定在地面或底座上,具体与卷绕设备100一端相对固定设置,由于固定支架主要起到支撑的作用,因此,其通常采用具有一定硬度的材料制成,比如:不锈钢、铝合金或者其他硬度达到一定强度的塑料等制成。
其中,固定支架211的长度可以与伸缩部212的长度相同,伸缩组件210在初始状态,即卷绕设备未开始转动时,伸缩部212与固定支架211的两端平行,或完全容纳与固定支架内。当然伸缩部212的长度与可以是小于固定支架211的长度,伸缩组件210在初始状态下,伸缩部212的一端与固定支架211固定在底座或地面上的一端平行。
如图2所示,所述伸缩部212可以设置在固定支架211的内部,也可以于所述固定支架211相对并排设置,可伸出于固定支架211或在固定支架211内移动。当伸缩部212进行伸出操作时,卷绕机构带动伸缩部首先相对于固定支架211进行移动,然后再由伸出的伸缩部212带动其他伸缩部进行移动,直至达到预定的伸出高度或者所有伸缩部212均处于最大伸出状态。伸缩部212可以根据需要伸缩的长度设置为多个,图2中仅示出了包括一个伸缩部的情况,还可以包括更多的伸缩部,以使多个伸缩部212依次伸出固定支架211,实现多级伸缩。依次伸缩是指在多个伸缩部212依次伸出或依次收缩。以需要多级伸缩部212伸出为例,一级伸缩部先伸出,当一级伸缩部位于最大伸出长度后,带动与其相邻的二级伸缩部再伸出。依次收缩与依次伸出类似,一级伸缩部先收缩,当一级伸缩部收缩至最大收缩长度后,二级伸缩部再相对于 固定支架回缩。
需要指出的是,一级伸缩部和二级伸缩部仅是为区分当多个伸缩部212依次移动时的先移动的伸缩部和后随之移动的伸缩部,并不做任何实质上的限定,一级伸缩部和二级伸缩部可以是结构相同的两个部件,也可以是长度或结构不同的两个部件。
继续参考图2,由于图2仅示出了只有一个伸缩部212的伸缩装置200,末端装置240设置在伸缩部上。当存在多个伸缩部212时,末端装置240设置在距离固定支架最远的伸缩部。为便于描述,以伸缩装置200的伸缩方向为y方向,实现升降的装置为例,在多个伸缩部完全伸出时,最先伸出的伸缩部为位于最顶端的伸缩部上,该伸缩部此时与固定支架211的距离最远,末端装置240设置该伸缩部上。
需要说明的是,上述对伸缩装置200处于完全伸出状态的限定仅是为了便于解释说明距离固定支架211最远的伸缩部212,实际上无论伸缩装置200在伸出状态还是收缩状态或是任何状态,末端装置240都滑动设置在距离固定支架211最远的伸缩部212,即图2中在x和y方向中均与固定支架211距离最大的伸缩部212。
末端装置240可在与固定支架211距离最远的伸缩部212上滑动,当伸缩组件210所需伸出长度为仅需要末端装置240在距离固定支架211最远的伸缩部212上移动的距离,此时负载较小,连接件213可卷绕至卷绕半径最大的卷绕部111,以使末端装置212快速移动至伸缩部212的一端,即到达末端装置240可在伸缩部212上移动的最大距离的终点。当所需伸缩长度需伸出两个伸缩部212或更多时,负载较大,此时的负载为末端装置240和距离固定支架最远的伸缩部212,在带动末端装置240运动时,通过卷绕半径最大的卷绕部111带动末端装置240运动,在末端装置240移动到该伸缩部212的顶端后,连接件从卷绕半径最大的卷绕部至与其相邻的卷绕半径较小的卷绕部开始带动与末端装置240相邻的伸缩部212即距离固定支架最远的伸缩部212进行运动,由于卷绕半径的减小,在带动该伸缩部212运动时,其卷绕速度有所降低,但其拉力有所增加,从而可以使末端装置240随与其相邻的伸缩部212移动继续伸出至满足所需伸出长度。
连接件213为通过卷绕组件110转动卷绕在卷绕部上的线材,可以是钢丝绳或尼龙绳等任意能够承受一定强度和韧性的实现牵引的柔性材料。卷绕部111通过卷绕或释放连接件213带动伸缩部212和末端装置240相对于固定支架211移动。
通过连接件213依次从固定支架211连接至多个伸缩部212和末端装置240,在卷绕部111转动时,伸缩部212随卷绕部111转动依次相对于固定支架211移动。由于卷绕组件110包括多个卷绕半径不同的卷绕部111,连接件213卷绕至不同的卷绕部111时,带动不同的伸缩部212移动,以使伸缩组件210在不同伸缩长度时,各伸缩部212的移动速度不同,通过不同卷绕部111卷绕半径的变化,在从而调整卷绕设备在不同负载时的拉力,保证了卷绕设备始终以额定功率进行工作,提高了卷绕设备100的卷绕效率,提高了驱动组件120的利用率。
本申请实施例提出的伸缩装置200,通过连接件213依次连接多级伸缩部212,并且通过连接件213依次沿不同卷绕半径的卷绕部111进行卷绕,针对不同的伸缩需求控制对应的伸缩部212依次伸缩,并控制对应的伸缩部212的伸缩速度。无需调整驱动组件120的功率,卷绕组件110匀速转动,就能满足多级伸缩部212多种负载要求所需的拉力,保证了卷绕设备100始终以额定功率进行工作,提高了卷绕设备100的卷绕效率,提高了驱动组件120的功率的利用率。
根据本申请的一些实施例,各所述卷绕部111依次与所述伸缩部212及所述末端装置240对应,其中,所述末端装置240对应于卷绕半径最大的所述卷绕部111,距离所述固定支架211越近的所述伸缩部212对应的所述卷绕部111的卷绕半径越小。
卷绕半径最大的卷绕部111连接末端装置240,在伸缩装置200初始状态至伸出状态时,卷绕组件110驱动末端装置240移动,随卷绕部111的卷绕半径递减,对应的带动距离固定支架远端的伸缩部212,即与末端装置240相邻的伸缩部至与距离固定支架最近端的伸缩部依次伸出。由于带动末端装置240移动时,负载最小,通过卷绕半径最大的卷绕部111卷绕连接件,可使得末端装置240的快速移动;而随着多个伸缩部212伸出,此时负载为末端装置240和已伸出的伸缩部212,通过卷绕部111的卷绕半径递减,增大卷绕组 件110的拉力;由于末端装置240与最大卷绕半径的卷绕部111相对应,伸缩部212依次伸出对应递减的卷绕部111,当需要驱动距离固定支架最近的伸缩部时,负载最大,对应的卷绕部111的卷绕半径最小,拉力最大。
卷绕组件110先通过连接件213带动末端装置伸出,由于伸缩部212为依次移动,末端装置240的负载最小,连接件213沿卷绕半径最大的卷绕部111开始卷绕,实现末端装置240快速移动。当该伸缩部212伸出至其最大伸出长度,或收缩至其最大收缩长度时,最大卷绕半径的卷绕部111的导线槽130上已完全排列连接件213,此时连接件213通过缓冲部140继续卷绕至与最大卷绕半径的卷绕部相邻的卷绕部111,与末端装置相邻的伸缩部212开始移动。
随着伸缩部212依次伸出,伸缩装置200的负载越来越大,连接件213依次沿最大卷绕半径的卷绕部111绕至最小卷绕半径的卷绕部111,由于卷绕半径的减小,该卷绕部111转动一圈的所卷绕的连接件213长度变短,从而使该卷绕部通过连接件213带动的对应的伸缩部212伸出的速度减小。牵引力公式F=P/V,驱动组件120输出的功率P为额定功率,P恒定不变,当卷绕速度V减小,牵引力F增大;由此可知,卷绕设备100在负载随多级伸缩部212依次伸出时,由于卷绕部111的卷绕半径沿轴向依次递减,拉力(牵引力)随之增大。
通过连接件213依次从卷绕半径最大的卷绕部111卷绕,对应的带动多个伸缩部212从末端装置依次伸出,使伸缩装置200通过不同卷绕半径的卷绕部111实现变速,能够随着多级伸缩部212伸出时的负载,对应增大牵引力,节省功耗。
为提高伸缩装置的伸缩效果,根据本申请的一些实施例,继续参考图2,当各卷绕部111将所述连接件213完全卷绕时,各卷绕部111卷绕的连接件213的长度与其对应的伸缩部212和末端装置240的最大伸出长度相匹配。
在本申请实施例中,由于卷绕组件110包括多个不同卷绕半径的卷绕部111,每个卷绕部111对应每个伸缩部212设置,各卷绕部111表面所有的导线槽130均有连接件213卷绕时,该卷绕部111对应的伸缩部212完全伸出,即该伸缩部达到其能伸出的最大距离。最大卷绕半径的卷绕部111表面所有 导线槽130均有连接件213卷绕时,末端装置240移动至与其相邻的伸缩部212的顶端,即末端装置240到达其能够在与其相邻的伸缩部的最大移动范围的终点。
其中,由于缓冲部140的设置,最小的卷绕半径的卷绕部111卷绕连接件213的长度可大于距离所述固定支架最近的伸缩部212的最大伸出长度,其他卷绕部111卷绕连接件213的长度(卷绕部+缓冲部)需较小于对应其伸缩部212的最大伸出长度。如图2所示,当需要末端装置240移动至与其相邻的伸缩部212的顶端,连接件213需完全卷绕至最大卷绕半径的卷绕部111和与该卷绕部的相邻的缓冲部140;因此最大卷绕半径的卷绕部111卷绕的连接件213的长度小于末端装置240最大伸出长度,而最大卷绕半径的卷绕部111和与该卷绕部的相邻的缓冲部140与末端装置240最大伸出长度相匹配。而最小的卷绕的半径的卷绕部111对应的与固定支架连接的伸缩部212,即最后一级伸出的伸缩部212,在伸出后无需带动其他伸缩部依次伸出,因此该伸缩部212的最大伸出长度仅需对应的卷绕半径最小的卷绕部,无需经过不同卷绕半径的其他卷绕部111,也就不需要通过连接件卷绕缓冲部140,因此与该伸缩部212的最大伸出长度对应的连接件213的长度相较于其他伸缩部的连接件213长度较小。
连接件213单层排绕在卷绕组件110上,连接件213的长度可通过各伸缩部212最大伸出长度和卷绕圈数设定。卷绕圈数可以通过人工计算匝数,编码器计算驱动组件120转动圈数或计算传动行程等计数方式,对连接件213长度进行准确设定,以保证连接件213在完全排列在卷绕组件110上时,伸缩装置200内的多级伸缩部212完全伸出。
本申请另一实施例中,为避免连接件213脱落的情况,连接件213在伸缩装置200初始状态下,至少三圈卷绕在卷绕组件110上。通过计算驱动组件120转动圈数,并预设转动圈数设定值,控制卷绕部111卷绕连接件213对应的伸缩部212达到其最大伸出长度。
更进一步的,卷绕部111的导线槽130长度也与连接件213的长度相匹配。为避免连接件213脱落,卷绕设备100空转导致伸缩装置200发生故障,还可以在导线槽130内设置有传感器,用于检测伸缩装置200在需要伸出时,导线槽130上卷绕是否有连接件213。传感器还用于检测伸缩装置200在需要 收缩时,导线槽130上的连接件213是否被释放。所述传感器可以为压力传感器、红外传感器、光敏传感器或温度传感器等任意获取传感信号的器件。
通对卷绕部111的转动圈数结合缓冲部的卷绕半径,和伸缩部212最大伸出长度,确定连接件213的最大长度,能够避免连接线过长,节省成本。并且连接件213与各卷绕部111及对应的伸缩部212的完美配合,提高了伸缩装置200的工作稳定性。
为了使伸缩装置200的结构更紧凑,本申请一些实施例中,如图2和图3所示,所述固定支架及各所述伸缩部包括导向槽214,各所述伸缩部212及所述末端装置240可在所述连接件213的带动下沿相邻的所述导向槽214滑动。
伸缩部212设置在固定支架211的导向槽内,使多级伸缩部212在伸缩装置200初始状态下完全收缩至固定支架211内,减少伸缩装置200的整体占用空间,结构更紧凑。具体的,导向槽214的槽口大小与伸缩部212相匹配,伸缩部212刚好插设与导向槽214中,具有导向固定作用。
进一步的,伸缩部212也包括导向槽,多个伸缩部212之间也通过导向槽214与其相邻的伸缩部滑动连接,由于每个伸缩部212依次伸出,每个伸缩部插设在其依次伸出顺序中下一个伸缩部的导向槽中212。
末端装置安装在距离固定支架最远端的伸缩部上的导向槽内,通过连接件213沿所述距离固定支架最远端的伸缩部212的导向槽滑动。
当货物位于较高或较远的位置时,伸缩部212距离固定支架211或地面较远,由于伸缩部212本身结构刚度有限,在取放货物时难免造成晃动,使伸缩装置200的稳定性与安全性受到影响。将伸缩部212设置在固定支架211内能够起到对多个伸缩部212伸出时进行支撑的作用,避免晃动,并且伸缩部212和末端装置240也不会因多级伸出后出现倾斜偏离。
为防止伸缩部212和末端装置240快速升降时容易滑落,本申请一些实施例中,所述伸缩部和固定支架均包括限位部(图未示),位于所述导向槽的一端,在当前所述伸缩部沿与其相邻的伸缩部的导向槽滑动时,当前所述伸缩部的限位部和与其相邻的伸缩部的限位部相抵接。
限位部用于限制伸缩部在与其相邻的伸缩部或固定支架的最大移动范围。当正在伸出的伸缩部212的限位部抵接至与其相邻的伸缩部上的限位部时, 说明该伸缩部212已到达其最大伸出长度,此时若卷绕组件110继续卷绕连接件213,带动与该伸缩部212相邻的伸缩部伸出。当正在伸出的伸缩部212的限位部抵接至固定支架211上的限位部时,说明该伸缩部212已到达其最大伸出长度,此时说明伸缩装置200达到完全伸出状态,即每个伸缩部212均达到最大伸出长度,此时卷绕组件110无法继续卷绕连接件213。
末端装置240也包括限位部241,如图2所示,当末端装置的限位部241和与距离所述固定支架最远的伸缩部212上的限位部相抵接时,所述末端装置240位于伸缩部212的最顶端,此时若卷绕组件110继续卷绕连接件213,带动距离所述固定支架最远的伸缩部212伸出。
通过限位部设置,防止末端装置240继续升起滑出伸缩部212,进而避免末端装置240或末端装置240上的货物从高处坠落,造成事故等安全隐患。并且,在末端装置处于与其相邻的伸缩部的顶端后,末端装置240带动与其相邻的伸缩部212向他对于固定支架211伸出,延伸末端装置240的升降范围,实现末端装置对更高更远的货物进行取放。
为了更好使各卷绕部111带动对应的各伸缩部212伸缩,本申请一些实施例中,参考图2和图4,所述伸缩部还包括导轮组件,所述导轮组件包括上滑轮和下滑轮,所述上滑轮和所述下滑轮分别设置于所述伸缩部的两端;所述连接件依次绕设于所述上滑轮和所述下滑轮,所述导轮组件与所述连接件形成动滑轮结构,所述驱动组件通过所述连接件控制所述伸缩部升降。
如图2和图4所示,多个伸缩部212之间通过设置在伸缩部212两端的动滑轮连接,使多个伸缩部212依次伸出时更省力。具体的,图4为方便展示简化了伸缩部212和固定支架211中的侧壁,由图4所示,上滑轮221和下滑轮222设置在伸缩部212与固定支架抵接的一侧面,伸缩部212通过上滑轮221和下滑轮222与固定支架211的导向槽214抵接。
通过连接件213绕设于导轮组件220,改变驱动组件120输出的力的方向,从而通过不同卷绕部111带动不同的伸缩部212移动,并且设置上滑轮和下滑轮,可以使多个伸缩部依次伸出时更省力。
为了使卷绕设备100驱动多个伸缩部212依次伸出时更省力,本申请一些实施例中,继续参考图2和图4,固定支架211上远离所述卷绕设备100的 一端设置有定滑轮230;连接件213从最大卷绕半径的卷绕部111依次绕设所述定滑轮230、所述下滑轮222和所述上滑轮221至末端装置。
定滑轮230为轴的位置固定不动的滑轮,用于将引导连接件213绕设导轮组件220。在伸缩组件210伸出状态时,卷绕部111通过卷绕连接件213带动上滑轮221和下滑轮222随之转动,上滑轮221和下滑轮222随伸缩部212一并沿固定支架211的导向槽214移动。
为使伸缩装置200能够满足物流仓储到的需求,本申请一些实施例中,所述末端装置240为用于承载并取放货物的搬运组件。货物放置在末端装置240上,随末端装置的移动,或末端装置随多级伸缩部的伸缩(升降)移动,实现将货物放置在较高的货架上,或将货物从高处搬运到地面。
末端装置240用于承载货物,末端装置240包括但不限于货叉和托盘的结构,托盘安装在货叉上,为防止货物随末端装置移动而从托盘上掉落,托盘上还设有挡板,挡板垂直于托盘底面。如图2所示,托盘底面和挡板在托盘上形成至少一个开口,货叉还可以带动末端装置240旋转,以使货物可以通过托盘上的开口放置在指定的货架上,或通过托盘上的开口放置在托盘底面上。
末端装置240设置在伸缩部212中,并在伸缩部212长度范围内移动。连接件213一端与末端装置240连接,另一端与最大卷绕半径的卷绕部111连接,在卷绕设备100转动时,末端装置240随伸缩组件210伸缩而移动,从而使末端装置240上达到指定位置,并对货物进行取放。
伸缩装置200从初始状态到伸出状态过程中,末端装置240先在伸缩部212内移动,由于此时伸缩部212并未伸出,负载仅为末端装置240和货物,通过最大卷绕半径的卷绕部111卷绕连接件213,能够使货物快速移动。
为方便对本申请实施例进行描述,以伸缩组件210的伸缩方向为垂直于地面的方向为例,伸缩组件210用于升降末端装置240,实现将货物放置在较高的货架上,或将货物从高处搬运到地面。
本申请实施例的伸缩装置最具体的实施方式如图2所示,伸缩装置200包括底座,固定支架211与卷绕设备100固定在底座上。固定支架211包括相对设置的左固定支架和右固定支架,对应的伸缩部212包括左伸缩部和右伸缩部,左伸缩部通过导向槽214插设在左固定支架上,右伸缩部通过导向 槽214插设在右固定支架上。对应的,卷绕组件110包括通过卷绕或释放连接件213带动左伸缩部相对左固定支架移动的左卷绕组件,通过卷绕或释放连接件带动右伸缩部相对右固定支架移动的右卷绕组件。驱动组件120通过传动杆使左右卷绕组件同时转动。
左伸缩部面对右伸缩部的一面上设置有左导向槽,右伸缩部面对左伸缩部的一面上设置有右导向槽,末端装置240设置有与左导向槽和右滑匹配的滑块,使末端装置沿左导向槽和右导向槽在两个左右平行相对的伸缩部212之间移动。
通过在底座上设有左右相互对称且平行的伸缩组件210,末端装置240在左右两个伸缩部212之间升降,对末端装置240升降起到稳固支撑的作用,避免末端装置240移动时晃动,防止货物升降过程中掉落的现象。
在末端装置240需要升起时,驱动组件120通过同轴的传动组件带动左卷绕组件和右卷饶组件同时转动,最大卷绕半径的卷绕部111通过卷绕连接件213,带动连接件213另一端连接的末端装置240移动。左伸缩部和右伸缩部通过伸缩部的限位部215连接,当末端装置240到达限位部215时,末端装置240位于伸缩部212的最顶端。
图2还表示为本申请实施例的伸缩装置200完全伸出的状态,在伸缩装置200从收缩状态至完全伸出状态的具体方式是,驱动组件120驱动卷绕组件110转动,连接件213从最大半径的卷绕部111开始卷绕,带动末端装置240在伸缩部212上移动,此时伸缩部212不动;当末端装置240移动到伸缩部212的一端,末端装置的限位部241与伸缩部的限位部215抵接时,连接件213卷绕至较小卷绕半径的卷绕部111,此时伸缩部212相对于固定支架211伸出,带动末端装置240继续移动。
左固定支架和右固定支架通过固定支架的限位部216连接,固定支架的限位部216上还设有与伸缩部的限位部215(与固定支架相邻的伸缩部)匹配的缺口,当伸缩组件210需要收缩时,末端装置240先移动至伸缩部212的另一端,使限位块241与底座抵接,伸缩部212再回缩至固定支架211内,直至伸缩部的限位部215通过缺口与固定支架的限位部216平行。
通过驱动组件120同时带动左右两个卷绕组件110转动,实现末端装置 240平稳升降,并在末端装置240到达伸缩部212的其中一端后,带动左右两个伸缩部212的同步升降,使货物升降的同时保证运行平稳。
根据本申请实施例的另一个方面,提供一种搬运机器人,包括上述任意一项伸缩装置200。
最后应说明的是:以上各实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参阅前述各实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的范围,其均应涵盖在本实用新型的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本实用新型并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种卷绕设备,其特征在于,包括驱动组件和卷绕组件;
    所述驱动组件与所述卷绕组件同轴设置,用于带动所述卷绕组件进行转动;
    所述卷绕组件包括至少两个轴向依次设置的卷绕部,相邻的所述卷绕部具有不同的卷绕半径。
  2. 根据权利要求1所述的卷绕设备,其特征在于,所述卷绕部表面设置有导线槽。
  3. 根据权利要求1所述的卷绕设备,其特征在于,相邻的所述卷绕部之间设置有缓冲部,所述缓冲部用于为相邻的所述卷绕部表面的走线提供缓冲。
  4. 根据权利要求1所述的卷绕设备,其特征在于,所述卷绕部的卷绕半径沿轴向依次增大或减小。
  5. 一种伸缩装置,其特征在于,包括如权利要求1-4任一项所述的卷绕设备和伸缩组件;
    所述伸缩组件包括固定支架、至少一个伸缩部和至少一个末端装置,至少一个所述伸缩部可相对于所述固定支架移动,所述伸缩部依次滑动连接,所述末端装置滑动设置在所述距离所述固定支架最远的所述伸缩部上;
    所述卷绕设备与所述固定支架一端相对固定设置,所述卷绕部上设置有连接件,所述连接件一端与卷绕半径最大的所述卷绕部连接,另一端与所述末端装置连接,当各所述卷绕部转动时,所述连接件可依次带动所述末端装置及各所述伸缩部随各所述卷绕部的转动而依次伸出或收缩。
  6. 根据权利要求5所述的伸缩装置,其特征在于,各所述卷绕部依次与所述伸缩部及所述末端装置对应,其中,所述末端装置对应于卷绕半径最大的所述卷绕部,距离所述固定支架越近的所述伸缩部对应的所述卷绕部的卷绕半径越小。
  7. 根据权利要求6所述的伸缩装置,其特征在于,当各所述卷绕部将所述连接件完全卷绕时,各所述卷绕部卷绕的连接件的长度与其对应的所述伸 缩部或所述末端装置的最大伸出长度相匹配。
  8. 根据权利要求5所述的伸缩装置,其特征在于,所述固定支架及各所述伸缩部包括导向槽,各所述伸缩部及所述末端装置可在所述连接件的带动下沿相邻的所述导向槽滑动。
  9. 根据权利要求8所述的伸缩装置,其特征在于,所述伸缩部具有限位部,位于所述导向槽的一端,在当前所述伸缩部或末端装置沿与其相邻的伸缩部的导向槽滑动时,当前所述伸缩部或末端装置的限位部和与其相邻的伸缩部的限位部相抵接。
  10. 根据权利要求8所述的伸缩装置,其特征在于,所述伸缩部还包括导轮组件,所述导轮组件包括上滑轮和下滑轮,所述上滑轮和所述下滑轮分别设置于所述伸缩部的两端;所述连接件依次绕设于所述上滑轮和所述下滑轮,所述导轮组件与所述连接件形成动滑轮结构,所述驱动组件通过所述连接件控制所述伸缩部升降。
  11. 根据权利要求9所述的伸缩装置,其特征在于,所述固定支架上远离所述卷绕设备的一端设置有定滑轮;所述连接件从最大卷绕半径的卷绕部依次绕设所述定滑轮、所述下滑轮和所述上滑轮至所述末端装置。
  12. 根据权利要求5所述的伸缩装置,其特征在于,所述末端装置用于取放货物的搬运组件。
  13. 一种搬运机器人,其特征在于,包括如权利要求5-12任意一项所述伸缩装置。
PCT/CN2023/116621 2022-09-08 2023-09-01 一种卷绕设备、伸缩装置和搬运机器人 WO2024051613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222409660.8U CN218231679U (zh) 2022-09-08 2022-09-08 一种卷绕设备、伸缩装置和搬运机器人
CN202222409660.8 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024051613A1 true WO2024051613A1 (zh) 2024-03-14

Family

ID=84663707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116621 WO2024051613A1 (zh) 2022-09-08 2023-09-01 一种卷绕设备、伸缩装置和搬运机器人

Country Status (2)

Country Link
CN (1) CN218231679U (zh)
WO (1) WO2024051613A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218231679U (zh) * 2022-09-08 2023-01-06 深圳市海柔创新科技有限公司 一种卷绕设备、伸缩装置和搬运机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874700A (zh) * 2012-09-25 2013-01-16 哈尔滨工业大学 鼠笼式直线伸展机构
CN103032022A (zh) * 2013-01-07 2013-04-10 湖南泰达机械实业有限公司 新型高效长螺旋钻孔机
CN104709837A (zh) * 2013-12-17 2015-06-17 高则行 牵引装置
US20150284223A1 (en) * 2013-05-13 2015-10-08 David R. Hall Grooved Drum and Associated Roller for Motorized Lifting Device
JP5854344B1 (ja) * 2015-07-07 2016-02-09 有限会社 ナカテック ウインチ装置
CN113233321A (zh) * 2021-05-18 2021-08-10 国网安徽省电力有限公司广德市供电公司 一种专用分接开关检修装置及检修方法
CN216971814U (zh) * 2021-12-21 2022-07-15 上海通用建筑工程有限公司 一种网架屋面板上料装置
CN218231679U (zh) * 2022-09-08 2023-01-06 深圳市海柔创新科技有限公司 一种卷绕设备、伸缩装置和搬运机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874700A (zh) * 2012-09-25 2013-01-16 哈尔滨工业大学 鼠笼式直线伸展机构
CN103032022A (zh) * 2013-01-07 2013-04-10 湖南泰达机械实业有限公司 新型高效长螺旋钻孔机
US20150284223A1 (en) * 2013-05-13 2015-10-08 David R. Hall Grooved Drum and Associated Roller for Motorized Lifting Device
CN104709837A (zh) * 2013-12-17 2015-06-17 高则行 牵引装置
JP5854344B1 (ja) * 2015-07-07 2016-02-09 有限会社 ナカテック ウインチ装置
CN113233321A (zh) * 2021-05-18 2021-08-10 国网安徽省电力有限公司广德市供电公司 一种专用分接开关检修装置及检修方法
CN216971814U (zh) * 2021-12-21 2022-07-15 上海通用建筑工程有限公司 一种网架屋面板上料装置
CN218231679U (zh) * 2022-09-08 2023-01-06 深圳市海柔创新科技有限公司 一种卷绕设备、伸缩装置和搬运机器人

Also Published As

Publication number Publication date
CN218231679U (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
WO2024051613A1 (zh) 一种卷绕设备、伸缩装置和搬运机器人
KR960002340B1 (ko) 승강장치
US4875660A (en) Push actuator
CN104088965A (zh) 一种直线伸缩装置
CN203079621U (zh) 电动升降杆
CN109179225B (zh) 一种室内装潢的吊装装置
CN211056028U (zh) 一种吊轨式移动供电送餐设备
KR200380436Y1 (ko) 다단식 조명타워 승강장치
CN107074508B (zh) 提升装置
CN207294012U (zh) 可移动且防跳绳的晾衣机卷线结构
CN203754078U (zh) 升降杆收放电缆装置
CN215326799U (zh) 一种照明施工用升降装置
CN109264598B (zh) 一种用于室内装潢的吊装机
CN207002089U (zh) 一种升降机构的定位导丝结构及包括该结构的起重机
CN218453854U (zh) 一种防火电缆生产用卷线装置
CN216889973U (zh) 一种刚性导柱以及具有该刚性导柱移动提升装置
CN111092391A (zh) 一种变电站安装用辅助装置
CN221420280U (zh) 一种铝合金丝自动收卷装置
CN211004455U (zh) 一种可移动的家用升降台
CN217837005U (zh) 一种多平台自动升降货架
CN218786347U (zh) 一种含机械臂的二级升降机构
CN219636730U (zh) 一种用于拉伸铜卷的伸缩型运输吊钩
CN211998174U (zh) 一种自动卷线装置
CN221102897U (zh) 一种电缆敷设用电缆自动放线支架
CN219351116U (zh) 一种导线架空跨高速施工辅助装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862307

Country of ref document: EP

Kind code of ref document: A1